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Introduction

Welcome to SemEval-2021!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyze diverse semantic phenomena in text, with the aims of extending the current
state of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2021 is the fifteenth workshop in the series of International Workshops on Semantic Evaluation.
The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on
word sense disambiguation, each time expanding in the number of languages offered, the number of
tasks, and also the number of teams participating. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval became a yearly event. It currently takes place every year, on a two-
year cycle. The tasks for SemEval-2021 were proposed in 2020, and next year’s tasks have already been
selected and are underway.

SemEval-2021 is co-located (virtually) with The Joint Conference of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP 2021) on August 5-6. This year’s SemEval included the following
11 tasks:

¢ Lexical semantics

— Task 1: Lexical Complexity Prediction
— Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation
— Task 4: Reading Comprehension of Abstract Meaning

* Social factors & opinion

— Task 5: Toxic Spans Detection
— Task 6: Detection of Persuasive Techniques in Texts and Images

— Task 7: HaHackathon: Detecting and Rating Humor and Offense

¢ Information in scientific & clinical text

Task 8: MeasEval: Counts and Measurements

Task 9: Statement Verification and Evidence Finding with Tables

Task 10: Source-Free Domain Adaptation for Semantic Processing
Task 11: NLPContributionGraph

* Other phenomena

— Task 12: Learning with Disagreements

This volume contains both task description papers that describe each of the above tasks and system
description papers that present the systems that participated in the tasks. A total of 11 task description
papers and 175 system description papers are included in this volume.
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SemEval-2021 features two awards, one for organizers of a task and one for a team participating in a task.
The Best Task award recognizes a task that stands out for making an important intellectual contribution to
empirical computational semantics, as demonstrated by a creative, interesting, and scientifically rigorous
dataset and evaluation design, and a well-written task overview paper. The Best Paper award recognizes
a system description paper (written by a team participating in one of the tasks) that advances our
understanding of a problem and available solutions with respect to a task. It need not be the highest-
scoring system in the task, but it must have a strong analysis component in the evaluation, as well as a
clear and reproducible description of the problem, algorithms, and methodology.

2021 has been another particularly challenging year across the globe. We are immensely grateful to
the task organizers for their perseverance through many ups, downs, and uncertainties, as well as to the
large number of participants whose enthusiastic participation has made SemEval once again a successful
event! Thanks also to the task organizers who served as area chairs for their tasks, and to both task
organizers and participants who reviewed paper submissions. These proceedings have greatly benefited
from their detailed and thoughtful feedback. Thousands of thanks to our assistant organizers Julia R.
Bonn and Abhidip Bhattacharyya for their extensive, detailed, and dedicated work on the production of
these proceedings! We also thank the members of the program committee who reviewed the submitted
task proposals and helped us to select this exciting set of tasks, and we thank the ACL 2021 conference
organizers for their support. Finally, we most gratefully acknowledge the support of our sponsor: the
ACL Special Interest Group on the Lexicon (SIGLEX).

The SemEval-2021 organizers: Guy Emerson, Aurelie Herbelot, Alexis Palmer, Natalie Schluter, Nathan
Schneider, and Xiaodan Zhu
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Abstract

This paper presents the results and main find-
ings of SemEval-2021 Task 1 - Lexical Com-
plexity Prediction. We provided participants
with an augmented version of the CompLex
Corpus (Shardlow et al., 2020). CompLex
is an English multi-domain corpus in which
words and multi-word expressions (MWEs)
were annotated with respect to their complex-
ity using a five point Likert scale. SemEval-
2021 Task 1 featured two Sub-tasks: Sub-task
1 focused on single words and Sub-task 2 fo-
cused on MWEs. The competition attracted
198 teams in total, of which 54 teams submit-
ted official runs on the test data to Sub-task 1
and 37 to Sub-task 2.

1 Introduction

The occurrence of an unknown word in a sentence
can adversely affect its comprehension by read-
ers. Either they give up, misinterpret, or plough on
without understanding. A committed reader may
take the time to look up a word and expand their
vocabulary, but even in this case they must leave
the text, undermining their concentration. The nat-
ural language processing solution is to identify can-
didate words in a text that may be too difficult
for a reader (Shardlow, 2013; Paetzold and Specia,
2016a). Each potential word is assigned a judgment
by a system to determine if it was deemed ‘com-
plex’ or not. These scores indicate which words are
likely to cause problems for a reader. The words
that are identified as problematic can be the subject
of numerous types of intervention, such as direct
replacement in the setting of lexical simplification
(Gooding and Kochmar, 2019), or extra informa-
tion being given in the context of explanation gen-
eration (Rello et al., 2015).

Whereas previous solutions to this task have typ-
ically considered the Complex Word Identification
(CWI]) task (Paetzold and Specia, 2016a; Yimam
etal., 2018) in which a binary judgment of a word’s

1

complexity is given (i.e., is a word complex or
not?), we instead focus on the Lexical Complexity
Prediction (LCP) task (Shardlow et al., 2020) in
which a value is assigned from a continuous scale
to identify a word’s complexity (i.e., how complex
is this word?). We ask multiple annotators to give
a judgment on each instance in our corpus and take
the average prediction as our complexity label. The
former task (CWI) forces each user to make a sub-
jective judgment about the nature of the word that
models their personal vocabulary. Many factors
may affect the annotator’s judgment including their
education level, first language, specialism or famil-
iarity with the text at hand. The annotators may
also disagree on the level of difficulty at which to
label a word as complex. One annotator may label
every word they feel is above average difficulty,
another may label words that they feel unfamiliar
with, but understand from the context, whereas an-
other annotator may only label those words that
they find totally incomprehensible, even in context.
Our introduction of the LCP task seeks to address
this annotator confusion by giving annotators a
Likert scale to provide their judgments. Whilst
annotators must still give a subjective judgment
depending on their own understanding, familiarity
and vocabulary — they do so in a way that better
captures the meaning behind each judgment they
have given. By aggregating these judgments we
have developed a dataset that contains continuous
labels in the range of 0—1 for each instance. This
means that rather than a system predicting whether
a word is complex or not (0 or 1), instead a system
must now predict where, on our continuous scale,
a word falls (0-1).

Consider the following sentence taken from a
biomedical source, where the target word ‘observa-
tion” has been highlighted:

(1) The observation of unequal expression leads
to a number of questions.
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In the binary annotation setting of CWI some anno-
tators may rightly consider this term non-complex,
whereas others may rightly consider it to be com-
plex. Whilst the meaning of the word is reasonably
clear to someone with scientific training, the con-
text in which it is used is unfamiliar for a lay reader
and will likely lead to them considering it com-
plex. In our new LCP setting, we are able to ask
annotators to mark the word on a scale from very
easy to very difficult. Each user can give their sub-
jective interpretation on this scale indicating how
difficult they found the word. Whilst annotators
will inevitably disagree (some finding it more or
less difficult), this is captured and quantified as part
of our annotations, with a word of this type likely
to lead to a medium complexity value.

LCP is useful as part of the wider task of lexi-
cal simplification (Devlin and Tait, 1998), where
it can be used to both identify candidate words for
simplification (Shardlow, 2013) and rank poten-
tial words as replacements (Paetzold and Specia,
2017). LCP is also relevant to the field of readabil-
ity assessment, where knowing the proportion of
complex words in a text helps to identify the overall
complexity of the text (Dale and Chall., 1948).

This paper presents SemEval-2021 Task 1: Lex-
ical Complexity Prediction. In this task we devel-
oped a new dataset for complexity prediction based
on the previously published CompLex dataset. Our
dataset covers 10,800 instances spanning 3 genres
and containing unigrams and bigrams as targets for
complexity prediction. We solicited participants
in our task and released a trial, training and test
split in accordance with the SemEval schedule. We
accepted submissions in two separate Sub-tasks,
the first being single words only and the second
taking single words and multi-word expressions
(modelled by our bigrams). In total 55 teams par-
ticipated across the two Sub-tasks.

The rest of this paper is structured as folllows:
In Section 2 we discuss the previous two iterations
of the CWI task. In Section 3, we present the
CompLex 2.0 dataset that we have used for our task,
including the methodology we used to produce trial,
test and training splits. In Section 5, we show the
results of the participating systems and compare
the features that were used by each system. We
finally discuss the nature of LCP in Section 7 and
give concluding remarks in Section 8

2 Related Tasks

CWI 2016 at SemEval The CWI shared task
was organized at SemEval 2016 (Paetzold and Spe-
cia, 2016a). The CWI 2016 organizers introduced
a new CWI dataset and reported the results of 42
CWI systems developed by 21 teams. Words in
their dataset were considered complex if they were
difficult to understand for non-native English speak-
ers according to a binary labelling protocol. A word
was considered complex if at least one of the anno-
tators found it to be difficult. The training dataset
consisted of 2,237 instances, each labelled by 20
annotators and the test dataset had 88,221 instances,
each labelled by 1 annotator (Paetzold and Specia,
2016a).

The participating systems leveraged lexical fea-
tures (Choubey and Pateria, 2016; Bingel et al.,
2016; Quijada and Medero, 2016) and word em-
beddings (Kuru, 2016; S.P et al., 2016; Gillin,
2016), as well as finding that frequency features,
such as those taken from Wikipedia (Konkol, 2016;
Wrébel, 2016) were useful. Systems used binary
classifiers such as SVMs (Kuru, 2016; S.P et al.,
2016; Choubey and Pateria, 2016), Decision Trees
(Choubey and Pateria, 2016; Quijada and Medero,
2016; Malmasi et al., 2016), Random Forests (Ron-
zano et al., 2016; Brooke et al., 2016; Zampieri
et al., 2016; Mukherjee et al., 2016) and threshold-
based metrics (Kauchak, 2016; Wrobel, 2016) to
predict the complexity labels. The winning system
made use of threshold-based methods and features
extracted from Simple Wikipedia (Paetzold and
Specia, 2016b).

A post-competition analysis (Zampieri et al.,
2017) with oracle and ensemble methods showed
that most systems performed poorly due mostly to
the way in which the data was annotated and the
the small size of the training dataset.

CWI 2018 at BEA The second CWI Shared Task
was organized at the BEA workshop 2018 (Yimam
et al., 2018). Unlike the first task, this second task
had two objectives. The first objective was the
binary complex or non-complex classification of
target words. The second objective was regression
or probabilistic classification in which 13 teams
were asked to assign the probability of a target word
being considered complex by a set of language
learners. A major difference in this second task was
that datasets of differing genres: (TEXT GENRES)
as well as English, German and Spanish datasets



for monolingual speakers and a French dataset for
multilingual speakers were provided (Yimam et al.,
2018).

Similar to 2016, systems made use of a variety
of lexical features including word length (Wani
et al., 2018; De Hertog and Tack, 2018; AbuRa’ed
and Saggion, 2018; Hartmann and dos Santos,
2018; Alfter and Pilan, 2018; Kajiwara and Ko-
machi, 2018), frequency (De Hertog and Tack,
2018; Aroyehun et al., 2018; Alfter and Pilan, 2018;
Kajiwara and Komachi, 2018), N-gram features
(Gooding and Kochmar, 2018; Popovi¢, 2018; Hart-
mann and dos Santos, 2018; Alfter and Pilan, 2018;
Butnaru and Ionescu, 2018) and word embeddings
(De Hertog and Tack, 2018; AbuRa’ed and Sag-
gion, 2018; Aroyehun et al., 2018; Butnaru and
Ionescu, 2018). A variety of classifiers were used
ranging from traditional machine learning classi-
fiers (Gooding and Kochmar, 2018; Popovié, 2018;
AbuRa’ed and Saggion, 2018), to Neural Networks
(De Hertog and Tack, 2018; Aroyehun et al., 2018).
The winning system made use of Adaboost with
WordNet features, POS tags, dependency parsing
relations and psycholinguistic features (Gooding
and Kochmar, 2018).

3 Data

We previously reported on the annotation of the
CompLex dataset (Shardlow et al., 2020) (hereafter
referred to as CompLex 1.0), in which we anno-
tated around 10,000 instances for lexical complex-
ity using the Figure Eight platform. The instances
spanned three genres: Europarl, taken from the
proceedings of the European Parliament (Koehn,
2005); The Bible, taken from an electronic dis-
tribution of the World English Bible translation
(Christodouloupoulos and Steedman, 2015) and
Biomedical literature, taken from the CRAFT cor-
pus (Bada et al., 2012). We limited our annotations
to focus only on nouns and multi-word expressions
following a Noun-Noun or Adjective-Noun pat-
tern, using the POS tagger from Stanford CoreNLP
(Manning et al., 2014) to identify these patterns.
Whilst these annotations allowed us to report on
the dataset and to show some trends, the overall
quality of the annotations we received was poor
and we ended up discarding a large number of the
annotations. For CompLex 1.0 we retained only
instances with four or more annotations and the
low number of annotations (average number of
annotators = 7) led to the overall dataset being less

reliable than initially expected

For the Shared Task we chose to boost the num-
ber of annotations on the same data as used for
CompLex 1.0 using Amazon’s Mechanical Turk
platform. We requested a further 10 annotations
on each data instance bringing up the average num-
ber of annotators per instance. Annotators were
presented with the same task layout as in the anno-
tation of CompLex 1.0 and we defined the Likert
Scale points as previously:

Very Easy: Words which were very familiar to an
annotator.

Easy: Words with which an annotator was aware
of the meaning.

Neutral: A word which was neither difficult nor
easy.

Difficult: Words which an annotator was unclear
of the meaning, but may have been able to
infer the meaning from the sentence.

Very Difficult: Words that an annotator had never
seen before, or were very unclear.

These annotations were aggregated with the re-
tained annotations of CompLex 1.0 to give our new
dataset, CompLex 2.0, covering 10,800 instances
across single and multi-words and across 3 genres.

The features that make our corpus distinct from
other corpora which focus on the CWI and LCP
tasks are described below:

Continuous Annotations: We have annotated our
data using a 5-point Likert Scale. Each in-
stance has been annotated multiple times and
we have taken the mean average of these anno-
tations as the label for each data instance. To
calculate this average we converted the Likert
Scale points to a continuous scale as follows:
Very Easy — 0, Easy — 0.25, Neutral — 0.5,
Difficult — 0.75, Very Difficult — 1.0.

Contextual Annotations: Each instance in the
corpus is presented with its enclosing sentence
as context. This ensures that the sense of a
word can be identified when assigning it a
complexity value. Whereas previous work
has reannotated the data from the CWI-2018
shared task with word senses (Strohmaier
et al., 2020), we do not make explicit sense
distinctions between our tokens, instead leav-
ing this task up to participants.



Repeated Token Instances: We provide more
than one context for each token (up to a maxi-
mum of five contexts per genre). These words
were annotated separately during annotation,
with the expectation that tokens in different
contexts would receive differing complexity
values. This deliberately penalises systems
that do not take the context of a word into
account.

Multi-word Expressions: In our corpus we have
provided 1,800 instances of multi-word ex-
pressions (split across our 3 sub-corpora).
Each MWE is modelled as a Noun-Noun or
Adjective-Noun pattern followed by any POS
tag which is not a noun. This avoids select-
ing the first portion of complex noun phrases.
There is no guarantee that these will corre-
spond to true MWEs that take on a meaning
beyond the sum of their parts, and further in-
vestigation into the types of MWEs present in
the corpus would be informative.

Aggregated Annotations: By aggregating the
Likert scale labels we have generated crowd-
sourced complexity labels for each instance
in our corpus. We are assuming that, although
there is inevitably some noise in any large an-
notation project (and especially so in crowd-
sourcing), this will even out in the averaging
process to give a mean value reflecting the
appropriate complexity for each instance. By
taking the mean average we are assuming uni-
modal distributions in our annotations.

Varied Genres: We have selected for diverse gen-
res as mentioned above. Previous CWI
datasets have focused on informal text such as
Wikipedia and multi-genre text, such as news.
By focusing on specific texts we force systems
to learn generalised complexity annotations
that are appropriate in a cross-genre setting.

We have presented summary statistics for Com-
pLex 2.0 in Table 1. In total, 5,617 unique words
are split across 10,800 contexts, with an average
complexity across our entire dataset of 0.321. Each
genre has 3,600 contexts, with each split between
3,000 single words and 600 multi-word expres-
sions. Whereas single words are slightly below the
average complexity of the dataset at 0.302, multi-
word expressions are much more complex at 0.419,

indicating that annotators found these more dif-
ficult to understand. Similarly Europarl and the
Bible were less complex than the corpus average,
whereas the Biomedical articles were more com-
plex. The number of unique tokens varies from
one genre to another as the tokens were selected at
random and discarded if there were already more
than 5 occurrences of the given token already in
the dataset. This stochastic selection process led to
a varied dataset with some tokens only having one
context, whereas others have as many as five in a
given genre. On average each token has around 2
contexts.

4 Data Splits

In order to run the shared task we partitioned our
dataset into Trial, Train and Test splits and dis-
tributed these according to the SemEval schedule.
A criticism of previous CWI shared tasks is that
the training data did not accurately reflect the dis-
tribution of instances in the testing data. We sought
to avoid this by stratifying our selection process
for a number of factors. The first factor we consid-
ered was genre. We ensured that an even number
of instances from each genre was present in each
split. We also stratified for complexity, ensuring
that each split had a similar distribution of com-
plexities. Finally we also stratified the splits by
token, ensuring that multiple instances containing
the same token occurred in only one split. This last
criterion ensures that systems do not overfit to the
test data by learning the complexities of specific
tokens in the training data.

Performing a robust stratification of a dataset
according to multiple features is a non-trivial op-
timisation problem. We solved this by first group-
ing all instances in a genre by token and sorting
these groups by the complexity of the least com-
plex instance in the group. For each genre, we
passed through this sorted list and for each set of
20 groups we put the first group in the trial set, the
next two groups in the test set and the remaining 17
groups in the training data. This allowed us to get
a rough 5-85-10 split between trial, training and
test data. The trial and training data were released
in this ordered format, however to prevent systems
from guessing the labels based on the data ordering
we randomised the order of the instances in the test
data prior to release. The splits that we used for the
Shared Task are available via GitHub'.

"https://github.com/MMU-TDMLab/CompLex



Subset Genre Contexts Unique Tokens Average Complexity
Total 10,800 5,617 0.321
All Europarl 3,600 2,227 0.303
Biomed 3,600 1,904 0.353
Bible 3,600 1,934 0.307
Total 9,000 4,129 0.302
Single Europarl 3,000 1,725 0.286
Biomed 3,000 1,388 0.325
Bible 3,000 1,462 0.293
Total 1,800 1,488 0.419
Europarl 600 502 0.388
MWE Biomed 600 516 0.491
Bible 600 472 0.377

Table 1: The statistics for CompLex 2.0.

Table 2 presents statistics on each split in our
data, where it can be seen that we were able to
achieve a roughly even split between genres across
the trial, train and test data.

Subset Genre Trial Train Test
Total 520 9179 1101
All Europarl 180 3010 410
Biomed 168 3090 342
Bible 172 3079 349
Total 421 7662 917
Single Europarl 143 2512 345
Biomed 135 2576 289
Bible 143 2574 283
Total 99 1517 184

Europarl 37 498 65
Biomed 33 514 53
Bible 29 505 66

MWE

Table 2: The Trial, Train and Test splits that were used
as part of the shared task.

5 Results

The full results of our task can be seen in Ap-
pendix A. We had 55 teams participate in our 2
Sub-tasks, with 19 participating in Sub-task 1 only,
1 participating in Sub-task 2 only and 36 partici-
pating in both Sub-tasks. We have used Pearson’s
correlation for our final ranking of participants, but
we have also included other metrics that are appro-
priate for evaluating continuous and ranked data
and provided secondary rankings of these.
Sub-task 1 asked participants to assign complex-
ity values to each of the single words instances in
our corpus. For Sub-task 2, we asked participants
to submit results on both single words and MWE:s.
We did not rank participants on MWE-only submis-

sions due to the relatively small number of MWEs
in our corpus (184 in the test set).

The metrics we chose for ranking were as fol-
lows:

Pearson’s Correlation: We chose this metric as
our primary method of ranking as it is well
known and understood, especially in the con-
text of evaluating systems with continuous
outputs. Pearson’s correlation is robust to
changes in scale and measures how the input
variables change with each other.

Spearman’s Rank: This metric does not consider
the values output by a system, or in the test
labels, only the order of those labels. It was
chosen as a secondary metric as it is more
robust to outliers than Pearson’s correlation.

Mean Absolute Error (MAE): Typically used
for the evaluation of regression tasks, we
included MAE as it gives an indication of
how close the predicted labels were to the
gold labels for our task.

Mean Squared Error (MSE): There is little dif-
ference in the calculation of MSE vs. MAE,
however we also include this metric for com-
pleteness.

R2: This measures the proportion of variance of
the original labels captured by the predicted
labels. It is possible to do well on all the other
metrics, yet do poorly on R2 if a system pro-
duces annotations with a different distribution
than those in the original labels.

In Table 3 we show the scores of the top 10 sys-
tems across our 2 Sub-tasks according to Pearson’s



Task 1

Team Pearson R2
JUST BLUE 0.7886 (1) 0.6172 (2)
DeepBlueAl 0.7882 (2) 0.6210 (1)
Alejandro Mosquera  0.7790 (3)  0.6062 (3)
Andi 0.7782 (4)  0.6036 (4)
CS-UM6P 0.7779 (5) 0.3813 (47)
tuga 0.7772 (6) 0.5771 (12)
OCHADAI-KYOTO 0.7772(7)  0.6015 (5)
BigGreen 0.7749 (8)  0.5983 (6)
CSECU-DSC 0.7716 (9)  0.5909 (8)
1A PUCP 0.7704 (10)  0.5929 (7)
Frequency Baseline 0.5287 0.2779
Task 2

DeepBlueAl 0.8612 (1) 0.7389 (1)
rg_pa 0.8575(2) 0.7035 (5)
xiang_wen_tian 0.8571 (3) 0.7012 (7)
andi_gpu 0.8543 (4) 0.7055 (4)
ren_wo_xing 0.8541 (5) 0.6967 (8)
Andi 0.8506 (6) 0.7107 (2)
CS-UM6P 0.8489 (7)  0.6380 (17)
OCHADAI-KYOTO 0.8438(8) 0.7103 (3)
LAST 0.8417 (9)  0.7030 (6)
KFU 0.8406 (10)  0.6967 (9)
Frequency Baseline 0.6571 0.4030

Table 3: The top 10 systems for each task according to
Pearson’s correlation. We have also included R2 score
to help interpret the former. For full rankings, see Ap-
pendix A

Correlation. We have only reported on Pearson’s
correlation and R2 in these tables, but the full re-
sults with all metrics are available in Appendix A.
We have included a Frequency Baseline produced
using log-frequency from the Google Web1T and
linear regression, which was beaten by the majority
of our systems. From these results we can see that
systems were able to attain reasonably high scores
on our dataset, with the winning systems reporting
Pearson’s Correlation of 0.7886 for Sub-task 1 and
0.8612 for Sub-task 2, as well as high R2 scores of
0.6210 for Sub-task 1 and 0.7389 for Sub-task 2.
The rankings remained stable across Spearman’s
rank, MAE and MSE, with some small variations.
Scores were generally higher on Sub-task 2 than on
Sub-task 1, and this is likely to be because of the
different groups of token-types (single words and
MWESs). MWEs are known to be more complex
than single words and so this fact may have im-
plictly helped systems to better model the variance
of complexities between the two groups.

6 Participating Systems

In this section we have analysed the participating
systems in our task. System Description papers
were submitted by 32 teams. In the subsections
below, we have first given brief summaries of some
of the top systems according to Pearson’s correla-
tion for each task for which we had a description.
We then discuss the features used across different
systems, as well as the approaches to the task that
different teams chose to take. We have prepared
a comprehensive table comparing the features and
approaches of all systems for which we have the
relevant information in Appendix B.

6.1 System Summaries

DeepBlueAl: This system attained the highest
Pearson’s Correlation on Sub-task 2 and the sec-
ond highest Pearson’s Correlation on Sub-task 1. It
also attained the highest R2 score across both tasks.
The system used an ensemble of pre-trained lan-
guage models fine-tuned for the task with Pseudo
Labelling, Data Augmentation, Stacked Training
Models and Multi-Sample Dropout. The data was
encoded for the transformer models using the genre
and token as a query string and the given context
as a supplementary input.

JUST BLUE: This system attained the highest
Pearson’s Correlation for Sub-task 1. The sys-
tem did not participate in Sub-task 2. This system
makes use of an ensemble of BERT and RoBERTa.
Separate models are fine-tuned for context and to-
ken prediction and these are weighted 20-80 re-
spectively. The average of the BERT models and
RoBERTa models is taken to give a final score.

RG_PA: This system attained the second highest
Pearson’s Correlation for Sub-task 2. The system
uses a fine-tuned RoOBERTa model and boosts the
training data for the second task by identifying
similar examples from the single-word portion of
the dataset to train the multi-word classifier. They
use an ensemble of ROBERTa models in their fi-
nal classification, averaging the outputs to enhance
performance.

Alejandro Mosquera: This system attained the
third highest Pearson’s Correlation for Sub-task 1.
The system used a feature-based approach, incor-
porating length, frequency, semantic features from
WordNet and sentence level readability features.
These were passed through a Gradient Boosted Re-
gression.



Andi: This system attained the fourth highest
Pearson’s Correlation for Sub-task 1. They com-
bine a traditional feature based approach with fea-
tures from pre-trained language models. They use
psycholinguistic features, as well as GLoVE and
Word2Vec Embeddings. They also take features
from an ensemble of Language models: BERT,
RoBERTa, ELECTRA, ALBERT, DeBERTa. All
features are passed through Gradient Boosted Re-
gression to give the final output score.

CS-UMG6P: This system attained the fifth highest
Pearson’s Correlation for Sub-task 1 and the sev-
enth highest Pearson’s Correlation for Sub-task 2.
The system uses BERT and RoBERTa and encodes
the context and token for the language models to
learn from. Interestingly, whilst this system scored
highly for Pearson’s correlation the R2 metric is
much lower on both Sub-tasks. This may indicate
the presence of significant outliers in the system’s
output.

OCHADAI-KYOTO: This system attained the
seventh highest Pearson’s Correlation on Sub-task
1 and the eight highest Pearson’s Correlation on
Sub-task 2. The system used a fine-tuned BERT
and RoBERTa model with the token and context en-
coded. They employed multiple training strategies
to boost performance.

6.2 Approaches

There are three main types of systems that were
submitted to our task. In line with the state of
the art in modern NLP, these can be categorised
as: Feature-based systems, Deep Learning Sys-
tems and Systems which use a hybrid of the former
two approaches. Although Deep Learning Based
systems have attained the highest Pearson’s Corre-
lation on both Sub-tasks, occupying the first two
places in each task, Feature based systems are not
far behind, attaining the third and fourth spots on
Sub-task 1 with a similar score to the top systems.
We have described each approach as applied to our
task below.

Feature-based systems use a variety of features
known to be useful for lexical complexity. In par-
ticular, lexical frequency and word length feature
heavily with many different ways of calculating
these metrics such as looking at various corpora
and investigating syllable or morpheme length. Psy-
cholinguistic features which model people’s per-
ception of words are understandably popular for
this task as complexity is a perceived phenomenon.

Semantic features taken from WordNet modelling
the sense of the word and it’s ambiguity or abstract-
ness have been used widely, as well as sentence
level features aiming to model the context around
the target words. Some systems chose to identify
named entities, as these may be innately more dif-
ficult for a reader. Word inclusion lists were also
a popular feature, denoting whether a word was
found on a given list of easy to read vocabulary.
Finally, word embeddings are a popular feature,
coming from static resources such as GLoVE or
Word2Vec, but also being derived through the use
of Transformer models such as BERT, RoBERTa,
XLNet or GPT-2, which provide context dependent
embeddings suitable for our task.

These features are passed through a regres-
sion system, with Gradient Boosted Regression
and Random Forest Regression being two popu-
lar approaches amongst participants for this task.
Both apply scale invariance meaning that less pre-
processing of inputs is necessary.

Deep Learning Based systems invariably rely on
a pre-trained language model and fine-tune this us-
ing transfer learning to attain strong scores on the
task. BERT and RoBERTa were used widely in
our task, with some participants also opting for AL-
BERT, ERNIE, or other such language models. To
prepare data for these language models, most par-
ticipants following this approach concatenated the
token with the context, separated by a special token
((SEP)). The Language Model was then trained
and the embedding of the (C'LS) token extracted
and passed through a further fine-tuned network for
complexity prediction. Adaptations to this method-
ology include applying training strategies such as
adversarial training, multi-task learning, dummy
annotation generation and capsule networks.

Finally, hybrid approaches use a mixture of Deep
Learning by fine-tuning a neural network alongside
feature-based approaches. The features may be
concatenated to the input embeddings, or may be
concatenated at the output prior to further train-
ing. Whilst this strategy appears to be the best of
both worlds, uniting linguistic knowledge with the
power of pre-trained language models, the hybrid
systems do not tend to perform as well as either
feature based or deep learning systems.

6.3 MWEs

For Sub-task 2 we asked participants to submit
both predictions for single words and multi-words



from our corpus. We hoped this would encourage
participants to consider models that adapted single
word lexical complexity to multi-word lexical com-
plexity. We observed a number of strategies that
participants employed to create the annotations for
this secondary portion of our data.

For systems that employed a deep learning ap-
proach, it was relatively simple to incorporate
MWE:s as part of their training procedure. These
systems encoded the input using a query and con-
text, separated by a (SEP) token. The number
of tokens prior to the (SEP) token did not mat-
ter and either one or two tokens could be placed
there to handle single and multi-word instances
simultaneously.

However, feature based systems could not em-
ploy this trick and needed to devise more imagina-
tive strategies for handling MWEs. Some systems
handled them by averaging the features of both to-
kens in the MWE, or by predicting scores for each
token and then averaging these scores. Other sys-
tems doubled their feature space for MWEs and
trained a new model which took the features of
both words into account.

7 Discussion

In this paper we have posited the new task of Lex-
ical Complexity Prediction. This builds on previ-
ous work on Complex Word Identification, specif-
ically by providing annotations which are contin-
uous rather than binary or probabilistic as in pre-
vious tasks. Additionally, we provided a dataset
with annotations in context, covering three diverse
genres and incorporating MWEs, as well as single
tokens. We have moved towards this task, rather
than rerunning another CWI task as the outputs
of the models are more useful for a diverse range
of follow-on tasks. For example, whereas CWI
is particularly useful as a preprocessing step for
Lexical simplification (identifying which words
should be transformed), LCP may also be useful
for readability assessment or as a rich feature in
other downstream NLP tasks. A continuous annota-
tion allows a ranking to be given over words, rather
than binary categories, meaning that we can not
only tell whether a word is likely to be difficult for
a reader, but also how difficult that word is likely
to be. If a system requires binary complexity (as
in the case of lexical simplification) it is easy to
transform our continuous complexity values into a
binary value by placing a threshold on the complex-

ity scale. The value of the threshold to be selected
will likely depend on the target audience, with more
competent speakers requiring a higher threshold.
When selecting a threshold, the categories we used
for annotation should be taken into account, so for
example a threshold of 0.5 would indicate all words
that were rated as neutral or above.

To create our annotated dataset, we employed
crowdsourcing with a Likert scale and aggregated
the categorical judgments on this scale to give a
continuous annotation. It should be noted that this
is not the same as giving a truly continuous judg-
ment (i.e., asking each annotator to give a value
between 0 and 1). We selected this protocol as
the Likert Scale is familiar to annotators and al-
lows them to select according to defined points (we
provided the definitions given earlier at annotation
time). The annotation points that we gave were
not intended to give an even distribution of anno-
tations and it was our expectation that most words
would be familiar to some degree, falling in the
very easy or easy categories. We pre-selected for
harder words to ensure that there were also words in
the difficult and very difficult categories. As such,
the corpus we have presented is not designed to be
representative of the distribution of words across
the English language. To create such a corpus, one
would need to annotate all words according to our
scale with no filtering. The general distribution of
annotations in our corpus is towards the easier end
of the Likert scale.

A criticism of the approach we have employed
is that it allows for subjectivity in the annotation
process. Certainly one annotator’s perception of
complexity will be different to another’s. Giving
fixed values of complexity for every word will not
reflect the specific difficulties that one reader, or
one reader group will face. The annotations we
have provided are averaged values of the annota-
tions given by our annotators, we chose to keep
all instances, rather than filtering out those where
annotators gave a wide spread of complexity anno-
tations. Further work may be undertaken to give
interesting insights into the nature of subjectivity
in annotations. For example, some words may be
rated as easy or difficult by all annotators, whereas
others may receive both easy and difficult annota-
tions, indicating that the perceived complexity of
the instance is more subjective. We did not make
the individual annotations available as part of the
shared task data, to encourage systems to focus



primarily on the prediction of complexity.

An issue with the previous shared tasks is that
scores were typically low and that systems tended
to struggle to beat reasonable baselines, such as
those based on lexical frequency. We were pleased
to see that systems participating in our task returned
scores that indicated that they had learnt to model
the problem well (Pearson’s Correlation of 0.7886
on Task 1 and 0.8612 on Task 2). MWEs are typi-
cally more complex than single words and it may
be the case that these exhibited a lower variance,
and were thus easier to predict for the systems. The
strong Pearson’s Correlation is backed up by a high
R2 score (0.6172 for Task 1 and 0.7389 for Task
2), which indicates that the variance in the data
is captured accurately by the models’ predictions.
These models strongly outperformed a reasonable
baseline based on word frequency as shown in Ta-
ble 3.

Whilst we have chosen in this report to rank sys-
tems based on their score on Pearson’s correlation,
giving a final ranking over all systems, it should
be noted that there is very little variation in score
between the top systems and all other systems. For
Task 1 there are 0.0182 points of Pearson’s Corre-
lation separating the systems at ranks 1 and 10. For
Task 2 a similar difference of 0.021 points of Pear-
son’s Correlation separates the systems at ranks 1
and 10. These are small differences and it may be
the case that had we selected a different random
split in our dataset this would have led to a different
ordering in our results (Gorman and Bedrick, 2019;
Segaard et al., 2020). This is not unique to our task
and is something for the SemEval community to
ruminate on as the focus of NLP tasks continues to
move towards better evaluation rather than better
systems.

An analysis of the systems that participated
in our task showed that there was little variation
between Deep Learning approaches and Feature
Based approaches, although Deep Learning ap-
proaches ultimately attained the highest scores on
our data. Generally the Deep Learning and Feature
Based approaches are interleaved in our results ta-
ble, showing that both approaches are still relevant
for LCP. One factor that did appear to affect system
output was the inclusion of context, whether that
was in a deep learning setting or a feature based
setting. Systems which reported using no context
appeared to perform worse in the overall rankings.
Another feature that may have helped performance

is the inclusion of previous CWI datasets (Yimam
et al., 2017; Maddela and Xu, 2018). We were
aware of these when developing the corpus and
attempted to make our data sufficiently distinct in
style to prevent direct reuse of these resources.

A limitation of our task is that it focuses solely
on LCP for the English Language. Previous CWI
shared tasks (Yimam et al., 2018) and simplifi-
cation efforts (Saggion et al., 2015; Aluisio and
Gasperin, 2010) have focused on languages other
than English and we hope to extend this task in the
future to other languages.

8 Conclusion

We have presented the SemEval-2021 Task 1 on
Lexical Complexity Prediction. We developed a
new dataset focusing on continuous annotations in
context across three genres. We solicited partici-
pants via SemEval and 55 teams submitted results
across our two Sub-tasks. We have shown the re-
sults of these systems and discussed the factors that
helped systems to perform well. We have analysed
all the systems that participated and categorised
their findings to help future researchers understand
which approaches are suitable for LCP.
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A Full Results

Rank Team Pearson Spearman MAE MSE R2

1 JUST BLUE 0.7886 0.7369 0.0609 0.0062 0.6172
2 DeepBlueAl 0.7882 0.7425 0.0610 0.0061 0.6210
3 Alejandro Mosquera 0.7790 0.7355 0.0619 0.0064 0.6062
4 Andi 0.7782 0.7287 0.0637 0.0064 0.6036
5 CS-UM6P 0.7779 0.7366 0.0803 0.0100 0.3813
6 tuga 0.7772 0.7344 0.0635 0.0068 0.5771
7 OCHADAI-KYOTO 0.7772 0.7313 0.0617 0.0065 0.6015
8 BigGreen 0.7749 0.7294 0.0629 0.0065 0.5983
9 CSECU-DSG 0.7716 0.7326 0.0632 0.0066 0.5909
10 iapucp 0.7704 0.7361 0.0618 0.0066 0.5929
11 CLP 0.7692 0.7336 0.0631 0.0067 0.5854
12 ess 0.7656 0.7308 0.0635 0.0069 0.5747
13 ismail2022 0.7653 0.7245 0.0641 0.0069 0.5766
14 andi_gpu 0.7651 0.7275 0.0629 0.0068 0.5810
15 TUDA-CCL 0.7649 0.7164 0.0643 0.0067 0.5846
16  rgpa 0.7628 0.7251 0.0634 0.0069 0.5749
17 ren_wo_xing 0.7618 0.7229 0.0639 0.0069 0.5715
18  CLULEX 0.7588 0.7089 0.0649 0.0069 0.5753
19 acccb 0.7586 0.7207 0.0635 0.0069 0.5730
20  jiu-mo_zhi 0.7584 0.7175 0.0635 0.0070 0.5691
21 Eslam93 0.7577 0.7224 0.0640 0.0070 0.5648
22 archer 0.7561 0.7067 0.0641 0.0069 0.5707
23 Cambridge 0.7556 0.7105 0.0646 0.0070 0.5705
24 eee 0.7553 0.7203 0.0673 0.0078 0.5181
25  CompNA 0.7552 0.7153 0.0641 0.0070 0.5701
26  LAST 0.7534 0.6988 0.0652 0.0070 0.5652
27  Stanford MLab 0.7533 0.7044 0.0653 0.0071 0.5615
28  mau_lih 0.7513 0.7263 0.0645 0.0071 0.5587
29  IITK@LCP 0.7511 0.7167 0.0654 0.0071 0.5598
30  cognience 0.7510 0.7193 0.0652 0.0071 0.5625
31  gnamgj 0.7509 0.7086 0.0649 0.0072 0.5536
32 ferasl515 0.7503 0.7180 0.0652 0.0073  0.5477
33 eslam 0.7482 0.7237 0.0649 0.0072 0.5525
34  RS.GV 0.7478 0.7077 0.0698 0.0079 0.5144
35  LucasHub 0.7434 0.6995 0.0658 0.0073 0.5486
36 LRLNC 0.7402 0.7013 0.0661 0.0074 0.5440
37  Manchester Metropolitan ~ 0.7389 0.7135 0.0656 0.0074 0.5398
38 UPB 0.7340 0.6785 0.0699 0.0079 0.5098
39 KFU 0.7201 0.6899 0.0687 0.0079 0.5109
40  PolyU CBS-Comp 0.7188 0.6935 0.0682 0.0078 0.5162
41  LCPRIT 0.7086 0.6535 0.0716 0.0086 0.4695
42 UNBNLP 0.6953 0.6544 0.0716 0.0089 0.4495
43 chenshi 0.6951 0.6532 0.0740 0.0091 0.4366
44  UTFPR 0.6875 0.6588 0.0735 0.0088 0.4577
45  Katildakat 0.6715 0.6454 0.0756  0.0096  0.4060
46  jet 0.6663 0.6457 0.0736  0.0091 0.4402
47  LECCE 0.6452 0.6405 0.0772  0.0096 0.4046
48  S3003183 0.5834 0.5437 0.0804 0.0110 0.3182
- Frequency Baseline 0.5287 0.5263 0.0870 0.0136 0.2779
49  C3SL 0.4598 0.3983 0.0866 0.0130 0.1989
50  SINAI 0.4428 0.3961 0.0875 0.0131 0.1930
51  ProjectLINS13 0.3884 0.4316 0.1019 0.0159 0.0198
52 glitterosu 0.1807 0.1516 0.1024 0.0194 -0.2016
53 PyGuajo 0.0971 0.1440 0.1166 0.0338 -1.0861
54  RACAI -0.0272 -0.0268  0.2777 0.1270 -6.8449

Table 4: Sub-task 1: Results and rank (in brackets) in terms of Pearson, Spearman, MAE, MSE, and R2. The rank
corresponds to Pearson.
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Rank Team Pearson Spearman MAE MSE R2

1 DeepBlueAl 0.8612 0.8526 0.0616 0.0063 0.7389
2 rg_pa 0.8575 0.8529 0.0672 0.0072 0.7035

3 xiang_wen_tian 0.8571 0.8548 0.0675 0.0072 0.7012
4 andi_gpu 0.8543 0.8448 0.0664 0.0071 0.7055

5 ren_-wo_xing 0.8541 0.8473 0.0677 0.0073  0.6967

6 Andi 0.8506 0.8381 0.0667 0.0070 0.7107

7 CS-UM6P 0.8489 0.8406 0.0760 0.0087  0.6380
8 OCHADAI-KYOTO 0.8438 0.8285 0.0660 0.0070 0.7103

9 LAST 0.8417 0.8299 0.0677 0.0072  0.7030
10 KFU 0.8406 0.8337 0.0686 0.0073  0.6967

11 jiu_mo_zhi 0.8355 0.8277 0.0710 0.0083  0.6560
12 CSECU-DSG 0.8311 0.8153 0.0678 0.0077  0.6825

13 acccb 0.8310 0.8157 0.0697 0.0076  0.6850
14 Stanford MLab 0.8280 0.8124 0.0711 0.0080 0.6671

15 IITK@LCP 0.8277 0.8228 0.0811 0.0098 0.5949
16  gnamgj 0.8246 0.8227 0.0787 0.0094 0.6097

17 LRL.NC 0.8244 0.8156 0.0702 0.0079 0.6737

18  mau.lih 0.8234 0.8211 0.0790 0.0096 0.6042
19 TUDA-CCL 0.8190 0.8091 0.0711 0.0080 0.6677
20 Alejandro Mosquera 0.8093 0.8017 0.0731 0.0084 0.6519
21 LucasHub 0.8000 0.7797 0.0754 0.0089 0.6323
22 UPB 0.7962 0.7988 0.0788 0.0099 0.5917
23 CompNA 0.7931 0.7800 0.0783 0.0093 0.6160
24 justglowing 0.7902 0.7851 0.0786 0.0092 0.6169
25  BigGreen 0.7898 0.7769 0.0903 0.0124 0.4858
26 Katildakat 0.7848 0.7869 0.0807 0.0101 0.5816
27  Manchester Metropolitan ~ 0.7611 0.7711 0.0806 0.0102 0.5770
28  UTFPR 0.7601 0.7504 0.0817 0.0102 0.5754
29  UNBNLP 0.7515 0.7420 0.0802 0.0106 0.5623
30  chenshi 0.7500 0.7497 0.0867 0.0112 0.5365
31 PolyU CBS-Comp 0.7416 0.7222 0.0839 0.0109 0.5473
32 cognience 0.7232 0.7301 0.0851 0.0117 0.5144
- Frequency Baseline 0.6571 0.6345 0.0924 0.0140 0.4030
33  C3SL 0.3941 0.3675 0.1145 0.0206 0.1470
34 PyGuajo 0.3931 0.3902 0.1132  0.0205 0.1488
35  SINAI 0.3197 0.3508 0.1217 0.0243 -0.0062
36 LECCE 0.2821 0.3138 0.1202 0.0226  0.0624
37  glitterosu 0.1860 0.1316 0.1332 0.0255 -0.0564

Table 5: Sub-task 2: Results and rank (in brackets) in terms of Pearson, Spearman, MAE, MSE, and R2. The Rank
Corresponds to Pearson.
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B System Features

Team

Features

Classification Approach

System Paper

Alejandro Mosquera
Andi

Archer
BigGreen
C3SL
Cambridge
CLULEX
CompNA
CS-UM6P
CSECU-DSG
DeepBlueAl

Hub
1A PUCP

IITK@LCP

JCT
JUST BLUE

Katildakat

LAST

LCP-RIT

LRL_NC

Manchester Metropolitan

OCHADAI-KYOTO
PolyU CBS-Comp

RG_PA
RS_GV

Stanford MLab
TUDA-CCL

UNBNLP
UPB

UTFPR

Length, Frequency, Semantic, Sentence
Psycholinguistic, Glove, Word2Vec, Con-
ceptNet NumberBatch, BERT, RoBERTa,
ELECTRA, ALBERT, DeBERTa

Length, Frequency, Psycholinguistic,
Scrabble Score, Word Inclusion, Semantic
Length, Semantic, Glove, Elmo, InferSent,
Phonetic, Frequency, POS

Sent2Vec

Frequency, Syntactic, Length

Frequency, POS, Named Entities, Word In-
clusion, Sentence, Bert

Length, Semantic, Glove, Word Inclusion,
Token and Context Encoded

Token and Context Encoded

Token and Context Encoded

TF-IDF, Context Encoded

Sentence, POS, N-gram Frequency,
RoBERTa, XLNet, BERT

Electra + Glove

POS, Frequency, BERT, Cluster Features
Token Encoded and Context Encoded

BERT, Length, BERT-score, Frequency, Se-
mantic,

Frequency, Psycholinguiistic, Sentence, Bi-
gram Association

Length, Frequency, Character N-Grams,
Psycholinguistic, POS

Frequency, Semantic, Laanguage Model,
Psycholinguistic, Word Inclusion
Frequency, Psycholinguistic, Length, Em-
beddings

Token and Context Encoded

Frequency, Length, Capitalisation, POS,
Embeddings, BERT, GPT-2

Context Encoded

GLoVE, ELMo, BERT, Flair, Readability,
Length, Frequency, Semantic, Psycholin-
guistic, Morphological, Word Inclusion,
Named Entity

Glove, Length, POS, Named Entity
Linguistic, Semantic, Embeddings, Psy-
cholinguistic, Frequencies, Word Inclusion
Length, Frequency, Character-Level-
Encoder, BERT

Transformers, Word Embeddings, Charac-
ter Embeddings, Length, Psycholinguistic
Frequency, Length, Semantic, Bert Embed-
ding

Gradient Boosted Regression
Ridge  Regression, Gradient
Boosted Regression

Random Forest Regression, Gradi-
ent Boosted Regression

Gradient Boosted Regression,
BERT

Multi-layer Perceptron

BERT, Random Forest Regression
Decision Tree

Decision Tree Ensemble
BERT, RoBERTa
BERT, RoBERTa
BERT, ALBERT,
ERNIE

RoBERTa, Inception
Gradient Boosted Regression

RoBERTa,

Linear Regression, Support Vector
Machine

Gradient Boosted Regression
Average of Weighted Bert and
Roberta

Linear Regression, Multi-layer Per-
ceptron

Gradient Boosted Regression

Random forest Regressor
Random forest regressor
CNN

BERT, RoBERTa
Gradient Boosted Regression

RoBERTa
Feed-Forward Neural Network

Gradient Boosted Regression
Gradient Boosted Regression

Neural Network, Support Vector
Machine
BERT, RoBERTa, Regression

Support Vector Machine

(Mosquera, 2021)

(Rotaru, 2021)

(Russo, 2021)

(Islam et al., 2021)

(Yuan et al., 2021)
(Smolenska et al., 2021)
(Vettigli and Sorgente, 2021)
(Mamoun et al., 2021)

(Aziz et al., 2021)

(Pan et al., 2021)

(Huang et al., 2021)

(Rojas and Alva-Manchego,
2021)

(Shirude et al., 2021)

(Liebeskind et al., 2021)
(Yaseen et al., 2021)

(Voskoboinik, 2021)
(Bestgen, 2021)

(Desai et al., 2021)

(Flynn and Shardlow, 2021)

(Taya et al., 2021)
(Xiang et al., 2021)

(Rao et al., 2021)

(Stodden and Venugopal,
2021)

(Rozi et al., 2021)

(Gombert and Bartsch, 2021)
(King et al., 2021)

(Zaharia et al., 2021)

(Paetzold, 2021)

Table 6: Systems that participated and submitted a paper, the features and classification approaches they employed.
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Abstract

We propose an ensemble model for predicting
the lexical complexity of words and multiword
expressions (MWESs). The model receives as
input a sentence with a target word or MWE
and outputs its complexity score. Given that
a key challenge with this task is the limited
size of annotated data, our model relies on
pretrained contextual representations from dif-
ferent state-of-the-art transformer-based lan-
guage models (i.e., BERT and RoBERTa), and
on a variety of training methods for further en-
hancing model generalization and robustness:
multi-step fine-tuning and multi-task learning,
and adversarial training. Additionally, we pro-
pose to enrich contextual representations by
adding hand-crafted features during training.
Our model achieved competitive results and
ranked among the top-10 systems in both sub-
tasks.

1

Predicting the difficulty of a word in a given con-
text is useful in many natural language processing
(NLP) applications such as lexical simplification.
Previous efforts (Paetzold and Specia, 2016; Yi-
mam et al., 2018; Zampieri et al., 2017) have fo-
cused on framing this as a binary classification task,
which might not be ideal, since a word close to the
decision boundary is assumed to be just as complex
as one further away (Shardlow et al., 2020). To al-
leviate this issue, SemEval-2021 Task 1 (Shardlow
et al., 2021a) formulates this task as a regression
task, where a model should predict the complexity
value of words (Subtask 1) and MWEs (Subtask 2)
in context.

This paper describes the system developed by
the Ochadai-Kyoto team for SemEval-2021 Task
1. Given that a key challenge in this task is the
limited size of annotated data, we follow best prac-
tices from recent work on enhancing model gen-
eralization and robustness, and propose a model

Introduction
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Task Domain | Train | Trial | Test
Europarl | 2512 143 345
Subtask 1 Biomed 2576 135 289
(single-word) Bible 2574 143 283
All 7662 421 917
Europarl 498 37 65
Subtask 2 Biomed 514 33 53
(MWE) Bible 505 29 66
All 1517 99 184

Table 1: Summary of the Complex dataset.

ensemble that leverages pretrained representations
(i.e. BERT and RoBERTa), multi-step fine-tuning,
multi-task learning and adversarial training. Ad-
ditionally, we propose to enrich contextual repre-
sentations by incorporating hand-crafted features
during training. Our model ranked 7th out of 54
participating teams on Subtask 1, and 8th out of 37
teams on Subtask 2, obtaining Pearson correlation
scores of 0.7772 and 0.8438, respectively.

2 Task Description

SemEval-2021 Task 1 provides participants with
an augmented version of the CompLex dataset
(Shardlow et al., 2020), a multi-domain En-
glish dataset with sentences containing words and
MWE:s annotated on a continuum scale of com-
plexity, in the range of [0,1]. Easier words and
MWE:s are assigned lower complexity scores, while
the more challenging ones are assigned higher
scores. This corpus contains a balanced number
of sentences from three different domains: Bible
(Christodouloupoulos and Steedman, 2015), Eu-
roparl (Koehn, 2005) and Biomedical (Bada et al.,
2012). The task is to predict the complexity value
of single words (Subtask 1) and MWEs (Subtask
2) in context. The statistics of the corpus are pre-
sented in Table 1. Our team participated in both
subtasks, and the next section outlines the overview
of our model.

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 17-23
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics



3 System Overview

We focus on exploring different training techniques
using BERT and RoBERTa, given their superior
performance on a wide range of NLP tasks. Each
text encoder and training method used in our model
are detailed below.

3.1 Text Encoders

BERT (Devlin et al., 2019): We use the BERTgasE
model released by the authors. It consists of 12
transformer layers, 12 self-attention heads per layer,
and a hidden size of 768.

RoBERTa (Liu et al., 2019b): We use both
the RoOBERTagasg and RoBERTa; argeg models
released by the authors.  Similar to BERT,
RoBERTagasg consists of 12 transformer layers,
12 self-attention heads per layer, and a hidden size
of 768. ROBERTay arGe consists of 24 transformer
layers, 16 self-attention heads per layer, and a hid-
den size of 1024.

3.2 Training Procedures

Standard fine-tuning: This is the standard fine-
tuning procedure where we fine-tune BERT and
RoBERTza on each subtask-specific data.
Feature-enriched fine-tuning (FEAT): During
training, we enrich BERT and RoBERTa represen-
tations with word frequency information of the tar-
get word or MWE. We compute the log frequency
values using the Wiki40B corpus (Guo et al., 2020).
For MWEs, we compute the log of the average of
the frequency of each component word. After ap-
plying the min-max normalization to this feature,
we concatenate it to the CLS token vector obtained
from the last layer of BERT and RoBERTa.
Multi-step fine-tuning (MSFT): Multi-step fine-
tuning works by performing a second stage of pre-
training with data-rich related supervised tasks. It
has been shown to improve model robustness and
performance, especially for data-constrained sce-
narios (Phang et al., 2018; Camburu et al., 2019).
Due to the limited size of the data provided for
Subtask 2, we first fine-tune BERT and RoBERTa
on the Subtask 1 dataset. This model’s parameters
are further refined by fine-tuning on the Subtask 2
dataset.

Multi-task learning (MTL): Multi-task learning
is an effective training paradigm to promote model
generalization ability and performance (Caruana,
1997; Liu et al., 2015, 2019a; Ruder, 2017; Col-
lobert et al., 2011). It works by leveraging data
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from many (related) tasks. In our experiments, we
use the MT-DNN framework (Liu et al., 2019a,
2020b), which incorporates BERT and RoBERTa
as the shared text encoding layers (shared across
all tasks), while the top layers are task-specific. We
used the pre-trained BERT and RoBERTa models
to initialize its shared layers and refined them via
MTL on both subtasks (i.e. Subtask 1 and Subtask
2).

Adpversarial training (ADV): Adversarial training
has proven effective in improving model general-
ization and robustness in computer vision (Madry
et al., 2017; Goodfellow et al., 2014) and more re-
cently in NLP (Zhu et al., 2019; Jiang et al., 2019;
Cheng et al., 2019; Liu et al., 2020a; Pereira et al.,
2020). It works by augmenting the input with a
small perturbation that maximizes the adversarial
loss:

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).
Recently, adversarial training has been successfully
applied to NLP as well (Zhu et al., 2019; Jiang et al.,
2019; Pereira et al., 2020). In our experiments, we
use SMART (Jiang et al., 2019), which instead
regularizes the standard training objective using
virtual adversarial training (Miyato et al., 2018):

IneinE(m,y)ND [l(f(l‘, ‘9)7 y)+
amgmxl(f(x +0;0), f(x:0))]

Effectively, the adversarial term encourages
smoothness in the input neighborhood, and « is a
hyperparameter that controls the trade-off between
standard errors and adversarial errors.

2

3.3 Ensemble Model

Ensemble of deep learning models has proven ef-
fective in improving test accuracy (Allen-Zhu and
Li, 2020). We built different ensemble models by
taking an unweighted average of the outputs of
a few independently trained models. Each single
model was trained on standard fine-tuning, multi-
step fine-tuning, multi-task learning, or adversarial
training, using different text encoders (i.e. BERT
or RoBERTa).

4 Experiments

4.1 Implementation Details

Our model implementation is based on the MT-
DNN framework (Liu et al., 2019a, 2020b). We



use BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019b) as the text encoders. We used
ADAM (Kingma and Ba, 2015) as our optimizer
with a learning rate in the range € {8 x 1076, 9 x
107%,1 x 107°} and a batch size € {8,16,32}.
The maximum number of epochs was set to 10.
A linear learning rate decay schedule with warm-
up over 0.1 was used, unless stated otherwise. To
avoid gradient exploding, we clipped the gradient
norm within 1. All the texts were tokenized using
wordpieces and were chopped to spans no longer
than 512 tokens. During adversarial training, we
follow (Jiang et al., 2019) and set the perturbation
size to 1 x 107?, the step size to 1 x 1073, and to
1 x 1075 the variance for initializing the perturba-
tion. The number of projected gradient steps and
the v parameter (Equation 2) were both set to 1.

We follow (Devlin et al., 2019), and set the first
token as the [CLS] token when encoding the input.
For Subtask 1, we separate the input sentence and
the target token with the special token [SEP]. e.g.
[CLS] This was the length of Sarah’s life [SEP]
length [SEP]. For Subtask 2, such encoding led to
lower performance of our system. Therefore, we
consider only the target MWE when encoding the
input, e.g. [CLS] financial world [SEP].

For each subtask, we used the trial dataset re-
leased by organizers as development set (see Table
1). We select the best epoch and the best hyper-
parameters using performance (measured in terms
of Pearson correlation score) on this development
set. We also experimented on saving the best epoch
and best hyper-parameters for each domain (Bible,
Biomedical and Europarl).

4.2 Main Results

Submitted systems were evaluated on five met-
rics: Pearson correlation (R), Spearman correla-
tion (Rho), Mean Absolute Error (MAE), Mean
Squared Error (MSE), and R-squared (R2). The
systems were ranked from highest Pearson correla-
tion score to lowest. We built several models that
use different text encoders and different training
methods, as described in Section 3. See Table 2
for the results. First, we observe that ensembling
different single models yield better performance on
both tasks. Furthermore, models that use feature-
enriched representations, multi-task learning, multi-
step fine-tuning and adversarial training surpass
models that use the standard fine-tuning approach.
We detail next the results for each subtask.
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For Subtask 1, the single models that used
RoBERTa, adversarial training, multi-task learn-
ing and feature-enriched representations performed
best on the development set. Moreover, saving
the best epoch and hyper-parameters for each do-
main performed better than saving the best epoch
and hyper-parameters without domain distinction.
Among the single models, the model that per-
formed best on the development set was the model
that uses RoBERTa; orge and adversarial train-
ing (ROBERTap ARGE(ADV)domain model, with a
Pearson score of 0.8441). The second best sin-
gle model was the model that uses RoOBERTagasE
and feature-enriched contextual representations
(RoBERTagasg(FEAT)domain model, with a Pear-
son score of 0.8391). The third best single model
was the model that uses RoBERTajarge and
multi-task learning (ROBERTa; ArRge(MTL)domain
model, with a Pearson score of 0.8371). Thus,
we ensemble these three single models in differ-
ent ways when making our submissions. The
ensemble model that performed best on the test
set (Ensemble 2gingle word) Was the model that
combined feature-enriched contextual represen-
tations (ROBERTagasg(FEAT)gomain), adversarial
training (ROBERTay ARge(ADV)domain), and multi-
task learning (ROBERTay ArgGe(MTL)domain)- This
ensemble model obtained development and test set
Pearson scores of 0.8570 and 0.7772, respectively.

For Subtask 2, the single models that
use BERTgase outperformed models that use
RoBERTa, on the development set. Moreover,
we noted that using the Subtask 1 dataset as
auxiliary dataset by performing multi-step fine-
tuning and multi-task learning greatly help to
improve the performance. For instance, the
BERTgpAse(MSFT) outperformed the BERTgAsE
model by 0.0405 Pearson correlation points
(0.7965 vs 0.8370). The ensemble model that per-
formed best on the test set (Ensemble 1yywg) was
the model that combined multi-step fine-tuning and
multi-task learning using BERT, i.e. BERTpasE
(MSFT) and BERTgasg(MTL) models, respec-
tively, and multi-task learning using RoBERTa
(RoBERTa; oRge(MTL) model). This ensemble
model obtained development and test set Pearson
scores of 0.8461 and 0.8438, respectively. Differ-
ent from Subtask 1, we observe that saving the best
epoch and hyper-parameters for each domain on
the development set performed worse than saving
the best epoch and hyper-parameters without do-



Training Methods | Ensemble | R | Rho | MAE | MSE | R2
Subtask 1 (Single Word Lexical Complexity Prediction Task)

BERTpase™ 0.7794 | 0.7423 | 0.0664 | 0.0077 | 0.1898
ROBERTapasg " 0.8139 | 0.7498 | 0.0628 | 0.0064 | 0.4325
RoBERTagse (FEAT) ™ v 0.8348 | 0.7579 | 0.0603 | 0.0058 | 0.6955
ROBERTagase(FEAT)™ gomain v v |0.8391 | 0.7640 | 0.0599 | 0.0057 | 0.6976
RoBERTay arGe™" 0.8213 | 0.7629 | 0.0627 | 0.0062 | 0.5381
ROBERTa arcE(FEAT) domain 0.8218 | 0.7513 | 0.0634 | 0.0063 | 0.6025
RoBERTar arcE(MTL)* gomain v v |0.8371 | 0.7694 | 0.0609 | 0.0062 | 0.3640
ROBERTa arce(ADV)* v 0.8328 | 0.7760 | 0.0603 | 0.0059 | 0.5509
ROBERTa ArGE(ADV)*™ domain v 0.8441 | 0.7873 | 0.0572 | 0.0054 | 0.7123
Ensemble 1gingte word " O 0.8481 | 0.7825 | 0.0578 | 0.0053 | 0.7175
Ensemble 2gingle word ™" O 0.8570 | 0.7902 | 0.0553 | 0.0050 | 0.7335
Ensemble 3gingle wora™ O |0.8548 | 0.7816 | 0.0560 | 0.0051 | 0.7300
Ensemble Lgingle word" " O 0.7590 | 0.7174 | 0.0640 | 0.0069 | 0.5719
Ensemble 2gingle word ™ O 0.7772 | 0.7313 | 0.0617 | 0.0065 | 0.6015
Ensemble 3gingle word ™ O |0.7761 | 0.7244 | 0.0622 | 0.0065 | 0.6003
Top Team Result JUST BLUE )gingte word" 0.7886 | 0.7369 | 0.0609 | 0.0062 | 0.6172
Subtask 2 (MWE Lexical Complexity Prediction Task)
BERTgask(full context)®'f 0.7903 | 0.7839 | 0.0770 | 0.0090 | 0.6240
BERTgAsg™ 0.7965 | 0.7856 | 0.0761 | 0.0086 | 0.3552
BERTgase(FEAT)™ 0.8166 | 0.8033 | 0.0730 | 0.0080 | 0.6610
BERTpAse(MSFT)* v 0.8370 | 0.8361 | 0.0661 | 0.0071 | 0.5276
BERTBAsE(MSFT)® domain v v |0.8498 | 0.8492 | 0.0669 | 0.0068 | 0.7099
BERTgpase(MTL)* v 0.8176 | 0.8202 | 0.0725 | 0.0081 | 0.5086
BERTBAs(MTL)* domain v v |0.8442 | 0.8323 | 0.0667 | 0.0067 | 0.7125
ROBERTapasg™ 0.7689 | 0.7659 | 0.0771 | 0.0098 | 0.3767
ROBERTa arGe™ 0.8110 | 0.8181 | 0.0737 | 0.0082 | 0.4363
RoBERTap arge(MTL)™ v 0.8176 | 0.8202 | 0.0725 | 0.0081 | 0.5086
ROBERTaL arcE(MTL)™ gomain v' 1 0.8341 | 0.8276 | 0.0675 | 0.0075 | 0.6790
RoBERTa Arce(ADV)™ 0.8119 | 0.8019 | 0.0718 | 0.0080 | 0.4785
RoBERTay arcE(ADV&MSFT)* 0.8247 | 0.8092 | 0.0685 | 0.0076 | 0.4748
ROBERTa arGE(ADV &MSFT)™ domain v 0.8283 | 0.8176 | 0.0676 | 0.0074 | 0.6858
Ensemble 1pwe ™™ O 0.8461 | 0.8441 | 0.0672 | 0.0068 | 0.7080
Ensemble 2pwe™ O 0.8543 | 0.8444 | 0.0642 | 0.0064 | 0.7270
Ensemble 3pwe™ O | 0.8571 | 0.8509 | 0.0640 | 0.0064 | 0.7267
Ensemble Tywe™" O 0.8438 | 0.8285 | 0.0660 | 0.0070 | 0.7103
Ensemble 2ywe'™ O 0.8376 | 0.8231 | 0.0682 | 0.0076 | 0.6840
Ensemble 3pwe"™" O ]0.8312 | 0.8157 | 0.0708 | 0.0080 | 0.6686
Top Team Result (DeepBlue Alsingle word o * 0.8612 | 0.8526 | 0.0616 | 0.0063 | 0.7389

Table 2: Comparison of different text encoders and different training methods on the single word lexical complexity
prediction task (Subtask 1) and on the MWE lexical complexity prediction task (Subtask 2). Best results for single
and ensemble models are highlighted in bold. t indicates that we consider the full context surrounding the MWE
when encoding the input. In the other models for Subtask 2, we consider only the target MWE. * indicates re-
sults obtained from the Task’s official leaderboard: (https://competitions.codalab.org/competitions/27420#results).
vindicates each single model that was used in the ensemble, indicated in each column by O.

main distinction. We hypothesize that, due to the  predictions for Subtask 1 (Ensemble 2gingte_word)
small size of the data provided for Subtask 2, sav-  and the gold answers. We observe that our model
ing the best epoch and hyper-parameters without  often fails to predict correctly in the range where

domain distinction might avoid overfitting. samples have a complexity score below 0.2. We
hypothesize this might be due to the skewed dis-
5 Analysis tribution of the golden complexity scores for each

domain, as shown in Table 4. A possible solution
We briefly analyse our best models’ results on the  might be to build domain-specific models.
test set for each subtask. Figure 1 (top) shows a Figure 1 (bottom) shows a comparison between
comparison between our best ensemble model’s  the best ensemble model’s predictions for Subtask
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Domain| Sentence | Target |Prediction| Label
Sub-task 1
Europarl The Swgdlsh Presidency aims to maintain the debate on husbandry 03270 1053143
animal welfare and good animal husbandry.
. We adopted the same strategy to investigate the relative contribution of
Biomed the 129 Chromosome 1 segment and the Apcs gene to each disease trait. Chromosome | 0.4865 | 0.2237
Bible God has gone up with a shout, Yahweh with the sound of a trumpet. shout 0.2032 | 0.2031
Sub-task 2
Biomed These st.udle.s stropgly suggest thi.it the hsp family of proteins has other functions| 02564 | 0.4167
other functions in addition to protecting proteins and cells during stress.
What plans does the Commission have to introduce .
Europarl eco labelling of ’sustainable’ palm oils? eco labelling | 0.5277 1 0.3553
Bible In the dry season, they vanish. dry season 0.2832 | 0.2857

Table 3: Examples of successful and poor predictions on the test set by the best ensemble models submitted for
each subtask (Ensemble 2g;ngle word and Ensemble 1ywg models). Successful predictions are highlighted in bold.

submission
gold answer

/!
’

gold answer

S koM ow B w oo

04 06
complexity

[}

submisison
gold answer

complexity o submission

Figure 1: Comparison between the Ensemble
2gingle.wora and Ensemble lywg models’ predictions
submitted for Sub-task 1 (top) and Sub-task 2 (bottom),
respectively, and the gold answers. On the left, we
show the distribution of the correct complexity score
and our submission. On the right, we show a scatter
plot where the x-axis corresponds to our model’s pre-
dictions and the y-axis corresponds to the gold answers.

2 (Ensemble 1lywg), and the gold answers.
Compared to Subtask 1, the data distribution of
the development and test sets of Subtask 2 look
more similar, hence a possible reason why the
development and test set scores were closer than
in Subtask 1 (the best ensemble models obtained
development and test set scores of 0.8570 and
0.7772, respectively, in Subtask 1, and 0.8461 and
0.8438, respectively, in Subtask 2). Table 3 shows
examples of successful and poor predictions made
by Ensemble 2gingle_wora and Ensemble 1ywg mod-
els. Table 4 shows how the performance of these
models varies across domains. The Biomedical
domain obtained the highest Pearson correlation
scores on both subtasks, which indicates that
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| Bible | Europarl | Biomed
Sub-task 1

MAE 0.0679 0.0549 0.0638

R 0.7329 0.7213 0.8358
Sub-task 2

MAE 0.0721 0.0592 0.0667

R 0.8114 0.6374 0.9104

Table 4: Performance of Ensemble 2gygie wora and En-
semble 1pwg models on each domain and subtask.

might be a sharper difference between simple and
complex words in this corpus (Shardlow et al.,
2021b).

6 Conclusion

In this paper, we have presented the implementa-
tion of the Ochadai-Kyoto system submitted to the
SemEval-2021 Task 1. Our model ranked 7th out
of 54 participating teams on Subtask 1, and 8th
out of 37 teams on Subtask 2. We proposed an
ensemble model that leverages pretrained represen-
tations, multi-step fine-tuning, multi-task learning
and adversarial training. We also proposed to en-
rich contextual representations by incorporating
hand-crafted features during training. In future ef-
forts, we plan to further improve our model to better
handle data-constraint and domain-shift scenarios.
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Abstract

In this paper, we introduce the first SemEval
task on Multilingual and Cross-Lingual Word-
in-Context disambiguation (MCL-WiC). This
task allows the largely under-investigated in-
herent ability of systems to discriminate be-
tween word senses within and across lan-
guages to be evaluated, dropping the require-
ment of a fixed sense inventory. Framed as a bi-
nary classification, our task is divided into two
parts. In the multilingual sub-task, participat-
ing systems are required to determine whether
two target words, each occurring in a differ-
ent context within the same language, express
the same meaning or not. Instead, in the cross-
lingual part, systems are asked to perform the
task in a cross-lingual scenario, in which the
two target words and their corresponding con-
texts are provided in two different languages.
We illustrate our task, as well as the con-
struction of our manually-created dataset in-
cluding five languages, namely Arabic, Chi-
nese, English, French and Russian, and the
results of the participating systems. Datasets
and results are available at: https://github.com/
SapienzaNLP/mcl-wic.

1 Introduction

During recent decades, the field of Natural Lan-
guage Processing (NLP) has witnessed the de-
velopment of an increasing number of neural ap-
proaches to representing words and their mean-
ings. Word embeddings encode a target word type
with one single vector based on co-occurrence in-
formation. However, word embeddings conflate
different meanings of a single target word into
the same representation, thus they fail to capture
the polysemous nature of words. To address this
limitation, more sophisticated representations such
as multi-prototype and contextualized embeddings
have been put forward. Multi-prototype embed-
dings concentrate on the semantics which underlie
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a target word by clustering occurrences based on
their context similarities (Neelakantan et al., 2015;
Pelevina et al., 2016). In an effort to exploit the
knowledge derived from lexical-knowledge bases,
Iacobacci et al. (2015) introduced a new approach
which allows sense representations to be linked
to a predefined sense inventory. More recently,
contextualized embeddings were proposed. These
representations are obtained by means of neural
language modeling, e.g. using LSTMs (Melamud
et al., 2016) or the Transformer architecture (De-
vlin et al., 2019; Conneau et al., 2020), and are
capable of representing words based on the context
in which they occur. Contextualized representa-
tions have also been used to obtain effective sense
embeddings (Loureiro and Jorge, 2019; Scarlini
et al., 2020a,b; Calabrese et al., 2020).

Although virtually all the above approaches can
be evaluated in downstream applications, the in-
herent ability of the various embeddings to capture
meaning distinctions still remains largely under-
investigated. While Word Sense Disambiguation
(WSD), i.e. the task of determining the meaning
of a word in a given context (Navigli, 2009), has
long explored the aforementioned ability, the task
does not make it easy to test approaches that are
not explicitly linked to existing sense inventories,
such as WordNet (Miller et al., 1990) and BabelNet
(Navigli and Ponzetto, 2010). This has two major
drawbacks. First, sense inventories are not always
available, especially for rare languages. Second,
such requirement limits the evaluation of word and
sense representations which are not bound to a
sense inventory. To tackle this limitation, some
benchmarks have recently been proposed. The
CoSimLex dataset (Armendariz et al.) and the
related SemEval-2020 Task 3 (Armendariz et al.,
2020) focus on evaluating the similarity of word
pairs which occur in the same context. More re-
cently, the Word-in-Context (WiC) task (Pilehvar

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 24-36
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics



and Camacho-Collados, 2019), included in the Su-
perGLUE benchmark for Natural Language Un-
derstanding (NLU) systems (Wang et al., 2019)
and its multilingual extension XL-WiC (Raganato
et al., 2020), require systems to determine whether
a word occurring in two different sentences is used
with the same meaning, without relying on a pre-
defined sense inventory. For instance, given the
following sentence pair:

¢ the mouse eats the cheese,
* click the right mouse button,

the ideal system should establish that the target
word mouse is used with two different meanings.

Despite the steps forward made in this promis-
ing research direction, existing benchmarks suf-
fer from the following shortcomings: i) they are
mostly automatically retrieved; ii) they do not en-
able cross-lingual evaluation scenarios in which
systems are tested in different languages at the
same time; iii) they do not cover all open-class
parts of speech.

In order to address the aforementioned draw-
backs, we propose the first SemEval task on Multi-
lingual and Cross-Lingual Word-in-Context disam-
biguation (MCL-WiC) and present the first entirely
manually-annotated dataset for the task. Impor-
tantly, MCL-WiC enables new cross-lingual eval-
uation scenarios covering all open-class parts of
speech, as well as a wide range of domains and
genres. The dataset is available in five European
and non-European languages, i.e. Arabic (Ar), Chi-
nese (Zh), English (En), French (Fr) and Russian
(Ru).

2 Related Work

Several different tasks have been put forward which
go beyond traditional WSD and drop the require-
ment of fixed sense inventories. Among the first
alternatives we cite monolingual and cross-lingual
Lexical Substitution (McCarthy and Navigli, 2007;
Mihalcea et al., 2010). Word-in-context similar-
ity has also been proposed as a way to capture
the dynamic nature of word meanings: the Stan-
ford Contextual Word Similarities (SCWS) dataset,
proposed by Huang et al. (2012), contains human
judgements on pairs of words in context. Along
these same lines, Armendariz et al. introduced
CoSimLex, a dataset designed to evaluate the abil-
ity of models to capture word similarity judgements
provided by humans.
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MCL-WiC
Sub-task Dataset | Train | Dev | Test
Ar-Ar - 500 | 500
En-En | 4000 | 500 | 500
Multilingual | Fr-Fr - 500 | 500
Ru-Ru - 500 | 500
Zh-Zh - 500 | 500
En-Ar - - 500
. En-Fr - - 500
Cross-lingual EnRu - - 500
En-Zh - - 500

Table 1: The MCL-WiC dataset: number of unique
lexemes divided by sub-task and dataset. The sec-
ond column (Dataset) indicates the available lan-
guage combination.

More recently, Pilehvar and Camacho-Collados
(2019) presented the Word-in-Context (WiC)
dataset. Framed as a binary classification task,
WiC is a benchmark for the evaluation of context-
dependent embeddings. However, WiC covers only
one language, i.e. English, and two parts of speech,
namely nouns and verbs. To enable evaluation
in languages other than English, Raganato et al.
(2020) proposed XL-WiC, an extension of the WiC
dataset which covers different European and non-
European languages, thus allowing for zero-shot
settings. Despite their effectiveness, both the WiC
and XL-WiC datasets are not manually created and
do not cover all open-class parts of speech. More-
over, they do not consider cross-lingual evaluation
scenarios in which systems are tested in more than
one language at the same time, thus highlighting
the need for a new evaluation benchmark.

3 The Multilingual and Cross-lingual
Word-in-Context Task

In this Section, we present our SemEval task and
describe a new dataset called Multilingual and
Cross-lingual Word-in-Context (MCL-WiC). The
task is divided into a multilingual and a cross-
lingual sub-task, each containing different datasets
divided according to language combination. Each
dataset instance is focused on a given lexeme' and
is composed of a unique ID, a target lemma, its
part of speech, two sentential contexts in which
the target lemma occurs, and positional indices for
retrieving the target words in each sentence. In

"Each lexeme corresponds to a lemma and its part of
speech.



ID Lemma | POS Start

End

Sentence

47
VERB

51

As mentioned, it was clear that people
usually left their homelands in search of a
better life.

training.en-en.624 | leave

13

17

It should be left entirely to the parties to a
dispute to choose the modalities of settlement
they deemed most appropriate.

47

51

As mentioned, it was clear that people
usually left heir homelands in search of a
better life.

training.en-en.625 | leave | VERB

80

87

However, no hasty conclusion should be
drawn that the Republic of Macedonia
was leaving no room for future improvement.

Table 2: Excerpt from the multilingual dataset (En-En): two sentence pairs sharing the same first sentence
are shown, with the target word occurrence in bold type.

1D Tag
training.en-en.624 | F
training.en-en.625 | F

Table 3: Example of gold file.

both sub-tasks, for each lexeme, we provide two
different instances which share one sentence®. We
provide training and development data only for
the multilingual sub-task, whereas test data is pro-
vided for both sub-tasks. While training data is
produced only in English, both the development
and the test data are available in other languages
as well. Table 1 provides an overview of the com-
position of the dataset, which we detail further in
the remainder of this paper. Compared to existing
datasets, MCL-WiC makes it possible to perform
a thorough, high-quality evaluation of a multitude
of approaches, ranging from architectures based on
pre-trained language models to traditional WSD
systems.

In the following, we introduce the multilingual
and cross-lingual sub-tasks. Then, we describe the
data sources, the selection of the target lexemes and
sentence pairs and, finally, the annotation process.

3.1 Multilingual sub-task

This sub-task allows systems to be evaluated in a
scenario in which only one language at a time is
considered. To this end, we manually select sen-
tence pairs in the following language combinations:

2To speed up the annotation process, for each lexeme, we
selected a fixed sentence and annotated two other sentences
SO as to obtain two instances.
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Ar-Ar, En-En, Fr-Fr, Ru-Ru and Zh-Zh. The multi-
lingual sub-task includes training, development and
test splits as reported in Table 1 (top). The train-
ing data, available only in English, contains 4000
unique lexemes and 8000 sentence pairs. Instead,
both the development and test data splits include
500 unique lexemes and 1000 sentence pairs for
each of the aforementioned language combinations.
To avoid any bias, each dataset contains a balanced
number of tags, i.e. 50% True (T) and 50% False
(F).

In Table 2,3 we report two instances derived from
En-En, which share the first sentence. Given the
target lemma leave, its part of speech (verb) and
two sentences in which two occurrences of leave
are contained, participating systems are required to
determine whether the target occurrences (shown
in bold type in the Table) share the same meaning
(T) or not (F). Since the senses of the target occur-
rences differ in both sentence pairs, they are both
tagged with F in the gold file, as shown in Table 3.
Note that, in MCL-WiC, target occurrences can be
inflected forms of the target lemma.

3.2 Cross-lingual sub-task

The cross-lingual sub-task allows systems to be
tested and compared in a cross-lingual scenario.
Here, sentence pairs are composed of a sentence in
English and a sentence in one of the other MCL-
WiC languages, including the following language
combinations: En-Ar, En-Fr, En-Ru and En-Zh. It
is worth mentioning that, in contrast to past efforts,

*Due to space limits we removed some words from the
sentences reported in Table 2 and 4.



1D Lemma POS Start | End Sentence
. Using a technique for concentrating the solar
lich N 4 1 ; .
test.en-ru. 18 ight OUN 6 > light, resulted in an overall efficiency of 20%.
) ’ 39 50 Kasxapiii mpencraBuTeh MOKET BLICTYIATL
B 3aBHCHUMOCTHU OT IOJIyUYEHHLIX YKA3AHUM.
. Using a technique for concentrating the solar
light | NOUN | 46 51 . . .
light, resulted in an overall efficiency of 20%.
test.en-ru.19
) g C yueroMm paboOTLI, OPATOP CUUTAET
[1eJ1IeCOO0OPAa3HLIM U3JI0KUTL TPUHIATILL.

Table 4: Excerpt from the cross-lingual dataset (En-Ru): two sentence pairs sharing the same first sentence
are shown, with the target word occurrence in bold type.

all sentences are manually selected and annotated,
and that Arabic and Russian are included in a Word-
in-Context dataset for the first time.

We report two cross-lingual instances (sentence
pairs) in Table 4 for the En-Ru language combi-
nation, which share the first sentence. Given the
English lemma light, its part of speech (noun), and
two sentences, one in English where light occurs
and one in Russian where a translation of light ap-
pears, participants are asked to determine whether
the target occurrence (in bold in the Table) of light
and its translations into Russian 3aBucumocTu
and yueroM share the same meaning or not. Im-
portantly, translations are allowed to be multi-word
expressions and periphrases.

The cross-lingual sub-task comprises test data
only and includes 500 unique English lexemes and
1000 sentence pairs for each language combination
as reported in Table 1 (bottom). Note that, in this
case, all cross-lingual datasets share the same En-
glish target lexemes. Similarly to its multilingual
counterpart, the data in this sub-task contains a
balanced number of T (50%) and F (50%) tags.

3.3 Selection of the data and annotation

Sources of the data In order to construct MCL-
WiC, we leveraged three resources. First, we used
the BabelNet* multilingual semantic network (Nav-
igli and Ponzetto, 2010) to obtain a set of lex-
emes in all languages of interest. Subsequently,
we extracted sentence pairs containing occurrences
of such lexemes from two corpora, namely the
United Nations Parallel Corpus (Ziemski et al.,
2016, UNPC)® and Wikipedia®. UNPC is a col-
lection of official records and parliamentary docu-

*https://babelnet.org/
Shttps://conferences.unite.un.org/uncorpus/
Shttps://wikipedia.org
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ments of the United Nations available in the six UN
languages’, whereas Wikipedia is a wide-coverage
multilingual collaborative encyclopedia. These cor-
pora were selected due to their wide coverage in
terms of domains and languages. In fact, such
heterogeneity allowed for the creation of a new
competitive benchmark capable of evaluating the
generalization ability of a system in discriminating
senses in different domains and across languages.
With this aim in view, we derived 50% of the se-
lected sentence pairs from UNPC and the remain-
ing 50% from Wikipedia.

Selection of lexemes Starting from BabelNet,
we extracted a set of 5250 unique ambiguous lex-
emes in English and 1000 unique lexemes for
each of the following languages: Arabic, Chinese,
French and Russian. The selected pairs in English
were distributed as follows: 4000 for the training
data, 500 for the development data and 750 for the
test data (500 for the multilingual sub-task and 250
for the cross-lingual sub-task®; we enriched the
latter with additional 250 pairs derived from the
multilingual test data). Instead, the selected pairs
in languages other than English were included in
the multilingual sub-task only and distributed as
follows: 500 for the development data and 500 for
the test data. We selected the target lexemes start-
ing from basic vocabulary words and such that they
had at least three senses in BabelNet. A key goal
was to cover all open-class parts of speech, namely
nouns, verbs, adjectives and adverbs, whose dis-
tribution in MCL-WiC is shown in Table 5. The
target lexemes were chosen so as to avoid phrasal
verbs and multi-word expressions.

7 Arabic, Chinese, English, French, Spanish and Russian.
8We recall that, in the cross-lingual sub-task, the target
lexemes are provided in English and shared across all datasets.



En-En Ar-Ar Fr-Fr Ru-Ru Zh-7Zh En-*

Train | Dev | Test | Dev | Test | Dev | Test | Dev | Test | Dev | Test | Test

NOUN | 4124 | 582 | 528 | 490 | 494 | 548 | 514 | 572 | 582 | 520 | 554 | 458
VERB | 2270 | 246 | 298 | 428 | 398 | 262 | 272 | 352 | 372 | 330 | 364 | 320
ADJ 1430 | 158 | 144 | 72 98 156 | 184 | 54 30 | 122 | 62 178
ADV 176 14 30 10 10 34 30 22 16 28 20 44

Table 5: Part-of-speech distribution in MCL-WiC. * indicates all languages supported in MCL-WiC other

than English.

Selection and annotation of sentence pairs For
each of the target lexemes, we annotated two sen-
tence pairs from either UNPC or Wikipedia. All
selected sentences were well-formatted and, most
importantly, provided a sufficient semantic context
to determine the meaning of the target occurrences
unequivocally. Subsequently, each sentence pair
was associated with a tag, depending on whether
the target words in the two contexts are used with
the same meaning (T) or not (F). To perform both
the selection of the data as well as the annotation,
we employed eight annotators with a high level of
education and linguistic proficiency in the corre-
sponding language; the annotation work required
approximately six months. Importantly, all annota-
tors followed specific criteria which we describe in
the following paragraph.

Annotation criteria We provided each annotator
with general annotation guidelines. Besides general
criteria, each annotation team® established ad-hoc
guidelines for specific linguistic issues, some of
which will be briefly illustrated in Section 4, below.

General annotation criteria can be broadly di-
vided into grammatical and lexicographic-semantic
criteria. The former refer to the format and the
grammatical correctness of the sentences to be
selected: annotators were asked to choose well-
written sentences only, i.e. sentences with a clear
structure, ending with a full stop and containing a
main clause. Instead, lexicographic-semantic cri-
teria refer to the attribution of the labels. To deter-
mine whether two occurrences were used with the
same meaning or not, annotators were asked to use
multiple reputable dictionaries (e.g. for English we
used the Merriam-Webster, Oxford Dictionary of
English and English Collins dictionaries). More-
over, to avoid misperceptions in the same-sense
tagging annotations, we asked annotators to justify

° An annotation team is made up of annotators working on
the same language.
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their choices by providing substitutes for the tar-
get occurrences with synonyms, hypernyms, para-
phrases or the like. Contrary to what was done in
WiC and XL-WiC, we argue that, for the purposes
of this task, annotating according to lexicographic
motivations, i.e. by using reliable dictionaries, con-
tributes significantly to minimizing the impact of
subjectivity, thus producing more adequate and con-
sistent data. Finally, lexicographic-semantic crite-
ria also provided concrete indications and examples
regarding the attribution of tags. For instance, T
was used if and only if the two target occurrences
were used with exactly the same meaning or, in
other words, if, using a dictionary, the definition of
the two target words was the same.

Inter-annotator agreement In order to deter-
mine the degree of uncertainty encountered dur-
ing the annotation process, we computed the inter-
annotator agreement. To this end, we randomly
selected a sample of 500 sentence pairs from each
of the En-En and Ru-Ru multilingual datasets, and
200 sentence pairs from the En-Ar and En-Zh cross-
lingual datasets. Validators were provided with the
same guidelines used during the annotation process.
We calculated the agreement between two differ-
ent annotators using the Cohen’s kappa, obtaining
k=0.968 in En-En, 0.952 in Ru-Ru, 0.94 in En-Ar
and 0.91 in En-Zh, which is interpreted as almost
perfect agreement.

Data format For each sub-task, we provide two
types of file (.data and .gold) in JSON format. The
.data files contain the following information: a
unique ID, the lemma, its part of speech, the two
sentences and the positional indices to identify the
target occurrences to be considered (see Tables 2
and 4). Instead, the .gold files include the gold
answers, i.e. the corresponding ID and tag, as
shown in Table 3.



4 Linguistic Issues

In this section, we describe interesting language-
specific issues which required additional guidelines.
Due to space limits, we focus on languages which
do not use the Latin alphabet, i.e. Arabic, Chinese
and Russian, illustrating only the most significant
issues encountered.

Arabic From a WSD perspective, compared to
other languages, written Arabic poses bigger chal-
lenges due to the omission of vocalization, which
increases the degree of semantic ambiguity. In fact,
the vocalization, expressed by diacritics placed
above or below consonants, contributes signifi-
cantly to determining the right interpretation and
thus the meaning of words. For instance, the un-
vocalized word form b-r-d could be interpreted as
bard (“cold”), burd (“‘garment”) or barad (‘hail”).
Of course, in Arabic, polysemy also affects vo-
calized words, which can have multiple meanings,
e.g. ummiyy means "maternal”, but also "illiter-
ate". For the purposes of MCL-WiC, we chose to
keep the sentences as they are found in UNPC and
Wikipedia, i.e. unvocalized in the vast majority of
cases, while — instead — providing the target lem-
mas in the vocalized form. This was done in order
to avoid lexical ambiguity deriving from lemmas
which share the same word form but are vocalized
in a different way. Furthermore, this choice facili-
tated the selection and annotation of sentence pairs
in which a given target lemma occurs.

Chinese Since Chinese does not adopt an alpha-
bet, the semantic ambiguity that can be found in
English homographs is basically lost. In Chinese,
if two unrelated words are pronounced in the same
way, such as “plane” (the airplane) and “plane” (the
surface), they are not usually written in the same
way. By way of illustration, {/L2X, meaning “silent;
to be silent” and {J1{%, “to sink”, are both pro-
nounced as chénmo, but, because they are written
with different characters, they cannot be considered
ambiguous words. Analogously, some characters
have an extremely high semantic ambiguity them-
selves, but since they appear most frequently in
polysyllabic words, their ambiguity is lost. For ex-
ample, the character gud 5 has at least two mean-
ings, “fruit” and “result”, but this character almost
never stands as a word on its own in contempo-
rary Chinese. In the current lexicon most of the
Chinese words are composed of two or more char-
acters; when it appears in actual texts, guo is al-
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most always connected to other characters, and the
word thus formed is no longer semantically ambigu-
ous. Finally, similarly to the cross-lingual sub-task,
some ambiguity had to be discarded in translation,
as in the case of Chinese classifiers which have a
marked potential for semantic ambiguity. For ex-
ample, dao j& is, among others, the classifier for
long and narrow objects, as in yi dao hé —JE T,
a river (one-+classifier+river), or for doors, walls
and similar objects with an entry and an exit, as in
yi dao mén —i&] ], a door (one+classifier+door).
However, since classifiers are virtually absent in
European languages, they could not be applied in
the cross-lingual sub-task and were discarded.

Russian A noteworthy issue encountered by Rus-
sian annotators concerned the verbal aspects which
can be viewed as one of the most challenging fea-
tures of the Russian language especially for L2-
learners!'® with no Slavic background. In Russian,
a verb can be perfective, imperfective or both. Nor-
mally, a perfective verb has one or more imperfec-
tive counterparts and vice versa. Broadly speaking,
perfective verbs are typically used to express non-
repetitive actions completed in the past, or actions
which will certainly be carried out in the future,
and also in general for past or future actions for
which the speaker intends to emphasize the result
that was or will be achieved. Conversely, imper-
fective verbs are used to express actions which are
incomplete, habitual, in progress, or actions for
which the speaker does not stress the result to be at-
tained. In MCL-WiC, given a verbal target lexeme,
we decided to choose sentences in which the target
words occurring in the selected sentences and the
target lemma shared the same aspect. In fact, in
Russian, although pairs of perfective and imper-
fective verbs such as memarn, cmeaars (to do)
Of CIIPAIIUBATL, CIOCUTL (to ask) show a high
degree of morphological relatedness, they tend to
be considered as distinct lemmas.

Another interesting issue regards participles. In
some cases, annotators raised issues concerning
the part of speech of participles occurring as target
words in the selected sentences. In fact, Russian
participles derive from verbs, but are declined and
can behave as adjectives. Since the target lexemes
and the corresponding occurrences must share the
same part of speech, we decided to discard sen-
tences in which the part of speech of the target

'%In language teaching, L2 indicates a language which is
not the native language of the speaker.



words could not be determined unequivocally.

5 Participating Systems

This Section is devoted to the participating systems.
First, we briefly describe the rules of the competi-
tion. Subsequently, we provide an overview of the
data and approaches used by participants. Then,
we focus on some of the best-scoring systems and
provide a breakdown of the techniques adopted.
We report the three best-performing teams for each
sub-task and language combination in Tables 6 and
7. All results are publicly available on the official
MCL-WiC page on GitHub'!. For each winning
team, we show only the best performance in the
corresponding category.

5.1 Rules of the competition

Participants were given no constraints as far as data
was concerned; for instance, the development data
could be used for training or it was allowed to en-
rich the provided data by constructing new datasets
in an automatic or semi-automatic fashion. Further-
more, we allowed more than one participant for
each team. Participating teams could upload up to
five submissions, each including up to 9 language
combinations for the two sub-tasks.

5.2 Data

Multilingual sub-task As far as English is con-
cerned, the majority of participating systems used
the MCL-WiC training and development data.
Some participants also used the data derived from
WiC and XL-WiC. Furthermore, automatically-
constructed WiC-like datasets were obtained by
some participants, starting from semantic resources
such as SemCor (Miller et al., 1993), WordNet and
the Princeton WordNet Gloss Corpus (PWNG)!2,
or by automatically translating available datasets
into English. The available data was also enriched
via sentence reversal augmentation (given a sen-
tence pair, the two sentences were swapped). In
some cases, the development and trial'® data was
used to enrich the training data.

As regards languages other than English, most
participants used XL-WiC data, or new training
and development datasets were obtained by split-
ting the MCL-WiC language-specific development

"https://github.com/SapienzaNLP/mcl-wic

Phttp://wordnetcode.princeton.edu/

13 As trial data, we provided 4 instances for each sub-task
and dataset.

30

data. Alternatively, in zero-shot scenarios, par-
ticipants trained their models using the English
training data. Furthermore, some participants aug-
mented the training and development data by in-
cluding the trial data. Also in this case, training and
development splits were augmented via sentence
reversal.

Cross-lingual sub-task In the cross-lingual sub-
task, most participants used the MCL-WiC English
training and development data in zero-shot set-
tings. A smaller group of participants used WiC
and XL-WiC data. Some participants created ad-
ditional training and development data from other
resources such as the Open Multilingual WordNet
and PWNG. Additional training and development
data was produced via Machine Translation.

5.3 Approaches

Multilingual sub-task Most participants used
XLM-RoBERTa (Conneau et al., 2020) as pre-
trained language model to obtain contextual rep-
resentations of the target occurrences. Other mod-
els frequently used by participants were mBERT,
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), ELECTRA (Clark et al., 2019) and ERNIE
(Sun et al., 2020). The majority of participants
made use of fine-tuned contextualized embeddings
and used logistic regression to perform binary clas-
sification. Some participants used ensembles and
majority voting.

Cross-lingual sub-task Also in this sub-task,
XLM-RoBERTa was the most used multilingual
language model. Again, the majority of systems
obtained contextualized embeddings, passing them
to a logistic regression unit. In this case, partici-
pants mainly explored zero-shot approaches. Some
participants made use of ensembles, adversarial
training, pseudo-labelling (Wu and Prasad, 2017)
and cross-validation techniques.

5.4 Competition and best-scoring systems

The MCL-WiC competition took place on the Co-
daLab'* open Web-based platform and reported
170 participants, out of which 48 uploaded one
or more datasets. Overall, 170 submissions were
received, the majority of which were focused on
the multilingual sub-task and specifically on the
En-En dataset. As far as the evaluation metric was
concerned, systems were tested using the accuracy

"*https://competitions.codalab.org/competitions/27054



Dataset | Team Score
Cam 84.8
Ar-Ar | LIORI 84.6
MCL@IITK; DeathwingS | 84.5
MCL@IITK; oyx 93.3
En-En | zhestyatsky 92.7
Cam 92.5
MCL@IITK 87.5
Fr-Fr | Cam 86.5
LIORI 86.4
Cam 874
Ru-Ru | LIORI 86.6
godzilla 86.5
stce 91.0
Zh-Zh | godzilla 90.8
PALI 90.5

Table 6: Multilingual section: five best-scoring
systems by language combination.

score. In what follows, we provide insights re-
garding the approaches adopted by some of the
best-performing participating systems, based on
the information we received.

Cam The Cam team (Yuan and Strohmaier,
2021) made use of the WiC and XL-WiC datasets
in addition to the MCL-WIC data. Furthermore,
examples from the Sense Complexity Dataset
(Strohmaier et al., 2020, SeCoDa) and the Cam-
bridge Advanced Learner’s Dictionary (CALD)
were extracted. Cam used pre-trained XLM-
RoBERTa as underlying language model and added
two additional layers on top to perform binary clas-
sification with tanh and sigmoid activation, respec-
tively. As input, the following items were concate-
nated: the representation corresponding to the first
token of the sequence, the representations of the tar-
get words in both sentences, as well as the absolute
difference, cosine similarity and pairwise distance
between the two vectors. When the target word was
split into multiple sub-tokens, Cam took the aver-
age representation rather than the first sub-token.
Finally, a two-step training strategy was applied: 1)
pre-training the system using out-of-domain data,
i.e. WiC, XL-WiC, SeCoDa and CALD; 2) fine-
tuning the system on MCL-WiC data.

godzilla godzilla enriched the MCL-WiC train-
ing data by automatically constructing a dataset
starting from WordNet and using Machine Trans-
lation. Different types of pre-trained models, such
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as RoBERTa and XILM-RoBERTa, were adopted.
godzilla highlighted the target words by surround-
ing them with special markings on both sides and
appending the target words to the end of each
sentence. As architecture, this system used the
next sentence prediction models from the hugging
face!> library. Given the strong connection be-
tween En-Ar, En-Fr, En-Ru, En-Zh test datasets,
pseudo-tagging was used for each language com-
bination. Finally, godzilla applied label smoothing
and model merging.

LIORI The LIORI'S team (Davletov et al., 2021)
used the datasets provided in the MCL-WiC compe-
tition. Specifically, the training data was enriched
with 70% of the development data for Arabic, Chi-
nese, French and Russian, and the whole trial data.
Optionally, data augmentation was performed by
swapping sentences in each example. LIORI fine-
tuned XLM-RoBERTa on a binary classification
task and used a 2-layered feed-forward neural net-
work on top of the language model with dropout
and the tanh activation function. Sentences in each
pair were concatenated by the special token "</s>"
and fed to XLM-RoBERTa. As input, the model
took the concatenation of the contextualized em-
beddings of the target words, aggregating over sub-
tokens either by max pooling, or just by taking the
first sub-token. LIORI used a voting ensemble com-
posed of three models: the first model trained with
data augmentation, using the concatenations of the
first sub-tokens of the target words; the second
trained with data augmentation using max-pooling
over sub-tokens; finally, the third trained without
data augmentation and using concatenations of the
first sub-tokens.

stce stce used the MCL-WiC datasets and built
additional training data using HowNet (Dong and
Dong, 2003). Furthermore, the training data was
enriched by pseudo-labelling the test datasets. Data
cleaning was performed and target words were sur-
rounded by special markings. The main language
model used was XLM-RoBERTa-large. During the
training process, dynamic negative sampling was
performed for each batch of data fed to the model.
At the same time, stce adopted the Fast Gradient
Method and added disturbance to the embedding
layer to obtain more stable word representations.

Bhttps://huggingface.co/
!The following member of the team LIORI took part in
the competition: davletov.



Dataset | Team Score
PALI 89.1
En-Ar | godzilla 87.0
Cam; LIORI 86.5
PALI 89.1
En-Fr | godzilla 87.6
LIORI 87.2
PALI 89.4
En-Ru | godzilla 88.5
RyanStark; rxy1212 | 87.3
PALI; RyanStark 91.2
En-Zh | Cam 88.8
MagicPai 88.6

Table 7: Cross-lingual sub-task: three best-scoring
systems by language combination.

zhestyatsky Zhestiankin and Ponomareva (2021)
augmented the English MCL-WiC training and de-
velopment data with WiC. Training and develop-
ment data were split randomly to create a larger
training sample which included 97.5% of the data,
while leaving only 2.5% for the new development
dataset. Then, bert-large-cased embeddings were
fine-tuned using AdamW as optimizer with a learn-
ing rate equal to le-5. Each sentence was split
by BertTokenizerFast into 118 tokens maximum.
The model was trained for 4.5 epochs and stopped
by Early Stopping with patience equal to 2. For
each sentence, zhestyatsky took the embeddings
of all sub-tokens corresponding to the target word
and max pooled them into one embedding. Sub-
sequently, zhestyatsky evaluated the cosine simi-
larity of these embeddings and activated this value
through ReL.U.

MCL@IUTK First, the MCL@IUTK'" team
(Gupta et al., 2021) pre-processed the sentences
by adding a signal, either double quotes on both
sides of the target word, or the target word itself
appended to the end of the sentence. For En-En,
MCL@IITK enriched the MCL-WiC training data
using sentence reversal augmentation, WiC and
SemCor. MCL@IITK obtained embeddings of the
target words using the last hidden layer, and passed
them to a logistic regression unit. MCL@IITK
used ELECTRA, ALBERT, and XLM-RoBERTa
as language models and submitted probability sum
ensembles. For the non-English multilingual sub-
task, MCL@IITK used XLM-RoBERTa only and

"The following members of the MCL@IITK team took
part in the competition: jaymundra, rohangpt and dipakam.
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tackled all four language pairs jointly. A 9:1 train-
dev split with sentence reversal augmentation was
used on the non-English dev data, in addition to
En-En train data and XL-WiC with an ensemble
model. For the cross-lingual subtask, ELECTRA
embeddings were used. The models were trained
on partly back-translated En-En train set and vali-
dated on back-translated En-En development set.

PALI The PALI'® team (Xie et al., 2021) en-
riched the MCL-WiC data using WordNet while
keeping the original cross-lingual data to maintain
the target words in the cross-lingual data. After text
pre-processing, task-adaptive pre-training was per-
formed using the MCL-WiC data. The target words
were surrounded by special symbols. PALI used
XLM-RoBERTa as main language model and took
its final output layer, concatenating the [CLS] to-
ken with the embeddings of the target occurrences
in each sentence pair. To increase the training
data, PALI exchanged the order of 20% of the sen-
tence pairs. During training, lookahead (AdamW)
was used together with adversarial training imple-
mented by the Fast Gradient Method to obtain more
stable word representations. Hyperparameters were
tuned through trial-and-errors. The models of strat-
ified 5-fold cross-validation were averaged to yield
the final prediction results.

6 Baselines

Following Raganato et al. (2020), we used a base-
line transformer-based binary classifier. Thus, first,
given a sentence pair, a dense representation is ob-
tained for each target occurrence. As indicated in
Devlin et al. (2019), in the case that a target oc-
currence is split into multiple sub-tokens, the first
sub-token is selected. The resulting representations
are then given as input to a binary classifier imple-
mented following Wang et al. (2019). We selected
the Adam optimizer (Kingma and Ba, 2015) with
learning rate and weight decay equal to 1e-5 and 0,
respectively, and trained for 10 epochs.

We experimented with two different contextual-
ized embedding models: BERT (base-multilingual-
cased) and XLM-RoBERTa (base). As for the data,
in contrast to most participants, we made use of the
data provided for the task only. We used En-En as
training and development data for English. As for
other language combinations, we trained on En-En
and validated both on En-En or and on the other

18The following members of the PALI team took part in the
competition: endworld and xsysigma.



Model Ar-Ar | En-En | Fr-Fr | Ru-Ru | Zh-Zh | En-Ar | En-Fr | En-Ru | En-Zh
mBERT], 76.2 84.0 | 78.7 | 745 77.5 65.9 71.6 68.2 68.9
XLMR-base; | 75.4 86.6 | 77.9 76.5 78.5 67.7 71.8 74.2 66.1
mBERT, 76.4 84.0 | 78.7 74.6 76.6 62.0 69.4 66.7 64.2
XLMR-basey | 75.4 86.6 | 77.7 76.5 78.9 67.7 74.9 74.2 71.3

Table 8: Accuracy of baselines for multilingual and cross-lingual sub-tasks. Columns indicate the test set
used. In setting 1, we used the En-En training data and the En-En development data. In setting 2, we used
the En-En training data and the corresponding development datasets in languages other than English.

language multilingual development data. Table 8
reports the best training results according to the
corresponding validation.

7 Results and Discussion

In this section, we discuss the results achieved in
our competition. Overall, the MCL-WiC dataset
allows systems to attain high performances, in the
85-93% accuracy range. This leads us to hypothe-
size that, in general, systems were able to develop a
good ability in capturing sense distinctions without
relying on a fixed sense inventory.

When compared to the proposed baselines, we
observe that best-performing systems were able
to achieve an absolute improvement of up to 27.1
points over the corresponding baselines (e.g. on
En-Ar, cf. Tables 7 and 8). Both our baselines and
the systems developed by participants confirm that,
in this task, XLM-RoBERTa outperforms BERT
in most language combinations. The highest score
was obtained in En-En, with the best system achiev-
ing 93.3% accuracy. Note that our baselines were
also able to attain good performances in En-En,
i.e. 84.0% using BERT and 86.6% with XLM-
RoBERTa, without benefiting from additional train-
ing and development data. Interestingly, Chinese
was the language which achieved the second-best
results, both in Zh-Zh and En-Zh, attaining on av-
erage results which were considerably higher. In-
stead, Arabic seems to have been the most difficult
language for participants, especially in Ar-Ar. A
reason for this result, deserving further exploration,
could lie in morpho-semantic features inherent in
Arabic, which we briefly outlined in Section 4.

Zero-shot approaches differ in the performances
achieved by participants in the two sub-tasks: in
the cross-lingual sub-task participants were able
to achieve slightly better performances than those
in the multilingual setting, most probably thanks
to the presence of English in both the training and
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the test data, and, more in general, to the availabil-
ity of English WiC-style datasets which could be
used to enrich the already provided data. With the
exception of Chinese, instead, on the multilingual
sub-task we observe a performance drop between
1.6 and 4.3%.

Finally, we note that performance boosts were
observed across the board when using data augmen-
tation, especially by swapping the two sentences
within a pair or by coupling the second sentences
of two pairs sharing the same first sentence and the
same meaning. Another consistent performance in-
crease, observed both in the multilingual and in the
cross-lingual sub-task, was obtained when adding
a signal on both sides of the target occurrences.

8 Conclusions

In this paper, we described the SemEval-2021 Task
2 and introduced Multilingual and Cross-lingual
Word-in-Context (MCL-WiC), the first entirely
manually-curated WiC-style dataset in five Euro-
pean and non-European languages, namely Arabic,
Chinese, English, French and Russian. MCL-WiC
allows the inherent ability of systems to discrimi-
nate between word senses within the same language
to be tested, and also, interestingly, within cross-
lingual scenarios in which a system is evaluated in
two languages at the same time, namely English
and one of the remaining MCL-WiC languages.

While current Word-in-Context datasets focus
primarily on single tokens, as a suggestion for fu-
ture work we would like to further explore the in-
tegration of multi-word expressions and idiomatic
phrases into a Word-in-Context task. This would
allow us to investigate the intrinsic ability of a sys-
tem to correctly discriminate the semantics of such
linguistic constructs, especially those whose mean-
ing is not compositional, i.e. it cannot be derived by
combining the meaning of each of their individual
components.
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Abstract

This paper introduces the SemEval-2021
shared task 4: Reading Comprehension of
Abstract Meaning (ReCAM). This shared
task is designed to help evaluate the ability of
machines in representing and understanding
abstract concepts. Given a passage and the
corresponding question, a participating system
is expected to choose the correct answer from
five candidates of abstract concepts in a
cloze-style machine reading comprehension
setup. Based on two typical definitions
of abstractness, i.e., the imperceptibility
and nonspecificity, our task provides three
subtasks to evaluate the participating models.
Specifically, Subtask 1 aims to evaluate how
well a system can model concepts that cannot
be directly perceived in the physical world.
Subtask 2 focuses on models’ ability in com-
prehending nonspecific concepts located high
in a hypernym hierarchy given the context of
a passage. Subtask 3 aims to provide some
insights into models’ generalizability over
the two types of abstractness. During the
SemEval-2021 official evaluation period, we
received 23 submissions to Subtask 1 and 28
to Subtask 2. The participating teams addi-
tionally made 29 submissions to Subtask 3.
The leaderboard and competition website
can be found at https://competitions
.codalab.org/competitions/26153.
The data and baseline code are available at
https://github.com/boyuanzheng010/
SemEval2021-Reading-Comprehension-
of-Abstract-Meaning.

1 Introduction

Humans use words with abstract meaning in their
daily life. In the past, research efforts have been
exerted to better understand and model abstract
meaning (Turney et al., 2011; Theijssen et al.,

* This work was performed when Boyuan Zheng visited
Queen’s University.
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2011; Changizi, 2008; Spreen and Schulz, 1966).
Modelling abstract meaning is closely related to
many other NLP tasks such as reading compre-
hension, metaphor modelling, sentiment analysis,
summarization, and word sense disambiguation.

In the past decade, significant advancement has
been seen in developing computational models for
semantics, based on deep neural networks. In this
shared task, we aim to help assess the capability of
the state-of-the-art deep learning models on repre-
senting and modelling abstract concepts in a spe-
cific reading comprehension setup.

We introduce SemEval-2021 Task 4, Reading
Comprehension of Abstract Meaning (ReCAM).
Specifically, we design this shared task by follow-
ing the machine reading comprehension framework
(Hermann et al., 2015; Onishi et al., 2016; Hill
et al., 2016), in which computers are given a pas-
sage D; as well as a human summary .S; to compre-
hend. If a model can digest the passage as humans
do, we expect it to predict the abstract word used
in the summary, if the abstract word is masked.
Unlike the previous work that requires comput-
ers to predict concrete concepts, e.g., named enti-
ties, in our task we ask models to fill in abstract
words removed from human summaries. During
the SemEval-2021 official evaluation period, we
received 23 submissions to Subtask 1 and 28 sub-
missions to Subtask 2. The participating teams
additionally made 29 submissions to Subtask 3. In
this paper, we induce the shared task and provide a
summary for the evaluation.

2 Task Description

We organize our shared task based on two typical
definitions of abstractness, named as imperceptibil-
ity and nonspecificity in this paper, implemented in
Subtask 1 and Subtask 2, respectively. Subtask 3
further evaluates models’ generalizability over the
two definitions of abstractness.

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 37-50
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics



Passage . Observers have even named it after him,
“Abenomics”. It is based on three key pillars
of monetary policy to ensure long-term sustain-
able growth in the world’s third-largest economy,
with fiscal stimulus and structural reforms. In

this weekend’s upper house elections, ....

Question | Abenomics: The @placeholder and the risk.

Answer | (A)chance (B) prospective

(D) objective (E) threat

(C) government

Table 1: An example for Subtask 1. The correct answer
to the question is objective.

2.1 Subtask 1: ReCAM-Imperceptibility

In one definition (Turney et al., 2011; Theijssen
et al., 2011; Spreen and Schulz, 1966), concrete
words refer to things, events, and properties that
humans can directly perceive with their senses, e.g.,
trees and flowers. In contrast, abstract words refer
to “ideas and concepts that are distant from imme-
diate perception”, e.g., objective, culture, and econ-
omy. In Subtask 1, we perform reading compre-
hension on imperceptible abstract concepts, named
as ReCAM-ImPerceptibility. Table 1 shows an
example.

2.2 Subtask 2: ReCAM-NonSpecificity

The second typical definition of abstractness is
based on nonspecific concepts (Theijssen et al.,
2011; Spreen and Schulz, 1966). Compared to spe-
cific concepts such as groundhog and whale, words
such as vertebrate are regarded as more abstract.
Our Subtask 2, named as ReCAM-NonSpecificity,
is designed based on this viewpoint. We will dis-
cuss how the datasets are constructed in Section 3.

2.3 Subtask 3: ReCAM-Cross

In this subtask, participants are asked to submit
their predictions on the test data of Subtask 2, using
models trained on the training data of Subtask 1,
and vice versa. This subtask aims to demonstrate
models’ generalizability between modelling the
two typical definitions of abstractness.

3 Data Construction

We develop our multi-choice machine reading com-
prehension datasets based on the XSum summariza-
tion dataset (Narayan et al., 2018). We first locate
words with abstract meaning using our abstractness
scorers. Then we perform data filtering to select
our target words to construct our datasets.
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3.1 The XSum Data

By collecting online articles from the British Broad-
casting Corporation (BBC), Narayan et al. (2018)
developed a large-scale text summarization dataset,
XSum, in which each article has a single sentence
summary. We developed our ReCAM dataset based
on XSum.

3.2 Finding Imperceptible Concepts

Abstractness Scorer for Imperceptibility Fol-
lowing Turney et al. (2011), we use the MRC Psy-
cholinguistic Database (Coltheart, 1981), which in-
cludes 4,295 words rated with a degree of abstract-
ness by human subjects, to train our abstractness
scorer for imperceptibility. The rating of the words
in the MRC Psycholinguistic Database ranges from
158 (highly abstract) to 670 (highly concrete). We
linearly scale the rating to the range of O (highly ab-
stract) to 1 (highly concrete). The neural regression
model accepts fixed Glove embedding (Pennington
et al., 2014) as input and predicts the abstractness
rating score between 0 and 1. Our regression model
is a three-layer network that consists of two non-
linear hidden layers with the ReLU activation and a
sigmoid output layer. The mean square error (MSE)
is used as the training loss.

To test the regression model’s performance, we
randomly split the MRC Psycholinguistic Database
into train and test set with the size of 2,148 and
1,877, respectively. Table 2 shows the final perfor-
mance of the neural regression model on the MRC
database. We use the Pearson correlation between
ratings predicted by models and original ratings
from MRC as the evaluation metric. We can see
that the regression model achieves high correlation
coefficients (the higher, the better), i.e., 0.934 and
0.835, on the training and test set. The correlations
are significant (p-values are smaller than 107°),
reflecting the quality of our models in finding ab-
stract words. Note that Turney et al. (2011) report
a correlation score of 0.81 on their MRC test set.
Their training-test split is unavailable, so we run
cross-validation here in our experiment. The scorer
can then be used to assign an imperceptibility score
to a word that is not in the MRC Psycholinguistic
Database.

Using the abstractness scorer described above,
we assign an abstractness value to each word in
summaries and select words with a value lower
than 0.35 as the candidates for our farget words
(words that will be removed from the summaries



#samples Pearsonr  p-value
train | 2,148 0934 p<107°
test 1,877 0.854 p<107°

Table 2: Fitting performance of neural regression
model on the MRC database.

to construct questions). We only consider content
words as potential target words, i.e., nouns, verbs,
adjectives, and adverbs. For this purpose, we use
part-of-speech tagging model (?) implemented in
Stanza (Qi et al., 2020).

3.3 Finding Nonspecific Concepts

Nonspecificity Scorer Following the work
of Changizi (2008), we assign a nonspecificity
score to a word token based on the hypernym
hierarchy of WordNet (Miller, 1998). Specifically,
the root of the hierarchy is at level 0 and regarded
as the most abstract. The abstractness of a node in
the hierarchy is measured by the maximal length
of its path to the root. The hypernym level in
WordNet is between 0 and 17. For each word token
in summaries, we use Adapted Lesk Algorithm
(Banerjee and Pedersen, 2002) to label the sense
since the WordNet hypernym hierarchy works at
the sense level. Since a summary sentence may
be short, we concatenate each summary sentence
with the corresponding passage for word sense
disambiguation. Built on this, each token, which
is labelled with a sense, receives an abstractness
score based on the WordNet hierarchy.

Using the nonspecificity scorer, we assign an
nonspecificity value to each word in summaries
and select words with a value smaller than six as
the candidate target words. The targets words will
be nouns and verbs since the hypernym hierarchy
in WordNet (?) consists of these two POS types.

3.4 Filtering

We aim to avoid developing simple questions. For
example, if a target word also appears in the pas-
sage, it is likely that a model can easily find the
answer without the need to understand the passage
in depth.

Filtering by Lemmas We lemmatized passages
and summaries. If a lemma appears both in a sum-
mary and the corresponding passage, the lexemes
of the lemma will not be considered as target words.
Note that a strict filter may exclude some good can-
didates for target words but helps avoid introducing
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many simple questions.

Filtering by Synonyms and Antonyms For a
word in a summary, if a synonym or antonym of
the word appears in the corresponding passage,
we will not consider this word to be our target
word. We use WordNet (?) to derive synonyms
and antonyms. Instead of using word sense disam-
biguation (WSD), for a word w; in a summary, we
use all senses of this word and add all synonyms
and antonyms into a pool. Only if none of the
words in the pool appear in the passage, we con-
sider w; as a candidate target word. Otherwise,
we will not use w; to construct a question for this
passage-summary pair.

Filtering by Similarity We further filter words
by similarity. For each candidate target word in
a summary and each word in the passage, we cal-
culate similarity and use that to perform further
filtering.

We use 300-dimension GloVe word embedding
trained on 840 billion tokens (Pennington et al.,
2014). We calculate the cosine similarity between
a candidate target word and a passage word. For
contextual embedding, we embed each sentence in
a passage as well as the summary into a context-
aware representation matrix using the BERT-large
uncased language model. Then, we calculate the
similarity between each passage token and question
token with the cosine similarity. If the similarity is
higher than 0.85, we will not consider the involved
summary words as candidate target words.

3.5 Constructing Multiple Choices

We train machine reading comprehension models
using the data built so far to generate four choices
for each question. Together with the ground-truth
(the target word identified above and removed from
the human summary), we have five choices/options
for each question. In our work, we propose to use
three models, Gated-Attention Reader (Hermann
et al., 2015), Attentive Model and Attention Model
with Word Gloss to generate the candidate options.
Please find details of the models in Appendix B
and Appendix C as well as the training details in
Appendix D.

We adopt the idea of k-fold cross validation to
train the above mentioned three models to generate
candidate answer words. Specifically, we split the
data into 4 folds. Each time, we train the base-
line models on 3 folds of data and use the trained



MRR R@l R@5 R@I10
GAReader | 0.245 0.175 0.314  0.378
AttReader | 0.235 0.167 0300 0.363
+gloss 0.179 0.123  0.227 0.276

Table 3: Three baseline models are used to generate
candidate multiple choices for Subtask 1. The table
shows their performance on the XSum dataset, evalu-
ated with MRR(Craswell, 2009), Recall@1, Recall@5,
and Recall@10.

MRR R@l1 R@5 R@I10
GAReader | 0.343  0.268 0422 0.484
AttReader | 0.348 0.273 0.424  0.490
+gloss 0228 0.166 0.286 0.345

Table 4: Three baseline models are used to generate
candidate multiple choices for Subtask 2. The table
shows their performance on the XSum dataset, evalu-
ated with MRR, Recall@1, Recall @5, and Recall@10.

models to predict candidate words on the remain-
ing 1-fold data. With 4-fold iteration, we obtain
predication of each model on the entire data. The
performance of the three baseline models are listed
in Table 3 for Subtask 1 and Table 4 for Subtask
2, using several typical retrieval-based evaluation
metrics.

For each target word that has been removed
from the corresponding summary sentence (again,
a question is a summary sentence containing a re-
moved target word), we collect top-10 words pre-
dicted by each of the three models. In this way,
we can collect a candidate word pool of 30 pre-
dicted word tokens for each removed target word.
To avoid including multiple correct choices for
each question, we adopt synonym and context sim-
ilarity filtering methods described in Section 3.4.
Specifically we first calculate similarity between
the ground-truth target word and each word type in
the pool. We exclude a word type from the multiple
choices if its similarity to the ground-truth is higher
than 0.85. In addition, we also exclude synonyms
of the ground-truth target word. For the remaining
word tokens in the pool, we select four most fre-
quent word types (a word type may have multiple
tokens in the pool). Together with the ground-truth
word, we obtain five choices for each question.

3.6 Further Quality Control

We further make the following efforts to remove
noise in the dataset and improve the datasets’ qual-
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ity. We observe that up to now, there are mainly
two kinds of noise in our dataset: 1) some target
words cannot be inferred solely based on the corre-
sponding passage; 2) more than one of the multiple
choices are correct answers.

The first issue is mainly related to the property
of the XSum dataset, in which the first sentence of
a passage is used as the summary. The second type
of problems are often caused by our automatic gen-
eration method. Although we have applied strict
rules in Section 3.4 to handle this, among a small
portion of the resulting data, multiple potentially
correct answers still exist in candidate answers.

To further ensure the quality of our dataset, we
invite workers in Amazon Mechanical Turk to per-
form further data selection. Each annotator needs
to follow the procedure of Appendix A to answer
the question and annotate relevant information,
with which further data selection is applied. To en-
sure quality, we only include workers from English-
speaking countries and only if their previous HITs’
approval rates are above 90%. To see more details
about this process, please refer to Appendix E.

3.7 ReCAM Data Statistics

Table 5 lists the size of our ReCAM datasets, i.e.,
numbers of questions. For example, in total Sub-
task 2 has 6,186 questions, which are split into
training/development/test subsets.

Dataset | Subtask 1 Subtask 2  Total
Train 3,227 3,318 6,545
Dev 837 851 1,688
Test 2,025 2,017 4,042
Total 6,089 6,186 12,275

Table 5: Size of the ReCAM Dataset.

4 Systems and Results

Our shared task received 23 submissions to Subtask
1, 28 submissions to Subtask 2, and 29 submissions
to Subtask 3. We use accuracy as the evaluation
metric for the three subtasks.

In general, most participating teams use pre-
trained language models in their systems such
as BERT (Devlin et al., 2019), ALBERT (Lan
et al., 2020), DistilBERT (Sanh et al., 2019),
RoBERTa (Liu et al., 2019), ELECTRA (Clark
et al., 2020), DeBERTa (He et al., 2020), XL-
Net (Yang et al., 2019), TS5 (Raffel et al., 2020).
Data augmentation, external knowledge resources,



and/or transfer learning are additionally used by
many teams to further enhance their model perfor-
mance.

4.1 Subtask 1: ReCAM-Imperceptibility

Table 6 shows all the official submissions and most
of them outperform the baseline model. The base-
line used for Subtask 1 is the Gated-Attention (GA)
Reader (Dhingra et al., 2017). The GA Reader
uses a multi-layer iterated architecture with a gated
attention mechanism to derive better query-aware
passage representation. The motivation behind us-
ing GA Reader is to have a simple comparison
between our task and the CNN/Daily Mail reading
comprehension dataset since GA Reader achieves
reasonably good performance on the CNN/Daily
Mail reading comprehension dataset.

Note that the last column of the table lists the
accuracy (Acc. Cross) for models trained on the
Subtask 2 training data and tested on the Subtask
1 testset. We will discuss those results later in
Section 4.3.

The best result in Subtask 1 was achieved
by team SRC-B-roc (Zhang et al., 2021)
with an accuracy of 0.951. The system
was built on a pre-trained ELECTRA dis-
criminator and it further applied upper atten-
tion and auto-denoising mechanism to process
long sequences. The second-placed system,
PINGAN omini-Sinitic (Wang et al., 2021),
adopted an ensemble of ELECTRA-based mod-
els with task-adaptive pre-training and a mutli-
head attention based multiple-choice classifier.
ECNU-ICA-1 (Liu et al., 2021) ranked third in
this subtask with a knowledge-enhanced Graph At-
tention Network and a semantic space transforma-
tion strategy.

Most teams in Subtask 1 utilize pre-trained
language models (PLM), like BERT (Devlin
et al.,, 2019), ALBERT (Lan et al., 2020), Dis-
tilBERT (Sanh et al., 2019), RoBERTa (Liu
et al., 2019), ELECTRA (Clark et al., 2020), De-
BERTa (He et al., 2020), XLNet (Yang et al., 2019),
TS5 (Raffel et al., 2020). SRC-B—-roc (Zhang et al.,
2021) conducted an ablation study regarding the
performance discrepancy of different transformers-
based pre-training models. They tested BERT, AL-
BERT, and ELECTRA by directly fine-tuning the
pre-trained LMs on the ReCAM data. ELECTRA
outperforms BERT and ALBERT by large margins,
which may be due to the different learning objec-
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Rank | Team Acc | Acc. Cross

- GA Reader 25.1 -
SRC-B-roc 95.1 | 91.8() 3.3)

2 PINGAN- 93.0 | 91.7( 1.3)
Omini-Sinitic

3 ECNU-ICA-1 90.5 | 88.6(]1.9)

4 tt123 90.0 | 86.2(] 3.8)

5 cxn 88.7 -

6 nxc 88.6 | 74.2(1 14.4)

7 ZJUKLAB 87.9 -

8 IIE-NLP-Eyas 87.5 | 82.1(]54)

9 hzxx1997 86.7 -

10 XRIJL 86.7 | 81.8(]4.9)

11 noobs 86.2 | 78.6(17.6)

12 godrevl 83.1 -

13 ReCAM@IITK | 82.1 | 80.7( 1.4)

14 DeepBlueAl 81.8 | 76.3(15.5)

15 LRG 75.3 | 61.8( 13.5)

16 xuliang 74.7 -

17 LIf1206571288 | 72.8 -

18 Qing 71.4 -

19 NEUer 56.6 | 51.8(] 4.8)

20 CCLAB 46.3 | 35.2(J 11.1)

21 UoR 42.0 | 39.4( 2.6)

22 munia 19.3 -

23 BaoShanCollege | 19.0 -

Table 6: Official results of Subtask 1 and Subtask
3. Acc is the accuracy of the models trained on the
Subtask 1 training data and tested on the Subtask 1 test-
set. Acc. cross is the accuracy of models trained on
the Subtask 2 training data and tested on the Subtask 1
testset.

tives of these pre-trained models.

Most participating systems performed inter-
mediate task pre-training (Pruksachatkun et al.,
2020) for their language models. For exam-
ple, CNN/Daily Mail dataset was selected by
ZJUKLAB (Xie et al.,, 2021a) to further pre-
train their language models. The CNN/Daily
Mail dataset and Newsroom dataset boost model
performance on both Subtask 1 and Subtask 2.
Data augmentation methods are also popular
among participants. ZJUKLAB (Xie et al., 2021a)
performed negative data augmentation with a



language model to leverage misleading words.
ITIE-NLP-Eyas (Xie et al., 2021b) adopted
template-based input reconstruction methods to
augment their dataset and further fine-tuned their
language models based on the dataset.

Most teams also used an ensemble of multiple
pre-trained language models to further enhance
model performance. SRC-B-roc (Zhang et al.,
2021) applied Wrong Answer Ensemble (Kim and
Fung, 2020) by training the model to learn the cor-
rect and wrong answer separately and ensembled
them to obtain the final predictions. Stochastic
Weight Averaging (Izmailov et al., 2018) was also
performed across multiple checkpoints in the same
run to achieve better generalization.

In addition, some interesting approaches
were additionally used to tackle the task
from different perspectives. PINGAN
omini-Sinitic (Wangetal., 2021) turned the
original multi-choice task into a masked-sentence
classification task by adding each option to the
placeholder. Noise detection methods and auto de-
noising methods were further proposed by adding
a noise-tolerant loss. ZJUKLAB (Xie et al., 2021a)
used label smoothing to encourage the activations
of the penultimate layer. ECNU-ICA-1 (Liu
et al., 2021) utilized a semantic space transfor-
mation strategy to convert ordinary semantic
representations into abstract representations for
classification.

Many teams used external knowledge resources
to further improve model performance. Word-
Net (Fellbaum, 1998) was widely used to provide
candidate word definitions. ECNU-ICA-1 (Liu
et al., 2021) also used ConceptNet5 (Speer et al.,
2016) and Graph Neural Network in their systems.
To alleviate the noise induced by incorporating
structured knowledge through unimportant edges,
they propose a noise reduction strategy. owlmx
used the MRC Psycholinguistic Database to obtain
a measurement of imperceptibility abstractness.

Different pre-processing techniques were pro-
posed in multiple systems. ZJUKLAB (Xie et al.,
2021a) used a sliding window to limit input length
in training. PINGAN Omini-Sinitic (Wang
et al., 2021) used the cycle noisy label detection
algorithm to make models more robust.

Much interesting analysis regarding the failure
cases and data distribution was discussed in sev-
eral system description papers. XRJL (Jiang et al.,
2021) found that for a few questions, common
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Rank | Team Acc. | Acc. Cross
- GA Reader 24.3 -
1 PINGAN- 953 | 942 (] 1.1)
Omini-Sinitic
2 SRC-B-roc 94.9 | 93.9(J 1.0)
3 tt123 934 | 85.8()7.6)
4 ECNU-ICA-1 93.0 | 92.8(J0.2)
5 cxn 92.9 -
6 ZJUKLAB 92.8 -
7 nxc 92.7 -
8 hzxx1997 90.2 -
9 XRJIL 90.0 | 87.6()2.4)
10 IIE-NLP-Eyas 89.6 | 84.1(}5.5)
11 ReCAM@IITK | 87.6 | 85.2(] 2.4)
12 noobs 87.1 | 82.4(l4.7)
13 DeepBlueAl 86.2 | 80.7(] 5.5)
14 xuliang 81.0 -
15 LRG 77.8 | 65.6(] 12.2)
16 Yotta 71.6 -
17 sayazzad 68.3 -
18 itanhisada 67.7 -
19 NEUer 66.9 | 45.0({ 21.9)
20 YaA@JUST 66.1 -
21 NLP-IS@UT 64.4 -
22 CCLAB 48.1 | 31.8(] 16.3)
23 K-FUT 47.6 -
24 owlmx 44.8 | 31.0(}13.8)
25 UIT-ISE-NLP 42.0 | 27.3(} 14.7)
26 UoR 39.1 | 34.2(1 4.9
27 Noor 19.9 -
28 BaoShanCollege | 17.6 -

Table 7: Official results of Subtask 2 and Subtask 3.
Acc is the accuracy (%) of the models trained on the
Subtask 2 training data and tested on the Subtask 2 test-
set. Acc. Cross is the accuracy(%) of models trained on
the Subtask 1 training data and tested on the Subtask 2
testset.

sense knowledge was further needed to help find
the answer. They also pointed out that there were
still a few questions in which multiple candidate
choices may serve as appropriate answers.



4.2 Subtask 2: ReCAM-Nonspecificity

In Subtask 2, we received 28 submissions. Ta-
ble 7 shows the official leaderboard. The best re-
sult in Subtask 2 was achieved by team P INGAN
omini-Sinitic (Wangetal., 2021) with an ac-
curacy of 0.953, using a model similar to the team’s
model in Subtask 1. The second-placed team
SRC-B-roc (Zhang et al., 2021) also adopted the
same model it used in Subtask 1 with a data aug-
mentation method based on the hypernym hierar-
chy in WordNet.

In general, the participating teams in Subtask 2
used pre-trained language models and neural net-
works similar to those they used in Subtask 1.
The main differences lie in how the participants
performed data augmentation and leveraged ex-
ternal knowledge. For example, in addition
to SRC-B-roc (Zhang et al., 2021), the IRG
team (Sharma et al., 2021) also performed data
augmentation using hypernyms from WordNet.

4.3 Subtask 3: Cross-task Performance

In this section, we explore models’ performance
across the two types of definitions of abstractness.
Specifically, in this subtask, participants train their
models on the training set of one subtask and test
on the testset of the other subtask. We received 29
submissions in total from the participants.

Cross-task performance: Subtask 2-to-1 test-
ing. We asked participants to test their models
trained on the Subtask 2 training data on the Sub-
task 1 test data. The results are shown in the last
column of Table 6.

The results we received show that the perfor-
mance of all systems drops substantially. For
some systems ranking among top 10, the accuracy
can decrease by 5 points (IIE-NLP-Eyas (Xie
et al.,, 2021b) and XRJL (Jiang et al., 2021)),
or even more (14 points for nxc). Some sys-
tems show good generalization ability in this
Subtask 2-to-1 scenario; the performance of
PINGAN-Omini-Sinitic (Wang et al., 2021)
is only 1.3 point less, which may be due to the the
data augmentation and task adaptive training used
in the model.

Cross-task Performance: Subtask 1-to-2 Test-
ing. Participants are asked to test their Subtask 1
systems on the Subtask 2 testset. Details of the re-
sults can be seen in the last column of Table 7. All
systems’ performances drop. For example, among
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the top-10 systems, the accuracy decreases by 5
points (IIE-NLP-Eyas (Xie et al., 2021b)) or 7
points (tt123).

However, ECNU-ICA-1 (Liu et al,
2021) shows a very good generaliza-
tion ability in Subtask 1-to-2 testing.
PINGAN-Omini-Sinitic (Wang et al.,

2021), SRC-B-roc (Zhang et al., 2021) and
XRJL (Jiang et al., 2021)’s systems are rather
consistent in this Subtask 1-to-2 cross testing.
Some algorithms they used may explain the mod-
els’ good generalization ability. ECNU-ICA-1’s
algorithm of using knowledge-enhanced Graph
Attention Network can provide external knowledge
to the model. The Wrong Answer Ensem-
ble algorithm (Kim and Fung, 2020) used in
PINGAN-Omini-Sinitic (Wang et al., 2021)
is a relatively simple but an effective way of
improving model performance and generalization
ability. Also, the Stochastic Weight Averaging
algorithm across multiple checkpoints is effective
for better generalization. XRJL (Jiang et al., 2021)
retrieves the definitions of candidate answers from
WordNet and feeds them to the model as extra
inputs. We also think data augmentation methods
contribute to the generalization ability.

5 Related Work

There have been tasks being proposed to evalu-
ate machines’ ability on reading comprehension,
which either require models to find an entity or
text span from the source document as the answer
(Hermann et al., 2015; Hill et al., 2016; Onishi
et al., 2016; Rajpurkar et al., 2016; Trischler et al.,
2017), or further generate an answer (Nguyen et al.,
2016; He et al., 2018; Kocisky et al., 2018). The
cloze-style MRC tasks (Hermann et al., 2015; On-
ishi et al., 2016; Hill et al., 2016) are most similar
to ours, in which the missing words in the cloze
questions are entities appearing in source docu-
ments. Unlike previous work, ReCAM questions
specifically focus on abstract words unseen in the
corresponding source documents.

In general, multi-choice questions have been
widely used as a tool for language examination
to test both humans and machines. In this paper,
we follow the multiple-choice framework for our
proposed ReCAM task to evaluate computers’ abil-
ity in comprehending abstract concepts, in which
computers are asked to predict the missing abstract
words in human-written summaries.



6 Summary

This shared task aims to study the ability of ma-
chines in representing and understanding abstract
concepts, based on two definitions of abstractness,
the imperceptibility and nonspecificity, in a specific
machine reading comprehension setup. We provide
three subtasks to evaluate models’ ability in com-
prehending the two types of abstract meaning as
well as their generalizability. In Subtask 1, the top
system achieves an accuracy of 0.951, and in Sub-
task 2, an accuracy of 0.953, suggesting the current
systems perform well in the specific setup of our
share task. In Subtask 3, we found that in general
the models’ performances dropped in both Subtask
2-to-1 and Subtask 1-to-2 testing. However, some
models generalize well, benefiting from technolo-
gies such as data augmentation and task adaptive
training. We hope the shared task can help shed
some light on modelling abstract concepts and help
design more challenging tasks in the future.
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A Annotation Script

Please read the instruction before starting answering the question (about 2 minutes
reading). The instruction will help you better understand the task. Here is a question with
one word missing. Please pick one word to complete it.

Question: Wales are waiting to discover the ®@placeholder of the knee injury lock Jake

Ball suffered in Scarlets ' 24 - 15 win over Treviso on Friday .

e Before reading the passage, please select one word to answer the question.

[ challenge Oduties Oextent [causes U future

Passage: Ball, 24, limped off towards the end of the Pro12 game at Parc Scarlets, a
week before Wales face England in the Six Nations at Twickenham. NJake took a knock to
the knee at the stage when we scored the try," Scarlets head coach Wayne Pivac said. "It
was sensible to get him off as well." Pivac added: "I think he'll be all right - he's thrown a
bit of ice so we'll see what the medical boys say." Wales coach Warren Gatland released
lock Ball and scrum-half Aled Davies to the region as the Welsh squad prepare for their
Six Nations showdown with England on 12 March. Media playback is not supported on
this device Pivac also revealed Davies, 23, had been struggling with a virus while
Scotland forward John Barclay also suffered an injury during the victory over bottom side
Treviso. "John just took a stinger and felt he was favouring one side so he was going to let
the team down so it was the right decision and he came off but I'm pretty sure he'll be OK"
Pivac added. "Aled Davies was crook for the last couple of days with a virus and had to
get through the warm-up. He did that and started so he was always going to run out of

petrol. "It was a matter of how long he'd last and he did well to get to where he did."

e After reading and understanding the passage, select one word to answer the question.

[Ichallenge [1 duties [ extent [ causes [] future

e If you think there is another answer to this question, please pick your second choice.
Else, please pick the "No Other Answer” option.

[Jchallenge [ duties [J extent [1 causes [ future [J No Other Answer

e Which part of the passage supports your answer? Copy the text span to the line below:
Paste corresponding text span here:

¢ Does the answer summarize or paraphrase the text span?

O Summarize O Paraphrase [ Others

e Which part of the passage summarize the information included in the answer? Copy the
text span to the line below:

Paste corresponding text span here:

e How difficult is this problem?
U Easy [ Medium U Difficult
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B Gated-Attention Reader

The Gated-Attention (GA) Reader (Dhingra et al.,
2017), the state-of-art model on CNN/Daily Mail
reading comprehension dataset (Hermann et al.,
2015), is adapted here in our experiments. The GA
Reader uses a multi-layer iterated architecture with
a gated attention mechanism, which is based on
multiplicative interactions between the query em-
bedding and the intermediate states of a recurrent
neural network document reader, to derive better
query-aware passage representation. To apply GA
Reader to our ARC task, we input the news passage
p as the document and the processed summary s as
the query to GA Reader.

Specifically, for an input passage p
[p1, P2, ..., p1,] With [, words and its correspond-
ing summary s = [sq, S2, ..., s;,| with [5 words,
we first derive their corresponding word embed-
ding sequence P [P1,P2,--,Py,] and S
[s1,82, ..., s1,] respectively. Then the GA Reader
accepts the P and S as inputs and return the
hidden states H, = [h} hE, ..., hfp] and Hy, =
[hi, h3, ..., hfs] as the sequential representation for
passage p and summary s respectively. As for the
final prediction process, we do not adopt the opera-
tions in Dhingra et al. (2017) because in ARC the
answer words are unseen in the corresponding pas-
sage, however, GA Reader in Dhingra et al. (2017)
tries to select a entity word in the passage as the
final prediction since their target answer word ap-
pears in the passage. So we redesign the part of
prediction.

First, the corresponding representation of
“@placeholder” in Hy, denoted as hy (g is the posi-
tion index of @placeholder in summary s), is used
as the final vector representation for summary s.
For the final vector representation p for passage p,
a bilinear attention between hy and H), is used for
its derivation:

e; = h"Wh! Vi € [1,...,1,)]
lP

)
exp e;

P
lp hi’
i=1 Zj:l €Xp €;

pP= (2)

We set a token embedding af for each candidate
abstractive word a; (¢ € [1, ..., n¢|, n. is the size of
candidate set). We first concatenate the hy and p,
then use the bilinear product and softmax to predict
the probability distribution over all n. candidate
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abstractive words.
ry = [hfl;p]TWpaf,Vt € l,...,ng,
o = softmax,(r),Vt € [1,

3)
“4)

in which o; represents the probability of predict-
ing the candidate abstractive word a; as the final
answer.

ey )

C Attentive Model

The word gloss, which defines a word sense mean-
ing, has been mainly used in word sense disam-
biguation (WSD) task and its variants (Lesk, 1986;
Moro et al., 2014). Since the goal of ARC is to
predict a word that can summarize corresponding
information from the source passage, which is an
abstracting process, it may be helpful when the
gloss, i.e., interpretation of candidate abstractive
words, are provided.

We design an attentive model with word gloss
(AMWG) as Figure 1 shows. Specifically, all the
encoders are 1-layer bi-directional recurrent neu-
ral networks (RNNs) with Gated Recurrent Units
(GRU) (Cho et al.). For an input news passage
p = [p1,p2, ..., p1,] With [, words, we can derive
its hidden states H,, = [h} hE, ..., hfp] by sending
its word embedding sequence P = [p1, p2, ..., Py, |
to the Passage Encoder. Similarly, we can de-
rive hidden states Hs = [h{, h3, ..., hj | for sum-
mary s by inputting its word embedding sequence
S = [s1, 82, ..., 81, ] into the Summary Encoder and
hidden states Hy, = [h{* hi, ..., hlg;t] for gloss
g: of the candidate word a; by sending its word
embedding sequence G; = [g}, g}, ..., gfgt] to the
WordGloss Encoder.

Similar to Section B, the corresponding repre-
sentation of “@placeholder”, i.c., hZ, is used as
the final vector representation for summary s. And
an bilinear attention f,(e) is applied to h$ and
H,, as follows:

e; =h WP Wl Vi€ [1,..,1) (5)
aj=——P%  vien,..,] (6
I p

ijl exp e;

Then p is derived as the vector representation for
passage p by the weighed sum of H,, which is
further concatenated with the hy to form the final
summarization vector v:

lp

p=) ahf, ™
i=1

v = concat(p, hy), (8)
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Figure 1: The model architecture of the attentive model with word gloss (AMWG) implemented in this paper. @
denotes the concatenation of input vectors. All the encoders are 1-layer bi-directional GRU-RNNs, X) denotes the

weighted sum of vectors.

g

Another attention [,

(e) is applied to v and Hy,,
¢j = tanh(W,v + b) h% Vj € [1,...,,,]

©)
(10)

exp €;
5j - lg,
Yo expe;

The following weighted sum of H,, i.e, af , 1s de-
rive as the final vector representation for the gloss
of candidate word a;:

Vel .,

l!]t

al = pB;h? (11)
j=1

We also set a token embedding af for each can-
didate word a; (t € [1,...,n.], n. is the size of
candidate set), which is further concatenated with
af to build the final representation a; for candi-
date word a;. For the final prediction, we input the
summarization vector v and candidate representa-
tion vector a; to fyreq(®) and apply the softmax
to derive the probability distribution over all n.
candidate abstractive words,

a; = concat(a, af), (12)
i = VI Weqay, V¥t € [1, ...,nl, (13)
ot = softmax,(ry),Vt € [1,...,n] (14)

in which o; gives the probability of predicting the
candidate word a; as the final answer. The word
gloss, which defines a word sense meaning, has
been mainly used in word sense disambiguation
(WSD) task and its variants (Lesk, 1986; Moro
et al., 2014). Since the goal of ARC is to predict a
word that can summarize corresponding informa-
tion from the source passage, which is an abstract-
ing process, it may be helpful when the gloss, i.e.,
interpretation of candidate abstractive words, are
provided.
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We design an attentive model with word gloss
(AMWG) as Figure 1 shows. Specifically, all the
encoders are 1-layer bi-directional recurrent neu-
ral networks (RNNs) with Gated Recurrent Units
(GRU) (Cho et al.). For an input news passage
p = [p1,p2, ..., p1,] With [, words, we can derive
its hidden states H,, = [h}  hE, ..., hfp] by sending
its word embedding sequence P = [p1, p2, ..., Py, |
to the Passage Encoder. Similarly, we can de-
rive hidden states Hs = [h{, h3, ..., hj | for sum-
mary s by inputting its word embedding sequence
S = [s1, 82, ..., 81, ] into the Summary Encoder and
hidden states Hy, = [h{*, hi’, ..., hlg;t] for gloss
g: of the candidate word a; by sending its word
embedding sequence G; = [g}, g}, ..., gfgt] to the
WordGloss Encoder.

Similar to Section B, the corresponding repre-
sentation of “@placeholder”, i.e., hg, is used as
the final vector representation for summary s. And
an bilinear attention fy,,(e) is applied to hj and
H,, as follows:

e; =h"WP WP Vi e [l,..,1)

Pl o)
P
D1 €xpe;

(15)
(16)

Q; =

Then p is derived as the vector representation for
passage p by the weighed sum of H,,, which is
further concatenated with the hj to form the final
summarization vector v:

lp

p=> ahl, (17)
i=1

v = concat(p, hy), (18)



Another attention fJ,,(e) is applied to v and Hy,,
¢j = tanh(W,v + b) h% Vj € [1,...,1,]

(19)

exp e; (20)

B; Viel, .l

l

2 expe;
The following weighted sum of Hy,, i.e, a7, is de-
rive as the final vector representation for the gloss
of candidate word a;:

lgt

al =>  B;hY 1)
j=1

We also set a token embedding af for each can-
didate word a; (t € [1,...,n.], n. is the size of
candidate set), which is further concatenated with
af to build the final representation a; for candi-
date word a;. For the final prediction, we input the
summarization vector v and candidate representa-
tion vector a; to fyreq(®) and apply the softmax
to derive the probability distribution over all n.
candidate abstractive words,

a; = concat(al, af), (22)
i = VI Weqay, Vt € [1, ...,nl, (23)
o = softmax,(ry),Vt € [1,...,n] (24)

in which o; gives the probability of predicting the
candidate word a; as the final answer.

D Training Details

We train all models using the non-negative log-
likelihood as the objective function. The gloss of
candidate words are derived from WordNet using
the NLTK tools (Bird and Loper, 2004). Specifi-
cally, we first lemmatize the candidate word and
use the lemmatized word as the query word for the
searching in WordNet. To cope with the seman-
tic ambiguity of words, we just concatenate the
gloss of the first sense in each retrieved POS for
the query word with corresponding POS tag as the
deliminator.

Models in our experiments are trained with the
following hyperparameter settings: All word em-
beddings and token embeddings af have 300 di-
mensions and are initialized with Glove (Penning-
ton et al., 2014). The passage p and summary
s share one set of word embeddings, which are
fixed during training. The glosses {g;} for candi-
date words {a;} keep its own word embeddings.
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The hidden state vectors of all bi-directional GRU-
RNNSs in all models have 150 dimensions. The
number of attention hops in GA Reader is set to 3.
The batch size is set to 32. The method of Adam
(Kingma and Ba, 2015) is adopted for optimization
with initial learning rate 1e — 03. A dropout with
rate 0.3 is applied to the input layers for all GRU-
RNN encoders and the final summarization vector
V.

E Annotation Selection

To ensure most of our annotation is valid, we select
annotations satisfying the following criteria: a) the
average accuracy is higher than 40%:; b) both text
spans should not be empty; c) if the difficulty level
is rated as easy, then this data sample should be
answered correctly.
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Abstract

This paper describes our system used in the
SemEval-2021 Task 4 Reading Comprehen-
sion of Abstract Meaning, achieving 1st for
subtask 1 and 2nd for subtask 2 on the leader-
board. We propose an ensemble of ELECTRA-
based models with task-adaptive pretraining
and a multi-head attention multiple-choice
classifier on top of the pre-trained model. The
main contributions of our system are 1) reveal-
ing the performance discrepancy of different
transformer-based pretraining models on the
downstream task, 2) presentation of an effi-
cient method to generate large task-adaptive
corpora for pretraining. We also investigated
several pretraining strategies and contrastive
learning objectives. Our system achieves a test
accuracy of 95.11 and 94.89 on subtask 1 and
subtask 2 respectively.

1 Introduction

Machine reading comprehension (MRC) is one
of the key tasks for measuring machines’ abil-
ity of understanding human languages and rea-
soning, it can be used broadly in real world ap-
plications such as Q&A systems and dialogue
systems. MRC often comes in a triplet style
{passage, question,answer}, given a context
passage, questions related with this passage is
asked, and the machine is expected to give the an-
swers. The question-answer form can be question-
answer pair, where the answer text is to be provided
by machines, or statement form where the answer
is to be filled in as cloze or multiple choices se-
lection. By the type of answer formation, MRC
can be divided into extractive and generative MRC,
the former takes segments from the passage as the
answer and the latter requires answer text gener-
ation based on the understanding of the passage.

Contribution during Intership in Samsung Research
China-Beijing.
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Generative MRC is harder than extractive MRC,
since it requires more on information integration
and reasoning besides focusing on relevant infor-
mation.

One of the classic MRC approach focuses on
matching networks, various network structures
have been proposed to capture the semantic inter-
action within passages/questions/answers. Recent
years, pre-trained language models (LMs) have
brought non-trivial progress to the performance on
MRC, and there’s a decline of complex matching
networks (Zhang et al., 2020). Plugging matching
networks on top of pre-trained LMs can see ei-
ther improvements or degradation in performance
(Zhang et al., 2020; Zhu et al., 2020). Multiple-
choice MRC (MMRC) often lacks abundant train-
ing data for deep neural networks (this might be
caused by the expensive human labelling cost) and
it results in a limitation to take full advantage of
the pre-trained LMs.

The SemEval-2021 task 4 Reading Comprehen-
sion of Abstract Meaning (Zheng et al., 2021),
is a multiple-choice English MRC task, aiming at
investigating the machine’s ability to understand
abstract concepts in two aspects: subtask 1, non-
concrete concepts, e.g. service/economy compared
with trees/red; subtask 2, generalized/summarized
concepts, like vertebrate compared with monkey.

We propose an approach based on the pre-trained
LM ELECTRA (Clark et al., 2020), with an ensem-
ble of multi-head attention (Vaswani et al., 2017)
multiple-choice classifier, and WAE (Kim and
Fung, 2020) to get the final prediction. First, we
conduct task-adaptive pretraining, which is transfer
learning using in-domain data on the ELECTRA
model. Then we fine-tune the ReCAM task us-
ing a multi-head attention multiple choice classifier
(MAMC) on top of the ELECTRA model. Finally
we enhance the system with WAE and ensemble
them all to get the best generalization capability.

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 51-58
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Figure 1: The overall architecture of our proposed sys-
tem

In addition, we also investigated into transfer
learning with natural language inference (NLI)
tasks and contrastive learning objectives.

2 System Overview

Figure 1 illustrates the overall architecture of our
system. The options are substituted into the query
to form a complete context, rather than separate
query/option segments, in order to get a less se-
mantically ambiguous representation of the query
and option. The option-filled query and context
tokens are concatenated as in Figure 1, wrapped
by [CLS] token and [SEP] tokens. Token embed-
dings are added up with segment embeddings and
positional encodings to form the input for the pre-
trained encoder. Then the representations from
the encoder are put through a multi-head attention
multiple choice classifier, which consists of 1) a
2 layer multi-head attention feed forward network
to further capture the task specific query-context
interactions, 2) a pooler and a linear transformation
to get the final cross entropy loss. We first conduct
task-adaptive pretraining on the system, and then
fine-tune on the ReCAM dataset, the final model
is an ensemble model by several generalization
techniques including wrong answer ensemble.

2.1 Task-adaptive Pretraining

Pre-trained LMs and their downstream applications
have definitely proved the power of transfer learn-
ing. The precondition of transfer learning is that
the pretraining tasks have shared underlying sta-
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tistical features with downstream tasks. Usually
in-domain data brings more improvement on down-
stream tasks than out-of-domain data (Sun et al.,
2019; Gururangan et al., 2020).

The genre of the ReCAM task dataset is news
(confirmed by manual random checking), we argue
that the task of news abstractive summarization pro-
vides high quality further pretraining dataset for Re-
CAM. The dataset comes in {article, summary}
pairs, the articles are crawled from formal online
news publishers and the summaries are generated
by humans and contain abstractive key information
of the articles. News abstractive summarization
aims at teaching machines to grasp the key infor-
mation of the whole context by letting machines to
generate the summary text.

We regenerate the ReCAM style multiple-choice
dataset from the original news abstractive summa-
rization dataset. Letting the article/summary be the
passage/question, the regeneration strategy mainly
includes 2 steps: 1) identify the abstract concepts
in the news dataset, 2) generate gold and pseudo op-
tions. In step 1, we count the part-of-speech (POS)
tags of all gold labels on the ReCAM training data
as shown in Figure 2 (nouns, adjectives and ad-
verbs are the most frequent option tags), and use
a similar POS tag distribution to randomly sample
word in the summary text that does not appear in
the corresponding news article as gold option. In
step 2, the gold option in the summary is replaced
by the mask token and fed into the pre-trained LM.
The LM predicts the mask token and we select
some of the top ranking ones as pseudo options.
Specifically, setting a high ranking threshold (e.g.
top 5) would get words too similar with the gold
option, which would bring extra ambiguity to the
model, some relaxation on the ranking threshold
would ease the problem. This method is automatic,
cheap to apply on large dataset, while the abstract
concept approximation in step 1 would bring some
noise, such as person’s names and geolocations are
sometimes selected, but by our experiment result
the overall pretraining performance is not hurt, the
noisy samples should account for a small fraction.

In addition, it is reported that NLI task transfer

) Preposition,
B 0.10%
Adverbs, | 0.02%
6.17% |

Adverbs,
59.77%

Figure 2: Subtask 1 (left) and subtask 2 (right) gold
options POS Tag distribution



Dataset # Passages avg. doc len avg. qry/smry len
training/dev/test # words #sent. # words # sent.
ReCAM subtask 1 3227/837/- 302.15 13.1 24.69 1
ReCAM subtask 2 3318/851/- 481.51  21.08 26.9 1
XSUM 20.3k/11.3k/1.1k ~ 431.07  19.77 23.26 1
NEWSROOM 99.5k/-/- 658.6 - 26.7 -

Table 1: ReCAM/XSUM/NEWSROOM datasets statistics

learning performs well in several MMRC tasks
(Jin et al., 2020). Therefore we also explored the
MNLI (Williams et al., 2017) and RTE (Wang
et al., 2018) tasks transfer learning for the ReCAM
task, but it results in degradation. This indicates
that NLI tasks are not generally fit for further pre-
training in MMRC on pre-trained LMs.

2.2 Multi-head Attention Multiple Choice
Classifier

The classifier takes the last layer hidden represen-
tations from the pre-trained encoder, applies the
multi-head attention and feed forward non-linearity,
each with a layer normalization (Vaswani et al.,
2017). After that the last token is pooled, which
is selecting the hidden vector from the hidden em-
beddings by the index of the last [SEP] token in
the input, and then linearly transformed to get the
probability of each {queryoption_fited, context}
candidate pair.

In addition, we also explored the con-
trastive learning objective. When humans do
MMRC, they usually compare the options ac-
cording to the passage, exclude the wrong ones
and then analyze further on the indeterminate
ones. Inspired by this, we experimented with
triplet loss (Weinberger et al., 2006) (among
{inPUtnonfilleda Z'npuzfgoldaZ.npzutpseudo} ) and n-
tuplet loss (Sohn, 2016) on all option-filled query
and context within one sample. However the
contrastive learning objective degrades the perfor-
mance, suggesting these learning objectives are not
as suitable for the ReCAM task as the MLE loss.

2.3 Wrong Answer Ensemble

Wrong Answer Ensemble (Kim and Fung, 2020) is
a relatively simple yet effective method (Zhu et al.,
2020). Kim proposed to train the model to learn
the correct and the wrong answers separately and
ensemble them to get the final prediction. In 2.2,
the correct answer is labelled as 1 and wrong as 0
for correct answer training. Wrong answer training
does the opposite labelling (correct/wrong answers
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as 0/1) and fine tune the model with binary cross
entropy loss as below:

lossy = — »_ylogh + (1 —y)log(1 —§) (1)

The two models’s output, p. and p,, are linearly
combined to give the final prediction. A simple
linear regression is leveraged to find the best value
of weight w.

D=DPc— W Py ()

3 Experimental Setup
3.1 Dataset

We leverage external news abstractive summariza-
tion datasets for transfer learning, and then fine
tune our model on the ReCAM dataset.

ReCAM. Dataset for the SemEval-2021 Task 4,
consisting of news articles (verified by manually
random checking) and multiple-choice questions.

XSUM. XSUM (Narayan et al., 2018) consists
of 227k BBC articles from 2010 to 2017 covering a
wide variety of subjects along with professionally
written single-sentence summaries.

NEWSROOM. NEWSROOM (Grusky et al.,
2018) is a dataset of 1.3 million news articles
and summaries written by authors and editors in
newsrooms of 38 major news publications between
1998 and 2017. After a coarse selection (filtering
out lengthy articles/summaries, summaries dupli-
cate with news articles, articles with unqualified
pseudo options), about 229k article/summary pairs
are used.

The data statistics are listed in Table 1, the
3 news datasets share similar article and query
lengths.

3.2 Training Details

We compare the baseline performance of 3 kinds
of Transformer-based models, BERT/ALBERT/
ELECTRA, and select ELECTRA as our encoder.
We adopt most hyper parameter settings from the
ELECTRA large model, specifically our learning
rate is 1e-5, batch size is 32 and gradient clip norm



Pre-trained subtask 1 subtask 2
model dev acc. dev acc.
BERT base 61.25 58.28
BERT large 66.31 67.33
ALBERT base 50.78 50.29
ALBERT large 80.88 79.08
ELECTRA base 76.82 76.97
ELECTRA large 90.20 90.13

Table 2: Baseline performance of different pre-trained
Models

threshold is set to 1. In the task-adaptive data gen-
eration process, We set the threshold as top 10 for
pseudo options selection, filtering out the word
piece predictions(word pieces all start with a "#”
in the vocabulary) and randomly select 4 words as
pseudo options. See the appendix for hyperparam-
eter details. Training was done on NVidia V100
GPUs. All the performance data is on the dev set.

4 Results

4.1 Pre-trained LM Selection and
Task-adaptive Pretraining

The baseline performance of BERT, ALBERT and
ELECTRA is tested by directly fine-tuning the Re-
CAM data on the pre-trained LMs. The results
are shown in Table 2. ELECTRA outperforms
the other two models with large margins. This
may be caused by the learning objective difference
among the models. The BERT/ALBERT models
learn to predict the masked word from the vocab-
ulary, while the ELECTRA model learns to pre-
dict whether each of the token in the input is re-
placed or not, which learns more about unreason-
able co-occurrence knowledge besides reasonable
co-occurrences and may help in digging deeper im-
plicit semantic relations for ReCAM. Therefore the
ELECTRA large model is selected as the encoder
for further experiments.

The XSUM/NEWSROOM regenerated data (de-
noted as XN) is used for in-domain pretraining on
the encoder, and the subtask 1 is fine tuned after
pretraining. The prediction accuracy grows with
more data fed, as shown in Figure 3. In the end
of the task-adaptive pretraining, subtask 1 achieves
dev accuracy 92.73, 2.80% higher than directly
fine-tuning on the encoder, subtask 2 gets 92.95,
increased by 3.13%.

Besides the task-adaptive pretraining and fine-
tuning, we also tried multitask learning with

93.0
92.5
92.0
915
91.0
90.5

Task 1 Dev accuracy

90.0
0 100 200 300 400 500

data used for further pretraning (/k)

Figure 3: Subtask 1 fine-tuning performance increases
with more data for further pretraining

Transfer learning subtask 1 subtask 2

setting

XN 92.73 92.95
ReCAM/X Nouititask 92.35 92.36
MNLI 78.14 81.67
RTE 88.53 89.36

Table 3: Dev accuracy for different transfer learning
settings

XSUM/NEWSROOM and the ReCAM data to-
gether (up sampling the ReCAM data as 3:7 with
the news dataset). The results in Table 3 shows
that this approach outperforms the encoder base-
line, while slightly worse than the full news data
pre-trained model, this model is used for ensem-
ble. Using MNLI/RTE for further pretraining hurt
the ReCAM fine-tuning performance, especially
MNLI pretraining brings about 10% accuracy de-
cease than the baseline.

4.2 On-top Classifier and WAE

Adding MAMC on the top of the encoder helps
increase accuracy on the ReCAM subtask 1 and
subtask 2, the results are shown in Table 4. Further
we applied the WAE to squeeze marginal increases
on prediction accuracy. While option contrastive
learning (OCL) does not bring performance im-
provement, worse than directly fine-tuning the en-
coder with multiple choice classifier.

Settings subtask 1 subtask 2
Baseline 90.20 90.13
transfer learning 92.73 92.95

+ MAMC 93.64 93.79

+ WAE 93.94 94.07
OCL (triplet loss) 86.38 -
OCL (n-tuple loss) 85.32 -

Table 4: Dev accuracy on different transfer learning
settings



Generalization subtaskl subtask2

Procedures

data repar. 93.72 93.65

(3 sets) 94.01 94.48
93.82 94.36

task data aug. 93.29 93.36

Table 5: Dev accuracy of subtask 1/2 over generaliza-
tion procedures.

4.3 Improving Generalization

We mainly applied 3 procedures below for better
generalization, and the ensemble of all the models
have achieved test accuracy 95.11 on subtask 1 and
94.89 on subtask 2 on the ReCAM leaderboard.

1) Data repartitioning (mix the train/dev sets, and
randomly split into new train/dev sets by 8:2 or 9:1)
aims to smooth the distribution difference among
different train/dev data partition. As is shown in
the Table 5, the accuracy of different sets differs,
with some higher than then original partition.

2) Augmenting the task data itself for fine-tuning,
to mask different word than the original gold option
(if there exists) using the method in 2.1. The accu-
racy remains almost the same after adding the task
augmented data. This suggests that our automatic
augmentation method makes lower quality samples
than the labelling data, while not too noisy that it
can contribute to the robustness of the model.

3) We also did Stochastic Weight Averaging (Iz-
mailov et al., 2018) across multiple checkpoints
in the same run to get better generalization (SWA
dose not improve dev error but test error, so it’s not
listed in Table 5).

4.4 Fail Cases Analysis

We manually checked and categorized the fail cases
on subtask 1 and subtask 2 into 5 classes (given
roughly 850 dev cases, the total fail cases is around
50 for both subtask 1 and subtask 2). The detailed
examples for each class can be found in the ap-
pendix.

* ECO, easy case. In these cases, the answer can
be inferred from the query/context, while the
model fails to give the correct prediction

* EC1, complicated coreference. Such cases has
complicated coreference relations, though the
answer can be inferred, the coreferences hin-
der the model from understanding correctly

* EC2, complex reasoning. In these cases, ei-
ther the information related with the answer
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Figure 4: Subtask 1/2 fail case distribution

is sparse in the query/context, or the facets re-
lated with the answer is separated with intense
unrelated noisy information

EC3, external knowledge dependency. Only
with the external knowledge can one give a
correct answer

EC4, ambiguity in sample cases. This cate-
gory includes cases for which we think hu-
mans are not able to select the correct answer.
Either the information is not enough to make a
decision or there are more than one reasonable
answers.

Figure 4 shows the ratios of each fail case class,
the EC4 is the major class, 48.5% for subtask 1 and
75.0% for sutask 2. The following is EC3, 36.4%
for subtask 1 and 6.3% for subtask 2. ECO and
ECI are minor classes among all. With the system
backbone being pre-trained LM with a matching
network, it’s not a surprise to see EC1 and EC3 fail-
ures, while the few ECO and EC2 failures shows
that our system learns well to capture abstract con-
cepts within the query/article pair.

5 Conclusion

Our system takes the large pre-trained LM ELEC-
TRA, and enhance it with in-domain transfer learn-
ing and a multi-head multiple-choice classifier on
top. We compared the benchmark performance of
different pre-trained LMs (BERT, ALBERT and
ELECTRA) on the SemEval-2021 task 4, the result
shows that different pretraining objective/dataset
can lead to different inclination of model knowl-
edge and large performance discrepancy on the
downstream task. Task-adaptive pretraining has
contributed the main improvement, and multi-head
multiple-choice classifier and WAE bring marginal
improvement. We also investigated into option
contrastive learning and multitask learning, the
degradation of performance suggests that triplet
and n-tuplet contrastive loss is not suitable for this
task and NLI is not generally beneficial for MMRC
tasks.
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Appendix

A Examples for each error case category

ECO0 easy case

question Two men have been arrested on suspicion of murdering a man who died after being
pulled out of a fish @placeholder .

passage  The dead man went into cardiac arrest after rescuers responding to reports of a drowning
found him in the water off St Michaels Road, Stoke-on-Trent. . .

options 0. term 1. boat 2. shop 3. 4. life

EC1 complicated coreference

question Ceredigion council has failed to co-operate with an investigation into the @placeholder
of a Llandysul residential home , a union has claimed

passage  Unison said the council had failed to provide answers for social care expert Tony
Garthwaite, heading the investigation, and that he was not able to complete his report.
Awel Deg care home was shut in February 2014. .. Awel Deg was closed following the
suspension of 11 members. .. would re-open as a dementia home in spring 2015

options 0. creation 1. collapse 2. 3. safety 4. fate

EC2 complex reasoning

question  Six British teams @placeholder the draw for the Champions League group stage , which
takes place on Thursday at 17:00 BST in Monaco .

passage  Premier League champions Chelsea, runners-up Tottenham and third-placed Manchester
City are all in the draw. They will be joined by Europa League winners Manchester
United, as well as Liverpool and Scottish champions Celtic who both came through
qualifying. The group stages of the competition begin on 12-13 September. The last
time six British teams qualified for the group stages was in 2007-08, when English sides
Manchester United, Chelsea, Liverpool and Arsenal were joined by Scottish clubs Celtic
and Rangers. The final saw Sir Alex Ferguson’s United defeat Avram Grant’s Chelsea
on penalties. Scroll to the bottom to see the full list of teams and the pots they are
in...Match day four: 31 October-1 November Match day five: 21-22 November Match
day six: 5-6 December

options 0. announced 1. dominate 2. started 3. 4. remains

EC3 external knowledge dependency

question The M4 has been closed westbound near Newport after an overhead @placeholder
became loose in high winds .

passage  The carriageway was shut from junction 24 Coldra to 28 at Tredegar Park. Officials said
it led to very slow traffic as motorists were forced to come off the motorway on Friday
night. A diversion using the A48 through Newport was put in place and the fire service
tweeted that the M4 would stay closed until further notice while emergency repairs were
carried out. Check if this is affecting your journey

options 0. wire 1. vehicle 2. link 3. valve 4.

EC4 sample cases’ ambiguity

question A book about Adolf Hitler by a University of Aberdeen historian is to be turned into a
@placeholder television series.

passage  Prof Thomas Weber’s book Hitler’s First War, which was released in 2010, claimed
his image as a brave soldier was a myth. The producers of the Oscar-nominated film
Downfall - also about the Nazi leader - will make the show after a French TV network
purchased the series. The show will be called Hitler. Production of the 10-hour series
begins next year. ..

options 0. 1. thrilling 2. special 3. planned 4. forthcoming

Table 6: Examples from each fail case category. Options in green denotes gold answers, red denotes our system
predictions. Passages are truncated to reserve the most relevant parts to the questions
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B Hyperparameter settings

Hyperparameter Value
learning rate le-5
learning rate decay linear
warmup fraction 0.1
Adam € le-6
Adam betaq 0.9
Adam betas 0.999
gradient clip norm 1.0
Weight Decay 0.01
Dropout 0.1
Batch Size 32

10 for task-adaptive
Train Epochs pretraining, 5 for

fine-tuning

Table 7: System Hyperparameter settings
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Abstract

The Toxic Spans Detection task of SemEval-
2021 required participants to predict the spans
of toxic posts that were responsible for the
toxic label of the posts. The task could be ad-
dressed as supervised sequence labeling, using
training data with gold toxic spans provided
by the organisers. It could also be treated as
rationale extraction, using classifiers trained
on potentially larger external datasets of posts
manually annotated as toxic or not, without
toxic span annotations. For the supervised se-
quence labeling approach and evaluation pur-
poses, posts previously labeled as toxic were
crowd-annotated for toxic spans. Participants
submitted their predicted spans for a held-out
test set, and were scored using character-based
F1. This overview summarises the work of the
36 teams that provided system descriptions.

1 Introduction

Discussions online often host toxic posts, mean-
ing posts that are rude, disrespectful, or unreason-
able; and which can make users want to leave the
conversation (Borkan et al., 2019a). Current toxic-
ity detection systems classify whole posts as toxic
or not (Schmidt and Wiegand, 2017; Pavlopoulos
et al., 2017; Zampieri et al., 2019), often to assist
human moderators, who may be required to review
only posts classified as toxic, when reviewing all
posts is infeasible. In such cases, human modera-
tors could be assisted even more by automatically
highlighting spans of the posts that made the sys-
tem classify the posts as toxic. This would allow
the moderators to more quickly identify objection-
able parts of the posts, especially in long posts, and
more easily approve or reject the decisions of the
toxicity detection systems. As a first step along
this direction, Task 5 of SemEval 2021 provided
the participants with posts previously rated to be
toxic, and required them to identify toxic spans,
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i.e., spans that were responsible for the toxicity of
the posts, when identifying such spans was possi-
ble. Note that a post may include no toxic span
and still be marked as toxic. On the other hand, a
non toxic post may comprise spans that are con-
sidered toxic in other toxic posts. We provided a
dataset of English posts with gold annotations of
toxic spans, and evaluated participating systems
on a held-out test subset using character-based F1.
The task could be addressed as supervised sequence
labeling, training on the provided posts with gold
toxic spans. It could also be treated as rationale
extraction (Li et al., 2016; Ribeiro et al., 2016),
using classifiers trained on larger external datasets
of posts manually annotated as toxic or not, with-
out toxic span annotations. There were almost 500
individual participants, and 36 out of the 92 teams
that were formed submitted reports and results that
we survey here. Most teams adopted the supervised
sequence labeling approach. Hence, there is still
scope for further work on the rationale extraction
approach. We also discuss other possible improve-
ments in the definition and data of the task.

2 Competition Dataset Creation

During 2015, when many publications were closing
down comment sections due to moderation burdens,
a start up named Civil Comments launched (Finley,
2016). Using a system of peer-based review and
flagging, they hoped to crowd source the modera-
tion responsibility. When this effort shut down in
2017 (Bogdanoff, 2017), they cited the financial
constraints of the competitive publishing industry
and the challenges of attaining the necessary scale.

The founders of Civil Comments, in collabora-
tion with researchers from Google Jigsaw, under-
took an effort to open source the collection of more
than two million comments that had been collected.
After filtering the comments to remove personally

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 59-69
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics



_J Click here if the comment below is not toxic.

] Click here if no specific span is responsible for the text's toxicity.

That's right. They are not normal. And | am starting from the premise that they are ABNORMAL. Proceed wth the typical Facist, bigot; sexist rubbish. Thanks!

Threat || Identity based Attack Other Toxicity

Toxic Spans
84:Insult: ABNORMAL

118:Insult:racist, bigot, sexist rubbish

Figure 1: Screenshot of the Appen labeling interface that was used to annotate toxic spans.

identifiable information, a revised version of the an-
notation system of Wulczyn et al. (2017) was used
on the Appen crowd rating platform to label the
comments using a number of attributes including
‘toxicity’, ‘obscene’, ‘threat’ Borkan et al. (2019a).
The complete dataset, partitioned into training, de-
velopment, and test sets, was featured in a Kaggle
competition,! with additional material, including
individual rater decisions, published (Borkan et al.,
2019b) after the close of the competition.

Civil Comments contains about 30k comments
marked as toxic by a majority of at least three
crowd raters. Toxic comments are rare, especially
in fora that are not anonymous and where people
have expectations that moderators will be watching
and taking action. We undertook an effort to re-
annotate this subset of comments at the span level,
using the following instructions:

For this task you will be viewing com-
ments that a majority of annotators have
already judged as toxic. We would like
to know what parts of the comments are
responsible for this.

Extract the toxic word sequences (spans)
of the comment below, by highlighting
each such span and then clicking the
right button. If the comment is not toxic
or if the whole comment should have
been annotated, check the appropriate
box and do not highlight any span.

and a custom JavaScript based template,” which

allowed selection and tagging of comment spans
Lyww.kaggle.com/c/jigsaw—unintended-

bias-in-toxicity-classification
2github.com/ipavlopoulos/toxic_spans
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(Fig. 1). While raters were asked to categorize each
span as one of five different categories, this was
primarily intended as a priming exercise and all of
the highlighted spans were collapsed into a single
category. The lengths of the highlighted spans were
decided by the raters. Seven raters were employed
per post, but there were posts where fewer were
eventually assigned. On the test subset (Table 1),
we verified that the number of raters per post varied
from three to seven; on the trial and train subsets
this number varied from two to seven. All raters
were warned the content might by explicit, and only
raters who allowed adult content were selected.?

2.1 Inter-annotator Agreement

We measured inter-annotator agreement, initially,
on a small set of 35 posts and we found 0.61 av-
erage Cohen’s Kappa. That is, we computed the
mean pairwise Kappa per post, by using character
offsets as instances being classified in two classes,
toxic and non-toxic. And then we averaged Kappa
over the 35 posts. On later experiments with larger
samples (up to 1,000 posts) we observed equally
moderate agreement and always higher than 0.55.
Given the highly subjective nature of the task we
consider this agreement to be reasonably high.

2.2 Extracting the ground truth

Each post comprises sets of annotated spans, one
per rater. Each span is assigned a binary (toxic, non-
toxic) label, based on whether the respective rater

3The full dataset and annotations for ToxicSpans is re-
leased (github.com/ipavlopoulos/toxic_spans)
with a CCO licence. The previously released Civil Comments
dataset, on which the new dataset is based, was filtered to
remove any potential personally identifiable information.



Trial Train Test
Number of posts 690 7,939 2,000
Avg. post length 19947 204.57 186.41
Avg. toxic span length | 10.78 13.11 7.89
Avg. # of toxic spans 1.43 1.39 0.92

Table 1: Statistics of the trial, training, and test subsets
of the dataset. Lengths are calculated in characters.

found the span to be insulting, threatening, identity-
based attack, profane/obscene, or otherwise toxic.
If the span was annotated with any of those types,
the span is considered toxic according to the rater,
otherwise not. For each post, we extracted the
character offsets of each toxic span of each rater.
In each post, the ground truth considers a character
offset as toxic if the majority of the raters included
it in their toxic spans, otherwise the ground truth
of the character offset is non-toxic. A toxic span
(Table 1) in the ground truth of a post is a maximal
sequence of contiguous toxic character-offsets.

2.3 Exploratory analysis

After discarding duplicates and posts used as quiz
questions to check the reliability of candidate an-
notators, we split the data into trial, train, and test
(Table 1). Compared to the trial and training sets,
the test set comprises posts with fewer characters
and spans, but also shorter spans on average.

When studying the toxicity subtypes, we find
that the vast majority of posts are annotated as in-
sulting. In the training set, more than 6,000 posts
are annotated as insulting, and the same high frac-
tion is observed in the trial and test sets. Most of
the toxic spans in the training set are single-word
terms. The most frequent of them, such as ‘stupid’
and ‘idiot’, occur hundreds of times and remain
frequent in the trial and test sets. Multi-word terms,
such as ‘white trash’, ‘mentally ill’, are less fre-
quent and vary across the three sets.

In an analysis of the test set, Palomino et al.
(2021) used an emotion classifier that returns five
scores per post, one for each of the following emo-
tions: anger, happiness, sadness, surprise, fear.*
Fear and sadness were reported to be the emotions
with the highest average scores, a finding that we
verified by repeating the experiment (see Fig. 2).
Interestingly, the emotion with the highest average
score after sadness and fear is surprise, not anger,
and happiness has the lowest score.

‘oypi.org/project/text2emotion
5 A post with a high sadness score (100%) is the following:
“Such thin skin. Pathetic.”; the toxic span shown in red.
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Figure 2: Emotion scores of the test posts. Emotion
scores were obtained using an off-the-shelf emotion
classifier, following Palomino et al. (2021).

3 Task description

The objective of this task is the detection of the
spans that make a post toxic, when detecting such
spans is possible. Systems had to extract a list of
toxic spans, or an empty list, per post. A toxic span
was defined to be a sequence of words that attribute
to the post’s toxicity. Although we defined the task
at the word level, gold labels were provided at the
character level counting from zero (see Table 2).
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Figure 3: Number of submissions per evaluation day.

The evaluation period started on January 10,
2021 and finished on January 31, 2021. The first
week, 10 submissions were allowed per day per
team. The second week this number was reduced
to 5, and it was reduced further to 1 during the final
week. We chose to allow an extended evaluation pe-
riod combined with multiple team submissions, to
promote the competition. However, we also chose
a decreasing submission limit to make it harder
for participants to overfit the test set. As shown
in Fig. 3, the number of submissions dropped over
time, due to this constraint, but the interest was



OFFSETS

PosT

I will stand by my statement that liberalism is what smart looks like to stupid people. The letter posted
yesterday states the real problem clearly enough. “It doesn’t matter if it was protected by the First
Amendment.” I have legal news flash for the University of Oregon. Because the University is public and
receives government tax dollars it is indeed bound to abide by the US constitution with All OF IT’S
PROTECTION INCLUDED. Which should tell everyone right off the signatories are anti-American,

{

and perhaps even anti-America in their twisted PC nonsense.
{} Fits the despicable piece of trash like a glove.
{

No he shot someone so he shouldn’t be free. He should be locked up like He is for the next decade.
You holla like its no big deal but what if it was your little brother who was shot? Then your dumb ass
wouldnrlt be screaming free ace g or whatever gay nickname he has. That is the lamest gangster name
ever. Do you think that name scares people? Ace clown is what i will now call him.

155.56, 57,58}

Time to give the opposition weapons and overthrow this jerk.

{31,...,39} you are a paid liberal hack of stupidity shore living the liberal lie every day

{9,...,13} Youre an idiot.

{7, 8, ..., 11, | whata dummy, dummy has no regard for the law. you cannot brutalize a suspect. he has complete lack
14,15, ..., 18} | of respect for any law and is acting like a dictator. he is trying to emulate putin.

{12, ...,17,94, | People make stupid decisions and then expect the gov’t to bail them out. There is no cure for stupidity.
..., 102}

{14, ..., 20,29, | Nah, the only asshole is the asshole firing a rifle within city limits.

..., 35}

Table 2: Examples of toxic test posts and their ground truth toxic spans (shown in red). The left column shows the
character offsets of the toxic spans. The top three posts have no toxic spans, the next three have one each, while

the remaining three posts have two toxic spans each.

continuous, and there were submissions until the
last day. Despite the decreasing total number of
submissions per day, the top daily score increased,
reaching its maximum on the last day (see Fig. 4).
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Jan
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Date

Figure 4: The evaluation score (character F1) of the
best submission per day during the evaluation period.

4 Participation overview

We received 479 individual participation requests,
92 team formations, and 1,449 submissions. 91
teams submitted valid predictions (1,385 valid sub-
missions in total) and were scored; out of these,
only 36 submitted system descriptions.

4.1 The HITSZ-HLT submission

The best performing team (HITSZ-HLT) formu-
lated the problem as a combination of token label-
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ing and span extraction (Zhu et al., 2021).

For their token labeling approach, the team used
two systems based on BERT (Devlin et al., 2019).
Both systems had a Conditional Random Field
(CRF) layer (Sutton and McCallum, 2006) on top,
but one of the two also had an LSTM layer (Hochre-
iter and Schmidhuber, 1997) between BERT and
the CRF layer. In both approaches, word-level BIO
tags were used, i.e., words were labelled as B (be-
ginning word of a toxic span), I (inside word of a
toxic span), or O (outside of any toxic span).

For their span extraction approach, the team also
used BERT. Roughly speaking, in this case BERT
produces probabilities indicating how likely it is
for each token to be the beginning or end of a toxic
span. Then a heuristic search algorithm, originally
developed for target extraction in sentiment anal-
ysis by Hu et al. (2019), selects the best combina-
tions of candidate begin and end tokens, aiming to
output the most likely set of toxic spans per post.

The character predictions of the three systems de-
scribed above were combined with majority voting
per character. That is, if any two systems consid-
ered a character to be part of a toxic span, then the
ensemble classified the character as toxic, other-
wise the ensemble classified it as non-toxic.

4.2 The S-NLP submission

The team with the second best performing system
(S-NLP) consists of individual participants who
grouped and submitted an ensemble of their sys-



tems (Nguyen et al., 2021). The ensemble com-
bines two approaches, both of which are based on
a RoBERTa model (Liu et al., 2019). The latter
is first fine-tuned to classify posts as toxic or non-
toxic, using three Kaggle toxicity datasets.® For
toxic span detection, RoBERTa’s subword repre-
sentations from three different layers (1, 6, 12) are
summed to produce the corresponding word embed-
dings. A binary classifier on top of ROBERTa, op-
erating on the word embeddings, predicts whether
a word belongs to a toxic span or not.

For the first component of the ensemble, the
word embeddings obtained from RoBERTa’s sub-
word representations are concatenated with FLAIR
(Akbik et al., 2019) and FastText (Bojanowski et al.,
2017) embeddings.” The resulting embeddings are
passed on to a two-layer stacked BiLSTM with a
CREF layer on top to generate a BIO tag per word.

The second component of the ensemble used
the RoBERTa model as a teacher to produce sil-
ver toxic spans for 30,000 unlabelled toxic posts
(Borkan et al., 2019a). RoBERTa was then re-
trained as a student on the augmented dataset (30k
posts with silver labels and the training posts pro-
vided by the organisers) to predict toxic offsets.

The ensemble returns the intersection of the
toxic spans identified by the two components.

4.3 Additional interesting approaches

We now discuss some of the most interesting alter-
native approaches tried by the participants, even if
they did not lead to high scores.

Rationales Some participants experimented with
training toxicity classifiers on external datasets con-
taining posts labeled as toxic or non-toxic; and then
employing model-specific or model-agnostic ratio-
nale extraction mechanisms to produce toxic spans
as explanations of the decisions of the classifier.
The model-specific rationale mechanism of Rusert
(2021) used the attention scores of an LSTM toxi-
city classifier to detect the toxic spans. Plucifiski
and Klimczak (2021) used the same approach, but
also employed an orthogonalisation technique (Mo-
hankumar et al., 2020). The model-agnostic ra-
tionale mechanism of Rusert (2021) combined an
LSTM classifier with a token-masking approach
that we call Input Erasure (IE), due to its sim-
ilarities to the method of Li et al. (2016). The

®github.com/unitaryai/detoxify

"In the latter case, in-vocabulary word embeddings were
imported to Word2Vec for efficiency, and out of vocabulary
words were handled with BPEs (Sennrich et al., 2016).
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model-agnostic approach of Pluciniski and Klim-
czak (2021) combined SHAP (Lundberg and Lee,
2017) with a fine-tuned BERT model. Ding and
Jurgens (2021) and Benlahbib et al. (2021) also
experimented with model-agnostic approaches, but
they combined LIME (Ribeiro et al., 2016) with
a Logistic Regression (LR) or with a linear Sup-
port Vector Machine (SVM) toxicity classifier. All
the above mentioned approaches used a threshold
to turn the explanation scores (e.g., attention or
LIME scores) of the words into binary decisions
(toxic/non-toxic words).

Lexicon-based No team relied on a purely lexicon-
based approach, but few experimented with lexicon-
based baselines (Zhu et al., 2021; Palomino et al.,
2021) or used such components in ensembles
(Ranasinghe et al., 2021). Three kinds of lexicon-
based methods were used. First, the lexicon was
handcrafted by domain experts (Smedt et al., 2020)
and it was simply employed as a list of toxic words
for lookup operations (Palomino et al., 2021). Sec-
ond, the lexicon was compiled using the set of to-
kens labeled as toxic in our span-annotated training
set and it was used as a lookup table (Burtenshaw
and Kestemont, 2021), possibly also storing the
frequency of each lexicon token in the training set
(Zhu et al., 2021). The former two were also com-
bined (Ranasinghe et al., 2021). Third, the least
supervised lexicons were built with statistical anal-
ysis on the occurrences of tokens in a training set
solely annotated at the comment level (toxic/non-
toxic post) (Rusert, 2021). An added value of these
approaches is that easy to use resources (toxicity
lexicons) are built and shared publicly, such as the
one suggested by Plucinski and Klimczak (2021).%

Custom losses Zhen Wang and Liu (2021) exper-
imented with a new custom loss, which weighted
false toxicity predictions based on their location in
the text. If a false prediction was located near a
ground truth toxic span, then it would contribute
less to the overall loss for that post, compared to
one located further away. The loss function used by
Kuyumcu et al. (2021) to train their system is the
Tversky Similarity Index (Tversky, 1977), a gener-
alisation of the Sgrensen—Dice coefficient and the
Jaccard index, which was adjusted by the authors
to weigh up false negatives.

Data augmentation The vast majority of the par-
ticipating teams employed additional training data
annotated at the post level. That is, either to

8github.com/Orthrus-Lexicon/Toxic



build lexicons (Rusert, 2021), to leverage unsuper-
vised rationale extraction methods (Rusert, 2021;
Plucinski and Klimczak, 2021; Ding and Jurgens,
2021; Benlahbib et al., 2021), or to filter posts (Luu
and Nguyen, 2021) that were not labeled as toxic
by a toxicity classifier. Suman and Jain (2021) as-
tutely produced silver data from external sources to
augment the initial golden annotated dataset, train-
ing their model iteratively in a semi-supervised
manner.

5 Evaluation

This section focuses on the evaluation framework
of the task. First, the official measure that was
used to evaluate the participating systems is de-
scribed. Then, we discuss baseline models that
were selected as benchmarks for comparison rea-
sons. Finally, the results are presented.

5.1 Official evaluation measure

Following the work of Martino et al. (2019), sys-
tems were evaluated in terms of F1 computed on
character offsets. For each system, we computed
the F1 score per post, between the predicted and the
ground truth character offsets. Then, we returned
the macro-averaged (over test posts) score. When
the ground truth set of character offsets was empty,
we assigned a perfect score (F1 = 1) to the post
in question if the predicted set of character offsets
was also empty, and a zero score otherwise.’

5.2 Benchmarks

We report the results of some baselines, developed
by us or the participants, to act as benchmarks.

BENCHMARK I was developed by Nguyen et al.
(2021). Itis based on a RoOBERTa model, fine-tuned
to predict if a post is toxic or not (Section 4.2) and
further fine-tuned to predict toxic spans by using a
CREF layer on top.

BENCHMARK II is a lexicon-based system, de-
veloped by Zhu et al. (2021), which extracts likely
toxic words from the training data and simply tags
them during inference. The lexicon comprises
words that appear frequently inside ground truth
toxic spans and not outside.

BENCHMARK III is a random baseline, which
assigns a random label (toxic/non-toxic) per char-
acter offset (50% chance of being toxic).!0

The evaluation code can be found in our GitHub reposi-
tory (github.com/ipavlopoulos/toxic_spans).
19The code of this baseline is also in the task’s repository.
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5.3 Results

RANK TEAM SCORE (%)

1 HITSZ-HLT 70.83

2 S-NLP 70.77
BASELINE BENCHMARK I 69.89
3 hitmi&t 69.85

5 YNU-HPCC 69.63

7 Cisco 69.22

8 MedAl 69.03

9 IITKDetox 68.95
13 GHOST 68.59
14 HLE-UPC 68.54
15 UTNLP 68.44
16 YoungSheldon 68.42
17 Lone Pine 68.38
18 sk 68.32
20 WLV-RIT 68.01
21 CSECUDSG 67.95
22 LISAC FSDM USMBA 67.84
23 UoT-UWF-PartAl 67.70
25 uob 67.61

[ MEDIAN [  The medianscore | 67.58 ]

26 UAntwerp 67.55
27 MIPT-NSU-UTMN 67.55
28 NLRG 67.53
30 HamiltonDinggg 67.15
33 121904 67.00
34 UIT-E10dot3 66.99
36 UniParma 66.72
37 hub 66.40
38 GoldenWindPlymouth 66.37
41 AStarTwice 66.16
44 sefamerve_arge 66.01
46 UPB 65.73
49 Entity 65.61
BASELINE BENCHMARK II 64.98
57 BennettNLP (Fuchsia) 64.53
58 TeamGriek 64.31
63 UIT-ISE-NLP 62.23
75 NLP_Ulowa 50.09
BASELINE BENCHMARK III 12.22
90 macech 7.33

Table 3: Official rank and F1 score (%) of the 36 partic-
ipating teams that submitted system description papers.
(There were 91 teams with sumbissions in total.) The
median is shown in blue and benchmarks in red.

Table 3 shows the scores and ranks of all par-
ticipating teams that described their approach, i.e.,
36 out of 91 teams that participated. HITSZ-HLT
(Section 4.1) was ranked first, followed by S-NLP
(Section 4.2) that scored 0.06% lower. The rest of
the teams followed with scores lower than 70%.

The score of the median is 67.58%, which is not
far below the top scored team (-3.22 percent units),
while it is far above the last two (+17.52 percent
units). The standard deviation of system scores
above the median is much lower (0.94) than that of
the systems below the median (4.12). Most teams
that were excluded from the table (because they
did not describe their methods) score lower than



the median. However, there were also top scoring
teams among those that were excluded, such as a
team with a RoBERTa-based token-level ensemble
that was ranked 4th.!!

BENCHMARK I achieves a considerably high
score and, hence, is very highly ranked. Combin-
ing BERT with a CRF or a span extraction method
(two of the individual methods of the HITSZ-HLT
ensemble, Section 4.1, not shown in Table 3) also
performs well (Zhu et al., 2021), but these methods
would be ranked two positions lower than BENCH-
MARK I. Nguyen et al. (2021) explored the bene-
fits of further enhancing these word embeddings
by concatenating them with FLAIR (Akbik et al.,
2019) and FastText (Bojanowski et al., 2017) em-
beddings (Section 4.2). As shown in Fig. 5, the F1
score is slightly improved, reaching a maximum
when both FLAIR and FastText embeddings are
added.'”> We note that the same beneficial effect
of enhancing the word embeddings was reported
when using BERT as the base model (Sans and
Farras, 2021).

70.4
70.2
70.0
69.8
69.6
69.4

69.2

69.0

RoBERTa

RoBERTa+FLAIR

Figure 5: F1 of BENCHMARK I (Zhu et al., 2021) when
FLAIR and FastText word embeddings are concate-
nated with the embeddings obtained from RoBERTa’s
subword representations (from layers 1, 6, 12).

The lexicon-based BENCHMARK II and the ran-
dom BENCHMARK III scored very low. The lat-
ter outperformed only one submission (MACECH),
which sent the predictions in the wrong order. As
noted in their report (Cech, 2021), if the predictions
had been submitted in the correct order, the team’s
score would have been 54%, and BENCHMARK III
would have been the worst system in Table 3.

"'We asked for details from participants that did not submit
a description paper, but not all of them replied.

2Qut of vocabulary words were tackled by using FastText
embeddings of BPEs; consult Nguyen et al. (2021).

RoBERTa+FLAIR+FastText
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6 Analysis and discussion

Overall the organisers were happy to see the de-
gree of involvement in this shared task, and the
resulting diversity of approaches to this problem.
We include some of our observations regarding the
administration of the evaluation and what we have
learned from the results.

6.1 Participation

The authors reached out to teams that decided not
to submit a description paper and the vast major-
ity were students who were time-limited. The fact
that students participated in the task is promising
and we plan to consider more ways to introduce
SemEval tasks in classrooms. On the other hand,
60% of the participants chose not to describe their
approach, which is problematic and should be ad-
dressed. A team could take advantage of such an
option to create duplicate submissions and bypass
any submission limits. More importantly, poten-
tially interesting approaches are not discussed and
properly compared to others.

It is also worth mentioning that the extended
timeline allowed participants to join forces. For
instance, a number of participants decided to com-
bine their systems and form the 2nd ranked S-NLP.
Their ensemble scored higher than all their stan-
dalone systems, though their best standalone sys-
tem would still be ranked 2nd. In any case, we
welcome the collaboration between participants,
which may provide further insights regarding effec-
tive combinations of architectures.

6.2

Except for lexicon-based baselines, we observed
that the vast majority of systems adopted the recent
paradigm in NLP: fine-tuning large off-the-shelf
Transformers (Vaswani et al., 2017) pre-trained
on massive corpora. Non-Transformer based ap-
proaches, mostly LSTMs with pre-trained word
embeddings were also used. The nature of the task,
similar to the well-studied Named Entity Recog-
nition (NER) task, led many competitors to use a
CRF layer on top of the model (e.g., Transformers
or LSTMs) of their choice.

General remarks on the approaches

6.3 Performance

The winning team (HITSZ-HLT) combined BERT
with two approaches for their ensemble: a token
labeling approach (two versions, with/without an
LSTM between BERT and the CRF) and a span ex-



traction approach (Section 4.1). The comparison of
the two showed that span extraction is slightly bet-
ter on posts with a single span, but token labeling is
clearly better on multi-span posts (Zhu et al., 2021).
The complementary nature of the two approaches is
probably what makes even a simple majority voting
ensemble better than its competitors.

The system that was ranked second (S-NLP) also
employed an ensemble, using a RoOBERTa model
initially fine-tuned to classify posts as toxic or non-
toxic as the starting point (Nguyen et al., 2021).
The ensemble combined (i) the resulting RoOBERTa
model, now fine-tuned to predict toxic spans, with
additional FLAIR and FastText embeddings, and
(i) a RoBERTa model retrained as a student to pre-
dict toxic spans (Section 4.2). Although the two
standalone models achieved higher scores than the
standalone models of the top-ranked team (HITSZ-
HLT), the ensemble did not yield significant im-
provements. This may be due to the student’s deci-
sions not being that complementary to the teacher’s,
as the team notes (Nguyen et al., 2021).

TBC RE F1 (%) Report
LSTM IE 38.29 Rusert (2021)
LSTM ATT 49.70 Pluciriski and Klimczak (2021)
LSTM ATT 50.07 Rusert (2021)

LR LIME 58.88 Benlahbib et al. (2021)
SVM | LIME 59.21 Benlahbib et al. (2021)
BERT | SHAP 59.87 Pluciriski and Klimczak (2021)

Table 4: F1 on the evaluation set for systems employing
rationale extraction (RE) mechanisms combined with
post-level toxicity binary classifiers (TBC). Rationales
are obtained via Input Erasure (IE), Attention (ATT),
LIME, or SHAP. The binary classifier is an LSTM, Lo-
gistic Regression (LR), SVM, or BERT.

Teams that experimented with rationale extrac-
tion mechanisms (Section 4.3) did not find this
approach advantageous compared to supervised se-
quence labeling in terms of F1 scores. However,
the reported results of the rationale-based systems
show that this approach is promising, especially
because it does not require any data annotated at
the span-level. Hence, there is scope for future
work that could explore this direction further. Ta-
ble 4 shows the F1 scores of all the rationale-based
systems that were reported by participants. The
binary toxic post classifiers that were used were
LSTM, Logistic Regression (LR), Support Vector
Machines (SVM), and BERT. The attention scores
of an LSTM were used with (Plucinski and Klim-
czak, 2021) and without an orthogonality method
(Rusert, 2021), with the latter being slightly bet-
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ter; these are model-specific rational extraction
methods (Section 4.3). Model-agnostic approaches
(Input Erasure, LIME, SHAP) were better than
the model-specific ones. The best rationale-based
method employed a BERT model, fine-tuned for
toxic post classification, and SHAP.

[ Lexicon Name [ F1(%) | Report ]
WIEGAND 1 } 33.07 Zhu et al. (2021)
WORD-MATCH 40.86 Ranasinghe et al. (2021)
FREQ-RATIO | 41.55 Rusert (2021)

LOOKUP i 41.61 Burtenshaw and Kestemont (2021)
WIEGAND 2 50.98 Zhu et al. (2021)
ORTHRUS 61.07 Palomino et al. (2021)
HITSZ-HLT i 64.98 Zhu et al. (2021)
+WORDNET 64.09 Zhu et al. (2021)
+GLOVE 64.19 Zhu et al. (2021)

Table 5: F1 on the evaluation set for lexicon-based sys-
tems. Systems that are followed by t and I use exclu-
sively external and internal resources respectively.

Lexicon-based approaches were only used as
baselines or components in ensembles, as already
noted. In principle, all lexicon-based systems
are extremely efficient and interpretable. Table 5
shows they can also achieve surprisingly high
scores. Recall that we used the best perform-
ing lexicon-based system, developed by Zhu et al.
(2021), as BENCHMARK 1. Its score is included
in Table 3. Despite the fact that it is low ranked,
its F1 score is less than 6 percent points lower
that that of the best submission. We also note that
BENCHMARK I is a high-precision classifier; it
outperforms even the best system in terms of pre-
cision (Zhu et al., 2021). Attempts to expand its
lexicon using WordNet and GloVe, improved recall,
but eventually harmed precision and its F1 score.

6.4 Error analysis

A common theme across many competitor reports
was the serious challenge posed by comments with
no toxic spans. It is not readily evident why this
is a common occurrence in the task, and certainly
the way that annotation consensus is used to com-
bine annotations can be a contributing factor. How-
ever, many systems seemed determined to tag some
spans and many authors noted that performance on
posts with no tagged span was extremely poor com-
pared to performance on posts with tagged spans.
Many systems were also reluctant to tag function
words like ‘of” and ‘and’, which can be included
in multi-word spans (e.g., ‘piece of crap’), leading
to a decline in performance as measured by the
chosen F1 measure. The overwhelming presence



of single word gold spans in the training set favors
short spans. But the majority of the short spans
comprises common cuss or clearly abusive words,
which can be directly classified as toxic (Ghosh and
Kumar, 2021); by contrast, the infrequent longer
spans are rather context dependent and more chal-
lenging to detect. This probably also contributed to
the performance of the best system (HITSZ-HLT),
since one of the two components of that ensemble
handled better long spans, as already discussed in
Section 6.3.

Other error analysis highlighted challenges in-
trinsic to the task. The strong dependency of tox-
icity on context makes it particularly difficult to
solve with systems based on vocabulary. Toxicity,
when expressed with subtle language, can appear
through non-local text features: some comments
are toxic without showing any obvious toxic span
in them. Such posts made the task more difficult
for participants, because systems had learnt to la-
bel the words bearing the most negative sentiment
(Bansal et al., 2021). Annotation mistakes were
also reported (Table 6).

Description

Not all the occurrences of the
same toxic span are annotated in
the same post.

Toxic words missed.

Non-toxic words labelled.

Type
INCONSISTENCIES

FALSE NEGATIVES
FALSE POSITIVES

Table 6: The types and descriptions of the annotation
mistakes that were detected by some of the participants.

Participants that were notable for their effort in
error analysis include Bansal et al. (2021), Hoang
and Nguyen (2021), Ding and Jurgens (2021), and
Ghosh and Kumar (2021), where an additional ef-
fort was made to examine their model’s ability to
correctly tag words in toxic and non-toxic contexts.
Interestingly Sans and Farras (2021) also noted in
their analysis that racial and ethnic terms are la-
beled in biased ways that reflect patterns not only
in the training toxic spans, but also in external data
used to pre-train underlying Transformer models.

7 Conclusions

We provided 10,629 posts that were annotated for
toxic spans and we defined the task of toxic span de-
tection. The task was popular, attracting almost 500
individual participants. Eventually 91 teams were
formed, out of which 36 submitted a description
report. This overview described the approaches of
these 36 teams and discussed their results.
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Pre-trained Transformers, fine-tuned by viewing
the task as a sequence labelling one, performed
well and solutions that combined these models
within an ensemble were highly-rated. The per-
formance of these models increases further with
the help of pre-trained word embeddings or by us-
ing multiple Transformer layers to embed words.

Long toxic spans were more likely context-
dependent and less frequent in the dataset com-
pared to single-word spans, which made their de-
tection a challenge. The winners included in their
ensemble an approach that performed better on
long spans, but we note that the problem of detect-
ing long uncommon toxic spans is far from solved.

Of particular interest were approaches that em-
ployed rationale extraction mechanisms, which do
not require any training data annotated at the span
level. They performed much worse than sequence
labeling approaches, but this is a promising direc-
tion that was considered by only a few participants.

Future similar competitions could benefit from
tracks that separate supervised from unsupervised
solutions. The development of datasets created
with the help of crowd annotators should focus on
addressing ambiguity, bias, inconsistencies, and
misannotations. This could be accomplished by
adding more annotators per post. Future competi-
tions could also require participants to both classify
posts as toxic or not, and detect toxic spans only
when posts are classified as toxic, instead of pro-
viding the participants only with posts already clas-
sified as toxic. Finally, future competitions could
require participants to distinguish toxic posts of
different kinds (e.g., insult, threat, profanity, along
with supporting spans), which are sometimes easier
to define compared to the more general umbrella
toxicity term we (and others) have used.
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Abstract

We describe SemEval-2021 task 6 on Detec-
tion of Persuasion Techniques in Texts and Im-
ages: the data, the annotation guidelines, the
evaluation setup, the results, and the partici-
pating systems. The task focused on memes
and had three subtasks: (i) detecting the tech-
niques in the text, (i/) detecting the text spans
where the techniques are used, and (i) detect-
ing techniques in the entire meme, i.e., both in
the text and in the image. It was a popular task,
attracting 71 registrations, and 22 teams that
eventually made an official submission on the
test set. The evaluation results for the third sub-
task confirmed the importance of both modal-
ities, the text and the image. Moreover, some
teams reported benefits when not just combin-
ing the two modalities, e.g., by using early or
late fusion, but rather modeling the interaction
between them in a joint model.

1 Introduction

Internet and social media have amplified the
impact of disinformation campaigns. Tradition-
ally a monopoly of states and large organiza-
tions, now such campaigns have become within
the reach of even small organisations and individu-
als (Da San Martino et al., 2020b).

Such propaganda campaigns are often carried
out using posts spread on social media, with the
aim to reach very large audience. While the rhetor-
ical and the psychological devices that constitute
the basic building blocks of persuasive messages
have been thoroughly studied (Miller, 1939; We-
ston, 2008; Torok, 2015), only few isolated efforts
have been made to devise automatic systems to de-
tect them (Habernal et al., 2018; Habernal et al.,
2018; Da San Martino et al., 2019b).

WARNING: This paper contains meme examples and
wording that might be offensive to some readers.
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Figure 1: A meme with a civil war threat during the
President Trump’s impeachment trial. Two persuasion
techniques are used: (i) Appeal to Fear in the image,
and (if) Exaggeration in the text. Source(s): Image ;
License

Thus, in 2020, we proposed SemEval-2020
task 11 on Detection of Persuasion Techniques in
News Articles, with the aim to help bridge this
gap (Da San Martino et al., 2020a). The task fo-
cused on text only. Yet, some of the most influential
posts in social media use memes, as shown in Fig-
ure 1,! where visual cues are being used, along
with text, as a persuasive vehicle to spread disin-
formation (Shu et al., 2017). During the 2016 US
Presidential campaign, malicious users in social
media (bots, cyborgs, trolls) used such memes to
provoke emotional responses (Guo et al., 2020).

In 2021, we introduced a new SemEval shared
task, for which we prepared a multimodal corpus
of memes annotated with an extended set of tech-
niques, compared to SemEval-2020 task 11. This
time, we annotated both the text of the memes,
highlighting the spans in which each technique has
been used, as well as the techniques appearing in
the visual content of the memes.

"In order to avoid potential copyright issues, all memes we
show in this paper are our own recreation of existing memes,
using images with clear copyright.

Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 70-98
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics



Based on our annotations, we offered the follow-
ing three subtasks:

Subtask 1 (ST1) Given the textual content of a
meme, identify which techniques (out of 20
possible ones) are used in it. This is a multil-
abel classification problem.

Subtask 2 (ST2) Given the textual content of a
meme, identify which techniques (out of 20
possible ones) are used in it together with
the span(s) of text covered by each technique.
This is a multilabel sequence tagging task.

Subtask 3 (ST3) Given a meme, identify which
techniques (out of 22 possible ones) are used
in the meme, considering both the text and
the image. This is a multilabel classification
problem.

A total of 71 teams registered for the task, 22
of them made an official submission on the test
set and 15 of the participating teams submitted a
system description paper.

2 Related Work

Propaganda Detection Previous work on propa-
ganda detection has focused on analyzing textual
content (Barrén-Cedeno et al., 2019; Da San Mar-
tino et al., 2019b; Rashkin et al., 2017). See
(Martino et al., 2020) for a recent survey on com-
putational propaganda detection. Rashkin et al.
(2017) developed the TSHP-17 corpus, which
had document-level annotations with four classes:
trusted, satire, hoax, and propaganda. Note that
TSHP-17 was labeled using distant supervision,
i.e., all articles from a given news outlet were as-
signed the label of that news outlet. The news
articles were collected from the English Gigaword
corpus (which covers reliable news sources), as
well as from seven unreliable news sources, includ-
ing two propagandistic ones. They trained a model
using word n-grams, and reported that it performed
well only on articles from sources that the system
was trained on, and that the performance degraded
quite substantially when evaluated on articles from
unseen news sources. Barrén-Cedeno et al. (2019)
developed a corpus QProp with two labels (pro-
paganda vs. non-propaganda), and experimented
with two corpora: TSHP-17 and QProp . They
binarized the labels of TSHP—-17 as follows: pro-
paganda vs. the other three categories.
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They performed massive experiments, investi-
gated writing style and readability level, and trained
models using logistic regression and SVMs. Their
findings confirmed that using distant supervision,
in conjunction with rich representations, might en-
courage the model to predict the source of the ar-
ticle, rather than to discriminate propaganda from
non-propaganda. The study by Habernal et al.
(2017, 2018) also proposed a corpus with 1.3k ar-
guments annotated with five fallacies, including
ad hominem, red herring, and irrelevant authority,
which directly relate to propaganda techniques.

A more fine-grained propaganda analysis was
done by Da San Martino et al. (2019b), who devel-
oped a corpus of news articles annotated with the
spans of use of 18 propaganda techniques, from
an invetory they put together. They targeted two
tasks: (i) binary classification —given a sentence,
predict whether any of the techniques was used
in it; and (i) multi-label multi-class classification
and span detection task —given a raw text, iden-
tify both the specific text fragments where a pro-
paganda technique is being used as well as the
type of technique. They further proposed a multi-
granular gated deep neural network that captures
signals from the sentence-level task to improve the
performance of the fragment-level classifier and
vice versa. Subsequently, an automatic system,
Prta, was developed and made publicly avail-
able (Da San Martino et al., 2020c), which per-
forms fine-grained propaganda analysis of text us-
ing these 18 fine-grained propaganda techniques.

Multimodal Content Another line of related re-
search is on analyzing multimodal content, e.g.,
for predicting misleading information (Volkova
et al., 2019), for detecting deception (Glenski et al.,
2019), emotions and propaganda (Abd Kadir et al.,
2016), hateful memes (Kiela et al., 2020), and pro-
paganda in images (Seo, 2014). Volkova et al.
(2019) developed a corpus of 500K Twitter posts
consisting of images and labeled with six classes:
disinformation, propaganda, hoaxes, conspiracies,
clickbait, and satire. Glenski et al. (2019) explored
multilingual multimodal content for deception de-
tection. Multimodal hateful memes were the target
of the Hateful Memes Challenge, which was ad-
dressed by fine-tuning state-of-art methods such
as VIiLBERT (Lu et al., 2019), Multimodal Bi-
transformers (Kiela et al., 2019), and Visual BERT
(Li et al., 2019) to classify hateful vs. not-hateful
memes (Kiela et al., 2020).



Related Shared Tasks The present shared task
is closely related to SemEval-2020 task 11 on De-
tection of Persuasion Techniques in News Articles
(Da San Martino et al., 2020a), which focused on
news articles, and asked (i) to detect the spans
where propaganda techniques are used, as well as
(i) to predict which propaganda technique (from
an inventory of 14 techniques) is used in a given
text span. Another closely related shared task is the
NLP4IF-2019 task on Fine-Grained Propaganda
Detection, which asked to detect the spans of use in
news articles of each of 18 propaganda techniques
(Da San Martino et al., 2019a). While these tasks
focused on the text of news articles, here we target
memes and multimodality, and we further use an
extended inventory of 22 propaganda techniques.
Other related shared tasks include the FEVER
2018 and 2019 tasks on Fact Extraction and VER-
ification (Thorne et al., 2018), the SemEval 2017
and 2019 tasks on predicting the veracity of rumors
in Twitter (Derczynski et al., 2017; Gorrell et al.,
2019), the SemEval-2019 task on Fact-Checking
in Community Question Answering Forums (Mi-
haylova et al., 2019), the NLP4IF-2021 shared
task on Fighting the COVID-19 Infodemic (Shaar
et al., 2021). We should also mention the CLEF
2018-2021 CheckThat! 1ab (Nakov et al., 2018; El-
sayed et al., 2019a,b; Barrén-Cedefio et al., 2020;
Barrén-Cedeno et al., 2020), which featured tasks
on automatic identification (Atanasova et al., 2018,
2019) and verification (Barrén-Cedefo et al., 2018;
Hasanain et al., 2019, 2020; Shaar et al., 2020;
Nakov et al., 2021) of claims in political debates
and social media. While these tasks focused on
factuality, check-worthiness, and stance detection,
here we target propaganda; moreover, we focus
on memes and on multimodality rather than on
analyzing the text of tweets, political debates, or
community question answering forums.

3 Persuasion Techniques

Scholars have proposed a number of inventories
of persuasion techniques of various sizes (Miller,
1939; Torok, 2015; Abd Kadir and Sauffiyan, 2014).
Here, we use an inventory of 22 techniques, bor-
rowing from the lists of techniques described in
(Da San Martino et al., 2019b), (Shah, 2005) and
(Abd Kadir and Sauffiyan, 2014). Among these 22
techniques, the first 20 are applicable to both text
and images, while the last two, Appeal to (Strong)
Emotions and Transfer, are reserved for images.

10.
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Below, we provide a definition for each of these

22 techniques; more detailed instructions of the
annotation process and examples are provided in
Appendix A.
1. Loaded Language: Using specific words and
phrases with strong emotional implications (ei-
ther positive or negative) to influence an audi-
ence.

. Name Calling or Labeling: Labeling the ob-
ject of the propaganda campaign as either some-
thing the target audience fears, hates, finds un-
desirable, or loves, praises.

. Doubt: Questioning the credibility of someone
or something.

. Exaggeration or Minimisation: Either rep-
resenting something in an excessive manner,
e.g., making things larger, better, worse (“the
best of the best”, “quality guaranteed”), or mak-
ing something seem less important or smaller
than it really is, e.g., saying that an insult was
just a joke.

. Appeal to Fear or Prejudices: Seeking to
build support for an idea by instilling anxiety
and/or panic in the population towards an alter-
native. In some cases, the support is built based
on preconceived judgments.

. Slogans: A brief and striking phrase that may
include labeling and stereotyping. Slogans tend
to act as emotional appeals.

. Whataboutism: A technique that attempts to
discredit an opponent’s position by charging
them with hypocrisy without directly disproving
their argument.

. Flag-Waving: Playing on strong national feel-
ing (or positive feelings toward any group,
e.g., based on race, gender, political preference)
to justify or promote an action or idea.

. Misrepresentation of Someone’s Position
(Straw Man): When an opponent’s proposition
is substituted with a similar one, which is then
refuted in place of the original proposition.

Causal Oversimplification: Assuming a sin-
gle cause or reason, when there are actually
multiple causes for an issue. It includes trans-
ferring blame to one person or group of people
without investigating the actual complexities of
the issue.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Appeal to Authority: Stating that a claim is
true because a valid authority or expert on the
issue said so, without any other supporting ev-
idence offered. We consider the special case
in which the reference is not an authority or an
expert as part of this technique, although it is
referred to as Testimonial in the literature.

Thought-Terminating Cliché: Words or
phrases that discourage critical thought and
meaningful discussion about a given topic. They
are typically short, generic sentences that offer
seemingly simple answers to complex questions
or that distract the attention away from other
lines of thought.

Black-and-White Fallacy or Dictatorship:
Presenting two alternative options as the only
possibilities, when in fact more possibilities ex-
ist. As an extreme case, tell the audience exactly
what actions to take, eliminating any other pos-
sible choices (Dictatorship).

Reductio ad Hitlerum: Persuading an audi-
ence to disapprove of an action or an idea by
suggesting that the idea is popular with groups
that are hated or in contempt by the target audi-
ence. It can refer to any person or concept with
a negative connotation.

Repetition: Repeating the same message over
and over again, so that the audience will eventu-
ally accept it.

Obfuscation, Intentional Vagueness, Confu-
sion: Using words that are deliberately not clear,
so that the audience can have their own interpre-
tations.

Presenting Irrelevant Data (Red Herring):
Introducing irrelevant material to the issue be-
ing discussed, so that everyone’s attention is
diverted away from the points made.

Bandwagon Attempting to persuade the target
audience to join in and take the course of ac-
tion because “everyone else is taking the same
action.”

Smears: A smear is an effort to damage or
call into question someone’s reputation, by pro-
pounding negative propaganda. It can be applied
to individuals or groups.

Glittering Generalities (Virtue): These are
words or symbols in the value system of the
target audience that produce a positive image
when attached to a person or an issue.

21.

22.
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Appeal to (Strong) Emotions: Using images
with strong positive/negative emotional implica-
tions to influence an audience.

Transfer: Also known as Association, this is a
technique that evokes an emotional response by
projecting positive or negative qualities (praise
or blame) of a person, entity, object, or value
onto another one in order to make the latter more
acceptable or to discredit it.

4 Dataset

The annotation process is explained in detail in
Appendix A, and in this section, we give a just
brief summary.

We collected English memes from our personal
Facebook accounts over several months in 2020
by following 26 public Facebook groups, which
focus on politics, vaccines, COVID-19, and gender
equality. We considered a meme to be a “photo-
graph style image with a short text on top of it”, and
we removed examples that did not fit this defini-
tion, e.g., cartoon-style memes, memes whose tex-
tual content was strongly dominant or non-existent,
memes with a single-color background image, etc.
Then, we annotated the memes using our 22 persua-
sion techniques. For each meme, we first annotated
its textual content, and then the entire meme. We
performed each of these two annotations in two
phases: in the first phase, the annotators indepen-
dently annotated the memes; afterwards, all anno-
tators met together with a consolidator to discuss
and to select the final gold label(s).

The final annotated dataset consists of 950
memes: 687 memes for training, 63 for develop-
ment, and 200 for testing. While the maximum
number of sentences in a meme is 13, the average
number of sentences per meme is just 1.68, as most
memes contain very little text.

Table 1 shows the number of instances of each
technique for each of the tasks. Note that Trans-
fer and Appeal to (Strong) Emotions are not ap-
plicable to text, i.e., to Subtasks 1 and 2. For
Subtasks 1 and 3, each technique can be present
at most once per example, while in Subtask 2, a
technique could appear multiple times in the same
example. This explains the sizeable differences in
the number of instances for some persuasion tech-
niques between Subtasks 1 and 2: some techniques
are over-used in memes, with the aim of making the
message more persuasive, and thus they contribute
higher counts to Subtask 2.



Persuasion Techniques Subtask 1 Subtask 2 Subtask 3

# Len. # #
Loaded Language 489 241 761 492
Name Calling/Labeling 300 2.62 408 347
Smears 263 17.11 266 602
Doubt 84 13.71 86 111
Exaggeration/Minimisation 78 6.69 85 100
Slogans 66 470 72 70
Appeal to Fear/Prejudice 57 10.12 60 91
Whataboutism 54 22.83 54 67
Glittering Generalities (Virtue) 44 14.07 45 112
Flag-Waving 38 5.18 44 55
Repetition 12 195 42 14
Causal Oversimplification 31 14.48 33 36
Thought-Terminating Cliché 27 4.07 28 27
Black-and-White
Fallacy/Dictatorship 25 119225 26
Straw Man 24 15.96 24 40
Appeal to Authority 22 20.05 22 35
Reductio ad Hitlerum 13 12.69 13 23
Obfuscation, Intent.lonal 5 9.3 5 7
Vagueness, Confusion
Presenting Irrelevant Data 5 154 5 7
Bandwagon 5 8.4 5 5
Transfer — — = 95
Appeal to (Strong) Emotions — — - 90
Total 1,642 2,119 2,488

Table 1: Statistics about the persuasion techniques. For
each technique, we show the average length of its spans
(in number of words) and the number of its instances as
annotated in the text only vs. in the entire meme.

Note that the number of instances for Sub-
tasks 1 and 3 differs, and in some cases by quite
a bit, e.g., for Smears, Doubt, and Appeal to
Fear/Prejudice. This shows that many techniques
cannot be found in the text, and require the visual
content, which motivates the need for multimodal
approaches for Subtask 3. Note also that different
techniques have different span lengths, e.g., Loaded
Language and Name Calling are about 2—-3 words
long, e.g., violence, mass shooter, and coward.
However, for techniques such as Whataboutism,
the average span length is 22 words.

Figure 2 shows statistics about the distribution
of the number of persuasion techniques per meme.
Note the difference for memes without persuasion
techniques between Figures 2a and 2c: we can see
that the number of memes without any persuasion
technique drastically drops for Subtask 3. This is
because the visual modality introduces additional
context that was not available during the text-only
annotation, which further supports the need for
multimodal analysis. The visual modality also has
an impact on memes that already had persuasion
techniques in the text-only phase.
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We observe that the number of memes with only
one persuasion technique in Subtask 3 is consider-
ably lower compared to Subtask 1, while the num-
ber of memes with three or more persuasion tech-
niques has greatly increased for Subtask 3.
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Figure 2: Distribution of the number of persuasion
techniques per meme. Subfigure (b) reports the num-
ber of instances of persuasion techniques for a meme.
Note that a meme could have multiple instances of the
same technique for this subtask. Subfigures (a) and (c)
show the number of distinct persuasion techniques in
a meme.



5 Evaluation Framework

5.1 Evaluation Measures

Subtasks 1 and 3 To measure the performance
of the systems, for Subtasks 1 and 3, we use Micro
and Macro Fy, as these are multi-class multi-label
tasks, where the labels are imbalanced. The official
measure for the task is Micro Fj.

Subtask 2 For Subtask 2, the evaluation requires
matching the text spans. Hence, we use an evalu-
ation function that gives credit to partial matches
between gold and predicted spans.

Let document d be represented as a sequence of
characters. The i-th propagandistic text fragment
is then represented as a sequence of contiguous
characters ¢ C d. A document includes a set of
(possibly overlapping) fragments 7'. Similarly, a
learning algorithm produces a set .S with fragments
s C d, predicted on d. A labeling function I(z) €
{1,...,20} associates t € T, s € S with one of
the techniques. An example of (gold) annotation is
shown in Figure 3, where an annotation ¢; marks
the span stupid and petty with the technique Loaded
Language.

t1: loaded language

LT EEBL ] L LB T
o] Ll oL T, L TR
REFT T PR BT TR

s4: loaded language

Figure 3: Example of gold annotation (top) and the pre-
dictions of a supervised model (bottom) in a document
represented as a sequence of characters.

We define the following function to handle par-
tial overlaps of fragments with the same labels:

05 a6y 00), )

where h is a normalizing factor and §(a,b) = 1
if a = b, and 0, otherwise. For example, still
with reference to Figure 3, C(t1, s1, |t1|) = & and
C(tl, S92, |t1|) =0.

Given Eq. (1), we now define variants of preci-
sion and recall that can account for the imbalance
in the corpus:

1
P(S,T) = = 3 Cls,t
(S,T) ‘S’ses(](s’  1s0),
teT

C(s,t,h) =

)
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1
R(S.T) = 3)

S Cs, i),

s€ S,
teT

We define (2) to be zero if |S| = 0, and Eq. (3) to
be zero if |T'| = 0. Following Potthast et al. (2010),
in (2) and (3) we penalize systems predicting too
many or too few instances by dividing by |.S| and
|T|, respectively. Finally, we combine Egs. (2)
and (3) into an F;-measure, the harmonic mean of
precision and recall.

5.2 Task Organization

We ran the shared task in two phases:

Development Phase In the first phase, only train-
ing and development data were made available, and
no gold labels were provided for the latter. The par-
ticipants competed against each other to achieve
the best performance on the development set. A
live leaderboard was made available to keep track
of all submissions.

Test Phase In the second phase, the test set was
released and the participants were given just a few
days to submit their final predictions.

In the Development Phase, the participants could
make an unlimited number of submissions, and see
the outcome in their private space. The best score
for each team, regardless of the submission time,
was also shown in a public leaderboard. As a result,
not only could the participants observe the impact
of various modifications in their systems, but they
could also compare against the results by other par-
ticipating teams. In the Test Phase, the participants
could again submit multiple runs, but they would
not get any feedback on their performance. Only
the latest submission of each team was considered
as official and was used for the final team rank-
ing. The final leaderboard on the test set was made
public after the end of the shared task.

In the Development Phase, a total of 15, 10 and
13 teams made at least one submission for ST1,
ST2 and ST3, respectively. In the 7est Phase the
number of teams who made official submissions
was 16, 8, and 15 for ST1, ST2, ST3, respectively.

After the competition was over, we left the sub-
mission system open for the development set, and
we plan to reopen it on the test set as well. The up-
to-date leaderboards can be found on the website
of the competition.?

*http://propaganda.math.unipd.it/semeval2021task6/
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Table 2: ST1: Overview of the approaches used by the participating systems. (@=part of the official submission;
v =considered in internal experiments; Repres. stand for Representations. References to system description

papers are shown below the table.

6 Participants and Results

Below, we give a general description of the systems
that participated in the three subtasks and their
results, with focus on those ranked among the top-3.
Appendix C gives a description of every system.

6.1 Subtask 1 (Unimodal: Text)

Table 2 gives an overview of the systems that took
part in Subtask 1. We can see that transformers
were quite popular, and among them, most com-
monly used was RoBERTa, followed by BERT.
Some participants used learning models such as
LSTM, CNN, and CREF in their final systems, while
internally, Naive Bayes and Random Forest were
also tried. In terms of representation, embeddings
clearly dominated. Moreover, techniques such as
ensembles, data augmentation, and post-processing
were also used in some systems.

The evaluation results are shown in Table 3,
which also includes two baselines: (i) random,
and (ii) majority class. The latter always predicts
Loaded Language, as it is the most frequent tech-
nique for Subtask 1 (see Table 1).

The best system MinD (Tian et al., 2021) used
five transformers: BERT, RoBERTa, XLNet, De-
BERTa, and ALBERT. It was fine-tuned on the
PTC corpus (Da San Martino et al., 2020a) and
then on the training data for Subtask 1.
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Rank Team F1-Micro F1-Macro
1 MinD 593 290,
2 Alpha 572 2625
3  Volta 570 26063
4 mmm .548 303,
5 AIMH .539 .245¢
6 LeCun 512 227g
7 WVOQ Sl11 2273
8 TeamUNCC 510 2367
9 NLyticsFKIE 498 1403

10 TeiAS 497 21449
11 DAJUST 497 18741
12 YNUHPCC 493 2634
13 CSECUDSG 489 1859
14 TeamFPAI 406 11545
15 NLPIITR 379 12614
Majority baseline  .374 .033
16 TriHeadAttention .184 0245
Random baseline .064 .044

Table 3: Results for Subtask 1. The systems are ordered
by the official score: FI-micro.

The final prediction for MinD averages the prob-
abilities for these models, and further uses post-
processing rules, e.g., each bigram appearing more
than three times is flagged as a Repetition.



Team Alpha (Feng et al., 2021) was ranked sec-
ond. However, they used features from images,
which was not allowed (images were only allowed
for Subtask 3).

Team Volta (Gupta et al., 2021) was third. They
used a combination of transformers with the [CLS]
token as an input to a two-layer feed-forward net-
work. They further used example weighting to
address class imbalance.

We should also mention team LeCun, which
used additional corpora such as the PTC cor-
pus (Da San Martino et al., 2020a), and aug-
mented the training data using synonyms, random
insertion/deletion, random swapping, and back-
translation.

6.2 Subtask 2 (Unimodal: Text)

The approaches for this task varied from modeling
it as a question answering (QA) task to performing
multi-task learning. Table 4 presents a high-level
summary. We can see that BERT dominated, while
RoBERTa was much less popular. We further see
a couple of systems using data augmentation. Un-
fortunately, there are too few systems with system
description papers for this subtask, and thus it is
hard to do a very deep analysis.
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1 (Gupta et al., 2021)
2 (Kaczynski and Przybyta, 2021)
3 (Xiaolong et al., 2021)

5 (Roele, 2021)
6 (Hossain et al., 2021)
7 (Zhu et al., 2021)

Table 4: ST2: Overview of the approaches used by the
participating systems. &@=part of the official submis-
sion; ¥ =considered in internal experiments; Trans. is
for Transformers; Repres. is for Representations. Ref-
erences to system description papers are shown below
the table.

Table 5 shows the evaluation results. We report
our random baseline, which is based on the ran-
dom selection of spans with random lengths and a
random assignment of labels.

Rank Team F1 Precision Recall
1 Volta 482 501, .4644
2 HOMADOS 407 4125 403,
3 TeamFPAI 397 6524 2865
4  TeamUNCC 329 2854 .3903
5 WVOQ 268 2435 2994
6 CSECUDSG 120 .080g 2434
7 YNUHPCC 091 186  .0607
8 TriHeadAttention .080 .1705 .0524
Random Baseline .010  .034 .006

Table 5: Results for Subtask 2. The systems are ordered
by the official score: FI-micro.

The best model by team Volta (Gupta et al.,
2021) used various transformer models, such as
BERT and RoBERTa, to predict token classes by
considering the output of each token embedding.
Then, they assigned classes for a given word as the
union of the classes predicted for the subwords that
make that word (to account for BPEs).

Team HOMADOS (Kaczyriski and Przybyta,
2021) was second, and they used a multi-task learn-
ing (MTL) and additional datasets such as the PTC
corpus from SemEval-2020 task 11 (Da San Mar-
tino et al., 2020a), and a fake news corpus (Przy-
byla, 2020). They used BERT, followed by several
output layers that perform auxiliary tasks of propa-
ganda detection and credibility assessment in two
distinct scenarios: sequential and parallel MTL.
Their final submission used the latter.

Team TeamFPAI (Xiaolong et al., 2021) for-
mulated the task as a question answering problem
using machine reading comprehension, thus im-
proving over the ensemble-based approach of Liu
et al. (2018). They further explored data augmenta-
tion and loss design techniques, in order to alleviate
the problem of data sparseness and data imbalance.

6.3 Subtask 3 (Multimodal: Memes)

Table 6 presents an overview of the approaches
used by the systems that participated in Subtask
3. This is a very rich and very interesting table.
We can see that transformers were quite popular
for text representation, with BERT dominating, but
RoBERTa being quite popular as well. For the vi-
sual modality, the most common representations
were variants of ResNet, but VGG16 and CNNs
were also used. We further see a variety of represen-
tations and fusion methods, which is to be expected
given the multi-modal nature of this subtask.
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1 (Feng et al., 2021)

2 (Tian et al., 2021)

3 (Peiguang et al., 2021)
4 (Messina et al., 2021)

5 (Gupta et al., 2021)

6 (Hossain et al., 2021)

8 (Ghadery et al., 2021)
10 (Roele, 2021)

11 (Zhu et al., 2021)
13 (Pritzkau, 2021)
15 (Singh and Lefever, 2021)

Table 6: ST3: Overview of the approaches used by the participating systems. &@=part of the official submission;
+ =considered in internal experiments. References to system description papers are shown below the table.

Table 7 shows the performance on the test set for
the participating systems for Subtask 3. The two
baselines shown in the table are similar to those
for Subtask 1, namely a random baseline and a ma-
jority class baseline. However, this time the most
frequent class baseline always predicts Smears (for
Subtask 1, it was Loaded Language), as this is the
most frequent technique for Subtask 3 (as can be
seen in Table 1).

Team Alpha (Feng et al., 2021) pre-trained a
transformer using text with visual features. They
extracted grid features using ResNet50, and salient
region features using BUTD. They further used
these grid features to capture the high-level se-
mantic information in the images. Moreover, they
used salient region features to describe objects
and to caption the event present in the memes.
Finally, they built an ensemble of fine-tuned De-
BERTA+ResNet, DeBERTA+BUTD, and ERNIE-
VIL systems.

Team MinD (Tian et al., 2021) combined a sys-
tem for Subtask 1 with (7) ResNet-34, a face recog-
nition system, (if) OCR-based positional embed-
dings for text boxes, and (iii) Faster R-CNN to
extract region-based image features. They used
late fusion to combine the textual and the visual
representations. Other multimodal fusion strategies
they tried were concatenation of the representation
and mapping using a multi-layer perceptron.
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Team 1213Li (Peiguang et al., 2021) used
RoBERTa and ResNet-50 as feature extractors for
texts and images, respectively, and adopted a la-
bel embedding layer with a multi-modal attention
mechanism to measure the similarity between la-
bels with multi-modal information, and fused fea-
tures for label prediction.

Rank Team F1-Micro F1-Macro

1 Alpha .581 2734
2 MinD .566 2444
3 1213Li .549 2285
4 AIMH .540 2076
5 Volta 521 .189g
6 CSECUDSG 513 12144
7 aircasMM Sl11 .2007
8 LIIR 498 1889
9 CAU731INLP 481 .084 4
10 WVOQ 478 2404
11 YNUHPCC 446 .096,3
12 TriHeadAttention 442 0625
13 NLyticsFKIE 423 11849
Majority baseline  .354 .036
14 LT3UGent 332 264,
15 TeamUNCC 224 12449
Random baseline 071 .052

Table 7: Results for Subtask 3. The systems are ordered
by the official score: FI-micro.



7 Conclusion and Future Work

We presented SemEval-2021 Task 6 on Detection
of Persuasion Techniques in Texts and Images. It
was a successful task: a total of 71 teams registered
to participate, 22 teams eventually made an offi-
cial submission on the test set, and 15 teams also
submitted a task description paper.

In future work, we plan to increase the data size
and to add more propaganda techniques. We further
plan to cover several different languages.
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Appendix
A Data Collection and Annotation

A.1 Data Collection

To collect the data for the dataset, we used Face-
book, as it has many public groups with a large
number of users, who intentionally or unintention-
ally share a large number of memes. We used our
own private Facebook accounts to crawl the public
posts from users and groups. To make sure the
resulting feed had a sufficient number of memes,
we initially selected some public groups focusing
on topics such as politics, vaccines, COVID-19,
and gender equality. Then, using the links between
groups, we expanded our initial group pool to a
total of 26 public groups. We went through each
group, and we collected memes from old posts, dat-
ing up to three months before the newest post in
the group. Out of the 26 groups, 23 were about pol-
itics, US and Canadian: left, right, centered, anti-
government, and gun control. The other 3 groups
were on general topics such as health, COVID-19,
pro-vaccines, anti-vaccines, and gender equality.
Even though the number of political groups was
larger (i.e., 23), the other 3 general groups had a
higher number of users and a substantial amount of
memes.

A.2 Annotation Process

We annotated the memes using the 22 persuasion
techniques from Section 3 in a multi-label setup.
Our annotation focused (i) on the text only, using
20 techniques, and (ii) on the entire meme (text +
image), using all 22 techniques.

We could not annotate the visual modality as an
independent task because memes have the text as
part of the image. Moreover, in many cases, the
message in the meme requires both modalities. For
example, in Figure 28, the image by itself does
not contain any persuasion technique, but together
with the text, we can see Smears and Reductio at
Hitlerum.

The annotation team included six members, both
female and male, all fluent in English, with qualifi-
cations ranging from undergrad to MSc and PhD
degrees, including experienced NLP researchers,
and covering multiple nationalities. This helped to
ensure the quality of the annotation, and our focus
was really on having very high-quality annotation.
No incentives were given to the annotators.
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We used PyBossa* as an annotation platform,
as it provides the functionality to create a custom
annotation interface that we found to be a good
fit for our needs in each phase of the annotation
process. Figure 4 shows examples of the annotation
interface for the five different phases of annotation,
which we describe in detail below.

Phase 1: Filtering and Text Editing The first
phase of the annotation process is about selecting
the memes for our task, followed by extracting and
editing the textual contents of each meme. After we
collected the memes, we observed that we needed
to remove some of them as they did not fit our
definition: “photograph style image with a short
text on top of it.” Thus, we asked the annotators
to exclude images with the characteristics listed
below. During this phase, we filtered out a total of
111 memes.

* Images with diagrams/graphs/tables (see Fig-
ure S5a).

 Cartoons. (see Figure 5b)

* Memes for which no multi-modal analysis is
possible: e.g., only text, only image, etc. (see
Figure 5c)

Next, we used the Google Vision API° to extract
the text from the memes. As the resulting text
sometimes contains errors, manual checking was
needed to correct it. Thus, we defined several text
editing rules, and we asked the annotators to apply
them on the memes that passed the filtering rules
above.

1. When the meme is a screenshot of a social
network account, e.g., WhatsApp, the user
name and login can be removed as well as all
“Like”, “Comment’, “Share”.

. Remove the text related to logos that are not
part of the main text.

. Remove all text related to figures and tables.

. Remove all text that is partially hidden by an
image, so that the sentence is almost impossi-
ble to read.

. Remove all text that is not from the meme, but
on banners carried on by demonstrators, street
advertisements, etc.

“https://pybossa.com
Shttp://cloud.google.com/vision



Figure 4: Examples of the annotation interface for different phases.

. Remove the author of the meme if it is signed.

. If the text is in columns, first put all text from
the first column, then all text from the next
column, etc.

. Rearrange the text, so that there is one sen-
tence per line, whenever possible.

. If there are separate blocks of text in different
locations of the image, separate them by a
blank line. However, if it is evident that the
text blocks are part of a single sentence, keep
them together.
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Phase 2: Text Annotation The annotations for
phase 2 are targeted at Subtasks 1 and 2. Given the
list of propaganda techniques for text only annota-
tion, as discussed in Section A.4 (i.e., techniques
1-20), and the textual content of the target meme,
the annotators were asked to identify which tech-
niques appear in the text, and also to annotate the
span of each instance of a technique use. In this
phase, there were three annotators per example.

Phase 3: Text Consolidation Phase 3 is the con-
solidation step for the annotations from phase 2.
The three annotators met with the rest of the team,
who acted as consolidators, and discussed each
annotation, so that a consensus could be reached.



(a) Example of a meme with a graph Source(s): Image ;
License

‘ “” , CROSSING

wr

(b) Example of a cartoon meme; Source(s): Image ; License

(c) Example of a meme with only text modality; License .

Figure 5: Examples of memes we filtered out.

We made sure to consider different interpreta-
tions and to anotate techniques corresponding to
the most likely one. While this phase was devoted
to checking the annotations from phase 2, when a
novel instance of a technique was found, it could
be added; conversely, an instance of a technique
with perfect agreement from phase 2 could also be
dropped. Phase 3 was essential for ensuring quality,
and it served as an additional training opportunity
for the entire team, which was very useful.
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Phase 4: Multimodal Annotation In this phase,
the goal is to identify which of the 22 techniques,
discussed in Section A.4, appear in the meme: in
the text and in the visual content. Note that some
of the techniques occurring in the text might be
identified only in this phase because the image pro-
vides the necessary context. Thus, we presented
the meme with the consolidated propaganda labels
from phase 3. We intentionally provided the con-
solidated text labels to the annotators in order to
ensure that they focus their attention on identifying
propaganda techniques that require both modalities
rather than repeating what was already labeled in
the earlier phases. In this phase, there were three
annotators per example.

Phase 5: Multimodal Consolidation. In phase
5, we consolidated the annotations from phase 4
in a discussion of the entire team of six annotators
(just as we did for phase 3).

A.3 Annotation Agreement

We assessed the quality for the individual annota-
tors from phases 2 and 4 (i.e., when combining the
annotations for the meme’s text and for the entire
meme) to the final consolidated labels at phase 5.
Since our annotation is multi-label, we computed
Krippendorft’s o (Artstein and Poesio, 2008). The
results are shown in Table 8, and the numbers in-
dicate moderate to substantial agreement (Landis
and Koch, 1977).

Agreement Pair Krippendorff’s o
Annotator 1 vs. Consolidated 0.83
Annotator 2 vs. Consolidated 0.91
Annotator 3 vs. Consolidated 0.56
Average 0.77

Table 8: Inter-annotator agreement in terms of Krip-
pendorff’s o between each of the annotators and the
consolidated annotation.

A.4 Propaganda Techniques: Definitions

Below, we present the definitions of our 22 pro-
paganda techniques, together with examples: both
textual, and memes. Note that, for copyright rea-
sons, we show our own recreated versions of actual
memes from our dataset, where, for each meme,
we indicate the image(s) we used and the corre-
sponding license terms (as hyperlinks in the image
caption).



1. Loaded Language: Using specific words and
phrases with strong emotional implications (i.e., ei-
ther positive or negative) to influence an audience.

An example meme is shown in Figure 6, which
contains four instances of this persuasion technique
in its text: killed thousands of innocents, retaliate,
kill, and warmonger.

Figure 6: Example for Loaded Language; Source(s):
Image 1, Image 2; License 1, License 2

2. Name Calling or Labeling: Labeling the ob-
ject of the propaganda as either something the
target audience fears, hates, finds undesirable, or
loves, praises.

Figure 7 shows three instances of this technique:
the two biggest threats to America, the worst senate
leader ever, and the most corrupt President ever.
Figure 6 also contains an instance: warmonger.

Figure 7: Example for Name Calling; Source(s): Im-
age 1, Image 2; License 1, License 2
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3. Doubt: Questioning the credibility of someone
or something.

An example is shown in Figure 8, where the
entire text in the meme represents a span for this
technique, while the image is just for illustration.

Figure 8: Example for Doubt; Source(s): Image ; Li-
cense

4. Exaggeration or Minimisation: Representing
something in an excessive manner, making it larger,
better, worse (e.g., the best of the best); or making
it seem less important or smaller than it really is
(e.g., saying that an insult was just a joke).

An example is shown in Figure 9, where the
entire meme conveys an exaggeration. Moreover,
all three Name Calling instances in Figure 7 are
also examples of Exaggeration.

Figure 9: Example for Exaggeration; Source(s): Im-
age ; License



5. Appeal to Fear/Prejudice: Seeking to build 6. Slogans: A brief and striking phrase that may

support for an idea by instilling anxiety and/or  include labeling and stereotyping. Slogans tend to

panic in the population towards an alternative. In  act as emotional appeals.

some cases, the support is built based on precon- An example is shown in Figure 11, which con-

ceived judgments. tains a slogan in its textual content: “Vaccines. It
An example is shown in Figure 10, where both  isn’t always about you.”

the text and the image instill fear.

Figure 11: Example for Slogan; Source(s): Image ;
License

Figure 10: Example for Appeal to Fear; Source(s):
Image ; License
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7. Whataboutism: A technique that attempts to 8. Flag-Waving: Playing on strong national feel-

discredit an opponent’s position by charging them  ing (or to any group such as race, gender, political

with hypocrisy without directly disproving their  preference) to justify or promote an action or idea.

argument. An example is shown in Figure 13, with the
An example meme is shown in Figure 12, where  technique expressed in the text and the image.

the entire text represents a span for this technique,

while the image is just for illustration.

Figure 12: Example for Whataboutism; Source(s):
Image ; License

Figure 13: Example for Flag-Waving; Source(s): Im-
age ; License
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9. Misrepresentation of Someone’s Position
(Straw Man): An opponent’s proposition is sub-
stituted with a similar one, which is then refuted in
place of the original proposition.

An example meme is shown in Figure 14, which
contains an instance of this technique in its text:
here, the entire text in the meme represents a span
for this technique, while the image is irrelevant
for that technique (however, it is relevant for other
techniques such as Smears).

Figure 14: Example for Misrepresentation of Some-
one’s Position (Straw Man); Source(s): Image ; Li-
cense
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10. Causal Oversimplification: Assuming a sin-
gle cause or reason when there are actually multiple
causes for an issue. It includes transferring blame
to one person or group of people without investi-
gating the complexities of the issue.

An example meme is shown in Figure 15, which
contains an instance of this technique in its text:
“You can’t get rich in politics unless you are a
crook.” This statement says that if somebody got
rich in politics, the only reason for this happening
should be that this person is a crook, while in real-
ity there are typically multiple causes. The image is
irrelevant for that technique (however, it is relevant
for other techniques such as Smears).

Figure 15: Example for Causal Oversimplification;
Source(s): Image 1, Image 2; License 1, License 2



11. Appeal to Authority: Stating that a claim is
true simply because a valid authority or expert on
the issue said it was true, without any other sup-
porting evidence offered. We consider the special
case in which the reference is not an authority or
an expert in this technique, although it is referred
to as Testimonial in literature.

An example meme is shown in Figure 16, which
contains a quote by the 3rd President of the United
States.

Figure 16: Example for Appeal to Authority;
Source(s): Image ; License
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12. Thought-Terminating Cliché: Words or
phrases that discourage critical thought and mean-
ingful discussion about a given topic. They are
typically short, generic sentences that offer seem-
ingly simple answers to complex questions or that
distract attention away from other lines of thought.

Figure 17 shows a meme with an instance of this
technique in its text: “PERIOD.”

Figure 17: Example for Thought-Terminating Cliché;
Source(s): Image 1, Image 2; License 1, License 2

13. Black-and-White Fallacy: Presenting two al-
ternative options as the only possibilities, when in
fact more possibilities exist. We also include dicta-
torship, where one tells the audience exactly what
actions to take, eliminating any other choices.

An example of this technique is shown in Fig-
ure 18, which offers only two choices.

Figure 18: Example for Black-and-White Fallacy;
Source(s): Image 1, Image 2; License 1, License 2



14. Reductio ad Hitlerum: Persuading an audi-
ence to disapprove an action or idea by suggesting
that the idea is popular with groups hated or in con-
tempt by the target audience. It can refer to any
person or concept with a negative connotation.

Figure 19 shows a meme trying to discredit the
idea of being anti-union by saying that so is Donald
Trump, who in turn is shown in bad light.

Figure 19: Example for Reduction ad Hitlerum,;
Source(s): Image , License

15. Repetition: Repeating the same message, so
that the audience eventually accepts it.

An example is shown in Figure 20, where the
repetition has a clear rhetorical function.

Figure 20: Example for Repetition; Source(s): Image
1, Image 2, Image 3, Image 4; License 1, License 2,
License 3, License 4
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16. Obfuscation, Intentional Vagueness, Confu-
sion: Using words that are deliberately unclear, so
that the audience may have their own interpreta-
tions.

Figure 21, shows an example, where the entire
quote by Joe Biden is a span of this technique, as it
is unclear what exactly is meant here.

Figure 21: Example for Obfuscation, Intentional
vagueness, Confusion; Source(s): Image ; License



17. Presenting Irrelevant Data (Red Herring):
Introducing irrelevant material to the issue being
discussed, so that everyone’s attention is diverted
away from the points made.

An example meme is shown in Figure 22, which
contains an instance of this technique in its text.
We can see that there is no real connection between
the two sentences. Here, the entire text represents
a span for this technique, while the image is for
reinforcement.

Figure 22: Example for Presenting Irrelevant Data
(Red Herring); Source(s): Image ; License

18. Bandwagon: Attempting to persuade the target
audience to join in and take the course of action
because “everyone else is taking the same action.”

Figure 23 shows an example that covers the en-
tire text; the image less relevant.

Figure 23: Example for Bandwagon; Source(s): Im-
age ; License
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19. Smears: A smear is an effort to damage or
to call into question someone’s reputation, by pro-
pounding negative propaganda. It can be applied
to individuals or groups.

An example meme is shown in Figure 24, where
the combination of the image and the text conveys
the idea that Biden is unpopular.

Figure 24: Example for Smears; Source(s): Image ;
License



20. Glittering Generalities: These are words or
symbols in the value system of the target audience
that produce a positive image when attached to
a person or issue. Peace, hope, happiness, secu-
rity, wise leadership, freedom, “The Truth”, etc.
are virtue words. Virtue can be also expressed in
images, where a person or an object is depicted
positively.

Figure 25 shows an example of the use of this
technique, in the right half of the meme. The tech-
nique covers the entire text span starting from “2 &
1/2 years ... until “GDP up 3.2% . ..” It is also ex-
pressed in the image, which depicts Donald Trump
in a positive way. The text-image combination
further strengthens the technique.

Figure 25: Example for Glittering Generalities;
Source(s): Image 1, Image 2; License 1, License 2
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21. Appeal to (Strong) Emotions: Using images
with strong positive/negative emotional implica-
tions to influence an audience. We reserve this
technique to the images content only.

An example is shown in Figure 26, which in-
vokes strong emotions in the audience.

Figure 26: Example for Appeal to (Strong) Emotions;
Source(s): Image ; License



22. Transfer: Also known as Association, this
is a technique of projecting positive or negative
qualities (praise or blame) of a person, entity, ob-
ject, or value onto another one to make the second
one more acceptable or to discredit it. It evokes
an emotional response, which stimulates the tar-
get to identify with recognized authorities. Often
highly visual, this technique often utilizes symbols
(for example, the swastikas used in Nazi Germany,
originally a symbol for health and prosperity) su-
perimposed over other visual images.

Figure 27 shows an example, where the Trans-
fer technique makes use of a communist symbol
(namely, hammer and sickle) on top of the pic-
tures of two targeted politicians, with the aim of
depicting them in a negative way. The technique is
further reinforced by the use of the red color (which
is also a symbol of Communism), and by the two
instances of Name Calling (“Moscow Mitch” and
“Moscow’s bitch”), which make a connection to
Moscow (which in turn was the capital of the for-
mer Communist block).

Figure 27: Example for Transfer; Source(s): Image 1,
Image 2; License 1, License 2
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B Subtasks: Definition, Data Format,
and Data Examples

Below, we describe the three subtasks and the gen-
eral data format for each of them. We further show
an example of an annotated example for each sub-
task.

B.1 Subtask 1

This is a multi-label classification problem, defined
as follows:

Subtask 1 (ST1) Given only the “textual con-
tent” of a meme, identify which of the 20
techniques are used in it.

The data for ST1 comes as a JSON object in the
following format:

{
id -> example identifier,
labels —-> list of persuasion
techniques,
text —-> text of the meme

Here is an example:

{
"id": "125",
"labels": [
"Loaded Language",
"Name calling/Labeling"
1,
"text": "I HATE TRUMP\n\n

MOST TERRORIST DO"
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B.2 Subtask 2

ST2 is a more complex version of ST1, as it asks
not only for the techniques but also for the exact
spans of use each technique. This subtask is a com-
bination of the two subtasks in SemEval-2020 task
11. Tt is a multi-label sequence tagging problem,
defined as follows:

Subtask 2 (ST2) Given only the “textual content”
of a meme, identify which of the 20 tech-
niques are used in it together with the span(s)
of text covered by each technique.

The data for ST2 comes as a JSON object with
the following format:
{

id -> example identifier,
text -> text of the meme
labels : [ -> list of objects
{
start -> start index,
end -> end index,
technique -> technique,
text_fragment -> text

Here is an example:

{"id": "125",
"text": "I HATE TRUMP\n\n
MOST TERRORIST DO"
"labels": [
{
"start":
"end": 6,
"technique": "Loaded Language",
"text_fragment": "HATE"
by
{

2,

"start": 19,
"end": 28,
"technique":
Labeling",
"text_fragment":

"Name calling/

"TERRORIST"

Note that the labels to be predicted for ST2 are
the same ones as for ST1, but this time the spans
are to be predicted as well.

B.3 Subtask 3

ST3 is a multi-modal version of ST1, where the
image is also provided. It is a multi-label classifi-
cation problem, defined as follows:

Subtask 3 (ST3) Given a meme, identify which
of the 22 techniques are used both in the tex-
tual and in the visual content of the meme.



The data for ST3 comes as a JSON object with
the following format:

{
id -> example identifier,
labels —-> list of persuasion
techniques,
image -> name of the image file,
text —-> text of the meme

Here is an example:

{
"id": "125",
"labels": [
"Loaded Language",
"Name calling/Labeling",
"Reductio ad hitlerunm",
"Smears",
1,
"image":

}

"125_image.png"

Here, the image, which is shown in Figure 28),
gives rise to two additional persuasion techniques
compared to ST1: Reductio ad Hitlerum and
Smears. These techniques are not clearly present in
the text alone. Indeed, the image is needed for us
to see that there is Smears, as this can be only seen
when we understand that this is a dialog with a neg-
ative propaganda targeting one of the participants
(Ilhan Omar). Similarly, we need the image for Re-
ductio ad Hitlerum: the image shows us that [lhan
Omar is depicted as a bad person (she is targeted
by the Name Calling “terrorist”, and she is also the
target of the Smears), and thus the message being
conveyed is that any choice that such a bad person
does has to be a bad choice, i.e., hating Trump is a
bad thing to do as this is something terrorists do.
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Figure 28: The meme with id=125; Source(s): Image
1, Image 2; License 1, License 2



C Participating Systems

Below, we give a brief description of the partici-
pating systems, listed in alphabetical order, with
reference to the corresponding task description pa-
per. The numbers in square brackets refer to the
official ranking of the target system on the individ-
ual subtasks.

1213Li (Peiguang et al., 2021)[ST3: 3rd] wused
RoBERTa and ResNet-50 as feature extractors for
texts and images. They used a label embedding
layer with a multi-modal attention mechanism to
measure the similarity between labels with the
multi-modal information and fused features for la-
bel prediction.

AIMH (Messina et al., 2021) [ST1: 5th, ST3:
4th] used transformer-based models and pro-
posed visual-textual transformers to mainly ad-
dress subtask 3 (ST3). For the visual part, they
used ResNet50, and for the textual part, they used
BERT. The same network used the multi-label clas-
sification on text (ST1) by using only the textual
part of the network.

Alpha (Feng et al., 2021) [ST1:2nd, ST3:1st]
team pre-trained a transformer using text with vi-
sual features. They extract grid features, using
ResNet50, and salient region features, using BUTD.
They used grid features to capture the high-level se-
mantic information found in the images. Addition-
ally, they used salient region features to describe ob-
jects and to caption the event present in the memes.
For ST1, they combined the text and the text rep-
resentation of the visual features, and trained De-
BERTa. For ST3, they built an ensemble of fine-
tuned DeBERTA+ResNet, DeBERTA+BUTD, and
ERNIE-VIL.

HOMADOS (Kaczynski and Przybyta, 2021)
[ST2: 2nd] used a multi-task learning (MTL)
approach with additional datasets such as the PTC
corpus from SemEval-2020 (Da San Martino et al.,
2020a), and a fake news corpus (Przybyla, 2020).
The model was trained using BERT followed by
several output layers, which solve auxiliary tasks
of propaganda detection and credibility assessment
in two distinct scenarios: sequential and paral-
lel MTL, effectively accelerating the training pro-
cess. The final submission used a parallel MTL
approach on the propaganda detection of SemEval-
2020, which ranked second.
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TeamFPAI (Xiaolong et al., 2021) (ST2: 3rd)
formulated the task as a question answering one in
a machine reading comprehension (MRC) frame-
work, which achieved better results compared to
an ensemble-based approach (Liu et al., 2018).
Moreover, data augmentation and loss design tech-
niques were also explored to alleviate the problem
of data sparseness and imbalance. Their system
was ranked 3rd in the final evaluation phase.

CSECUDSG (Hossain et al., 2021) (ST1: 13th,
ST2: 6th, ST3: 6th) participated in all three sub-
tasks. For ST1, they used a majority vote late fu-
sion on top of logistic regression, decision tree, and
fine-tuned DistilBERT models. For ST2, they refor-
mulated the task as one of multi-label classification,
where a pre-trained BERT model was used to de-
sign binary classifiers for each technique in a multi-
label classification setting. For ST3, they used a
majority voting late fusion on top of fine-tuned Dis-
tilBERT, ResNet50, and a predicted label from an
early fusion model. The early fusion model con-
sisted of features from (i) multi-kernel CNN on top
of the LSTM model with word embeddings includ-
ing (if) word2vec (Mikolov et al., 2013), (iii) word
embeddings fine-tuned FastBERT (Liu et al., 2020),
(iv) RoBERTa, (v) sentence embeddings from Fast-
BERT, (vi) image features from YouTube-8M (Abu-
El-Haija et al., 2016), and (vii) multimodal features
from VisualBERT (Li et al., 2019).

LeCun (Dia et al., 2021) [ST1: 6th] trained
five models and combined them in an ensemble.
Initially, they pre-processed text using stemming.
Later, they trained DebERTA and RoBERTa mod-
els with augmented data using synonym replace-
ment, random insertion, random swap, random
deletion and back-translation. They first trained
the five models separately, and then they fine-tuned
the ensemble on the official non-augmented data.

LIIR (Ghadery et al., 2021)[ST3: 8th] used
data augmentation through back-translation and
CLIP to obtain image and text representations,
which were then fed to a chained classifier that uses
the correlations between the output techniques.

LT3-UGent (Singh and Lefever, 2021) [ST3:
14th] participated in subtask 3 only. They used
Multimodal Compact Bilinear Pooling to combine
representations from ResNet-51 and BERT. They
further fine-tuned on the PTC corpus (Da San Mar-
tino et al., 2020a).



MinD (Tian et al., 2021) [ST1: 1st, ST3: 2nd]
used five pre-trained models for ST1: BERT,
RoBERTa, XLNet, DeBERTa, and ALBERT.
They first fine-tuned them on the PTC cor-
pus (Da San Martino et al., 2020a), and then on
the training data. For the final prediction, they
averaged the probabilities of the models. They
also used a post-processing rule: a bigram that
appeared more than three times was flagged as a
Repetition. The system for ST1 was also used for
ST3, combined with (i) ResNet-34, a face recogni-
tion system, (ii) OCR-based positional embeddings
for text boxes in the image, and (iii) Faster R-CNN
to extract region-based image features. They com-
bined the textual and the visual representations by
averaging their probabilities. Other multimodal
fusion strategies included concatenation of the rep-
resentation and mapping them to the space using a
multilayer perceptron.

NLP-IITR (Gupta and Sharma, 2021) [ST1:
15th] used an ensemble that included included
fine-tuned RoBERTa, BERT, and three additional
models. They further used pre-processing. To
tackle data scarceness for some rare labels, they
used data augmentation using back-translation.

NLyticsFKIE (Pritzkau, 2021) [ST1: 9th, ST3:
13th] used RoBERTa as a text encoder in ST1
and ST3. For ST1, they used RoBERTa’s output
to build a classifier to predict each label separately.
For ST3, they still used ROBERTa to encode the
text and a VGG-16 layer to encode the image. They
used multiple copies of a cross-modality encoder
that outputs an encoding of the image features with
respect to the text features, and vice versa. The
concatenation of the two cross-encoders’ outputs
was then passed through a residual layer followed
by layer normalization.

Volta (Gupta et al., 2021) [ST1: 3rd, ST2: 1st,
ST3: 5th] used a combination of transformers
for all subtasks. For ST1, they used RoBERTa’s
[CLS] token, which they fed to a feed-forward neu-
ral network, and example weighting to take care
of class imbalance. For ST2, they predicted token
classes by considering the output of each token em-
bedding as obtained by RoBERTa. To account for
subwords’ class, they merged each subword belong-
ing to the same token and assigned the union of the
subwords’ labels. For ST3, they separately encoded
the textual features (extracted using RoOBERTa) and
the multi-modal features (extracted using UNITER,
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VisualBERT, and LXMERT). This layer’s input
was a sequence of textual subwords and visual to-
kens extracted by keeping the top 36 regions of
interest as returned by Faster R-CNN. A concatena-
tion of the two different [CLS] tokens was then fed
into an MLP, and weighted labels were used with a
cross-entropy loss.

WVOQ (Roele, 2021) [ST2: 5th] used a novel
approach to ST?2 consisting of adopting an encoder—
decoder strategy. The encoder encodes the passage,
while the decoder generates a marked version of
the input, where the markup outlines the various
spans along with the classes they belong to. In
this way, the system performed simultaneous span
detection and classification. The encoder—decoder
used a specialization of BART.

YNU-HPCC (Zhu et al., 2021) [ST1: 12th, ST2:
7th, ST3: 11th] For ST1, they used a CNN on
top of ALBERT and fine-tuned the model for multi-
label classification. For ST2, each propaganda tech-
nique was considered as an independent task, and
features were extracted from the pre-trained BERT
model. Subsequently, the problem was addressed
as a multi-task sequence labeling one, and the re-
sults for each task were combined. For ST3, a
multi-modal network was used, where embeddings
from textual and visual networks were concate-
nated, which was followed by a fully connected
layer. For the text, the same approach was used for
ST1, and for the image, ResNet and VGGNet were
used for image feature extraction.



Alpha at SemEval-2021 Task 6: Transformer Based Propaganda
Classification

Zhida Feng!? *, Jiji Tang' * Jiaxiang Liu', Weichong Yin!, Shikun Feng!, Yu Sun', Li Chen?
'Baidu Inc., Beijing, China
*Wuhan University of Science and Technology, China
{fengzhida, tangjiji, livjiaxiang, yinweichong, fengshikunO1, sunyu02} @baidu.com
chenli@wust.edu.cn

Abstract

This paper describes our system participated
in Task 6 of SemEval-2021: this task focuses
on multimodal propaganda technique classi-
fication and it aims to classify given image
and text into 22 classes. In this paper, we
propose to use transformer-based (Vaswani
et al., 2017) architecture to fuse the clues
from both image and text. We explore two
branches of techniques including fine-tuning
the text pre-trained transformer with extended
visual features and fine-tuning the multimodal
pre-trained transformers. For the visual fea-
tures, we experiment with both grid features
extracted from ResNet(He et al., 2016) net-
work and salient region features from a pre-
trained object detector. Among the pre-trained
multimodal transformers, we choose ERNIE-
ViL (Yu et al., 2020), a two-steam cross-
attended transformers model pre-trained on
large-scale image-caption aligned data. Fine-
tuning ERNIE-ViL for our task produces a
better performance due to general joint mul-
timodal representation for text and image
learned by ERNIE-ViL. Besides, as the distri-
bution of the classification labels is extremely
unbalanced, we also make a further attempt
on the loss function and the experiment re-
sults show that focal loss would perform better
than cross-entropy loss. Lastly, we ranked first
place at sub-task C in the final competition.

1 Introduction

Propaganda is usually adopted to influence the au-
dience by selectively displaying the facts to encour-
age specific synthesis or perception, or using the
loaded language to produce emotion rather than
emotion itself. It was often associated with mate-
rials prepared by governments in the past century.
In the internet era, activist groups, companies, reli-
gious organizations, the media, and individuals also

indicates equal contribution.
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produce propaganda, and sometimes it can reach
very large audiences (Da San Martino et al., 2020).
With the recent research interest in detecting “fake
news”, the detection of persuasion techniques in
the texts and images has emerged as an active re-
search area. Most previous work like (Patil et al.,
2020) and (Chauhan and Diddee, 2020) have per-
formed the analysis at the language content level
only. However, in our daily life, memes consist of
images superimposed with texts. The aim of the
image in a meme is either to reinforce a technique
in the text or to convey one or more persuasion
techniques.

SemEval-2021 Task6-c offers a different per-
spective, multimodal multi-label classification
(Dimitrov et al., 2021), identify which of the 22
techniques are used both in the textual and visual
content of memes. Since memes are combinations
of texts and images, for this propaganda classifi-
cation task, we proposed to use transformer-based
architecture to fuse the clues from both linguis-
tic and visual modalities. Two branches of fine-
tuning techniques are explored in this paper. First,
a text pre-trained transformer is applied with ex-
tended visual features. Specifically, we initialize
the transformer with pre-trained text transformers
and fine-tune the model with extended visual fea-
tures including grid features(e.g., ResNet(He et al.,
2016)) and region features(e.g., BUTD (Anderson
et al., 2018)) from an image feature extraction net-
work and an object detector respectively. Second,
pre-trained multimodal transformers from ERNIE-
ViL(Yu et al., 2020) are used due to its better mul-
timodal joint representations characterizing cross-
modal alignments of detailed semantics.

Our contributions are three-folds:

* We propose to use transformer architecture
for fusing the visual and linguistic clues to
tackle the propaganda classification task.
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* We find that the multimodal pre-trained trans-
formers work better than using text pre-trained
transformers with visual features. And the ex-
periment results have shown that fine-tuning
the ERNIE-ViL model could achieve state-of-
the-art performance for this task.

¢ Our ensemble result of several models obtains
the best score and ranks first in Semeval-2021
Task 6-c multimodal classification task.

2 Related work

2.1 Text Transformers

Transformer network (Vaswani et al., 2017) is first
introduced in neural machine translation in which
encoder and decoder are composed of multi-layer
transformers. After then, pre-trained language
models, such as BERT (Devlin et al., 2018) and
GPT(Radford et al., 2018), adopting transformer
encoder as the backbone network, have signifi-
cantly improved the performance on many NLP
tasks. One of the main keys to their success is the
usage of transformer to capture the contextual infor-
mation for each token in the text via self-attention.
Later text pre-training works, such as ERNIE2.0
(Sun et al., 2020), RoBERTa (Liu et al., 2019) and
XLNET (Yang et al., 2019) are all shared the same
multi-layer transformer encoder and mainly put
their effort on modification of pre-training task.

2.2 Visual Feature Extraction

Visual feature extractors are mainly composed of
plenty of convolutional neural networks (CNN)
since CNN has a strong ability to extract complex
features that express the image with much more de-
tails and learn the task-specific features much more
efficiently. Existing works can be divided into the
following two types which are based on two differ-
ent image inputs: image grids and object regions.
Some of those methods, such as VGG (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016)
operate attention on CNN features corresponding
to a uniform grid of equally-sized image regions.
While the other works like Faster R-CNN (Ren
et al., 2015) operate a two-stage framework, which
firstly identifies the image regions containing the
specific objects, and then encodes them with multi-
layer CNNGs.

2.3 Multimodal Transformers

Inspired by text pre-training models (Devlin et al.,
2018), many cross-modal pre-training models for

vision-language have been proposed. To integrate
visual features and text features, recent multimodal
pre-training works are mainly based on two vari-
ables of transformers. Some of them, like UNITER
(Chen et al., 2019) and VILLA (Gan et al., 2020)
use a uniform cross-modal transformer modelling
both image and text representations. As fine-tuning
on multimodal classification tasks, such as the
Visual-question-answering (VQA) (Antol et al.,
2015) task (a multi-label classification task), uni-
fied transformers take textual and visual features
as the model input, treat the final hidden state of
hicrs) as the vision-language feature. While the
others like Vilbert (Lu et al., 2019), LXMERT (Tan
and Bansal, 2019), ERNIE-ViL (Yu et al., 2020)
are based on two-stream cross-modal transformers,
which bring more specific representations for im-
age and text. These two transformers are applied
to images and texts to model visual and textual
features independently and then fused by a third
transformer in a later stage. The fusion of the final
hidden state of hjcrs) and hjry) are used to do
the classification.

3 Approach

We propose to use a transformer encoder to fuse
the clues from both linguistic and visual modalities
and our approach is summarized in two branches,
the first one is fine-tuning a text pre-trained trans-
former with extended visual features, and the other
one is fine-tuning a multimodal pre-trained model.
For the first one, we try two different sets of vi-
sual features, grid features based on equally-split
patches of the image and salient region features
based on an object detector. For the second one,
a SoTA multimodal model, ERNIE-VIL (Yu et al.,
2020) is applied with a multi-label classification
loss. A unified framework for the two branches is
shown in Figure 1. We will introduce more details
in this section.

3.1 Text Pre-trained Transformer with
Visual Features

Our model consists of three parts: a) input feature
extractor, b) feature fusion encoder, c¢) classifica-
tion encoder.

For the first part, the text is tokenized into sub-
words to lookup the embedding while the image is
processed by a feature extractor, such as a grid fea-
ture processor or a salient region feature processor
to convert into vision embeddings. The input em-
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Figure 1: A unified framework used for the multimodal classification task.

beddings are combinations of image embeddings
and text embeddings and represented as

hicrsys htys s by Bisepys Piys -+« 5 R s RisEP)

where the hcrs), hsEp] are the vector represen-
tations of special tokens [C'LS] and [SE P] respec-
tively. The [C'LS] token is inserted in the begin-
ning of the sequence, which act as an indicator of
the whole text, specifically, it is used to perform
complete text classification. The [SEP] is a token
to separate a sequence from the subsequent one
and indicate the end of a text. hy,,--- , hy,, are the
text embeddings, and h;,, - - - , h;,, are the vision
embeddings. For the vision embeddings part, grid
features and salient region features are used.

Grid Features Convolutional neural networks
have potent capabilities in image feature extrac-
tion. The feature map obtained after the image
goes through multiple stacked convolution layers
contains high-level semantic information. Given an
image, we can use a pre-trained CNN encoder, such
as ResNet, to transform it to a high-dimensional
feature map and flatten each pixel on this feature
map to form the final image representation.

Salient Region Features Object detection mod-
els are widely used to extract salient image regions
from the visual scene. Given an image, we use a
pre-trained object detector to detect the image re-
gions. The pooling features before the multi-class
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classification layer are utilized as the region fea-
tures. The location information for each region is
encoded via a 5-dimension vector representing the
fraction of image area covered and the normalized
coordinates of the region and then is projected and
summed with the region features.

For the second part, the transformer encoder
fuses the input text and image embedding, and
finally a cross-modal representation of size D is
achieved for this sequence.

The last part of our model is the classification
encoder and loss function. After obtaining the en-
coding representation of the image and the text
from the transformer encoder, we send the repre-
sentation of [C'LS| through the classification head,
which is consisted of a fully connected layer and
a Sigmoid activation for predicting the score of
each category and loss with the ground truth.

3.2 Multimodal Pre-trained Transformer

Different from a single-modal pre-trained text trans-
former described above, a multimodal pre-trained
transformer for vision-language can learn more ef-
ficient presentations. In this part, a SOTA model,
ERNIE-ViL, is applied.

For the generation of input embedding of text
and image, it is mostly the same as the procedure
described in the previous section. Differences are
two-folds. First, for the vision feature, a faster
R-CNN encoder(Anderson et al., 2018) is used to
detect the salient regions while the position infor-



mation is taken into consideration. Second, The
text and the visual input embedding is represented
as
h[C’LS]a Py s h[SEP}7 h[[MG}? iy -+ vh[im]

where there is a new token h(;ysc) represents the
feature for the entire image.

For the feature fusion part, ERNIE-ViL utilized
a two steam cross-modal transformer to fuse the
multimodal information. For more details, you may
refer to (Yu et al., 2020).

3.3 Criterion

In this task, there are 22 classes and the distribu-
tion of positive and negative samples is extremely
unbalanced. To solve this problem, we use the fo-
cal loss to improve the imbalance of positive and
negative samples. For i-th class

I _ {a(l —p)7log(p)
class; —
' (1—a)plog(l —p)

if y=1

otherwise

where y is the ground truth; p is model prediction,
which is the confidence score of category ¢; v and vy
are hyper-parameters, « is used to control the loss
weight of positive and negative samples, and +y is
used to scale the loss of difficult and easy samples.

4 Experiment

4.1 Implementation Details

In this task, we choose DeBERTa-large+ResNet50,
DeBERTa-large+BUTD and ERNIE-VIL as the fi-
nal models. We performed all our experiments on
a Nvidia Tesla V100 GPU with 32 GB of mem-
ory. The models are trained for 20 epochs and we
pick the model which has the best performance on
validation set.

For the DeBERTa transformer, the Adam opti-
mizer with a learning rate of 3e-5 is used. Also, we
have applied the linear warm strategy for the learn-
ing rate. We set o = 0.9 and v = 2.0 for the focal
loss. To ensure robustness under a small dataset,
we set the threshold to 0.5 instead of performing a
threshold search strategy on the validation set. For
the pre-trained object detector, we choose Faster R-
CNN (Anderson et al., 2018) and name the region
features as BUTD in the experimental results.

For the ERNIE-ViL transformers, we use the
same input prepossessing methods as (Yu et al.,
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Positive(%) Negative(%)
train | 1745(11.55%) 13369(88.45%)
dev | 183(13.20%)  1203(86.80%)
test | 523(13.49%) 3877(86.51%)

Table 1: Statistics of the positive and negative distribu-
tion of the dataset.

Loss Function | Precision Recall F1
Cross-entropy 76.12 55.74 64.35
focal loss 71.18 66.12 68.56

Table 2: Results of different loss functions.

2020) and choose the large scale model' pre-
trained on all the four datasets. We finetune on
our multimodal classification dataset with a batch
of 4 and a learning rate of 3e-5 for 20 epochs.

4.2 Experimental Analysis
4.2.1 DeBERTa with Visual Features

Unbalanced Distribution There are 687/63/200
examples includes 22 categories in the
train/validation/test datasets respectively.  As
shown in Table 1, the distribution of the classes is
extremely unbalanced. If the cross-entropy loss is
adopted directly during model training(the visual
features are from ResNet50), the model output may
have a greater chance of predicting the majority
class(negative class in this task), which results in a
lower recall. To solve this problem, the focal loss
is applied. From Table 2, it can be seen that the
result with focal loss performs much better than
with cross-entropy loss respective to the F1 score.

Visual Features We evaluate the improvement
brought by extended visual features and explore
different types of visual feature extractors, e.g.,
from pre-trained image classification networks or
pre-trained object detectors. The results are illus-
trated in Table 3. Firstly, it can be seen that the
final score is significantly improved with mixing
image features compared with using only text fea-
tures (Row “w/o vision feature”), which indicates
that the visual information is significantly benefi-
cial for recognizing cross-modal propaganda tech-
niques. Then, for features extracted from ResNet,
we find that the depth of the network affects the
results, especially on the validation dataset, with
the best result from ResNet50. The reason may be

the pre-trained model is downloaded from
https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-vil



dev-F1 test-F1
w/o vision feature | 65.73 55.10
ResNet18 65.92 55.59
ResNet50 68.56 55.96
ResNet152 65.91 55.63
BUTD 66.29 56.21

Table 3: The results of using features extracted differ-
ent networks.

region numbers | Dev F1 Test F1
5 64.91 54.00
10 66.67 54.60
36 67.40 57.14
100 67.45 56.07

Table 4: Results comparisons with different object re-
gion number inputs.

that the shallower network has insufficient feature
extraction capabilities, and the deeper network is
very difficult to train. Finally, the region features
from the pre-trained object detector(Row “BUTD”)
work best with an improvement of 0.25 on the test
dataset compared to ResNet50 features.

4.2.2 ERNIE-ViL

We compare the performance between ERNIE-ViL
with different object region inputs, which are num-
ber dynamic ranges between 0 and 36 with a fixed
confidence threshold of 0.2 and constantly fixed
5, 10, or 100 boxes. The results are illustrated in
Table 4.

Results show that a larger box number can al-
ways achieve better performance within a certain
range. Utilizing 0-36 boxes leads to huge perfor-
mance improvement with a 3.14 and 2.54 on Test-
F1 compared with using constant 5 boxes and con-
stant 10 boxes respectively. It can be concluded
that more object regions in a certain range can
provide more useful information. However, the per-
formance with 100 boxes is worse than that with
0-36 boxes. The reason may lie in that there are
not enough objects in the task sample. The ex-

Models Dev-F1 Test-F1
DeBERTa + ResNet50 | 68.56 55.96
DeBERTa + BUTD 66.29 56.21
ERNIE-VIL 67.40 57.14
Ensemble 69.12 58.11

Table 5: Final ensemble result.
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tracted low-confidence object regions may mislead
the multimodal model, therefore fuse useless or
harmful visual features with text features. As a
result of that, brings a performance decrease on the
final score.

4.3 Ensemble Results

The performance comparison between our two
branches of approach is shown in Table 5. It can
be concluded that fine-tuning the multimodal pre-
trained transformer (Row “ERNIE-ViL”) works
better than fine-tuning text pre-trained transformers
with visual features (Row “DeBERTa + BUTD”).
Overall, fine-tuning ERNIE-ViL has achieved state-
of-the-art performance for this multimodal classifi-
cation task.

Since the training dataset is small, we train mul-
tiple models under various model structures and
different parameter configurations to take full ad-
vantage of the training dataset and increase the
diversity of models. We choose three models of all
model structures and all parameter configuration
that performs best on the validation set and then
ensemble them together. After performing ensem-
ble strategy on those three models, both validation
and test scores increases. As a result of that, we
achieved a 58.11 score at F1 in the test set and
ranked first place in the task competition.

5 Conclusion

We explore two branches to fine-tune pre-trained
transformers to jointly modelling texts and images
for the propaganda classification task. The first
branch, fine-tuning pre-trained text transformer
with visual feature, obtain significant performance
improvement compared to text classification which
validate the importance of visual clues for this task.
Visual features from object detector yield slightly
better results than grid features from ResNet. Im-
portantly, fine-tuning pre-trained multimodal trans-
formers obtain the best single model performance.
And this improvement further validates the claim
made by previous work that vision-language pre-
training learned general joint representation needed
for multimodal tasks. Besides, since the distribu-
tion of the classification labels is extremely unbal-
anced, we also make a further attempt on the loss
function. Training models with focal loss can lead
to a huge performance improvements than training
with cross entropy loss.
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Abstract

SemEval 2021 Task 7, HaHackathon, was the
first shared task to combine the previously sep-
arate domains of humor detection and offense
detection. We collected 10,000 texts from
Twitter and the Kaggle Short Jokes dataset,
and had each annotated for humor and offense
by 20 annotators aged 18-70. Our subtasks
were binary humor detection, prediction of
humor and offense ratings, and a novel con-
troversy task: to predict if the variance in
the humor ratings was higher than a specific
threshold. The subtasks attracted 36-58 sub-
missions, with most of the participants choos-
ing to use pre-trained language models. Many
of the highest performing teams also imple-
mented additional optimization techniques, in-
cluding task-adaptive training and adversarial
training. The results suggest that the partic-
ipating systems are well suited to humor de-
tection, but that humor controversy is a more
challenging task. We discuss which models
excel in this task, which auxiliary techniques
boost their performance, and analyze the er-
rors which were not captured by the best sys-
tems.

1 Introduction

Humor is a key component of many forms of com-
munication, and so it is commanding an increasing
amount of attention in the natural language process-
ing (NLP) community (Attardo, 2008; Taylor and
Attardo, 2017; Amin and Burghardt, 2020). How-
ever, like much of figurative language processing,
humor detection requires a different perspective on
several traditional NLP tasks. For example, the
problem of reducing lexical or syntactic ambigu-
ity differs when ambiguity is key to some humor
mechanisms. Tackling these challenges has the po-
tential to improve many downstream applications,
such as content moderation and human-computer
interaction (Rayz, 2017).
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However, humor is a subjective phenomenon,
which evokes varying degrees of funniness in its
audience, while also provoking other reactions such
as offense, in certain listeners. The perception of
humor is known to vary along the lines of age,
gender, personality and other factors (Ruch, 2010;
Kuipers, 2015; Hofmann et al., 2020). That hu-
mor can also evoke offense may be partly due to
differences in acceptability judgements across de-
mographic groups, and may also be in part due the
use of humor to mask hateful or offensive content
(Sue and Golash-Boza, 2013). Lockyer and Picker-
ing (2005) expand on this by highlighting that it is
common for societies to explore the link between
humor and offense, free speech and respect.

HaHackathon is the first shared task to combine
humor and offense detection, based on ratings from
a wide variety of demographic groups. Task partic-
ipants were asked to detect if a text was humorous
and to predict its average ratings for both humor
and offense. We also introduce a novel humor con-
troversy detection task, which represents the extent
to which annotators agreed/disagreed with each
other over the humor rating of a joke. A humorous
text was labelled as controversial if the variance
in the humor ratings was higher than the median
humor rating variance in the training set.

2 Related Work

Computational humor detection is a relatively es-
tablished area of research. Taylor and Mazlack
(2004) were one of the first to explore recognising
wordplay with ngrams. Mihalcea and Strapparava
(2005; 2006) experimented with 16,000 one-liners
and 16,000 non-humorous texts, using a feature-
driven approach. More recently, Zhang and Liu
(2014) turned to online domains, by detecting hu-
mor on Twitter with a view to improving down-
stream tasks such as sentiment analysis and opinion
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mining.

Workshops on humor detection have become
more prominent with each shared task, and have
attracted many new researchers to the field. Se-
mEval 2017 (Potash et al., 2017) featured Hashtag
Wars, a humor task with a unique data annotation
procedure. This task featured tweets that had been
submitted in response to a number of comedic hash-
tags released by a Comedy Central program. The
top-10 response tweets were selected by the show’s
producers and the winning tweet was selected by
the show’s audience. Based on these labels, (top-10,
winning tweet, and other) the sub-tasks required
competitors to predict the labels, and to predict
which text was funnier, given a pair tweets. The
winning systems were split between feature-driven
support vector machines (SVMs) and recurrent neu-
ral networks (RNNs).

The first Spanish-language humor detection chal-
lenges were the HAHA tasks in 2018 (Castro et al.,
2018) and 2019 (Chiruzzo et al., 2019). These
collected data from more than fifty different humor-
ous Twitter accounts, representing a wide variety
of humor genres. The sub-tasks asked competitors
to predict if a text was humorous, and to predict
the average funniness score given to the humorous
texts. In the first year, the top teams used evolution-
ary algorithms to optimize linear models like Naive
Bayes, as well as bi-directional RNNs. In the sec-
ond year, the top teams started to use pre-trained
language models (PLMs) like BERT (Devlin et al.,
2018) and ULMFit (Howard and Ruder, 2018).

Most recently, Hossain et al. (2020) generated
data for their task by collecting news headlines,
and asking annotators to make a micro-edit to the
headline to render it funny. These edited headlines
were rated for funniness by other annotators. The
sub-tasks were to rank the funnier of two edits, and
to predict the average funniness score given by the
annotators. The winning teams used ensembles of
various PLMs, and RNNs.

3 Data
3.1 Data Collection

In order to examine naturally-occurring humorous
and offensive content in English, we sourced 80%
of our data from Twitter. The remaining 20% of
texts, we selected from the Kaggle Short Jokes
dataset! for the following reasons:

"https://www.kaggle.com/
abhinavmoudgil95/short-jokes

Target Keywords

She, woman, mother, girl, b*tch, he,

Sexism man, blond, p*ssy, hooker, slut,
wh*re
Fat, thin, skinny, tall, short, bald,
Body
amputee, redneck
Mexico, Mexican, Ireland, Irish,
Indian, Pakistan, China, Chinese,
Origin Polish, German, France, Welsh,
Vietnam, Asian, American, Russia,
Arab, Jamaican, homeless
Sexual Gay, lesbian, d*ke, f*ggot, homo,
Orientation aids, LGBT, trans, tr*nny
. Black, Africa, African, wop, n*****
Racism .
white people,
Ideology Feminism, leftie/lefty
Muslim, Islam, Jew, Jewish, Catholic,
Religion Protestant, Hindu, Buddhist, ISIS,
Jesus, Mohammed
Wheelchair, blind, deaf, r*tard,
Health Steven Hawking, Stevie Wonder,

Helen Keller, dyslexic

Table 1: Targets and Sample Keywords

* Humor Quota: To ensure that a sample of
texts in the dataset were intended to be humor-
ous. Our annotation procedure asks raters if
the intention of the text is to be humorous (as
evidenced by the the setup/punchline struc-
ture, or absurd content). As the texts were
sourced from the /r/jokes and /r/cleanjokes
subreddits, we were confident that the inten-
tion of the text was to be humorous.

¢ Traditional Humor Quota: We wanted to
represent jokes which have a traditional setup
and punchline structure. Twitter humor is
known to use a number of unique features
(Zhang and Liu, 2014), which may not be
equally recognisable to all annotators and so
we wanted to have a selection of convention-
ally recognisable texts in order to gauge what
the audience response was, and to use as a
quality check for annotators (see below).

* Offense Quota: To ensure that a proportion
of texts were likely to be considered offensive
by the annotators, half of the texts selected
according to the procedure below.

To select potentially offensive texts, we used
some of the keywords associated with Silva et al.’s
(2016) sub-categories of hate speech in social me-
dia, and queried the Kaggle dataset for these.



Text

Keyword = Target

A fat woman just served me at McDonalds and said ’Sorry about the wait”.

Yes

I replied and said, ”Don’t worry, you’ll lose it eventually”.

Don’t worry if a fat guy comes to kidnap you...
I told Santa all I want for Christmas is you.

No

Table 2: Sample of potentially offensive and non-offensive texts

From these texts, we identified the target, or butt,
of the joke and made the assumption that a text
could be potentially offensive to our annotators
if the hate speech keyword was the target of the
joke. We selected 1,000 texts this way. We also
assumed that the text would likely be considered
not offensive if the keyword was mentioned, but
was not the target and selected a further 1,000 texts
like this. This was to reduce the probability that
a humor/offense detection system would learn to
classify texts simply based on the presence of a
hate speech keyword.

3.1.1 Selection of Twitter texts

In order to avoid introducing annotation confounds
such as a lack of cultural or linguistic knowledge
(Meaney, 2020), we selected the texts and the an-
notators from the same region — the US. When
sourcing the humorous Twitter data, we selected
accounts according to whether they were based in
the US and posted almost exclusively humorous
content (e.g. @humurouslliners, @conanobrien).
For the non-humorous Twitter accounts, we elected
not to use news sources, e.g2. CNN due to stylistic
differences between news and humor (Mihalcea
and Strapparava, 2006) making them easy to differ-
entiate. The non-humorous accounts we selected
centred on US celebrities (e.g. @thatonequeen,
@Oprah), organisations that represent the targets
of hate speech groups (e.g. @BlkMentalHealth, in
order to increase the occurrences of the keywords in
a non-humorous and non-offensive context), trivia
accounts (e.g. @UberFacts, as the question and
answer structure is similar to some types of setup
and punchline) and tv/movie quotation accounts
(e.g. @MovieQuotesPage, in order to resemble the
dialogue-type jokes that are common on Twitter).
Please see the appendix for a comprehensive list of
accounts.

Using the Twitter API, we crawled up to 2,000
tweets from each account, and removed retweets
and texts containing links. We also removed tweets
that contained references to US Politics, the pan-
demic, or TV show characters as topical humor can

be difficult to understand once the event it is tied
to has passed (Highfield, 2015). From an initial
76,542 texts, we were left with 8,000 tweets. From
these, we removed hashtags that labelled the texts
as humorous, e.g. #joke, and using Ekphrasis (Bazi-
otis et al., 2017) we split up any remaining hashtags
into their constituent words so as to make them less
easy to differentiate from the Kaggle texts.

3.2 Annotation

We recruited annotators from the Prolific’ plat-
form. Participants were recruited based on their
self-reported native English-speaker status, US cit-
izenship, and membership of one of the following
age groups: 18-25, 26-40, 41-55, 56-70. Each text
was annotated by 5 members of each age group,
giving a total of 20 annotations per text. Batches
comprised 100 texts, and annotators answered the
following questions:

1. Is the intention of this text to be humorous?
2. Is this text generally offensive?
3. Is this text personally offensive?

In the case that a user answered ‘yes’ to any of
these questions, they were asked to rate the humor
or offense from 1-5 (see figure 1). For the humor
rating, the user was also given the option to select
‘I don’t get it’, meaning that they recognised by
the structure or content that the text was intended
to be humorous, but that they were unsure of why
the text was funny. This is distinct from a rating
of 1, which is a recognition of humor, with little
appreciation for it.

The annotator instructions outlined that the first
annotation question was intended to determine the
genre of the text, and should be distinguished from
funniness. Annotators were instructed to look at
the structure of the joke, e.g. setup and punchline,
or the content of the joke, e.g. absurdity, in order
to determine if the intention was to be humorous.

https://www.prolific.co/
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In terms of offense, we posed two annotation
questions in order to avoid ambiguity about which
type of offense was meant. We instructed annota-
tors to consider as generally offensive, a text which
targets a person or group of people, simply for be-
longing to a certain group. Alternatively, they could
select yes for generally offensive if they thought
that a large number of people were likely to be
offended by the joke. The last question asked an-
notators if they felt personally offended by the text,
or if they felt offended on another person’s behalf.
We used only the generally offensive ratings in this
task.

Tweet 1 /100

v
Saying "whoa girl" like you're talking to a horse, is not
a good way to calm your wife down when you're
arguing.

Is the intention of this text to be humorous?

Yes No

O e g6 g &

Idon't
getit
Is this text generally offensive?

Yes No
O 6 &8 o oo
Do you find this text personally offensive?

Yes No

Next

Figure 1: Screenshot from the tool used to annotate the
texts.

3.3 Quality Control and Data Discarded

Each batch of 100 texts comprised approximately
20% of texts from Kaggle. As the majority of
these have a setup and punchline structure, or other
recognisable humor traits, we used these as a qual-
ity control. If an annotator did not label at least 60%
of these as humor, it was clear that they they did not
follow the instructions for the first question, and
annotated based on perceived humor, as opposed
to observation of humorous characteristics. We
therefore discarded these submissions and replaced
the annotators. Of 2,364 annotation sessions (e.g.

batches of 100), 301 submissions were discarded
and replaced, and the ratings of the remaining 2,062
annotation sessions make up the dataset. Of these,
1,569 annotators rated one batch of texts with an
additional 492 doing a second batch.

3.4 Data Statistics

Post-annotation, we classed a text as humorous
if the majority of its twenty votes labelled it as
such. In a small number of cases where votes were
tied, we assigned the label humorous. For the texts
labelled humorous, we calculated the average hu-
mor score, which was the average of the numeri-
cal votes. “No” ratings did not count towards this
value, and votes of “I don’t know” were counted
as 0, because this was deemed to be a recognizable
humor structure, but one in which the humor was
not successful.

Label Affirmative Negative ﬁve?age
ating
Humorous 6179 3821 2.24
Controversial 3052 3017 N/A
Offensive 5754 4246 1.02

Table 3: Data Statistics

The humor controversy label was based on
whether the variance between the humor ratings
was higher or lower than the median variance in
the training set (median s? = 1.79). The offense
rating was the average of all ratings given, includ-
ing ‘no’ as 0. Table 3 summarises the labels in
the dataset, and in the case of offense, affirmative
indicates that the rating is higher than 0.

Ratings Krippendorff’s o
Class label 0.736
Humor rating 0.124
Offense rating 0.518

Table 4: Inter-annotator agreement (Krippendorff’s o)
for ratings used in subtask la, 1b and 2

The dataset was split 80:10:10 for training, devel-
opment and test sets. The texts and annotations will
continue to be available on the Codalab website,
and the tweet ids, and usernames will be retained
for non-commercial research use, in line with the
Twitter Academic Developer Policy.

4 Task Description and Evaluation

‘We divided our tasks into four subtasks.
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Task 1a: Humor Detection

This was a binary classification task to detect,
given a text, if the majority label assigned to it was
humorous or not. This was evaluated using F-score
for the humorous class and overall accuracy

Accuracy = %

Precision x Recall

913 — #Fy =2
+ i ¥ Precision + Recall

Task 1b: Humor Rating Prediction

This was a humor rating regression task. Partic-
ipants predicted the average rating given to texts
from 0-5. Texts which had not been labelled as
humorous by our annotators did not have a hu-
mor rating, and predictions for these texts were
not counted towards the final score by our scoring
system. The metric for this task was root mean
squared error (RMSE).

RMSE =

Task 1c: Humor Controversy Detection

This task was also a binary classification task
to predict whether the humor ratings given to the
text showed it to be controversial or not. This was
based on the variance in the ratings being higher
or lower than the median variance in the training
set humor ratings. This was also evaluated using
F-score and accuracy.

Task 2: Offense Detection

This was an offense rating regression task. Un-
like the humorous task, this rating was not depen-
dent on the text having been labelled as humorous.
All annotator ratings were considered, and each
text had a rating from 0-5. The metric was RMSE.

S Benchmark Systems

We created simple, linear benchmarks using sklearn
(Pedregosa et al., 2011) for the classification tasks
which consists of a Naive Bayes classifier with bag
of words features. For the regression tasks, we used
a support vector regressor with term-frequency in-
verse document frequency features.

We also built a BERT-base classifica-
tion/regression model which was run for
one epoch, with a batch size of 16 and a learning
rate of 5e-5, for all sub-tasks. As this system
out-performed the linear benchmarks on all
sub-tasks, we refer to this as the baseline in the
rest of the paper.

109

6 Participant Systems

6.1 Overview

In total 63 teams submitted systems for the different
tasks: 58 for task la, 50 for task 1b, 36 for task
1c and 48 for task 2. Tables 5, 6, 7 and 8 show
the highest results for each task, with performance
broken down by subsets of texts from the Kaggle
jokes dataset and from Twitter. -*/

Kaggle Twitter

Team Acc F1 F1 F1

PALI 0.9820 0.9854 0.9949 0.9811
stce 0.9750 0.9797 0.9871 0.9764
DeepBlueAl 0.9600 0.9676 0.9949 0.9551
SarcasmDet 0.9600 0.9675 0.9949 0.9548
mengyuan_jiayi  0.9590 0.9667 0.9871 0.9574
stevenhuahua 0.9580 0.9666 0.9949 0.9538
zain 0.9580 0.9663 0.9949 0.9534
EndTimes 0.9570 0.9655 0.9897 0.9545
MagicPai 0.9570 0.9653 0.9897 0.9542
Meizizi 0.9570 0.9653 0.9871 0.9554
mmmm 0.9560 0.9647 0.9923 0.9523
baseline (BERT) 0.911 0.9283 0.9949 0.8978
baseline (Linear) 0.8570 0.8840 0.9792 0.8410

Table 5: Results of the top performing systems for par-
ticipants of task la (humor detection), showing F1 and
accuracy for the whole test set, and F1 for Kaggle texts
only and tweets only.

6.2 Highest Ranking Systems

The top-ranking teams were selected based on F-
score, in the case of a tie in accuracy score. The
top-10 made extensive use of pre-trained language
models such as BERT, ERNIE 2.0 (Sun et al.,
2020), ALBERT (Lan et al., 2019), DeBERTa (He
et al., 2020) or RoBERTa (Liu et al., 2019). Ensem-
bling these models by majority voting or averaging
scores proved to be a popular and useful approach.

Team All  Kaggle Twitter
abcbpc 0.4959 0.4544 0.5141
mmmm 0.4977 0.4554 0.5162
Humor@IITK  0.5210 0.4702 0.5430
YoungSheldon  0.5257 0.4587 0.5541
IITH 0.5263 0.4821 0.5456
fdabek 0.5271 0.4836 0.5462
Ambherst685 0.5339 0.4584 0.5656
-*/ gerarld 0.5393 0.4857 0.5625
CS-UM6P 0.5401 0.4927 0.5608
SarcasmDet 0.5446 0.5001 0.5641
baseline (BERT) 0.8000 0.4803 09117
baseline (SVM) 0.8609 0.7157 0.9205

Table 6: Results of the top performing systems for par-
ticipants of task 1b (humor rating), showing RMSE for
whole test set, for Kaggle texts only and tweets only.



Kaggle Twitter

Team Acc F1 F1 F1

PALI 0.4943 0.6302 0.6667 0.6118
mmmm 0.4699 0.6279 0.6621 0.6109
SarcasmDet 0.4699 0.6270 0.6552 0.6130
EndTimes 0.4602 0.6261 0.6598 0.6097
DeepBlueAl 0.4650 0.6257 0.6621 0.6078
CS-UM6P 0.4537 0.6242 0.6598 0.6070
CHaines 0.4537 0.6242 0.6598 0.6070
Ferryman 0.4537 0.6242 0.6598 0.6070
IIITH 0.4537 0.6242 0.6598 0.6070
abcbpce 0.4537 0.6242 0.6598 0.6070
fdabek 0.4537 0.6233 0.6598 0.6057
YoungSheldon  0.4780 0.6210 0.6545 0.6049
Humor@IITK  0.4520 0.6209 0.6574 0.6033
RoMa 0.4732 0.6197 0.6503 0.6042
baseline (BERT) 0.4731 0.6232 0.6574 0.6060
baseline (SVM) 0.4374 0.4624 0.4804 0.4529

Table 7: Results of the top performing systems for par-
ticipants of task lc (humor controversy), showing F1
and accuracy for the whole test set, and F1 for kaggle
texts only and tweets only.

Similarly, many teams experimented with single
and multi-task learning setups, and multi-task mod-
els tended to be more successful across sub-tasks.
Further improvements were achieved with domain
adaptation strategies and adversarial training.

6.2.1 DeepBlueAl (Song et al., 2021)

DeepBlueAl achieved high performance in sub-
tasks la and 2. This team used stacked transformer
models, which used the majority vote (in the case of
classification) or the average prediction (for regres-
sion) from a RoBERTa and an ALBERT model.
They optimized the performance of these PLMs
with a number of techniques. First, they employed
task-adaptive fine-tuning (Gururangan et al., 2020)
by continuing pre-training on the text of the Ha-

Team All  Kaggle Twitter
DeepBlueAl 0.4120 0.7607 0.2647
mmmm 0.4190 0.7757 0.2677
HumorHunter 0.4230 0.7742 0.2765
abcbpce 0.4275 0.7942 0.2712
fdabek 0.4406 0.7915 0.2979
stevenhuahua 0.4454 0.8019 0.2999
megatron 0.4456 0.8021 0.3001
MagicPai 0.4460 0.8113 0.2948
ES-JUST 0.4467 0.8065 0.2993
SarcasmDet 0.4469 0.8264 0.2861
baseline (BERT) 0.5769 1.0141 0.4042
baseline (SVM) 0.6415 1.0908 0.4710

Table 8: Results of the top performing systems for par-
ticipants of task 2 (offense rating), showing RMSE for
whole test set, for kaggle texts only and tweets only.
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Hackathon data. They then augmented the dataset
by using pseudo-labelling to generate labels for
the test set, and added these to the training data.
Then, after encoding the input, they used adversar-
ial training (Miyato et al., 2016), e.g. the addition
of perturbations to the embedding layer, to improve
generalization. The predictions were produced af-
ter Multi Sample Dropout was applied. This ap-
proach achieved third place in task la and first
place in task 2.

6.2.2 abcbpc (Pang et al., 2021)

This team deployed ERNIE 2.0 in a multi-task
setup with task-specific gradients and loss for each
sub-task. Using a cross-validation approach, they
fine-tuned their model on each fold of data and
took the average, or majority decision of their best-
performing models as their predictions. Experi-
ments demonstrated that their multi-task setup per-
formed better than single-task learning with ERNIE
2.0, and they achieved the best score in task 1b.

6.2.3 Humor@IITK (Gupta et al., 2021)

This team also experimented with single-task and
multi-task learning on pre-trained language mod-
els. They implemented two ensembling meth-
ods: in the single-task setup, they concatenated
the embeddings produced by BERT, RoBERTa,
ERNIE 2.0, DeBERTA and XLNET. In the multi-
task setup, they used vote-based classification, or
a weighted aggregate of outputs for the regression
tasks. They also implemented an ensemble com-
prising a weighted average of best single-task and
multi-task models, which achieved third place on
task 1b. Interestingly, this team’s experiments on
data augmentation, e.g. generating slightly differ-
ent variations of the input sentences, disimproved
performance. The team hypothesize that the im-
pact of both humor and offense often hinges on the
choice of specific words, and replacing these words
with synonyms may undermine the humorous or
offensive effect.

6.2.4 SarcasmDet (Faraj and Abdullah, 2021)

For tasks 1a, 1b and 2, this team used either BERT
or RoBERTa models with different hyperparam-
eters, and used an ensemble of these models to
make predictions with hard (e.g. majority or av-
erage) voting. Interestingly, for task 1c, in which
they placed third, they used a rule, that if the humor
rating predicted for a text was greater or equal to 3,
they labelled the text as controversial.



6.2.5 HumorHunter (Xie et al., 2021)

This team used DeBERTa with an embedding ta-
ble which took into account the relative position
of each token in the sentence. In an error analysis,
they noted that texts with a question and answer
were more often misclassified as humorous, pos-
sibly because this mimics the structure of a setup
and punchline.

6.2.6 Others

PALI and stce, the top-ranking teams in task la,
both used an ensemble of RoBERTa large, and
ERNIE 2.0, but declined to submit a paper out-
lining further details. Similarly, the team named
mmmm, which placed 2nd in both task 1b and Ic,
did not furnish details of their approach.

6.3 Trends
6.3.1 Domain Adaptation

Given that the majority of the data was sourced
from Twitter, several teams implemented domain
adaptation strategies at different stages of their
pipeline. YoungSheldon (Sharma et al., 2021)
used the Ekphrasis (Baziotis et al., 2017) toolkit,
which is designed for Twitter-specific preprocess-
ing. DLJUST (Al-Omari et al., 2021) also used it
in their preprocessing pipeline, and found that this
achieved better results, when used in combination
with some further manual spelling correction.

Domain-specific models also showed some per-
formance improvements. UPB (Smiadu et al.,
2021) used BERTweet (Nguyen et al., 2020),
a transformer-based language model trained on
tweets for their embedding layer, and DLJUST
found that this model gave slightly better perfor-
mance than RoBERTa on subtask 1a, but not on the
regression tasks.

Amberst685 (Gugnani et al., 2021) used inter-
mediate fine-tuning to adapt a series of pre-trained
models to the style of language used in humorous
and offensive texts. They used two large humor
datasets, and two offense datasets, to adapt a va-
riety of transformer models to the task, however,
they did not see performance gains from this. Sim-
ilarly to DeepBlueAl, RoMa (Labadie et al., 2021)
and IIITH (Raha et al., 2021) used task-adaptive
pre-training, and the latter team saw performance
improvements of 1-5%.

6.3.2 Data Augmentation/Perturbation

Similarly to DeepBlueAl, MagicPai (Ma et al.,
2021) experimented with pseudo-labelling in order
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to increase the amount of data available. MagicPai
also tried adversarial training by adding perturba-
tions to the embedding layer, and along with Gren-
zlinie (Liu and Zhou, 2021) and UPB, found this
to improve their transfer learning models’ perfor-
mance. Amherst685 tried backtranslation in order
to generate more sample texts, however they found
that this was not successful.

6.3.3 Contrasting Models and Task Setup

The majority of teams who contrasted RNNs
with PLMs found that the latter was more suited
to this task. ES-JUST (Bashabsheh and Alasal,
2021) found that RoBERTa performed better than
RNNs and BERT. This finding replicates the ab-
lation study by Morishita et al. (2020) in the
2020 SemEval task, which also demonstrated that
RoBERTa performed better than other PLMs. How-
ever Tsia (Guan, 2021) found that ROBERTa was
better suited to the regression task, and combin-
ing BERT+CNN gave better performance on the
classification task. This contrasts with YoungShel-
don, who achieved their best results with BERT-
Base. Across all cases, we did not observe a single
dominant architecture, indicating that the choice
of hyperparamters and task setup played a large
role in the results achieved by each team. However,
teams like CS-UMG6P (Essefar et al., 2021), who
contrasted single and multi-task learning setups,
found that the latter improved performance.

6.4 Other notable approaches

DUTH (Karasakalidis et al., 2021) produced a rig-
orous examination of different preprocessing ap-
proaches applied to data given to linear and neu-
ral models. They achieved an impressive 12th
place on task 1b, with a combination of Light Gra-
dient Boosting Machine (LGBM), XGBoost and
Bayesian Ridge. They also achieved 12th place
in task 1c using a combination of features such as
POS-tagging, numerical features, a bigram term
frequency inverse document frequency (TF-IDF)
vectorizer as input to an LGBM model.

The utility of TF-IDF features was also seen
in the transfer learning approaches as team hub
also found that adding TF-IDF features improved
the performance of their ALBERT/BERT+CNN
models.

IIITH found that including lexical features such
as letter and punctuation counts, named entities
marking, identifying personal pronouns, wh-words
and question marks, as well as a lexicon of hurtful



words (Hurtlex, Bassignana et al., 2018) improved
the performance of their task-adaptively pre-trained
RoBERTa model for detecting humor and predict-
ing the rating, but that only the Hurtlex features
improved offense detection, and neither of these
improved controversy prediction.

7 Analysis and Discussion

7.1 Correlations between Tasks

As Table 9 indicates, humor rating is moder-
ately correlated with humor controversy across the
dataset. There are no discernible trends in offense
rating and humor controversy. Interestingly, there
is a moderate negative correlation between humor
and offense rating overall, but this is not significant
for the Twitter data, and becomes a much stronger
negative correlation when we look at just the Kag-
gle data. This may have be a factor in the finding
that multi-task setups tended to achieve better re-
sults that single-task systems. It may also suggest
that in naturally occurring data, such as the Twitter
texts, the relationship between humor and offense
may be more subtle, and therefore more difficult to
detect.

Task 1 Task 2 Overall Twitter Kaggle
Humor Humor 0.15 0.14 0.18
Rating Controversy p =0.0001 p=0.003 p=0.009
Offense Humor 0.07 0.11 -0.02
Rating Controversy p =0.06 p=0.028 p=0.82
Humor Offense -0.156 -0.03 -0.42
Rating Rating p=0.0001 p=0.51 p=0.0011

Table 9: Correlations between tasks, Pearson’s r and
p-value

7.2 Differences between Kaggle Texts and
Tweets

As seen in tables 5, 6 and 7, the systems’ perfor-
mance for subtasks 1a, 1b and 1c¢ seems to be con-
sistently better for Kaggle texts than for tweets.
One possible reason why systems are better at pre-
dicting humor from Kaggle texts, is that the Kaggle
test set contains almost all humorous texts, while
only about half of the tweets are considered humor-
ous.

On the other hand, performance for task 2 is con-
sistently better (lower RMSE) for tweets than for
Kaggle texts, and the differences are sometimes
very large. We noticed the distributions of offense
ratings between Kaggle texts and tweets are very
different, with tweets being more often classified

as not offensive: more than 60% of the tweets have
0.1 offense rating or less (in a scale from O to 5),
while less than 10% of the Kaggle texts do. This
difference in distribution might in part come from
differences in sampling methods, because some
Kaggle texts were specifically selected to have cer-
tain offensive categories, while the tweets were
selected at random. In order to check if the differ-
ence in scores could come from the difference in
offense rating distributions, we resampled a subset
of tweets from the Kaggle set and another one from
the Twitter set, trying to keep a uniform offense
rating distribution, and calculated task 2 scores for
those subsets. The difference between scores for
these new subsets was much lower for all teams,
and even some of the teams got better scores for
the Kaggle subset, which might be an indication
that the sharp differences in score were caused by
the difference in distributions.

7.3 Error Analysis: Humans and Machines
vs Irony

Several interesting issues arise when analyzing the
top-ten systems’ errors. Irony continues to be a
challenging problem, both at the annotation side,
and the classification side. Several texts which
were sourced from humorous accounts, and which
had just less than a majority of annotator votes
for humorous were classed as not-humorous in our
dataset. In the following two examples, all of the
top-10 systems classed this as humorous, and ar-
guably, they are intended to be humorous, even
though the majority of annotators technically did
not class them as such.

1. What do you call a homosexual man
on a wheel chair?
A human being

2. It’s almost like I gotta keep myself
busy with random things like fluff-
ing pillows just so I don’t over eat.

The first example is an ironic subversion of a
homophobic joke, using incongruity to undermine
the anticipated punchline. While it is possible that
the setup and punchline structure is what misled
the system, similar question and answer structures
were correctly classified.

The second example is arguably sarcasm, and
all of the top systems classified it as humor, even
though the annotators did not. However, there were
several other texts which were classed as humorous
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by the annotators, and which demonstrate traits of
irony or sarcasm, were difficult to classify for the
top teams, and produced mixed results:

1. If alcohol influences short-term
memory, what does alcohol do?

How much should I rest between
sets at the gym? I've been doing
anywhere between 60 to 90 days to
give my muscles a good chance to
recover.

In terms of tasks 1b and 2, we analyzed the texts
which proved most difficult to predict the humor
and offense ratings for the top-10 systems. We
calculated the mean average error (MAE) between
the top 10 systems’ predictions and the ground
truth. We then examined the 75th percentile of
MAE.

Twitter Kaggle
Humor 70% 30%
Offense 55.2% 44.8%

Table 10: Percentage of texts with highest MAE from
the different sources

Interestingly, there was a disproportionately high
number of Kaggle texts among the offensive texts
whose rating was difficult to predict (44.8% while
the Kaggle text make up only 20% of the data). A
quick examination of these texts revealed there was
a large number of ironic texts which were predicted
to be highly offensive, although the ground truth
did not reflect this, for example:

Why do black people eat fried chicken?
Because it tastes good.

7.4 Humor Controversy

As we were interested in the rule-based approach
that team SarcasmDet took for this task, we investi-
gated the upper-bound of success for any threshold-
based heuristic which determines whether a text
was controversial given the humor score alone. Fig-
ure 2 shows the hypothetical F1-score and accuracy
that could be achieved by such a system. Assum-
ing a perfect score on humor rating prediction, if
teams assigned a controversial label for any text
with a humor rating of over 2, they could achieve
first place in this task in terms of accuracy with
a score of 0.580. A threshold of 1.45 given per-
fect knowledge of the humor labels would result
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Figure 2: For varied values of a threshold, 7, accuracy
and fl-score achieved by a hypothetical model predict-
ing the label controversial for all texts in the test set
with ground-truth humor score > 7. Note that partici-
pants did not have access to these ground-truth scores
for the test set, making these results an upper-bound for
this type of threshold-based approach.

in a leaderboard-topping F1-score of 0.635. How-
ever, the teams that took part did not obtain the
perfect humor rating scores required for this simple
rule to work so effectively, yet were still able to
achieve similar scores on the task. This suggests
that their systems were learning something, but that
ultimately the task is a difficult one.

Although we aimed to increase inter-annotator
agreement in this task’s annotation procedure, by
matching the origin of the texts and annotators, the
agreement on humor ratings was low, and indeed
the task which aimed to capture this controversy
proved difficult.

8 Conclusion

We provided 10,000 texts annotated for humor and
offense by a broad range of annotators. Trans-
former models were a dominant approach to this
task, with the exception of the humor controversy
task, which proved to be difficult for most teams,
and in which a simple, rule-based system achieved
one of the top-3 scores. As multi-task learning
setups proved more effective than single-task learn-
ing demonstrates, this that there is some correlation
between humor and offense detection. It was also
interesting to note which model adaptations were
useful and which were not. Finally, an analysis of
the errors in humor analysis reveals some types of
humor which may be captured inaccurately, even
by the most powerful models.
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A Appendices

Table 11 displays the sources for the Twitter data,
e.g. 80% of the texts

Username Count Username Count
humurous1liners 924  BlkMentalHealth 37
joeljeffrey 692  mikewickett 35
UberFacts 632  BlackLoveAdvice 35
Dadsaysjokes 541  JNFUSA 35
GreysAnatomyMsg 402  JokesMemesFacts 34
ConanOBrien 340  MissyDuckWife 32
boonaamohammed 337  blackbodyhealth 32
Demented_Jokes 325 RobBenedict 31
thenatewolf 284  Boyfriend_Tips 30
DailyHealthFact 284  ThelJimMichaels 29
Kasandd 219  realGpad 29
songs_lyrics 203  EverBestFilms 27
Shen_the_Bird 187  NicoleB_.MD 23
BadJokeCat 130  iGirlfriendTip 23
OURSELVES_BLACK 129  Grindr 23
SupereeeGO 124 MNateShyamalan 23
Mr_Truth_Hurts 112 kecia_ali 20
GayAdvicer 112 RobbyActually 19
Wizdomstweets 103 hardwick 19
TrippAdvice 102  RabbiHarvey 19
JensenAckles 97 taylorswift13 18
BunAndLeggings 93 PGATOURWives 17
MovieQuotesPage 90 tomhanks 15
annehelen 87 BlackGirlsSmile 15
YaGayAunties 83 curtisisbooger 11
mindykaling 74 evanmarckatz 11
RyanSeacrest 70 bosshogswife 11
murrman5 59 PenguinBooks 10
TheOkraProject 59 GuyStuffAdvice 10
benyahr 57 gaystarnews 10
thatonequeen 55 DrakeGatsby 9
ZaraRahim 52 oftensivefcker 9
Oprah 52 outmagazine 9
michaelstrahan 43 therapy4bgirls 8
youknowwhenshe 42 ProBonoASL 4
Blackkidsswim 40 TheAdvocateMag 3
andreavsmoak 40

Table 11: Twitter sources of data and number of texts
sourced from each account
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Table 12 shows the results of the top system for each team and for each task.

Team Taskla F1 Taskla Acc Tasklb RMSE Tasklc F1 Tasklc Acc Task2 RMSE
PALI 0.9854 0.9820 - 0.6302 0.4943 0.9710
stce 0.9797 0.9750 - - - -
DeepBlueAl 0.9676 0.9600 0.5607 0.6257 0.4650 0.4120
SarcasmDet 0.9675 0.9600 0.5446 0.6270 0.4699 0.4560
mengyuan_jiayi 0.9667 0.9590 0.5621 0.5814 0.5106 -
stevenhuahua 0.9666 0.9580 0.5831 0.4991 0.5626 0.4454
zain 0.9663 0.9580 0.5748 - - -
EndTimes 0.9655 0.9570 0.6539 0.6261 0.4602 0.4691
MagicPai 0.9653 0.9570 0.5572 - - 0.4460
Meizizi 0.9653 0.9570 0.6136 - - -
mmmm 0.9647 0.9560 0.4977 0.6279 0.4699 0.4190
fdabek 0.9647 0.9560 0.5271 0.6233 0.4537 0.4406
Isra 0.9640 0.9550 - - - -
DLJUST 0.9633 0.9540 0.5555 0.4813 0.5480 0.4822
IIITH 0.9616 0.9530 0.5263 0.6242 0.4537 0.4772
megatron 0.9612 0.9520 0.6307 - - 0.4456
CS-UM6P 0.9606 0.9510 0.6360 0.6242 0.4537 0.4759
Ambherst685 0.9604 0.9510 0.5339 0.4842 0.5220 0.4530
MLXG 0.9590 0.9490 2.1883 0.0000 0.5463 0.9587
abcbpc 0.9587 0.9480 0.4959 0.6242 0.4537 0.4275
StoneOpen 0.9583 0.9480 0.5470 0.5427 0.5561 0.4489
Humor@IITK 0.9581 0.9480 0.5210 0.6209 0.4520 0.4607
Ferryman 0.9581 0.9480 0.5651 0.6242 0.4537 0.4813
RoMa 0.9576 0.9480 0.5905 0.6197 0.4732 0.4532
HumorHunter 0.9572 0.9480 0.5510 0.6111 0.4764 0.4230
RedwoodNLP 0.9571 0.9460 0.5580 0.4883 0.5024 0.7229
UPB 0.9566 0.9470 0.6200 0.0000 0.5463 0.5318
ES-JUST 0.9564 0.9460 0.5709 0.4888 0.5545 0.4467
DeathwingS 0.9563 0.9460 0.5561 - - -
Zeus_yao 0.9557 0.9450 - - - 0.4621
apostaremczak 0.9544 0.9440 0.8497 0.0000 0.4341 0.5625
Leo] 0.9543 0.9430 2.1883 0.0000 0.5463 0.9587
CHAOYUDENG 0.9538 0.9410 - - - -
gerarld 0.9532 0.9420 0.5393 0.4972 0.5659 0.4489
CS-UM6P 0.9506 0.9380 0.6360 0.6242 0.4537 0.4759
CSECU-DSG 0.9496 0.9380 0.6803 0.4423 0.5366 0.5395
YoungSheldon 0.9468 0.9330 0.5257 0.6210 0.4780 0.4500
DuluthNLP 0.9399 0.9260 0.6461 - - 0.5059
pakawat.nk 0.9386 0.9240 0.5700 0.4683 0.5496 0.5368
Grenzlinie 0.9386 0.9250 0.6312 0.5455 0.5203 0.4761
bousselham 0.9368 0.9200 - - - -
hub 0.9364 0.9210 0.6288 0.5591 0.5333 0.5027
7ZY] 0.9348 0.9210 0.7214 0.4603 0.4407 0.5204
xjh 0.9345 0.9180 0.6385 0.5205 0.5447 0.5151
Gulu 0.9341 0.9190 0.7405 0.5488 0.5561 0.5807
chenshi 0.9328 0.9160 0.6303 0.5547 0.5301 0.5422
UMUTeam 0.9325 0.9160 0.8847 0.5722 0.4650 0.8740
Han_Jiawei 0.9286 0.9120 0.5577 0.4904 0.5268 0.5187
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Zehao_Liu
Team KGP
Tsia
chilail996
ayushnandal4
DUTH
baseline
LOLASING
CHaines
Alvilshmam
milad.sayadamooz
FII Funny
Paima
abhideepmitra
justglowing

0.9241
0.9233
0.9205
0.9177
0.9081
0.8942
0.8840
0.8704
0.8504
0.8489
0.6290
0.0630

0.9060
0.9030
0.8960
0.8970
0.8840
0.8720
0.8570
0.8490
0.8170
0.8160
0.5270
0.0780

0.5694
0.7010
2.1883
2.1883
0.5507
0.8609

0.5762

2.5497
0.5598
0.5701
1.0343

0.5628
0.4271
0.0000
0.0000
0.5990
0.4624

0.6242

0.0000
0.4752

0.5366

0.5301
0.5593
0.5463
0.5463
0.4732
0.4374

0.4537

0.5463
0.5008

0.4612

0.5800
0.5419
0.9587
0.9587
0.5819
0.6415
0.7106
0.6473

0.9587
0.4788
0.4655

0.6347

Table 12: Top system for each participant for all subtasks.
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Abstract

The present work aims at assigning a complex-
ity score between 0 and 1 to a target word
or phrase in a given sentence. For each Sin-
gle Word Target, a Random Forest Regressor
is trained on a feature set consisting of lexi-
cal, semantic, and syntactic information about
the target. For each Multiword Target, a set
of individual word features is taken along with
single word complexities in the feature space.
The system yielded the Pearson correlation of
0.7402 and 0.8244 on the test set for the Single
and Multiword Targets, respectively.

1 Introduction

Presence of complex words can lead to poor com-
prehension of a text. Identification of such complex
words in a given text is a core component in the task
of Automatic Simplification and Evaluation (Shard-
low, 2013). The Lexical Complexity Prediction
Task of SemEval 2021 (Shardlow et al., 2021) aims
at development of systems for prediction of com-
plexity scores for a target word/phrase in a given
sentence. In literature, binary classification of tar-
get words in a text into complex or non-complex is
referred to as Complex Word Identification (CWI)
(Paetzold and Specia, 2016; Zampieri et al., 2017,
Gooding and Kochmar, 2018; AbuRa’ed and Sag-
gion, 2018; Yimam et al., 2018). Unlike previous
works, a continuous complexity score is assigned to
the target word in the present task which is referred
to as Lexical Complexity Prediction (LCP) (Shard-
low et al., 2020). For the present work, regression
is performed for LCP on a set of linguistic fea-
tures covering semantic, syntactic and contextual
aspects of the target word as described in Section
3. Additionally, various lexicon based features are
used to indicate the rarity of target words. The sys-
tem achieves 0.8194 Pearson correlation for Single
Word Target and 0.7482 for Multiword Target on
the trial set.

2 Task Setup

The task is divided into two subtasks, namely Sin-
gle Word Target and Multiword Target based on
the length of the target. The dataset and evaluation
metrics are described below.

» Dataset: The dataset consists of an aug-
mented version of CompLex (Shardlow et al.,
2020). It comprises sentences from three cor-
pora, viz. World English Bible Translation,
English Portion of the European Parliament
proceedings, and articles from CRAFT corpus
belonging to biomedical domain. It is split
into three subsets Train, Trial, and Test.

e Evaluation Metrics: The systems are eval-
uated using Pearson correlation coefficient
(P), Spearman rank correlation coefficient (S),
Mean absolute error (MAE) and Coefficient
of Determination (R?).

3 Features

In this section we present the details of the feature
space used in the present work.

3.1 Corpus Features

A feature, named Corpus, is used to indicate to
which of the 3 corpora the input sentence belongs.

3.2 Shallow Features

Word level shallow features used in the present
work are number of letters (Nlet), syllables (Nsyl),
vowels (Nvow), percentage of upper case alphabets
(PerUp), simple universal part-of-speech tag (POS),
and detailed Penn part-of-speech tag (Tag) of the
target word extracted using SpaCly.

3.3 NLTK WordNet Features

Number of hypernyms (Nhyper) and number of
morphemes (Nmorph) of the target word consider-
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ing its POS tag in the given sentence are also used
as features.

3.4 Exquisite Corpus (EC) Features

Exquisite Corpus! compiles texts from seven dif-
ferent domains namely Wikipedia, Subtitles, News,
Books, Web, Twitter and Reddit. We have used
the frequency (WordFreq) in EC and the Zipf fre-
quency (ZipfFreq) of the target word as features
(van Heuven et al., 2014).

3.5 SUBTLEX Features

Frequency (SubtFreq) of the target word extracted
from SUBTLEXus? and its Contextual Diversity
(ConDiversity) i.e. percent of the films in which
the word appears are used as features.

3.6 Language Model (LM) Features

Given an input sentence S = wjws ... wy and a
target word wy where ¢t € 1,2,... N, the follow-
ing features are extracted from a trigram language
model trained on the Gigaword corpus?.

 Perplexity of the input sentence (Perplexity)
computed as:
Perplezity(S) = Y/1/P(wiws ... wy)

* The phrase score (PhrScore)
of Wj. .. Wi .. W defined as
logioP(wj ... wy ... wy) where

j=max(1l,t —2)and k = min(N,t + 2)

* Average of conditional probabilities involving
the target word (AvgCP)

P(wt ’ wt—lawt—2)>
P(wt+1 ’wtawt—1)7
P(wiy2 | wig1, wy)

Avg

3.7 Character Language Model (CharL.M)
Feature

The probability of the target word (Prob3c) calcu-
lated using trigram character language model is
considered as a feature. The trigram* probabili-
ties are calculated using letter counts from Google
Web Trillion Word Corpus. Suppose a word W
consist of N letters, W w1 ...wy then, the
corresponding feature value will be computed as:
Prob3c(W) = ﬁ Zf\i_lg log10P(wiwi+1wi+2)

'https://pypi.org/project/wordfreq/
Zhttps://github.com/Wonderlic- Al/wonderlic_nlp
3Im_giga_64k_nvp_3gram.zip
*http:/morvig.com/ngrams/count_3L.txt
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3.8 Psycholinguistic Features

The following features are extracted using MRC
psycholinguistic database (Wilson, 1988): Age
of acquisition (AOA), Concreteness (CONC), Im-
ageability (IMAG) and Meaningfulness ratings
(MeanC, MeanP) of the target word .

3.9 Kucera and Francis (KF) Features

The features derived by Kucera and Francis (1967),
namely target word’s written frequency of occur-
rence (KFFreq) and the number of categories of
text in which the target word was found (KFNcats)
are used.

3.10 Ogden Feature

A binary feature is used to indicate presence of the
target word in the list of 1000 words included in
Ogden’s Basic English® (IsOgden).

3.11 Inquirer Tag Features

The General Inquirer classifies about 7500 words
using 182 General Inquirer categories developed
for social science content analysis (Stone et al.,
1966). A binary feature is created for each category
to indicate its occurrence for the target word. The
POS tag of the target is matched with the ‘OthTags’
category to filter out incompatible categories as
given in Table 1

POS of the Target Compatible OthTags
NOUN | PRON | PROPN NOUN | PRON
VERB | AUX | ADV VERB | SUPV

Table 1: Inquirer Tags Filtering

4 Single Word Target

In the Single Word Target task, complexity scores
between 0 to 1 needs to be assigned for a target
word of the input sentence. Various regression
models are trained using the optimal set of features
using scikit-learn®. The results are presented in
Table 2. For both Decision Tree and Extra Tree Re-
gressors the maximum depth (maxdepth) is tuned
between 1 to 20, and the optimal maxdepth is found
to be 6 and 8, respectively. Random Forest Re-
gressors with the default setting produced the best
results for the trial dataset. Using the above, our
submission to the shared task achieved 0.7402 Pear-
son correlation on the test set.

Shttp://ogden.basic-english.org/
®https://scikit-learn.org/stable/



Regressor P S MAE R’ Features P S MAE R’
Decision Tree  0.761 0.699 0.069 0.58 All 0.819 0.748 0.062 0.67
Extra Tree 0.757 0.650 0.071 0.57 w/o Ogden 0.816 0.744 0.063 0.66
Gradient 0.794 0.731 0.065 0.63 w/o Inquirer 0.815 0.744 0.063 0.66
Boosting w/o KF 0.815 0.746 0.063 0.66
Random Forest 0.819 0.748 0.062 0.69 w/o WordNet 0.814 0.747 0.063 0.66
+Bagging 0.805 0.738 0.064 0.64 w/o Psych 0.813 0.740 0.063 0.66
+Adaptive 0.798 0.734 0.065 0.63 w/o LM 0.810 0.744 0.063 0.65
Boosting w/o CharLM 0.806 0.747 0.064 0.65
w/o Corpus 0.798 0.740 0.065 0.63
Table 2: Results on the Trial Set w/o SUBTLEX 0.795 0.725 0.066 0.63

w/o Shallow 0.786 0.728 0.067 0.61

4.1 Feature Importance w/o EC 0.782 0.713 0.067 0.61

The Gini importance of the top 5 features are re-
ported in Table 3. Gini importance of a feature
is computed as the (normalized) total reduction
of the mean squared error brought by that feature.
The importance of the features is also analyzed by
removing a set of features at a time and training
a Random Forest Regressor for the reduced fea-
ture space. Each of the features from the optimal
feature space has a positive effect on the perfor-
mance of the system as indicated in Table 4. The
experiments indicate that exclusion of Exquisite
Corpus features led to the maximum decline in the
results. Hence, this may be considered as the most
important feature subset.

Feature Gini importance
ConDiversity 0.443
Prob3c 0.072
ZipfFreq 0.068
Perplexity 0.067
AvgCP 0.060

Table 3: Gini Importance of Features

4.1.1 Inquirer Tags Importance

The effect of inclusion of Inquirer Tags in the fea-
ture space has a positive effect however the magni-
tude is low. This may be due to the low coverage of
these features as reported in Table 5. The coverage
is defined as the percentage of target words having
at least one Inquirer Tag.

4.2 Additional Features

The following set of features when included in the
feature space led to a decrease in performance for
the present task on the trial set.

* Etymological Feature: The ISO code of the
target word’s origin language
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Table 4: Feature Set Elimination Results for the Trial
Set

Data All Bible Biomed Europarl
Train 21.14 20.23 2148 21.77
Trial 22.09 23.78 19.26 23.08
Test 2377 19.79 27.34 24.06

Table 5: Inquirer Tags Coverage

 Named Entity Feature: The named entity tag’
of the target word.

Post task evaluation on the test set indicates their
inclusion improves the performance of the system.
(See Table 6)

4.3 BERT Features

BERT was introduced in (Devlin et al., 2019), and
its usage has resulted in state-of-the-art perfor-
mance for various downstream NLP tasks, such
as Question Answering, Textual Entailment and
Paraphrase detection. In the present work, BERT
embedding for the target word is extracted from
the pre-trained BERT-base-uncased model®. Ad-
ditionally, in an effort to enhance the contextual-
ized BERT embeddings (Agarwal et al., 2020), the
embedding vector is supplemented with the fea-
ture vector corresponding to linguistic features de-
scribed in Section 3. Finally, a Neural Network is
trained to minimize the Mean Absolute Error us-
ing Adam optimizer (Kingma and Ba, 2015). Hy-
per parameter tuning is performed using hyperas’
and TPE algorithm. The number of intermediate
dense layers are tuned between {2, 3}. The en-
coding dimensions are tuned between {50, 100,

"extracted using https://spacy.io/api/entityrecognizer
Suncased_L-12_H-768_A-12.zip
*https://pypi.org/project/hyperas/



Included in Feature Space

Trial

Test

Etymology NamedEntity P S

MAE

R2 P S MAE RZ?

No No
Yes No
No Yes
Yes Yes

0.8194 0.7478 0.0624 0.6681
0.8115 0.7451 0.0633 0.6565
0.8113 0.7440 0.0631 0.6561
0.8175 0.7466 0.0627 0.6654

0.7402 0.7005 0.0661 0.5440
0.7421 0.7013 0.0660 0.5486
0.7404 0.6966 0.0661 0.5464
0.7418 0.6974 0.0659 0.5475

Table 6: Results for Additional Features

200, 300, 500, 700, 1000} and dropouts between
{0.1, ..., 0.9}. Batch size is set to 16. The re-
sults are presented in Table 7. It can be observed
that BERT embeddings do not improve the perfor-
mance. Moreover, Neural Networks when applied
on just linguistic features have a lower performance
than Random Forest Regressors.

4.4 Error Analysis

Error analysis indicates that absolute error for 87%
test samples were less than 0.10. Samples belong-
ing to Biomedical corpus had highest errors. Some
predictions of the proposed model are presented
in Table 8. The correlation between the actual and
predicted complexity for similar targets in dissim-
ilar contexts is high. However, it is revealed that
difference in complexity of proper noun targets in
distinct contexts could not be captured effectively
through the present set of linguistic features.

5 Multiword Target

In the present task the Multiword Targets are pairs
of two adjacent words. We have experimented with
two approaches for predicting complexity scores
for Multiword Targets, as described in Section 5.1
and Section 5.2

5.1 Single Word Combination

In this approach, each word of a Multiword tar-
get is considered as individual single word tar-
gets, and the complexity scores are predicted using
the Single Word Target'® model. The individual
word scores are combined using Average, Maxi-
mum, and Minimum. Additionally, Algebraic Sum
(a + b — ab) and Product (ab) of the individual
scores are also considered. These are taken from
Fuzzy s-norm and t-norm (Klir and Yuan, 1995).
The results are indicated in Table 9. For both trial
and test set, maximum of the complexity score of
each word of the multiword target gives the least
MAE and the highest R? value. But, the highest P

1"Random Forest Regressor w/o additional features
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for trial set is obtained when algebraic sum of the
individual complexity scores are taken and highest
S is obtained when product of the individual com-
plexity scores are taken. For the test set, algebraic
sum gives highest P and S.

5.2 Feature Combination

In this approach features corresponding to the indi-
vidual words are concatenated, and then a regres-
sion model is trained with the increased feature
space for complexity prediction. The individual tar-
get word complexity value predicted by the Single
Word Target model is also considered as a feature.
The results are presented in Table 10. Bagging
and Adaptive Boosting are applied on Random For-
est. The results indicate that inclusion of individual
complexity scores enhances the performance of the
system, and the best results are obtained for Bag-
ging ensemble. Our submission to the shared task
was derived using Bagging on the Random Forest
Regressor. The feature set contains individual word
features along with complexity scores. It achieved
Pearson correlation of 0.8244 on the test set.

6 Conclusion

Identification of difficult words is an important task
for Automatic Text Simplification. LCP aims at
assigning scores to words of a given sentence to
indicate its complexity. In this work we utilize
word level features to capture its lexical, semantic
and syntactic information. LM based features are
used for indicating the semantics of the target word
in a given context. Frequency and occurrence based
features are used to indicate the overall rarity of
the target words. For Single Word Target, Random
Forest Regressors trained on the linguistic feature
set achieved the highest results. Error analysis
revealed that the model can be further improved to
capture the context of the target word.

For Multiword Target, two approaches were ex-
plored. In the first approach complexity scores
of individual target words predicted by the Sin-



Feature Set # Dense Dimension Dropouts P S MAE R’
Layers

Linguistic 2 50,200 0.1,0.3 0.752 0.698 0.070 0.563

BERT 3 300,300,1000 0.3,0.1,0.1 0.732 0.678 0.071 0.532

BERT + Linguistic 2 300,200 0.1,0.1 0.714 0.660 0.072 0.502

Table 7: Results on Trial Set for Neural Network

Input Target Actual  Predicted
Sentence Word Complexity Complexity
Saul arose, and they went out both of them, Saul 0.3676 0.3398
he and Samuel, abroad.

Saul said to his servants, “Provide me now Saul 0.3529 0.3383
a man who can play well, and bring him to me.”

Samuel said to Saul, ”Why have you disturbed Saul 0.2778 0.3303
me, to bring me up?”’

These results, as well as this study, suggest that amount 0.2031 0.2048
a considerable amount of maternal cholesterol can

be transferred to the murine fetus.

This wild-type staining pattern may simply reflect amount 0.2375 0.2207

the fact that decreasing the amount of mutant protein
by half makes it undetectable by immunocytochemistry.

Table 8: System Predictions

Combination Trial Test

Strategy P S MAE R? P S MAE R’
Average 0.7329 0.7239 0.1220 0.0437 | 0.8098 0.8101 0.1314 0.0110
Maximum 0.6872 0.6733 0.1021 0.2861 | 0.7907 0.7916 0.1041 0.3433
Minimum 0.6964 0.6970 0.1534 -0.4056 | 0.7036 0.7064 0.1648 -0.5466
AlgebraicSum  0.7391  0.7217 0.1270 0.0598 | 0.8193 0.8104 0.1049 0.3349
Product 0.7047 0.7298 0.3153 -3.8253 | 0.7704 0.8063 0.3257 -3.9447

Table 9: Results for Multiword Target for Single Word Combination

Individual Complexity =~ Regressor
Predictions as a feature

P S MAE R2

Random Fore
No +Bagging

st

0.7327 0.7253 0.0885 0.5110
0.7299 0.7294 0.0877 0.5118

+Adaptive Boosting 0.7386  0.7369 0.0880 0.5167

Random Fore
Yes +Bagging

st

0.7234 0.7256 0.0872 0.5134
0.7482 0.7510 0.0830 0.5517

+Adaptive Boosting  0.7455 0.7427 0.0853 0.5408

Table 10: : Results for Multiword Target on the Trial Set using Feature Combination

gle Word model were combined using different
strategies, while in the second, the feature space
was expanded to accommodate features and com-
plexity scores corresponding to individual target
words. The latter yielded the best results. Our sys-
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tem achieved 36" and 17" rank with respect to
the two subtasks. The difference in the correlation
value between the top performer is less than 0.05
for Single Word Target and 0.04 for Multiword
Target.
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Abstract

This article describes a system to predict the
complexity of words for the Lexical Complex-
ity Prediction (LCP) shared task hosted at Se-
mEval 2021 (Task 1) with a new annotated
English dataset with a Likert scale. Located
in the Lexical Semantics track, the task con-
sisted of predicting the complexity value of
the words in context. A machine learning ap-
proach was carried out based on the frequency
of the words and several characteristics added
at word level. Over these features, a super-
vised random forest regression algorithm was
trained. Several runs were performed with dif-
ferent values to observe the performance of
the algorithm. For the evaluation, our best re-
sults reported a M.A.E of 0.07347, M.S.E. of
0.00938, and R.M.S.E. of 0.096871. Our ex-
periments showed that, with a greater number
of characteristics, the precision of the classifi-
cation increases.

1 Introduction

The identification of complex words (CWI) is the
task of detecting in the content of documents the
words that are difficult or complex to understand by
the people of a certain group (Rico-Sulayes, 2020).
The CWI and the substitution of words identified
as complex may significantly improve readability
and understandability of a given text (Zotova et al.,
2020).

CWI has become an area of great interest in
recent years for the computational linguistics com-
munity in making proposals that allow researchers
to develop computational semantic analysis sys-
tems, as demonstrated by the shared tasks of CWI
in SemEval 2016 (Paetzold and Specia, 2016), y
NAACL-HTL 2018 (Yimam et al., 2018), and the
CWI task of the ALexS 2020 competition, hosted
at IberLEF 2020 (Ortiz-Zambranoa and Montejo-
Réezb, 2020).

Arturo Montejo-Raez
CEATIC - Universidad de Jaén
Jaén, Espafia
amontejo@ujaen.es

This article introduces a system that has par-
ticipated in the Lexical Complexity Prediction
(LCP) shared task hosted at SemEval 2021 (Task
1) (Shardlow et al., 2021a). The task releases a
new annotated English dataset with a Likert scale.
Located in the Lexical Semantics track, the task
consisted of predicting the complexity value of the
words in context.

We have explored different features for represent-
ing words and multi-words and their context. Some
preprocessing steps have been evaluated along with
the effect of feature selection.

2 Related Work

(DuBay, 2004) defines readability as allowing one
text to be easier to read than another. For many peo-
ple, the understanding of a text can be affected by
the presence of lexically and semantically complex
words and phrases, for example for children (Pe-
tersen and Ostendorf, 2009), non-native speakers
(Petersen and Ostendorf, 2009), and people with
various cognitive or reading disabilities (Saggion
etal., 2015).

Predicting which words a given target popula-
tion has difficulty to understand is a critical step
for many NLP applications, such as in text simplifi-
cation, which has traditionally focused its attention
on second language learners, native speakers with
low levels of literacy, and people with language dis-
abilities reading (Saggion et al., 2015). This task is
also known as complex word identification (CWI).
The prediction of the lexical complexity carried out
with precision can allow to adapt texts according
to the needs of the readers (Shardlow et al., 2020).
Actually, in an early study in the 1920s, a very sim-
ple way to predict the level of difficulty of a text
was discovered by educators, who used vocabulary
difficulty and sentence length as main indicators
(DuBay, 2004).
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corpus bible europarl biomedic total
single 2574 2576 2512 7662
multi 5051 498 514 1517
Table 1: Total number of sentences in each training
corpus.
3 Dataset

The training data set provided to the participants
consisted of an augmented version of CompLex
(Shardlow et al., 2021b). It uses data from three dif-
ferent sources: the Bible, Europarl, and biomedic
texts (see Table 1). It is a set of multidomain En-
glish data made up of sentences, the targeted token,
and its respective level of complexity as described
in (Shardlow et al., 2020).

4 The system

This section describes the details of the system ap-
plied to the task, as our approach to complex word
identification. A machine learning approach was
followed based on the frequency of the words and
further characteristics added at word level. Over
these features, a supervised random forest regres-
sion algorithm was trained. In this section, first,
the features considered in the supervised learning
approach are introduced. Then, the method to de-
termine whether a candidate word is complex or
not is detailed.

4.1 Features

We computed a total of 15 features, taking into
consideration the linguistic measures of the work
carried out by (Mc Laughlin, 1969) and the exper-
iments of the shared tasks of the CWI BEA 2018
respectively by (Paetzold and Specia, 2016; Good-
ing and Kochmar, 2018). These are the features
obtained on the target word (token).

* Absolute frequency (abs-frequency): the ab-
solute frequency. This frequency is computed
based on the unannotated corpora compiled
by José Caiiete! from different sources. It
contains about 3 billion words.

* Relative frequency (rel-frequency): the rela-
tive frequency of the target word.

» Word length (length): the number of charac-
ters of the token.

! Available at https://github.com/
josecannete/spanish-corpora
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* Number of syllables (number-syllables): the
number of syllables.

* Target word position (token-position): the po-
sition of the target word in the sentence.

Number of words in the sentence (n-words-
sentences): number of words in sentence.

Part Of Speech (POS): the Part Of Speech
category.

Relative frequency of the previous the token
(freq-rel-word-before): the relative frequency
of the word before the token.

Relative frequency of the word after the token
(freq-rel-word-after): the relative frequency
of the word after the token.

Length of previous word (len-word-before):
the number of characters in the word before
the token.

Length of the after word (len-word-after): the
number of characters in the word after the
token.

Measure of Textual Lexical Diversity
(MTLD-diversity): the lexical diversity of the
target word in the sentence using the met-
ric proposed by (McCarthy and Jarvis, 2010).

Additionally, the following WordNet (Fellbaum,
2010) features were also considered for each target
word:

* Number of synonyms (number-synonyms).
* Number of hyponyms (number-hyponyms).
* Number of hyperonyms (number-hypernyms).

In the case of multiple words, the following char-
acteristics were applied: absolute frequency, rela-
tive frequency, token length, number of syllables,
total number of words in the sentence, MTDL di-
versity.

2Computed using this Python library: https://pypi .
org/project/lexical-diversity/
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Figure 1: Training process applying the Random Forest
Regression algorithm. A different model is trained for
each training subset of data.

4.2 Method

The numeric input variables were scaled to a stan-
dard range, as many machine learning algorithms
have been found to perform better when the data
set is normalized. A polynomial transformation on
the features characteristics was then applied with a
degree value of 2, so new features were created.

A forest of trees was built with the training set
(X, y), where we assigned to the independent vari-
able (X) an array that contains all the word-level
characteristics that were obtained from the token,
the same ones that were described in the section
4.1; and the value of the dependent variable (y)
corresponds to the level of complexity’s word.

To build the Random Forest Regression Model,
we split the dataset into the training set and test
set, that is, 10% of the data set was used as test set,
and the remaining 90% was used as the training set.
Figure 1 shows the training process applying the
random forest regression algorithm.

5 Experimental Results

5.1 Results on Trial and Simulated Data

To calculate the prediction value of the word com-
plexity on the data of the evaluation corpus, the (X,
y), where we assigned to the independent variable
(X) which we called XTest, was built, was an ar-
ray that contained all the word-level characteristics
that were obtained from the token. Finally, we train
the algorithm with the evaluation data and predict
the results of the test set with the model trained on
the testing set values using the regressor predict
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#Irees K MAE MSE RMSE
150 7 0.07347 0.00938 0.09687
130 7 0.07354 0.00940 0.09700
150 8 0.07356 0.00942 0.09710

Table 2: Results obtained with Random Forest with se-
lecting K-best features on single words subset.

# Team Name  MAE MSE R2

1 JUST Blue 0.0609 0.0062 0.6172
2 DeepBlueAl  0.0610 0.0061 0.6210
3 Alejandro M. 0.0619 0.0064 0.6062
50 SINAI 0.0875 0.0131 0.1930

Table 3: Final results of the Lexical Complexity Predic-
tion task on the single words dataset

function.

Several runs were made with different values
to observe the performance of the algorithm and
fine-tune the hyperparameters of the model.

Our best configuration was with 150 nodes
and 7 features, selected by their F ANOVA be-
tween label / feature. The selected characteristics
were: abs_frecuency, rel_frecuency, lenght, num-
ber_syllables, token_position, number_synonyms,
Part_of_speech. Finally, the prediction value of the
words for the test data set was obtained, obtaining
the best result: MAE of 0.07347, MSE of 0.00938,
and RMSE of 0.096871 (see Table 2).

5.2 Results on test Data

In this section we present the results obtained from
our system, and we carry out a discussion regard-
ing the results presented by the organizers of the
workshop.

The final results were sent to the SemEval 2021
organizers after the execution of our system. The
final published results are those shown in Table 3,
where the winners of the first three positions are
presented. The results that we obtained in the con-
test for the case of the evaluation corpus of simple
words were, MAE of 0.0875, MSE of 0.0131 and R-
squared of 0.1930. Taking into account the number
of competitors (quite large) and the result obtained
by the first place winner (MAE of 0.0609), we see
that there is a small difference, which allows us to
be confident with our simple approach.



6 Conclusion

In this article, the results of our participation in
Task 1: Lexical Complexity Prediction in the Lex-
ical semantics track hosted at the SemEval 2021
international workshop have been presented. Both
the training corpus and the evaluation corpus were
provided by the sponsoring organization of this
competition. We applied machine learning and
built the model using the random forest regression
algorithm, relying on well-known word based and
contextual features.

As future work, we plan to perform error analy-
sis on the predictions, to identify the weaknesses of
the proposed approach based on a characterization
of the instances where the system performs poorly.
Also, a better analysis of multi-word scenario is
foreseen.
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Abstract

In this paper, we present our systems submitted
to SemEval-2021 Task I on lexical complexity
prediction (Shardlow et al., 2021a). The aim
of this shared task was to create systems able
to predict the lexical complexity of word to-
kens and bigram multiword expressions within
a given sentence context, a continuous value in-
dicating the difficulty in understanding a respec-
tive utterance. Our approach relies on gradient
boosted regression tree ensembles fitted using a
heterogeneous feature set combining linguistic
features, static and contextualized word embed-
dings, psycholinguistic norm lexica, WordNet,
word- and character bigram frequencies and
inclusion in word lists to create a model able
to assign a word or multiword expression a
context-dependent complexity score. We can
show that especially contextualised string em-
beddings (Akbik et al., 2018) can help with
predicting lexical complexity.

1 Introduction

In this paper, we present our contribution to
SemEval-2021 Shared Task 1 (Shardlow et al.,
2021a), a shared task focused on the topic of lex-
ical complexity prediction. The term lexical com-
plexity prediction describes the task of assigning
a word or multiword expression a continuous or
discrete score signifying its likeliness of being un-
derstood well within a given context, especially
by a non-native speaker. Solving this task could
benefit second-language learners and non-native
speakers in various ways. One could imagine using
such scores to extract vocabulary lists appropri-
ate for a learner level from corpora and literature
(Alfter and Volodina, 2018), to judge if a given
piece of literature fits a learner’s skill or to assist
authors of textbooks in finding a level of textual
difficulty appropriate for a target audience.
Predicting these scores can be formulated as a
regression problem. Our approach to solve this
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problem relies on gradient-boosted regression tree
ensembles which we fit on a heterogeneous feature
set including different word embedding models,
linguistic features, WordNet features, psycholin-
guistic lexica, corpus-based word frequencies and
word lists. We assumed that lexical complexity
could be correlated with a wide range of features,
neural ones as much as distributional or psycholin-
guistic ones, which is why we chose to use an
ensemble-based method in the form of gradient
boosting (Mason et al., 1999) for our system as it
usually performs best for tasks where such a fea-
ture set is needed compared to solely neural models
which need dense, homogeneous input data to per-
form well.

Out of all participants, our systems were ranked
15/54 in the single word- and /9/37 in the multi-
word category during the official shared task eval-
uations according to Pearson’s correlation coeffi-
cient. Our key discovery is that while features from
nearly all categories provided by us were used by
our systems, contextual string embeddings (Akbik
et al., 2018) were the by far most important cate-
gory of features to determine lexical complexity
for both systems. The code and our full results
can be found at https://github.com/SGombert /

tudacclsemeval.

2 Background

2.1 Task Setup

For the shared task, CompLex corpus (Shardlow
et al., 2020, 2021b) was used as data set. This En-
glish corpus consists of sentences extracted from
the World English Bible of the multilingual cor-
pus consisting of bible translations published by
Christodoulopoulos and Steedman (2015), the En-
glish version of Europarl (Koehn, 2005), a corpus
containing various texts concerned with European
policy, and CRAFT (Bada et al., 2012), a corpus
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consisting of biomedical articles.

ComplLex is divided into two sub-corpora, one
dealing with the complexity of single words and
the other one with the complexity of bigram multi-
word expressions. Accordingly, the shared task was
divided into two sub-tasks, one dedicated to each
sub-corpus. Within both CompLex sub-corpora,
the sentences are organised into quadruples consist-
ing of a given sentence, a reference to its original
corpus, a selected word, respectively a multiword
expression from this sentence, and a continuous
complexity score denoting the difficulty of this se-
lected word or bigram which is to be predicted by
systems submitted to the shared task. For the task,
both subcorpora were partitioned into training, test
and trial sets.

The scores given for simple words, respectively
multiword expressions, were derived from letting
annotators subjectively judge the difficulty of un-
derstanding words respectively word bigrams on a
Likert scale ranging from / to 5 with / indicating
a very simple and 5 a very complex word. The
assigned scores were then projected onto values be-
tween 0 and / and averaged between all annotators
to calculate the final scores.

2.2 Related Work

The first approaches to the systematic prediction
of lexical complexity were made during SemEval-
2016 Task 11 (Paetzold and Specia, 2016). Here,
the problem of determining the complexity of a
word was formulated as a classification task de-
signed to determine whether a word could be con-
sidered as being complex or not. The data set used
for this task was created by presenting 20 non-
native speakers with sentences and letting them
judge whether the words contained within these
sentences were rated as complex or not. From these
judgements, two different data sets were derived.
In the first one, a word was considered complex
if at least one of the annotators had judged it as
such, and in the second one, each word was given
20 different labels, one per annotator. The most
important findings for this shared task were that
ensemble methods performed best in predicting
lexical complexity with word frequency being the
best indicator.

In 2018, a second shared task was conducted on
the same topic as described in Yimam et al. (2018).
This shared task focused on predicting lexical com-
plexity for English, German, Spanish and a multi-
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lingual data set with a French test set. The data for
this was acquired by presenting annotators on Ama-
zon Mechanical Turk with paragraphs of text and
letting them mark words which according to their
perception could hinder the same paragraph from
being understood by a less proficient reader. The
findings of this shared task confirmed the finding
of the previous one that using ensemble methods
yield best results for complex word identification
with a system submitted by Gooding and Kochmar
(2018) relying on decision tree ensembles.

3 System Overview

Our systems rely on gradient-boosted regression
tree ensembles (Mason et al., 1999) for predicting
lexical complexity scores. We trained one model to
predict single word lexical complexity scores and
another one to predict bigram multiword expression
complexity scores. Our models are based on the
implementation of gradient boosting provided by
CatBoost (Dorogush et al., 2018; Prokhorenkova
et al., 2018). We set the growing policy to loss-
guide, the L2 leaf regularisation to 15, the learning
rate to 0.01, tree depth to 6 and the maximum num-
ber of leaves to 15. Additionally, we set the number
of maximum iterations to 5000 and then used the
trial set to perform early stopping during training
in order to determine the exact number of required
iterations.

The motivation behind using this algorithm was
its general ability to perform well on heterogeneous
and sparse feature sets which allowed us to mix
regular linguistic features, WordNet features, word
embeddings, psycho-linguistic norm lexica, corpus-
based word frequencies and selected word lists as
all of these were features we assumed to possibly
correlate with lexical complexity. Moreover, the re-
portings of Paetzold and Specia (2016) and Yimam
et al. (2018) that ensemble-based learners perform
best for complex word identification contributed to
this decision, as well. While the problem presented
in their paper is formulated as a binary classifica-
tion task using different data sets, we wanted to test
if their findings would still translate to a regression
task on CompLex.

3.1 Feature Engineering

The following paragraphs describe the features we
used to create the feature vectors used to represent
words. In case of our system dealing with bigram

"https://catboost.ai/



multiword expressions, we calculated such a vector
for each of both words and then concatenated them
to acquire the final input vectors. Thus, the exact
number of input features was 7424 for our system
dealing with single words and /4848 for our system
dealing with multiword expressions.

Syntactic features: This category of features in-
cludes XPOS-, UPOS-, dependency- and named
entity tags as well as universal features® inferred
using the English Stanza® (Qi et al., 2020) model
fit to the version of the English Web Treebank fol-
lowing the Universal Dependencies formalism (Sil-
veira et al., 2014). In addition to the tags assigned
to the word(s) whose score was to be predicted,
we included the XPOS- and UPOS tags of the two
neighbouring words to the left and to the right as
well as the dependency tags of the siblings, direct
children and the parent of the word(s) within the
dependency structure of a given sentence. All of
these features are encoded as one-, respectively
n-hot vectors using the LabelBinarizer and Mul-
tiLabelBinarizer classes provided by Scikit-learn
(Pedregosa et al., 2011).

WordNet features: Here, we included the num-
bers of hypernyms, root hypernyms, hyponyms,
member holonyms, part meronyms and member
meronyms of the respective word(s) as well as
the number of given examples and the length of
the shortest hypernym path from WordNet (Miller,
1995). In cases where multiple synsets were given
for a word, we calculated the respective means and
in cases where a given word was not included in
the resource, we set all respective feature values to
0. We accessed WordNet using NLTK (Bird et al.,
2009). The main intuition behind using this re-
source was that the length of the shortest hypernym
path and the count for the different lexico-semantic
relations could be a good indicator for lexical com-
plexity.

Word embeddings: We used multiple static and
contextual word embedding models for our fea-
ture set. This includes the transformer-based
(Devlin et al., 2019) BiomedNLP-PubMedBERT-
base-uncased-abstract (Gu et al., 2020), distilgpt2*
(Radford et al., 2018) and distilbert-base-uncased
(Sanh et al., 2019), the contextual string embed-

2https
feat/all
3https
4https

://universaldependencies.org/u/
.html
://stanfordnlp.github.io/stanza/
://huggingface.co/distilgpt2
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ding models mix-forward and mix-backward® (Ak-
bik et al., 2018), and the static GloVe® (Pennington
et al., 2014) and English fastText’ (Bojanowski
et al., 2017) embeddings.

This collection of embeddings was derived from
previous experiments on the CompLex corpus
where we tried to fine-tune a purely neural model
using the approach of stacking different embedding
models in combination with an attached predic-
tion head central to flairNLP® (Akbik et al., 2019).
More precisely, in the setup we chose, the outputs
of all language models were fed to a feed-forward
layer responsible for calculating the final complex-
ity scores. This network was then trained for 5
epochs with a learning rate of 0.000001, mean
squared error as loss function and Adam (Kingma
and Ba, 2015) as optimizer on the training set part
of CompLex. During this training, fine-tuning was
active for all transformer-based language models so
that their weights were adjusted during the process
and scalar mixing (Liu et al., 2019) was used for
the transformer-based language models as it was
not foreseeable which layers of the transformer
models would influence results the most.

This model achieved a Pearson’s correlation co-
efficient score of 0.7103 when evaluated on the
trial set. While we deemed this an okay result,
we decided to stick with gradient boosting for our
final systems as early experiments with this algo-
rithm yielded results superior to the purely neural
approach when evaluated on the same set. As we
switched to using gradient boosting for our final
systems, we decided to use the fine-tuned variants
of the transformer embedding models as using them
led to small improvements when testing our models
on the shared task trial sets compared to using the
non-fine-tuned variants.

Psycholinguistic norm lexica: Our feature set
includes two psycholinguistic norm lexica. The
first one is described in Warriner et al. (2013) and
scores words with empirical ratings for pleasant-
ness, arousal and dominance using the SAM score
(Bradley and Lang, 1994). These ratings were ac-
quired from annotators on the Amazon Mechanical
Turk platform. The second lexicon is described in

Shttps://github.com/flairNLP/flair/
blob/master/resources/docs/embeddings/
FLAIR_EMBEDDINGS .md

®https://nlp.stanford.edu/projects/
glove/

"https://fasttext.cc/

8https://github.com/flairNLP/flair



Malandrakis and Narayanan (2015) and includes
ratings for arousal, dominance, valence, pleasant-
ness, concreteness, imagability, age of acquisition,
familarity, pronouncability, context availability
and gender ladenness. The ratings within this lexi-
con were derived algorithmically from smaller lex-
icons using linear combinations and semantic simi-
larity scores to approximate the ratings for words
not included in the source lexica. In both cases,
the inclusion of these features was mainly moti-
vated by our general intuition that the perceived
complexity of words could be linked to different
psycholinguistic variables.

Word frequencies: We utilised three resources
containing corpus-based word respectively char-
acter bigram frequencies. The first of these data
sets was the frequency list extracted from the SUB-
TLEXus corpus (Brysbaert and New, 2009) con-
sisting of various movie subtitles from which we
used the log-normalised term frequency and the
log-normalised document frequency as features.
Besides SUBTLEXus, we utilised the character bi-
gram frequencies from Norvig (2013) which were
extracted from the Google Books Corpus. Here,
to represent a word, we calculated the mean of all
frequencies of the bigrams consituting the same
and used this as feature. In the case of both sets,
our intuition was that lower frequency would likely
function as a proxy for complexity. The third set
we used was EFLLex (Diirlich and Francois, 2018)
which lists the frequencies of words within several
pieces of English literature appropriate for different
CEFR® levels. We included this set as we deemed
that CEFR as a framework for rating language com-
petence could also function as an according proxy.

Word Lists: We used two different word lists as
features. The first one is Ogden’s Basic English
Vocabulary'®, a list of simple words used for writ-
ing simple English as described in Ogden (1932).
Here, our idea was that this could help to identify
simple words within CompLex. The other one was
the Academic Word List as described in Coxhead
(2011), a structured lexicon of terms used primar-
ily in academic discourse which we believed to
contain more complex words. In both cases, we
encoded the inclusion of a word within a respective
word list binarily.

’https://tracktest.eu/
english-levels-cefr/
Yhttp://ogden.basic-english.org/

Metric System Rank Best Res.
Pearson 0.7618 15/54  0.7886
Spearman 0.7164 26/54  0.7425
MAE 0.0643  20/54  0.0609
MSE 0.0067  9/54 0.0061
R2 0.5846 10/54  0.6210

Table 1: Results achieved by our system dealing with
single word complexity. Best Results refer to the best
score achieved within each category by a competing
system.

Metric System Rank Best Res.
Pearson 0.8190 19/37 0.8612
Spearman 0.8091 19/37  0.8548
MAE 0.0711  14/37  0.0616
MSE 0.0080 12/37  0.0063
R2 0.6677 13/37  0.7389

Table 2: Results achieved by our system dealing with
multiword expression complexity. Best Results refer
to the best score achieved within each category by a
competing system.

4 Results

Throughout the shared task, the systems were eval-
uated with regard to Pearson’s correlation coef-
ficient, Spearman’s rank correlation coefficient,
mean average error, mean squared error and R2
with Pearson’s correlation coefficient determining
the main ranking. According to this, our systems
achieved the 15th and 19th rank respectively. Ta-
ble 1 shows the results achieved by our system
dealing with single words and Table 2 the results
achieved by our system dealing with multiword ex-
pressions. The results show that our systems, while
only achieving upper mid-table results on average,
come close to the best systems performance-wise
which speaks for our approach. Further hyperpa-
rameter tuning and the addition of more features
could likely close this gap. The full results for all
submitted systems are presented in Shardlow et al.
(2021a).

4.1 Most Important Features

To determine which features were used by our mod-
els to predict lexical complexity, we rely on the
functionality provided by CatBoost which scores
each feature for its influence on a given final pre-
diction. This is achieved by changing a respective
feature values and observing the resulting change
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Rank Feature Importance
1 flair-mix-b. 25.10
2 flair-mix-b. 11.79
3 flair-mix-b. 7.03
4 flair-mix-f. 4.09
5 flair-mix-f. 2.98
6 flair-mix-b. 1.33
7 flair-mix-f. 1.20
8 distilbert-b.-u. 1.19
9 BiomedNLP 1.12

10 GloVe 1.03

Table 3: The 10 most important features observed for
our system dealing with single word complexity and
their categories. Each entry refers to a single dimension
of the feature vector.

in the model prediction (see !! for further infor-
mation on the exact method). The outputs of this
method are normalised so that the sum of the im-
portance values of all features equals /00. Feature
importance was calculated using the evaluation set
of CompLex.

Inspecting the results of these calculations, we
noticed that our systems did not use the charac-
ter bigram frequencies derived from the Google
Books Corpus, nor the frequencies from EFLLex
or the word list inclusion features. While features
from all other categories were utilised, the most
dominant features by far are contained in the word
embedding category. Within this category, the most
dominant features for both models came from the
flair-mix-backward and flair-mix-forward models
(see Tables 3 and 4). A few single dimension from
the embeddings provided by flair-mix-backward
seem to play the major role here.

In the case of our model dealing with multiword
expressions, the ten most important features all
stem from the flair-mix-backward embedding of
the second word. This could be explained by the
fact that most multiword expressions within the
CompLex corpus follow the structure of a semantic
head in combination with a modifier as most of
them are either multi token compounds or single
token nouns modified by adjectives. It is intuitive
from a linguistic point of view that in such cases,
the semantic head, which comes as second element,
should play the dominant semantic role resulting
in it being more influential in the overall results.

"https://catboost.ai/docs/concepts/
fstr.html
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Rank Feature Importance
1 flair-mix-b. (2nd w.) 9.28
2 flair-mix-b. (2nd w.) 7.24
3 flair-mix-b. (2nd w.) 6.09
4 flair-mix-b. (2nd w.) 3.80
5 flair-mix-b. (2nd w.) 3.60
6 flair-mix-b. (2nd w.) 3.17
7 flair-mix-b. (2nd w.) 2.44
8 flair-mix-b. (2nd w.) 1.88
9 flair-mix-b. (2nd w.) 1.34
10 flair-mix-b. (2nd w.) 1.08

Table 4: The 10 most important features observed for
our system dealing with multiword expression complex-
ity and their categories. Each entry refers to a single
dimension of the feature vector.

While the exact reason for the strong influence
of the contextualised string embeddings is hard to
determine due to the fact that embeddings lack the
property of being easily interpretable, we assume
that the dominant role they play for the results
could be determined by them being calculated on
the character level (Akbik et al., 2018) instead of
the level of fixed words or subword units such as
morphemes. As a consequence, such models use
fewer input dimensions and each of the dimensions
present is in turn involved in the encoding of more
different words. This links each input dimension
also to a larger variety of latently encoded distribu-
tional knowledge which could then c