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Introduction

Welcome to SemEval-2021!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyze diverse semantic phenomena in text, with the aims of extending the current
state of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2021 is the fifteenth workshop in the series of International Workshops on Semantic Evaluation.
The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on
word sense disambiguation, each time expanding in the number of languages offered, the number of
tasks, and also the number of teams participating. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval became a yearly event. It currently takes place every year, on a two-
year cycle. The tasks for SemEval-2021 were proposed in 2020, and next year’s tasks have already been
selected and are underway.

SemEval-2021 is co-located (virtually) with The Joint Conference of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP 2021) on August 5–6. This year’s SemEval included the following
11 tasks:

• Lexical semantics

– Task 1: Lexical Complexity Prediction

– Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation

– Task 4: Reading Comprehension of Abstract Meaning

• Social factors & opinion

– Task 5: Toxic Spans Detection

– Task 6: Detection of Persuasive Techniques in Texts and Images

– Task 7: HaHackathon: Detecting and Rating Humor and Offense

• Information in scientific & clinical text

– Task 8: MeasEval: Counts and Measurements

– Task 9: Statement Verification and Evidence Finding with Tables

– Task 10: Source-Free Domain Adaptation for Semantic Processing

– Task 11: NLPContributionGraph

• Other phenomena

– Task 12: Learning with Disagreements

This volume contains both task description papers that describe each of the above tasks and system
description papers that present the systems that participated in the tasks. A total of 11 task description
papers and 175 system description papers are included in this volume.
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SemEval-2021 features two awards, one for organizers of a task and one for a team participating in a task.
The Best Task award recognizes a task that stands out for making an important intellectual contribution to
empirical computational semantics, as demonstrated by a creative, interesting, and scientifically rigorous
dataset and evaluation design, and a well-written task overview paper. The Best Paper award recognizes
a system description paper (written by a team participating in one of the tasks) that advances our
understanding of a problem and available solutions with respect to a task. It need not be the highest-
scoring system in the task, but it must have a strong analysis component in the evaluation, as well as a
clear and reproducible description of the problem, algorithms, and methodology.

2021 has been another particularly challenging year across the globe. We are immensely grateful to
the task organizers for their perseverance through many ups, downs, and uncertainties, as well as to the
large number of participants whose enthusiastic participation has made SemEval once again a successful
event! Thanks also to the task organizers who served as area chairs for their tasks, and to both task
organizers and participants who reviewed paper submissions. These proceedings have greatly benefited
from their detailed and thoughtful feedback. Thousands of thanks to our assistant organizers Julia R.
Bonn and Abhidip Bhattacharyya for their extensive, detailed, and dedicated work on the production of
these proceedings! We also thank the members of the program committee who reviewed the submitted
task proposals and helped us to select this exciting set of tasks, and we thank the ACL 2021 conference
organizers for their support. Finally, we most gratefully acknowledge the support of our sponsor: the
ACL Special Interest Group on the Lexicon (SIGLEX).

The SemEval-2021 organizers: Guy Emerson, Aurelie Herbelot, Alexis Palmer, Natalie Schluter, Nathan
Schneider, and Xiaodan Zhu
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Abstract

This paper presents the results and main find-
ings of SemEval-2021 Task 1 - Lexical Com-
plexity Prediction. We provided participants
with an augmented version of the CompLex
Corpus (Shardlow et al., 2020). CompLex
is an English multi-domain corpus in which
words and multi-word expressions (MWEs)
were annotated with respect to their complex-
ity using a five point Likert scale. SemEval-
2021 Task 1 featured two Sub-tasks: Sub-task
1 focused on single words and Sub-task 2 fo-
cused on MWEs. The competition attracted
198 teams in total, of which 54 teams submit-
ted official runs on the test data to Sub-task 1
and 37 to Sub-task 2.

1 Introduction

The occurrence of an unknown word in a sentence
can adversely affect its comprehension by read-
ers. Either they give up, misinterpret, or plough on
without understanding. A committed reader may
take the time to look up a word and expand their
vocabulary, but even in this case they must leave
the text, undermining their concentration. The nat-
ural language processing solution is to identify can-
didate words in a text that may be too difficult
for a reader (Shardlow, 2013; Paetzold and Specia,
2016a). Each potential word is assigned a judgment
by a system to determine if it was deemed ‘com-
plex’ or not. These scores indicate which words are
likely to cause problems for a reader. The words
that are identified as problematic can be the subject
of numerous types of intervention, such as direct
replacement in the setting of lexical simplification
(Gooding and Kochmar, 2019), or extra informa-
tion being given in the context of explanation gen-
eration (Rello et al., 2015).

Whereas previous solutions to this task have typ-
ically considered the Complex Word Identification
(CWI) task (Paetzold and Specia, 2016a; Yimam
et al., 2018) in which a binary judgment of a word’s

complexity is given (i.e., is a word complex or
not?), we instead focus on the Lexical Complexity
Prediction (LCP) task (Shardlow et al., 2020) in
which a value is assigned from a continuous scale
to identify a word’s complexity (i.e., how complex
is this word?). We ask multiple annotators to give
a judgment on each instance in our corpus and take
the average prediction as our complexity label. The
former task (CWI) forces each user to make a sub-
jective judgment about the nature of the word that
models their personal vocabulary. Many factors
may affect the annotator’s judgment including their
education level, first language, specialism or famil-
iarity with the text at hand. The annotators may
also disagree on the level of difficulty at which to
label a word as complex. One annotator may label
every word they feel is above average difficulty,
another may label words that they feel unfamiliar
with, but understand from the context, whereas an-
other annotator may only label those words that
they find totally incomprehensible, even in context.
Our introduction of the LCP task seeks to address
this annotator confusion by giving annotators a
Likert scale to provide their judgments. Whilst
annotators must still give a subjective judgment
depending on their own understanding, familiarity
and vocabulary — they do so in a way that better
captures the meaning behind each judgment they
have given. By aggregating these judgments we
have developed a dataset that contains continuous
labels in the range of 0–1 for each instance. This
means that rather than a system predicting whether
a word is complex or not (0 or 1), instead a system
must now predict where, on our continuous scale,
a word falls (0–1).

Consider the following sentence taken from a
biomedical source, where the target word ‘observa-
tion’ has been highlighted:

(1) The observation of unequal expression leads
to a number of questions.
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In the binary annotation setting of CWI some anno-
tators may rightly consider this term non-complex,
whereas others may rightly consider it to be com-
plex. Whilst the meaning of the word is reasonably
clear to someone with scientific training, the con-
text in which it is used is unfamiliar for a lay reader
and will likely lead to them considering it com-
plex. In our new LCP setting, we are able to ask
annotators to mark the word on a scale from very
easy to very difficult. Each user can give their sub-
jective interpretation on this scale indicating how
difficult they found the word. Whilst annotators
will inevitably disagree (some finding it more or
less difficult), this is captured and quantified as part
of our annotations, with a word of this type likely
to lead to a medium complexity value.

LCP is useful as part of the wider task of lexi-
cal simplification (Devlin and Tait, 1998), where
it can be used to both identify candidate words for
simplification (Shardlow, 2013) and rank poten-
tial words as replacements (Paetzold and Specia,
2017). LCP is also relevant to the field of readabil-
ity assessment, where knowing the proportion of
complex words in a text helps to identify the overall
complexity of the text (Dale and Chall., 1948).

This paper presents SemEval-2021 Task 1: Lex-
ical Complexity Prediction. In this task we devel-
oped a new dataset for complexity prediction based
on the previously published CompLex dataset. Our
dataset covers 10,800 instances spanning 3 genres
and containing unigrams and bigrams as targets for
complexity prediction. We solicited participants
in our task and released a trial, training and test
split in accordance with the SemEval schedule. We
accepted submissions in two separate Sub-tasks,
the first being single words only and the second
taking single words and multi-word expressions
(modelled by our bigrams). In total 55 teams par-
ticipated across the two Sub-tasks.

The rest of this paper is structured as folllows:
In Section 2 we discuss the previous two iterations
of the CWI task. In Section 3, we present the
CompLex 2.0 dataset that we have used for our task,
including the methodology we used to produce trial,
test and training splits. In Section 5, we show the
results of the participating systems and compare
the features that were used by each system. We
finally discuss the nature of LCP in Section 7 and
give concluding remarks in Section 8

2 Related Tasks

CWI 2016 at SemEval The CWI shared task
was organized at SemEval 2016 (Paetzold and Spe-
cia, 2016a). The CWI 2016 organizers introduced
a new CWI dataset and reported the results of 42
CWI systems developed by 21 teams. Words in
their dataset were considered complex if they were
difficult to understand for non-native English speak-
ers according to a binary labelling protocol. A word
was considered complex if at least one of the anno-
tators found it to be difficult. The training dataset
consisted of 2,237 instances, each labelled by 20
annotators and the test dataset had 88,221 instances,
each labelled by 1 annotator (Paetzold and Specia,
2016a).

The participating systems leveraged lexical fea-
tures (Choubey and Pateria, 2016; Bingel et al.,
2016; Quijada and Medero, 2016) and word em-
beddings (Kuru, 2016; S.P et al., 2016; Gillin,
2016), as well as finding that frequency features,
such as those taken from Wikipedia (Konkol, 2016;
Wróbel, 2016) were useful. Systems used binary
classifiers such as SVMs (Kuru, 2016; S.P et al.,
2016; Choubey and Pateria, 2016), Decision Trees
(Choubey and Pateria, 2016; Quijada and Medero,
2016; Malmasi et al., 2016), Random Forests (Ron-
zano et al., 2016; Brooke et al., 2016; Zampieri
et al., 2016; Mukherjee et al., 2016) and threshold-
based metrics (Kauchak, 2016; Wróbel, 2016) to
predict the complexity labels. The winning system
made use of threshold-based methods and features
extracted from Simple Wikipedia (Paetzold and
Specia, 2016b).

A post-competition analysis (Zampieri et al.,
2017) with oracle and ensemble methods showed
that most systems performed poorly due mostly to
the way in which the data was annotated and the
the small size of the training dataset.

CWI 2018 at BEA The second CWI Shared Task
was organized at the BEA workshop 2018 (Yimam
et al., 2018). Unlike the first task, this second task
had two objectives. The first objective was the
binary complex or non-complex classification of
target words. The second objective was regression
or probabilistic classification in which 13 teams
were asked to assign the probability of a target word
being considered complex by a set of language
learners. A major difference in this second task was
that datasets of differing genres: (TEXT GENRES)
as well as English, German and Spanish datasets
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for monolingual speakers and a French dataset for
multilingual speakers were provided (Yimam et al.,
2018).

Similar to 2016, systems made use of a variety
of lexical features including word length (Wani
et al., 2018; De Hertog and Tack, 2018; AbuRa’ed
and Saggion, 2018; Hartmann and dos Santos,
2018; Alfter and Pilán, 2018; Kajiwara and Ko-
machi, 2018), frequency (De Hertog and Tack,
2018; Aroyehun et al., 2018; Alfter and Pilán, 2018;
Kajiwara and Komachi, 2018), N-gram features
(Gooding and Kochmar, 2018; Popović, 2018; Hart-
mann and dos Santos, 2018; Alfter and Pilán, 2018;
Butnaru and Ionescu, 2018) and word embeddings
(De Hertog and Tack, 2018; AbuRa’ed and Sag-
gion, 2018; Aroyehun et al., 2018; Butnaru and
Ionescu, 2018). A variety of classifiers were used
ranging from traditional machine learning classi-
fiers (Gooding and Kochmar, 2018; Popović, 2018;
AbuRa’ed and Saggion, 2018), to Neural Networks
(De Hertog and Tack, 2018; Aroyehun et al., 2018).
The winning system made use of Adaboost with
WordNet features, POS tags, dependency parsing
relations and psycholinguistic features (Gooding
and Kochmar, 2018).

3 Data

We previously reported on the annotation of the
CompLex dataset (Shardlow et al., 2020) (hereafter
referred to as CompLex 1.0), in which we anno-
tated around 10,000 instances for lexical complex-
ity using the Figure Eight platform. The instances
spanned three genres: Europarl, taken from the
proceedings of the European Parliament (Koehn,
2005); The Bible, taken from an electronic dis-
tribution of the World English Bible translation
(Christodouloupoulos and Steedman, 2015) and
Biomedical literature, taken from the CRAFT cor-
pus (Bada et al., 2012). We limited our annotations
to focus only on nouns and multi-word expressions
following a Noun-Noun or Adjective-Noun pat-
tern, using the POS tagger from Stanford CoreNLP
(Manning et al., 2014) to identify these patterns.

Whilst these annotations allowed us to report on
the dataset and to show some trends, the overall
quality of the annotations we received was poor
and we ended up discarding a large number of the
annotations. For CompLex 1.0 we retained only
instances with four or more annotations and the
low number of annotations (average number of
annotators = 7) led to the overall dataset being less

reliable than initially expected
For the Shared Task we chose to boost the num-

ber of annotations on the same data as used for
CompLex 1.0 using Amazon’s Mechanical Turk
platform. We requested a further 10 annotations
on each data instance bringing up the average num-
ber of annotators per instance. Annotators were
presented with the same task layout as in the anno-
tation of CompLex 1.0 and we defined the Likert
Scale points as previously:

Very Easy: Words which were very familiar to an
annotator.

Easy: Words with which an annotator was aware
of the meaning.

Neutral: A word which was neither difficult nor
easy.

Difficult: Words which an annotator was unclear
of the meaning, but may have been able to
infer the meaning from the sentence.

Very Difficult: Words that an annotator had never
seen before, or were very unclear.

These annotations were aggregated with the re-
tained annotations of CompLex 1.0 to give our new
dataset, CompLex 2.0, covering 10,800 instances
across single and multi-words and across 3 genres.

The features that make our corpus distinct from
other corpora which focus on the CWI and LCP
tasks are described below:

Continuous Annotations: We have annotated our
data using a 5-point Likert Scale. Each in-
stance has been annotated multiple times and
we have taken the mean average of these anno-
tations as the label for each data instance. To
calculate this average we converted the Likert
Scale points to a continuous scale as follows:
Very Easy→ 0, Easy→ 0.25, Neutral→ 0.5,
Difficult→ 0.75, Very Difficult→ 1.0.

Contextual Annotations: Each instance in the
corpus is presented with its enclosing sentence
as context. This ensures that the sense of a
word can be identified when assigning it a
complexity value. Whereas previous work
has reannotated the data from the CWI–2018
shared task with word senses (Strohmaier
et al., 2020), we do not make explicit sense
distinctions between our tokens, instead leav-
ing this task up to participants.
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Repeated Token Instances: We provide more
than one context for each token (up to a maxi-
mum of five contexts per genre). These words
were annotated separately during annotation,
with the expectation that tokens in different
contexts would receive differing complexity
values. This deliberately penalises systems
that do not take the context of a word into
account.

Multi-word Expressions: In our corpus we have
provided 1,800 instances of multi-word ex-
pressions (split across our 3 sub-corpora).
Each MWE is modelled as a Noun-Noun or
Adjective-Noun pattern followed by any POS
tag which is not a noun. This avoids select-
ing the first portion of complex noun phrases.
There is no guarantee that these will corre-
spond to true MWEs that take on a meaning
beyond the sum of their parts, and further in-
vestigation into the types of MWEs present in
the corpus would be informative.

Aggregated Annotations: By aggregating the
Likert scale labels we have generated crowd-
sourced complexity labels for each instance
in our corpus. We are assuming that, although
there is inevitably some noise in any large an-
notation project (and especially so in crowd-
sourcing), this will even out in the averaging
process to give a mean value reflecting the
appropriate complexity for each instance. By
taking the mean average we are assuming uni-
modal distributions in our annotations.

Varied Genres: We have selected for diverse gen-
res as mentioned above. Previous CWI
datasets have focused on informal text such as
Wikipedia and multi-genre text, such as news.
By focusing on specific texts we force systems
to learn generalised complexity annotations
that are appropriate in a cross-genre setting.

We have presented summary statistics for Com-
pLex 2.0 in Table 1. In total, 5,617 unique words
are split across 10,800 contexts, with an average
complexity across our entire dataset of 0.321. Each
genre has 3,600 contexts, with each split between
3,000 single words and 600 multi-word expres-
sions. Whereas single words are slightly below the
average complexity of the dataset at 0.302, multi-
word expressions are much more complex at 0.419,

indicating that annotators found these more dif-
ficult to understand. Similarly Europarl and the
Bible were less complex than the corpus average,
whereas the Biomedical articles were more com-
plex. The number of unique tokens varies from
one genre to another as the tokens were selected at
random and discarded if there were already more
than 5 occurrences of the given token already in
the dataset. This stochastic selection process led to
a varied dataset with some tokens only having one
context, whereas others have as many as five in a
given genre. On average each token has around 2
contexts.

4 Data Splits

In order to run the shared task we partitioned our
dataset into Trial, Train and Test splits and dis-
tributed these according to the SemEval schedule.
A criticism of previous CWI shared tasks is that
the training data did not accurately reflect the dis-
tribution of instances in the testing data. We sought
to avoid this by stratifying our selection process
for a number of factors. The first factor we consid-
ered was genre. We ensured that an even number
of instances from each genre was present in each
split. We also stratified for complexity, ensuring
that each split had a similar distribution of com-
plexities. Finally we also stratified the splits by
token, ensuring that multiple instances containing
the same token occurred in only one split. This last
criterion ensures that systems do not overfit to the
test data by learning the complexities of specific
tokens in the training data.

Performing a robust stratification of a dataset
according to multiple features is a non-trivial op-
timisation problem. We solved this by first group-
ing all instances in a genre by token and sorting
these groups by the complexity of the least com-
plex instance in the group. For each genre, we
passed through this sorted list and for each set of
20 groups we put the first group in the trial set, the
next two groups in the test set and the remaining 17
groups in the training data. This allowed us to get
a rough 5-85-10 split between trial, training and
test data. The trial and training data were released
in this ordered format, however to prevent systems
from guessing the labels based on the data ordering
we randomised the order of the instances in the test
data prior to release. The splits that we used for the
Shared Task are available via GitHub1.

1https://github.com/MMU-TDMLab/CompLex
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Subset Genre Contexts Unique Tokens Average Complexity

All

Total 10,800 5,617 0.321
Europarl 3,600 2,227 0.303
Biomed 3,600 1,904 0.353
Bible 3,600 1,934 0.307

Single

Total 9,000 4,129 0.302
Europarl 3,000 1,725 0.286
Biomed 3,000 1,388 0.325
Bible 3,000 1,462 0.293

MWE

Total 1,800 1,488 0.419
Europarl 600 502 0.388
Biomed 600 516 0.491
Bible 600 472 0.377

Table 1: The statistics for CompLex 2.0.

Table 2 presents statistics on each split in our
data, where it can be seen that we were able to
achieve a roughly even split between genres across
the trial, train and test data.

Subset Genre Trial Train Test

All

Total 520 9179 1101
Europarl 180 3010 410
Biomed 168 3090 342
Bible 172 3079 349

Single

Total 421 7662 917
Europarl 143 2512 345
Biomed 135 2576 289
Bible 143 2574 283

MWE

Total 99 1517 184
Europarl 37 498 65
Biomed 33 514 53
Bible 29 505 66

Table 2: The Trial, Train and Test splits that were used
as part of the shared task.

5 Results

The full results of our task can be seen in Ap-
pendix A. We had 55 teams participate in our 2
Sub-tasks, with 19 participating in Sub-task 1 only,
1 participating in Sub-task 2 only and 36 partici-
pating in both Sub-tasks. We have used Pearson’s
correlation for our final ranking of participants, but
we have also included other metrics that are appro-
priate for evaluating continuous and ranked data
and provided secondary rankings of these.

Sub-task 1 asked participants to assign complex-
ity values to each of the single words instances in
our corpus. For Sub-task 2, we asked participants
to submit results on both single words and MWEs.
We did not rank participants on MWE-only submis-

sions due to the relatively small number of MWEs
in our corpus (184 in the test set).

The metrics we chose for ranking were as fol-
lows:

Pearson’s Correlation: We chose this metric as
our primary method of ranking as it is well
known and understood, especially in the con-
text of evaluating systems with continuous
outputs. Pearson’s correlation is robust to
changes in scale and measures how the input
variables change with each other.

Spearman’s Rank: This metric does not consider
the values output by a system, or in the test
labels, only the order of those labels. It was
chosen as a secondary metric as it is more
robust to outliers than Pearson’s correlation.

Mean Absolute Error (MAE): Typically used
for the evaluation of regression tasks, we
included MAE as it gives an indication of
how close the predicted labels were to the
gold labels for our task.

Mean Squared Error (MSE): There is little dif-
ference in the calculation of MSE vs. MAE,
however we also include this metric for com-
pleteness.

R2: This measures the proportion of variance of
the original labels captured by the predicted
labels. It is possible to do well on all the other
metrics, yet do poorly on R2 if a system pro-
duces annotations with a different distribution
than those in the original labels.

In Table 3 we show the scores of the top 10 sys-
tems across our 2 Sub-tasks according to Pearson’s
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Team Task 1
Pearson R2

JUST BLUE 0.7886 (1) 0.6172 (2)
DeepBlueAI 0.7882 (2) 0.6210 (1)
Alejandro Mosquera 0.7790 (3) 0.6062 (3)
Andi 0.7782 (4) 0.6036 (4)
CS-UM6P 0.7779 (5) 0.3813 (47)
tuqa 0.7772 (6) 0.5771 (12)
OCHADAI-KYOTO 0.7772 (7) 0.6015 (5)
BigGreen 0.7749 (8) 0.5983 (6)
CSECU-DSC 0.7716 (9) 0.5909 (8)
IA PUCP 0.7704 (10) 0.5929 (7)
Frequency Baseline 0.5287 0.2779

Task 2
DeepBlueAI 0.8612 (1) 0.7389 (1)
rg pa 0.8575 (2) 0.7035 (5)
xiang wen tian 0.8571 (3) 0.7012 (7)
andi gpu 0.8543 (4) 0.7055 (4)
ren wo xing 0.8541 (5) 0.6967 (8)
Andi 0.8506 (6) 0.7107 (2)
CS-UM6P 0.8489 (7) 0.6380 (17)
OCHADAI-KYOTO 0.8438 (8) 0.7103 (3)
LAST 0.8417 (9) 0.7030 (6)
KFU 0.8406 (10) 0.6967 (9)
Frequency Baseline 0.6571 0.4030

Table 3: The top 10 systems for each task according to
Pearson’s correlation. We have also included R2 score
to help interpret the former. For full rankings, see Ap-
pendix A

Correlation. We have only reported on Pearson’s
correlation and R2 in these tables, but the full re-
sults with all metrics are available in Appendix A.
We have included a Frequency Baseline produced
using log-frequency from the Google Web1T and
linear regression, which was beaten by the majority
of our systems. From these results we can see that
systems were able to attain reasonably high scores
on our dataset, with the winning systems reporting
Pearson’s Correlation of 0.7886 for Sub-task 1 and
0.8612 for Sub-task 2, as well as high R2 scores of
0.6210 for Sub-task 1 and 0.7389 for Sub-task 2.
The rankings remained stable across Spearman’s
rank, MAE and MSE, with some small variations.
Scores were generally higher on Sub-task 2 than on
Sub-task 1, and this is likely to be because of the
different groups of token-types (single words and
MWEs). MWEs are known to be more complex
than single words and so this fact may have im-
plictly helped systems to better model the variance
of complexities between the two groups.

6 Participating Systems

In this section we have analysed the participating
systems in our task. System Description papers
were submitted by 32 teams. In the subsections
below, we have first given brief summaries of some
of the top systems according to Pearson’s correla-
tion for each task for which we had a description.
We then discuss the features used across different
systems, as well as the approaches to the task that
different teams chose to take. We have prepared
a comprehensive table comparing the features and
approaches of all systems for which we have the
relevant information in Appendix B.

6.1 System Summaries
DeepBlueAI: This system attained the highest
Pearson’s Correlation on Sub-task 2 and the sec-
ond highest Pearson’s Correlation on Sub-task 1. It
also attained the highest R2 score across both tasks.
The system used an ensemble of pre-trained lan-
guage models fine-tuned for the task with Pseudo
Labelling, Data Augmentation, Stacked Training
Models and Multi-Sample Dropout. The data was
encoded for the transformer models using the genre
and token as a query string and the given context
as a supplementary input.

JUST BLUE: This system attained the highest
Pearson’s Correlation for Sub-task 1. The sys-
tem did not participate in Sub-task 2. This system
makes use of an ensemble of BERT and RoBERTa.
Separate models are fine-tuned for context and to-
ken prediction and these are weighted 20-80 re-
spectively. The average of the BERT models and
RoBERTa models is taken to give a final score.

RG PA: This system attained the second highest
Pearson’s Correlation for Sub-task 2. The system
uses a fine-tuned RoBERTa model and boosts the
training data for the second task by identifying
similar examples from the single-word portion of
the dataset to train the multi-word classifier. They
use an ensemble of RoBERTa models in their fi-
nal classification, averaging the outputs to enhance
performance.

Alejandro Mosquera: This system attained the
third highest Pearson’s Correlation for Sub-task 1.
The system used a feature-based approach, incor-
porating length, frequency, semantic features from
WordNet and sentence level readability features.
These were passed through a Gradient Boosted Re-
gression.
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Andi: This system attained the fourth highest
Pearson’s Correlation for Sub-task 1. They com-
bine a traditional feature based approach with fea-
tures from pre-trained language models. They use
psycholinguistic features, as well as GLoVE and
Word2Vec Embeddings. They also take features
from an ensemble of Language models: BERT,
RoBERTa, ELECTRA, ALBERT, DeBERTa. All
features are passed through Gradient Boosted Re-
gression to give the final output score.

CS-UM6P: This system attained the fifth highest
Pearson’s Correlation for Sub-task 1 and the sev-
enth highest Pearson’s Correlation for Sub-task 2.
The system uses BERT and RoBERTa and encodes
the context and token for the language models to
learn from. Interestingly, whilst this system scored
highly for Pearson’s correlation the R2 metric is
much lower on both Sub-tasks. This may indicate
the presence of significant outliers in the system’s
output.

OCHADAI-KYOTO: This system attained the
seventh highest Pearson’s Correlation on Sub-task
1 and the eight highest Pearson’s Correlation on
Sub-task 2. The system used a fine-tuned BERT
and RoBERTa model with the token and context en-
coded. They employed multiple training strategies
to boost performance.

6.2 Approaches
There are three main types of systems that were
submitted to our task. In line with the state of
the art in modern NLP, these can be categorised
as: Feature-based systems, Deep Learning Sys-
tems and Systems which use a hybrid of the former
two approaches. Although Deep Learning Based
systems have attained the highest Pearson’s Corre-
lation on both Sub-tasks, occupying the first two
places in each task, Feature based systems are not
far behind, attaining the third and fourth spots on
Sub-task 1 with a similar score to the top systems.
We have described each approach as applied to our
task below.

Feature-based systems use a variety of features
known to be useful for lexical complexity. In par-
ticular, lexical frequency and word length feature
heavily with many different ways of calculating
these metrics such as looking at various corpora
and investigating syllable or morpheme length. Psy-
cholinguistic features which model people’s per-
ception of words are understandably popular for
this task as complexity is a perceived phenomenon.

Semantic features taken from WordNet modelling
the sense of the word and it’s ambiguity or abstract-
ness have been used widely, as well as sentence
level features aiming to model the context around
the target words. Some systems chose to identify
named entities, as these may be innately more dif-
ficult for a reader. Word inclusion lists were also
a popular feature, denoting whether a word was
found on a given list of easy to read vocabulary.
Finally, word embeddings are a popular feature,
coming from static resources such as GLoVE or
Word2Vec, but also being derived through the use
of Transformer models such as BERT, RoBERTa,
XLNet or GPT-2, which provide context dependent
embeddings suitable for our task.

These features are passed through a regres-
sion system, with Gradient Boosted Regression
and Random Forest Regression being two popu-
lar approaches amongst participants for this task.
Both apply scale invariance meaning that less pre-
processing of inputs is necessary.

Deep Learning Based systems invariably rely on
a pre-trained language model and fine-tune this us-
ing transfer learning to attain strong scores on the
task. BERT and RoBERTa were used widely in
our task, with some participants also opting for AL-
BERT, ERNIE, or other such language models. To
prepare data for these language models, most par-
ticipants following this approach concatenated the
token with the context, separated by a special token
(〈SEP 〉). The Language Model was then trained
and the embedding of the 〈CLS〉 token extracted
and passed through a further fine-tuned network for
complexity prediction. Adaptations to this method-
ology include applying training strategies such as
adversarial training, multi-task learning, dummy
annotation generation and capsule networks.

Finally, hybrid approaches use a mixture of Deep
Learning by fine-tuning a neural network alongside
feature-based approaches. The features may be
concatenated to the input embeddings, or may be
concatenated at the output prior to further train-
ing. Whilst this strategy appears to be the best of
both worlds, uniting linguistic knowledge with the
power of pre-trained language models, the hybrid
systems do not tend to perform as well as either
feature based or deep learning systems.

6.3 MWEs

For Sub-task 2 we asked participants to submit
both predictions for single words and multi-words
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from our corpus. We hoped this would encourage
participants to consider models that adapted single
word lexical complexity to multi-word lexical com-
plexity. We observed a number of strategies that
participants employed to create the annotations for
this secondary portion of our data.

For systems that employed a deep learning ap-
proach, it was relatively simple to incorporate
MWEs as part of their training procedure. These
systems encoded the input using a query and con-
text, separated by a 〈SEP 〉 token. The number
of tokens prior to the 〈SEP 〉 token did not mat-
ter and either one or two tokens could be placed
there to handle single and multi-word instances
simultaneously.

However, feature based systems could not em-
ploy this trick and needed to devise more imagina-
tive strategies for handling MWEs. Some systems
handled them by averaging the features of both to-
kens in the MWE, or by predicting scores for each
token and then averaging these scores. Other sys-
tems doubled their feature space for MWEs and
trained a new model which took the features of
both words into account.

7 Discussion

In this paper we have posited the new task of Lex-
ical Complexity Prediction. This builds on previ-
ous work on Complex Word Identification, specif-
ically by providing annotations which are contin-
uous rather than binary or probabilistic as in pre-
vious tasks. Additionally, we provided a dataset
with annotations in context, covering three diverse
genres and incorporating MWEs, as well as single
tokens. We have moved towards this task, rather
than rerunning another CWI task as the outputs
of the models are more useful for a diverse range
of follow-on tasks. For example, whereas CWI
is particularly useful as a preprocessing step for
Lexical simplification (identifying which words
should be transformed), LCP may also be useful
for readability assessment or as a rich feature in
other downstream NLP tasks. A continuous annota-
tion allows a ranking to be given over words, rather
than binary categories, meaning that we can not
only tell whether a word is likely to be difficult for
a reader, but also how difficult that word is likely
to be. If a system requires binary complexity (as
in the case of lexical simplification) it is easy to
transform our continuous complexity values into a
binary value by placing a threshold on the complex-

ity scale. The value of the threshold to be selected
will likely depend on the target audience, with more
competent speakers requiring a higher threshold.
When selecting a threshold, the categories we used
for annotation should be taken into account, so for
example a threshold of 0.5 would indicate all words
that were rated as neutral or above.

To create our annotated dataset, we employed
crowdsourcing with a Likert scale and aggregated
the categorical judgments on this scale to give a
continuous annotation. It should be noted that this
is not the same as giving a truly continuous judg-
ment (i.e., asking each annotator to give a value
between 0 and 1). We selected this protocol as
the Likert Scale is familiar to annotators and al-
lows them to select according to defined points (we
provided the definitions given earlier at annotation
time). The annotation points that we gave were
not intended to give an even distribution of anno-
tations and it was our expectation that most words
would be familiar to some degree, falling in the
very easy or easy categories. We pre-selected for
harder words to ensure that there were also words in
the difficult and very difficult categories. As such,
the corpus we have presented is not designed to be
representative of the distribution of words across
the English language. To create such a corpus, one
would need to annotate all words according to our
scale with no filtering. The general distribution of
annotations in our corpus is towards the easier end
of the Likert scale.

A criticism of the approach we have employed
is that it allows for subjectivity in the annotation
process. Certainly one annotator’s perception of
complexity will be different to another’s. Giving
fixed values of complexity for every word will not
reflect the specific difficulties that one reader, or
one reader group will face. The annotations we
have provided are averaged values of the annota-
tions given by our annotators, we chose to keep
all instances, rather than filtering out those where
annotators gave a wide spread of complexity anno-
tations. Further work may be undertaken to give
interesting insights into the nature of subjectivity
in annotations. For example, some words may be
rated as easy or difficult by all annotators, whereas
others may receive both easy and difficult annota-
tions, indicating that the perceived complexity of
the instance is more subjective. We did not make
the individual annotations available as part of the
shared task data, to encourage systems to focus
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primarily on the prediction of complexity.

An issue with the previous shared tasks is that
scores were typically low and that systems tended
to struggle to beat reasonable baselines, such as
those based on lexical frequency. We were pleased
to see that systems participating in our task returned
scores that indicated that they had learnt to model
the problem well (Pearson’s Correlation of 0.7886
on Task 1 and 0.8612 on Task 2). MWEs are typi-
cally more complex than single words and it may
be the case that these exhibited a lower variance,
and were thus easier to predict for the systems. The
strong Pearson’s Correlation is backed up by a high
R2 score (0.6172 for Task 1 and 0.7389 for Task
2), which indicates that the variance in the data
is captured accurately by the models’ predictions.
These models strongly outperformed a reasonable
baseline based on word frequency as shown in Ta-
ble 3.

Whilst we have chosen in this report to rank sys-
tems based on their score on Pearson’s correlation,
giving a final ranking over all systems, it should
be noted that there is very little variation in score
between the top systems and all other systems. For
Task 1 there are 0.0182 points of Pearson’s Corre-
lation separating the systems at ranks 1 and 10. For
Task 2 a similar difference of 0.021 points of Pear-
son’s Correlation separates the systems at ranks 1
and 10. These are small differences and it may be
the case that had we selected a different random
split in our dataset this would have led to a different
ordering in our results (Gorman and Bedrick, 2019;
Søgaard et al., 2020). This is not unique to our task
and is something for the SemEval community to
ruminate on as the focus of NLP tasks continues to
move towards better evaluation rather than better
systems.

An analysis of the systems that participated
in our task showed that there was little variation
between Deep Learning approaches and Feature
Based approaches, although Deep Learning ap-
proaches ultimately attained the highest scores on
our data. Generally the Deep Learning and Feature
Based approaches are interleaved in our results ta-
ble, showing that both approaches are still relevant
for LCP. One factor that did appear to affect system
output was the inclusion of context, whether that
was in a deep learning setting or a feature based
setting. Systems which reported using no context
appeared to perform worse in the overall rankings.
Another feature that may have helped performance

is the inclusion of previous CWI datasets (Yimam
et al., 2017; Maddela and Xu, 2018). We were
aware of these when developing the corpus and
attempted to make our data sufficiently distinct in
style to prevent direct reuse of these resources.

A limitation of our task is that it focuses solely
on LCP for the English Language. Previous CWI
shared tasks (Yimam et al., 2018) and simplifi-
cation efforts (Saggion et al., 2015; Aluı́sio and
Gasperin, 2010) have focused on languages other
than English and we hope to extend this task in the
future to other languages.

8 Conclusion

We have presented the SemEval-2021 Task 1 on
Lexical Complexity Prediction. We developed a
new dataset focusing on continuous annotations in
context across three genres. We solicited partici-
pants via SemEval and 55 teams submitted results
across our two Sub-tasks. We have shown the re-
sults of these systems and discussed the factors that
helped systems to perform well. We have analysed
all the systems that participated and categorised
their findings to help future researchers understand
which approaches are suitable for LCP.
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A Full Results

Rank Team Pearson Spearman MAE MSE R2
1 JUST BLUE 0.7886 0.7369 0.0609 0.0062 0.6172
2 DeepBlueAI 0.7882 0.7425 0.0610 0.0061 0.6210
3 Alejandro Mosquera 0.7790 0.7355 0.0619 0.0064 0.6062
4 Andi 0.7782 0.7287 0.0637 0.0064 0.6036
5 CS-UM6P 0.7779 0.7366 0.0803 0.0100 0.3813
6 tuqa 0.7772 0.7344 0.0635 0.0068 0.5771
7 OCHADAI-KYOTO 0.7772 0.7313 0.0617 0.0065 0.6015
8 BigGreen 0.7749 0.7294 0.0629 0.0065 0.5983
9 CSECU-DSG 0.7716 0.7326 0.0632 0.0066 0.5909

10 ia pucp 0.7704 0.7361 0.0618 0.0066 0.5929
11 CLP 0.7692 0.7336 0.0631 0.0067 0.5854
12 ess 0.7656 0.7308 0.0635 0.0069 0.5747
13 ismail2022 0.7653 0.7245 0.0641 0.0069 0.5766
14 andi gpu 0.7651 0.7275 0.0629 0.0068 0.5810
15 TUDA-CCL 0.7649 0.7164 0.0643 0.0067 0.5846
16 rg pa 0.7628 0.7251 0.0634 0.0069 0.5749
17 ren wo xing 0.7618 0.7229 0.0639 0.0069 0.5715
18 CLULEX 0.7588 0.7089 0.0649 0.0069 0.5753
19 acccb 0.7586 0.7207 0.0635 0.0069 0.5730
20 jiu mo zhi 0.7584 0.7175 0.0635 0.0070 0.5691
21 Eslam93 0.7577 0.7224 0.0640 0.0070 0.5648
22 archer 0.7561 0.7067 0.0641 0.0069 0.5707
23 Cambridge 0.7556 0.7105 0.0646 0.0070 0.5705
24 eee 0.7553 0.7203 0.0673 0.0078 0.5181
25 CompNA 0.7552 0.7153 0.0641 0.0070 0.5701
26 LAST 0.7534 0.6988 0.0652 0.0070 0.5652
27 Stanford MLab 0.7533 0.7044 0.0653 0.0071 0.5615
28 mau lih 0.7513 0.7263 0.0645 0.0071 0.5587
29 IITK@LCP 0.7511 0.7167 0.0654 0.0071 0.5598
30 cognience 0.7510 0.7193 0.0652 0.0071 0.5625
31 qnamqj 0.7509 0.7086 0.0649 0.0072 0.5536
32 feras1515 0.7503 0.7180 0.0652 0.0073 0.5477
33 eslam 0.7482 0.7237 0.0649 0.0072 0.5525
34 RS GV 0.7478 0.7077 0.0698 0.0079 0.5144
35 LucasHub 0.7434 0.6995 0.0658 0.0073 0.5486
36 LRL NC 0.7402 0.7013 0.0661 0.0074 0.5440
37 Manchester Metropolitan 0.7389 0.7135 0.0656 0.0074 0.5398
38 UPB 0.7340 0.6785 0.0699 0.0079 0.5098
39 KFU 0.7201 0.6899 0.0687 0.0079 0.5109
40 PolyU CBS-Comp 0.7188 0.6935 0.0682 0.0078 0.5162
41 LCP RIT 0.7086 0.6535 0.0716 0.0086 0.4695
42 UNBNLP 0.6953 0.6544 0.0716 0.0089 0.4495
43 chenshi 0.6951 0.6532 0.0740 0.0091 0.4366
44 UTFPR 0.6875 0.6588 0.0735 0.0088 0.4577
45 Katildakat 0.6715 0.6454 0.0756 0.0096 0.4060
46 jct 0.6663 0.6457 0.0736 0.0091 0.4402
47 LECCE 0.6452 0.6405 0.0772 0.0096 0.4046
48 S3003183 0.5834 0.5437 0.0804 0.0110 0.3182
– Frequency Baseline 0.5287 0.5263 0.0870 0.0136 0.2779

49 C3SL 0.4598 0.3983 0.0866 0.0130 0.1989
50 SINAI 0.4428 0.3961 0.0875 0.0131 0.1930
51 ProjectLIN513 0.3884 0.4316 0.1019 0.0159 0.0198
52 glitterosu 0.1807 0.1516 0.1024 0.0194 -0.2016
53 PyGuajo 0.0971 0.1440 0.1166 0.0338 -1.0861
54 RACAI -0.0272 -0.0268 0.2777 0.1270 -6.8449

Table 4: Sub-task 1: Results and rank (in brackets) in terms of Pearson, Spearman, MAE, MSE, and R2. The rank
corresponds to Pearson.
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Rank Team Pearson Spearman MAE MSE R2
1 DeepBlueAI 0.8612 0.8526 0.0616 0.0063 0.7389
2 rg pa 0.8575 0.8529 0.0672 0.0072 0.7035
3 xiang wen tian 0.8571 0.8548 0.0675 0.0072 0.7012
4 andi gpu 0.8543 0.8448 0.0664 0.0071 0.7055
5 ren wo xing 0.8541 0.8473 0.0677 0.0073 0.6967
6 Andi 0.8506 0.8381 0.0667 0.0070 0.7107
7 CS-UM6P 0.8489 0.8406 0.0760 0.0087 0.6380
8 OCHADAI-KYOTO 0.8438 0.8285 0.0660 0.0070 0.7103
9 LAST 0.8417 0.8299 0.0677 0.0072 0.7030
10 KFU 0.8406 0.8337 0.0686 0.0073 0.6967
11 jiu mo zhi 0.8355 0.8277 0.0710 0.0083 0.6560
12 CSECU-DSG 0.8311 0.8153 0.0678 0.0077 0.6825
13 acccb 0.8310 0.8157 0.0697 0.0076 0.6850
14 Stanford MLab 0.8280 0.8124 0.0711 0.0080 0.6671
15 IITK@LCP 0.8277 0.8228 0.0811 0.0098 0.5949
16 qnamqj 0.8246 0.8227 0.0787 0.0094 0.6097
17 LRL NC 0.8244 0.8156 0.0702 0.0079 0.6737
18 mau lih 0.8234 0.8211 0.0790 0.0096 0.6042
19 TUDA-CCL 0.8190 0.8091 0.0711 0.0080 0.6677
20 Alejandro Mosquera 0.8093 0.8017 0.0731 0.0084 0.6519
21 LucasHub 0.8000 0.7797 0.0754 0.0089 0.6323
22 UPB 0.7962 0.7988 0.0788 0.0099 0.5917
23 CompNA 0.7931 0.7800 0.0783 0.0093 0.6160
24 justglowing 0.7902 0.7851 0.0786 0.0092 0.6169
25 BigGreen 0.7898 0.7769 0.0903 0.0124 0.4858
26 Katildakat 0.7848 0.7869 0.0807 0.0101 0.5816
27 Manchester Metropolitan 0.7611 0.7711 0.0806 0.0102 0.5770
28 UTFPR 0.7601 0.7504 0.0817 0.0102 0.5754
29 UNBNLP 0.7515 0.7420 0.0802 0.0106 0.5623
30 chenshi 0.7500 0.7497 0.0867 0.0112 0.5365
31 PolyU CBS-Comp 0.7416 0.7222 0.0839 0.0109 0.5473
32 cognience 0.7232 0.7301 0.0851 0.0117 0.5144
– Frequency Baseline 0.6571 0.6345 0.0924 0.0140 0.4030
33 C3SL 0.3941 0.3675 0.1145 0.0206 0.1470
34 PyGuajo 0.3931 0.3902 0.1132 0.0205 0.1488
35 SINAI 0.3197 0.3508 0.1217 0.0243 -0.0062
36 LECCE 0.2821 0.3138 0.1202 0.0226 0.0624
37 glitterosu 0.1860 0.1316 0.1332 0.0255 -0.0564

Table 5: Sub-task 2: Results and rank (in brackets) in terms of Pearson, Spearman, MAE, MSE, and R2. The Rank
Corresponds to Pearson.
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B System Features

Team Features Classification Approach System Paper
Alejandro Mosquera Length, Frequency, Semantic, Sentence Gradient Boosted Regression (Mosquera, 2021)
Andi Psycholinguistic, Glove, Word2Vec, Con-

ceptNet NumberBatch, BERT, RoBERTa,
ELECTRA, ALBERT, DeBERTa

Ridge Regression, Gradient
Boosted Regression

(Rotaru, 2021)

Archer Length, Frequency, Psycholinguistic,
Scrabble Score, Word Inclusion, Semantic

Random Forest Regression, Gradi-
ent Boosted Regression

(Russo, 2021)

BigGreen Length, Semantic, Glove, Elmo, InferSent,
Phonetic, Frequency, POS

Gradient Boosted Regression,
BERT

(Islam et al., 2021)

C3SL Sent2Vec Multi-layer Perceptron
Cambridge Frequency, Syntactic, Length BERT, Random Forest Regression (Yuan et al., 2021)
CLULEX Frequency, POS, Named Entities, Word In-

clusion, Sentence, Bert
Decision Tree (Smolenska et al., 2021)

CompNA Length, Semantic, Glove, Word Inclusion, Decision Tree Ensemble (Vettigli and Sorgente, 2021)
CS-UM6P Token and Context Encoded BERT, RoBERTa (Mamoun et al., 2021)
CSECU-DSG Token and Context Encoded BERT, RoBERTa (Aziz et al., 2021)
DeepBlueAI Token and Context Encoded BERT, ALBERT, RoBERTa,

ERNIE
(Pan et al., 2021)

Hub TF-IDF, Context Encoded RoBERTa, Inception (Huang et al., 2021)
IA PUCP Sentence, POS, N-gram Frequency,

RoBERTa, XLNet, BERT
Gradient Boosted Regression (Rojas and Alva-Manchego,

2021)
IITK@LCP Electra + Glove Linear Regression, Support Vector

Machine
(Shirude et al., 2021)

JCT POS, Frequency, BERT, Cluster Features Gradient Boosted Regression (Liebeskind et al., 2021)
JUST BLUE Token Encoded and Context Encoded Average of Weighted Bert and

Roberta
(Yaseen et al., 2021)

Katildakat BERT, Length, BERT-score, Frequency, Se-
mantic,

Linear Regression, Multi-layer Per-
ceptron

(Voskoboinik, 2021)

LAST Frequency, Psycholinguiistic, Sentence, Bi-
gram Association

Gradient Boosted Regression (Bestgen, 2021)

LCP-RIT Length, Frequency, Character N-Grams,
Psycholinguistic, POS

Random forest Regressor (Desai et al., 2021)

LRL NC Frequency, Semantic, Laanguage Model,
Psycholinguistic, Word Inclusion

Random forest regressor

Manchester Metropolitan Frequency, Psycholinguistic, Length, Em-
beddings

CNN (Flynn and Shardlow, 2021)

OCHADAI-KYOTO Token and Context Encoded BERT, RoBERTa (Taya et al., 2021)
PolyU CBS-Comp Frequency, Length, Capitalisation, POS,

Embeddings, BERT, GPT-2
Gradient Boosted Regression (Xiang et al., 2021)

RG PA Context Encoded RoBERTa (Rao et al., 2021)
RS GV GLoVE, ELMo, BERT, Flair, Readability,

Length, Frequency, Semantic, Psycholin-
guistic, Morphological, Word Inclusion,
Named Entity

Feed-Forward Neural Network (Stodden and Venugopal,
2021)

Stanford MLab Glove, Length, POS, Named Entity Gradient Boosted Regression (Rozi et al., 2021)
TUDA-CCL Linguistic, Semantic, Embeddings, Psy-

cholinguistic, Frequencies, Word Inclusion
Gradient Boosted Regression (Gombert and Bartsch, 2021)

UNBNLP Length, Frequency, Character-Level-
Encoder, BERT

Neural Network, Support Vector
Machine

(King et al., 2021)

UPB Transformers, Word Embeddings, Charac-
ter Embeddings, Length, Psycholinguistic

BERT, RoBERTa, Regression (Zaharia et al., 2021)

UTFPR Frequency, Length, Semantic, Bert Embed-
ding

Support Vector Machine (Paetzold, 2021)

Table 6: Systems that participated and submitted a paper, the features and classification approaches they employed.
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Abstract
We propose an ensemble model for predicting
the lexical complexity of words and multiword
expressions (MWEs). The model receives as
input a sentence with a target word or MWE
and outputs its complexity score. Given that
a key challenge with this task is the limited
size of annotated data, our model relies on
pretrained contextual representations from dif-
ferent state-of-the-art transformer-based lan-
guage models (i.e., BERT and RoBERTa), and
on a variety of training methods for further en-
hancing model generalization and robustness:
multi-step fine-tuning and multi-task learning,
and adversarial training. Additionally, we pro-
pose to enrich contextual representations by
adding hand-crafted features during training.
Our model achieved competitive results and
ranked among the top-10 systems in both sub-
tasks.

1 Introduction

Predicting the difficulty of a word in a given con-
text is useful in many natural language processing
(NLP) applications such as lexical simplification.
Previous efforts (Paetzold and Specia, 2016; Yi-
mam et al., 2018; Zampieri et al., 2017) have fo-
cused on framing this as a binary classification task,
which might not be ideal, since a word close to the
decision boundary is assumed to be just as complex
as one further away (Shardlow et al., 2020). To al-
leviate this issue, SemEval-2021 Task 1 (Shardlow
et al., 2021a) formulates this task as a regression
task, where a model should predict the complexity
value of words (Subtask 1) and MWEs (Subtask 2)
in context.

This paper describes the system developed by
the Ochadai-Kyoto team for SemEval-2021 Task
1. Given that a key challenge in this task is the
limited size of annotated data, we follow best prac-
tices from recent work on enhancing model gen-
eralization and robustness, and propose a model

Task Domain Train Trial Test

Subtask 1
(single-word)

Europarl 2512 143 345
Biomed 2576 135 289
Bible 2574 143 283
All 7662 421 917

Subtask 2
(MWE)

Europarl 498 37 65
Biomed 514 33 53
Bible 505 29 66
All 1517 99 184

Table 1: Summary of the Complex dataset.

ensemble that leverages pretrained representations
(i.e. BERT and RoBERTa), multi-step fine-tuning,
multi-task learning and adversarial training. Ad-
ditionally, we propose to enrich contextual repre-
sentations by incorporating hand-crafted features
during training. Our model ranked 7th out of 54
participating teams on Subtask 1, and 8th out of 37
teams on Subtask 2, obtaining Pearson correlation
scores of 0.7772 and 0.8438, respectively.

2 Task Description

SemEval-2021 Task 1 provides participants with
an augmented version of the CompLex dataset
(Shardlow et al., 2020), a multi-domain En-
glish dataset with sentences containing words and
MWEs annotated on a continuum scale of com-
plexity, in the range of [0,1]. Easier words and
MWEs are assigned lower complexity scores, while
the more challenging ones are assigned higher
scores. This corpus contains a balanced number
of sentences from three different domains: Bible
(Christodouloupoulos and Steedman, 2015), Eu-
roparl (Koehn, 2005) and Biomedical (Bada et al.,
2012). The task is to predict the complexity value
of single words (Subtask 1) and MWEs (Subtask
2) in context. The statistics of the corpus are pre-
sented in Table 1. Our team participated in both
subtasks, and the next section outlines the overview
of our model.
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3 System Overview

We focus on exploring different training techniques
using BERT and RoBERTa, given their superior
performance on a wide range of NLP tasks. Each
text encoder and training method used in our model
are detailed below.

3.1 Text Encoders

BERT (Devlin et al., 2019): We use the BERTBASE
model released by the authors. It consists of 12
transformer layers, 12 self-attention heads per layer,
and a hidden size of 768.
RoBERTa (Liu et al., 2019b): We use both
the RoBERTaBASE and RoBERTaLARGE models
released by the authors. Similar to BERT,
RoBERTaBASE consists of 12 transformer layers,
12 self-attention heads per layer, and a hidden size
of 768. RoBERTaLARGE consists of 24 transformer
layers, 16 self-attention heads per layer, and a hid-
den size of 1024.

3.2 Training Procedures

Standard fine-tuning: This is the standard fine-
tuning procedure where we fine-tune BERT and
RoBERTa on each subtask-specific data.
Feature-enriched fine-tuning (FEAT): During
training, we enrich BERT and RoBERTa represen-
tations with word frequency information of the tar-
get word or MWE. We compute the log frequency
values using the Wiki40B corpus (Guo et al., 2020).
For MWEs, we compute the log of the average of
the frequency of each component word. After ap-
plying the min-max normalization to this feature,
we concatenate it to the CLS token vector obtained
from the last layer of BERT and RoBERTa.
Multi-step fine-tuning (MSFT): Multi-step fine-
tuning works by performing a second stage of pre-
training with data-rich related supervised tasks. It
has been shown to improve model robustness and
performance, especially for data-constrained sce-
narios (Phang et al., 2018; Camburu et al., 2019).
Due to the limited size of the data provided for
Subtask 2, we first fine-tune BERT and RoBERTa
on the Subtask 1 dataset. This model’s parameters
are further refined by fine-tuning on the Subtask 2
dataset.
Multi-task learning (MTL): Multi-task learning
is an effective training paradigm to promote model
generalization ability and performance (Caruana,
1997; Liu et al., 2015, 2019a; Ruder, 2017; Col-
lobert et al., 2011). It works by leveraging data

from many (related) tasks. In our experiments, we
use the MT-DNN framework (Liu et al., 2019a,
2020b), which incorporates BERT and RoBERTa
as the shared text encoding layers (shared across
all tasks), while the top layers are task-specific. We
used the pre-trained BERT and RoBERTa models
to initialize its shared layers and refined them via
MTL on both subtasks (i.e. Subtask 1 and Subtask
2).
Adversarial training (ADV): Adversarial training
has proven effective in improving model general-
ization and robustness in computer vision (Madry
et al., 2017; Goodfellow et al., 2014) and more re-
cently in NLP (Zhu et al., 2019; Jiang et al., 2019;
Cheng et al., 2019; Liu et al., 2020a; Pereira et al.,
2020). It works by augmenting the input with a
small perturbation that maximizes the adversarial
loss:

min
θ

E(x,y)∼D[max
δ
l(f(x+ δ; θ), y)] (1)

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).
Recently, adversarial training has been successfully
applied to NLP as well (Zhu et al., 2019; Jiang et al.,
2019; Pereira et al., 2020). In our experiments, we
use SMART (Jiang et al., 2019), which instead
regularizes the standard training objective using
virtual adversarial training (Miyato et al., 2018):

min
θ

E(x,y)∼D[l(f(x; θ), y)+

αmax
δ
l(f(x+ δ; θ), f(x; θ))]

(2)

Effectively, the adversarial term encourages
smoothness in the input neighborhood, and α is a
hyperparameter that controls the trade-off between
standard errors and adversarial errors.

3.3 Ensemble Model
Ensemble of deep learning models has proven ef-
fective in improving test accuracy (Allen-Zhu and
Li, 2020). We built different ensemble models by
taking an unweighted average of the outputs of
a few independently trained models. Each single
model was trained on standard fine-tuning, multi-
step fine-tuning, multi-task learning, or adversarial
training, using different text encoders (i.e. BERT
or RoBERTa).

4 Experiments

4.1 Implementation Details
Our model implementation is based on the MT-
DNN framework (Liu et al., 2019a, 2020b). We

18



use BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019b) as the text encoders. We used
ADAM (Kingma and Ba, 2015) as our optimizer
with a learning rate in the range ∈ {8× 10−6, 9×
10−6, 1 × 10−5} and a batch size ∈ {8, 16, 32}.
The maximum number of epochs was set to 10.
A linear learning rate decay schedule with warm-
up over 0.1 was used, unless stated otherwise. To
avoid gradient exploding, we clipped the gradient
norm within 1. All the texts were tokenized using
wordpieces and were chopped to spans no longer
than 512 tokens. During adversarial training, we
follow (Jiang et al., 2019) and set the perturbation
size to 1× 10−5, the step size to 1× 10−3, and to
1× 10−5 the variance for initializing the perturba-
tion. The number of projected gradient steps and
the α parameter (Equation 2) were both set to 1.

We follow (Devlin et al., 2019), and set the first
token as the [CLS] token when encoding the input.
For Subtask 1, we separate the input sentence and
the target token with the special token [SEP]. e.g.
[CLS] This was the length of Sarah’s life [SEP]
length [SEP]. For Subtask 2, such encoding led to
lower performance of our system. Therefore, we
consider only the target MWE when encoding the
input, e.g. [CLS] financial world [SEP].

For each subtask, we used the trial dataset re-
leased by organizers as development set (see Table
1). We select the best epoch and the best hyper-
parameters using performance (measured in terms
of Pearson correlation score) on this development
set. We also experimented on saving the best epoch
and best hyper-parameters for each domain (Bible,
Biomedical and Europarl).

4.2 Main Results

Submitted systems were evaluated on five met-
rics: Pearson correlation (R), Spearman correla-
tion (Rho), Mean Absolute Error (MAE), Mean
Squared Error (MSE), and R-squared (R2). The
systems were ranked from highest Pearson correla-
tion score to lowest. We built several models that
use different text encoders and different training
methods, as described in Section 3. See Table 2
for the results. First, we observe that ensembling
different single models yield better performance on
both tasks. Furthermore, models that use feature-
enriched representations, multi-task learning, multi-
step fine-tuning and adversarial training surpass
models that use the standard fine-tuning approach.
We detail next the results for each subtask.

For Subtask 1, the single models that used
RoBERTa, adversarial training, multi-task learn-
ing and feature-enriched representations performed
best on the development set. Moreover, saving
the best epoch and hyper-parameters for each do-
main performed better than saving the best epoch
and hyper-parameters without domain distinction.
Among the single models, the model that per-
formed best on the development set was the model
that uses RoBERTaLARGE and adversarial train-
ing (RoBERTaLARGE(ADV)domain model, with a
Pearson score of 0.8441). The second best sin-
gle model was the model that uses RoBERTaBASE
and feature-enriched contextual representations
(RoBERTaBASE(FEAT)domain model, with a Pear-
son score of 0.8391). The third best single model
was the model that uses RoBERTaLARGE and
multi-task learning (RoBERTaLARGE(MTL)domain
model, with a Pearson score of 0.8371). Thus,
we ensemble these three single models in differ-
ent ways when making our submissions. The
ensemble model that performed best on the test
set (Ensemble 2single word) was the model that
combined feature-enriched contextual represen-
tations (RoBERTaBASE(FEAT)domain), adversarial
training (RoBERTaLARGE(ADV)domain), and multi-
task learning (RoBERTaLARGE(MTL)domain). This
ensemble model obtained development and test set
Pearson scores of 0.8570 and 0.7772, respectively.

For Subtask 2, the single models that
use BERTBASE outperformed models that use
RoBERTa, on the development set. Moreover,
we noted that using the Subtask 1 dataset as
auxiliary dataset by performing multi-step fine-
tuning and multi-task learning greatly help to
improve the performance. For instance, the
BERTBASE(MSFT) outperformed the BERTBASE
model by 0.0405 Pearson correlation points
(0.7965 vs 0.8370). The ensemble model that per-
formed best on the test set (Ensemble 1MWE) was
the model that combined multi-step fine-tuning and
multi-task learning using BERT, i.e. BERTBASE
(MSFT) and BERTBASE(MTL) models, respec-
tively, and multi-task learning using RoBERTa
(RoBERTaLARGE(MTL) model). This ensemble
model obtained development and test set Pearson
scores of 0.8461 and 0.8438, respectively. Differ-
ent from Subtask 1, we observe that saving the best
epoch and hyper-parameters for each domain on
the development set performed worse than saving
the best epoch and hyper-parameters without do-
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Training Methods Ensemble R Rho MAE MSE R2

Subtask 1 (Single Word Lexical Complexity Prediction Task)
BERTBASE

dev 0.7794 0.7423 0.0664 0.0077 0.1898
RoBERTaBASE

dev 0.8139 0.7498 0.0628 0.0064 0.4325
RoBERTaBASE(FEAT)dev X 0.8348 0.7579 0.0603 0.0058 0.6955
RoBERTaBASE(FEAT)dev

domain X X 0.8391 0.7640 0.0599 0.0057 0.6976
RoBERTaLARGE

dev 0.8213 0.7629 0.0627 0.0062 0.5381
RoBERTaLARGE(FEAT)dev

domain 0.8218 0.7513 0.0634 0.0063 0.6025
RoBERTaLARGE(MTL)dev

domain X X 0.8371 0.7694 0.0609 0.0062 0.3640
RoBERTaLARGE(ADV)dev X 0.8328 0.7760 0.0603 0.0059 0.5509
RoBERTaLARGE(ADV)dev

domain X 0.8441 0.7873 0.0572 0.0054 0.7123

Ensemble 1single word
dev © 0.8481 0.7825 0.0578 0.0053 0.7175

Ensemble 2single word
dev © 0.8570 0.7902 0.0553 0.0050 0.7335

Ensemble 3single word
dev © 0.8548 0.7816 0.0560 0.0051 0.7300

Ensemble 1single word
test © 0.7590 0.7174 0.0640 0.0069 0.5719

Ensemble 2single word
test © 0.7772 0.7313 0.0617 0.0065 0.6015

Ensemble 3single word
test © 0.7761 0.7244 0.0622 0.0065 0.6003

Top Team Result (JUST BLUE)single word
test* 0.7886 0.7369 0.0609 0.0062 0.6172

Subtask 2 (MWE Lexical Complexity Prediction Task)

BERTBASE(full context)dev† 0.7903 0.7839 0.0770 0.0090 0.6240
BERTBASE

dev 0.7965 0.7856 0.0761 0.0086 0.3552
BERTBASE(FEAT)dev 0.8166 0.8033 0.0730 0.0080 0.6610
BERTBASE(MSFT)dev X 0.8370 0.8361 0.0661 0.0071 0.5276
BERTBASE(MSFT)dev

domain X X 0.8498 0.8492 0.0669 0.0068 0.7099
BERTBASE(MTL)dev X 0.8176 0.8202 0.0725 0.0081 0.5086
BERTBASE(MTL)dev

domain X X 0.8442 0.8323 0.0667 0.0067 0.7125
RoBERTaBASE

dev 0.7689 0.7659 0.0771 0.0098 0.3767
RoBERTaLARGE

dev 0.8110 0.8181 0.0737 0.0082 0.4363
RoBERTaLARGE(MTL)dev X 0.8176 0.8202 0.0725 0.0081 0.5086
RoBERTaLARGE(MTL)dev

domain X 0.8341 0.8276 0.0675 0.0075 0.6790
RoBERTaLARGE(ADV)dev 0.8119 0.8019 0.0718 0.0080 0.4785
RoBERTaLARGE(ADV&MSFT)dev 0.8247 0.8092 0.0685 0.0076 0.4748
RoBERTaLARGE(ADV&MSFT)dev

domain X 0.8283 0.8176 0.0676 0.0074 0.6858

Ensemble 1MWE
dev © 0.8461 0.8441 0.0672 0.0068 0.7080

Ensemble 2MWE
dev © 0.8543 0.8444 0.0642 0.0064 0.7270

Ensemble 3MWE
dev © 0.8571 0.8509 0.0640 0.0064 0.7267

Ensemble 1MWE
test © 0.8438 0.8285 0.0660 0.0070 0.7103

Ensemble 2MWE
test © 0.8376 0.8231 0.0682 0.0076 0.6840

Ensemble 3MWE
test © 0.8312 0.8157 0.0708 0.0080 0.6686

Top Team Result (DeepBlueAI)single word
test* 0.8612 0.8526 0.0616 0.0063 0.7389

Table 2: Comparison of different text encoders and different training methods on the single word lexical complexity
prediction task (Subtask 1) and on the MWE lexical complexity prediction task (Subtask 2). Best results for single
and ensemble models are highlighted in bold. † indicates that we consider the full context surrounding the MWE
when encoding the input. In the other models for Subtask 2, we consider only the target MWE. * indicates re-
sults obtained from the Task’s official leaderboard: (https://competitions.codalab.org/competitions/27420#results).
Xindicates each single model that was used in the ensemble, indicated in each column by©.

main distinction. We hypothesize that, due to the
small size of the data provided for Subtask 2, sav-
ing the best epoch and hyper-parameters without
domain distinction might avoid overfitting.

5 Analysis

We briefly analyse our best models’ results on the
test set for each subtask. Figure 1 (top) shows a
comparison between our best ensemble model’s

predictions for Subtask 1 (Ensemble 2single word)
and the gold answers. We observe that our model
often fails to predict correctly in the range where
samples have a complexity score below 0.2. We
hypothesize this might be due to the skewed dis-
tribution of the golden complexity scores for each
domain, as shown in Table 4. A possible solution
might be to build domain-specific models.

Figure 1 (bottom) shows a comparison between
the best ensemble model’s predictions for Subtask
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Domain Sentence Target Prediction Label
Sub-task 1

Europarl The Swedish Presidency aims to maintain the debate on
animal welfare and good animal husbandry. husbandry 0.3270 0.53143

Biomed We adopted the same strategy to investigate the relative contribution of
the 129 Chromosome 1 segment and the Apcs gene to each disease trait. Chromosome 0.4865 0.2237

Bible God has gone up with a shout, Yahweh with the sound of a trumpet. shout 0.2032 0.2031
Sub-task 2

Biomed These studies strongly suggest that the hsp family of proteins has
other functions in addition to protecting proteins and cells during stress. other functions 0.2564 0.4167

Europarl What plans does the Commission have to introduce
eco labelling of ’sustainable’ palm oils? eco labelling 0.5277 0.3553

Bible In the dry season, they vanish. dry season 0.2832 0.2857

Table 3: Examples of successful and poor predictions on the test set by the best ensemble models submitted for
each subtask (Ensemble 2single word and Ensemble 1MWE models). Successful predictions are highlighted in bold.

Figure 1: Comparison between the Ensemble
2single word and Ensemble 1MWE models’ predictions
submitted for Sub-task 1 (top) and Sub-task 2 (bottom),
respectively, and the gold answers. On the left, we
show the distribution of the correct complexity score
and our submission. On the right, we show a scatter
plot where the x-axis corresponds to our model’s pre-
dictions and the y-axis corresponds to the gold answers.

2 (Ensemble 1MWE), and the gold answers.
Compared to Subtask 1, the data distribution of
the development and test sets of Subtask 2 look
more similar, hence a possible reason why the
development and test set scores were closer than
in Subtask 1 (the best ensemble models obtained
development and test set scores of 0.8570 and
0.7772, respectively, in Subtask 1, and 0.8461 and
0.8438, respectively, in Subtask 2). Table 3 shows
examples of successful and poor predictions made
by Ensemble 2single word and Ensemble 1MWE mod-
els. Table 4 shows how the performance of these
models varies across domains. The Biomedical
domain obtained the highest Pearson correlation
scores on both subtasks, which indicates that

Bible Europarl Biomed
Sub-task 1

MAE 0.0679 0.0549 0.0638
R 0.7329 0.7213 0.8358

Sub-task 2

MAE 0.0721 0.0592 0.0667
R 0.8114 0.6374 0.9104

Table 4: Performance of Ensemble 2single word and En-
semble 1MWE models on each domain and subtask.

might be a sharper difference between simple and
complex words in this corpus (Shardlow et al.,
2021b).

6 Conclusion

In this paper, we have presented the implementa-
tion of the Ochadai-Kyoto system submitted to the
SemEval-2021 Task 1. Our model ranked 7th out
of 54 participating teams on Subtask 1, and 8th
out of 37 teams on Subtask 2. We proposed an
ensemble model that leverages pretrained represen-
tations, multi-step fine-tuning, multi-task learning
and adversarial training. We also proposed to en-
rich contextual representations by incorporating
hand-crafted features during training. In future ef-
forts, we plan to further improve our model to better
handle data-constraint and domain-shift scenarios.
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Abstract

In this paper, we introduce the first SemEval
task on Multilingual and Cross-Lingual Word-
in-Context disambiguation (MCL-WiC). This
task allows the largely under-investigated in-
herent ability of systems to discriminate be-
tween word senses within and across lan-
guages to be evaluated, dropping the require-
ment of a fixed sense inventory. Framed as a bi-
nary classification, our task is divided into two
parts. In the multilingual sub-task, participat-
ing systems are required to determine whether
two target words, each occurring in a differ-
ent context within the same language, express
the same meaning or not. Instead, in the cross-
lingual part, systems are asked to perform the
task in a cross-lingual scenario, in which the
two target words and their corresponding con-
texts are provided in two different languages.
We illustrate our task, as well as the con-
struction of our manually-created dataset in-
cluding five languages, namely Arabic, Chi-
nese, English, French and Russian, and the
results of the participating systems. Datasets
and results are available at: https://github.com/
SapienzaNLP/mcl-wic.

1 Introduction

During recent decades, the field of Natural Lan-
guage Processing (NLP) has witnessed the de-
velopment of an increasing number of neural ap-
proaches to representing words and their mean-
ings. Word embeddings encode a target word type
with one single vector based on co-occurrence in-
formation. However, word embeddings conflate
different meanings of a single target word into
the same representation, thus they fail to capture
the polysemous nature of words. To address this
limitation, more sophisticated representations such
as multi-prototype and contextualized embeddings
have been put forward. Multi-prototype embed-
dings concentrate on the semantics which underlie

a target word by clustering occurrences based on
their context similarities (Neelakantan et al., 2015;
Pelevina et al., 2016). In an effort to exploit the
knowledge derived from lexical-knowledge bases,
Iacobacci et al. (2015) introduced a new approach
which allows sense representations to be linked
to a predefined sense inventory. More recently,
contextualized embeddings were proposed. These
representations are obtained by means of neural
language modeling, e.g. using LSTMs (Melamud
et al., 2016) or the Transformer architecture (De-
vlin et al., 2019; Conneau et al., 2020), and are
capable of representing words based on the context
in which they occur. Contextualized representa-
tions have also been used to obtain effective sense
embeddings (Loureiro and Jorge, 2019; Scarlini
et al., 2020a,b; Calabrese et al., 2020).

Although virtually all the above approaches can
be evaluated in downstream applications, the in-
herent ability of the various embeddings to capture
meaning distinctions still remains largely under-
investigated. While Word Sense Disambiguation
(WSD), i.e. the task of determining the meaning
of a word in a given context (Navigli, 2009), has
long explored the aforementioned ability, the task
does not make it easy to test approaches that are
not explicitly linked to existing sense inventories,
such as WordNet (Miller et al., 1990) and BabelNet
(Navigli and Ponzetto, 2010). This has two major
drawbacks. First, sense inventories are not always
available, especially for rare languages. Second,
such requirement limits the evaluation of word and
sense representations which are not bound to a
sense inventory. To tackle this limitation, some
benchmarks have recently been proposed. The
CoSimLex dataset (Armendariz et al.) and the
related SemEval-2020 Task 3 (Armendariz et al.,
2020) focus on evaluating the similarity of word
pairs which occur in the same context. More re-
cently, the Word-in-Context (WiC) task (Pilehvar
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and Camacho-Collados, 2019), included in the Su-
perGLUE benchmark for Natural Language Un-
derstanding (NLU) systems (Wang et al., 2019)
and its multilingual extension XL-WiC (Raganato
et al., 2020), require systems to determine whether
a word occurring in two different sentences is used
with the same meaning, without relying on a pre-
defined sense inventory. For instance, given the
following sentence pair:

• the mouse eats the cheese,

• click the right mouse button,

the ideal system should establish that the target
word mouse is used with two different meanings.

Despite the steps forward made in this promis-
ing research direction, existing benchmarks suf-
fer from the following shortcomings: i) they are
mostly automatically retrieved; ii) they do not en-
able cross-lingual evaluation scenarios in which
systems are tested in different languages at the
same time; iii) they do not cover all open-class
parts of speech.

In order to address the aforementioned draw-
backs, we propose the first SemEval task on Multi-
lingual and Cross-Lingual Word-in-Context disam-
biguation (MCL-WiC) and present the first entirely
manually-annotated dataset for the task. Impor-
tantly, MCL-WiC enables new cross-lingual eval-
uation scenarios covering all open-class parts of
speech, as well as a wide range of domains and
genres. The dataset is available in five European
and non-European languages, i.e. Arabic (Ar), Chi-
nese (Zh), English (En), French (Fr) and Russian
(Ru).

2 Related Work

Several different tasks have been put forward which
go beyond traditional WSD and drop the require-
ment of fixed sense inventories. Among the first
alternatives we cite monolingual and cross-lingual
Lexical Substitution (McCarthy and Navigli, 2007;
Mihalcea et al., 2010). Word-in-context similar-
ity has also been proposed as a way to capture
the dynamic nature of word meanings: the Stan-
ford Contextual Word Similarities (SCWS) dataset,
proposed by Huang et al. (2012), contains human
judgements on pairs of words in context. Along
these same lines, Armendariz et al. introduced
CoSimLex, a dataset designed to evaluate the abil-
ity of models to capture word similarity judgements
provided by humans.

MCL-WiC
Sub-task Dataset Train Dev Test

Multilingual

Ar-Ar - 500 500
En-En 4000 500 500
Fr-Fr - 500 500

Ru-Ru - 500 500
Zh-Zh - 500 500

Cross-lingual

En-Ar - - 500
En-Fr - - 500
En-Ru - - 500
En-Zh - - 500

Table 1: The MCL-WiC dataset: number of unique
lexemes divided by sub-task and dataset. The sec-
ond column (Dataset) indicates the available lan-
guage combination.

More recently, Pilehvar and Camacho-Collados
(2019) presented the Word-in-Context (WiC)
dataset. Framed as a binary classification task,
WiC is a benchmark for the evaluation of context-
dependent embeddings. However, WiC covers only
one language, i.e. English, and two parts of speech,
namely nouns and verbs. To enable evaluation
in languages other than English, Raganato et al.
(2020) proposed XL-WiC, an extension of the WiC
dataset which covers different European and non-
European languages, thus allowing for zero-shot
settings. Despite their effectiveness, both the WiC
and XL-WiC datasets are not manually created and
do not cover all open-class parts of speech. More-
over, they do not consider cross-lingual evaluation
scenarios in which systems are tested in more than
one language at the same time, thus highlighting
the need for a new evaluation benchmark.

3 The Multilingual and Cross-lingual
Word-in-Context Task

In this Section, we present our SemEval task and
describe a new dataset called Multilingual and
Cross-lingual Word-in-Context (MCL-WiC). The
task is divided into a multilingual and a cross-
lingual sub-task, each containing different datasets
divided according to language combination. Each
dataset instance is focused on a given lexeme1 and
is composed of a unique ID, a target lemma, its
part of speech, two sentential contexts in which
the target lemma occurs, and positional indices for
retrieving the target words in each sentence. In

1Each lexeme corresponds to a lemma and its part of
speech.
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ID Lemma POS Start End Sentence

training.en-en.624 leave VERB

47 51
As mentioned, it was clear that people
usually left their homelands in search of a
better life.

13 17
It should be left entirely to the parties to a
dispute to choose the modalities of settlement
they deemed most appropriate.

training.en-en.625 leave VERB

47 51
As mentioned, it was clear that people
usually left heir homelands in search of a
better life.

80 87
However, no hasty conclusion should be
drawn that the Republic of Macedonia
was leaving no room for future improvement.

Table 2: Excerpt from the multilingual dataset (En-En): two sentence pairs sharing the same first sentence
are shown, with the target word occurrence in bold type.

ID Tag
training.en-en.624 F
training.en-en.625 F

Table 3: Example of gold file.

both sub-tasks, for each lexeme, we provide two
different instances which share one sentence2. We
provide training and development data only for
the multilingual sub-task, whereas test data is pro-
vided for both sub-tasks. While training data is
produced only in English, both the development
and the test data are available in other languages
as well. Table 1 provides an overview of the com-
position of the dataset, which we detail further in
the remainder of this paper. Compared to existing
datasets, MCL-WiC makes it possible to perform
a thorough, high-quality evaluation of a multitude
of approaches, ranging from architectures based on
pre-trained language models to traditional WSD
systems.

In the following, we introduce the multilingual
and cross-lingual sub-tasks. Then, we describe the
data sources, the selection of the target lexemes and
sentence pairs and, finally, the annotation process.

3.1 Multilingual sub-task

This sub-task allows systems to be evaluated in a
scenario in which only one language at a time is
considered. To this end, we manually select sen-
tence pairs in the following language combinations:

2To speed up the annotation process, for each lexeme, we
selected a fixed sentence and annotated two other sentences
so as to obtain two instances.

Ar-Ar, En-En, Fr-Fr, Ru-Ru and Zh-Zh. The multi-
lingual sub-task includes training, development and
test splits as reported in Table 1 (top). The train-
ing data, available only in English, contains 4000
unique lexemes and 8000 sentence pairs. Instead,
both the development and test data splits include
500 unique lexemes and 1000 sentence pairs for
each of the aforementioned language combinations.
To avoid any bias, each dataset contains a balanced
number of tags, i.e. 50% True (T) and 50% False
(F).

In Table 2,3 we report two instances derived from
En-En, which share the first sentence. Given the
target lemma leave, its part of speech (verb) and
two sentences in which two occurrences of leave
are contained, participating systems are required to
determine whether the target occurrences (shown
in bold type in the Table) share the same meaning
(T) or not (F). Since the senses of the target occur-
rences differ in both sentence pairs, they are both
tagged with F in the gold file, as shown in Table 3.
Note that, in MCL-WiC, target occurrences can be
inflected forms of the target lemma.

3.2 Cross-lingual sub-task

The cross-lingual sub-task allows systems to be
tested and compared in a cross-lingual scenario.
Here, sentence pairs are composed of a sentence in
English and a sentence in one of the other MCL-
WiC languages, including the following language
combinations: En-Ar, En-Fr, En-Ru and En-Zh. It
is worth mentioning that, in contrast to past efforts,

3Due to space limits we removed some words from the
sentences reported in Table 2 and 4.
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ID Lemma POS Start End Sentence

test.en-ru.18
light NOUN 46 51

Using a technique for concentrating the solar
light, resulted in an overall efficiency of 20%.

39 50
Ka�dy� predstavitel~ mo�et vystupat~
v zavisimosti ot poluqennyh ukazani�.

test.en-ru.19
light NOUN 46 51

Using a technique for concentrating the solar
light, resulted in an overall efficiency of 20%.

2 8
S uqetom raboty, orator sqitaet
celesoobraznym izlo�it~ principy.

Table 4: Excerpt from the cross-lingual dataset (En-Ru): two sentence pairs sharing the same first sentence
are shown, with the target word occurrence in bold type.

all sentences are manually selected and annotated,
and that Arabic and Russian are included in a Word-
in-Context dataset for the first time.

We report two cross-lingual instances (sentence
pairs) in Table 4 for the En-Ru language combi-
nation, which share the first sentence. Given the
English lemma light, its part of speech (noun), and
two sentences, one in English where light occurs
and one in Russian where a translation of light ap-
pears, participants are asked to determine whether
the target occurrence (in bold in the Table) of light
and its translations into Russian zavisimosti
and uqetom share the same meaning or not. Im-
portantly, translations are allowed to be multi-word
expressions and periphrases.

The cross-lingual sub-task comprises test data
only and includes 500 unique English lexemes and
1000 sentence pairs for each language combination
as reported in Table 1 (bottom). Note that, in this
case, all cross-lingual datasets share the same En-
glish target lexemes. Similarly to its multilingual
counterpart, the data in this sub-task contains a
balanced number of T (50%) and F (50%) tags.

3.3 Selection of the data and annotation

Sources of the data In order to construct MCL-
WiC, we leveraged three resources. First, we used
the BabelNet4 multilingual semantic network (Nav-
igli and Ponzetto, 2010) to obtain a set of lex-
emes in all languages of interest. Subsequently,
we extracted sentence pairs containing occurrences
of such lexemes from two corpora, namely the
United Nations Parallel Corpus (Ziemski et al.,
2016, UNPC)5 and Wikipedia6. UNPC is a col-
lection of official records and parliamentary docu-

4https://babelnet.org/
5https://conferences.unite.un.org/uncorpus/
6https://wikipedia.org

ments of the United Nations available in the six UN
languages7, whereas Wikipedia is a wide-coverage
multilingual collaborative encyclopedia. These cor-
pora were selected due to their wide coverage in
terms of domains and languages. In fact, such
heterogeneity allowed for the creation of a new
competitive benchmark capable of evaluating the
generalization ability of a system in discriminating
senses in different domains and across languages.
With this aim in view, we derived 50% of the se-
lected sentence pairs from UNPC and the remain-
ing 50% from Wikipedia.

Selection of lexemes Starting from BabelNet,
we extracted a set of 5250 unique ambiguous lex-
emes in English and 1000 unique lexemes for
each of the following languages: Arabic, Chinese,
French and Russian. The selected pairs in English
were distributed as follows: 4000 for the training
data, 500 for the development data and 750 for the
test data (500 for the multilingual sub-task and 250
for the cross-lingual sub-task8; we enriched the
latter with additional 250 pairs derived from the
multilingual test data). Instead, the selected pairs
in languages other than English were included in
the multilingual sub-task only and distributed as
follows: 500 for the development data and 500 for
the test data. We selected the target lexemes start-
ing from basic vocabulary words and such that they
had at least three senses in BabelNet. A key goal
was to cover all open-class parts of speech, namely
nouns, verbs, adjectives and adverbs, whose dis-
tribution in MCL-WiC is shown in Table 5. The
target lexemes were chosen so as to avoid phrasal
verbs and multi-word expressions.

7Arabic, Chinese, English, French, Spanish and Russian.
8We recall that, in the cross-lingual sub-task, the target

lexemes are provided in English and shared across all datasets.
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En-En Ar-Ar Fr-Fr Ru-Ru Zh-Zh En-*
Train Dev Test Dev Test Dev Test Dev Test Dev Test Test

NOUN 4124 582 528 490 494 548 514 572 582 520 554 458
VERB 2270 246 298 428 398 262 272 352 372 330 364 320
ADJ 1430 158 144 72 98 156 184 54 30 122 62 178
ADV 176 14 30 10 10 34 30 22 16 28 20 44

Table 5: Part-of-speech distribution in MCL-WiC. * indicates all languages supported in MCL-WiC other
than English.

Selection and annotation of sentence pairs For
each of the target lexemes, we annotated two sen-
tence pairs from either UNPC or Wikipedia. All
selected sentences were well-formatted and, most
importantly, provided a sufficient semantic context
to determine the meaning of the target occurrences
unequivocally. Subsequently, each sentence pair
was associated with a tag, depending on whether
the target words in the two contexts are used with
the same meaning (T) or not (F). To perform both
the selection of the data as well as the annotation,
we employed eight annotators with a high level of
education and linguistic proficiency in the corre-
sponding language; the annotation work required
approximately six months. Importantly, all annota-
tors followed specific criteria which we describe in
the following paragraph.

Annotation criteria We provided each annotator
with general annotation guidelines. Besides general
criteria, each annotation team9 established ad-hoc
guidelines for specific linguistic issues, some of
which will be briefly illustrated in Section 4, below.

General annotation criteria can be broadly di-
vided into grammatical and lexicographic-semantic
criteria. The former refer to the format and the
grammatical correctness of the sentences to be
selected: annotators were asked to choose well-
written sentences only, i.e. sentences with a clear
structure, ending with a full stop and containing a
main clause. Instead, lexicographic-semantic cri-
teria refer to the attribution of the labels. To deter-
mine whether two occurrences were used with the
same meaning or not, annotators were asked to use
multiple reputable dictionaries (e.g. for English we
used the Merriam-Webster, Oxford Dictionary of
English and English Collins dictionaries). More-
over, to avoid misperceptions in the same-sense
tagging annotations, we asked annotators to justify

9An annotation team is made up of annotators working on
the same language.

their choices by providing substitutes for the tar-
get occurrences with synonyms, hypernyms, para-
phrases or the like. Contrary to what was done in
WiC and XL-WiC, we argue that, for the purposes
of this task, annotating according to lexicographic
motivations, i.e. by using reliable dictionaries, con-
tributes significantly to minimizing the impact of
subjectivity, thus producing more adequate and con-
sistent data. Finally, lexicographic-semantic crite-
ria also provided concrete indications and examples
regarding the attribution of tags. For instance, T
was used if and only if the two target occurrences
were used with exactly the same meaning or, in
other words, if, using a dictionary, the definition of
the two target words was the same.

Inter-annotator agreement In order to deter-
mine the degree of uncertainty encountered dur-
ing the annotation process, we computed the inter-
annotator agreement. To this end, we randomly
selected a sample of 500 sentence pairs from each
of the En-En and Ru-Ru multilingual datasets, and
200 sentence pairs from the En-Ar and En-Zh cross-
lingual datasets. Validators were provided with the
same guidelines used during the annotation process.
We calculated the agreement between two differ-
ent annotators using the Cohen’s kappa, obtaining
κ=0.968 in En-En, 0.952 in Ru-Ru, 0.94 in En-Ar
and 0.91 in En-Zh, which is interpreted as almost
perfect agreement.

Data format For each sub-task, we provide two
types of file (.data and .gold) in JSON format. The
.data files contain the following information: a
unique ID, the lemma, its part of speech, the two
sentences and the positional indices to identify the
target occurrences to be considered (see Tables 2
and 4). Instead, the .gold files include the gold
answers, i.e. the corresponding ID and tag, as
shown in Table 3.
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4 Linguistic Issues

In this section, we describe interesting language-
specific issues which required additional guidelines.
Due to space limits, we focus on languages which
do not use the Latin alphabet, i.e. Arabic, Chinese
and Russian, illustrating only the most significant
issues encountered.

Arabic From a WSD perspective, compared to
other languages, written Arabic poses bigger chal-
lenges due to the omission of vocalization, which
increases the degree of semantic ambiguity. In fact,
the vocalization, expressed by diacritics placed
above or below consonants, contributes signifi-
cantly to determining the right interpretation and
thus the meaning of words. For instance, the un-
vocalized word form b-r-d could be interpreted as
bard (“cold”), burd (“garment”) or barad (“hail”).
Of course, in Arabic, polysemy also affects vo-
calized words, which can have multiple meanings,
e.g. ummiyy means "maternal", but also "illiter-
ate". For the purposes of MCL-WiC, we chose to
keep the sentences as they are found in UNPC and
Wikipedia, i.e. unvocalized in the vast majority of
cases, while – instead – providing the target lem-
mas in the vocalized form. This was done in order
to avoid lexical ambiguity deriving from lemmas
which share the same word form but are vocalized
in a different way. Furthermore, this choice facili-
tated the selection and annotation of sentence pairs
in which a given target lemma occurs.

Chinese Since Chinese does not adopt an alpha-
bet, the semantic ambiguity that can be found in
English homographs is basically lost. In Chinese,
if two unrelated words are pronounced in the same
way, such as “plane” (the airplane) and “plane” (the
surface), they are not usually written in the same
way. By way of illustration,沉默, meaning “silent;
to be silent” and 沉没, “to sink”, are both pro-
nounced as chénmò, but, because they are written
with different characters, they cannot be considered
ambiguous words. Analogously, some characters
have an extremely high semantic ambiguity them-
selves, but since they appear most frequently in
polysyllabic words, their ambiguity is lost. For ex-
ample, the character guǒ果 has at least two mean-
ings, “fruit” and “result”, but this character almost
never stands as a word on its own in contempo-
rary Chinese. In the current lexicon most of the
Chinese words are composed of two or more char-
acters; when it appears in actual texts, guǒ is al-

most always connected to other characters, and the
word thus formed is no longer semantically ambigu-
ous. Finally, similarly to the cross-lingual sub-task,
some ambiguity had to be discarded in translation,
as in the case of Chinese classifiers which have a
marked potential for semantic ambiguity. For ex-
ample, dào道 is, among others, the classifier for
long and narrow objects, as in yı̄ dào hé 一道河,
a river (one+classifier+river), or for doors, walls
and similar objects with an entry and an exit, as in
yı̄ dào mén一道门, a door (one+classifier+door).
However, since classifiers are virtually absent in
European languages, they could not be applied in
the cross-lingual sub-task and were discarded.

Russian A noteworthy issue encountered by Rus-
sian annotators concerned the verbal aspects which
can be viewed as one of the most challenging fea-
tures of the Russian language especially for L2-
learners10 with no Slavic background. In Russian,
a verb can be perfective, imperfective or both. Nor-
mally, a perfective verb has one or more imperfec-
tive counterparts and vice versa. Broadly speaking,
perfective verbs are typically used to express non-
repetitive actions completed in the past, or actions
which will certainly be carried out in the future,
and also in general for past or future actions for
which the speaker intends to emphasize the result
that was or will be achieved. Conversely, imper-
fective verbs are used to express actions which are
incomplete, habitual, in progress, or actions for
which the speaker does not stress the result to be at-
tained. In MCL-WiC, given a verbal target lexeme,
we decided to choose sentences in which the target
words occurring in the selected sentences and the
target lemma shared the same aspect. In fact, in
Russian, although pairs of perfective and imper-
fective verbs such as delat~, sdelat~ (to do)
or spraxivat~, sposit~ (to ask) show a high
degree of morphological relatedness, they tend to
be considered as distinct lemmas.

Another interesting issue regards participles. In
some cases, annotators raised issues concerning
the part of speech of participles occurring as target
words in the selected sentences. In fact, Russian
participles derive from verbs, but are declined and
can behave as adjectives. Since the target lexemes
and the corresponding occurrences must share the
same part of speech, we decided to discard sen-
tences in which the part of speech of the target

10In language teaching, L2 indicates a language which is
not the native language of the speaker.
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words could not be determined unequivocally.

5 Participating Systems

This Section is devoted to the participating systems.
First, we briefly describe the rules of the competi-
tion. Subsequently, we provide an overview of the
data and approaches used by participants. Then,
we focus on some of the best-scoring systems and
provide a breakdown of the techniques adopted.
We report the three best-performing teams for each
sub-task and language combination in Tables 6 and
7. All results are publicly available on the official
MCL-WiC page on GitHub11. For each winning
team, we show only the best performance in the
corresponding category.

5.1 Rules of the competition

Participants were given no constraints as far as data
was concerned; for instance, the development data
could be used for training or it was allowed to en-
rich the provided data by constructing new datasets
in an automatic or semi-automatic fashion. Further-
more, we allowed more than one participant for
each team. Participating teams could upload up to
five submissions, each including up to 9 language
combinations for the two sub-tasks.

5.2 Data

Multilingual sub-task As far as English is con-
cerned, the majority of participating systems used
the MCL-WiC training and development data.
Some participants also used the data derived from
WiC and XL-WiC. Furthermore, automatically-
constructed WiC-like datasets were obtained by
some participants, starting from semantic resources
such as SemCor (Miller et al., 1993), WordNet and
the Princeton WordNet Gloss Corpus (PWNG)12,
or by automatically translating available datasets
into English. The available data was also enriched
via sentence reversal augmentation (given a sen-
tence pair, the two sentences were swapped). In
some cases, the development and trial13 data was
used to enrich the training data.

As regards languages other than English, most
participants used XL-WiC data, or new training
and development datasets were obtained by split-
ting the MCL-WiC language-specific development

11https://github.com/SapienzaNLP/mcl-wic
12http://wordnetcode.princeton.edu/
13As trial data, we provided 4 instances for each sub-task

and dataset.

data. Alternatively, in zero-shot scenarios, par-
ticipants trained their models using the English
training data. Furthermore, some participants aug-
mented the training and development data by in-
cluding the trial data. Also in this case, training and
development splits were augmented via sentence
reversal.

Cross-lingual sub-task In the cross-lingual sub-
task, most participants used the MCL-WiC English
training and development data in zero-shot set-
tings. A smaller group of participants used WiC
and XL-WiC data. Some participants created ad-
ditional training and development data from other
resources such as the Open Multilingual WordNet
and PWNG. Additional training and development
data was produced via Machine Translation.

5.3 Approaches

Multilingual sub-task Most participants used
XLM-RoBERTa (Conneau et al., 2020) as pre-
trained language model to obtain contextual rep-
resentations of the target occurrences. Other mod-
els frequently used by participants were mBERT,
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), ELECTRA (Clark et al., 2019) and ERNIE
(Sun et al., 2020). The majority of participants
made use of fine-tuned contextualized embeddings
and used logistic regression to perform binary clas-
sification. Some participants used ensembles and
majority voting.

Cross-lingual sub-task Also in this sub-task,
XLM-RoBERTa was the most used multilingual
language model. Again, the majority of systems
obtained contextualized embeddings, passing them
to a logistic regression unit. In this case, partici-
pants mainly explored zero-shot approaches. Some
participants made use of ensembles, adversarial
training, pseudo-labelling (Wu and Prasad, 2017)
and cross-validation techniques.

5.4 Competition and best-scoring systems

The MCL-WiC competition took place on the Co-
daLab14 open Web-based platform and reported
170 participants, out of which 48 uploaded one
or more datasets. Overall, 170 submissions were
received, the majority of which were focused on
the multilingual sub-task and specifically on the
En-En dataset. As far as the evaluation metric was
concerned, systems were tested using the accuracy

14https://competitions.codalab.org/competitions/27054
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Dataset Team Score

Ar-Ar
Cam 84.8
LIORI 84.6
MCL@IITK; DeathwingS 84.5

En-En
MCL@IITK; oyx 93.3
zhestyatsky 92.7
Cam 92.5

Fr-Fr
MCL@IITK 87.5
Cam 86.5
LIORI 86.4

Ru-Ru
Cam 87.4
LIORI 86.6
godzilla 86.5

Zh-Zh
stce 91.0
godzilla 90.8
PALI 90.5

Table 6: Multilingual section: five best-scoring
systems by language combination.

score. In what follows, we provide insights re-
garding the approaches adopted by some of the
best-performing participating systems, based on
the information we received.

Cam The Cam team (Yuan and Strohmaier,
2021) made use of the WiC and XL-WiC datasets
in addition to the MCL-WIC data. Furthermore,
examples from the Sense Complexity Dataset
(Strohmaier et al., 2020, SeCoDa) and the Cam-
bridge Advanced Learner’s Dictionary (CALD)
were extracted. Cam used pre-trained XLM-
RoBERTa as underlying language model and added
two additional layers on top to perform binary clas-
sification with tanh and sigmoid activation, respec-
tively. As input, the following items were concate-
nated: the representation corresponding to the first
token of the sequence, the representations of the tar-
get words in both sentences, as well as the absolute
difference, cosine similarity and pairwise distance
between the two vectors. When the target word was
split into multiple sub-tokens, Cam took the aver-
age representation rather than the first sub-token.
Finally, a two-step training strategy was applied: 1)
pre-training the system using out-of-domain data,
i.e. WiC, XL-WiC, SeCoDa and CALD; 2) fine-
tuning the system on MCL-WiC data.

godzilla godzilla enriched the MCL-WiC train-
ing data by automatically constructing a dataset
starting from WordNet and using Machine Trans-
lation. Different types of pre-trained models, such

as RoBERTa and XLM-RoBERTa, were adopted.
godzilla highlighted the target words by surround-
ing them with special markings on both sides and
appending the target words to the end of each
sentence. As architecture, this system used the
next sentence prediction models from the hugging
face15 library. Given the strong connection be-
tween En-Ar, En-Fr, En-Ru, En-Zh test datasets,
pseudo-tagging was used for each language com-
bination. Finally, godzilla applied label smoothing
and model merging.

LIORI The LIORI16 team (Davletov et al., 2021)
used the datasets provided in the MCL-WiC compe-
tition. Specifically, the training data was enriched
with 70% of the development data for Arabic, Chi-
nese, French and Russian, and the whole trial data.
Optionally, data augmentation was performed by
swapping sentences in each example. LIORI fine-
tuned XLM-RoBERTa on a binary classification
task and used a 2-layered feed-forward neural net-
work on top of the language model with dropout
and the tanh activation function. Sentences in each
pair were concatenated by the special token "</s>"
and fed to XLM-RoBERTa. As input, the model
took the concatenation of the contextualized em-
beddings of the target words, aggregating over sub-
tokens either by max pooling, or just by taking the
first sub-token. LIORI used a voting ensemble com-
posed of three models: the first model trained with
data augmentation, using the concatenations of the
first sub-tokens of the target words; the second
trained with data augmentation using max-pooling
over sub-tokens; finally, the third trained without
data augmentation and using concatenations of the
first sub-tokens.

stce stce used the MCL-WiC datasets and built
additional training data using HowNet (Dong and
Dong, 2003). Furthermore, the training data was
enriched by pseudo-labelling the test datasets. Data
cleaning was performed and target words were sur-
rounded by special markings. The main language
model used was XLM-RoBERTa-large. During the
training process, dynamic negative sampling was
performed for each batch of data fed to the model.
At the same time, stce adopted the Fast Gradient
Method and added disturbance to the embedding
layer to obtain more stable word representations.

15https://huggingface.co/
16The following member of the team LIORI took part in

the competition: davletov.
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Dataset Team Score

En-Ar
PALI 89.1
godzilla 87.0
Cam; LIORI 86.5

En-Fr
PALI 89.1
godzilla 87.6
LIORI 87.2

En-Ru
PALI 89.4
godzilla 88.5
RyanStark; rxy1212 87.3

En-Zh
PALI; RyanStark 91.2
Cam 88.8
MagicPai 88.6

Table 7: Cross-lingual sub-task: three best-scoring
systems by language combination.

zhestyatsky Zhestiankin and Ponomareva (2021)
augmented the English MCL-WiC training and de-
velopment data with WiC. Training and develop-
ment data were split randomly to create a larger
training sample which included 97.5% of the data,
while leaving only 2.5% for the new development
dataset. Then, bert-large-cased embeddings were
fine-tuned using AdamW as optimizer with a learn-
ing rate equal to 1e-5. Each sentence was split
by BertTokenizerFast into 118 tokens maximum.
The model was trained for 4.5 epochs and stopped
by Early Stopping with patience equal to 2. For
each sentence, zhestyatsky took the embeddings
of all sub-tokens corresponding to the target word
and max pooled them into one embedding. Sub-
sequently, zhestyatsky evaluated the cosine simi-
larity of these embeddings and activated this value
through ReLU.

MCL@IITK First, the MCL@IITK17 team
(Gupta et al., 2021) pre-processed the sentences
by adding a signal, either double quotes on both
sides of the target word, or the target word itself
appended to the end of the sentence. For En-En,
MCL@IITK enriched the MCL-WiC training data
using sentence reversal augmentation, WiC and
SemCor. MCL@IITK obtained embeddings of the
target words using the last hidden layer, and passed
them to a logistic regression unit. MCL@IITK
used ELECTRA, ALBERT, and XLM-RoBERTa
as language models and submitted probability sum
ensembles. For the non-English multilingual sub-
task, MCL@IITK used XLM-RoBERTa only and

17The following members of the MCL@IITK team took
part in the competition: jaymundra, rohangpt and dipakam.

tackled all four language pairs jointly. A 9:1 train-
dev split with sentence reversal augmentation was
used on the non-English dev data, in addition to
En-En train data and XL-WiC with an ensemble
model. For the cross-lingual subtask, ELECTRA
embeddings were used. The models were trained
on partly back-translated En-En train set and vali-
dated on back-translated En-En development set.

PALI The PALI18 team (Xie et al., 2021) en-
riched the MCL-WiC data using WordNet while
keeping the original cross-lingual data to maintain
the target words in the cross-lingual data. After text
pre-processing, task-adaptive pre-training was per-
formed using the MCL-WiC data. The target words
were surrounded by special symbols. PALI used
XLM-RoBERTa as main language model and took
its final output layer, concatenating the [CLS] to-
ken with the embeddings of the target occurrences
in each sentence pair. To increase the training
data, PALI exchanged the order of 20% of the sen-
tence pairs. During training, lookahead (AdamW)
was used together with adversarial training imple-
mented by the Fast Gradient Method to obtain more
stable word representations. Hyperparameters were
tuned through trial-and-errors. The models of strat-
ified 5-fold cross-validation were averaged to yield
the final prediction results.

6 Baselines

Following Raganato et al. (2020), we used a base-
line transformer-based binary classifier. Thus, first,
given a sentence pair, a dense representation is ob-
tained for each target occurrence. As indicated in
Devlin et al. (2019), in the case that a target oc-
currence is split into multiple sub-tokens, the first
sub-token is selected. The resulting representations
are then given as input to a binary classifier imple-
mented following Wang et al. (2019). We selected
the Adam optimizer (Kingma and Ba, 2015) with
learning rate and weight decay equal to 1e-5 and 0,
respectively, and trained for 10 epochs.

We experimented with two different contextual-
ized embedding models: BERT (base-multilingual-
cased) and XLM-RoBERTa (base). As for the data,
in contrast to most participants, we made use of the
data provided for the task only. We used En-En as
training and development data for English. As for
other language combinations, we trained on En-En
and validated both on En-En or and on the other

18The following members of the PALI team took part in the
competition: endworld and xsysigma.
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Model Ar-Ar En-En Fr-Fr Ru-Ru Zh-Zh En-Ar En-Fr En-Ru En-Zh

mBERT1 76.2 84.0 78.7 74.5 77.5 65.9 71.6 68.2 68.9
XLMR-base1 75.4 86.6 77.9 76.5 78.5 67.7 71.8 74.2 66.1

mBERT2 76.4 84.0 78.7 74.6 76.6 62.0 69.4 66.7 64.2

XLMR-base2 75.4 86.6 77.7 76.5 78.9 67.7 74.9 74.2 71.3

Table 8: Accuracy of baselines for multilingual and cross-lingual sub-tasks. Columns indicate the test set
used. In setting 1, we used the En-En training data and the En-En development data. In setting 2, we used
the En-En training data and the corresponding development datasets in languages other than English.

language multilingual development data. Table 8
reports the best training results according to the
corresponding validation.

7 Results and Discussion

In this section, we discuss the results achieved in
our competition. Overall, the MCL-WiC dataset
allows systems to attain high performances, in the
85-93% accuracy range. This leads us to hypothe-
size that, in general, systems were able to develop a
good ability in capturing sense distinctions without
relying on a fixed sense inventory.

When compared to the proposed baselines, we
observe that best-performing systems were able
to achieve an absolute improvement of up to 27.1
points over the corresponding baselines (e.g. on
En-Ar, cf. Tables 7 and 8). Both our baselines and
the systems developed by participants confirm that,
in this task, XLM-RoBERTa outperforms BERT
in most language combinations. The highest score
was obtained in En-En, with the best system achiev-
ing 93.3% accuracy. Note that our baselines were
also able to attain good performances in En-En,
i.e. 84.0% using BERT and 86.6% with XLM-
RoBERTa, without benefiting from additional train-
ing and development data. Interestingly, Chinese
was the language which achieved the second-best
results, both in Zh-Zh and En-Zh, attaining on av-
erage results which were considerably higher. In-
stead, Arabic seems to have been the most difficult
language for participants, especially in Ar-Ar. A
reason for this result, deserving further exploration,
could lie in morpho-semantic features inherent in
Arabic, which we briefly outlined in Section 4.

Zero-shot approaches differ in the performances
achieved by participants in the two sub-tasks: in
the cross-lingual sub-task participants were able
to achieve slightly better performances than those
in the multilingual setting, most probably thanks
to the presence of English in both the training and

the test data, and, more in general, to the availabil-
ity of English WiC-style datasets which could be
used to enrich the already provided data. With the
exception of Chinese, instead, on the multilingual
sub-task we observe a performance drop between
1.6 and 4.3%.

Finally, we note that performance boosts were
observed across the board when using data augmen-
tation, especially by swapping the two sentences
within a pair or by coupling the second sentences
of two pairs sharing the same first sentence and the
same meaning. Another consistent performance in-
crease, observed both in the multilingual and in the
cross-lingual sub-task, was obtained when adding
a signal on both sides of the target occurrences.

8 Conclusions

In this paper, we described the SemEval-2021 Task
2 and introduced Multilingual and Cross-lingual
Word-in-Context (MCL-WiC), the first entirely
manually-curated WiC-style dataset in five Euro-
pean and non-European languages, namely Arabic,
Chinese, English, French and Russian. MCL-WiC
allows the inherent ability of systems to discrimi-
nate between word senses within the same language
to be tested, and also, interestingly, within cross-
lingual scenarios in which a system is evaluated in
two languages at the same time, namely English
and one of the remaining MCL-WiC languages.

While current Word-in-Context datasets focus
primarily on single tokens, as a suggestion for fu-
ture work we would like to further explore the in-
tegration of multi-word expressions and idiomatic
phrases into a Word-in-Context task. This would
allow us to investigate the intrinsic ability of a sys-
tem to correctly discriminate the semantics of such
linguistic constructs, especially those whose mean-
ing is not compositional, i.e. it cannot be derived by
combining the meaning of each of their individual
components.
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Abstract

This paper introduces the SemEval-2021
shared task 4: Reading Comprehension of
Abstract Meaning (ReCAM). This shared
task is designed to help evaluate the ability of
machines in representing and understanding
abstract concepts. Given a passage and the
corresponding question, a participating system
is expected to choose the correct answer from
five candidates of abstract concepts in a
cloze-style machine reading comprehension
setup. Based on two typical definitions
of abstractness, i.e., the imperceptibility
and nonspecificity, our task provides three
subtasks to evaluate the participating models.
Specifically, Subtask 1 aims to evaluate how
well a system can model concepts that cannot
be directly perceived in the physical world.
Subtask 2 focuses on models’ ability in com-
prehending nonspecific concepts located high
in a hypernym hierarchy given the context of
a passage. Subtask 3 aims to provide some
insights into models’ generalizability over
the two types of abstractness. During the
SemEval-2021 official evaluation period, we
received 23 submissions to Subtask 1 and 28
to Subtask 2. The participating teams addi-
tionally made 29 submissions to Subtask 3.
The leaderboard and competition website
can be found at https://competitions

.codalab.org/competitions/26153.
The data and baseline code are available at
https://github.com/boyuanzheng010/

SemEval2021-Reading-Comprehension-

of-Abstract-Meaning.

1 Introduction

Humans use words with abstract meaning in their
daily life. In the past, research efforts have been
exerted to better understand and model abstract
meaning (Turney et al., 2011; Theijssen et al.,

∗ This work was performed when Boyuan Zheng visited
Queen’s University.

2011; Changizi, 2008; Spreen and Schulz, 1966).
Modelling abstract meaning is closely related to
many other NLP tasks such as reading compre-
hension, metaphor modelling, sentiment analysis,
summarization, and word sense disambiguation.

In the past decade, significant advancement has
been seen in developing computational models for
semantics, based on deep neural networks. In this
shared task, we aim to help assess the capability of
the state-of-the-art deep learning models on repre-
senting and modelling abstract concepts in a spe-
cific reading comprehension setup.

We introduce SemEval-2021 Task 4, Reading
Comprehension of Abstract Meaning (ReCAM).
Specifically, we design this shared task by follow-
ing the machine reading comprehension framework
(Hermann et al., 2015; Onishi et al., 2016; Hill
et al., 2016), in which computers are given a pas-
sage Di as well as a human summary Si to compre-
hend. If a model can digest the passage as humans
do, we expect it to predict the abstract word used
in the summary, if the abstract word is masked.
Unlike the previous work that requires comput-
ers to predict concrete concepts, e.g., named enti-
ties, in our task we ask models to fill in abstract
words removed from human summaries. During
the SemEval-2021 official evaluation period, we
received 23 submissions to Subtask 1 and 28 sub-
missions to Subtask 2. The participating teams
additionally made 29 submissions to Subtask 3. In
this paper, we induce the shared task and provide a
summary for the evaluation.

2 Task Description
We organize our shared task based on two typical
definitions of abstractness, named as imperceptibil-
ity and nonspecificity in this paper, implemented in
Subtask 1 and Subtask 2, respectively. Subtask 3
further evaluates models’ generalizability over the
two definitions of abstractness.
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Passage ... Observers have even named it after him,

“Abenomics”. It is based on three key pillars

of monetary policy to ensure long-term sustain-

able growth in the world’s third-largest economy,

with fiscal stimulus and structural reforms. In

this weekend’s upper house elections, ....

Question Abenomics: The @placeholder and the risk.

Answer (A) chance (B) prospective (C) government
(D) objective (E) threat

Table 1: An example for Subtask 1. The correct answer
to the question is objective.

2.1 Subtask 1: ReCAM-Imperceptibility

In one definition (Turney et al., 2011; Theijssen
et al., 2011; Spreen and Schulz, 1966), concrete
words refer to things, events, and properties that
humans can directly perceive with their senses, e.g.,
trees and flowers. In contrast, abstract words refer
to “ideas and concepts that are distant from imme-
diate perception”, e.g., objective, culture, and econ-
omy. In Subtask 1, we perform reading compre-
hension on imperceptible abstract concepts, named
as ReCAM-ImPerceptibility. Table 1 shows an
example.

2.2 Subtask 2: ReCAM-NonSpecificity

The second typical definition of abstractness is
based on nonspecific concepts (Theijssen et al.,
2011; Spreen and Schulz, 1966). Compared to spe-
cific concepts such as groundhog and whale, words
such as vertebrate are regarded as more abstract.
Our Subtask 2, named as ReCAM-NonSpecificity,
is designed based on this viewpoint. We will dis-
cuss how the datasets are constructed in Section 3.

2.3 Subtask 3: ReCAM-Cross

In this subtask, participants are asked to submit
their predictions on the test data of Subtask 2, using
models trained on the training data of Subtask 1,
and vice versa. This subtask aims to demonstrate
models’ generalizability between modelling the
two typical definitions of abstractness.

3 Data Construction

We develop our multi-choice machine reading com-
prehension datasets based on the XSum summariza-
tion dataset (Narayan et al., 2018). We first locate
words with abstract meaning using our abstractness
scorers. Then we perform data filtering to select
our target words to construct our datasets.

3.1 The XSum Data

By collecting online articles from the British Broad-
casting Corporation (BBC), Narayan et al. (2018)
developed a large-scale text summarization dataset,
XSum, in which each article has a single sentence
summary. We developed our ReCAM dataset based
on XSum.

3.2 Finding Imperceptible Concepts

Abstractness Scorer for Imperceptibility Fol-
lowing Turney et al. (2011), we use the MRC Psy-
cholinguistic Database (Coltheart, 1981), which in-
cludes 4,295 words rated with a degree of abstract-
ness by human subjects, to train our abstractness
scorer for imperceptibility. The rating of the words
in the MRC Psycholinguistic Database ranges from
158 (highly abstract) to 670 (highly concrete). We
linearly scale the rating to the range of 0 (highly ab-
stract) to 1 (highly concrete). The neural regression
model accepts fixed Glove embedding (Pennington
et al., 2014) as input and predicts the abstractness
rating score between 0 and 1. Our regression model
is a three-layer network that consists of two non-
linear hidden layers with the ReLU activation and a
sigmoid output layer. The mean square error (MSE)
is used as the training loss.

To test the regression model’s performance, we
randomly split the MRC Psycholinguistic Database
into train and test set with the size of 2,148 and
1,877, respectively. Table 2 shows the final perfor-
mance of the neural regression model on the MRC
database. We use the Pearson correlation between
ratings predicted by models and original ratings
from MRC as the evaluation metric. We can see
that the regression model achieves high correlation
coefficients (the higher, the better), i.e., 0.934 and
0.835, on the training and test set. The correlations
are significant (p-values are smaller than 10−5),
reflecting the quality of our models in finding ab-
stract words. Note that Turney et al. (2011) report
a correlation score of 0.81 on their MRC test set.
Their training-test split is unavailable, so we run
cross-validation here in our experiment. The scorer
can then be used to assign an imperceptibility score
to a word that is not in the MRC Psycholinguistic
Database.

Using the abstractness scorer described above,
we assign an abstractness value to each word in
summaries and select words with a value lower
than 0.35 as the candidates for our target words
(words that will be removed from the summaries
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#samples Pearson r p-value
train 2,148 0.934 p < 10−5

test 1,877 0.854 p < 10−5

Table 2: Fitting performance of neural regression
model on the MRC database.

to construct questions). We only consider content
words as potential target words, i.e., nouns, verbs,
adjectives, and adverbs. For this purpose, we use
part-of-speech tagging model (?) implemented in
Stanza (Qi et al., 2020).

3.3 Finding Nonspecific Concepts

Nonspecificity Scorer Following the work
of Changizi (2008), we assign a nonspecificity
score to a word token based on the hypernym
hierarchy of WordNet (Miller, 1998). Specifically,
the root of the hierarchy is at level 0 and regarded
as the most abstract. The abstractness of a node in
the hierarchy is measured by the maximal length
of its path to the root. The hypernym level in
WordNet is between 0 and 17. For each word token
in summaries, we use Adapted Lesk Algorithm
(Banerjee and Pedersen, 2002) to label the sense
since the WordNet hypernym hierarchy works at
the sense level. Since a summary sentence may
be short, we concatenate each summary sentence
with the corresponding passage for word sense
disambiguation. Built on this, each token, which
is labelled with a sense, receives an abstractness
score based on the WordNet hierarchy.

Using the nonspecificity scorer, we assign an
nonspecificity value to each word in summaries
and select words with a value smaller than six as
the candidate target words. The targets words will
be nouns and verbs since the hypernym hierarchy
in WordNet (?) consists of these two POS types.

3.4 Filtering

We aim to avoid developing simple questions. For
example, if a target word also appears in the pas-
sage, it is likely that a model can easily find the
answer without the need to understand the passage
in depth.

Filtering by Lemmas We lemmatized passages
and summaries. If a lemma appears both in a sum-
mary and the corresponding passage, the lexemes
of the lemma will not be considered as target words.
Note that a strict filter may exclude some good can-
didates for target words but helps avoid introducing

many simple questions.

Filtering by Synonyms and Antonyms For a
word in a summary, if a synonym or antonym of
the word appears in the corresponding passage,
we will not consider this word to be our target
word. We use WordNet (?) to derive synonyms
and antonyms. Instead of using word sense disam-
biguation (WSD), for a word wi in a summary, we
use all senses of this word and add all synonyms
and antonyms into a pool. Only if none of the
words in the pool appear in the passage, we con-
sider wi as a candidate target word. Otherwise,
we will not use wi to construct a question for this
passage-summary pair.

Filtering by Similarity We further filter words
by similarity. For each candidate target word in
a summary and each word in the passage, we cal-
culate similarity and use that to perform further
filtering.

We use 300-dimension GloVe word embedding
trained on 840 billion tokens (Pennington et al.,
2014). We calculate the cosine similarity between
a candidate target word and a passage word. For
contextual embedding, we embed each sentence in
a passage as well as the summary into a context-
aware representation matrix using the BERT-large
uncased language model. Then, we calculate the
similarity between each passage token and question
token with the cosine similarity. If the similarity is
higher than 0.85, we will not consider the involved
summary words as candidate target words.

3.5 Constructing Multiple Choices

We train machine reading comprehension models
using the data built so far to generate four choices
for each question. Together with the ground-truth
(the target word identified above and removed from
the human summary), we have five choices/options
for each question. In our work, we propose to use
three models, Gated-Attention Reader (Hermann
et al., 2015), Attentive Model and Attention Model
with Word Gloss to generate the candidate options.
Please find details of the models in Appendix B
and Appendix C as well as the training details in
Appendix D.

We adopt the idea of k-fold cross validation to
train the above mentioned three models to generate
candidate answer words. Specifically, we split the
data into 4 folds. Each time, we train the base-
line models on 3 folds of data and use the trained
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MRR R@1 R@5 R@10
GAReader 0.245 0.175 0.314 0.378
AttReader 0.235 0.167 0.300 0.363

+gloss 0.179 0.123 0.227 0.276

Table 3: Three baseline models are used to generate
candidate multiple choices for Subtask 1. The table
shows their performance on the XSum dataset, evalu-
ated with MRR(Craswell, 2009), Recall@1, Recall@5,
and Recall@10.

MRR R@1 R@5 R@10
GAReader 0.343 0.268 0.422 0.484
AttReader 0.348 0.273 0.424 0.490

+gloss 0.228 0.166 0.286 0.345

Table 4: Three baseline models are used to generate
candidate multiple choices for Subtask 2. The table
shows their performance on the XSum dataset, evalu-
ated with MRR, Recall@1, Recall@5, and Recall@10.

models to predict candidate words on the remain-
ing 1-fold data. With 4-fold iteration, we obtain
predication of each model on the entire data. The
performance of the three baseline models are listed
in Table 3 for Subtask 1 and Table 4 for Subtask
2, using several typical retrieval-based evaluation
metrics.

For each target word that has been removed
from the corresponding summary sentence (again,
a question is a summary sentence containing a re-
moved target word), we collect top-10 words pre-
dicted by each of the three models. In this way,
we can collect a candidate word pool of 30 pre-
dicted word tokens for each removed target word.
To avoid including multiple correct choices for
each question, we adopt synonym and context sim-
ilarity filtering methods described in Section 3.4.
Specifically we first calculate similarity between
the ground-truth target word and each word type in
the pool. We exclude a word type from the multiple
choices if its similarity to the ground-truth is higher
than 0.85. In addition, we also exclude synonyms
of the ground-truth target word. For the remaining
word tokens in the pool, we select four most fre-
quent word types (a word type may have multiple
tokens in the pool). Together with the ground-truth
word, we obtain five choices for each question.

3.6 Further Quality Control

We further make the following efforts to remove
noise in the dataset and improve the datasets’ qual-

ity. We observe that up to now, there are mainly
two kinds of noise in our dataset: 1) some target
words cannot be inferred solely based on the corre-
sponding passage; 2) more than one of the multiple
choices are correct answers.

The first issue is mainly related to the property
of the XSum dataset, in which the first sentence of
a passage is used as the summary. The second type
of problems are often caused by our automatic gen-
eration method. Although we have applied strict
rules in Section 3.4 to handle this, among a small
portion of the resulting data, multiple potentially
correct answers still exist in candidate answers.

To further ensure the quality of our dataset, we
invite workers in Amazon Mechanical Turk to per-
form further data selection. Each annotator needs
to follow the procedure of Appendix A to answer
the question and annotate relevant information,
with which further data selection is applied. To en-
sure quality, we only include workers from English-
speaking countries and only if their previous HITs’
approval rates are above 90%. To see more details
about this process, please refer to Appendix E.

3.7 ReCAM Data Statistics

Table 5 lists the size of our ReCAM datasets, i.e.,
numbers of questions. For example, in total Sub-
task 2 has 6,186 questions, which are split into
training/development/test subsets.

Dataset Subtask 1 Subtask 2 Total
Train 3,227 3,318 6,545
Dev 837 851 1,688
Test 2,025 2,017 4,042
Total 6,089 6,186 12,275

Table 5: Size of the ReCAM Dataset.

4 Systems and Results

Our shared task received 23 submissions to Subtask
1, 28 submissions to Subtask 2, and 29 submissions
to Subtask 3. We use accuracy as the evaluation
metric for the three subtasks.

In general, most participating teams use pre-
trained language models in their systems such
as BERT (Devlin et al., 2019), ALBERT (Lan
et al., 2020), DistilBERT (Sanh et al., 2019),
RoBERTa (Liu et al., 2019), ELECTRA (Clark
et al., 2020), DeBERTa (He et al., 2020), XL-
Net (Yang et al., 2019), T5 (Raffel et al., 2020).
Data augmentation, external knowledge resources,
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and/or transfer learning are additionally used by
many teams to further enhance their model perfor-
mance.

4.1 Subtask 1: ReCAM-Imperceptibility

Table 6 shows all the official submissions and most
of them outperform the baseline model. The base-
line used for Subtask 1 is the Gated-Attention (GA)
Reader (Dhingra et al., 2017). The GA Reader
uses a multi-layer iterated architecture with a gated
attention mechanism to derive better query-aware
passage representation. The motivation behind us-
ing GA Reader is to have a simple comparison
between our task and the CNN/Daily Mail reading
comprehension dataset since GA Reader achieves
reasonably good performance on the CNN/Daily
Mail reading comprehension dataset.

Note that the last column of the table lists the
accuracy (Acc. Cross) for models trained on the
Subtask 2 training data and tested on the Subtask
1 testset. We will discuss those results later in
Section 4.3.

The best result in Subtask 1 was achieved
by team SRC-B-roc (Zhang et al., 2021)
with an accuracy of 0.951. The system
was built on a pre-trained ELECTRA dis-
criminator and it further applied upper atten-
tion and auto-denoising mechanism to process
long sequences. The second-placed system,
PINGAN omini-Sinitic (Wang et al., 2021),
adopted an ensemble of ELECTRA-based mod-
els with task-adaptive pre-training and a mutli-
head attention based multiple-choice classifier.
ECNU-ICA-1 (Liu et al., 2021) ranked third in
this subtask with a knowledge-enhanced Graph At-
tention Network and a semantic space transforma-
tion strategy.

Most teams in Subtask 1 utilize pre-trained
language models (PLM), like BERT (Devlin
et al., 2019), ALBERT (Lan et al., 2020), Dis-
tilBERT (Sanh et al., 2019), RoBERTa (Liu
et al., 2019), ELECTRA (Clark et al., 2020), De-
BERTa (He et al., 2020), XLNet (Yang et al., 2019),
T5 (Raffel et al., 2020). SRC-B-roc (Zhang et al.,
2021) conducted an ablation study regarding the
performance discrepancy of different transformers-
based pre-training models. They tested BERT, AL-
BERT, and ELECTRA by directly fine-tuning the
pre-trained LMs on the ReCAM data. ELECTRA
outperforms BERT and ALBERT by large margins,
which may be due to the different learning objec-

Rank Team Acc Acc. Cross

- GA Reader 25.1 -

1 SRC-B-roc 95.1 91.8 (↓ 3.3)

2 PINGAN-
Omini-Sinitic

93.0 91.7 (↓ 1.3)

3 ECNU-ICA-1 90.5 88.6(↓ 1.9)

4 tt123 90.0 86.2(↓ 3.8)

5 cxn 88.7 -

6 nxc 88.6 74.2(↓ 14.4)

7 ZJUKLAB 87.9 -

8 IIE-NLP-Eyas 87.5 82.1(↓ 5.4)

9 hzxx1997 86.7 -

10 XRJL 86.7 81.8(↓ 4.9)

11 noobs 86.2 78.6(↓ 7.6)

12 godrevl 83.1 -

13 ReCAM@IITK 82.1 80.7(↓ 1.4)

14 DeepBlueAI 81.8 76.3(↓ 5.5)

15 LRG 75.3 61.8(↓ 13.5)

16 xuliang 74.7 -

17 Llf1206571288 72.8 -

18 Qing 71.4 -

19 NEUer 56.6 51.8(↓ 4.8)

20 CCLAB 46.3 35.2(↓ 11.1)

21 UoR 42.0 39.4(↓ 2.6)

22 munia 19.3 -

23 BaoShanCollege 19.0 -

Table 6: Official results of Subtask 1 and Subtask
3. Acc is the accuracy of the models trained on the
Subtask 1 training data and tested on the Subtask 1 test-
set. Acc. cross is the accuracy of models trained on
the Subtask 2 training data and tested on the Subtask 1
testset.

tives of these pre-trained models.
Most participating systems performed inter-

mediate task pre-training (Pruksachatkun et al.,
2020) for their language models. For exam-
ple, CNN/Daily Mail dataset was selected by
ZJUKLAB (Xie et al., 2021a) to further pre-
train their language models. The CNN/Daily
Mail dataset and Newsroom dataset boost model
performance on both Subtask 1 and Subtask 2.
Data augmentation methods are also popular
among participants. ZJUKLAB (Xie et al., 2021a)
performed negative data augmentation with a
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language model to leverage misleading words.
IIE-NLP-Eyas (Xie et al., 2021b) adopted
template-based input reconstruction methods to
augment their dataset and further fine-tuned their
language models based on the dataset.

Most teams also used an ensemble of multiple
pre-trained language models to further enhance
model performance. SRC-B-roc (Zhang et al.,
2021) applied Wrong Answer Ensemble (Kim and
Fung, 2020) by training the model to learn the cor-
rect and wrong answer separately and ensembled
them to obtain the final predictions. Stochastic
Weight Averaging (Izmailov et al., 2018) was also
performed across multiple checkpoints in the same
run to achieve better generalization.

In addition, some interesting approaches
were additionally used to tackle the task
from different perspectives. PINGAN
omini-Sinitic (Wang et al., 2021) turned the
original multi-choice task into a masked-sentence
classification task by adding each option to the
placeholder. Noise detection methods and auto de-
noising methods were further proposed by adding
a noise-tolerant loss. ZJUKLAB (Xie et al., 2021a)
used label smoothing to encourage the activations
of the penultimate layer. ECNU-ICA-1 (Liu
et al., 2021) utilized a semantic space transfor-
mation strategy to convert ordinary semantic
representations into abstract representations for
classification.

Many teams used external knowledge resources
to further improve model performance. Word-
Net (Fellbaum, 1998) was widely used to provide
candidate word definitions. ECNU-ICA-1 (Liu
et al., 2021) also used ConceptNet5 (Speer et al.,
2016) and Graph Neural Network in their systems.
To alleviate the noise induced by incorporating
structured knowledge through unimportant edges,
they propose a noise reduction strategy. owlmx
used the MRC Psycholinguistic Database to obtain
a measurement of imperceptibility abstractness.

Different pre-processing techniques were pro-
posed in multiple systems. ZJUKLAB (Xie et al.,
2021a) used a sliding window to limit input length
in training. PINGAN Omini-Sinitic (Wang
et al., 2021) used the cycle noisy label detection
algorithm to make models more robust.

Much interesting analysis regarding the failure
cases and data distribution was discussed in sev-
eral system description papers. XRJL (Jiang et al.,
2021) found that for a few questions, common

Rank Team Acc. Acc. Cross

- GA Reader 24.3 -

1 PINGAN-
Omini-Sinitic

95.3 94.2 (↓ 1.1)

2 SRC-B-roc 94.9 93.9(↓ 1.0)

3 tt123 93.4 85.8(↓ 7.6)

4 ECNU-ICA-1 93.0 92.8(↓ 0.2)

5 cxn 92.9 -

6 ZJUKLAB 92.8 -

7 nxc 92.7 -

8 hzxx1997 90.2 -

9 XRJL 90.0 87.6(↓ 2.4)

10 IIE-NLP-Eyas 89.6 84.1(↓ 5.5)

11 ReCAM@IITK 87.6 85.2(↓ 2.4)

12 noobs 87.1 82.4(↓ 4.7)

13 DeepBlueAI 86.2 80.7(↓ 5.5)

14 xuliang 81.0 -

15 LRG 77.8 65.6(↓ 12.2)

16 Yotta 71.6 -

17 sayazzad 68.3 -

18 itanhisada 67.7 -

19 NEUer 66.9 45.0(↓ 21.9)

20 YaA@JUST 66.1 -

21 NLP-IIS@UT 64.4 -

22 CCLAB 48.1 31.8(↓ 16.3)

23 K-FUT 47.6 -

24 owlmx 44.8 31.0(↓13.8 )

25 UIT-ISE-NLP 42.0 27.3(↓ 14.7)

26 UoR 39.1 34.2(↓ 4.9)

27 Noor 19.9 -

28 BaoShanCollege 17.6 -

Table 7: Official results of Subtask 2 and Subtask 3.
Acc is the accuracy (%) of the models trained on the
Subtask 2 training data and tested on the Subtask 2 test-
set. Acc. Cross is the accuracy(%) of models trained on
the Subtask 1 training data and tested on the Subtask 2
testset.

sense knowledge was further needed to help find
the answer. They also pointed out that there were
still a few questions in which multiple candidate
choices may serve as appropriate answers.
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4.2 Subtask 2: ReCAM-Nonspecificity

In Subtask 2, we received 28 submissions. Ta-
ble 7 shows the official leaderboard. The best re-
sult in Subtask 2 was achieved by team PINGAN
omini-Sinitic (Wang et al., 2021) with an ac-
curacy of 0.953, using a model similar to the team’s
model in Subtask 1. The second-placed team
SRC-B-roc (Zhang et al., 2021) also adopted the
same model it used in Subtask 1 with a data aug-
mentation method based on the hypernym hierar-
chy in WordNet.

In general, the participating teams in Subtask 2
used pre-trained language models and neural net-
works similar to those they used in Subtask 1.
The main differences lie in how the participants
performed data augmentation and leveraged ex-
ternal knowledge. For example, in addition
to SRC-B-roc (Zhang et al., 2021), the IRG
team (Sharma et al., 2021) also performed data
augmentation using hypernyms from WordNet.

4.3 Subtask 3: Cross-task Performance

In this section, we explore models’ performance
across the two types of definitions of abstractness.
Specifically, in this subtask, participants train their
models on the training set of one subtask and test
on the testset of the other subtask. We received 29
submissions in total from the participants.

Cross-task performance: Subtask 2-to-1 test-
ing. We asked participants to test their models
trained on the Subtask 2 training data on the Sub-
task 1 test data. The results are shown in the last
column of Table 6.

The results we received show that the perfor-
mance of all systems drops substantially. For
some systems ranking among top 10, the accuracy
can decrease by 5 points (IIE-NLP-Eyas (Xie
et al., 2021b) and XRJL (Jiang et al., 2021)),
or even more (14 points for nxc). Some sys-
tems show good generalization ability in this
Subtask 2-to-1 scenario; the performance of
PINGAN-Omini-Sinitic (Wang et al., 2021)
is only 1.3 point less, which may be due to the the
data augmentation and task adaptive training used
in the model.

Cross-task Performance: Subtask 1-to-2 Test-
ing. Participants are asked to test their Subtask 1
systems on the Subtask 2 testset. Details of the re-
sults can be seen in the last column of Table 7. All
systems’ performances drop. For example, among

the top-10 systems, the accuracy decreases by 5
points (IIE-NLP-Eyas (Xie et al., 2021b)) or 7
points (tt123).

However, ECNU-ICA-1 (Liu et al.,
2021) shows a very good generaliza-
tion ability in Subtask 1-to-2 testing.
PINGAN-Omini-Sinitic (Wang et al.,
2021), SRC-B-roc (Zhang et al., 2021) and
XRJL (Jiang et al., 2021)’s systems are rather
consistent in this Subtask 1-to-2 cross testing.
Some algorithms they used may explain the mod-
els’ good generalization ability. ECNU-ICA-1’s
algorithm of using knowledge-enhanced Graph
Attention Network can provide external knowledge
to the model. The Wrong Answer Ensem-
ble algorithm (Kim and Fung, 2020) used in
PINGAN-Omini-Sinitic (Wang et al., 2021)
is a relatively simple but an effective way of
improving model performance and generalization
ability. Also, the Stochastic Weight Averaging
algorithm across multiple checkpoints is effective
for better generalization. XRJL (Jiang et al., 2021)
retrieves the definitions of candidate answers from
WordNet and feeds them to the model as extra
inputs. We also think data augmentation methods
contribute to the generalization ability.

5 Related Work

There have been tasks being proposed to evalu-
ate machines’ ability on reading comprehension,
which either require models to find an entity or
text span from the source document as the answer
(Hermann et al., 2015; Hill et al., 2016; Onishi
et al., 2016; Rajpurkar et al., 2016; Trischler et al.,
2017), or further generate an answer (Nguyen et al.,
2016; He et al., 2018; Kočiskỳ et al., 2018). The
cloze-style MRC tasks (Hermann et al., 2015; On-
ishi et al., 2016; Hill et al., 2016) are most similar
to ours, in which the missing words in the cloze
questions are entities appearing in source docu-
ments. Unlike previous work, ReCAM questions
specifically focus on abstract words unseen in the
corresponding source documents.

In general, multi-choice questions have been
widely used as a tool for language examination
to test both humans and machines. In this paper,
we follow the multiple-choice framework for our
proposed ReCAM task to evaluate computers’ abil-
ity in comprehending abstract concepts, in which
computers are asked to predict the missing abstract
words in human-written summaries.
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6 Summary

This shared task aims to study the ability of ma-
chines in representing and understanding abstract
concepts, based on two definitions of abstractness,
the imperceptibility and nonspecificity, in a specific
machine reading comprehension setup. We provide
three subtasks to evaluate models’ ability in com-
prehending the two types of abstract meaning as
well as their generalizability. In Subtask 1, the top
system achieves an accuracy of 0.951, and in Sub-
task 2, an accuracy of 0.953, suggesting the current
systems perform well in the specific setup of our
share task. In Subtask 3, we found that in general
the models’ performances dropped in both Subtask
2-to-1 and Subtask 1-to-2 testing. However, some
models generalize well, benefiting from technolo-
gies such as data augmentation and task adaptive
training. We hope the shared task can help shed
some light on modelling abstract concepts and help
design more challenging tasks in the future.
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B Gated-Attention Reader

The Gated-Attention (GA) Reader (Dhingra et al.,
2017), the state-of-art model on CNN/Daily Mail
reading comprehension dataset (Hermann et al.,
2015), is adapted here in our experiments. The GA
Reader uses a multi-layer iterated architecture with
a gated attention mechanism, which is based on
multiplicative interactions between the query em-
bedding and the intermediate states of a recurrent
neural network document reader, to derive better
query-aware passage representation. To apply GA
Reader to our ARC task, we input the news passage
p as the document and the processed summary s as
the query to GA Reader.

Specifically, for an input passage p =
[p1, p2, ..., plp ] with lp words and its correspond-
ing summary s = [s1, s2, ..., sls ] with ls words,
we first derive their corresponding word embed-
ding sequence P = [p1,p2, ...,plp ] and S =
[s1, s2, ..., sls ] respectively. Then the GA Reader
accepts the P and S as inputs and return the
hidden states Hp = [hp

1,h
p
2, ...,h

p
lp
] and Hs =

[hs
1,h

s
2, ...,h

s
ls
] as the sequential representation for

passage p and summary s respectively. As for the
final prediction process, we do not adopt the opera-
tions in Dhingra et al. (2017) because in ARC the
answer words are unseen in the corresponding pas-
sage, however, GA Reader in Dhingra et al. (2017)
tries to select a entity word in the passage as the
final prediction since their target answer word ap-
pears in the passage. So we redesign the part of
prediction.

First, the corresponding representation of
“@placeholder” in Hs, denoted as hs

q (q is the posi-
tion index of @placeholder in summary s), is used
as the final vector representation for summary s.
For the final vector representation p for passage p,
a bilinear attention between hs

q and Hp is used for
its derivation:

ei = hs
q
TWatthp

i ,∀i ∈ [1, ..., lp] (1)

p =

lp∑

i=1

exp ei∑lp
j=1 exp ej

hp
i , (2)

We set a token embedding aet for each candidate
abstractive word at (t ∈ [1, ..., nc], nc is the size of
candidate set). We first concatenate the hs

p and p,
then use the bilinear product and softmax to predict
the probability distribution over all nc candidate

abstractive words.

rt = [hs
q;p]

TWpa
e
t , ∀t ∈ [1, ..., nc], (3)

ot = softmaxt(rt),∀t ∈ [1, ..., nc] (4)

in which ot represents the probability of predict-
ing the candidate abstractive word at as the final
answer.

C Attentive Model

The word gloss, which defines a word sense mean-
ing, has been mainly used in word sense disam-
biguation (WSD) task and its variants (Lesk, 1986;
Moro et al., 2014). Since the goal of ARC is to
predict a word that can summarize corresponding
information from the source passage, which is an
abstracting process, it may be helpful when the
gloss, i.e., interpretation of candidate abstractive
words, are provided.

We design an attentive model with word gloss
(AMWG) as Figure 1 shows. Specifically, all the
encoders are 1-layer bi-directional recurrent neu-
ral networks (RNNs) with Gated Recurrent Units
(GRU) (Cho et al.). For an input news passage
p = [p1, p2, ..., plp ] with lp words, we can derive
its hidden states Hp = [hp

1,h
p
2, ...,h

p
lp
] by sending

its word embedding sequence P = [p1,p2, ...,plp ]
to the Passage Encoder. Similarly, we can de-
rive hidden states Hs = [hs

1,h
s
2, ...,h

s
ls
] for sum-

mary s by inputting its word embedding sequence
S = [s1, s2, ..., sls ] into the Summary Encoder and
hidden states Hgt = [hgt

1 ,h
gt
2 , ...,h

gt
lgt
] for gloss

gt of the candidate word at by sending its word
embedding sequence Gt = [gt

1,g
t
2, ...,g

t
lgt
] to the

WordGloss Encoder.
Similar to Section B, the corresponding repre-

sentation of “@placeholder”, i.e., hs
q, is used as

the final vector representation for summary s. And
an bilinear attention fpatt(•) is applied to hs

q and
Hp as follows:

ei = hs
q
TWp

atth
p
i ,∀i ∈ [1, ..., lp] (5)

αi =
exp ei∑lp
j=1 exp ej

, ∀i ∈ [1, ..., lp] (6)

Then p is derived as the vector representation for
passage p by the weighed sum of Hp, which is
further concatenated with the hs

q to form the final
summarization vector v:

p =

lp∑

i=1

αih
p
i , (7)

v = concat(p,hs
q), (8)
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Figure 1: The model architecture of the attentive model with word gloss (AMWG) implemented in this paper.
⊕

denotes the concatenation of input vectors. All the encoders are 1-layer bi-directional GRU-RNNs,
⊗

denotes the
weighted sum of vectors.

Another attention fgatt(•) is applied to v and Hgt ,

ej = tanh(Wg
attv + b)

T
hgt
j ,∀j ∈ [1, ..., lgt ]

(9)

βj =
exp ej∑lgt
i=1 exp ei

,∀j ∈ [1, ..., lgt ], (10)

The following weighted sum of Hgt , i.e, agt , is de-
rive as the final vector representation for the gloss
of candidate word at:

agt =

lgt∑

j=1

βjh
gt
j (11)

We also set a token embedding aet for each can-
didate word at (t ∈ [1, ..., nc], nc is the size of
candidate set), which is further concatenated with
agt to build the final representation at for candi-
date word at. For the final prediction, we input the
summarization vector v and candidate representa-
tion vector at to fpred(•) and apply the softmax
to derive the probability distribution over all nc
candidate abstractive words,

at = concat(agt ,a
e
t ), (12)

rt = vTWpredat, ∀t ∈ [1, ..., nc], (13)

ot = softmaxt(rt),∀t ∈ [1, ..., nc] (14)

in which ot gives the probability of predicting the
candidate word at as the final answer. The word
gloss, which defines a word sense meaning, has
been mainly used in word sense disambiguation
(WSD) task and its variants (Lesk, 1986; Moro
et al., 2014). Since the goal of ARC is to predict a
word that can summarize corresponding informa-
tion from the source passage, which is an abstract-
ing process, it may be helpful when the gloss, i.e.,
interpretation of candidate abstractive words, are
provided.

We design an attentive model with word gloss
(AMWG) as Figure 1 shows. Specifically, all the
encoders are 1-layer bi-directional recurrent neu-
ral networks (RNNs) with Gated Recurrent Units
(GRU) (Cho et al.). For an input news passage
p = [p1, p2, ..., plp ] with lp words, we can derive
its hidden states Hp = [hp

1,h
p
2, ...,h

p
lp
] by sending

its word embedding sequence P = [p1,p2, ...,plp ]
to the Passage Encoder. Similarly, we can de-
rive hidden states Hs = [hs

1,h
s
2, ...,h

s
ls
] for sum-

mary s by inputting its word embedding sequence
S = [s1, s2, ..., sls ] into the Summary Encoder and
hidden states Hgt = [hgt

1 ,h
gt
2 , ...,h

gt
lgt
] for gloss

gt of the candidate word at by sending its word
embedding sequence Gt = [gt

1,g
t
2, ...,g

t
lgt
] to the

WordGloss Encoder.

Similar to Section B, the corresponding repre-
sentation of “@placeholder”, i.e., hs

q, is used as
the final vector representation for summary s. And
an bilinear attention fpatt(•) is applied to hs

q and
Hp as follows:

ei = hs
q
TWp

atth
p
i ,∀i ∈ [1, ..., lp] (15)

αi =
exp ei∑lp
j=1 exp ej

,∀i ∈ [1, ..., lp] (16)

Then p is derived as the vector representation for
passage p by the weighed sum of Hp, which is
further concatenated with the hs

q to form the final
summarization vector v:

p =

lp∑

i=1

αih
p
i , (17)

v = concat(p,hs
q), (18)
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Another attention fgatt(•) is applied to v and Hgt ,

ej = tanh(Wg
attv + b)

T
hgt
j ,∀j ∈ [1, ..., lgt ]

(19)

βj =
exp ej∑lgt
i=1 exp ei

,∀j ∈ [1, ..., lgt ], (20)

The following weighted sum of Hgt , i.e, agt , is de-
rive as the final vector representation for the gloss
of candidate word at:

agt =

lgt∑

j=1

βjh
gt
j (21)

We also set a token embedding aet for each can-
didate word at (t ∈ [1, ..., nc], nc is the size of
candidate set), which is further concatenated with
agt to build the final representation at for candi-
date word at. For the final prediction, we input the
summarization vector v and candidate representa-
tion vector at to fpred(•) and apply the softmax
to derive the probability distribution over all nc
candidate abstractive words,

at = concat(agt ,a
e
t ), (22)

rt = vTWpredat, ∀t ∈ [1, ..., nc], (23)

ot = softmaxt(rt),∀t ∈ [1, ..., nc] (24)

in which ot gives the probability of predicting the
candidate word at as the final answer.

D Training Details

We train all models using the non-negative log-
likelihood as the objective function. The gloss of
candidate words are derived from WordNet using
the NLTK tools (Bird and Loper, 2004). Specifi-
cally, we first lemmatize the candidate word and
use the lemmatized word as the query word for the
searching in WordNet. To cope with the seman-
tic ambiguity of words, we just concatenate the
gloss of the first sense in each retrieved POS for
the query word with corresponding POS tag as the
deliminator.

Models in our experiments are trained with the
following hyperparameter settings: All word em-
beddings and token embeddings aet have 300 di-
mensions and are initialized with Glove (Penning-
ton et al., 2014). The passage p and summary
s share one set of word embeddings, which are
fixed during training. The glosses {gt} for candi-
date words {at} keep its own word embeddings.

The hidden state vectors of all bi-directional GRU-
RNNs in all models have 150 dimensions. The
number of attention hops in GA Reader is set to 3.
The batch size is set to 32. The method of Adam
(Kingma and Ba, 2015) is adopted for optimization
with initial learning rate 1e− 03. A dropout with
rate 0.3 is applied to the input layers for all GRU-
RNN encoders and the final summarization vector
v.

E Annotation Selection

To ensure most of our annotation is valid, we select
annotations satisfying the following criteria: a) the
average accuracy is higher than 40%; b) both text
spans should not be empty; c) if the difficulty level
is rated as easy, then this data sample should be
answered correctly.
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Abstract
This paper describes our system used in the
SemEval-2021 Task 4 Reading Comprehen-
sion of Abstract Meaning, achieving 1st for
subtask 1 and 2nd for subtask 2 on the leader-
board. We propose an ensemble of ELECTRA-
based models with task-adaptive pretraining
and a multi-head attention multiple-choice
classifier on top of the pre-trained model. The
main contributions of our system are 1) reveal-
ing the performance discrepancy of different
transformer-based pretraining models on the
downstream task, 2) presentation of an effi-
cient method to generate large task-adaptive
corpora for pretraining. We also investigated
several pretraining strategies and contrastive
learning objectives. Our system achieves a test
accuracy of 95.11 and 94.89 on subtask 1 and
subtask 2 respectively.

1 Introduction

Machine reading comprehension (MRC) is one
of the key tasks for measuring machines’ abil-
ity of understanding human languages and rea-
soning, it can be used broadly in real world ap-
plications such as Q&A systems and dialogue
systems. MRC often comes in a triplet style
{passage, question, answer}, given a context
passage, questions related with this passage is
asked, and the machine is expected to give the an-
swers. The question-answer form can be question-
answer pair, where the answer text is to be provided
by machines, or statement form where the answer
is to be filled in as cloze or multiple choices se-
lection. By the type of answer formation, MRC
can be divided into extractive and generative MRC,
the former takes segments from the passage as the
answer and the latter requires answer text gener-
ation based on the understanding of the passage.

∗Contribution during Intership in Samsung Research
China-Beijing.

Generative MRC is harder than extractive MRC,
since it requires more on information integration
and reasoning besides focusing on relevant infor-
mation.

One of the classic MRC approach focuses on
matching networks, various network structures
have been proposed to capture the semantic inter-
action within passages/questions/answers. Recent
years, pre-trained language models (LMs) have
brought non-trivial progress to the performance on
MRC, and there’s a decline of complex matching
networks (Zhang et al., 2020). Plugging matching
networks on top of pre-trained LMs can see ei-
ther improvements or degradation in performance
(Zhang et al., 2020; Zhu et al., 2020). Multiple-
choice MRC (MMRC) often lacks abundant train-
ing data for deep neural networks (this might be
caused by the expensive human labelling cost) and
it results in a limitation to take full advantage of
the pre-trained LMs.

The SemEval-2021 task 4 Reading Comprehen-
sion of Abstract Meaning (Zheng et al., 2021),
is a multiple-choice English MRC task, aiming at
investigating the machine’s ability to understand
abstract concepts in two aspects: subtask 1, non-
concrete concepts, e.g. service/economy compared
with trees/red; subtask 2, generalized/summarized
concepts, like vertebrate compared with monkey.

We propose an approach based on the pre-trained
LM ELECTRA (Clark et al., 2020), with an ensem-
ble of multi-head attention (Vaswani et al., 2017)
multiple-choice classifier, and WAE (Kim and
Fung, 2020) to get the final prediction. First, we
conduct task-adaptive pretraining, which is transfer
learning using in-domain data on the ELECTRA
model. Then we fine-tune the ReCAM task us-
ing a multi-head attention multiple choice classifier
(MAMC) on top of the ELECTRA model. Finally
we enhance the system with WAE and ensemble
them all to get the best generalization capability.
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Figure 1: The overall architecture of our proposed sys-
tem

In addition, we also investigated into transfer
learning with natural language inference (NLI)
tasks and contrastive learning objectives.

2 System Overview

Figure 1 illustrates the overall architecture of our
system. The options are substituted into the query
to form a complete context, rather than separate
query/option segments, in order to get a less se-
mantically ambiguous representation of the query
and option. The option-filled query and context
tokens are concatenated as in Figure 1, wrapped
by [CLS] token and [SEP] tokens. Token embed-
dings are added up with segment embeddings and
positional encodings to form the input for the pre-
trained encoder. Then the representations from
the encoder are put through a multi-head attention
multiple choice classifier, which consists of 1) a
2 layer multi-head attention feed forward network
to further capture the task specific query-context
interactions, 2) a pooler and a linear transformation
to get the final cross entropy loss. We first conduct
task-adaptive pretraining on the system, and then
fine-tune on the ReCAM dataset, the final model
is an ensemble model by several generalization
techniques including wrong answer ensemble.

2.1 Task-adaptive Pretraining
Pre-trained LMs and their downstream applications
have definitely proved the power of transfer learn-
ing. The precondition of transfer learning is that
the pretraining tasks have shared underlying sta-

tistical features with downstream tasks. Usually
in-domain data brings more improvement on down-
stream tasks than out-of-domain data (Sun et al.,
2019; Gururangan et al., 2020).

The genre of the ReCAM task dataset is news
(confirmed by manual random checking), we argue
that the task of news abstractive summarization pro-
vides high quality further pretraining dataset for Re-
CAM. The dataset comes in {article, summary}
pairs, the articles are crawled from formal online
news publishers and the summaries are generated
by humans and contain abstractive key information
of the articles. News abstractive summarization
aims at teaching machines to grasp the key infor-
mation of the whole context by letting machines to
generate the summary text.

We regenerate the ReCAM style multiple-choice
dataset from the original news abstractive summa-
rization dataset. Letting the article/summary be the
passage/question, the regeneration strategy mainly
includes 2 steps: 1) identify the abstract concepts
in the news dataset, 2) generate gold and pseudo op-
tions. In step 1, we count the part-of-speech (POS)
tags of all gold labels on the ReCAM training data
as shown in Figure 2 (nouns, adjectives and ad-
verbs are the most frequent option tags), and use
a similar POS tag distribution to randomly sample
word in the summary text that does not appear in
the corresponding news article as gold option. In
step 2, the gold option in the summary is replaced
by the mask token and fed into the pre-trained LM.
The LM predicts the mask token and we select
some of the top ranking ones as pseudo options.
Specifically, setting a high ranking threshold (e.g.
top 5) would get words too similar with the gold
option, which would bring extra ambiguity to the
model, some relaxation on the ranking threshold
would ease the problem. This method is automatic,
cheap to apply on large dataset, while the abstract
concept approximation in step 1 would bring some
noise, such as person’s names and geolocations are
sometimes selected, but by our experiment result
the overall pretraining performance is not hurt, the
noisy samples should account for a small fraction.
In addition, it is reported that NLI task transfer

Figure 2: Subtask 1 (left) and subtask 2 (right) gold
options POS Tag distribution
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Dataset # Passages avg. doc len avg. qry/smry len
training/dev/test # words # sent. # words # sent.

ReCAM subtask 1 3227/837/- 302.15 13.1 24.69 1
ReCAM subtask 2 3318/851/- 481.51 21.08 26.9 1
XSUM 20.3k/11.3k/1.1k 431.07 19.77 23.26 1
NEWSROOM 99.5k/-/- 658.6 - 26.7 -

Table 1: ReCAM/XSUM/NEWSROOM datasets statistics

learning performs well in several MMRC tasks
(Jin et al., 2020). Therefore we also explored the
MNLI (Williams et al., 2017) and RTE (Wang
et al., 2018) tasks transfer learning for the ReCAM
task, but it results in degradation. This indicates
that NLI tasks are not generally fit for further pre-
training in MMRC on pre-trained LMs.

2.2 Multi-head Attention Multiple Choice
Classifier

The classifier takes the last layer hidden represen-
tations from the pre-trained encoder, applies the
multi-head attention and feed forward non-linearity,
each with a layer normalization (Vaswani et al.,
2017). After that the last token is pooled, which
is selecting the hidden vector from the hidden em-
beddings by the index of the last [SEP] token in
the input, and then linearly transformed to get the
probability of each {queryoption filled, context}
candidate pair.

In addition, we also explored the con-
trastive learning objective. When humans do
MMRC, they usually compare the options ac-
cording to the passage, exclude the wrong ones
and then analyze further on the indeterminate
ones. Inspired by this, we experimented with
triplet loss (Weinberger et al., 2006) (among
{inputnonfilled, inputgold, inputpseudo} ) and n-
tuplet loss (Sohn, 2016) on all option-filled query
and context within one sample. However the
contrastive learning objective degrades the perfor-
mance, suggesting these learning objectives are not
as suitable for the ReCAM task as the MLE loss.

2.3 Wrong Answer Ensemble

Wrong Answer Ensemble (Kim and Fung, 2020) is
a relatively simple yet effective method (Zhu et al.,
2020). Kim proposed to train the model to learn
the correct and the wrong answers separately and
ensemble them to get the final prediction. In 2.2,
the correct answer is labelled as 1 and wrong as 0
for correct answer training. Wrong answer training
does the opposite labelling (correct/wrong answers

as 0/1) and fine tune the model with binary cross
entropy loss as below:

lossw = −
∑

ylogŷ + (1− y)log(1− ŷ) (1)

The two models’s output, pc and pw are linearly
combined to give the final prediction. A simple
linear regression is leveraged to find the best value
of weight w.

p̂ = pc − w · pw (2)

3 Experimental Setup

3.1 Dataset
We leverage external news abstractive summariza-
tion datasets for transfer learning, and then fine
tune our model on the ReCAM dataset.

ReCAM. Dataset for the SemEval-2021 Task 4,
consisting of news articles (verified by manually
random checking) and multiple-choice questions.

XSUM. XSUM (Narayan et al., 2018) consists
of 227k BBC articles from 2010 to 2017 covering a
wide variety of subjects along with professionally
written single-sentence summaries.

NEWSROOM. NEWSROOM (Grusky et al.,
2018) is a dataset of 1.3 million news articles
and summaries written by authors and editors in
newsrooms of 38 major news publications between
1998 and 2017. After a coarse selection (filtering
out lengthy articles/summaries, summaries dupli-
cate with news articles, articles with unqualified
pseudo options), about 229k article/summary pairs
are used.

The data statistics are listed in Table 1, the
3 news datasets share similar article and query
lengths.
3.2 Training Details
We compare the baseline performance of 3 kinds
of Transformer-based models, BERT/ALBERT/
ELECTRA, and select ELECTRA as our encoder.
We adopt most hyper parameter settings from the
ELECTRA large model, specifically our learning
rate is 1e-5, batch size is 32 and gradient clip norm
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Pre-trained subtask 1 subtask 2
model dev acc. dev acc.

BERT base 61.25 58.28
BERT large 66.31 67.33
ALBERT base 50.78 50.29
ALBERT large 80.88 79.08
ELECTRA base 76.82 76.97
ELECTRA large 90.20 90.13

Table 2: Baseline performance of different pre-trained
Models

threshold is set to 1. In the task-adaptive data gen-
eration process, We set the threshold as top 10 for
pseudo options selection, filtering out the word
piece predictions(word pieces all start with a ”#”
in the vocabulary) and randomly select 4 words as
pseudo options. See the appendix for hyperparam-
eter details. Training was done on NVidia V100
GPUs. All the performance data is on the dev set.

4 Results

4.1 Pre-trained LM Selection and
Task-adaptive Pretraining

The baseline performance of BERT, ALBERT and
ELECTRA is tested by directly fine-tuning the Re-
CAM data on the pre-trained LMs. The results
are shown in Table 2. ELECTRA outperforms
the other two models with large margins. This
may be caused by the learning objective difference
among the models. The BERT/ALBERT models
learn to predict the masked word from the vocab-
ulary, while the ELECTRA model learns to pre-
dict whether each of the token in the input is re-
placed or not, which learns more about unreason-
able co-occurrence knowledge besides reasonable
co-occurrences and may help in digging deeper im-
plicit semantic relations for ReCAM. Therefore the
ELECTRA large model is selected as the encoder
for further experiments.

The XSUM/NEWSROOM regenerated data (de-
noted as XN) is used for in-domain pretraining on
the encoder, and the subtask 1 is fine tuned after
pretraining. The prediction accuracy grows with
more data fed, as shown in Figure 3. In the end
of the task-adaptive pretraining, subtask 1 achieves
dev accuracy 92.73, 2.80% higher than directly
fine-tuning on the encoder, subtask 2 gets 92.95,
increased by 3.13%.

Besides the task-adaptive pretraining and fine-
tuning, we also tried multitask learning with

Figure 3: Subtask 1 fine-tuning performance increases
with more data for further pretraining

Transfer learning
setting subtask 1 subtask 2

XN 92.73 92.95
ReCAM/XNmultitask 92.35 92.36
MNLI 78.14 81.67
RTE 88.53 89.36

Table 3: Dev accuracy for different transfer learning
settings

XSUM/NEWSROOM and the ReCAM data to-
gether (up sampling the ReCAM data as 3:7 with
the news dataset). The results in Table 3 shows
that this approach outperforms the encoder base-
line, while slightly worse than the full news data
pre-trained model, this model is used for ensem-
ble. Using MNLI/RTE for further pretraining hurt
the ReCAM fine-tuning performance, especially
MNLI pretraining brings about 10% accuracy de-
cease than the baseline.

4.2 On-top Classifier and WAE
Adding MAMC on the top of the encoder helps
increase accuracy on the ReCAM subtask 1 and
subtask 2, the results are shown in Table 4. Further
we applied the WAE to squeeze marginal increases
on prediction accuracy. While option contrastive
learning (OCL) does not bring performance im-
provement, worse than directly fine-tuning the en-
coder with multiple choice classifier.

Settings subtask 1 subtask 2
Baseline 90.20 90.13
transfer learning 92.73 92.95

+ MAMC 93.64 93.79
+ WAE 93.94 94.07

OCL (triplet loss) 86.38 -
OCL (n-tuple loss) 85.32 -

Table 4: Dev accuracy on different transfer learning
settings
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Generalization
Procedures subtask1 subtask2

data repar.
(3 sets)

93.72 93.65
94.01 94.48
93.82 94.36

task data aug. 93.29 93.36

Table 5: Dev accuracy of subtask 1/2 over generaliza-
tion procedures.

4.3 Improving Generalization

We mainly applied 3 procedures below for better
generalization, and the ensemble of all the models
have achieved test accuracy 95.11 on subtask 1 and
94.89 on subtask 2 on the ReCAM leaderboard.

1) Data repartitioning (mix the train/dev sets, and
randomly split into new train/dev sets by 8:2 or 9:1)
aims to smooth the distribution difference among
different train/dev data partition. As is shown in
the Table 5, the accuracy of different sets differs,
with some higher than then original partition.

2) Augmenting the task data itself for fine-tuning,
to mask different word than the original gold option
(if there exists) using the method in 2.1. The accu-
racy remains almost the same after adding the task
augmented data. This suggests that our automatic
augmentation method makes lower quality samples
than the labelling data, while not too noisy that it
can contribute to the robustness of the model.

3) We also did Stochastic Weight Averaging (Iz-
mailov et al., 2018) across multiple checkpoints
in the same run to get better generalization (SWA
dose not improve dev error but test error, so it’s not
listed in Table 5).

4.4 Fail Cases Analysis

We manually checked and categorized the fail cases
on subtask 1 and subtask 2 into 5 classes (given
roughly 850 dev cases, the total fail cases is around
50 for both subtask 1 and subtask 2). The detailed
examples for each class can be found in the ap-
pendix.

• EC0, easy case. In these cases, the answer can
be inferred from the query/context, while the
model fails to give the correct prediction

• EC1, complicated coreference. Such cases has
complicated coreference relations, though the
answer can be inferred, the coreferences hin-
der the model from understanding correctly

• EC2, complex reasoning. In these cases, ei-
ther the information related with the answer

Figure 4: Subtask 1/2 fail case distribution

is sparse in the query/context, or the facets re-
lated with the answer is separated with intense
unrelated noisy information

• EC3, external knowledge dependency. Only
with the external knowledge can one give a
correct answer

• EC4, ambiguity in sample cases. This cate-
gory includes cases for which we think hu-
mans are not able to select the correct answer.
Either the information is not enough to make a
decision or there are more than one reasonable
answers.

Figure 4 shows the ratios of each fail case class,
the EC4 is the major class, 48.5% for subtask 1 and
75.0% for sutask 2. The following is EC3, 36.4%
for subtask 1 and 6.3% for subtask 2. EC0 and
EC1 are minor classes among all. With the system
backbone being pre-trained LM with a matching
network, it’s not a surprise to see EC1 and EC3 fail-
ures, while the few EC0 and EC2 failures shows
that our system learns well to capture abstract con-
cepts within the query/article pair.

5 Conclusion

Our system takes the large pre-trained LM ELEC-
TRA, and enhance it with in-domain transfer learn-
ing and a multi-head multiple-choice classifier on
top. We compared the benchmark performance of
different pre-trained LMs (BERT, ALBERT and
ELECTRA) on the SemEval-2021 task 4, the result
shows that different pretraining objective/dataset
can lead to different inclination of model knowl-
edge and large performance discrepancy on the
downstream task. Task-adaptive pretraining has
contributed the main improvement, and multi-head
multiple-choice classifier and WAE bring marginal
improvement. We also investigated into option
contrastive learning and multitask learning, the
degradation of performance suggests that triplet
and n-tuplet contrastive loss is not suitable for this
task and NLI is not generally beneficial for MMRC
tasks.
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Appendix

A Examples for each error case category

EC0 easy case
question Two men have been arrested on suspicion of murdering a man who died after being

pulled out of a fish @placeholder .
passage The dead man went into cardiac arrest after rescuers responding to reports of a drowning

found him in the water off St Michaels Road, Stoke-on-Trent. . .
options 0. term 1. boat 2. shop 3. pool 4. life
EC1 complicated coreference
question Ceredigion council has failed to co-operate with an investigation into the @placeholder

of a Llandysul residential home , a union has claimed
passage Unison said the council had failed to provide answers for social care expert Tony

Garthwaite, heading the investigation, and that he was not able to complete his report.
Awel Deg care home was shut in February 2014. . . Awel Deg was closed following the
suspension of 11 members. . . would re-open as a dementia home in spring 2015

options 0. creation 1. collapse 2. closure 3. safety 4. fate
EC2 complex reasoning
question Six British teams @placeholder the draw for the Champions League group stage , which

takes place on Thursday at 17:00 BST in Monaco .
passage Premier League champions Chelsea, runners-up Tottenham and third-placed Manchester

City are all in the draw. They will be joined by Europa League winners Manchester
United, as well as Liverpool and Scottish champions Celtic who both came through
qualifying. The group stages of the competition begin on 12-13 September. The last
time six British teams qualified for the group stages was in 2007-08, when English sides
Manchester United, Chelsea, Liverpool and Arsenal were joined by Scottish clubs Celtic
and Rangers. The final saw Sir Alex Ferguson’s United defeat Avram Grant’s Chelsea
on penalties. Scroll to the bottom to see the full list of teams and the pots they are
in. . . Match day four: 31 October-1 November Match day five: 21-22 November Match
day six: 5-6 December

options 0. announced 1. dominate 2. started 3. await 4. remains
EC3 external knowledge dependency
question The M4 has been closed westbound near Newport after an overhead @placeholder

became loose in high winds .
passage The carriageway was shut from junction 24 Coldra to 28 at Tredegar Park. Officials said

it led to very slow traffic as motorists were forced to come off the motorway on Friday
night. A diversion using the A48 through Newport was put in place and the fire service
tweeted that the M4 would stay closed until further notice while emergency repairs were
carried out. Check if this is affecting your journey

options 0. wire 1. vehicle 2. link 3. valve 4. sign
EC4 sample cases’ ambiguity
question A book about Adolf Hitler by a University of Aberdeen historian is to be turned into a

@placeholder television series.
passage Prof Thomas Weber’s book Hitler’s First War, which was released in 2010, claimed

his image as a brave soldier was a myth. The producers of the Oscar-nominated film
Downfall - also about the Nazi leader - will make the show after a French TV network
purchased the series. The show will be called Hitler. Production of the 10-hour series
begins next year. . .

options 0. major 1. thrilling 2. special 3. planned 4. forthcoming

Table 6: Examples from each fail case category. Options in green denotes gold answers, red denotes our system
predictions. Passages are truncated to reserve the most relevant parts to the questions
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B Hyperparameter settings

Hyperparameter Value
learning rate 1e-5
learning rate decay linear
warmup fraction 0.1
Adam ε 1e-6
Adam beta1 0.9
Adam beta2 0.999
gradient clip norm 1.0
Weight Decay 0.01
Dropout 0.1
Batch Size 32

Train Epochs
10 for task-adaptive

pretraining, 5 for
fine-tuning

Table 7: System Hyperparameter settings
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Abstract

The Toxic Spans Detection task of SemEval-
2021 required participants to predict the spans
of toxic posts that were responsible for the
toxic label of the posts. The task could be ad-
dressed as supervised sequence labeling, using
training data with gold toxic spans provided
by the organisers. It could also be treated as
rationale extraction, using classifiers trained
on potentially larger external datasets of posts
manually annotated as toxic or not, without
toxic span annotations. For the supervised se-
quence labeling approach and evaluation pur-
poses, posts previously labeled as toxic were
crowd-annotated for toxic spans. Participants
submitted their predicted spans for a held-out
test set, and were scored using character-based
F1. This overview summarises the work of the
36 teams that provided system descriptions.

1 Introduction

Discussions online often host toxic posts, mean-
ing posts that are rude, disrespectful, or unreason-
able; and which can make users want to leave the
conversation (Borkan et al., 2019a). Current toxic-
ity detection systems classify whole posts as toxic
or not (Schmidt and Wiegand, 2017; Pavlopoulos
et al., 2017; Zampieri et al., 2019), often to assist
human moderators, who may be required to review
only posts classified as toxic, when reviewing all
posts is infeasible. In such cases, human modera-
tors could be assisted even more by automatically
highlighting spans of the posts that made the sys-
tem classify the posts as toxic. This would allow
the moderators to more quickly identify objection-
able parts of the posts, especially in long posts, and
more easily approve or reject the decisions of the
toxicity detection systems. As a first step along
this direction, Task 5 of SemEval 2021 provided
the participants with posts previously rated to be
toxic, and required them to identify toxic spans,

i.e., spans that were responsible for the toxicity of
the posts, when identifying such spans was possi-
ble. Note that a post may include no toxic span
and still be marked as toxic. On the other hand, a
non toxic post may comprise spans that are con-
sidered toxic in other toxic posts. We provided a
dataset of English posts with gold annotations of
toxic spans, and evaluated participating systems
on a held-out test subset using character-based F1.
The task could be addressed as supervised sequence
labeling, training on the provided posts with gold
toxic spans. It could also be treated as rationale
extraction (Li et al., 2016; Ribeiro et al., 2016),
using classifiers trained on larger external datasets
of posts manually annotated as toxic or not, with-
out toxic span annotations. There were almost 500
individual participants, and 36 out of the 92 teams
that were formed submitted reports and results that
we survey here. Most teams adopted the supervised
sequence labeling approach. Hence, there is still
scope for further work on the rationale extraction
approach. We also discuss other possible improve-
ments in the definition and data of the task.

2 Competition Dataset Creation

During 2015, when many publications were closing
down comment sections due to moderation burdens,
a start up named Civil Comments launched (Finley,
2016). Using a system of peer-based review and
flagging, they hoped to crowd source the modera-
tion responsibility. When this effort shut down in
2017 (Bogdanoff, 2017), they cited the financial
constraints of the competitive publishing industry
and the challenges of attaining the necessary scale.

The founders of Civil Comments, in collabora-
tion with researchers from Google Jigsaw, under-
took an effort to open source the collection of more
than two million comments that had been collected.
After filtering the comments to remove personally
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Figure 1: Screenshot of the Appen labeling interface that was used to annotate toxic spans.

identifiable information, a revised version of the an-
notation system of Wulczyn et al. (2017) was used
on the Appen crowd rating platform to label the
comments using a number of attributes including
‘toxicity’, ‘obscene’, ‘threat’ Borkan et al. (2019a).
The complete dataset, partitioned into training, de-
velopment, and test sets, was featured in a Kaggle
competition,1 with additional material, including
individual rater decisions, published (Borkan et al.,
2019b) after the close of the competition.

Civil Comments contains about 30k comments
marked as toxic by a majority of at least three
crowd raters. Toxic comments are rare, especially
in fora that are not anonymous and where people
have expectations that moderators will be watching
and taking action. We undertook an effort to re-
annotate this subset of comments at the span level,
using the following instructions:

For this task you will be viewing com-
ments that a majority of annotators have
already judged as toxic. We would like
to know what parts of the comments are
responsible for this.

Extract the toxic word sequences (spans)
of the comment below, by highlighting
each such span and then clicking the
right button. If the comment is not toxic
or if the whole comment should have
been annotated, check the appropriate
box and do not highlight any span.

and a custom JavaScript based template,2 which
allowed selection and tagging of comment spans

1www.kaggle.com/c/jigsaw-unintended-
bias-in-toxicity-classification

2github.com/ipavlopoulos/toxic_spans

(Fig. 1). While raters were asked to categorize each
span as one of five different categories, this was
primarily intended as a priming exercise and all of
the highlighted spans were collapsed into a single
category. The lengths of the highlighted spans were
decided by the raters. Seven raters were employed
per post, but there were posts where fewer were
eventually assigned. On the test subset (Table 1),
we verified that the number of raters per post varied
from three to seven; on the trial and train subsets
this number varied from two to seven. All raters
were warned the content might by explicit, and only
raters who allowed adult content were selected.3

2.1 Inter-annotator Agreement

We measured inter-annotator agreement, initially,
on a small set of 35 posts and we found 0.61 av-
erage Cohen’s Kappa. That is, we computed the
mean pairwise Kappa per post, by using character
offsets as instances being classified in two classes,
toxic and non-toxic. And then we averaged Kappa
over the 35 posts. On later experiments with larger
samples (up to 1,000 posts) we observed equally
moderate agreement and always higher than 0.55.
Given the highly subjective nature of the task we
consider this agreement to be reasonably high.

2.2 Extracting the ground truth

Each post comprises sets of annotated spans, one
per rater. Each span is assigned a binary (toxic, non-
toxic) label, based on whether the respective rater

3The full dataset and annotations for ToxicSpans is re-
leased (github.com/ipavlopoulos/toxic_spans)
with a CC0 licence. The previously released Civil Comments
dataset, on which the new dataset is based, was filtered to
remove any potential personally identifiable information.
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Trial Train Test
Number of posts 690 7,939 2,000
Avg. post length 199.47 204.57 186.41

Avg. toxic span length 10.78 13.11 7.89
Avg. # of toxic spans 1.43 1.39 0.92

Table 1: Statistics of the trial, training, and test subsets
of the dataset. Lengths are calculated in characters.

found the span to be insulting, threatening, identity-
based attack, profane/obscene, or otherwise toxic.
If the span was annotated with any of those types,
the span is considered toxic according to the rater,
otherwise not. For each post, we extracted the
character offsets of each toxic span of each rater.
In each post, the ground truth considers a character
offset as toxic if the majority of the raters included
it in their toxic spans, otherwise the ground truth
of the character offset is non-toxic. A toxic span
(Table 1) in the ground truth of a post is a maximal
sequence of contiguous toxic character-offsets.

2.3 Exploratory analysis

After discarding duplicates and posts used as quiz
questions to check the reliability of candidate an-
notators, we split the data into trial, train, and test
(Table 1). Compared to the trial and training sets,
the test set comprises posts with fewer characters
and spans, but also shorter spans on average.

When studying the toxicity subtypes, we find
that the vast majority of posts are annotated as in-
sulting. In the training set, more than 6,000 posts
are annotated as insulting, and the same high frac-
tion is observed in the trial and test sets. Most of
the toxic spans in the training set are single-word
terms. The most frequent of them, such as ‘stupid’
and ‘idiot’, occur hundreds of times and remain
frequent in the trial and test sets. Multi-word terms,
such as ‘white trash’, ‘mentally ill’, are less fre-
quent and vary across the three sets.

In an analysis of the test set, Palomino et al.
(2021) used an emotion classifier that returns five
scores per post, one for each of the following emo-
tions: anger, happiness, sadness, surprise, fear.4

Fear and sadness were reported to be the emotions
with the highest average scores, a finding that we
verified by repeating the experiment (see Fig. 2).5

Interestingly, the emotion with the highest average
score after sadness and fear is surprise, not anger,
and happiness has the lowest score.

4pypi.org/project/text2emotion
5A post with a high sadness score (100%) is the following:

“Such thin skin. Pathetic.”; the toxic span shown in red.

Figure 2: Emotion scores of the test posts. Emotion
scores were obtained using an off-the-shelf emotion
classifier, following Palomino et al. (2021).

3 Task description

The objective of this task is the detection of the
spans that make a post toxic, when detecting such
spans is possible. Systems had to extract a list of
toxic spans, or an empty list, per post. A toxic span
was defined to be a sequence of words that attribute
to the post’s toxicity. Although we defined the task
at the word level, gold labels were provided at the
character level counting from zero (see Table 2).

Figure 3: Number of submissions per evaluation day.
The evaluation period started on January 10,

2021 and finished on January 31, 2021. The first
week, 10 submissions were allowed per day per
team. The second week this number was reduced
to 5, and it was reduced further to 1 during the final
week. We chose to allow an extended evaluation pe-
riod combined with multiple team submissions, to
promote the competition. However, we also chose
a decreasing submission limit to make it harder
for participants to overfit the test set. As shown
in Fig. 3, the number of submissions dropped over
time, due to this constraint, but the interest was
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OFFSETS POST
{} I will stand by my statement that liberalism is what smart looks like to stupid people. The letter posted

yesterday states the real problem clearly enough. “It doesn’t matter if it was protected by the First
Amendment.” I have legal news flash for the University of Oregon. Because the University is public and
receives government tax dollars it is indeed bound to abide by the US constitution with All OF IT’S
PROTECTION INCLUDED. Which should tell everyone right off the signatories are anti-American,
and perhaps even anti-America in their twisted PC nonsense.

{} Fits the despicable piece of trash like a glove.
{} No he shot someone so he shouldn’t be free. He should be locked up like He is for the next decade.

You holla like its no big deal but what if it was your little brother who was shot? Then your dumb ass
wouldnrlt be screaming free ace g or whatever gay nickname he has. That is the lamest gangster name
ever. Do you think that name scares people? Ace clown is what i will now call him.

{55, 56, 57, 58} Time to give the opposition weapons and overthrow this jerk.
{31, . . . , 39} you are a paid liberal hack of stupidity shore living the liberal lie every day
{9, . . . , 13} Youre an idiot.
{7, 8, . . . , 11,
14, 15, . . . , 18}

what a dummy, dummy has no regard for the law. you cannot brutalize a suspect. he has complete lack
of respect for any law and is acting like a dictator. he is trying to emulate putin.

{12, . . . , 17, 94,
. . . , 102}

People make stupid decisions and then expect the gov’t to bail them out. There is no cure for stupidity.

{14, . . . , 20, 29,
. . . , 35}

Nah, the only asshole is the asshole firing a rifle within city limits.

Table 2: Examples of toxic test posts and their ground truth toxic spans (shown in red). The left column shows the
character offsets of the toxic spans. The top three posts have no toxic spans, the next three have one each, while
the remaining three posts have two toxic spans each.

continuous, and there were submissions until the
last day. Despite the decreasing total number of
submissions per day, the top daily score increased,
reaching its maximum on the last day (see Fig. 4).

Figure 4: The evaluation score (character F1) of the
best submission per day during the evaluation period.

4 Participation overview

We received 479 individual participation requests,
92 team formations, and 1,449 submissions. 91
teams submitted valid predictions (1,385 valid sub-
missions in total) and were scored; out of these,
only 36 submitted system descriptions.

4.1 The HITSZ-HLT submission

The best performing team (HITSZ-HLT) formu-
lated the problem as a combination of token label-

ing and span extraction (Zhu et al., 2021).
For their token labeling approach, the team used

two systems based on BERT (Devlin et al., 2019).
Both systems had a Conditional Random Field
(CRF) layer (Sutton and McCallum, 2006) on top,
but one of the two also had an LSTM layer (Hochre-
iter and Schmidhuber, 1997) between BERT and
the CRF layer. In both approaches, word-level BIO
tags were used, i.e., words were labelled as B (be-
ginning word of a toxic span), I (inside word of a
toxic span), or O (outside of any toxic span).

For their span extraction approach, the team also
used BERT. Roughly speaking, in this case BERT
produces probabilities indicating how likely it is
for each token to be the beginning or end of a toxic
span. Then a heuristic search algorithm, originally
developed for target extraction in sentiment anal-
ysis by Hu et al. (2019), selects the best combina-
tions of candidate begin and end tokens, aiming to
output the most likely set of toxic spans per post.

The character predictions of the three systems de-
scribed above were combined with majority voting
per character. That is, if any two systems consid-
ered a character to be part of a toxic span, then the
ensemble classified the character as toxic, other-
wise the ensemble classified it as non-toxic.

4.2 The S-NLP submission

The team with the second best performing system
(S-NLP) consists of individual participants who
grouped and submitted an ensemble of their sys-

62



tems (Nguyen et al., 2021). The ensemble com-
bines two approaches, both of which are based on
a RoBERTa model (Liu et al., 2019). The latter
is first fine-tuned to classify posts as toxic or non-
toxic, using three Kaggle toxicity datasets.6 For
toxic span detection, RoBERTa’s subword repre-
sentations from three different layers (1, 6, 12) are
summed to produce the corresponding word embed-
dings. A binary classifier on top of RoBERTa, op-
erating on the word embeddings, predicts whether
a word belongs to a toxic span or not.

For the first component of the ensemble, the
word embeddings obtained from RoBERTa’s sub-
word representations are concatenated with FLAIR
(Akbik et al., 2019) and FastText (Bojanowski et al.,
2017) embeddings.7 The resulting embeddings are
passed on to a two-layer stacked BiLSTM with a
CRF layer on top to generate a BIO tag per word.

The second component of the ensemble used
the RoBERTa model as a teacher to produce sil-
ver toxic spans for 30,000 unlabelled toxic posts
(Borkan et al., 2019a). RoBERTa was then re-
trained as a student on the augmented dataset (30k
posts with silver labels and the training posts pro-
vided by the organisers) to predict toxic offsets.

The ensemble returns the intersection of the
toxic spans identified by the two components.

4.3 Additional interesting approaches
We now discuss some of the most interesting alter-
native approaches tried by the participants, even if
they did not lead to high scores.

Rationales Some participants experimented with
training toxicity classifiers on external datasets con-
taining posts labeled as toxic or non-toxic; and then
employing model-specific or model-agnostic ratio-
nale extraction mechanisms to produce toxic spans
as explanations of the decisions of the classifier.
The model-specific rationale mechanism of Rusert
(2021) used the attention scores of an LSTM toxi-
city classifier to detect the toxic spans. Pluciński
and Klimczak (2021) used the same approach, but
also employed an orthogonalisation technique (Mo-
hankumar et al., 2020). The model-agnostic ra-
tionale mechanism of Rusert (2021) combined an
LSTM classifier with a token-masking approach
that we call Input Erasure (IE), due to its sim-
ilarities to the method of Li et al. (2016). The

6github.com/unitaryai/detoxify
7In the latter case, in-vocabulary word embeddings were

imported to Word2Vec for efficiency, and out of vocabulary
words were handled with BPEs (Sennrich et al., 2016).

model-agnostic approach of Pluciński and Klim-
czak (2021) combined SHAP (Lundberg and Lee,
2017) with a fine-tuned BERT model. Ding and
Jurgens (2021) and Benlahbib et al. (2021) also
experimented with model-agnostic approaches, but
they combined LIME (Ribeiro et al., 2016) with
a Logistic Regression (LR) or with a linear Sup-
port Vector Machine (SVM) toxicity classifier. All
the above mentioned approaches used a threshold
to turn the explanation scores (e.g., attention or
LIME scores) of the words into binary decisions
(toxic/non-toxic words).
Lexicon-based No team relied on a purely lexicon-
based approach, but few experimented with lexicon-
based baselines (Zhu et al., 2021; Palomino et al.,
2021) or used such components in ensembles
(Ranasinghe et al., 2021). Three kinds of lexicon-
based methods were used. First, the lexicon was
handcrafted by domain experts (Smedt et al., 2020)
and it was simply employed as a list of toxic words
for lookup operations (Palomino et al., 2021). Sec-
ond, the lexicon was compiled using the set of to-
kens labeled as toxic in our span-annotated training
set and it was used as a lookup table (Burtenshaw
and Kestemont, 2021), possibly also storing the
frequency of each lexicon token in the training set
(Zhu et al., 2021). The former two were also com-
bined (Ranasinghe et al., 2021). Third, the least
supervised lexicons were built with statistical anal-
ysis on the occurrences of tokens in a training set
solely annotated at the comment level (toxic/non-
toxic post) (Rusert, 2021). An added value of these
approaches is that easy to use resources (toxicity
lexicons) are built and shared publicly, such as the
one suggested by Pluciński and Klimczak (2021).8

Custom losses Zhen Wang and Liu (2021) exper-
imented with a new custom loss, which weighted
false toxicity predictions based on their location in
the text. If a false prediction was located near a
ground truth toxic span, then it would contribute
less to the overall loss for that post, compared to
one located further away. The loss function used by
Kuyumcu et al. (2021) to train their system is the
Tversky Similarity Index (Tversky, 1977), a gener-
alisation of the Sørensen–Dice coefficient and the
Jaccard index, which was adjusted by the authors
to weigh up false negatives.
Data augmentation The vast majority of the par-
ticipating teams employed additional training data
annotated at the post level. That is, either to

8github.com/Orthrus-Lexicon/Toxic
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build lexicons (Rusert, 2021), to leverage unsuper-
vised rationale extraction methods (Rusert, 2021;
Pluciński and Klimczak, 2021; Ding and Jurgens,
2021; Benlahbib et al., 2021), or to filter posts (Luu
and Nguyen, 2021) that were not labeled as toxic
by a toxicity classifier. Suman and Jain (2021) as-
tutely produced silver data from external sources to
augment the initial golden annotated dataset, train-
ing their model iteratively in a semi-supervised
manner.

5 Evaluation

This section focuses on the evaluation framework
of the task. First, the official measure that was
used to evaluate the participating systems is de-
scribed. Then, we discuss baseline models that
were selected as benchmarks for comparison rea-
sons. Finally, the results are presented.

5.1 Official evaluation measure

Following the work of Martino et al. (2019), sys-
tems were evaluated in terms of F1 computed on
character offsets. For each system, we computed
the F1 score per post, between the predicted and the
ground truth character offsets. Then, we returned
the macro-averaged (over test posts) score. When
the ground truth set of character offsets was empty,
we assigned a perfect score (F1 = 1) to the post
in question if the predicted set of character offsets
was also empty, and a zero score otherwise.9

5.2 Benchmarks

We report the results of some baselines, developed
by us or the participants, to act as benchmarks.

BENCHMARK I was developed by Nguyen et al.
(2021). It is based on a RoBERTa model, fine-tuned
to predict if a post is toxic or not (Section 4.2) and
further fine-tuned to predict toxic spans by using a
CRF layer on top.

BENCHMARK II is a lexicon-based system, de-
veloped by Zhu et al. (2021), which extracts likely
toxic words from the training data and simply tags
them during inference. The lexicon comprises
words that appear frequently inside ground truth
toxic spans and not outside.

BENCHMARK III is a random baseline, which
assigns a random label (toxic/non-toxic) per char-
acter offset (50% chance of being toxic).10

9The evaluation code can be found in our GitHub reposi-
tory (github.com/ipavlopoulos/toxic_spans).

10The code of this baseline is also in the task’s repository.

5.3 Results

RANK TEAM SCORE (%)
1 HITSZ-HLT 70.83
2 S-NLP 70.77

BASELINE BENCHMARK I 69.89
3 hitmi&t 69.85
5 YNU-HPCC 69.63
7 Cisco 69.22
8 MedAI 69.03
9 IITKDetox 68.95

13 GHOST 68.59
14 HLE-UPC 68.54
15 UTNLP 68.44
16 YoungSheldon 68.42
17 Lone Pine 68.38
18 sk 68.32
20 WLV-RIT 68.01
21 CSECUDSG 67.95
22 LISAC FSDM USMBA 67.84
23 UoT-UWF-PartAI 67.70
25 uob 67.61

MEDIAN The median score 67.58
26 UAntwerp 67.55
27 MIPT-NSU-UTMN 67.55
28 NLRG 67.53
30 HamiltonDinggg 67.15
33 lz1904 67.00
34 UIT-E10dot3 66.99
36 UniParma 66.72
37 hub 66.40
38 GoldenWindPlymouth 66.37
41 AStarTwice 66.16
44 sefamerve arge 66.01
46 UPB 65.73
49 Entity 65.61

BASELINE BENCHMARK II 64.98
57 BennettNLP (Fuchsia) 64.53
58 TeamGriek 64.31
63 UIT-ISE-NLP 62.23
75 NLP UIowa 50.09

BASELINE BENCHMARK III 12.22
90 macech 7.33

Table 3: Official rank and F1 score (%) of the 36 partic-
ipating teams that submitted system description papers.
(There were 91 teams with sumbissions in total.) The
median is shown in blue and benchmarks in red.

Table 3 shows the scores and ranks of all par-
ticipating teams that described their approach, i.e.,
36 out of 91 teams that participated. HITSZ-HLT

(Section 4.1) was ranked first, followed by S-NLP

(Section 4.2) that scored 0.06% lower. The rest of
the teams followed with scores lower than 70%.

The score of the median is 67.58%, which is not
far below the top scored team (-3.22 percent units),
while it is far above the last two (+17.52 percent
units). The standard deviation of system scores
above the median is much lower (0.94) than that of
the systems below the median (4.12). Most teams
that were excluded from the table (because they
did not describe their methods) score lower than
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the median. However, there were also top scoring
teams among those that were excluded, such as a
team with a RoBERTa-based token-level ensemble
that was ranked 4th.11

BENCHMARK I achieves a considerably high
score and, hence, is very highly ranked. Combin-
ing BERT with a CRF or a span extraction method
(two of the individual methods of the HITSZ-HLT
ensemble, Section 4.1, not shown in Table 3) also
performs well (Zhu et al., 2021), but these methods
would be ranked two positions lower than BENCH-
MARK I. Nguyen et al. (2021) explored the bene-
fits of further enhancing these word embeddings
by concatenating them with FLAIR (Akbik et al.,
2019) and FastText (Bojanowski et al., 2017) em-
beddings (Section 4.2). As shown in Fig. 5, the F1
score is slightly improved, reaching a maximum
when both FLAIR and FastText embeddings are
added.12 We note that the same beneficial effect
of enhancing the word embeddings was reported
when using BERT as the base model (Sans and
Farràs, 2021).

Figure 5: F1 of BENCHMARK I (Zhu et al., 2021) when
FLAIR and FastText word embeddings are concate-
nated with the embeddings obtained from RoBERTa’s
subword representations (from layers 1, 6, 12).

The lexicon-based BENCHMARK II and the ran-
dom BENCHMARK III scored very low. The lat-
ter outperformed only one submission (MACECH),
which sent the predictions in the wrong order. As
noted in their report (Cech, 2021), if the predictions
had been submitted in the correct order, the team’s
score would have been 54%, and BENCHMARK III
would have been the worst system in Table 3.

11We asked for details from participants that did not submit
a description paper, but not all of them replied.

12Out of vocabulary words were tackled by using FastText
embeddings of BPEs; consult Nguyen et al. (2021).

6 Analysis and discussion

Overall the organisers were happy to see the de-
gree of involvement in this shared task, and the
resulting diversity of approaches to this problem.
We include some of our observations regarding the
administration of the evaluation and what we have
learned from the results.

6.1 Participation

The authors reached out to teams that decided not
to submit a description paper and the vast major-
ity were students who were time-limited. The fact
that students participated in the task is promising
and we plan to consider more ways to introduce
SemEval tasks in classrooms. On the other hand,
60% of the participants chose not to describe their
approach, which is problematic and should be ad-
dressed. A team could take advantage of such an
option to create duplicate submissions and bypass
any submission limits. More importantly, poten-
tially interesting approaches are not discussed and
properly compared to others.

It is also worth mentioning that the extended
timeline allowed participants to join forces. For
instance, a number of participants decided to com-
bine their systems and form the 2nd ranked S-NLP.
Their ensemble scored higher than all their stan-
dalone systems, though their best standalone sys-
tem would still be ranked 2nd. In any case, we
welcome the collaboration between participants,
which may provide further insights regarding effec-
tive combinations of architectures.

6.2 General remarks on the approaches

Except for lexicon-based baselines, we observed
that the vast majority of systems adopted the recent
paradigm in NLP: fine-tuning large off-the-shelf
Transformers (Vaswani et al., 2017) pre-trained
on massive corpora. Non-Transformer based ap-
proaches, mostly LSTMs with pre-trained word
embeddings were also used. The nature of the task,
similar to the well-studied Named Entity Recog-
nition (NER) task, led many competitors to use a
CRF layer on top of the model (e.g., Transformers
or LSTMs) of their choice.

6.3 Performance

The winning team (HITSZ-HLT) combined BERT
with two approaches for their ensemble: a token
labeling approach (two versions, with/without an
LSTM between BERT and the CRF) and a span ex-
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traction approach (Section 4.1). The comparison of
the two showed that span extraction is slightly bet-
ter on posts with a single span, but token labeling is
clearly better on multi-span posts (Zhu et al., 2021).
The complementary nature of the two approaches is
probably what makes even a simple majority voting
ensemble better than its competitors.

The system that was ranked second (S-NLP) also
employed an ensemble, using a RoBERTa model
initially fine-tuned to classify posts as toxic or non-
toxic as the starting point (Nguyen et al., 2021).
The ensemble combined (i) the resulting RoBERTa
model, now fine-tuned to predict toxic spans, with
additional FLAIR and FastText embeddings, and
(ii) a RoBERTa model retrained as a student to pre-
dict toxic spans (Section 4.2). Although the two
standalone models achieved higher scores than the
standalone models of the top-ranked team (HITSZ-
HLT), the ensemble did not yield significant im-
provements. This may be due to the student’s deci-
sions not being that complementary to the teacher’s,
as the team notes (Nguyen et al., 2021).

TBC RE F1 (%) Report
LSTM IE 38.29 Rusert (2021)
LSTM ATT 49.70 Pluciński and Klimczak (2021)
LSTM ATT 50.07 Rusert (2021)

LR LIME 58.88 Benlahbib et al. (2021)
SVM LIME 59.21 Benlahbib et al. (2021)
BERT SHAP 59.87 Pluciński and Klimczak (2021)

Table 4: F1 on the evaluation set for systems employing
rationale extraction (RE) mechanisms combined with
post-level toxicity binary classifiers (TBC). Rationales
are obtained via Input Erasure (IE), Attention (ATT),
LIME, or SHAP. The binary classifier is an LSTM, Lo-
gistic Regression (LR), SVM, or BERT.

Teams that experimented with rationale extrac-
tion mechanisms (Section 4.3) did not find this
approach advantageous compared to supervised se-
quence labeling in terms of F1 scores. However,
the reported results of the rationale-based systems
show that this approach is promising, especially
because it does not require any data annotated at
the span-level. Hence, there is scope for future
work that could explore this direction further. Ta-
ble 4 shows the F1 scores of all the rationale-based
systems that were reported by participants. The
binary toxic post classifiers that were used were
LSTM, Logistic Regression (LR), Support Vector
Machines (SVM), and BERT. The attention scores
of an LSTM were used with (Pluciński and Klim-
czak, 2021) and without an orthogonality method
(Rusert, 2021), with the latter being slightly bet-

ter; these are model-specific rational extraction
methods (Section 4.3). Model-agnostic approaches
(Input Erasure, LIME, SHAP) were better than
the model-specific ones. The best rationale-based
method employed a BERT model, fine-tuned for
toxic post classification, and SHAP.

Lexicon Name F1 (%) Report
WIEGAND 1 † 33.07 Zhu et al. (2021)
WORD-MATCH 40.86 Ranasinghe et al. (2021)
FREQ-RATIO † 41.55 Rusert (2021)
LOOKUP ‡ 41.61 Burtenshaw and Kestemont (2021)
WIEGAND 2 † 50.98 Zhu et al. (2021)
ORTHRUS 61.07 Palomino et al. (2021)
HITSZ-HLT ‡ 64.98 Zhu et al. (2021)

+WORDNET 64.09 Zhu et al. (2021)
+GLOVE 64.19 Zhu et al. (2021)

Table 5: F1 on the evaluation set for lexicon-based sys-
tems. Systems that are followed by † and ‡ use exclu-
sively external and internal resources respectively.

Lexicon-based approaches were only used as
baselines or components in ensembles, as already
noted. In principle, all lexicon-based systems
are extremely efficient and interpretable. Table 5
shows they can also achieve surprisingly high
scores. Recall that we used the best perform-
ing lexicon-based system, developed by Zhu et al.
(2021), as BENCHMARK II. Its score is included
in Table 3. Despite the fact that it is low ranked,
its F1 score is less than 6 percent points lower
that that of the best submission. We also note that
BENCHMARK II is a high-precision classifier; it
outperforms even the best system in terms of pre-
cision (Zhu et al., 2021). Attempts to expand its
lexicon using WordNet and GloVe, improved recall,
but eventually harmed precision and its F1 score.

6.4 Error analysis
A common theme across many competitor reports
was the serious challenge posed by comments with
no toxic spans. It is not readily evident why this
is a common occurrence in the task, and certainly
the way that annotation consensus is used to com-
bine annotations can be a contributing factor. How-
ever, many systems seemed determined to tag some
spans and many authors noted that performance on
posts with no tagged span was extremely poor com-
pared to performance on posts with tagged spans.

Many systems were also reluctant to tag function
words like ‘of’ and ‘and’, which can be included
in multi-word spans (e.g., ‘piece of crap’), leading
to a decline in performance as measured by the
chosen F1 measure. The overwhelming presence
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of single word gold spans in the training set favors
short spans. But the majority of the short spans
comprises common cuss or clearly abusive words,
which can be directly classified as toxic (Ghosh and
Kumar, 2021); by contrast, the infrequent longer
spans are rather context dependent and more chal-
lenging to detect. This probably also contributed to
the performance of the best system (HITSZ-HLT),
since one of the two components of that ensemble
handled better long spans, as already discussed in
Section 6.3.

Other error analysis highlighted challenges in-
trinsic to the task. The strong dependency of tox-
icity on context makes it particularly difficult to
solve with systems based on vocabulary. Toxicity,
when expressed with subtle language, can appear
through non-local text features: some comments
are toxic without showing any obvious toxic span
in them. Such posts made the task more difficult
for participants, because systems had learnt to la-
bel the words bearing the most negative sentiment
(Bansal et al., 2021). Annotation mistakes were
also reported (Table 6).

Type Description
INCONSISTENCIES Not all the occurrences of the

same toxic span are annotated in
the same post.

FALSE NEGATIVES Toxic words missed.
FALSE POSITIVES Non-toxic words labelled.

Table 6: The types and descriptions of the annotation
mistakes that were detected by some of the participants.

Participants that were notable for their effort in
error analysis include Bansal et al. (2021), Hoang
and Nguyen (2021), Ding and Jurgens (2021), and
Ghosh and Kumar (2021), where an additional ef-
fort was made to examine their model’s ability to
correctly tag words in toxic and non-toxic contexts.
Interestingly Sans and Farràs (2021) also noted in
their analysis that racial and ethnic terms are la-
beled in biased ways that reflect patterns not only
in the training toxic spans, but also in external data
used to pre-train underlying Transformer models.

7 Conclusions

We provided 10,629 posts that were annotated for
toxic spans and we defined the task of toxic span de-
tection. The task was popular, attracting almost 500
individual participants. Eventually 91 teams were
formed, out of which 36 submitted a description
report. This overview described the approaches of
these 36 teams and discussed their results.

Pre-trained Transformers, fine-tuned by viewing
the task as a sequence labelling one, performed
well and solutions that combined these models
within an ensemble were highly-rated. The per-
formance of these models increases further with
the help of pre-trained word embeddings or by us-
ing multiple Transformer layers to embed words.

Long toxic spans were more likely context-
dependent and less frequent in the dataset com-
pared to single-word spans, which made their de-
tection a challenge. The winners included in their
ensemble an approach that performed better on
long spans, but we note that the problem of detect-
ing long uncommon toxic spans is far from solved.

Of particular interest were approaches that em-
ployed rationale extraction mechanisms, which do
not require any training data annotated at the span
level. They performed much worse than sequence
labeling approaches, but this is a promising direc-
tion that was considered by only a few participants.

Future similar competitions could benefit from
tracks that separate supervised from unsupervised
solutions. The development of datasets created
with the help of crowd annotators should focus on
addressing ambiguity, bias, inconsistencies, and
misannotations. This could be accomplished by
adding more annotators per post. Future competi-
tions could also require participants to both classify
posts as toxic or not, and detect toxic spans only
when posts are classified as toxic, instead of pro-
viding the participants only with posts already clas-
sified as toxic. Finally, future competitions could
require participants to distinguish toxic posts of
different kinds (e.g., insult, threat, profanity, along
with supporting spans), which are sometimes easier
to define compared to the more general umbrella
toxicity term we (and others) have used.
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Kamil Pluciński and Hanna Klimczak. 2021. GHOST
at SemEval-2021 Task 5: Is explanation all you
need? In SemEval.

Tharindu Ranasinghe, Diptanu Sarkar, Marcos
Zampieri, and Alexander Ororbia. 2021. WLV-RIT
at SemEval-2021 Task 5: A neural transformer
framework for detecting toxic spans. In SemEval.

Marco T. Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “Why Should I Trust You?” Explaining the
predictions of any classifier. In SIGKDD, pages
1135–1144, San Francisco, USA.

Jonathan Rusert. 2021. NLP UIOWA at Semeval-2021
Task 5: Transferring toxic sets to tag toxic spans. In
SemEval.

68



Rafel Palliser Sans and Albert Rial Farràs. 2021. HLE-
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Abstract
We describe SemEval-2021 task 6 on Detec-
tion of Persuasion Techniques in Texts and Im-
ages: the data, the annotation guidelines, the
evaluation setup, the results, and the partici-
pating systems. The task focused on memes
and had three subtasks: (i) detecting the tech-
niques in the text, (ii) detecting the text spans
where the techniques are used, and (iii) detect-
ing techniques in the entire meme, i.e., both in
the text and in the image. It was a popular task,
attracting 71 registrations, and 22 teams that
eventually made an official submission on the
test set. The evaluation results for the third sub-
task confirmed the importance of both modal-
ities, the text and the image. Moreover, some
teams reported benefits when not just combin-
ing the two modalities, e.g., by using early or
late fusion, but rather modeling the interaction
between them in a joint model.

1 Introduction

Internet and social media have amplified the
impact of disinformation campaigns. Tradition-
ally a monopoly of states and large organiza-
tions, now such campaigns have become within
the reach of even small organisations and individu-
als (Da San Martino et al., 2020b).

Such propaganda campaigns are often carried
out using posts spread on social media, with the
aim to reach very large audience. While the rhetor-
ical and the psychological devices that constitute
the basic building blocks of persuasive messages
have been thoroughly studied (Miller, 1939; We-
ston, 2008; Torok, 2015), only few isolated efforts
have been made to devise automatic systems to de-
tect them (Habernal et al., 2018; Habernal et al.,
2018; Da San Martino et al., 2019b).

WARNING: This paper contains meme examples and
wording that might be offensive to some readers.

Figure 1: A meme with a civil war threat during the
President Trump’s impeachment trial. Two persuasion
techniques are used: (i) Appeal to Fear in the image,
and (ii) Exaggeration in the text. Source(s): Image ;
License

Thus, in 2020, we proposed SemEval-2020
task 11 on Detection of Persuasion Techniques in
News Articles, with the aim to help bridge this
gap (Da San Martino et al., 2020a). The task fo-
cused on text only. Yet, some of the most influential
posts in social media use memes, as shown in Fig-
ure 1,1 where visual cues are being used, along
with text, as a persuasive vehicle to spread disin-
formation (Shu et al., 2017). During the 2016 US
Presidential campaign, malicious users in social
media (bots, cyborgs, trolls) used such memes to
provoke emotional responses (Guo et al., 2020).

In 2021, we introduced a new SemEval shared
task, for which we prepared a multimodal corpus
of memes annotated with an extended set of tech-
niques, compared to SemEval-2020 task 11. This
time, we annotated both the text of the memes,
highlighting the spans in which each technique has
been used, as well as the techniques appearing in
the visual content of the memes.

1In order to avoid potential copyright issues, all memes we
show in this paper are our own recreation of existing memes,
using images with clear copyright.
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Based on our annotations, we offered the follow-
ing three subtasks:

Subtask 1 (ST1) Given the textual content of a
meme, identify which techniques (out of 20
possible ones) are used in it. This is a multil-
abel classification problem.

Subtask 2 (ST2) Given the textual content of a
meme, identify which techniques (out of 20
possible ones) are used in it together with
the span(s) of text covered by each technique.
This is a multilabel sequence tagging task.

Subtask 3 (ST3) Given a meme, identify which
techniques (out of 22 possible ones) are used
in the meme, considering both the text and
the image. This is a multilabel classification
problem.

A total of 71 teams registered for the task, 22
of them made an official submission on the test
set and 15 of the participating teams submitted a
system description paper.

2 Related Work

Propaganda Detection Previous work on propa-
ganda detection has focused on analyzing textual
content (Barrón-Cedeno et al., 2019; Da San Mar-
tino et al., 2019b; Rashkin et al., 2017). See
(Martino et al., 2020) for a recent survey on com-
putational propaganda detection. Rashkin et al.
(2017) developed the TSHP-17 corpus, which
had document-level annotations with four classes:
trusted, satire, hoax, and propaganda. Note that
TSHP-17 was labeled using distant supervision,
i.e., all articles from a given news outlet were as-
signed the label of that news outlet. The news
articles were collected from the English Gigaword
corpus (which covers reliable news sources), as
well as from seven unreliable news sources, includ-
ing two propagandistic ones. They trained a model
using word n-grams, and reported that it performed
well only on articles from sources that the system
was trained on, and that the performance degraded
quite substantially when evaluated on articles from
unseen news sources. Barrón-Cedeno et al. (2019)
developed a corpus QProp with two labels (pro-
paganda vs. non-propaganda), and experimented
with two corpora: TSHP-17 and QProp . They
binarized the labels of TSHP-17 as follows: pro-
paganda vs. the other three categories.

They performed massive experiments, investi-
gated writing style and readability level, and trained
models using logistic regression and SVMs. Their
findings confirmed that using distant supervision,
in conjunction with rich representations, might en-
courage the model to predict the source of the ar-
ticle, rather than to discriminate propaganda from
non-propaganda. The study by Habernal et al.
(2017, 2018) also proposed a corpus with 1.3k ar-
guments annotated with five fallacies, including
ad hominem, red herring, and irrelevant authority,
which directly relate to propaganda techniques.

A more fine-grained propaganda analysis was
done by Da San Martino et al. (2019b), who devel-
oped a corpus of news articles annotated with the
spans of use of 18 propaganda techniques, from
an invetory they put together. They targeted two
tasks: (i) binary classification —given a sentence,
predict whether any of the techniques was used
in it; and (ii) multi-label multi-class classification
and span detection task —given a raw text, iden-
tify both the specific text fragments where a pro-
paganda technique is being used as well as the
type of technique. They further proposed a multi-
granular gated deep neural network that captures
signals from the sentence-level task to improve the
performance of the fragment-level classifier and
vice versa. Subsequently, an automatic system,
Prta, was developed and made publicly avail-
able (Da San Martino et al., 2020c), which per-
forms fine-grained propaganda analysis of text us-
ing these 18 fine-grained propaganda techniques.

Multimodal Content Another line of related re-
search is on analyzing multimodal content, e.g.,
for predicting misleading information (Volkova
et al., 2019), for detecting deception (Glenski et al.,
2019), emotions and propaganda (Abd Kadir et al.,
2016), hateful memes (Kiela et al., 2020), and pro-
paganda in images (Seo, 2014). Volkova et al.
(2019) developed a corpus of 500K Twitter posts
consisting of images and labeled with six classes:
disinformation, propaganda, hoaxes, conspiracies,
clickbait, and satire. Glenski et al. (2019) explored
multilingual multimodal content for deception de-
tection. Multimodal hateful memes were the target
of the Hateful Memes Challenge, which was ad-
dressed by fine-tuning state-of-art methods such
as ViLBERT (Lu et al., 2019), Multimodal Bi-
transformers (Kiela et al., 2019), and VisualBERT
(Li et al., 2019) to classify hateful vs. not-hateful
memes (Kiela et al., 2020).
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Related Shared Tasks The present shared task
is closely related to SemEval-2020 task 11 on De-
tection of Persuasion Techniques in News Articles
(Da San Martino et al., 2020a), which focused on
news articles, and asked (i) to detect the spans
where propaganda techniques are used, as well as
(ii) to predict which propaganda technique (from
an inventory of 14 techniques) is used in a given
text span. Another closely related shared task is the
NLP4IF-2019 task on Fine-Grained Propaganda
Detection, which asked to detect the spans of use in
news articles of each of 18 propaganda techniques
(Da San Martino et al., 2019a). While these tasks
focused on the text of news articles, here we target
memes and multimodality, and we further use an
extended inventory of 22 propaganda techniques.

Other related shared tasks include the FEVER
2018 and 2019 tasks on Fact Extraction and VER-
ification (Thorne et al., 2018), the SemEval 2017
and 2019 tasks on predicting the veracity of rumors
in Twitter (Derczynski et al., 2017; Gorrell et al.,
2019), the SemEval-2019 task on Fact-Checking
in Community Question Answering Forums (Mi-
haylova et al., 2019), the NLP4IF-2021 shared
task on Fighting the COVID-19 Infodemic (Shaar
et al., 2021). We should also mention the CLEF
2018–2021 CheckThat! lab (Nakov et al., 2018; El-
sayed et al., 2019a,b; Barrón-Cedeño et al., 2020;
Barrón-Cedeño et al., 2020), which featured tasks
on automatic identification (Atanasova et al., 2018,
2019) and verification (Barrón-Cedeño et al., 2018;
Hasanain et al., 2019, 2020; Shaar et al., 2020;
Nakov et al., 2021) of claims in political debates
and social media. While these tasks focused on
factuality, check-worthiness, and stance detection,
here we target propaganda; moreover, we focus
on memes and on multimodality rather than on
analyzing the text of tweets, political debates, or
community question answering forums.

3 Persuasion Techniques

Scholars have proposed a number of inventories
of persuasion techniques of various sizes (Miller,
1939; Torok, 2015; Abd Kadir and Sauffiyan, 2014).
Here, we use an inventory of 22 techniques, bor-
rowing from the lists of techniques described in
(Da San Martino et al., 2019b), (Shah, 2005) and
(Abd Kadir and Sauffiyan, 2014). Among these 22
techniques, the first 20 are applicable to both text
and images, while the last two, Appeal to (Strong)
Emotions and Transfer, are reserved for images.

Below, we provide a definition for each of these
22 techniques; more detailed instructions of the
annotation process and examples are provided in
Appendix A.

1. Loaded Language: Using specific words and
phrases with strong emotional implications (ei-
ther positive or negative) to influence an audi-
ence.

2. Name Calling or Labeling: Labeling the ob-
ject of the propaganda campaign as either some-
thing the target audience fears, hates, finds un-
desirable, or loves, praises.

3. Doubt: Questioning the credibility of someone
or something.

4. Exaggeration or Minimisation: Either rep-
resenting something in an excessive manner,
e.g., making things larger, better, worse (“the
best of the best”, “quality guaranteed”), or mak-
ing something seem less important or smaller
than it really is, e.g., saying that an insult was
just a joke.

5. Appeal to Fear or Prejudices: Seeking to
build support for an idea by instilling anxiety
and/or panic in the population towards an alter-
native. In some cases, the support is built based
on preconceived judgments.

6. Slogans: A brief and striking phrase that may
include labeling and stereotyping. Slogans tend
to act as emotional appeals.

7. Whataboutism: A technique that attempts to
discredit an opponent’s position by charging
them with hypocrisy without directly disproving
their argument.

8. Flag-Waving: Playing on strong national feel-
ing (or positive feelings toward any group,
e.g., based on race, gender, political preference)
to justify or promote an action or idea.

9. Misrepresentation of Someone’s Position
(Straw Man): When an opponent’s proposition
is substituted with a similar one, which is then
refuted in place of the original proposition.

10. Causal Oversimplification: Assuming a sin-
gle cause or reason, when there are actually
multiple causes for an issue. It includes trans-
ferring blame to one person or group of people
without investigating the actual complexities of
the issue.
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11. Appeal to Authority: Stating that a claim is
true because a valid authority or expert on the
issue said so, without any other supporting ev-
idence offered. We consider the special case
in which the reference is not an authority or an
expert as part of this technique, although it is
referred to as Testimonial in the literature.

12. Thought-Terminating Cliché: Words or
phrases that discourage critical thought and
meaningful discussion about a given topic. They
are typically short, generic sentences that offer
seemingly simple answers to complex questions
or that distract the attention away from other
lines of thought.

13. Black-and-White Fallacy or Dictatorship:
Presenting two alternative options as the only
possibilities, when in fact more possibilities ex-
ist. As an extreme case, tell the audience exactly
what actions to take, eliminating any other pos-
sible choices (Dictatorship).

14. Reductio ad Hitlerum: Persuading an audi-
ence to disapprove of an action or an idea by
suggesting that the idea is popular with groups
that are hated or in contempt by the target audi-
ence. It can refer to any person or concept with
a negative connotation.

15. Repetition: Repeating the same message over
and over again, so that the audience will eventu-
ally accept it.

16. Obfuscation, Intentional Vagueness, Confu-
sion: Using words that are deliberately not clear,
so that the audience can have their own interpre-
tations.

17. Presenting Irrelevant Data (Red Herring):
Introducing irrelevant material to the issue be-
ing discussed, so that everyone’s attention is
diverted away from the points made.

18. Bandwagon Attempting to persuade the target
audience to join in and take the course of ac-
tion because “everyone else is taking the same
action.”

19. Smears: A smear is an effort to damage or
call into question someone’s reputation, by pro-
pounding negative propaganda. It can be applied
to individuals or groups.

20. Glittering Generalities (Virtue): These are
words or symbols in the value system of the
target audience that produce a positive image
when attached to a person or an issue.

21. Appeal to (Strong) Emotions: Using images
with strong positive/negative emotional implica-
tions to influence an audience.

22. Transfer: Also known as Association, this is a
technique that evokes an emotional response by
projecting positive or negative qualities (praise
or blame) of a person, entity, object, or value
onto another one in order to make the latter more
acceptable or to discredit it.

4 Dataset

The annotation process is explained in detail in
Appendix A, and in this section, we give a just
brief summary.

We collected English memes from our personal
Facebook accounts over several months in 2020
by following 26 public Facebook groups, which
focus on politics, vaccines, COVID-19, and gender
equality. We considered a meme to be a “photo-
graph style image with a short text on top of it”, and
we removed examples that did not fit this defini-
tion, e.g., cartoon-style memes, memes whose tex-
tual content was strongly dominant or non-existent,
memes with a single-color background image, etc.
Then, we annotated the memes using our 22 persua-
sion techniques. For each meme, we first annotated
its textual content, and then the entire meme. We
performed each of these two annotations in two
phases: in the first phase, the annotators indepen-
dently annotated the memes; afterwards, all anno-
tators met together with a consolidator to discuss
and to select the final gold label(s).

The final annotated dataset consists of 950
memes: 687 memes for training, 63 for develop-
ment, and 200 for testing. While the maximum
number of sentences in a meme is 13, the average
number of sentences per meme is just 1.68, as most
memes contain very little text.

Table 1 shows the number of instances of each
technique for each of the tasks. Note that Trans-
fer and Appeal to (Strong) Emotions are not ap-
plicable to text, i.e., to Subtasks 1 and 2. For
Subtasks 1 and 3, each technique can be present
at most once per example, while in Subtask 2, a
technique could appear multiple times in the same
example. This explains the sizeable differences in
the number of instances for some persuasion tech-
niques between Subtasks 1 and 2: some techniques
are over-used in memes, with the aim of making the
message more persuasive, and thus they contribute
higher counts to Subtask 2.
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Persuasion Techniques Subtask 1 Subtask 2 Subtask 3
# Len. # #

Loaded Language 489 2.41 761 492
Name Calling/Labeling 300 2.62 408 347
Smears 263 17.11 266 602
Doubt 84 13.71 86 111
Exaggeration/Minimisation 78 6.69 85 100
Slogans 66 4.70 72 70
Appeal to Fear/Prejudice 57 10.12 60 91
Whataboutism 54 22.83 54 67
Glittering Generalities (Virtue) 44 14.07 45 112
Flag-Waving 38 5.18 44 55
Repetition 12 1.95 42 14
Causal Oversimplification 31 14.48 33 36
Thought-Terminating Cliché 27 4.07 28 27
Black-and-White
Fallacy/Dictatorship

25 11.92 25 26

Straw Man 24 15.96 24 40
Appeal to Authority 22 20.05 22 35
Reductio ad Hitlerum 13 12.69 13 23
Obfuscation, Intentional
Vagueness, Confusion

5 9.8 5 7

Presenting Irrelevant Data 5 15.4 5 7
Bandwagon 5 8.4 5 5
Transfer — — — 95
Appeal to (Strong) Emotions — — — 90

Total 1,642 2,119 2,488

Table 1: Statistics about the persuasion techniques. For
each technique, we show the average length of its spans
(in number of words) and the number of its instances as
annotated in the text only vs. in the entire meme.

Note that the number of instances for Sub-
tasks 1 and 3 differs, and in some cases by quite
a bit, e.g., for Smears, Doubt, and Appeal to
Fear/Prejudice. This shows that many techniques
cannot be found in the text, and require the visual
content, which motivates the need for multimodal
approaches for Subtask 3. Note also that different
techniques have different span lengths, e.g., Loaded
Language and Name Calling are about 2–3 words
long, e.g., violence, mass shooter, and coward.
However, for techniques such as Whataboutism,
the average span length is 22 words.

Figure 2 shows statistics about the distribution
of the number of persuasion techniques per meme.
Note the difference for memes without persuasion
techniques between Figures 2a and 2c: we can see
that the number of memes without any persuasion
technique drastically drops for Subtask 3. This is
because the visual modality introduces additional
context that was not available during the text-only
annotation, which further supports the need for
multimodal analysis. The visual modality also has
an impact on memes that already had persuasion
techniques in the text-only phase.

We observe that the number of memes with only
one persuasion technique in Subtask 3 is consider-
ably lower compared to Subtask 1, while the num-
ber of memes with three or more persuasion tech-
niques has greatly increased for Subtask 3.
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Figure 2: Distribution of the number of persuasion
techniques per meme. Subfigure (b) reports the num-
ber of instances of persuasion techniques for a meme.
Note that a meme could have multiple instances of the
same technique for this subtask. Subfigures (a) and (c)
show the number of distinct persuasion techniques in
a meme.
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5 Evaluation Framework

5.1 Evaluation Measures
Subtasks 1 and 3 To measure the performance
of the systems, for Subtasks 1 and 3, we use Micro
and Macro F1, as these are multi-class multi-label
tasks, where the labels are imbalanced. The official
measure for the task is Micro F1.

Subtask 2 For Subtask 2, the evaluation requires
matching the text spans. Hence, we use an evalu-
ation function that gives credit to partial matches
between gold and predicted spans.

Let document d be represented as a sequence of
characters. The i-th propagandistic text fragment
is then represented as a sequence of contiguous
characters t ⊆ d. A document includes a set of
(possibly overlapping) fragments T . Similarly, a
learning algorithm produces a set S with fragments
s ⊆ d, predicted on d. A labeling function l(x) ∈
{1, . . . , 20} associates t ∈ T , s ∈ S with one of
the techniques. An example of (gold) annotation is
shown in Figure 3, where an annotation t1 marks
the span stupid and petty with the technique Loaded
Language.

h o w s t u p i d a n d p e t t y t h i n g s

t1: loaded language

h o w s t u p i d a n d p e t t y t h i n g s

s1: loaded language s2: name calling

h o w s t u p i d a n d p e t t y t h i n g s

s3: loaded language s5: loaded language

s4: loaded language

Figure 3: Example of gold annotation (top) and the pre-
dictions of a supervised model (bottom) in a document
represented as a sequence of characters.

We define the following function to handle par-
tial overlaps of fragments with the same labels:

C(s, t, h) =
|(s ∩ t)|

h
δ (l(s), l(t)) , (1)

where h is a normalizing factor and δ(a, b) = 1
if a = b, and 0, otherwise. For example, still
with reference to Figure 3, C(t1, s1, |t1|) = 6

16 and
C(t1, s2, |t1|) = 0.

Given Eq. (1), we now define variants of preci-
sion and recall that can account for the imbalance
in the corpus:

P (S, T ) =
1

|S|
∑

s ∈ S,
t ∈ T

C(s, t, |s|), (2)

R(S, T ) =
1

|T |
∑

s ∈ S,
t ∈ T

C(s, t, |t|), (3)

We define (2) to be zero if |S| = 0, and Eq. (3) to
be zero if |T | = 0. Following Potthast et al. (2010),
in (2) and (3) we penalize systems predicting too
many or too few instances by dividing by |S| and
|T |, respectively. Finally, we combine Eqs. (2)
and (3) into an F1-measure, the harmonic mean of
precision and recall.

5.2 Task Organization
We ran the shared task in two phases:

Development Phase In the first phase, only train-
ing and development data were made available, and
no gold labels were provided for the latter. The par-
ticipants competed against each other to achieve
the best performance on the development set. A
live leaderboard was made available to keep track
of all submissions.

Test Phase In the second phase, the test set was
released and the participants were given just a few
days to submit their final predictions.

In the Development Phase, the participants could
make an unlimited number of submissions, and see
the outcome in their private space. The best score
for each team, regardless of the submission time,
was also shown in a public leaderboard. As a result,
not only could the participants observe the impact
of various modifications in their systems, but they
could also compare against the results by other par-
ticipating teams. In the Test Phase, the participants
could again submit multiple runs, but they would
not get any feedback on their performance. Only
the latest submission of each team was considered
as official and was used for the final team rank-
ing. The final leaderboard on the test set was made
public after the end of the shared task.

In the Development Phase, a total of 15, 10 and
13 teams made at least one submission for ST1,
ST2 and ST3, respectively. In the Test Phase the
number of teams who made official submissions
was 16, 8, and 15 for ST1, ST2, ST3, respectively.

After the competition was over, we left the sub-
mission system open for the development set, and
we plan to reopen it on the test set as well. The up-
to-date leaderboards can be found on the website
of the competition.2

2http://propaganda.math.unipd.it/semeval2021task6/
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1. MinD � � � � � � � � �
2. Alpha �
3. Volta Ë � �
5. AIMH � �
6. LeCun Ë Ë � � Ë
7. WVOQ �
9. NLyticsFKIE � � Ë �
12. YNU-HPCC � � � � �
13. CSECUDSG � �
15. NLP-IITR Ë � Ë Ë Ë Ë � �

1 (Tian et al., 2021)
2 (Feng et al., 2021)
3 (Gupta et al., 2021)
5 (Messina et al., 2021)

6 (Dia et al., 2021)
7 (Roele, 2021)
9 (Pritzkau, 2021)

12 (Zhu et al., 2021)

13 (Hossain et al., 2021)
15 (Gupta and Sharma, 2021)

Table 2: ST1: Overview of the approaches used by the participating systems. �=part of the official submission;
Ë=considered in internal experiments; Repres. stand for Representations. References to system description
papers are shown below the table.

6 Participants and Results

Below, we give a general description of the systems
that participated in the three subtasks and their
results, with focus on those ranked among the top-3.
Appendix C gives a description of every system.

6.1 Subtask 1 (Unimodal: Text)

Table 2 gives an overview of the systems that took
part in Subtask 1. We can see that transformers
were quite popular, and among them, most com-
monly used was RoBERTa, followed by BERT.
Some participants used learning models such as
LSTM, CNN, and CRF in their final systems, while
internally, Naı̈ve Bayes and Random Forest were
also tried. In terms of representation, embeddings
clearly dominated. Moreover, techniques such as
ensembles, data augmentation, and post-processing
were also used in some systems.

The evaluation results are shown in Table 3,
which also includes two baselines: (i) random,
and (ii) majority class. The latter always predicts
Loaded Language, as it is the most frequent tech-
nique for Subtask 1 (see Table 1).

The best system MinD (Tian et al., 2021) used
five transformers: BERT, RoBERTa, XLNet, De-
BERTa, and ALBERT. It was fine-tuned on the
PTC corpus (Da San Martino et al., 2020a) and
then on the training data for Subtask 1.

Rank Team F1-Micro F1-Macro

1 MinD .593 .2902
2 Alpha .572 .2625
3 Volta .570 .2663
4 mmm .548 .3031
5 AIMH .539 .2456
6 LeCun .512 .2278
7 WVOQ .511 .2278
8 TeamUNCC .510 .2367
9 NLyticsFKIE .498 .14013
10 TeiAS .497 .21410
11 DAJUST .497 .18711
12 YNUHPCC .493 .2634
13 CSECUDSG .489 .18512
14 TeamFPAI .406 .11515
15 NLPIITR .379 .12614

Majority baseline .374 .033
16 TriHeadAttention .184 .02418

Random baseline .064 .044

Table 3: Results for Subtask 1. The systems are ordered
by the official score: F1-micro.

The final prediction for MinD averages the prob-
abilities for these models, and further uses post-
processing rules, e.g., each bigram appearing more
than three times is flagged as a Repetition.
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Team Alpha (Feng et al., 2021) was ranked sec-
ond. However, they used features from images,
which was not allowed (images were only allowed
for Subtask 3).

Team Volta (Gupta et al., 2021) was third. They
used a combination of transformers with the [CLS]
token as an input to a two-layer feed-forward net-
work. They further used example weighting to
address class imbalance.

We should also mention team LeCun, which
used additional corpora such as the PTC cor-
pus (Da San Martino et al., 2020a), and aug-
mented the training data using synonyms, random
insertion/deletion, random swapping, and back-
translation.

6.2 Subtask 2 (Unimodal: Text)
The approaches for this task varied from modeling
it as a question answering (QA) task to performing
multi-task learning. Table 4 presents a high-level
summary. We can see that BERT dominated, while
RoBERTa was much less popular. We further see
a couple of systems using data augmentation. Un-
fortunately, there are too few systems with system
description papers for this subtask, and thus it is
hard to do a very deep analysis.
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2. HOMADOS �
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5. WVOQ � � Ë � � �
6. CSECUDSG � Ë �
7. YNU-HPCC �

1 (Gupta et al., 2021)
2 (Kaczyński and Przybyła, 2021)
3 (Xiaolong et al., 2021)

5 (Roele, 2021)
6 (Hossain et al., 2021)
7 (Zhu et al., 2021)

Table 4: ST2: Overview of the approaches used by the
participating systems. �=part of the official submis-
sion; Ë=considered in internal experiments; Trans. is
for Transformers; Repres. is for Representations. Ref-
erences to system description papers are shown below
the table.

Table 5 shows the evaluation results. We report
our random baseline, which is based on the ran-
dom selection of spans with random lengths and a
random assignment of labels.

Rank Team F1 Precision Recall

1 Volta .482 .5012 .4641
2 HOMADOS .407 .4123 .4032
3 TeamFPAI .397 .6521 .2865
4 TeamUNCC .329 .2854 .3903
5 WVOQ .268 .2435 .2994
6 CSECUDSG .120 .0808 .2436
7 YNUHPCC .091 .1866 .0607
8 TriHeadAttention .080 .1707 .0528

Random Baseline .010 .034 .006

Table 5: Results for Subtask 2. The systems are ordered
by the official score: F1-micro.

The best model by team Volta (Gupta et al.,
2021) used various transformer models, such as
BERT and RoBERTa, to predict token classes by
considering the output of each token embedding.
Then, they assigned classes for a given word as the
union of the classes predicted for the subwords that
make that word (to account for BPEs).

Team HOMADOS (Kaczyński and Przybyła,
2021) was second, and they used a multi-task learn-
ing (MTL) and additional datasets such as the PTC
corpus from SemEval-2020 task 11 (Da San Mar-
tino et al., 2020a), and a fake news corpus (Przy-
byla, 2020). They used BERT, followed by several
output layers that perform auxiliary tasks of propa-
ganda detection and credibility assessment in two
distinct scenarios: sequential and parallel MTL.
Their final submission used the latter.

Team TeamFPAI (Xiaolong et al., 2021) for-
mulated the task as a question answering problem
using machine reading comprehension, thus im-
proving over the ensemble-based approach of Liu
et al. (2018). They further explored data augmenta-
tion and loss design techniques, in order to alleviate
the problem of data sparseness and data imbalance.

6.3 Subtask 3 (Multimodal: Memes)

Table 6 presents an overview of the approaches
used by the systems that participated in Subtask
3. This is a very rich and very interesting table.
We can see that transformers were quite popular
for text representation, with BERT dominating, but
RoBERTa being quite popular as well. For the vi-
sual modality, the most common representations
were variants of ResNet, but VGG16 and CNNs
were also used. We further see a variety of represen-
tations and fusion methods, which is to be expected
given the multi-modal nature of this subtask.
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1. Alpha Ë�Ë Ë Ë � ËË Ë
2. MinD � � � � � � � � � � � � � Ë Ë � �
3. 1213Li � � � �
4. AIMH � � � �
5. Volta Ë� � � � �
6. CSECUDSG � � � � � Ë � � � �
8. LIIR � � � � �
10. WVOQ � � Ë � � �
11. YNU-HPCC � � � � � �
13. NLyticsFKIE � Ë � Ë �
15. LT3-UGent � � � �

1 (Feng et al., 2021)
2 (Tian et al., 2021)
3 (Peiguang et al., 2021)
4 (Messina et al., 2021)

5 (Gupta et al., 2021)
6 (Hossain et al., 2021)
8 (Ghadery et al., 2021)

10 (Roele, 2021)

11 (Zhu et al., 2021)
13 (Pritzkau, 2021)
15 (Singh and Lefever, 2021)

Table 6: ST3: Overview of the approaches used by the participating systems. �=part of the official submission;
Ë=considered in internal experiments. References to system description papers are shown below the table.

Table 7 shows the performance on the test set for
the participating systems for Subtask 3. The two
baselines shown in the table are similar to those
for Subtask 1, namely a random baseline and a ma-
jority class baseline. However, this time the most
frequent class baseline always predicts Smears (for
Subtask 1, it was Loaded Language), as this is the
most frequent technique for Subtask 3 (as can be
seen in Table 1).

Team Alpha (Feng et al., 2021) pre-trained a
transformer using text with visual features. They
extracted grid features using ResNet50, and salient
region features using BUTD. They further used
these grid features to capture the high-level se-
mantic information in the images. Moreover, they
used salient region features to describe objects
and to caption the event present in the memes.
Finally, they built an ensemble of fine-tuned De-
BERTA+ResNet, DeBERTA+BUTD, and ERNIE-
VIL systems.

Team MinD (Tian et al., 2021) combined a sys-
tem for Subtask 1 with (i) ResNet-34, a face recog-
nition system, (ii) OCR-based positional embed-
dings for text boxes, and (iii) Faster R-CNN to
extract region-based image features. They used
late fusion to combine the textual and the visual
representations. Other multimodal fusion strategies
they tried were concatenation of the representation
and mapping using a multi-layer perceptron.

Team 1213Li (Peiguang et al., 2021) used
RoBERTa and ResNet-50 as feature extractors for
texts and images, respectively, and adopted a la-
bel embedding layer with a multi-modal attention
mechanism to measure the similarity between la-
bels with multi-modal information, and fused fea-
tures for label prediction.

Rank Team F1-Micro F1-Macro

1 Alpha .581 .2731
2 MinD .566 .2443
3 1213Li .549 .2285
4 AIMH .540 .2076
5 Volta .521 .1898
6 CSECUDSG .513 .12111
7 aircasMM .511 .2007
8 LIIR .498 .1889
9 CAU731NLP .481 .08414
10 WVOQ .478 .2404
11 YNUHPCC .446 .09613
12 TriHeadAttention .442 .06215
13 NLyticsFKIE .423 .11812

Majority baseline .354 .036
14 LT3UGent .332 .2642
15 TeamUNCC .224 .12410

Random baseline .071 .052

Table 7: Results for Subtask 3. The systems are ordered
by the official score: F1-micro.
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7 Conclusion and Future Work

We presented SemEval-2021 Task 6 on Detection
of Persuasion Techniques in Texts and Images. It
was a successful task: a total of 71 teams registered
to participate, 22 teams eventually made an offi-
cial submission on the test set, and 15 teams also
submitted a task description paper.

In future work, we plan to increase the data size
and to add more propaganda techniques. We further
plan to cover several different languages.
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Appendix

A Data Collection and Annotation

A.1 Data Collection

To collect the data for the dataset, we used Face-
book, as it has many public groups with a large
number of users, who intentionally or unintention-
ally share a large number of memes. We used our
own private Facebook accounts to crawl the public
posts from users and groups. To make sure the
resulting feed had a sufficient number of memes,
we initially selected some public groups focusing
on topics such as politics, vaccines, COVID-19,
and gender equality. Then, using the links between
groups, we expanded our initial group pool to a
total of 26 public groups. We went through each
group, and we collected memes from old posts, dat-
ing up to three months before the newest post in
the group. Out of the 26 groups, 23 were about pol-
itics, US and Canadian: left, right, centered, anti-
government, and gun control. The other 3 groups
were on general topics such as health, COVID-19,
pro-vaccines, anti-vaccines, and gender equality.
Even though the number of political groups was
larger (i.e., 23), the other 3 general groups had a
higher number of users and a substantial amount of
memes.

A.2 Annotation Process

We annotated the memes using the 22 persuasion
techniques from Section 3 in a multi-label setup.
Our annotation focused (i) on the text only, using
20 techniques, and (ii) on the entire meme (text +
image), using all 22 techniques.

We could not annotate the visual modality as an
independent task because memes have the text as
part of the image. Moreover, in many cases, the
message in the meme requires both modalities. For
example, in Figure 28, the image by itself does
not contain any persuasion technique, but together
with the text, we can see Smears and Reductio at
Hitlerum.

The annotation team included six members, both
female and male, all fluent in English, with qualifi-
cations ranging from undergrad to MSc and PhD
degrees, including experienced NLP researchers,
and covering multiple nationalities. This helped to
ensure the quality of the annotation, and our focus
was really on having very high-quality annotation.
No incentives were given to the annotators.

We used PyBossa4 as an annotation platform,
as it provides the functionality to create a custom
annotation interface that we found to be a good
fit for our needs in each phase of the annotation
process. Figure 4 shows examples of the annotation
interface for the five different phases of annotation,
which we describe in detail below.

Phase 1: Filtering and Text Editing The first
phase of the annotation process is about selecting
the memes for our task, followed by extracting and
editing the textual contents of each meme. After we
collected the memes, we observed that we needed
to remove some of them as they did not fit our
definition: “photograph style image with a short
text on top of it.” Thus, we asked the annotators
to exclude images with the characteristics listed
below. During this phase, we filtered out a total of
111 memes.

• Images with diagrams/graphs/tables (see Fig-
ure 5a).

• Cartoons. (see Figure 5b)

• Memes for which no multi-modal analysis is
possible: e.g., only text, only image, etc. (see
Figure 5c)

Next, we used the Google Vision API5 to extract
the text from the memes. As the resulting text
sometimes contains errors, manual checking was
needed to correct it. Thus, we defined several text
editing rules, and we asked the annotators to apply
them on the memes that passed the filtering rules
above.

1. When the meme is a screenshot of a social
network account, e.g., WhatsApp, the user
name and login can be removed as well as all
“Like”, “Comment’, “Share”.

2. Remove the text related to logos that are not
part of the main text.

3. Remove all text related to figures and tables.

4. Remove all text that is partially hidden by an
image, so that the sentence is almost impossi-
ble to read.

5. Remove all text that is not from the meme, but
on banners carried on by demonstrators, street
advertisements, etc.

4https://pybossa.com
5http://cloud.google.com/vision
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Figure 4: Examples of the annotation interface for different phases.

6. Remove the author of the meme if it is signed.

7. If the text is in columns, first put all text from
the first column, then all text from the next
column, etc.

8. Rearrange the text, so that there is one sen-
tence per line, whenever possible.

9. If there are separate blocks of text in different
locations of the image, separate them by a
blank line. However, if it is evident that the
text blocks are part of a single sentence, keep
them together.

Phase 2: Text Annotation The annotations for
phase 2 are targeted at Subtasks 1 and 2. Given the
list of propaganda techniques for text only annota-
tion, as discussed in Section A.4 (i.e., techniques
1-20), and the textual content of the target meme,
the annotators were asked to identify which tech-
niques appear in the text, and also to annotate the
span of each instance of a technique use. In this
phase, there were three annotators per example.

Phase 3: Text Consolidation Phase 3 is the con-
solidation step for the annotations from phase 2.
The three annotators met with the rest of the team,
who acted as consolidators, and discussed each
annotation, so that a consensus could be reached.
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(a) Example of a meme with a graph Source(s): Image ;
License

(b) Example of a cartoon meme; Source(s): Image ; License
.

(c) Example of a meme with only text modality; License .

Figure 5: Examples of memes we filtered out.

We made sure to consider different interpreta-
tions and to anotate techniques corresponding to
the most likely one. While this phase was devoted
to checking the annotations from phase 2, when a
novel instance of a technique was found, it could
be added; conversely, an instance of a technique
with perfect agreement from phase 2 could also be
dropped. Phase 3 was essential for ensuring quality,
and it served as an additional training opportunity
for the entire team, which was very useful.

Phase 4: Multimodal Annotation In this phase,
the goal is to identify which of the 22 techniques,
discussed in Section A.4, appear in the meme: in
the text and in the visual content. Note that some
of the techniques occurring in the text might be
identified only in this phase because the image pro-
vides the necessary context. Thus, we presented
the meme with the consolidated propaganda labels
from phase 3. We intentionally provided the con-
solidated text labels to the annotators in order to
ensure that they focus their attention on identifying
propaganda techniques that require both modalities
rather than repeating what was already labeled in
the earlier phases. In this phase, there were three
annotators per example.

Phase 5: Multimodal Consolidation. In phase
5, we consolidated the annotations from phase 4
in a discussion of the entire team of six annotators
(just as we did for phase 3).

A.3 Annotation Agreement

We assessed the quality for the individual annota-
tors from phases 2 and 4 (i.e., when combining the
annotations for the meme’s text and for the entire
meme) to the final consolidated labels at phase 5.
Since our annotation is multi-label, we computed
Krippendorff’s α (Artstein and Poesio, 2008). The
results are shown in Table 8, and the numbers in-
dicate moderate to substantial agreement (Landis
and Koch, 1977).

Agreement Pair Krippendorff’s α

Annotator 1 vs. Consolidated 0.83
Annotator 2 vs. Consolidated 0.91
Annotator 3 vs. Consolidated 0.56

Average 0.77

Table 8: Inter-annotator agreement in terms of Krip-
pendorff’s α between each of the annotators and the
consolidated annotation.

A.4 Propaganda Techniques: Definitions

Below, we present the definitions of our 22 pro-
paganda techniques, together with examples: both
textual, and memes. Note that, for copyright rea-
sons, we show our own recreated versions of actual
memes from our dataset, where, for each meme,
we indicate the image(s) we used and the corre-
sponding license terms (as hyperlinks in the image
caption).
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1. Loaded Language: Using specific words and
phrases with strong emotional implications (i.e., ei-
ther positive or negative) to influence an audience.

An example meme is shown in Figure 6, which
contains four instances of this persuasion technique
in its text: killed thousands of innocents, retaliate,
kill, and warmonger.

Figure 6: Example for Loaded Language; Source(s):
Image 1, Image 2; License 1, License 2

2. Name Calling or Labeling: Labeling the ob-
ject of the propaganda as either something the
target audience fears, hates, finds undesirable, or
loves, praises.

Figure 7 shows three instances of this technique:
the two biggest threats to America, the worst senate
leader ever, and the most corrupt President ever.
Figure 6 also contains an instance: warmonger.

Figure 7: Example for Name Calling; Source(s): Im-
age 1, Image 2; License 1, License 2

3. Doubt: Questioning the credibility of someone
or something.

An example is shown in Figure 8, where the
entire text in the meme represents a span for this
technique, while the image is just for illustration.

Figure 8: Example for Doubt; Source(s): Image ; Li-
cense

4. Exaggeration or Minimisation: Representing
something in an excessive manner, making it larger,
better, worse (e.g., the best of the best); or making
it seem less important or smaller than it really is
(e.g., saying that an insult was just a joke).

An example is shown in Figure 9, where the
entire meme conveys an exaggeration. Moreover,
all three Name Calling instances in Figure 7 are
also examples of Exaggeration.

Figure 9: Example for Exaggeration; Source(s): Im-
age ; License
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5. Appeal to Fear/Prejudice: Seeking to build
support for an idea by instilling anxiety and/or
panic in the population towards an alternative. In
some cases, the support is built based on precon-
ceived judgments.

An example is shown in Figure 10, where both
the text and the image instill fear.

Figure 10: Example for Appeal to Fear; Source(s):
Image ; License

6. Slogans: A brief and striking phrase that may
include labeling and stereotyping. Slogans tend to
act as emotional appeals.

An example is shown in Figure 11, which con-
tains a slogan in its textual content: “Vaccines. It
isn’t always about you.”

Figure 11: Example for Slogan; Source(s): Image ;
License
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7. Whataboutism: A technique that attempts to
discredit an opponent’s position by charging them
with hypocrisy without directly disproving their
argument.

An example meme is shown in Figure 12, where
the entire text represents a span for this technique,
while the image is just for illustration.

Figure 12: Example for Whataboutism; Source(s):
Image ; License

8. Flag-Waving: Playing on strong national feel-
ing (or to any group such as race, gender, political
preference) to justify or promote an action or idea.

An example is shown in Figure 13, with the
technique expressed in the text and the image.

Figure 13: Example for Flag-Waving; Source(s): Im-
age ; License
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9. Misrepresentation of Someone’s Position
(Straw Man): An opponent’s proposition is sub-
stituted with a similar one, which is then refuted in
place of the original proposition.

An example meme is shown in Figure 14, which
contains an instance of this technique in its text:
here, the entire text in the meme represents a span
for this technique, while the image is irrelevant
for that technique (however, it is relevant for other
techniques such as Smears).

Figure 14: Example for Misrepresentation of Some-
one’s Position (Straw Man); Source(s): Image ; Li-
cense

10. Causal Oversimplification: Assuming a sin-
gle cause or reason when there are actually multiple
causes for an issue. It includes transferring blame
to one person or group of people without investi-
gating the complexities of the issue.

An example meme is shown in Figure 15, which
contains an instance of this technique in its text:
“You can’t get rich in politics unless you are a
crook.” This statement says that if somebody got
rich in politics, the only reason for this happening
should be that this person is a crook, while in real-
ity there are typically multiple causes. The image is
irrelevant for that technique (however, it is relevant
for other techniques such as Smears).

Figure 15: Example for Causal Oversimplification;
Source(s): Image 1, Image 2; License 1, License 2
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11. Appeal to Authority: Stating that a claim is
true simply because a valid authority or expert on
the issue said it was true, without any other sup-
porting evidence offered. We consider the special
case in which the reference is not an authority or
an expert in this technique, although it is referred
to as Testimonial in literature.

An example meme is shown in Figure 16, which
contains a quote by the 3rd President of the United
States.

Figure 16: Example for Appeal to Authority;
Source(s): Image ; License

12. Thought-Terminating Cliché: Words or
phrases that discourage critical thought and mean-
ingful discussion about a given topic. They are
typically short, generic sentences that offer seem-
ingly simple answers to complex questions or that
distract attention away from other lines of thought.

Figure 17 shows a meme with an instance of this
technique in its text: “PERIOD.”

Figure 17: Example for Thought-Terminating Cliché;
Source(s): Image 1, Image 2; License 1, License 2

13. Black-and-White Fallacy: Presenting two al-
ternative options as the only possibilities, when in
fact more possibilities exist. We also include dicta-
torship, where one tells the audience exactly what
actions to take, eliminating any other choices.

An example of this technique is shown in Fig-
ure 18, which offers only two choices.

Figure 18: Example for Black-and-White Fallacy;
Source(s): Image 1, Image 2; License 1, License 2
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14. Reductio ad Hitlerum: Persuading an audi-
ence to disapprove an action or idea by suggesting
that the idea is popular with groups hated or in con-
tempt by the target audience. It can refer to any
person or concept with a negative connotation.

Figure 19 shows a meme trying to discredit the
idea of being anti-union by saying that so is Donald
Trump, who in turn is shown in bad light.

Figure 19: Example for Reduction ad Hitlerum;
Source(s): Image , License

15. Repetition: Repeating the same message, so
that the audience eventually accepts it.

An example is shown in Figure 20, where the
repetition has a clear rhetorical function.

Figure 20: Example for Repetition; Source(s): Image
1, Image 2, Image 3, Image 4; License 1, License 2,
License 3, License 4

16. Obfuscation, Intentional Vagueness, Confu-
sion: Using words that are deliberately unclear, so
that the audience may have their own interpreta-
tions.

Figure 21, shows an example, where the entire
quote by Joe Biden is a span of this technique, as it
is unclear what exactly is meant here.

Figure 21: Example for Obfuscation, Intentional
vagueness, Confusion; Source(s): Image ; License
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17. Presenting Irrelevant Data (Red Herring):
Introducing irrelevant material to the issue being
discussed, so that everyone’s attention is diverted
away from the points made.

An example meme is shown in Figure 22, which
contains an instance of this technique in its text.
We can see that there is no real connection between
the two sentences. Here, the entire text represents
a span for this technique, while the image is for
reinforcement.

Figure 22: Example for Presenting Irrelevant Data
(Red Herring); Source(s): Image ; License

18. Bandwagon: Attempting to persuade the target
audience to join in and take the course of action
because “everyone else is taking the same action.”

Figure 23 shows an example that covers the en-
tire text; the image less relevant.

Figure 23: Example for Bandwagon; Source(s): Im-
age ; License

19. Smears: A smear is an effort to damage or
to call into question someone’s reputation, by pro-
pounding negative propaganda. It can be applied
to individuals or groups.

An example meme is shown in Figure 24, where
the combination of the image and the text conveys
the idea that Biden is unpopular.

Figure 24: Example for Smears; Source(s): Image ;
License
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20. Glittering Generalities: These are words or
symbols in the value system of the target audience
that produce a positive image when attached to
a person or issue. Peace, hope, happiness, secu-
rity, wise leadership, freedom, “The Truth”, etc.
are virtue words. Virtue can be also expressed in
images, where a person or an object is depicted
positively.

Figure 25 shows an example of the use of this
technique, in the right half of the meme. The tech-
nique covers the entire text span starting from “2 &
1/2 years . . .” until “GDP up 3.2% . . .” It is also ex-
pressed in the image, which depicts Donald Trump
in a positive way. The text–image combination
further strengthens the technique.

Figure 25: Example for Glittering Generalities;
Source(s): Image 1, Image 2; License 1, License 2

21. Appeal to (Strong) Emotions: Using images
with strong positive/negative emotional implica-
tions to influence an audience. We reserve this
technique to the images content only.

An example is shown in Figure 26, which in-
vokes strong emotions in the audience.

Figure 26: Example for Appeal to (Strong) Emotions;
Source(s): Image ; License
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22. Transfer: Also known as Association, this
is a technique of projecting positive or negative
qualities (praise or blame) of a person, entity, ob-
ject, or value onto another one to make the second
one more acceptable or to discredit it. It evokes
an emotional response, which stimulates the tar-
get to identify with recognized authorities. Often
highly visual, this technique often utilizes symbols
(for example, the swastikas used in Nazi Germany,
originally a symbol for health and prosperity) su-
perimposed over other visual images.

Figure 27 shows an example, where the Trans-
fer technique makes use of a communist symbol
(namely, hammer and sickle) on top of the pic-
tures of two targeted politicians, with the aim of
depicting them in a negative way. The technique is
further reinforced by the use of the red color (which
is also a symbol of Communism), and by the two
instances of Name Calling (“Moscow Mitch” and
“Moscow’s bitch”), which make a connection to
Moscow (which in turn was the capital of the for-
mer Communist block).

Figure 27: Example for Transfer; Source(s): Image 1,
Image 2; License 1, License 2
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B Subtasks: Definition, Data Format,
and Data Examples

Below, we describe the three subtasks and the gen-
eral data format for each of them. We further show
an example of an annotated example for each sub-
task.

B.1 Subtask 1
This is a multi-label classification problem, defined
as follows:

Subtask 1 (ST1) Given only the “textual con-
tent” of a meme, identify which of the 20
techniques are used in it.

The data for ST1 comes as a JSON object in the
following format:
{

id -> example identifier,
labels -> list of persuasion

techniques,
text -> text of the meme

}

Here is an example:
{
"id": "125",
"labels": [

"Loaded Language",
"Name calling/Labeling"

],
"text": "I HATE TRUMP\n\n

MOST TERRORIST DO"
}

B.2 Subtask 2
ST2 is a more complex version of ST1, as it asks
not only for the techniques but also for the exact
spans of use each technique. This subtask is a com-
bination of the two subtasks in SemEval-2020 task
11. It is a multi-label sequence tagging problem,
defined as follows:

Subtask 2 (ST2) Given only the “textual content”
of a meme, identify which of the 20 tech-
niques are used in it together with the span(s)
of text covered by each technique.

The data for ST2 comes as a JSON object with
the following format:
{
id -> example identifier,
text -> text of the meme
labels : [ -> list of objects

{
start -> start index,
end -> end index,
technique -> technique,
text_fragment -> text

}
]

}

Here is an example:
{
"id": "125",
"text": "I HATE TRUMP\n\n

MOST TERRORIST DO"
"labels": [
{
"start": 2,
"end": 6,
"technique": "Loaded Language",
"text_fragment": "HATE"

},
{
"start": 19,
"end": 28,
"technique": "Name calling/
Labeling",
"text_fragment": "TERRORIST"

}
]

}

Note that the labels to be predicted for ST2 are
the same ones as for ST1, but this time the spans
are to be predicted as well.

B.3 Subtask 3
ST3 is a multi-modal version of ST1, where the
image is also provided. It is a multi-label classifi-
cation problem, defined as follows:

Subtask 3 (ST3) Given a meme, identify which
of the 22 techniques are used both in the tex-
tual and in the visual content of the meme.
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The data for ST3 comes as a JSON object with
the following format:
{

id -> example identifier,
labels -> list of persuasion

techniques,
image -> name of the image file,
text -> text of the meme

}

Here is an example:
{
"id": "125",
"labels": [

"Loaded Language",
"Name calling/Labeling",
"Reductio ad hitlerum",
"Smears",

],
"image": "125_image.png"

}

Here, the image, which is shown in Figure 28),
gives rise to two additional persuasion techniques
compared to ST1: Reductio ad Hitlerum and
Smears. These techniques are not clearly present in
the text alone. Indeed, the image is needed for us
to see that there is Smears, as this can be only seen
when we understand that this is a dialog with a neg-
ative propaganda targeting one of the participants
(Ilhan Omar). Similarly, we need the image for Re-
ductio ad Hitlerum: the image shows us that Ilhan
Omar is depicted as a bad person (she is targeted
by the Name Calling “terrorist”, and she is also the
target of the Smears), and thus the message being
conveyed is that any choice that such a bad person
does has to be a bad choice, i.e., hating Trump is a
bad thing to do as this is something terrorists do.

Figure 28: The meme with id=125; Source(s): Image
1, Image 2; License 1, License 2

96



C Participating Systems

Below, we give a brief description of the partici-
pating systems, listed in alphabetical order, with
reference to the corresponding task description pa-
per. The numbers in square brackets refer to the
official ranking of the target system on the individ-
ual subtasks.

1213Li (Peiguang et al., 2021)[ST3: 3rd] used
RoBERTa and ResNet-50 as feature extractors for
texts and images. They used a label embedding
layer with a multi-modal attention mechanism to
measure the similarity between labels with the
multi-modal information and fused features for la-
bel prediction.

AIMH (Messina et al., 2021) [ST1: 5th, ST3:
4th] used transformer-based models and pro-
posed visual–textual transformers to mainly ad-
dress subtask 3 (ST3). For the visual part, they
used ResNet50, and for the textual part, they used
BERT. The same network used the multi-label clas-
sification on text (ST1) by using only the textual
part of the network.

Alpha (Feng et al., 2021) [ST1:2nd, ST3:1st]
team pre-trained a transformer using text with vi-
sual features. They extract grid features, using
ResNet50, and salient region features, using BUTD.
They used grid features to capture the high-level se-
mantic information found in the images. Addition-
ally, they used salient region features to describe ob-
jects and to caption the event present in the memes.
For ST1, they combined the text and the text rep-
resentation of the visual features, and trained De-
BERTa. For ST3, they built an ensemble of fine-
tuned DeBERTA+ResNet, DeBERTA+BUTD, and
ERNIE-VIL.

HOMADOS (Kaczyński and Przybyła, 2021)
[ST2: 2nd] used a multi-task learning (MTL)
approach with additional datasets such as the PTC
corpus from SemEval-2020 (Da San Martino et al.,
2020a), and a fake news corpus (Przybyla, 2020).
The model was trained using BERT followed by
several output layers, which solve auxiliary tasks
of propaganda detection and credibility assessment
in two distinct scenarios: sequential and paral-
lel MTL, effectively accelerating the training pro-
cess. The final submission used a parallel MTL
approach on the propaganda detection of SemEval-
2020, which ranked second.

TeamFPAI (Xiaolong et al., 2021) (ST2: 3rd)
formulated the task as a question answering one in
a machine reading comprehension (MRC) frame-
work, which achieved better results compared to
an ensemble-based approach (Liu et al., 2018).
Moreover, data augmentation and loss design tech-
niques were also explored to alleviate the problem
of data sparseness and imbalance. Their system
was ranked 3rd in the final evaluation phase.

CSECUDSG (Hossain et al., 2021) (ST1: 13th,
ST2: 6th, ST3: 6th) participated in all three sub-
tasks. For ST1, they used a majority vote late fu-
sion on top of logistic regression, decision tree, and
fine-tuned DistilBERT models. For ST2, they refor-
mulated the task as one of multi-label classification,
where a pre-trained BERT model was used to de-
sign binary classifiers for each technique in a multi-
label classification setting. For ST3, they used a
majority voting late fusion on top of fine-tuned Dis-
tilBERT, ResNet50, and a predicted label from an
early fusion model. The early fusion model con-
sisted of features from (i) multi-kernel CNN on top
of the LSTM model with word embeddings includ-
ing (ii) word2vec (Mikolov et al., 2013), (iii) word
embeddings fine-tuned FastBERT (Liu et al., 2020),
(iv) RoBERTa, (v) sentence embeddings from Fast-
BERT, (vi) image features from YouTube-8M (Abu-
El-Haija et al., 2016), and (vii) multimodal features
from VisualBERT (Li et al., 2019).

LeCun (Dia et al., 2021) [ST1: 6th] trained
five models and combined them in an ensemble.
Initially, they pre-processed text using stemming.
Later, they trained DebERTA and RoBERTa mod-
els with augmented data using synonym replace-
ment, random insertion, random swap, random
deletion and back-translation. They first trained
the five models separately, and then they fine-tuned
the ensemble on the official non-augmented data.

LIIR (Ghadery et al., 2021)[ST3: 8th] used
data augmentation through back-translation and
CLIP to obtain image and text representations,
which were then fed to a chained classifier that uses
the correlations between the output techniques.

LT3-UGent (Singh and Lefever, 2021) [ST3:
14th] participated in subtask 3 only. They used
Multimodal Compact Bilinear Pooling to combine
representations from ResNet-51 and BERT. They
further fine-tuned on the PTC corpus (Da San Mar-
tino et al., 2020a).
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MinD (Tian et al., 2021) [ST1: 1st, ST3: 2nd]
used five pre-trained models for ST1: BERT,
RoBERTa, XLNet, DeBERTa, and ALBERT.
They first fine-tuned them on the PTC cor-
pus (Da San Martino et al., 2020a), and then on
the training data. For the final prediction, they
averaged the probabilities of the models. They
also used a post-processing rule: a bigram that
appeared more than three times was flagged as a
Repetition. The system for ST1 was also used for
ST3, combined with (i) ResNet-34, a face recogni-
tion system, (ii) OCR-based positional embeddings
for text boxes in the image, and (iii) Faster R-CNN
to extract region-based image features. They com-
bined the textual and the visual representations by
averaging their probabilities. Other multimodal
fusion strategies included concatenation of the rep-
resentation and mapping them to the space using a
multilayer perceptron.

NLP-IITR (Gupta and Sharma, 2021) [ST1:
15th] used an ensemble that included included
fine-tuned RoBERTa, BERT, and three additional
models. They further used pre-processing. To
tackle data scarceness for some rare labels, they
used data augmentation using back-translation.

NLyticsFKIE (Pritzkau, 2021) [ST1: 9th, ST3:
13th] used RoBERTa as a text encoder in ST1
and ST3. For ST1, they used RoBERTa’s output
to build a classifier to predict each label separately.
For ST3, they still used RoBERTa to encode the
text and a VGG-16 layer to encode the image. They
used multiple copies of a cross-modality encoder
that outputs an encoding of the image features with
respect to the text features, and vice versa. The
concatenation of the two cross-encoders’ outputs
was then passed through a residual layer followed
by layer normalization.

Volta (Gupta et al., 2021) [ST1: 3rd, ST2: 1st,
ST3: 5th] used a combination of transformers
for all subtasks. For ST1, they used RoBERTa’s
[CLS] token, which they fed to a feed-forward neu-
ral network, and example weighting to take care
of class imbalance. For ST2, they predicted token
classes by considering the output of each token em-
bedding as obtained by RoBERTa. To account for
subwords’ class, they merged each subword belong-
ing to the same token and assigned the union of the
subwords’ labels. For ST3, they separately encoded
the textual features (extracted using RoBERTa) and
the multi-modal features (extracted using UNITER,

VisualBERT, and LXMERT). This layer’s input
was a sequence of textual subwords and visual to-
kens extracted by keeping the top 36 regions of
interest as returned by Faster R-CNN. A concatena-
tion of the two different [CLS] tokens was then fed
into an MLP, and weighted labels were used with a
cross-entropy loss.

WVOQ (Roele, 2021) [ST2: 5th] used a novel
approach to ST2 consisting of adopting an encoder–
decoder strategy. The encoder encodes the passage,
while the decoder generates a marked version of
the input, where the markup outlines the various
spans along with the classes they belong to. In
this way, the system performed simultaneous span
detection and classification. The encoder–decoder
used a specialization of BART.

YNU-HPCC (Zhu et al., 2021) [ST1: 12th, ST2:
7th, ST3: 11th] For ST1, they used a CNN on
top of ALBERT and fine-tuned the model for multi-
label classification. For ST2, each propaganda tech-
nique was considered as an independent task, and
features were extracted from the pre-trained BERT
model. Subsequently, the problem was addressed
as a multi-task sequence labeling one, and the re-
sults for each task were combined. For ST3, a
multi-modal network was used, where embeddings
from textual and visual networks were concate-
nated, which was followed by a fully connected
layer. For the text, the same approach was used for
ST1, and for the image, ResNet and VGGNet were
used for image feature extraction.
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Abstract

This paper describes our system participated
in Task 6 of SemEval-2021: this task focuses
on multimodal propaganda technique classi-
fication and it aims to classify given image
and text into 22 classes. In this paper, we
propose to use transformer-based (Vaswani
et al., 2017) architecture to fuse the clues
from both image and text. We explore two
branches of techniques including fine-tuning
the text pre-trained transformer with extended
visual features and fine-tuning the multimodal
pre-trained transformers. For the visual fea-
tures, we experiment with both grid features
extracted from ResNet(He et al., 2016) net-
work and salient region features from a pre-
trained object detector. Among the pre-trained
multimodal transformers, we choose ERNIE-
ViL (Yu et al., 2020), a two-steam cross-
attended transformers model pre-trained on
large-scale image-caption aligned data. Fine-
tuning ERNIE-ViL for our task produces a
better performance due to general joint mul-
timodal representation for text and image
learned by ERNIE-ViL. Besides, as the distri-
bution of the classification labels is extremely
unbalanced, we also make a further attempt
on the loss function and the experiment re-
sults show that focal loss would perform better
than cross-entropy loss. Lastly, we ranked first
place at sub-task C in the final competition.

1 Introduction

Propaganda is usually adopted to influence the au-
dience by selectively displaying the facts to encour-
age specific synthesis or perception, or using the
loaded language to produce emotion rather than
emotion itself. It was often associated with mate-
rials prepared by governments in the past century.
In the internet era, activist groups, companies, reli-
gious organizations, the media, and individuals also

∗indicates equal contribution.

produce propaganda, and sometimes it can reach
very large audiences (Da San Martino et al., 2020).
With the recent research interest in detecting “fake
news”, the detection of persuasion techniques in
the texts and images has emerged as an active re-
search area. Most previous work like (Patil et al.,
2020) and (Chauhan and Diddee, 2020) have per-
formed the analysis at the language content level
only. However, in our daily life, memes consist of
images superimposed with texts. The aim of the
image in a meme is either to reinforce a technique
in the text or to convey one or more persuasion
techniques.

SemEval-2021 Task6-c offers a different per-
spective, multimodal multi-label classification
(Dimitrov et al., 2021), identify which of the 22
techniques are used both in the textual and visual
content of memes. Since memes are combinations
of texts and images, for this propaganda classifi-
cation task, we proposed to use transformer-based
architecture to fuse the clues from both linguis-
tic and visual modalities. Two branches of fine-
tuning techniques are explored in this paper. First,
a text pre-trained transformer is applied with ex-
tended visual features. Specifically, we initialize
the transformer with pre-trained text transformers
and fine-tune the model with extended visual fea-
tures including grid features(e.g., ResNet(He et al.,
2016)) and region features(e.g., BUTD (Anderson
et al., 2018)) from an image feature extraction net-
work and an object detector respectively. Second,
pre-trained multimodal transformers from ERNIE-
ViL(Yu et al., 2020) are used due to its better mul-
timodal joint representations characterizing cross-
modal alignments of detailed semantics.

Our contributions are three-folds:

• We propose to use transformer architecture
for fusing the visual and linguistic clues to
tackle the propaganda classification task.
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• We find that the multimodal pre-trained trans-
formers work better than using text pre-trained
transformers with visual features. And the ex-
periment results have shown that fine-tuning
the ERNIE-ViL model could achieve state-of-
the-art performance for this task.

• Our ensemble result of several models obtains
the best score and ranks first in Semeval-2021
Task 6-c multimodal classification task.

2 Related work

2.1 Text Transformers
Transformer network (Vaswani et al., 2017) is first
introduced in neural machine translation in which
encoder and decoder are composed of multi-layer
transformers. After then, pre-trained language
models, such as BERT (Devlin et al., 2018) and
GPT(Radford et al., 2018), adopting transformer
encoder as the backbone network, have signifi-
cantly improved the performance on many NLP
tasks. One of the main keys to their success is the
usage of transformer to capture the contextual infor-
mation for each token in the text via self-attention.
Later text pre-training works, such as ERNIE2.0
(Sun et al., 2020), RoBERTa (Liu et al., 2019) and
XLNET (Yang et al., 2019) are all shared the same
multi-layer transformer encoder and mainly put
their effort on modification of pre-training task.

2.2 Visual Feature Extraction
Visual feature extractors are mainly composed of
plenty of convolutional neural networks (CNN)
since CNN has a strong ability to extract complex
features that express the image with much more de-
tails and learn the task-specific features much more
efficiently. Existing works can be divided into the
following two types which are based on two differ-
ent image inputs: image grids and object regions.
Some of those methods, such as VGG (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016)
operate attention on CNN features corresponding
to a uniform grid of equally-sized image regions.
While the other works like Faster R-CNN (Ren
et al., 2015) operate a two-stage framework, which
firstly identifies the image regions containing the
specific objects, and then encodes them with multi-
layer CNNs.

2.3 Multimodal Transformers
Inspired by text pre-training models (Devlin et al.,
2018), many cross-modal pre-training models for

vision-language have been proposed. To integrate
visual features and text features, recent multimodal
pre-training works are mainly based on two vari-
ables of transformers. Some of them, like UNITER
(Chen et al., 2019) and VILLA (Gan et al., 2020)
use a uniform cross-modal transformer modelling
both image and text representations. As fine-tuning
on multimodal classification tasks, such as the
Visual-question-answering (VQA) (Antol et al.,
2015) task (a multi-label classification task), uni-
fied transformers take textual and visual features
as the model input, treat the final hidden state of
h[CLS] as the vision-language feature. While the
others like Vilbert (Lu et al., 2019), LXMERT (Tan
and Bansal, 2019), ERNIE-ViL (Yu et al., 2020)
are based on two-stream cross-modal transformers,
which bring more specific representations for im-
age and text. These two transformers are applied
to images and texts to model visual and textual
features independently and then fused by a third
transformer in a later stage. The fusion of the final
hidden state of h[CLS] and h[IMG] are used to do
the classification.

3 Approach

We propose to use a transformer encoder to fuse
the clues from both linguistic and visual modalities
and our approach is summarized in two branches,
the first one is fine-tuning a text pre-trained trans-
former with extended visual features, and the other
one is fine-tuning a multimodal pre-trained model.
For the first one, we try two different sets of vi-
sual features, grid features based on equally-split
patches of the image and salient region features
based on an object detector. For the second one,
a SoTA multimodal model, ERNIE-ViL (Yu et al.,
2020) is applied with a multi-label classification
loss. A unified framework for the two branches is
shown in Figure 1. We will introduce more details
in this section.

3.1 Text Pre-trained Transformer with
Visual Features

Our model consists of three parts: a) input feature
extractor, b) feature fusion encoder, c) classifica-
tion encoder.

For the first part, the text is tokenized into sub-
words to lookup the embedding while the image is
processed by a feature extractor, such as a grid fea-
ture processor or a salient region feature processor
to convert into vision embeddings. The input em-
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Figure 1: A unified framework used for the multimodal classification task.

beddings are combinations of image embeddings
and text embeddings and represented as

h[CLS], ht1 , · · · , htn , h[SEP ], hi1 , · · · , him , h[SEP ]

where the h[CLS], h[SEP ] are the vector represen-
tations of special tokens [CLS] and [SEP ] respec-
tively. The [CLS] token is inserted in the begin-
ning of the sequence, which act as an indicator of
the whole text, specifically, it is used to perform
complete text classification. The [SEP ] is a token
to separate a sequence from the subsequent one
and indicate the end of a text. ht1 , · · · , htn are the
text embeddings, and hi1 , · · · , him are the vision
embeddings. For the vision embeddings part, grid
features and salient region features are used.

Grid Features Convolutional neural networks
have potent capabilities in image feature extrac-
tion. The feature map obtained after the image
goes through multiple stacked convolution layers
contains high-level semantic information. Given an
image, we can use a pre-trained CNN encoder, such
as ResNet, to transform it to a high-dimensional
feature map and flatten each pixel on this feature
map to form the final image representation.

Salient Region Features Object detection mod-
els are widely used to extract salient image regions
from the visual scene. Given an image, we use a
pre-trained object detector to detect the image re-
gions. The pooling features before the multi-class

classification layer are utilized as the region fea-
tures. The location information for each region is
encoded via a 5-dimension vector representing the
fraction of image area covered and the normalized
coordinates of the region and then is projected and
summed with the region features.

For the second part, the transformer encoder
fuses the input text and image embedding, and
finally a cross-modal representation of size D is
achieved for this sequence.

The last part of our model is the classification
encoder and loss function. After obtaining the en-
coding representation of the image and the text
from the transformer encoder, we send the repre-
sentation of [CLS] through the classification head,
which is consisted of a fully connected layer and
a Sigmoid activation for predicting the score of
each category and loss with the ground truth.

3.2 Multimodal Pre-trained Transformer

Different from a single-modal pre-trained text trans-
former described above, a multimodal pre-trained
transformer for vision-language can learn more ef-
ficient presentations. In this part, a SoTA model,
ERNIE-ViL, is applied.

For the generation of input embedding of text
and image, it is mostly the same as the procedure
described in the previous section. Differences are
two-folds. First, for the vision feature, a faster
R-CNN encoder(Anderson et al., 2018) is used to
detect the salient regions while the position infor-
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mation is taken into consideration. Second, The
text and the visual input embedding is represented
as

h[CLS], ht1 , · · · , h[SEP ], h[IMG], hi1 , · · · , h[im]

where there is a new token h[IMG] represents the
feature for the entire image.

For the feature fusion part, ERNIE-ViL utilized
a two steam cross-modal transformer to fuse the
multimodal information. For more details, you may
refer to (Yu et al., 2020).

3.3 Criterion

In this task, there are 22 classes and the distribu-
tion of positive and negative samples is extremely
unbalanced. To solve this problem, we use the fo-
cal loss to improve the imbalance of positive and
negative samples. For i-th class

Lclassi =

{
α(1− p)γlog(p) if y=1
(1− α)pγlog(1− p) otherwise

where y is the ground truth; p is model prediction,
which is the confidence score of category i; α and γ
are hyper-parameters, α is used to control the loss
weight of positive and negative samples, and γ is
used to scale the loss of difficult and easy samples.

4 Experiment

4.1 Implementation Details

In this task, we choose DeBERTa-large+ResNet50,
DeBERTa-large+BUTD and ERNIE-VIL as the fi-
nal models. We performed all our experiments on
a Nvidia Tesla V100 GPU with 32 GB of mem-
ory. The models are trained for 20 epochs and we
pick the model which has the best performance on
validation set.

For the DeBERTa transformer, the Adam opti-
mizer with a learning rate of 3e-5 is used. Also, we
have applied the linear warm strategy for the learn-
ing rate. We set α = 0.9 and γ = 2.0 for the focal
loss. To ensure robustness under a small dataset,
we set the threshold to 0.5 instead of performing a
threshold search strategy on the validation set. For
the pre-trained object detector, we choose Faster R-
CNN (Anderson et al., 2018) and name the region
features as BUTD in the experimental results.

For the ERNIE-ViL transformers, we use the
same input prepossessing methods as (Yu et al.,

Positive(%) Negative(%)
train 1745(11.55%) 13369(88.45%)
dev 183(13.20%) 1203(86.80%)
test 523(13.49%) 3877(86.51%)

Table 1: Statistics of the positive and negative distribu-
tion of the dataset.

Loss Function Precision Recall F1
cross-entropy 76.12 55.74 64.35

focal loss 71.18 66.12 68.56

Table 2: Results of different loss functions.

2020) and choose the large scale model1 pre-
trained on all the four datasets. We finetune on
our multimodal classification dataset with a batch
of 4 and a learning rate of 3e-5 for 20 epochs.

4.2 Experimental Analysis

4.2.1 DeBERTa with Visual Features
Unbalanced Distribution There are 687/63/200
examples includes 22 categories in the
train/validation/test datasets respectively. As
shown in Table 1, the distribution of the classes is
extremely unbalanced. If the cross-entropy loss is
adopted directly during model training(the visual
features are from ResNet50), the model output may
have a greater chance of predicting the majority
class(negative class in this task), which results in a
lower recall. To solve this problem, the focal loss
is applied. From Table 2, it can be seen that the
result with focal loss performs much better than
with cross-entropy loss respective to the F1 score.

Visual Features We evaluate the improvement
brought by extended visual features and explore
different types of visual feature extractors, e.g.,
from pre-trained image classification networks or
pre-trained object detectors. The results are illus-
trated in Table 3. Firstly, it can be seen that the
final score is significantly improved with mixing
image features compared with using only text fea-
tures (Row “w/o vision feature”), which indicates
that the visual information is significantly benefi-
cial for recognizing cross-modal propaganda tech-
niques. Then, for features extracted from ResNet,
we find that the depth of the network affects the
results, especially on the validation dataset, with
the best result from ResNet50. The reason may be

1the pre-trained model is downloaded from
https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-vil
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dev-F1 test-F1
w/o vision feature 65.73 55.10

ResNet18 65.92 55.59
ResNet50 68.56 55.96
ResNet152 65.91 55.63

BUTD 66.29 56.21

Table 3: The results of using features extracted differ-
ent networks.

region numbers Dev F1 Test F1
5 64.91 54.00
10 66.67 54.60
36 67.40 57.14
100 67.45 56.07

Table 4: Results comparisons with different object re-
gion number inputs.

that the shallower network has insufficient feature
extraction capabilities, and the deeper network is
very difficult to train. Finally, the region features
from the pre-trained object detector(Row “BUTD”)
work best with an improvement of 0.25 on the test
dataset compared to ResNet50 features.

4.2.2 ERNIE-ViL
We compare the performance between ERNIE-ViL
with different object region inputs, which are num-
ber dynamic ranges between 0 and 36 with a fixed
confidence threshold of 0.2 and constantly fixed
5, 10, or 100 boxes. The results are illustrated in
Table 4.

Results show that a larger box number can al-
ways achieve better performance within a certain
range. Utilizing 0-36 boxes leads to huge perfor-
mance improvement with a 3.14 and 2.54 on Test-
F1 compared with using constant 5 boxes and con-
stant 10 boxes respectively. It can be concluded
that more object regions in a certain range can
provide more useful information. However, the per-
formance with 100 boxes is worse than that with
0-36 boxes. The reason may lie in that there are
not enough objects in the task sample. The ex-

Models Dev-F1 Test-F1
DeBERTa + ResNet50 68.56 55.96

DeBERTa + BUTD 66.29 56.21
ERNIE-VIL 67.40 57.14
Ensemble 69.12 58.11

Table 5: Final ensemble result.

tracted low-confidence object regions may mislead
the multimodal model, therefore fuse useless or
harmful visual features with text features. As a
result of that, brings a performance decrease on the
final score.

4.3 Ensemble Results

The performance comparison between our two
branches of approach is shown in Table 5. It can
be concluded that fine-tuning the multimodal pre-
trained transformer (Row “ERNIE-ViL”) works
better than fine-tuning text pre-trained transformers
with visual features (Row “DeBERTa + BUTD”).
Overall, fine-tuning ERNIE-ViL has achieved state-
of-the-art performance for this multimodal classifi-
cation task.

Since the training dataset is small, we train mul-
tiple models under various model structures and
different parameter configurations to take full ad-
vantage of the training dataset and increase the
diversity of models. We choose three models of all
model structures and all parameter configuration
that performs best on the validation set and then
ensemble them together. After performing ensem-
ble strategy on those three models, both validation
and test scores increases. As a result of that, we
achieved a 58.11 score at F1 in the test set and
ranked first place in the task competition.

5 Conclusion

We explore two branches to fine-tune pre-trained
transformers to jointly modelling texts and images
for the propaganda classification task. The first
branch, fine-tuning pre-trained text transformer
with visual feature, obtain significant performance
improvement compared to text classification which
validate the importance of visual clues for this task.
Visual features from object detector yield slightly
better results than grid features from ResNet. Im-
portantly, fine-tuning pre-trained multimodal trans-
formers obtain the best single model performance.
And this improvement further validates the claim
made by previous work that vision-language pre-
training learned general joint representation needed
for multimodal tasks. Besides, since the distribu-
tion of the classification labels is extremely unbal-
anced, we also make a further attempt on the loss
function. Training models with focal loss can lead
to a huge performance improvements than training
with cross entropy loss.
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Abstract

SemEval 2021 Task 7, HaHackathon, was the
first shared task to combine the previously sep-
arate domains of humor detection and offense
detection. We collected 10,000 texts from
Twitter and the Kaggle Short Jokes dataset,
and had each annotated for humor and offense
by 20 annotators aged 18-70. Our subtasks
were binary humor detection, prediction of
humor and offense ratings, and a novel con-
troversy task: to predict if the variance in
the humor ratings was higher than a specific
threshold. The subtasks attracted 36-58 sub-
missions, with most of the participants choos-
ing to use pre-trained language models. Many
of the highest performing teams also imple-
mented additional optimization techniques, in-
cluding task-adaptive training and adversarial
training. The results suggest that the partic-
ipating systems are well suited to humor de-
tection, but that humor controversy is a more
challenging task. We discuss which models
excel in this task, which auxiliary techniques
boost their performance, and analyze the er-
rors which were not captured by the best sys-
tems.

1 Introduction

Humor is a key component of many forms of com-
munication, and so it is commanding an increasing
amount of attention in the natural language process-
ing (NLP) community (Attardo, 2008; Taylor and
Attardo, 2017; Amin and Burghardt, 2020). How-
ever, like much of figurative language processing,
humor detection requires a different perspective on
several traditional NLP tasks. For example, the
problem of reducing lexical or syntactic ambigu-
ity differs when ambiguity is key to some humor
mechanisms. Tackling these challenges has the po-
tential to improve many downstream applications,
such as content moderation and human-computer
interaction (Rayz, 2017).

However, humor is a subjective phenomenon,
which evokes varying degrees of funniness in its
audience, while also provoking other reactions such
as offense, in certain listeners. The perception of
humor is known to vary along the lines of age,
gender, personality and other factors (Ruch, 2010;
Kuipers, 2015; Hofmann et al., 2020). That hu-
mor can also evoke offense may be partly due to
differences in acceptability judgements across de-
mographic groups, and may also be in part due the
use of humor to mask hateful or offensive content
(Sue and Golash-Boza, 2013). Lockyer and Picker-
ing (2005) expand on this by highlighting that it is
common for societies to explore the link between
humor and offense, free speech and respect.

HaHackathon is the first shared task to combine
humor and offense detection, based on ratings from
a wide variety of demographic groups. Task partic-
ipants were asked to detect if a text was humorous
and to predict its average ratings for both humor
and offense. We also introduce a novel humor con-
troversy detection task, which represents the extent
to which annotators agreed/disagreed with each
other over the humor rating of a joke. A humorous
text was labelled as controversial if the variance
in the humor ratings was higher than the median
humor rating variance in the training set.

2 Related Work

Computational humor detection is a relatively es-
tablished area of research. Taylor and Mazlack
(2004) were one of the first to explore recognising
wordplay with ngrams. Mihalcea and Strapparava
(2005; 2006) experimented with 16,000 one-liners
and 16,000 non-humorous texts, using a feature-
driven approach. More recently, Zhang and Liu
(2014) turned to online domains, by detecting hu-
mor on Twitter with a view to improving down-
stream tasks such as sentiment analysis and opinion

105



mining.
Workshops on humor detection have become

more prominent with each shared task, and have
attracted many new researchers to the field. Se-
mEval 2017 (Potash et al., 2017) featured Hashtag
Wars, a humor task with a unique data annotation
procedure. This task featured tweets that had been
submitted in response to a number of comedic hash-
tags released by a Comedy Central program. The
top-10 response tweets were selected by the show’s
producers and the winning tweet was selected by
the show’s audience. Based on these labels, (top-10,
winning tweet, and other) the sub-tasks required
competitors to predict the labels, and to predict
which text was funnier, given a pair tweets. The
winning systems were split between feature-driven
support vector machines (SVMs) and recurrent neu-
ral networks (RNNs).

The first Spanish-language humor detection chal-
lenges were the HAHA tasks in 2018 (Castro et al.,
2018) and 2019 (Chiruzzo et al., 2019). These
collected data from more than fifty different humor-
ous Twitter accounts, representing a wide variety
of humor genres. The sub-tasks asked competitors
to predict if a text was humorous, and to predict
the average funniness score given to the humorous
texts. In the first year, the top teams used evolution-
ary algorithms to optimize linear models like Naive
Bayes, as well as bi-directional RNNs. In the sec-
ond year, the top teams started to use pre-trained
language models (PLMs) like BERT (Devlin et al.,
2018) and ULMFit (Howard and Ruder, 2018).

Most recently, Hossain et al. (2020) generated
data for their task by collecting news headlines,
and asking annotators to make a micro-edit to the
headline to render it funny. These edited headlines
were rated for funniness by other annotators. The
sub-tasks were to rank the funnier of two edits, and
to predict the average funniness score given by the
annotators. The winning teams used ensembles of
various PLMs, and RNNs.

3 Data

3.1 Data Collection
In order to examine naturally-occurring humorous
and offensive content in English, we sourced 80%
of our data from Twitter. The remaining 20% of
texts, we selected from the Kaggle Short Jokes
dataset1 for the following reasons:

1https://www.kaggle.com/
abhinavmoudgil95/short-jokes

Target Keywords

Sexism
She, woman, mother, girl, b*tch, he,
man, blond, p*ssy, hooker, slut,
wh*re

Body
Fat, thin, skinny, tall, short, bald,
amputee, redneck

Origin

Mexico, Mexican, Ireland, Irish,
Indian, Pakistan, China, Chinese,
Polish, German, France, Welsh,
Vietnam, Asian, American, Russia,
Arab, Jamaican, homeless

Sexual
Orientation

Gay, lesbian, d*ke, f*ggot, homo,
aids, LGBT, trans, tr*nny

Racism
Black, Africa, African, wop, n*****
white people,

Ideology Feminism, leftie/lefty

Religion
Muslim, Islam, Jew, Jewish, Catholic,
Protestant, Hindu, Buddhist, ISIS,
Jesus, Mohammed

Health
Wheelchair, blind, deaf, r*tard,
Steven Hawking, Stevie Wonder,
Helen Keller, dyslexic

Table 1: Targets and Sample Keywords

• Humor Quota: To ensure that a sample of
texts in the dataset were intended to be humor-
ous. Our annotation procedure asks raters if
the intention of the text is to be humorous (as
evidenced by the the setup/punchline struc-
ture, or absurd content). As the texts were
sourced from the /r/jokes and /r/cleanjokes
subreddits, we were confident that the inten-
tion of the text was to be humorous.

• Traditional Humor Quota: We wanted to
represent jokes which have a traditional setup
and punchline structure. Twitter humor is
known to use a number of unique features
(Zhang and Liu, 2014), which may not be
equally recognisable to all annotators and so
we wanted to have a selection of convention-
ally recognisable texts in order to gauge what
the audience response was, and to use as a
quality check for annotators (see below).

• Offense Quota: To ensure that a proportion
of texts were likely to be considered offensive
by the annotators, half of the texts selected
according to the procedure below.

To select potentially offensive texts, we used
some of the keywords associated with Silva et al.’s
(2016) sub-categories of hate speech in social me-
dia, and queried the Kaggle dataset for these.
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Text Keyword = Target
A fat woman just served me at McDonalds and said ”Sorry about the wait”.
I replied and said, ”Don’t worry, you’ll lose it eventually”.

Yes

Don’t worry if a fat guy comes to kidnap you...
I told Santa all I want for Christmas is you.

No

Table 2: Sample of potentially offensive and non-offensive texts

From these texts, we identified the target, or butt,
of the joke and made the assumption that a text
could be potentially offensive to our annotators
if the hate speech keyword was the target of the
joke. We selected 1,000 texts this way. We also
assumed that the text would likely be considered
not offensive if the keyword was mentioned, but
was not the target and selected a further 1,000 texts
like this. This was to reduce the probability that
a humor/offense detection system would learn to
classify texts simply based on the presence of a
hate speech keyword.

3.1.1 Selection of Twitter texts
In order to avoid introducing annotation confounds
such as a lack of cultural or linguistic knowledge
(Meaney, 2020), we selected the texts and the an-
notators from the same region – the US. When
sourcing the humorous Twitter data, we selected
accounts according to whether they were based in
the US and posted almost exclusively humorous
content (e.g. @humurous1liners, @conanobrien).
For the non-humorous Twitter accounts, we elected
not to use news sources, e.g. CNN due to stylistic
differences between news and humor (Mihalcea
and Strapparava, 2006) making them easy to differ-
entiate. The non-humorous accounts we selected
centred on US celebrities (e.g. @thatonequeen,
@Oprah), organisations that represent the targets
of hate speech groups (e.g. @BlkMentalHealth, in
order to increase the occurrences of the keywords in
a non-humorous and non-offensive context), trivia
accounts (e.g. @UberFacts, as the question and
answer structure is similar to some types of setup
and punchline) and tv/movie quotation accounts
(e.g. @MovieQuotesPage, in order to resemble the
dialogue-type jokes that are common on Twitter).
Please see the appendix for a comprehensive list of
accounts.

Using the Twitter API, we crawled up to 2,000
tweets from each account, and removed retweets
and texts containing links. We also removed tweets
that contained references to US Politics, the pan-
demic, or TV show characters as topical humor can

be difficult to understand once the event it is tied
to has passed (Highfield, 2015). From an initial
76,542 texts, we were left with 8,000 tweets. From
these, we removed hashtags that labelled the texts
as humorous, e.g. #joke, and using Ekphrasis (Bazi-
otis et al., 2017) we split up any remaining hashtags
into their constituent words so as to make them less
easy to differentiate from the Kaggle texts.

3.2 Annotation
We recruited annotators from the Prolific2 plat-
form. Participants were recruited based on their
self-reported native English-speaker status, US cit-
izenship, and membership of one of the following
age groups: 18-25, 26-40, 41-55, 56-70. Each text
was annotated by 5 members of each age group,
giving a total of 20 annotations per text. Batches
comprised 100 texts, and annotators answered the
following questions:

1. Is the intention of this text to be humorous?

2. Is this text generally offensive?

3. Is this text personally offensive?

In the case that a user answered ‘yes’ to any of
these questions, they were asked to rate the humor
or offense from 1-5 (see figure 1). For the humor
rating, the user was also given the option to select
‘I don’t get it’, meaning that they recognised by
the structure or content that the text was intended
to be humorous, but that they were unsure of why
the text was funny. This is distinct from a rating
of 1, which is a recognition of humor, with little
appreciation for it.

The annotator instructions outlined that the first
annotation question was intended to determine the
genre of the text, and should be distinguished from
funniness. Annotators were instructed to look at
the structure of the joke, e.g. setup and punchline,
or the content of the joke, e.g. absurdity, in order
to determine if the intention was to be humorous.

2https://www.prolific.co/
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In terms of offense, we posed two annotation
questions in order to avoid ambiguity about which
type of offense was meant. We instructed annota-
tors to consider as generally offensive, a text which
targets a person or group of people, simply for be-
longing to a certain group. Alternatively, they could
select yes for generally offensive if they thought
that a large number of people were likely to be
offended by the joke. The last question asked an-
notators if they felt personally offended by the text,
or if they felt offended on another person’s behalf.
We used only the generally offensive ratings in this
task.

Figure 1: Screenshot from the tool used to annotate the
texts.

3.3 Quality Control and Data Discarded

Each batch of 100 texts comprised approximately
20% of texts from Kaggle. As the majority of
these have a setup and punchline structure, or other
recognisable humor traits, we used these as a qual-
ity control. If an annotator did not label at least 60%
of these as humor, it was clear that they they did not
follow the instructions for the first question, and
annotated based on perceived humor, as opposed
to observation of humorous characteristics. We
therefore discarded these submissions and replaced
the annotators. Of 2,364 annotation sessions (e.g.

batches of 100), 301 submissions were discarded
and replaced, and the ratings of the remaining 2,062
annotation sessions make up the dataset. Of these,
1,569 annotators rated one batch of texts with an
additional 492 doing a second batch.

3.4 Data Statistics

Post-annotation, we classed a text as humorous
if the majority of its twenty votes labelled it as
such. In a small number of cases where votes were
tied, we assigned the label humorous. For the texts
labelled humorous, we calculated the average hu-
mor score, which was the average of the numeri-
cal votes. “No” ratings did not count towards this
value, and votes of “I don’t know” were counted
as 0, because this was deemed to be a recognizable
humor structure, but one in which the humor was
not successful.

Label Affirmative Negative Average
Rating

Humorous 6179 3821 2.24
Controversial 3052 3017 N/A
Offensive 5754 4246 1.02

Table 3: Data Statistics

The humor controversy label was based on
whether the variance between the humor ratings
was higher or lower than the median variance in
the training set (median s2 = 1.79). The offense
rating was the average of all ratings given, includ-
ing ‘no’ as 0. Table 3 summarises the labels in
the dataset, and in the case of offense, affirmative
indicates that the rating is higher than 0.

Ratings Krippendorff’s α
Class label 0.736
Humor rating 0.124
Offense rating 0.518

Table 4: Inter-annotator agreement (Krippendorff’s α)
for ratings used in subtask 1a, 1b and 2

The dataset was split 80:10:10 for training, devel-
opment and test sets. The texts and annotations will
continue to be available on the Codalab website,
and the tweet ids, and usernames will be retained
for non-commercial research use, in line with the
Twitter Academic Developer Policy.

4 Task Description and Evaluation

We divided our tasks into four subtasks.
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Task 1a: Humor Detection
This was a binary classification task to detect,

given a text, if the majority label assigned to it was
humorous or not. This was evaluated using F-score
for the humorous class and overall accuracy

Accuracy =
C

N

+‘213‘− ∗‘F1 = 2 ∗ Precision×Recall
Precision+Recall

Task 1b: Humor Rating Prediction
This was a humor rating regression task. Partic-

ipants predicted the average rating given to texts
from 0-5. Texts which had not been labelled as
humorous by our annotators did not have a hu-
mor rating, and predictions for these texts were
not counted towards the final score by our scoring
system. The metric for this task was root mean
squared error (RMSE).

RMSE =

√√√√
n∑

i=1

(yi − ŷi
N

)2

Task 1c: Humor Controversy Detection
This task was also a binary classification task

to predict whether the humor ratings given to the
text showed it to be controversial or not. This was
based on the variance in the ratings being higher
or lower than the median variance in the training
set humor ratings. This was also evaluated using
F-score and accuracy.

Task 2: Offense Detection
This was an offense rating regression task. Un-

like the humorous task, this rating was not depen-
dent on the text having been labelled as humorous.
All annotator ratings were considered, and each
text had a rating from 0-5. The metric was RMSE.

5 Benchmark Systems

We created simple, linear benchmarks using sklearn
(Pedregosa et al., 2011) for the classification tasks
which consists of a Naive Bayes classifier with bag
of words features. For the regression tasks, we used
a support vector regressor with term-frequency in-
verse document frequency features.

We also built a BERT-base classifica-
tion/regression model which was run for
one epoch, with a batch size of 16 and a learning
rate of 5e-5, for all sub-tasks. As this system
out-performed the linear benchmarks on all
sub-tasks, we refer to this as the baseline in the
rest of the paper.

6 Participant Systems

6.1 Overview

In total 63 teams submitted systems for the different
tasks: 58 for task 1a, 50 for task 1b, 36 for task
1c and 48 for task 2. Tables 5, 6, 7 and 8 show
the highest results for each task, with performance
broken down by subsets of texts from the Kaggle
jokes dataset and from Twitter. -*/

Team Acc F1 Kaggle
F1

Twitter
F1

PALI 0.9820 0.9854 0.9949 0.9811
stce 0.9750 0.9797 0.9871 0.9764
DeepBlueAI 0.9600 0.9676 0.9949 0.9551
SarcasmDet 0.9600 0.9675 0.9949 0.9548
mengyuan jiayi 0.9590 0.9667 0.9871 0.9574
stevenhuahua 0.9580 0.9666 0.9949 0.9538
zain 0.9580 0.9663 0.9949 0.9534
EndTimes 0.9570 0.9655 0.9897 0.9545
MagicPai 0.9570 0.9653 0.9897 0.9542
Meizizi 0.9570 0.9653 0.9871 0.9554
mmmm 0.9560 0.9647 0.9923 0.9523
baseline (BERT) 0.911 0.9283 0.9949 0.8978
baseline (Linear) 0.8570 0.8840 0.9792 0.8410

Table 5: Results of the top performing systems for par-
ticipants of task 1a (humor detection), showing F1 and
accuracy for the whole test set, and F1 for Kaggle texts
only and tweets only.

6.2 Highest Ranking Systems

The top-ranking teams were selected based on F-
score, in the case of a tie in accuracy score. The
top-10 made extensive use of pre-trained language
models such as BERT, ERNIE 2.0 (Sun et al.,
2020), ALBERT (Lan et al., 2019), DeBERTa (He
et al., 2020) or RoBERTa (Liu et al., 2019). Ensem-
bling these models by majority voting or averaging
scores proved to be a popular and useful approach.

Team All Kaggle Twitter
abcbpc 0.4959 0.4544 0.5141
mmmm 0.4977 0.4554 0.5162
Humor@IITK 0.5210 0.4702 0.5430
YoungSheldon 0.5257 0.4587 0.5541
IIITH 0.5263 0.4821 0.5456
fdabek 0.5271 0.4836 0.5462
Amherst685 0.5339 0.4584 0.5656
-*/ gerarld 0.5393 0.4857 0.5625
CS-UM6P 0.5401 0.4927 0.5608
SarcasmDet 0.5446 0.5001 0.5641
baseline (BERT) 0.8000 0.4803 0.9117
baseline (SVM) 0.8609 0.7157 0.9205

Table 6: Results of the top performing systems for par-
ticipants of task 1b (humor rating), showing RMSE for
whole test set, for Kaggle texts only and tweets only.
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Team Acc F1 Kaggle
F1

Twitter
F1

PALI 0.4943 0.6302 0.6667 0.6118
mmmm 0.4699 0.6279 0.6621 0.6109
SarcasmDet 0.4699 0.6270 0.6552 0.6130
EndTimes 0.4602 0.6261 0.6598 0.6097
DeepBlueAI 0.4650 0.6257 0.6621 0.6078
CS-UM6P 0.4537 0.6242 0.6598 0.6070
CHaines 0.4537 0.6242 0.6598 0.6070
Ferryman 0.4537 0.6242 0.6598 0.6070
IIITH 0.4537 0.6242 0.6598 0.6070
abcbpc 0.4537 0.6242 0.6598 0.6070
fdabek 0.4537 0.6233 0.6598 0.6057
YoungSheldon 0.4780 0.6210 0.6545 0.6049
Humor@IITK 0.4520 0.6209 0.6574 0.6033
RoMa 0.4732 0.6197 0.6503 0.6042
baseline (BERT) 0.4731 0.6232 0.6574 0.6060
baseline (SVM) 0.4374 0.4624 0.4804 0.4529

Table 7: Results of the top performing systems for par-
ticipants of task 1c (humor controversy), showing F1
and accuracy for the whole test set, and F1 for kaggle
texts only and tweets only.

Similarly, many teams experimented with single
and multi-task learning setups, and multi-task mod-
els tended to be more successful across sub-tasks.
Further improvements were achieved with domain
adaptation strategies and adversarial training.

6.2.1 DeepBlueAI (Song et al., 2021)

DeepBlueAI achieved high performance in sub-
tasks 1a and 2. This team used stacked transformer
models, which used the majority vote (in the case of
classification) or the average prediction (for regres-
sion) from a RoBERTa and an ALBERT model.
They optimized the performance of these PLMs
with a number of techniques. First, they employed
task-adaptive fine-tuning (Gururangan et al., 2020)
by continuing pre-training on the text of the Ha-

Team All Kaggle Twitter
DeepBlueAI 0.4120 0.7607 0.2647
mmmm 0.4190 0.7757 0.2677
HumorHunter 0.4230 0.7742 0.2765
abcbpc 0.4275 0.7942 0.2712
fdabek 0.4406 0.7915 0.2979
stevenhuahua 0.4454 0.8019 0.2999
megatron 0.4456 0.8021 0.3001
MagicPai 0.4460 0.8113 0.2948
ES-JUST 0.4467 0.8065 0.2993
SarcasmDet 0.4469 0.8264 0.2861
baseline (BERT) 0.5769 1.0141 0.4042
baseline (SVM) 0.6415 1.0908 0.4710

Table 8: Results of the top performing systems for par-
ticipants of task 2 (offense rating), showing RMSE for
whole test set, for kaggle texts only and tweets only.

Hackathon data. They then augmented the dataset
by using pseudo-labelling to generate labels for
the test set, and added these to the training data.
Then, after encoding the input, they used adversar-
ial training (Miyato et al., 2016), e.g. the addition
of perturbations to the embedding layer, to improve
generalization. The predictions were produced af-
ter Multi Sample Dropout was applied. This ap-
proach achieved third place in task 1a and first
place in task 2.

6.2.2 abcbpc (Pang et al., 2021)
This team deployed ERNIE 2.0 in a multi-task
setup with task-specific gradients and loss for each
sub-task. Using a cross-validation approach, they
fine-tuned their model on each fold of data and
took the average, or majority decision of their best-
performing models as their predictions. Experi-
ments demonstrated that their multi-task setup per-
formed better than single-task learning with ERNIE
2.0, and they achieved the best score in task 1b.

6.2.3 Humor@IITK (Gupta et al., 2021)
This team also experimented with single-task and
multi-task learning on pre-trained language mod-
els. They implemented two ensembling meth-
ods: in the single-task setup, they concatenated
the embeddings produced by BERT, RoBERTa,
ERNIE 2.0, DeBERTA and XLNET. In the multi-
task setup, they used vote-based classification, or
a weighted aggregate of outputs for the regression
tasks. They also implemented an ensemble com-
prising a weighted average of best single-task and
multi-task models, which achieved third place on
task 1b. Interestingly, this team’s experiments on
data augmentation, e.g. generating slightly differ-
ent variations of the input sentences, disimproved
performance. The team hypothesize that the im-
pact of both humor and offense often hinges on the
choice of specific words, and replacing these words
with synonyms may undermine the humorous or
offensive effect.

6.2.4 SarcasmDet (Faraj and Abdullah, 2021)
For tasks 1a, 1b and 2, this team used either BERT
or RoBERTa models with different hyperparam-
eters, and used an ensemble of these models to
make predictions with hard (e.g. majority or av-
erage) voting. Interestingly, for task 1c, in which
they placed third, they used a rule, that if the humor
rating predicted for a text was greater or equal to 3,
they labelled the text as controversial.
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6.2.5 HumorHunter (Xie et al., 2021)
This team used DeBERTa with an embedding ta-
ble which took into account the relative position
of each token in the sentence. In an error analysis,
they noted that texts with a question and answer
were more often misclassified as humorous, pos-
sibly because this mimics the structure of a setup
and punchline.

6.2.6 Others
PALI and stce, the top-ranking teams in task 1a,
both used an ensemble of RoBERTa large, and
ERNIE 2.0, but declined to submit a paper out-
lining further details. Similarly, the team named
mmmm, which placed 2nd in both task 1b and 1c,
did not furnish details of their approach.

6.3 Trends
6.3.1 Domain Adaptation
Given that the majority of the data was sourced
from Twitter, several teams implemented domain
adaptation strategies at different stages of their
pipeline. YoungSheldon (Sharma et al., 2021)
used the Ekphrasis (Baziotis et al., 2017) toolkit,
which is designed for Twitter-specific preprocess-
ing. DLJUST (Al-Omari et al., 2021) also used it
in their preprocessing pipeline, and found that this
achieved better results, when used in combination
with some further manual spelling correction.

Domain-specific models also showed some per-
formance improvements. UPB (Smădu et al.,
2021) used BERTweet (Nguyen et al., 2020),
a transformer-based language model trained on
tweets for their embedding layer, and DLJUST
found that this model gave slightly better perfor-
mance than RoBERTa on subtask 1a, but not on the
regression tasks.

Amherst685 (Gugnani et al., 2021) used inter-
mediate fine-tuning to adapt a series of pre-trained
models to the style of language used in humorous
and offensive texts. They used two large humor
datasets, and two offense datasets, to adapt a va-
riety of transformer models to the task, however,
they did not see performance gains from this. Sim-
ilarly to DeepBlueAI, RoMa (Labadie et al., 2021)
and IIITH (Raha et al., 2021) used task-adaptive
pre-training, and the latter team saw performance
improvements of 1-5%.

6.3.2 Data Augmentation/Perturbation
Similarly to DeepBlueAI, MagicPai (Ma et al.,
2021) experimented with pseudo-labelling in order

to increase the amount of data available. MagicPai
also tried adversarial training by adding perturba-
tions to the embedding layer, and along with Gren-
zlinie (Liu and Zhou, 2021) and UPB, found this
to improve their transfer learning models’ perfor-
mance. Amherst685 tried backtranslation in order
to generate more sample texts, however they found
that this was not successful.

6.3.3 Contrasting Models and Task Setup
The majority of teams who contrasted RNNs
with PLMs found that the latter was more suited
to this task. ES-JUST (Bashabsheh and Alasal,
2021) found that RoBERTa performed better than
RNNs and BERT. This finding replicates the ab-
lation study by Morishita et al. (2020) in the
2020 SemEval task, which also demonstrated that
RoBERTa performed better than other PLMs. How-
ever Tsia (Guan, 2021) found that RoBERTa was
better suited to the regression task, and combin-
ing BERT+CNN gave better performance on the
classification task. This contrasts with YoungShel-
don, who achieved their best results with BERT-
Base. Across all cases, we did not observe a single
dominant architecture, indicating that the choice
of hyperparamters and task setup played a large
role in the results achieved by each team. However,
teams like CS-UM6P (Essefar et al., 2021), who
contrasted single and multi-task learning setups,
found that the latter improved performance.

6.4 Other notable approaches

DUTH (Karasakalidis et al., 2021) produced a rig-
orous examination of different preprocessing ap-
proaches applied to data given to linear and neu-
ral models. They achieved an impressive 12th
place on task 1b, with a combination of Light Gra-
dient Boosting Machine (LGBM), XGBoost and
Bayesian Ridge. They also achieved 12th place
in task 1c using a combination of features such as
POS-tagging, numerical features, a bigram term
frequency inverse document frequency (TF-IDF)
vectorizer as input to an LGBM model.

The utility of TF-IDF features was also seen
in the transfer learning approaches as team hub
also found that adding TF-IDF features improved
the performance of their ALBERT/BERT+CNN
models.

IIITH found that including lexical features such
as letter and punctuation counts, named entities
marking, identifying personal pronouns, wh-words
and question marks, as well as a lexicon of hurtful
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words (Hurtlex, Bassignana et al., 2018) improved
the performance of their task-adaptively pre-trained
RoBERTa model for detecting humor and predict-
ing the rating, but that only the Hurtlex features
improved offense detection, and neither of these
improved controversy prediction.

7 Analysis and Discussion

7.1 Correlations between Tasks
As Table 9 indicates, humor rating is moder-
ately correlated with humor controversy across the
dataset. There are no discernible trends in offense
rating and humor controversy. Interestingly, there
is a moderate negative correlation between humor
and offense rating overall, but this is not significant
for the Twitter data, and becomes a much stronger
negative correlation when we look at just the Kag-
gle data. This may have be a factor in the finding
that multi-task setups tended to achieve better re-
sults that single-task systems. It may also suggest
that in naturally occurring data, such as the Twitter
texts, the relationship between humor and offense
may be more subtle, and therefore more difficult to
detect.

Task 1 Task 2 Overall Twitter Kaggle
Humor
Rating

Humor
Controversy

0.15
p = 0.0001

0.14
p = 0.003

0.18
p = 0.009

Offense
Rating

Humor
Controversy

0.07
p =0.06

0.11
p = 0.028

-0.02
p = 0.82

Humor
Rating

Offense
Rating

-0.156
p = 0.0001

-0.03
p = 0.51

-0.42
p = 0.0011

Table 9: Correlations between tasks, Pearson’s r and
p-value

7.2 Differences between Kaggle Texts and
Tweets

As seen in tables 5, 6 and 7, the systems’ perfor-
mance for subtasks 1a, 1b and 1c seems to be con-
sistently better for Kaggle texts than for tweets.
One possible reason why systems are better at pre-
dicting humor from Kaggle texts, is that the Kaggle
test set contains almost all humorous texts, while
only about half of the tweets are considered humor-
ous.

On the other hand, performance for task 2 is con-
sistently better (lower RMSE) for tweets than for
Kaggle texts, and the differences are sometimes
very large. We noticed the distributions of offense
ratings between Kaggle texts and tweets are very
different, with tweets being more often classified

as not offensive: more than 60% of the tweets have
0.1 offense rating or less (in a scale from 0 to 5),
while less than 10% of the Kaggle texts do. This
difference in distribution might in part come from
differences in sampling methods, because some
Kaggle texts were specifically selected to have cer-
tain offensive categories, while the tweets were
selected at random. In order to check if the differ-
ence in scores could come from the difference in
offense rating distributions, we resampled a subset
of tweets from the Kaggle set and another one from
the Twitter set, trying to keep a uniform offense
rating distribution, and calculated task 2 scores for
those subsets. The difference between scores for
these new subsets was much lower for all teams,
and even some of the teams got better scores for
the Kaggle subset, which might be an indication
that the sharp differences in score were caused by
the difference in distributions.

7.3 Error Analysis: Humans and Machines
vs Irony

Several interesting issues arise when analyzing the
top-ten systems’ errors. Irony continues to be a
challenging problem, both at the annotation side,
and the classification side. Several texts which
were sourced from humorous accounts, and which
had just less than a majority of annotator votes
for humorous were classed as not-humorous in our
dataset. In the following two examples, all of the
top-10 systems classed this as humorous, and ar-
guably, they are intended to be humorous, even
though the majority of annotators technically did
not class them as such.

1. What do you call a homosexual man
on a wheel chair?
A human being

2. It’s almost like I gotta keep myself
busy with random things like fluff-
ing pillows just so I don’t over eat.

The first example is an ironic subversion of a
homophobic joke, using incongruity to undermine
the anticipated punchline. While it is possible that
the setup and punchline structure is what misled
the system, similar question and answer structures
were correctly classified.

The second example is arguably sarcasm, and
all of the top systems classified it as humor, even
though the annotators did not. However, there were
several other texts which were classed as humorous
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by the annotators, and which demonstrate traits of
irony or sarcasm, were difficult to classify for the
top teams, and produced mixed results:

1. If alcohol influences short-term
memory, what does alcohol do?

2. How much should I rest between
sets at the gym? I’ve been doing
anywhere between 60 to 90 days to
give my muscles a good chance to
recover.

In terms of tasks 1b and 2, we analyzed the texts
which proved most difficult to predict the humor
and offense ratings for the top-10 systems. We
calculated the mean average error (MAE) between
the top 10 systems’ predictions and the ground
truth. We then examined the 75th percentile of
MAE.

Twitter Kaggle
Humor 70% 30%
Offense 55.2% 44.8%

Table 10: Percentage of texts with highest MAE from
the different sources

Interestingly, there was a disproportionately high
number of Kaggle texts among the offensive texts
whose rating was difficult to predict (44.8% while
the Kaggle text make up only 20% of the data). A
quick examination of these texts revealed there was
a large number of ironic texts which were predicted
to be highly offensive, although the ground truth
did not reflect this, for example:

Why do black people eat fried chicken?
Because it tastes good.

7.4 Humor Controversy

As we were interested in the rule-based approach
that team SarcasmDet took for this task, we investi-
gated the upper-bound of success for any threshold-
based heuristic which determines whether a text
was controversial given the humor score alone. Fig-
ure 2 shows the hypothetical F1-score and accuracy
that could be achieved by such a system. Assum-
ing a perfect score on humor rating prediction, if
teams assigned a controversial label for any text
with a humor rating of over 2, they could achieve
first place in this task in terms of accuracy with
a score of 0.580. A threshold of 1.45 given per-
fect knowledge of the humor labels would result

0 1 2 3 4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

threshold (τ )

f1-score
accuracy

Figure 2: For varied values of a threshold, τ , accuracy
and f1-score achieved by a hypothetical model predict-
ing the label controversial for all texts in the test set
with ground-truth humor score > τ . Note that partici-
pants did not have access to these ground-truth scores
for the test set, making these results an upper-bound for
this type of threshold-based approach.

in a leaderboard-topping F1-score of 0.635. How-
ever, the teams that took part did not obtain the
perfect humor rating scores required for this simple
rule to work so effectively, yet were still able to
achieve similar scores on the task. This suggests
that their systems were learning something, but that
ultimately the task is a difficult one.

Although we aimed to increase inter-annotator
agreement in this task’s annotation procedure, by
matching the origin of the texts and annotators, the
agreement on humor ratings was low, and indeed
the task which aimed to capture this controversy
proved difficult.

8 Conclusion

We provided 10,000 texts annotated for humor and
offense by a broad range of annotators. Trans-
former models were a dominant approach to this
task, with the exception of the humor controversy
task, which proved to be difficult for most teams,
and in which a simple, rule-based system achieved
one of the top-3 scores. As multi-task learning
setups proved more effective than single-task learn-
ing demonstrates, this that there is some correlation
between humor and offense detection. It was also
interesting to note which model adaptations were
useful and which were not. Finally, an analysis of
the errors in humor analysis reveals some types of
humor which may be captured inaccurately, even
by the most powerful models.
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A Appendices

Table 11 displays the sources for the Twitter data,
e.g. 80% of the texts

Username Count Username Count
humurous1liners 924 BlkMentalHealth 37
joeljeffrey 692 mikewickett 35
UberFacts 632 BlackLoveAdvice 35
Dadsaysjokes 541 JNFUSA 35
GreysAnatomyMsg 402 JokesMemesFacts 34
ConanOBrien 340 MissyDuckWife 32
boonaamohammed 337 blackbodyhealth 32
Demented Jokes 325 RobBenedict 31
thenatewolf 284 Boyfriend Tips 30
DailyHealthFact 284 TheJimMichaels 29
Kasandd 219 realGpad 29
songs Iyrics 203 EverBestFilms 27
Shen the Bird 187 NicoleB MD 23
BadJokeCat 130 iGirlfriendTip 23
OURSELVES BLACK 129 Grindr 23
SupereeeGO 124 MNateShyamalan 23
Mr Truth Hurts 112 kecia ali 20
GayAdvicer 112 RobbyActually 19
Wizdomstweets 103 hardwick 19
TrippAdvice 102 RabbiHarvey 19
JensenAckles 97 taylorswift13 18
BunAndLeggings 93 PGATOURWives 17
MovieQuotesPage 90 tomhanks 15
annehelen 87 BlackGirlsSmile 15
YaGayAunties 83 curtisisbooger 11
mindykaling 74 evanmarckatz 11
RyanSeacrest 70 bosshogswife 11
murrman5 59 PenguinBooks 10
TheOkraProject 59 GuyStuffAdvice 10
benyahr 57 gaystarnews 10
thatonequeen 55 DrakeGatsby 9
ZaraRahim 52 offensivefcker 9
Oprah 52 outmagazine 9
michaelstrahan 43 therapy4bgirls 8
youknowwhenshe 42 ProBonoASL 4
Blackkidsswim 40 TheAdvocateMag 3
andreavsmoak 40

Table 11: Twitter sources of data and number of texts
sourced from each account
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Table 12 shows the results of the top system for each team and for each task.

Team Task1a F1 Task1a Acc Task1b RMSE Task1c F1 Task1c Acc Task2 RMSE
PALI 0.9854 0.9820 - 0.6302 0.4943 0.9710
stce 0.9797 0.9750 - - - -
DeepBlueAI 0.9676 0.9600 0.5607 0.6257 0.4650 0.4120
SarcasmDet 0.9675 0.9600 0.5446 0.6270 0.4699 0.4560
mengyuan jiayi 0.9667 0.9590 0.5621 0.5814 0.5106 -
stevenhuahua 0.9666 0.9580 0.5831 0.4991 0.5626 0.4454
zain 0.9663 0.9580 0.5748 - - -
EndTimes 0.9655 0.9570 0.6539 0.6261 0.4602 0.4691
MagicPai 0.9653 0.9570 0.5572 - - 0.4460
Meizizi 0.9653 0.9570 0.6136 - - -
mmmm 0.9647 0.9560 0.4977 0.6279 0.4699 0.4190
fdabek 0.9647 0.9560 0.5271 0.6233 0.4537 0.4406
Isra 0.9640 0.9550 - - - -
DLJUST 0.9633 0.9540 0.5555 0.4813 0.5480 0.4822
IIITH 0.9616 0.9530 0.5263 0.6242 0.4537 0.4772
megatron 0.9612 0.9520 0.6307 - - 0.4456
CS-UM6P 0.9606 0.9510 0.6360 0.6242 0.4537 0.4759
Amherst685 0.9604 0.9510 0.5339 0.4842 0.5220 0.4530
MLXG 0.9590 0.9490 2.1883 0.0000 0.5463 0.9587
abcbpc 0.9587 0.9480 0.4959 0.6242 0.4537 0.4275
StoneOpen 0.9583 0.9480 0.5470 0.5427 0.5561 0.4489
Humor@IITK 0.9581 0.9480 0.5210 0.6209 0.4520 0.4607
Ferryman 0.9581 0.9480 0.5651 0.6242 0.4537 0.4813
RoMa 0.9576 0.9480 0.5905 0.6197 0.4732 0.4532
HumorHunter 0.9572 0.9480 0.5510 0.6111 0.4764 0.4230
RedwoodNLP 0.9571 0.9460 0.5580 0.4883 0.5024 0.7229
UPB 0.9566 0.9470 0.6200 0.0000 0.5463 0.5318
ES-JUST 0.9564 0.9460 0.5709 0.4888 0.5545 0.4467
DeathwingS 0.9563 0.9460 0.5561 - - -
zeus yao 0.9557 0.9450 - - - 0.4621
apostaremczak 0.9544 0.9440 0.8497 0.0000 0.4341 0.5625
LeoJ 0.9543 0.9430 2.1883 0.0000 0.5463 0.9587
CHAOYUDENG 0.9538 0.9410 - - - -
gerarld 0.9532 0.9420 0.5393 0.4972 0.5659 0.4489
CS-UM6P 0.9506 0.9380 0.6360 0.6242 0.4537 0.4759
CSECU-DSG 0.9496 0.9380 0.6803 0.4423 0.5366 0.5395
YoungSheldon 0.9468 0.9330 0.5257 0.6210 0.4780 0.4500
DuluthNLP 0.9399 0.9260 0.6461 - - 0.5059
pakawat.nk 0.9386 0.9240 0.5700 0.4683 0.5496 0.5368
Grenzlinie 0.9386 0.9250 0.6312 0.5455 0.5203 0.4761
bousselham 0.9368 0.9200 - - - -
hub 0.9364 0.9210 0.6288 0.5591 0.5333 0.5027
ZYJ 0.9348 0.9210 0.7214 0.4603 0.4407 0.5204
xjh 0.9345 0.9180 0.6385 0.5205 0.5447 0.5151
Gulu 0.9341 0.9190 0.7405 0.5488 0.5561 0.5807
chenshi 0.9328 0.9160 0.6303 0.5547 0.5301 0.5422
UMUTeam 0.9325 0.9160 0.8847 0.5722 0.4650 0.8740
Han Jiawei 0.9286 0.9120 0.5577 0.4904 0.5268 0.5187
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Zehao Liu 0.9241 0.9060 - - - -
Team KGP 0.9233 0.9030 0.5694 0.5628 0.5301 0.5800
Tsia 0.9205 0.8960 0.7010 0.4271 0.5593 0.5419
chilai1996 0.9177 0.8970 2.1883 0.0000 0.5463 0.9587
ayushnanda14 0.9081 0.8840 2.1883 0.0000 0.5463 0.9587
DUTH 0.8942 0.8720 0.5507 0.5990 0.4732 0.5819
baseline 0.8840 0.8570 0.8609 0.4624 0.4374 0.6415
LOLASING 0.8704 0.8490 - - - 0.7106
CHaines 0.8504 0.8170 0.5762 0.6242 0.4537 0.6473
AlviIshmam 0.8489 0.8160 - - - -
milad.sayadamooz 0.6290 0.5270 2.5497 0.0000 0.5463 0.9587
FII Funny 0.0630 0.0780 0.5598 0.4752 0.5008 0.4788
Paima - - 0.5701 - - 0.4655
abhideepmitra - - 1.0343 0.5366 0.4612 -
justglowing - - - - - 0.6347

Table 12: Top system for each participant for all subtasks.
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Abstract
The present work aims at assigning a complex-
ity score between 0 and 1 to a target word
or phrase in a given sentence. For each Sin-
gle Word Target, a Random Forest Regressor
is trained on a feature set consisting of lexi-
cal, semantic, and syntactic information about
the target. For each Multiword Target, a set
of individual word features is taken along with
single word complexities in the feature space.
The system yielded the Pearson correlation of
0.7402 and 0.8244 on the test set for the Single
and Multiword Targets, respectively.

1 Introduction

Presence of complex words can lead to poor com-
prehension of a text. Identification of such complex
words in a given text is a core component in the task
of Automatic Simplification and Evaluation (Shard-
low, 2013). The Lexical Complexity Prediction
Task of SemEval 2021 (Shardlow et al., 2021) aims
at development of systems for prediction of com-
plexity scores for a target word/phrase in a given
sentence. In literature, binary classification of tar-
get words in a text into complex or non-complex is
referred to as Complex Word Identification (CWI)
(Paetzold and Specia, 2016; Zampieri et al., 2017;
Gooding and Kochmar, 2018; AbuRa’ed and Sag-
gion, 2018; Yimam et al., 2018). Unlike previous
works, a continuous complexity score is assigned to
the target word in the present task which is referred
to as Lexical Complexity Prediction (LCP) (Shard-
low et al., 2020). For the present work, regression
is performed for LCP on a set of linguistic fea-
tures covering semantic, syntactic and contextual
aspects of the target word as described in Section
3. Additionally, various lexicon based features are
used to indicate the rarity of target words. The sys-
tem achieves 0.8194 Pearson correlation for Single
Word Target and 0.7482 for Multiword Target on
the trial set.

2 Task Setup

The task is divided into two subtasks, namely Sin-
gle Word Target and Multiword Target based on
the length of the target. The dataset and evaluation
metrics are described below.

• Dataset: The dataset consists of an aug-
mented version of CompLex (Shardlow et al.,
2020). It comprises sentences from three cor-
pora, viz. World English Bible Translation,
English Portion of the European Parliament
proceedings, and articles from CRAFT corpus
belonging to biomedical domain. It is split
into three subsets Train, Trial, and Test.

• Evaluation Metrics: The systems are eval-
uated using Pearson correlation coefficient
(P), Spearman rank correlation coefficient (S),
Mean absolute error (MAE) and Coefficient
of Determination (R2).

3 Features

In this section we present the details of the feature
space used in the present work.

3.1 Corpus Features
A feature, named Corpus, is used to indicate to
which of the 3 corpora the input sentence belongs.

3.2 Shallow Features
Word level shallow features used in the present
work are number of letters (Nlet), syllables (Nsyl),
vowels (Nvow), percentage of upper case alphabets
(PerUp), simple universal part-of-speech tag (POS),
and detailed Penn part-of-speech tag (Tag) of the
target word extracted using SpaCy.

3.3 NLTK WordNet Features
Number of hypernyms (Nhyper) and number of
morphemes (Nmorph) of the target word consider-
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ing its POS tag in the given sentence are also used
as features.

3.4 Exquisite Corpus (EC) Features

Exquisite Corpus1 compiles texts from seven dif-
ferent domains namely Wikipedia, Subtitles, News,
Books, Web, Twitter and Reddit. We have used
the frequency (WordFreq) in EC and the Zipf fre-
quency (ZipfFreq) of the target word as features
(van Heuven et al., 2014).

3.5 SUBTLEX Features

Frequency (SubtFreq) of the target word extracted
from SUBTLEXus2 and its Contextual Diversity
(ConDiversity) i.e. percent of the films in which
the word appears are used as features.

3.6 Language Model (LM) Features

Given an input sentence S = w1w2 . . . wN and a
target word wt where t ∈ 1, 2, . . . N , the follow-
ing features are extracted from a trigram language
model trained on the Gigaword corpus3.

• Perplexity of the input sentence (Perplexity)
computed as:
Perplexity(S) = N

√
1/P (w1w2 . . . wN )

• The phrase score (PhrScore)
of wj . . . wt . . . wk defined as
log10P (wj . . . wt . . . wk) where
j = max(1, t− 2) and k = min(N, t+ 2)

• Average of conditional probabilities involving
the target word (AvgCP)

Avg




P (wt | wt−1, wt−2),
P (wt+1 | wt, wt−1),
P (wt+2 | wt+1, wt)




3.7 Character Language Model (CharLM)
Feature

The probability of the target word (Prob3c) calcu-
lated using trigram character language model is
considered as a feature. The trigram4 probabili-
ties are calculated using letter counts from Google
Web Trillion Word Corpus. Suppose a word W
consist of N letters, W = w1 . . . wN then, the
corresponding feature value will be computed as:
Prob3c(W ) = 1

N−2
∑N−2

i=1 log10P (wiwi+1wi+2)

1https://pypi.org/project/wordfreq/
2https://github.com/Wonderlic-AI/wonderlic nlp
3lm giga 64k nvp 3gram.zip
4http://norvig.com/ngrams/count 3l.txt

3.8 Psycholinguistic Features
The following features are extracted using MRC
psycholinguistic database (Wilson, 1988): Age
of acquisition (AOA), Concreteness (CONC), Im-
ageability (IMAG) and Meaningfulness ratings
(MeanC, MeanP) of the target word .

3.9 Kucera and Francis (KF) Features
The features derived by Kučera and Francis (1967),
namely target word’s written frequency of occur-
rence (KFFreq) and the number of categories of
text in which the target word was found (KFNcats)
are used.

3.10 Ogden Feature
A binary feature is used to indicate presence of the
target word in the list of 1000 words included in
Ogden’s Basic English5 (IsOgden).

3.11 Inquirer Tag Features
The General Inquirer classifies about 7500 words
using 182 General Inquirer categories developed
for social science content analysis (Stone et al.,
1966). A binary feature is created for each category
to indicate its occurrence for the target word. The
POS tag of the target is matched with the ‘OthTags’
category to filter out incompatible categories as
given in Table 1

POS of the Target Compatible OthTags
NOUN | PRON | PROPN NOUN | PRON
VERB | AUX | ADV VERB | SUPV

Table 1: Inquirer Tags Filtering

4 Single Word Target

In the Single Word Target task, complexity scores
between 0 to 1 needs to be assigned for a target
word of the input sentence. Various regression
models are trained using the optimal set of features
using scikit-learn6. The results are presented in
Table 2. For both Decision Tree and Extra Tree Re-
gressors the maximum depth (maxdepth) is tuned
between 1 to 20, and the optimal maxdepth is found
to be 6 and 8, respectively. Random Forest Re-
gressors with the default setting produced the best
results for the trial dataset. Using the above, our
submission to the shared task achieved 0.7402 Pear-
son correlation on the test set.

5http://ogden.basic-english.org/
6https://scikit-learn.org/stable/
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Regressor P S MAE R2

Decision Tree 0.761 0.699 0.069 0.58
Extra Tree 0.757 0.650 0.071 0.57
Gradient 0.794 0.731 0.065 0.63
Boosting
Random Forest 0.819 0.748 0.062 0.69
+Bagging 0.805 0.738 0.064 0.64
+Adaptive 0.798 0.734 0.065 0.63
Boosting

Table 2: Results on the Trial Set

4.1 Feature Importance
The Gini importance of the top 5 features are re-
ported in Table 3. Gini importance of a feature
is computed as the (normalized) total reduction
of the mean squared error brought by that feature.
The importance of the features is also analyzed by
removing a set of features at a time and training
a Random Forest Regressor for the reduced fea-
ture space. Each of the features from the optimal
feature space has a positive effect on the perfor-
mance of the system as indicated in Table 4. The
experiments indicate that exclusion of Exquisite
Corpus features led to the maximum decline in the
results. Hence, this may be considered as the most
important feature subset.

Feature Gini importance
ConDiversity 0.443
Prob3c 0.072
ZipfFreq 0.068
Perplexity 0.067
AvgCP 0.060

Table 3: Gini Importance of Features

4.1.1 Inquirer Tags Importance
The effect of inclusion of Inquirer Tags in the fea-
ture space has a positive effect however the magni-
tude is low. This may be due to the low coverage of
these features as reported in Table 5. The coverage
is defined as the percentage of target words having
at least one Inquirer Tag.

4.2 Additional Features
The following set of features when included in the
feature space led to a decrease in performance for
the present task on the trial set.

• Etymological Feature: The ISO code of the
target word’s origin language

Features P S MAE R2

All 0.819 0.748 0.062 0.67
w/o Ogden 0.816 0.744 0.063 0.66
w/o Inquirer 0.815 0.744 0.063 0.66
w/o KF 0.815 0.746 0.063 0.66
w/o WordNet 0.814 0.747 0.063 0.66
w/o Psych 0.813 0.740 0.063 0.66
w/o LM 0.810 0.744 0.063 0.65
w/o CharLM 0.806 0.747 0.064 0.65
w/o Corpus 0.798 0.740 0.065 0.63
w/o SUBTLEX 0.795 0.725 0.066 0.63
w/o Shallow 0.786 0.728 0.067 0.61
w/o EC 0.782 0.713 0.067 0.61

Table 4: Feature Set Elimination Results for the Trial
Set

Data All Bible Biomed Europarl
Train 21.14 20.23 21.48 21.77
Trial 22.09 23.78 19.26 23.08
Test 23.77 19.79 27.34 24.06

Table 5: Inquirer Tags Coverage

• Named Entity Feature: The named entity tag7

of the target word.

Post task evaluation on the test set indicates their
inclusion improves the performance of the system.
(See Table 6)

4.3 BERT Features
BERT was introduced in (Devlin et al., 2019), and
its usage has resulted in state-of-the-art perfor-
mance for various downstream NLP tasks, such
as Question Answering, Textual Entailment and
Paraphrase detection. In the present work, BERT
embedding for the target word is extracted from
the pre-trained BERT-base-uncased model8. Ad-
ditionally, in an effort to enhance the contextual-
ized BERT embeddings (Agarwal et al., 2020), the
embedding vector is supplemented with the fea-
ture vector corresponding to linguistic features de-
scribed in Section 3. Finally, a Neural Network is
trained to minimize the Mean Absolute Error us-
ing Adam optimizer (Kingma and Ba, 2015). Hy-
per parameter tuning is performed using hyperas9

and TPE algorithm. The number of intermediate
dense layers are tuned between {2, 3}. The en-
coding dimensions are tuned between {50, 100,

7extracted using https://spacy.io/api/entityrecognizer
8uncased L-12 H-768 A-12.zip
9https://pypi.org/project/hyperas/
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Included in Feature Space Trial Test
Etymology NamedEntity P S MAE R2 P S MAE R2

No No 0.8194 0.7478 0.0624 0.6681 0.7402 0.7005 0.0661 0.5440
Yes No 0.8115 0.7451 0.0633 0.6565 0.7421 0.7013 0.0660 0.5486
No Yes 0.8113 0.7440 0.0631 0.6561 0.7404 0.6966 0.0661 0.5464
Yes Yes 0.8175 0.7466 0.0627 0.6654 0.7418 0.6974 0.0659 0.5475

Table 6: Results for Additional Features

200, 300, 500, 700, 1000} and dropouts between
{0.1, . . . , 0.9}. Batch size is set to 16. The re-
sults are presented in Table 7. It can be observed
that BERT embeddings do not improve the perfor-
mance. Moreover, Neural Networks when applied
on just linguistic features have a lower performance
than Random Forest Regressors.

4.4 Error Analysis
Error analysis indicates that absolute error for 87%
test samples were less than 0.10. Samples belong-
ing to Biomedical corpus had highest errors. Some
predictions of the proposed model are presented
in Table 8. The correlation between the actual and
predicted complexity for similar targets in dissim-
ilar contexts is high. However, it is revealed that
difference in complexity of proper noun targets in
distinct contexts could not be captured effectively
through the present set of linguistic features.

5 Multiword Target

In the present task the Multiword Targets are pairs
of two adjacent words. We have experimented with
two approaches for predicting complexity scores
for Multiword Targets, as described in Section 5.1
and Section 5.2

5.1 Single Word Combination
In this approach, each word of a Multiword tar-
get is considered as individual single word tar-
gets, and the complexity scores are predicted using
the Single Word Target10 model. The individual
word scores are combined using Average, Maxi-
mum, and Minimum. Additionally, Algebraic Sum
(a + b − ab) and Product (ab) of the individual
scores are also considered. These are taken from
Fuzzy s-norm and t-norm (Klir and Yuan, 1995).
The results are indicated in Table 9. For both trial
and test set, maximum of the complexity score of
each word of the multiword target gives the least
MAE and the highest R2 value. But, the highest P

10Random Forest Regressor w/o additional features

for trial set is obtained when algebraic sum of the
individual complexity scores are taken and highest
S is obtained when product of the individual com-
plexity scores are taken. For the test set, algebraic
sum gives highest P and S.

5.2 Feature Combination

In this approach features corresponding to the indi-
vidual words are concatenated, and then a regres-
sion model is trained with the increased feature
space for complexity prediction. The individual tar-
get word complexity value predicted by the Single
Word Target model is also considered as a feature.
The results are presented in Table 10. Bagging
and Adaptive Boosting are applied on Random For-
est. The results indicate that inclusion of individual
complexity scores enhances the performance of the
system, and the best results are obtained for Bag-
ging ensemble. Our submission to the shared task
was derived using Bagging on the Random Forest
Regressor. The feature set contains individual word
features along with complexity scores. It achieved
Pearson correlation of 0.8244 on the test set.

6 Conclusion

Identification of difficult words is an important task
for Automatic Text Simplification. LCP aims at
assigning scores to words of a given sentence to
indicate its complexity. In this work we utilize
word level features to capture its lexical, semantic
and syntactic information. LM based features are
used for indicating the semantics of the target word
in a given context. Frequency and occurrence based
features are used to indicate the overall rarity of
the target words. For Single Word Target, Random
Forest Regressors trained on the linguistic feature
set achieved the highest results. Error analysis
revealed that the model can be further improved to
capture the context of the target word.

For Multiword Target, two approaches were ex-
plored. In the first approach complexity scores
of individual target words predicted by the Sin-
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Feature Set # Dense Dimension Dropouts P S MAE R2

Layers
Linguistic 2 50,200 0.1, 0.3 0.752 0.698 0.070 0.563
BERT 3 300,300,1000 0.3,0.1,0.1 0.732 0.678 0.071 0.532
BERT + Linguistic 2 300,200 0.1,0.1 0.714 0.660 0.072 0.502

Table 7: Results on Trial Set for Neural Network

Input Target Actual Predicted
Sentence Word Complexity Complexity
Saul arose, and they went out both of them, Saul 0.3676 0.3398
he and Samuel, abroad.
Saul said to his servants, ”Provide me now Saul 0.3529 0.3383
a man who can play well, and bring him to me.”
Samuel said to Saul, ”Why have you disturbed Saul 0.2778 0.3303
me, to bring me up?”
These results, as well as this study, suggest that amount 0.2031 0.2048
a considerable amount of maternal cholesterol can
be transferred to the murine fetus.
This wild-type staining pattern may simply reflect amount 0.2375 0.2207
the fact that decreasing the amount of mutant protein
by half makes it undetectable by immunocytochemistry.

Table 8: System Predictions

Combination Trial Test
Strategy P S MAE R2 P S MAE R2

Average 0.7329 0.7239 0.1220 0.0437 0.8098 0.8101 0.1314 0.0110
Maximum 0.6872 0.6733 0.1021 0.2861 0.7907 0.7916 0.1041 0.3433
Minimum 0.6964 0.6970 0.1534 -0.4056 0.7036 0.7064 0.1648 -0.5466
AlgebraicSum 0.7391 0.7217 0.1270 0.0598 0.8193 0.8104 0.1049 0.3349
Product 0.7047 0.7298 0.3153 -3.8253 0.7704 0.8063 0.3257 -3.9447

Table 9: Results for Multiword Target for Single Word Combination

Individual Complexity Regressor P S MAE R2

Predictions as a feature

No
Random Forest 0.7327 0.7253 0.0885 0.5110
+Bagging 0.7299 0.7294 0.0877 0.5118
+Adaptive Boosting 0.7386 0.7369 0.0880 0.5167

Yes
Random Forest 0.7234 0.7256 0.0872 0.5134
+Bagging 0.7482 0.7510 0.0830 0.5517
+Adaptive Boosting 0.7455 0.7427 0.0853 0.5408

Table 10: : Results for Multiword Target on the Trial Set using Feature Combination

gle Word model were combined using different
strategies, while in the second, the feature space
was expanded to accommodate features and com-
plexity scores corresponding to individual target
words. The latter yielded the best results. Our sys-

tem achieved 36th and 17th rank with respect to
the two subtasks. The difference in the correlation
value between the top performer is less than 0.05
for Single Word Target and 0.04 for Multiword
Target.
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Abstract

This article describes a system to predict the
complexity of words for the Lexical Complex-
ity Prediction (LCP) shared task hosted at Se-
mEval 2021 (Task 1) with a new annotated
English dataset with a Likert scale. Located
in the Lexical Semantics track, the task con-
sisted of predicting the complexity value of
the words in context. A machine learning ap-
proach was carried out based on the frequency
of the words and several characteristics added
at word level. Over these features, a super-
vised random forest regression algorithm was
trained. Several runs were performed with dif-
ferent values to observe the performance of
the algorithm. For the evaluation, our best re-
sults reported a M.A.E of 0.07347, M.S.E. of
0.00938, and R.M.S.E. of 0.096871. Our ex-
periments showed that, with a greater number
of characteristics, the precision of the classifi-
cation increases.

1 Introduction

The identification of complex words (CWI) is the
task of detecting in the content of documents the
words that are difficult or complex to understand by
the people of a certain group (Rico-Sulayes, 2020).
The CWI and the substitution of words identified
as complex may significantly improve readability
and understandability of a given text (Zotova et al.,
2020).

CWI has become an area of great interest in
recent years for the computational linguistics com-
munity in making proposals that allow researchers
to develop computational semantic analysis sys-
tems, as demonstrated by the shared tasks of CWI
in SemEval 2016 (Paetzold and Specia, 2016), y
NAACL-HTL 2018 (Yimam et al., 2018), and the
CWI task of the ALexS 2020 competition, hosted
at IberLEF 2020 (Ortiz-Zambranoa and Montejo-
Ráezb, 2020).

This article introduces a system that has par-
ticipated in the Lexical Complexity Prediction
(LCP) shared task hosted at SemEval 2021 (Task
1) (Shardlow et al., 2021a). The task releases a
new annotated English dataset with a Likert scale.
Located in the Lexical Semantics track, the task
consisted of predicting the complexity value of the
words in context.

We have explored different features for represent-
ing words and multi-words and their context. Some
preprocessing steps have been evaluated along with
the effect of feature selection.

2 Related Work

(DuBay, 2004) defines readability as allowing one
text to be easier to read than another. For many peo-
ple, the understanding of a text can be affected by
the presence of lexically and semantically complex
words and phrases, for example for children (Pe-
tersen and Ostendorf, 2009), non-native speakers
(Petersen and Ostendorf, 2009), and people with
various cognitive or reading disabilities (Saggion
et al., 2015).

Predicting which words a given target popula-
tion has difficulty to understand is a critical step
for many NLP applications, such as in text simplifi-
cation, which has traditionally focused its attention
on second language learners, native speakers with
low levels of literacy, and people with language dis-
abilities reading (Saggion et al., 2015). This task is
also known as complex word identification (CWI).
The prediction of the lexical complexity carried out
with precision can allow to adapt texts according
to the needs of the readers (Shardlow et al., 2020).
Actually, in an early study in the 1920s, a very sim-
ple way to predict the level of difficulty of a text
was discovered by educators, who used vocabulary
difficulty and sentence length as main indicators
(DuBay, 2004).
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corpus bible europarl biomedic total

single 2574 2576 2512 7662
multi 505 1 498 514 1517

Table 1: Total number of sentences in each training
corpus.

3 Dataset

The training data set provided to the participants
consisted of an augmented version of CompLex
(Shardlow et al., 2021b). It uses data from three dif-
ferent sources: the Bible, Europarl, and biomedic
texts (see Table 1). It is a set of multidomain En-
glish data made up of sentences, the targeted token,
and its respective level of complexity as described
in (Shardlow et al., 2020).

4 The system

This section describes the details of the system ap-
plied to the task, as our approach to complex word
identification. A machine learning approach was
followed based on the frequency of the words and
further characteristics added at word level. Over
these features, a supervised random forest regres-
sion algorithm was trained. In this section, first,
the features considered in the supervised learning
approach are introduced. Then, the method to de-
termine whether a candidate word is complex or
not is detailed.

4.1 Features
We computed a total of 15 features, taking into
consideration the linguistic measures of the work
carried out by (Mc Laughlin, 1969) and the exper-
iments of the shared tasks of the CWI BEA 2018
respectively by (Paetzold and Specia, 2016; Good-
ing and Kochmar, 2018). These are the features
obtained on the target word (token).

• Absolute frequency (abs-frequency): the ab-
solute frequency. This frequency is computed
based on the unannotated corpora compiled
by José Cañete1 from different sources. It
contains about 3 billion words.

• Relative frequency (rel-frequency): the rela-
tive frequency of the target word.

• Word length (length): the number of charac-
ters of the token.

1Available at https://github.com/
josecannete/spanish-corpora

• Number of syllables (number-syllables): the
number of syllables.

• Target word position (token-position): the po-
sition of the target word in the sentence.

• Number of words in the sentence (n-words-
sentences): number of words in sentence.

• Part Of Speech (POS): the Part Of Speech
category.

• Relative frequency of the previous the token
(freq-rel-word-before): the relative frequency
of the word before the token.

• Relative frequency of the word after the token
(freq-rel-word-after): the relative frequency
of the word after the token.

• Length of previous word (len-word-before):
the number of characters in the word before
the token.

• Length of the after word (len-word-after): the
number of characters in the word after the
token.

• Measure of Textual Lexical Diversity
(MTLD-diversity): the lexical diversity of the
target word in the sentence using the met-
ric proposed by (McCarthy and Jarvis, 2010)2.

Additionally, the following WordNet (Fellbaum,
2010) features were also considered for each target
word:

• Number of synonyms (number-synonyms).

• Number of hyponyms (number-hyponyms).

• Number of hyperonyms (number-hypernyms).

In the case of multiple words, the following char-
acteristics were applied: absolute frequency, rela-
tive frequency, token length, number of syllables,
total number of words in the sentence, MTDL di-
versity.

2Computed using this Python library: https://pypi.
org/project/lexical-diversity/
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Figure 1: Training process applying the Random Forest
Regression algorithm. A different model is trained for
each training subset of data.

4.2 Method

The numeric input variables were scaled to a stan-
dard range, as many machine learning algorithms
have been found to perform better when the data
set is normalized. A polynomial transformation on
the features characteristics was then applied with a
degree value of 2, so new features were created.

A forest of trees was built with the training set
(X, y), where we assigned to the independent vari-
able (X) an array that contains all the word-level
characteristics that were obtained from the token,
the same ones that were described in the section
4.1; and the value of the dependent variable (y)
corresponds to the level of complexity’s word.

To build the Random Forest Regression Model,
we split the dataset into the training set and test
set, that is, 10% of the data set was used as test set,
and the remaining 90% was used as the training set.
Figure 1 shows the training process applying the
random forest regression algorithm.

5 Experimental Results

5.1 Results on Trial and Simulated Data

To calculate the prediction value of the word com-
plexity on the data of the evaluation corpus, the (X,
y), where we assigned to the independent variable
(X) which we called XTest, was built, was an ar-
ray that contained all the word-level characteristics
that were obtained from the token. Finally, we train
the algorithm with the evaluation data and predict
the results of the test set with the model trained on
the testing set values using the regressor predict

#Trees K MAE MSE RMSE

150 7 0.07347 0.00938 0.09687
130 7 0.07354 0.00940 0.09700
150 8 0.07356 0.00942 0.09710

Table 2: Results obtained with Random Forest with se-
lecting K-best features on single words subset.

# Team Name MAE MSE R2

1 JUST Blue 0.0609 0.0062 0.6172
2 DeepBlueAI 0.0610 0.0061 0.6210
3 Alejandro M. 0.0619 0.0064 0.6062
50 SINAI 0.0875 0.0131 0.1930

Table 3: Final results of the Lexical Complexity Predic-
tion task on the single words dataset

function.
Several runs were made with different values

to observe the performance of the algorithm and
fine-tune the hyperparameters of the model.

Our best configuration was with 150 nodes
and 7 features, selected by their F ANOVA be-
tween label / feature. The selected characteristics
were: abs frecuency, rel frecuency, lenght, num-
ber syllables, token position, number synonyms,
Part of speech. Finally, the prediction value of the
words for the test data set was obtained, obtaining
the best result: MAE of 0.07347, MSE of 0.00938,
and RMSE of 0.096871 (see Table 2).

5.2 Results on test Data

In this section we present the results obtained from
our system, and we carry out a discussion regard-
ing the results presented by the organizers of the
workshop.

The final results were sent to the SemEval 2021
organizers after the execution of our system. The
final published results are those shown in Table 3,
where the winners of the first three positions are
presented. The results that we obtained in the con-
test for the case of the evaluation corpus of simple
words were, MAE of 0.0875, MSE of 0.0131 and R-
squared of 0.1930. Taking into account the number
of competitors (quite large) and the result obtained
by the first place winner (MAE of 0.0609), we see
that there is a small difference, which allows us to
be confident with our simple approach.
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6 Conclusion

In this article, the results of our participation in
Task 1: Lexical Complexity Prediction in the Lex-
ical semantics track hosted at the SemEval 2021
international workshop have been presented. Both
the training corpus and the evaluation corpus were
provided by the sponsoring organization of this
competition. We applied machine learning and
built the model using the random forest regression
algorithm, relying on well-known word based and
contextual features.

As future work, we plan to perform error analy-
sis on the predictions, to identify the weaknesses of
the proposed approach based on a characterization
of the instances where the system performs poorly.
Also, a better analysis of multi-word scenario is
foreseen.
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Abstract
In this paper, we present our systems submitted
to SemEval-2021 Task 1 on lexical complexity
prediction (Shardlow et al., 2021a). The aim
of this shared task was to create systems able
to predict the lexical complexity of word to-
kens and bigram multiword expressions within
a given sentence context, a continuous value in-
dicating the difficulty in understanding a respec-
tive utterance. Our approach relies on gradient
boosted regression tree ensembles fitted using a
heterogeneous feature set combining linguistic
features, static and contextualized word embed-
dings, psycholinguistic norm lexica, WordNet,
word- and character bigram frequencies and
inclusion in word lists to create a model able
to assign a word or multiword expression a
context-dependent complexity score. We can
show that especially contextualised string em-
beddings (Akbik et al., 2018) can help with
predicting lexical complexity.

1 Introduction

In this paper, we present our contribution to
SemEval-2021 Shared Task 1 (Shardlow et al.,
2021a), a shared task focused on the topic of lex-
ical complexity prediction. The term lexical com-
plexity prediction describes the task of assigning
a word or multiword expression a continuous or
discrete score signifying its likeliness of being un-
derstood well within a given context, especially
by a non-native speaker. Solving this task could
benefit second-language learners and non-native
speakers in various ways. One could imagine using
such scores to extract vocabulary lists appropri-
ate for a learner level from corpora and literature
(Alfter and Volodina, 2018), to judge if a given
piece of literature fits a learner’s skill or to assist
authors of textbooks in finding a level of textual
difficulty appropriate for a target audience.

Predicting these scores can be formulated as a
regression problem. Our approach to solve this

problem relies on gradient-boosted regression tree
ensembles which we fit on a heterogeneous feature
set including different word embedding models,
linguistic features, WordNet features, psycholin-
guistic lexica, corpus-based word frequencies and
word lists. We assumed that lexical complexity
could be correlated with a wide range of features,
neural ones as much as distributional or psycholin-
guistic ones, which is why we chose to use an
ensemble-based method in the form of gradient
boosting (Mason et al., 1999) for our system as it
usually performs best for tasks where such a fea-
ture set is needed compared to solely neural models
which need dense, homogeneous input data to per-
form well.

Out of all participants, our systems were ranked
15/54 in the single word- and 19/37 in the multi-
word category during the official shared task eval-
uations according to Pearson’s correlation coeffi-
cient. Our key discovery is that while features from
nearly all categories provided by us were used by
our systems, contextual string embeddings (Akbik
et al., 2018) were the by far most important cate-
gory of features to determine lexical complexity
for both systems. The code and our full results
can be found at https://github.com/SGombert/
tudacclsemeval.

2 Background

2.1 Task Setup

For the shared task, CompLex corpus (Shardlow
et al., 2020, 2021b) was used as data set. This En-
glish corpus consists of sentences extracted from
the World English Bible of the multilingual cor-
pus consisting of bible translations published by
Christodoulopoulos and Steedman (2015), the En-
glish version of Europarl (Koehn, 2005), a corpus
containing various texts concerned with European
policy, and CRAFT (Bada et al., 2012), a corpus
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consisting of biomedical articles.
CompLex is divided into two sub-corpora, one

dealing with the complexity of single words and
the other one with the complexity of bigram multi-
word expressions. Accordingly, the shared task was
divided into two sub-tasks, one dedicated to each
sub-corpus. Within both CompLex sub-corpora,
the sentences are organised into quadruples consist-
ing of a given sentence, a reference to its original
corpus, a selected word, respectively a multiword
expression from this sentence, and a continuous
complexity score denoting the difficulty of this se-
lected word or bigram which is to be predicted by
systems submitted to the shared task. For the task,
both subcorpora were partitioned into training, test
and trial sets.

The scores given for simple words, respectively
multiword expressions, were derived from letting
annotators subjectively judge the difficulty of un-
derstanding words respectively word bigrams on a
Likert scale ranging from 1 to 5 with 1 indicating
a very simple and 5 a very complex word. The
assigned scores were then projected onto values be-
tween 0 and 1 and averaged between all annotators
to calculate the final scores.

2.2 Related Work

The first approaches to the systematic prediction
of lexical complexity were made during SemEval-
2016 Task 11 (Paetzold and Specia, 2016). Here,
the problem of determining the complexity of a
word was formulated as a classification task de-
signed to determine whether a word could be con-
sidered as being complex or not. The data set used
for this task was created by presenting 20 non-
native speakers with sentences and letting them
judge whether the words contained within these
sentences were rated as complex or not. From these
judgements, two different data sets were derived.
In the first one, a word was considered complex
if at least one of the annotators had judged it as
such, and in the second one, each word was given
20 different labels, one per annotator. The most
important findings for this shared task were that
ensemble methods performed best in predicting
lexical complexity with word frequency being the
best indicator.

In 2018, a second shared task was conducted on
the same topic as described in Yimam et al. (2018).
This shared task focused on predicting lexical com-
plexity for English, German, Spanish and a multi-

lingual data set with a French test set. The data for
this was acquired by presenting annotators on Ama-
zon Mechanical Turk with paragraphs of text and
letting them mark words which according to their
perception could hinder the same paragraph from
being understood by a less proficient reader. The
findings of this shared task confirmed the finding
of the previous one that using ensemble methods
yield best results for complex word identification
with a system submitted by Gooding and Kochmar
(2018) relying on decision tree ensembles.

3 System Overview

Our systems rely on gradient-boosted regression
tree ensembles (Mason et al., 1999) for predicting
lexical complexity scores. We trained one model to
predict single word lexical complexity scores and
another one to predict bigram multiword expression
complexity scores. Our models are based on the
implementation of gradient boosting provided by
CatBoost1 (Dorogush et al., 2018; Prokhorenkova
et al., 2018). We set the growing policy to loss-
guide, the L2 leaf regularisation to 15, the learning
rate to 0.01, tree depth to 6 and the maximum num-
ber of leaves to 15. Additionally, we set the number
of maximum iterations to 5000 and then used the
trial set to perform early stopping during training
in order to determine the exact number of required
iterations.

The motivation behind using this algorithm was
its general ability to perform well on heterogeneous
and sparse feature sets which allowed us to mix
regular linguistic features, WordNet features, word
embeddings, psycho-linguistic norm lexica, corpus-
based word frequencies and selected word lists as
all of these were features we assumed to possibly
correlate with lexical complexity. Moreover, the re-
portings of Paetzold and Specia (2016) and Yimam
et al. (2018) that ensemble-based learners perform
best for complex word identification contributed to
this decision, as well. While the problem presented
in their paper is formulated as a binary classifica-
tion task using different data sets, we wanted to test
if their findings would still translate to a regression
task on CompLex.

3.1 Feature Engineering

The following paragraphs describe the features we
used to create the feature vectors used to represent
words. In case of our system dealing with bigram

1https://catboost.ai/
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multiword expressions, we calculated such a vector
for each of both words and then concatenated them
to acquire the final input vectors. Thus, the exact
number of input features was 7424 for our system
dealing with single words and 14848 for our system
dealing with multiword expressions.

Syntactic features: This category of features in-
cludes XPOS-, UPOS-, dependency- and named
entity tags as well as universal features2 inferred
using the English Stanza3 (Qi et al., 2020) model
fit to the version of the English Web Treebank fol-
lowing the Universal Dependencies formalism (Sil-
veira et al., 2014). In addition to the tags assigned
to the word(s) whose score was to be predicted,
we included the XPOS- and UPOS tags of the two
neighbouring words to the left and to the right as
well as the dependency tags of the siblings, direct
children and the parent of the word(s) within the
dependency structure of a given sentence. All of
these features are encoded as one-, respectively
n-hot vectors using the LabelBinarizer and Mul-
tiLabelBinarizer classes provided by Scikit-learn
(Pedregosa et al., 2011).

WordNet features: Here, we included the num-
bers of hypernyms, root hypernyms, hyponyms,
member holonyms, part meronyms and member
meronyms of the respective word(s) as well as
the number of given examples and the length of
the shortest hypernym path from WordNet (Miller,
1995). In cases where multiple synsets were given
for a word, we calculated the respective means and
in cases where a given word was not included in
the resource, we set all respective feature values to
0. We accessed WordNet using NLTK (Bird et al.,
2009). The main intuition behind using this re-
source was that the length of the shortest hypernym
path and the count for the different lexico-semantic
relations could be a good indicator for lexical com-
plexity.

Word embeddings: We used multiple static and
contextual word embedding models for our fea-
ture set. This includes the transformer-based
(Devlin et al., 2019) BiomedNLP-PubMedBERT-
base-uncased-abstract (Gu et al., 2020), distilgpt24

(Radford et al., 2018) and distilbert-base-uncased
(Sanh et al., 2019), the contextual string embed-

2https://universaldependencies.org/u/
feat/all.html

3https://stanfordnlp.github.io/stanza/
4https://huggingface.co/distilgpt2

ding models mix-forward and mix-backward5 (Ak-
bik et al., 2018), and the static GloVe6 (Pennington
et al., 2014) and English fastText7 (Bojanowski
et al., 2017) embeddings.

This collection of embeddings was derived from
previous experiments on the CompLex corpus
where we tried to fine-tune a purely neural model
using the approach of stacking different embedding
models in combination with an attached predic-
tion head central to flairNLP8 (Akbik et al., 2019).
More precisely, in the setup we chose, the outputs
of all language models were fed to a feed-forward
layer responsible for calculating the final complex-
ity scores. This network was then trained for 5
epochs with a learning rate of 0.000001, mean
squared error as loss function and Adam (Kingma
and Ba, 2015) as optimizer on the training set part
of CompLex. During this training, fine-tuning was
active for all transformer-based language models so
that their weights were adjusted during the process
and scalar mixing (Liu et al., 2019) was used for
the transformer-based language models as it was
not foreseeable which layers of the transformer
models would influence results the most.

This model achieved a Pearson’s correlation co-
efficient score of 0.7103 when evaluated on the
trial set. While we deemed this an okay result,
we decided to stick with gradient boosting for our
final systems as early experiments with this algo-
rithm yielded results superior to the purely neural
approach when evaluated on the same set. As we
switched to using gradient boosting for our final
systems, we decided to use the fine-tuned variants
of the transformer embedding models as using them
led to small improvements when testing our models
on the shared task trial sets compared to using the
non-fine-tuned variants.

Psycholinguistic norm lexica: Our feature set
includes two psycholinguistic norm lexica. The
first one is described in Warriner et al. (2013) and
scores words with empirical ratings for pleasant-
ness, arousal and dominance using the SAM score
(Bradley and Lang, 1994). These ratings were ac-
quired from annotators on the Amazon Mechanical
Turk platform. The second lexicon is described in

5https://github.com/flairNLP/flair/
blob/master/resources/docs/embeddings/
FLAIR_EMBEDDINGS.md

6https://nlp.stanford.edu/projects/
glove/

7https://fasttext.cc/
8https://github.com/flairNLP/flair
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Malandrakis and Narayanan (2015) and includes
ratings for arousal, dominance, valence, pleasant-
ness, concreteness, imagability, age of acquisition,
familarity, pronouncability, context availability
and gender ladenness. The ratings within this lexi-
con were derived algorithmically from smaller lex-
icons using linear combinations and semantic simi-
larity scores to approximate the ratings for words
not included in the source lexica. In both cases,
the inclusion of these features was mainly moti-
vated by our general intuition that the perceived
complexity of words could be linked to different
psycholinguistic variables.

Word frequencies: We utilised three resources
containing corpus-based word respectively char-
acter bigram frequencies. The first of these data
sets was the frequency list extracted from the SUB-
TLEXus corpus (Brysbaert and New, 2009) con-
sisting of various movie subtitles from which we
used the log-normalised term frequency and the
log-normalised document frequency as features.
Besides SUBTLEXus, we utilised the character bi-
gram frequencies from Norvig (2013) which were
extracted from the Google Books Corpus. Here,
to represent a word, we calculated the mean of all
frequencies of the bigrams consituting the same
and used this as feature. In the case of both sets,
our intuition was that lower frequency would likely
function as a proxy for complexity. The third set
we used was EFLLex (Dürlich and François, 2018)
which lists the frequencies of words within several
pieces of English literature appropriate for different
CEFR9 levels. We included this set as we deemed
that CEFR as a framework for rating language com-
petence could also function as an according proxy.

Word Lists: We used two different word lists as
features. The first one is Ogden’s Basic English
Vocabulary10, a list of simple words used for writ-
ing simple English as described in Ogden (1932).
Here, our idea was that this could help to identify
simple words within CompLex. The other one was
the Academic Word List as described in Coxhead
(2011), a structured lexicon of terms used primar-
ily in academic discourse which we believed to
contain more complex words. In both cases, we
encoded the inclusion of a word within a respective
word list binarily.

9https://tracktest.eu/
english-levels-cefr/

10http://ogden.basic-english.org/

Metric System Rank Best Res.
Pearson 0.7618 15/54 0.7886
Spearman 0.7164 26/54 0.7425
MAE 0.0643 20/54 0.0609
MSE 0.0067 9/54 0.0061
R2 0.5846 10/54 0.6210

Table 1: Results achieved by our system dealing with
single word complexity. Best Results refer to the best
score achieved within each category by a competing
system.

Metric System Rank Best Res.
Pearson 0.8190 19/37 0.8612
Spearman 0.8091 19/37 0.8548
MAE 0.0711 14/37 0.0616
MSE 0.0080 12/37 0.0063
R2 0.6677 13/37 0.7389

Table 2: Results achieved by our system dealing with
multiword expression complexity. Best Results refer
to the best score achieved within each category by a
competing system.

4 Results

Throughout the shared task, the systems were eval-
uated with regard to Pearson’s correlation coef-
ficient, Spearman’s rank correlation coefficient,
mean average error, mean squared error and R2
with Pearson’s correlation coefficient determining
the main ranking. According to this, our systems
achieved the 15th and 19th rank respectively. Ta-
ble 1 shows the results achieved by our system
dealing with single words and Table 2 the results
achieved by our system dealing with multiword ex-
pressions. The results show that our systems, while
only achieving upper mid-table results on average,
come close to the best systems performance-wise
which speaks for our approach. Further hyperpa-
rameter tuning and the addition of more features
could likely close this gap. The full results for all
submitted systems are presented in Shardlow et al.
(2021a).

4.1 Most Important Features

To determine which features were used by our mod-
els to predict lexical complexity, we rely on the
functionality provided by CatBoost which scores
each feature for its influence on a given final pre-
diction. This is achieved by changing a respective
feature values and observing the resulting change
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Rank Feature Importance
1 flair-mix-b. 25.10
2 flair-mix-b. 11.79
3 flair-mix-b. 7.03
4 flair-mix-f. 4.09
5 flair-mix-f. 2.98
6 flair-mix-b. 1.33
7 flair-mix-f. 1.20
8 distilbert-b.-u. 1.19
9 BiomedNLP 1.12
10 GloVe 1.03

Table 3: The 10 most important features observed for
our system dealing with single word complexity and
their categories. Each entry refers to a single dimension
of the feature vector.

in the model prediction (see 11 for further infor-
mation on the exact method). The outputs of this
method are normalised so that the sum of the im-
portance values of all features equals 100. Feature
importance was calculated using the evaluation set
of CompLex.

Inspecting the results of these calculations, we
noticed that our systems did not use the charac-
ter bigram frequencies derived from the Google
Books Corpus, nor the frequencies from EFLLex
or the word list inclusion features. While features
from all other categories were utilised, the most
dominant features by far are contained in the word
embedding category. Within this category, the most
dominant features for both models came from the
flair-mix-backward and flair-mix-forward models
(see Tables 3 and 4). A few single dimension from
the embeddings provided by flair-mix-backward
seem to play the major role here.

In the case of our model dealing with multiword
expressions, the ten most important features all
stem from the flair-mix-backward embedding of
the second word. This could be explained by the
fact that most multiword expressions within the
CompLex corpus follow the structure of a semantic
head in combination with a modifier as most of
them are either multi token compounds or single
token nouns modified by adjectives. It is intuitive
from a linguistic point of view that in such cases,
the semantic head, which comes as second element,
should play the dominant semantic role resulting
in it being more influential in the overall results.

11https://catboost.ai/docs/concepts/
fstr.html

Rank Feature Importance
1 flair-mix-b. (2nd w.) 9.28
2 flair-mix-b. (2nd w.) 7.24
3 flair-mix-b. (2nd w.) 6.09
4 flair-mix-b. (2nd w.) 3.80
5 flair-mix-b. (2nd w.) 3.60
6 flair-mix-b. (2nd w.) 3.17
7 flair-mix-b. (2nd w.) 2.44
8 flair-mix-b. (2nd w.) 1.88
9 flair-mix-b. (2nd w.) 1.34
10 flair-mix-b. (2nd w.) 1.08

Table 4: The 10 most important features observed for
our system dealing with multiword expression complex-
ity and their categories. Each entry refers to a single
dimension of the feature vector.

While the exact reason for the strong influence
of the contextualised string embeddings is hard to
determine due to the fact that embeddings lack the
property of being easily interpretable, we assume
that the dominant role they play for the results
could be determined by them being calculated on
the character level (Akbik et al., 2018) instead of
the level of fixed words or subword units such as
morphemes. As a consequence, such models use
fewer input dimensions and each of the dimensions
present is in turn involved in the encoding of more
different words. This links each input dimension
also to a larger variety of latently encoded distribu-
tional knowledge which could then contain certain
regularities strongly correlated with lexical com-
plexity. However, without further research, this
currently remains pure speculation.

4.2 Predictions vs. Ground Truth

In order to compare the predicted values of our
models to the ground truth data, we scatterplotted
the relationship between ground truth labels and
the scores predicted by our systems (see Figures
1 and 2) using the CompLex evaluation set. It can
be observed that both systems, especially the one
dealing with single word complexity, show the ten-
dency to assign slightly higher scores than given
in the ground truth for simple words and slightly
lower scores for complex words. The system deal-
ing with multiword expressions does not assign
any value below 0.2 at all and the one dealing with
single word complexity rarely does so. This indi-
cates that our feature set does not contain features
which could help our models to identify very sim-
ple words.
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Figure 1: Scatterplot visualising the relationship be-
tween the ground truth and the predictions of our model
for single word complexity. X: ground truth Y: predic-
tion

5 Conclusion

We presented both our systems submitted to
SemEval-2021 Task 1 combining a heterogeneous
feature set with gradient boosting as regression
algorithm. Our systems ware ranked 15/54 and
19/37 during shared task evaluations according to
Pearson’s correlation coefficient. However, the re-
sults achieved by our systems were still close to
the best results, especially in the case of the sys-
tem dealing with single word complexity. The type
of feature playing the most important role for our
models are contextual string embeddings as they
influenced the outcome the most. We attribute this
to a relationship between lexical complexity and
the distribution of characters throughout words and
sentences, but this needs further clarification which
could be the objective of future work. Moreover,
our systems rarely assign scores below 0.2. It must
be explored further if there are features which could
improve our systems in this respect. In summary,
we can report that ensemble methods turned out to
be fruitful when applied to CompLex.
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Abstract

In this paper, we present our contribution in
SemEval-2021 Task 1: Lexical Complexity
Prediction, where we integrate linguistic, sta-
tistical, and semantic properties of the target
word and its context as features within a Ma-
chine Learning (ML) framework for predicting
lexical complexity. In particular, we use BERT
contextualized word embeddings to represent
the semantic meaning of the target word and its
context. We participated in the sub-task of pre-
dicting the complexity score of single words.

1 Introduction

Over the last decade, automated methods for de-
tecting complex words have been developed. At
the beginning, most of these methods assumed that
lexical complexity is binary, words are either ”dif-
ficult” or ”not difficult”. Thus, the first Complex
Word Identification (CWI) shared task referred to
binary identification of complex words (Zampieri
et al., 2017). The main limitation of this assump-
tion is that a word close to the decision boundary
is considered to be as complex as one farther apart.
Therefore, three years ago, the CWI included an
additional probabilistic classification task where
the participants were asked to give a probability of
the given target word in particular context being
complex (Štajner et al., 2018).

Recently, CompLex, a new English corpus
for lexical complexity prediction was introduced
(Shardlow et al., 2020). The corpus is annotated
using a 5-point Likert scale (1-5) (corresponding
to very easy, easy, neutral, difficult, and very dif-
ficult), and covers 3 genres: Bible translation, Eu-
ropean Pariliament proceedings, and biomedical
articles. SemEval-2021 (Task 1) shared task on
Lexical Complexity Prediction (LCP) (Shardlow
et al., 2021a,b) provided the participants with Com-
plex and defined two sub-tasks: predicting the com-

plexity score of single words, and predicting the
complexity score of multi-word expressions.

We present our system for the first sub-task of
predicting the complexity score of single words.
Our system incorporates linguistic, statistical, and
semantic properties of the target word and its con-
text as features within a Machine Learning (ML)
framework for predicting lexical complexity.

This paper is organized as follows: First, in Sec-
tion 2, we describe features from previous works
that we have adopted. Then, in Section 3, we de-
scribe our feature sets, the feature selection process,
and the results on the trial data. Finally, Our sys-
tem results on the test data are detailed in Section 4,
followed by conclusions in Section 5.

2 Related work

In this section, we shortly describe linguistic, sta-
tistical, and semantic features which were encoded
as features in previous complexity prediction tasks
and were integrated in our system.

Linguistics features, such as Part-Of-Speech
(POS) tag, dependency parsing relations, and syl-
lable counts, as well as statistical features, such as
word length and word frequency, have been widely
used for predicting lexical complexity (Mukherjee
et al., 2016; Ronzano et al., 2016; Alfter and Pilán,
2018; Gooding and Kochmar, 2018; Hartmann and
Dos Santos, 2018; Kajiwara and Komachi, 2018;
Wani et al., 2018). Some of these works found
WordNet (Miller, 1998) as a valuable source of
lexical features. The main extracted feature is the
number of synsets, but also information on hyper-
nyms, hyponyms, holonym, and meronym is use-
ful (Gooding and Kochmar, 2018; Hartmann and
Dos Santos, 2018; Wani et al., 2018).

Semantic features were commonly encoded us-
ing word embedding representation of the mean-
ing of words (Kuru, 2016; AbuRa’ed and Sag-
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gion, 2018). These word embeddings were gener-
ated using Word2Vec context-independent models
(Mikolov et al., 2013). Word2Vec models com-
bine different senses of the word into one single
vector. However, recently, there is a growing inter-
est in contextualized word representations, such as
BERT (Devlin et al., 2018). BERT model generates
context-dependent embeddings that allow a word
to have several vector representations depending
on the context in which it is used. In contrast to pre-
vious works that only use context-independent em-
beddings, our system uses the BERT-based context-
dependent embeddings.

3 System Description

We adopt a supervised Machine Learning (ML) ap-
proach for lexical complexity prediction. The first
step in a classifier training is to determine which
text characteristics are relevant and how those fea-
tures are coded.

3.1 Feature Sets

We next detail how the semantic properties of the
sentence, as well as the linguistic and statistical
properties found useful in prior work, are encoded
as features. Then, in Section 3.2, we describe our
feature analysis procedure and the supervised ML
model. The features in our model are divided into
3 sets: linguistic, statistical and semantic.

3.1.1 Linguistic features
Our dataset contains three corpora: Bible, Europarl,
and Biomedical, to add variation. Since each cor-
pus has its own unique linguistic features, we first
encode the text source by three binary features.

Most of our linguistic features are based on infor-
mation extracted from a POS tagger. Our linguistic
properties include two families of properties: mor-
phological and syntactical.

First, we encode the target word POS. The POS
is extracted by the Spacy’s statistical POS tagger1.
Each possible POS tag is represented as a binary
feature. We use the following 12 tags from the
Universal POS tags2: ADJ, ADP, ADV, CONJ,
DET, NOUN, NUM, PRT, PRON, VERB and X
(other). As an additional feature, the number of
syllables in the target word is encoded3. Then,

1https://spacy.io/
2https://universaldependencies.org/u/

pos/index.html
3https://eayd.in/?p=232

we calculate the number of punctuation marks and
stopwords in the sentence (two features).

Next, we represent syntactic forms by POS pat-
terns. The POS pattern refers to seven words, the
target word and three words before and after it.
Each of the words is encoded by 12 binary features,
resulting with 84 features.

We also measure the polysemy degree of the
target word using the number of senses in WordNet.
We obtain two lexical features: number of synsets
for the target word and number of synsets for the
target word given its POS.

3.1.2 Statistical features
We define some statistical features based on fre-
quency. First, we calculate target word length and
sentence length. Then, we extract the target word
frequency using Google N-gram4 word frequen-
cies. We encode the logarithm of this frequency as
a feature to speed the ML algorithm’s convergence
(three features).

3.1.3 Semantic features
We represent the meaning of the surrounding con-
text of the target word by vectors in the same se-
mantic space. We use the BERT semantic space.
BERT is a bidirectional transformer pre-trained on
a large corpus containing the Toronto Book Cor-
pus and Wikipedia using a combination of masked
language modeling objective and next sentence pre-
diction. BERT contextualizing vectors are used to
represent the semantic meaning of the sentence by
averaging the BERT vectors of seven words, the tar-
get word and three words before and after it. Thus,
our semantic representation add 768 features (the
size of BERT output layer).

To extract additional features, we use two ma-
chine learning algorithm: K-Means and k-Nearest
Neighbors (KNN) algorithm. K-Means is an unsu-
pervised learning algorithm used for clustering. It
takes the unlabeled dataset and tries to group them
into k number of clusters. We encode the K-Mean
results by four binary features, a feature per clus-
ter (k=4). The results of the KNN algorithm are
encoded similarly. However, KNN is a supervised
learning algorithm used for classification. It takes
the labeled dataset and uses it to learn how to label
other sentences. KNN classifies an unseen sentence
using it k nearest neighbors voting. We use four
complexity classes: 0-0.25, 0.26-0.5, 0.51-0.75,
0.76-1.

4https://books.google.com/ngrams
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3.2 Feature Selection

For each of the above feature sets, we tried to filter
out non-relevant features using several approaches.

First, we discharged features that decrease the
system performance on the training set, namely,
the POS pattern features, the WordNet features,
and the K-Means and KNN features. We were left
with 794 features. These features were selected
using the Linear Regression algorithm, which was
also selected as a baseline algorithm by the task
organizers. To further improve the performance of
our systems, we used additional ML algorithms,
such as SVM and XGBoost (see more details in
Section 3.3).

Next, since correlated features do not carry
unique information and may interfere the learning,
we tried to discharge highly correlated features. We
implemented this approach using the following iter-
ative process. The input is the desired final number
of features. First, we define an initial correlation
threshold (0.9). Then, we calculate the features’
pairwise correlation and features with correlation
above the threshold are removed. Next, if we still
have more features than desired, we will lower the
correlation threshold (by 10%) and repeat the pro-
cess. This approach improved the performance of
the SVM and Linear Regression models (selecting
97 features), but did not increase the performance
of the XGBOOST method.

We note that we also tried to filter out feature us-
ing the principal component analysis (PCA) feature
selection method (Song et al., 2010). PCA aims to
pick a subset of features that retains as much infor-
mation present in the full data as possible. PCA
was performed both on the full feature list and on
specific features, such as BERT features, but it was
not successful.

Some of the classification models had low perfor-
mance using such amount of features (794 features).
Therefore, we further filleted features by calculat-
ing their correlation with the complexity score and
discarding features with low correlation (less than
0.072). We resulted with the following list of 101
features:

• Biomedical corpus indicator

• Europal corpus indicator

• NOUN POS tag

• PRON POS tag

• number of syllables in the target word

• target word length

• target word frequency (Google N-gram)

• 94 features from BERT vector

It is interesting to note that even though, there
are 12 POS tags, only 2 are informative for the com-
plexity prediction task. Considering the source text
indicators, the third Bible indicator is not useful.
Out of the BERT 768 features, only 94 remained
(12.2% of the vector).

The BERT representation of the sentence is
generated by pre-trained language representation
model. These models can be trained on different
datasets of various domains. Since one of our cor-
pora is from the Biomedical domain, we examined
the system performance using the domain specific
BioBERT (Lee et al., 2020). Figure 1 shows a
comparison between the error rate of our system
using the classic BERT and BioBERT (BERT on
the left and BioBERT on the right). The columns
show the error rate for different text sources. The
red line is the average error rate. Columns from
left to right: Bible, Biomedical, and Europarl. Sur-
prisingly, the error rate of the BioBERT on the
Biomedical domain is higher than that of the clas-
sic BERT. However, the average error for both is
the same (∼ 0.69).

3.3 Application of five Machine Learning
methods

We combined the features in a supervised classi-
fication framework using five ML methods: Lin-
ear Regression, Supported Vector Machine (SVM),
XGBoost (XGB), KNN, and Stacking (Stack). We
trained the ML methods on the train set and evalu-
ated their performances on the trial set.

We ran these ML methods by the scikit-learn
open-source machine-learning package in python5

(Pedregosa et al., 2011) using the default parame-
ters. Table 1 shows the performances of the differ-
ent ML methods on the feature set of 101 features,
as described above. The MAE is omitted from the
table because it is similar for all the ML algorithms
(0.01). The performance differences between the
algorithms were not so substantial. Therefore, we
next report the performances of all these methods
on the test set.

5https://scikit-learn.org/stable/
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Figure 1: A comparison between the error rate of our system using the classic BERT and BioBERT

Alg. Pearson Spearman MSE R2
LR 0.672 0.656 0.077 0.45
SVM 0.693 0.67 0.075 0.476
XGB 0.671 0.655 0.076 0.449
KNN 0.682 0.64 0.077 0.464
Stack 0.689 0.66 0.077 0.436

Table 1: The performances of the different ML algo-
rithms on the trial set

4 Results

To increase the size of our train set for the test phase
of the task, we used both the train and trial sets to
train the final model. Table 2 presents our results
on the test set. The predictions of the XGBoost
were submitted to the shared task competition. The
results of the different algorithms are close to each
other and consistent with the results on the trial
set. The results of the KNN method are a bit lower.
Even though, stacking allows to use the strength
of each individual classifier by using their output
as input of a final classifier, it did not obtain better
result. This may imply that the different classifiers
exploit the same information and do not reveal
supplementary information.

Alg. Pear. Spea. MAE MSE R2
LR 0.629 0.622 0.079 0.01 0.384
SVM 0.669 0.645 0.074 0.009 0.439
XGB 0.666 0.646 0.074 0.009 0.44
KNN 0.618 0.598 0.074 0.01 0.358
Stack 0.658 0.633 0.079 0.009 0.433

Table 2: The performances of the different ML algo-
rithms on the test set

To analyze our results, we converted the com-
plexity scores to labels following Shardlow et al.
(2020) descriptors. In Figure 2, we present the
classification confusion matrix of the XGBoost al-
gorithm. Each column of the matrix represents
the instances in a predicted class while each row
represents the instances in an actual class. Most
of the classification errors (18.54%) were due to
incorrect classification of very easy words as easy.
There were also errors in the opposite direction
(4.36%). Most of the rest of the classifications
were between neutral and easy in both directions
(7.42% + 6.43% = 13.85%). We note that the 5th

class, very difficult, does not appear in the confu-
sion matrix since there are not any very difficult
words in the test set and the system did not classi-
fied any of the words as very difficult.

Figure 2: A confusion matrix for the XGBoost com-
plexity predictions
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5 Conclusions and Future Work

We have implemented a system that incorporates
linguistic, statistical, and semantic features to pre-
dict lexical complexity of target word in context.
BERT semantic space was used to represent the
word and its context. We investigated several fea-
ture selection approaches and used various super-
vised algorithms.

Even though our system was not highly ranked,
we believe that some of the presented ideas can
be useful for future research on lexical complexity
prediction. In particular, we think that BERT is a
powerful model that should be explored. Perhaps,
fine-tuning BERT for the complexity prediction
task would increase the system performance.
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Abstract
This paper describes our submission to
SemEval-2021 Task 1: predicting the complex-
ity score for single words. Our model lever-
ages standard morphosyntactic and frequency-
based features that proved helpful for Com-
plex Word Identification (a related task),
and combines them with predictions made
by Transformer-based pre-trained models that
were fine-tuned on the Shared Task data. Our
submission system stacks all previous mod-
els with a LightGBM at the top. One nov-
elty of our approach is the use of multi-task
learning for fine-tuning a pre-trained model for
both Lexical Complexity Prediction and Word
Sense Disambiguation. Our analysis shows
that all independent models achieve a good per-
formance in the task, but that stacking them ob-
tains a Pearson correlation of 0.7704, merely
0.018 points behind the winning submission.

1 Introduction

Complex Word Identification (CWI) consists of de-
termining which words or multi-word expressions
(MWE) in a text could be difficult to understand
by certain readers. This is one of the first steps in
the typical Lexical Simplification pipeline (Shard-
low, 2014). CWI has traditionally been treated as
either a binary (Paetzold and Specia, 2016) or re-
gression (Štajner et al., 2018) task. For the latter,
the complexity of a word/MWE was computed as a
percentage of binary complexity ratings. Recently,
Shardlow et al. (2020) proposed to move away from
the binary definition of CWI, and instead collected
complexity ratings using Likert scales. This al-
lows re-defining the task as Lexical Complexity
Prediction (LCP). Leveraging this new collected
data, the First LCP Shared Task was organised in
SemEval-2021 (Shardlow et al., 2021).

Our team participated in Sub-task 1: predict-
ing the complexity score of single words. Basi-
cally, given a sentence and a target word in it, the

goal is to predict the complexity score of the tar-
get. One particular challenge is that the same tar-
get can have different complexity scores depend-
ing on the sentence it appears in. Therefore, our
proposed approach takes the context of the target
into consideration in two ways. First, we use con-
textualised word representations from pre-trained
Transformed-based models, such as RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019). In
particular, we use the LCP data to fine-tune two
RoBERTa models and one XLNNet model that
receive as input the target and a context window
of 1, and a RoBERTa model whose inputs are the
target and a context window of 2. Second, we
hypothesise that different contexts could evoke dif-
ferent senses of the target word. As such, we ex-
ploit data for Word Sense Disambiguation (WSD)
through multi-task learning. In particular, we fine-
tune a BERT (Devlin et al., 2019) model with two
tasks: LCP and WSD, using the Unified Evaluation
Framework (Raganato et al., 2017) for the latter.
The predictions from all these models are combined
with several morphosyntactic and corpus-based fea-
tures, and used to train a Gradient Boosting Deci-
sion Tree with LightGBM (Ke et al., 2017).

On the test set of the Shared Task, our model
achieved a Pearson correlation of 0.7704 and
ranked 10th, only 0.018 points behind the winner.
An ablation study shows that all independent mod-
els contributed to the stacked model’s performance,
with the predictions from the BERT model fine-
tuned in a multi-task fashion having the greatest
impact in predicting lexical complexity. The code
to reproduce our results is available in: https:

//github.com/kdrivas/lexical_complexity.

2 Background

The LCP Shared Task on SemEval-2021 asks par-
ticipants to develop models that predict the com-
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Sentence with Target Complexity

His left hand is under my head. 0.125
Do therefore according to your wisdom, and
don’t let his gray head go down to Sheol in
peace.

0.383

Table 1: Annotated sentences in the dataset of the LCP
Shared Task. The target word is boldfaced.

plexity of a target word/MWE in a sentence in
English (Shardlow et al., 2021). This Shared
Task builds on previous editions that focused on
Complex Word Identification (Paetzold and Specia,
2016; Štajner et al., 2018), with a key difference:
complexity ratings are continuous scores instead of
binary. Furthermore, the same target word/MWE
can appear in more than one sentence but with
different complexity scores. Table 1 presents an
example from the data.

The data for the Shared Task is an extension of
CompLex (Shardlow et al., 2020), a dataset with
complexity ratings for target words/MWE in sen-
tences in English in three domains: Bible, Europarl
and Biomed. The dataset is split into two subs-
tasks: LCP for single words and LCP for MWEs.

3 System Description

This section details our stacking approach to the
LCP Shared Task Sub-task 1. An overview of our
system can be seen in Figure 1.

3.1 Features

After joining all the data from both subtasks (sin-
gle word and MWE), we extracted some features
presented in (Yimam et al., 2018; Finnimore et al.,
2019) and other custom ones, such as (1) the com-
plexity of the target words in the lexicon proposed
in (Maddela and Xu, 2018), (2) the predictions
from four fine-tuned Transformer based models,
and (3) the number of senses and dependencies of
the target word/MWE.

3.1.1 Morphosyntactic and Lexical Features
First, we computed the number of characters
and the number of words surrounding the target
word/MWE. In addition, we obtained the part-of-
speech of the first token and the syntactic dependen-
cies of the whole target using the spaCy library.1

We also counted the number of possible part-of-
speech tags for the token using the Brown dictio-

1https://spacy.io/

nary in NLTK.2 Then, we counted the number of
propositions, verbs, nouns, adverbs and got the ra-
tio between the number of nouns and verbs using
the whole sentence. Finally, we calculated the total
number of syllables and morphemes.

3.1.2 N-gram Features
We formed n-grams considering one and two to-
kens surrounding the target word/MWE. Then,
we computed their frequency in the Children’s
Book Test (Hill et al., 2015) and Simple Wikipedia
(Kauchak, 2013). In addition, using the previous
corpora, the Lang-8 corpus (Mizumoto et al., 2011)
and the Tatoeba corpus,3 we computed the fre-
quency of the target tokens.

3.1.3 Word Complexity Lexicon
The lexicon created in (Maddela and Xu, 2018)
contains complexity scores for more then 15,000
words. After lower-casing the words in the lexicon
and the datasets from the Shared Task, we assigned
the complexity from the lexicon to the words in
the LCP data. If the word does not appear in the
lexicon we assigned a null value.

3.1.4 Transformer-based Model Predictions
The last set of features is composed of the pre-
dictions of four pre-trained language models fine-
tuned on the training data of both subtasks. The
first three were a RoBERTa (Liu et al., 2019) and an
XLNet (Yang et al., 2019) models that received as
input the target word/MWE and a context window
of 1, and a RoBERTa model with the target and a
context window of 2. The last model was a BERT
fine-tuned in a multi-task fashion with two tasks:
LCP and Word Sense Disambiguation (WSD). For
the former task, we only used the data generated
with a window size of 1 and, for the latter, the Uni-
fied Evaluation Framework (Raganato et al., 2017).

Multi-Task Model. Given a sentence S of the
dataset of the Shared Task and a complex word
w in position a whose part of speech is p,
we obtain a subsequence of size 1, sub =<
wa−1, wa, wa+1 >; then:

CLS = BERT (sub) (1)

where CLS is the CLS token of BERT, which

2https://www.nltk.org/
3Available in https://tatoeba.org/ under a CC-

BY 2.0 FR licence.
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Figure 1: We used a LightGBM on the top of our architecture. It received the additional features and, the predic-
tions from a XLNet and a BERT models using a window size of 1 and two RoBERTa models using a window size
of 1 and 2.

represents the sentence. This representation is con-
catenated with the embedding token of p:

c = concat(CLS, embed (p)) (2)

The concatenated vector is then used as input to
a dropout layer and a linear layer:

out1 = Linear ( Dropout (c)) (3)

Using out1, we computed loss L1 using mean
squared error. After getting the first task loss, we
computed the loss for the second one. Given an
ambiguous sentence S and a sequence output of
senses id A, we used the BertForTokenClassifica-
tion implementation in HuggingFace4 to obtain the
output out2, and then used cross entropy to com-
pute loss L2. Finally, we multiply a weight per
each task loss to get the final overall loss:

L = W1 ∗ L1 +W2 ∗ L2 (4)

Finally, we perform other experiments

3.2 Architecture

Our model architecture is shown in Figure 1. First,
we got the predictions from the four language mod-
els. Then, we concatenated those predictions with
the additional features, and stacked a LightGBM
model that received them as input features.

4https://huggingface.co/
transformers/model_doc/bert.html#
bertfortokenclassification

4 Experimental Setup

As previously described, we used four different
models: RoBERTa, XLNet, BERT and LightGBM.
In addition, for training/fine-tuning each model
we chose the Mean Absolute Error (MAE) as our
validation metric.

4.1 RoBERTa and XLNet

We fine-tuned the models for 4 epochs with a batch
size of 24. In addition, we used a learning rate of
2e-5 and Adam optimizer. We used the models for
sequence classification provided by HuggingFace.5

4.2 Multitask BERT

We fine-tuned a BERT model using two tasks: LCP
and WSD. We trained the WSD task using the Uni-
fied Evaluation Framework (Raganato et al., 2017),
but filtered sentences with a size greater 22 tokens.
For fine-tuning, we used a learning rate of 2e-5
and Adam optimizer. We fine-tuned the models
for 5 epochs with a batch size of 32. We calcu-
lated the loss accumulating the gradients from both
tasks. Also, we experimented with assigning dif-
ferent weights to each task, and found that the best
configuration was 0.8 for LCP and 0.2 for WSD.

4.3 LightGBM

At the top of our architecture, we used a LightGBM
model. Using Hyperopt, a bayesian optimization
framework, we set up a max depth of 5, num-leaves

5https://huggingface.co/
transformers/model_doc/roberta.html#
robertaforsequenceclassification

146



of 8, min-sum-hessian-in-leaf of 0.9, a bagging-
fraction of 0.9, a bagging-freq of 100, a learning-
rate of 0.08, and a min-data-per-group of 100. We
trained using 500 iterations with an early stopping
of 90. Also, we declared the type of corpus and the
part of speech as categorical features.

5 Results

The test set contains more than 1,000 sentences
with 573 different target words. Table 2 shows the
official evaluation metrics for each domain-corpus
in the LCP dataset. Overall, we achieved a Pearson
correlation of 0.7704, and finished in 10th place
in the Shared Task Sub-task 1, only 0.018 points
behind the winning submission.

Corpus Pearson Spearman MAE MSE

Bible 0.7536 0.7300 0.064 0.0074
Europarl 0.7492 0.7028 0.052 0.0045
Biomed 0.7898 0.7608 0.070 0.0083

Overall 0.7704 0.7361 0.618 0.0066

Table 2: Results in test set grouped by corpus domain.

The scores in the validation set (Table 3) follow
a similar behaviour as those in the test set. For
both, the corpus where our model achieves the best
Pearson correlation is Biomed. However, looking
at other metrics such as MAE, this corpus has the
greatest error, with Europarl having the lowest. The
differences may be because, even though the model
may well capture the trend of the outputs, it could
be more difficult to predict values in a corpus with
higher variance of complexity scores, as is the case
for Biomed (Figure 2).

Corpus Pearson Spearman MAE MSE

Bible 0.7353 0.6441 0.068 0.0072
Europarl 0.7946 0.7640 0.050 0.0039
Biomed 0.8571 0.8367 0.066 0.0075

Overall 0.8228 0.7643 0.062 0.0062

Table 3: Results in validation set grouped by corpus
domain.

6 Ablation Study

Table 4 shows the contribution of each set of fea-
tures (including predictions of fine-tuned models)
to the final score. Although the predictions of

Figure 2: Distribution of the word complexity in vali-
dation set.

the fine-tuned Transformers-based models perform
very well independently, the combination of all the
predictions and the additional traditional features
achieves the best performance in the validation set.

Another way of visualising the importance of
each feature is using SHAP values (Lundberg and
Lee, 2017). Figure 3 reports the 10 most important
features for the LightGBM model, i.e. the impact
of each feature in predicting the target complexity
score. The X-axis shows the increase or decrease
of target complexity, while the red and blue colours
refer to the feature value’s size. For example, in
the case of feature size of sentence, if the
number of characters is larger there will be a posi-
tive impact, i.e. the complexity will increase. On
the other hand, if the sentence length is smaller,
there will be a negative impact, i.e. the complex-
ity will decrease. We can observe that the most
important feature is the predictions given by the
BERT Multitask model since they have the greatest
impact. This signals that WSD data could benefit
predicting lexical complexity. It is also noted that
the predictions of the Transformers-based models
are in the top 5 of importance. Other features, such
as the size of the sentence or the number of word
senses, also have good contributions to the impact.

7 Conclusion

In this paper, we presented our system for the sin-
gle word complexity prediction sub-task in the LCP
Shared Task. Our approach consisted of combin-
ing lexical features and predictions from fine-tuned
pre-trained Transformer-based models. We found
that each set of features achieved a good perfor-
mance on their own, and that combining all of
them achieved our best result. In particular, we
found that fine-tuning a pre-trained Transformer-
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Approach Pearson Spearman MAE MSE

(a) BERT multitask with a window of 1 0.7972 0.7457 0.0642 0.00691
(b) BERT with a window of 1 0.7936 0.7507 0.0650 0.00703
(c) RoBERTa with a window of 1 0.7760 0.6946 0.0691 0.00776
(d) RoBERTa with a window of 2 0.7902 0.7179 0.0659 0.00729
(e) XLNet with a window of 1 0.7761 0.7253 0.0704 0.00795
(f) LightGBM with additional features 0.7859 0.7326 0.0663 0.0073
(a), (c), (d), (e) and (f) 0.8228 0.7643 0.0616 0.00618

Table 4: Results of each approach on validation data

Figure 3: Shap analysis for the top 10 most important features

based model using multi-task learning with data
from word sense disambiguation helped the most
with learning to predict lexical complexity.

Considering that there were unseen tokens in
validation and test sets, the task resembles a zero
shot classification problem. Therefore, as future
work, semi-supervised learning approaches or data
augmentation algorithms could be explored, and
training in a multitask fashion another transformer-
based models like RoBERTa.
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Sanja Štajner, Chris Biemann, Shervin Malmasi, Gus-
tavo Paetzold, Lucia Specia, Anaı̈s Tack, Seid Muhie
Yimam, and Marcos Zampieri. 2018. A report on
the complex word identification shared task 2018. In
Proceedings of the 13th Workshop on Innovative Use
of NLP for Building Educational Applications.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Seid Muhie Yimam, Chris Biemann, Shervin Mal-
masi, Gustavo Paetzold, Lucia Specia, Sanja Štajner,
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Abstract

We describe the Uppsala NLP submission
to SemEval-2021 Task 2 on multilingual
and cross-lingual word-in-context disambigua-
tion. We explore the usefulness of three
pre-trained multilingual language models,
XLM-RoBERTa (XLMR), Multilingual BERT
(mBERT) and multilingual distilled BERT
(mDistilBERT). We compare these three mod-
els in two setups, fine-tuning and as feature
extractors. In the second case we also ex-
periment with using dependency-based infor-
mation. We find that fine-tuning is better
than feature extraction. XLMR performs bet-
ter than mBERT in the cross-lingual setting
both with fine-tuning and feature extraction,
whereas these two models give a similar per-
formance in the multilingual setting. mDis-
tilBERT performs poorly with fine-tuning but
gives similar results to the other models when
used as a feature extractor. We submitted our
two best systems, fine-tuned with XLMR and
mBERT.

1 Introduction

SemEval-2021 Task 2: Multilingual and Cross-
lingual Word-in-Context Disambiguation (MCL-
WiC) (Martelli et al., 2021) is an extension from
WiC (Pilehvar and Camacho-Collados, 2019), a
shared task at the IJCAI-19 SemDeep workshop
(SemDeep-5). WiC was proposed as a benchmark
to evaluate context-sensitive word representations.
The WiC dataset1 consists of a list of English
sentence-pairs. Each sentence-pair has a target
word, and the task is to determine whether the tar-
get word is used in the same meaning or different
meanings in the two sentences, thus as a binary
classification task. MCL-WiC extends WiC to mul-
tilingual and cross-lingual datasets,2 and covers 5

1https://pilehvar.github.io/wic/.
2https://github.com/SapienzaNLP/

mcl-wic

Example Label
The cat chases after the mouse.

F
Click the right mouse button.
The cat chases after the mouse.

TLa souris mange le fromage.
(‘The mouse eats the cheese’)

Table 1: Examples for multilingual (top) and cross-
lingual (bottom) word-in-context disambiguation.

languages: Arabic, Chinese, English, French, and
Russian. The MCL-WiC task is also framed as a bi-
nary classification task: given a sentence-pair with
a target word, either in the same language or in dif-
ferent languages, the goal is to determine whether
the target word is used in the same meaning or in
different meanings. Table 1 shows two example
sentence pairs where the target word (mouse) has
either an ‘animal’ or a ‘computer’ sense. In the
multilingual setting, the two sentences are from
the same language. In the cross-lingual setting,
the two sentences are from different languages, En-
glish and one of the other four languages. Training
data is only available for English–English, effec-
tively leading to a zero-shot setting for the other
languages.

Our main interest is to investigate the useful-
ness of pre-trained multilingual language models
(LMs) in this MCL-WiC task, without resorting to
sense inventories, dictionaries, or other resources.
As our main method, we fine-tune the language
models with a span classification head. We also
experiment with using the multilingual language
models as feature extractors, extracting contex-
tual embeddings for the target word. In this setting,
we also add information about syntactical depen-
dency (i.e. head words and dependent words), with
the intuition that it can contain relevant contex-
tual information for disambiguation, as in Figure 1,
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where the head words chases and button could help
in disambiguating mouse. We compare three differ-
ent LMs: XLM-RoBERTa (XLMR), multilingual
BERT (mBERT) and multilingual distilled BERT
(mDistilBERT).

We show that the fine-tuned models are stronger
than any of the models based on feature extrac-
tion, by a large margin. XLMR is stronger than
mBERT in the cross-lingual setting both with fine-
tuning and feature extraction. mDistilBERT gives
poor results with fine-tuning, but is competitive to
the other LMs when used for feature extraction.
Adding dependency syntax to our feature extrac-
tion method led to mixed results. We submitted
our two strongest systems to the shared task, those
fine-tuned with XLMR and mBERT.

2 Related Work

In WiC at SemDeep-5, many participating systems
capitalized on contextualized word representations.
The LMMS (Language Modelling Makes Sense)
system by Loureiro and Jorge (2019) used word em-
beddings from BERT, together with sense embed-
dings from WordNet 3.0 (Marciniak, 2020). Ansell
et al. (2019) used the contextualized representa-
tions from ELMo (Peters et al., 2018) and trained
a separate classification model. Soler et al. (2019)
experimented with several contextualized represen-
tations and used cosine similarity to measure word
similarities. Wang et al. (2019) included WiC as
one of the tasks in the proposed SuperGLUE bench-
mark, with the approach of fine-tuning BERT. At
the end of the WiC evaluation period, the best result
was achieved by Wang et al. (2019) with an accu-
racy of 68.36%, while human-level performance is
80%, as provided by the dataset curators.

Scarlini et al. (2020) recently proposed SensEm-
BERT3, a knowledge-based approach to sense em-
beddings for multiple languages. An important
source for building SenseEmBERT is the contextu-
alized representations from a pretrained language
model. They experimented with SensEmBERT on
both English and multilingual word sense disam-
biguation (WSD) tasks, and showed that SensEm-
BERT is able to achieve state-of-the-art result on
both English and multilingual WSD datasets.

3http://sensembert.org/

3 Multilingual Language Models

3.1 XLMR

XLMR (XLM-RoBERTa) is a scaled cross-lingual
sentence encoder (Conneau et al., 2020), which
is trained on 2.5T of data obtained from Com-
mon Crawl that covers more than 100 languages.
XLMR has achieved state-of-the-art results on vari-
ous cross-lingual NLP tasks.

3.2 mBERT

mBERT (multilingual BERT) is pre-trained on the
largest Wikipedias (Libovický et al., 2019). It is
a multilingual extension of BERT (Devlin et al.,
2019) that provides word and sentence representa-
tions for 104 languages, which has been shown to
be capable of clustering polysemic words into dis-
tinct sense regions in the embedding space (Wiede-
mann et al., 2019).

3.3 mDistilBERT

mDistilBERT (multilingual distilled BERT) is a
light Transformer trained by distilling mBERT
(Sanh et al., 2019), which reduces the number of
parameters in mBERT by 40%, increases the speed
by 60%, and retains over 97% of mBERT’s perfor-
mance.

3.4 Sub-word models

XLMR, mBERT, and mDistilBERT all use sub-
word models (Wu et al., 2016; Kudo and Richard-
son, 2018), so the target word is usually represented
by several sub-tokens. For example, given “qualify”
as target word, it will be represented by “quali” and
“fy” in XLMR. mBERT and mDistilBERT use a
WordPiece model with a vocabulary size of 119,447
and XMLR use a SentencePiece model with a vo-
cabulary size of 250,002. In our work, when the
target word is represented by multiple sub-words,
we use the averaged embedding as feature vector
for the target word.4

4 System Description

We use the pre-trained language models in two dif-
ferent ways: for fine-tuning (Section 4.1) and as
feature extractors (Section 4.2 - 4.3). Depending on
whether feature transformation is involved, the fea-
tures extracted can be further categorized into target

4We also explored summing sub-words, which gave similar
results to averaging.
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Figure 1: Model Structure of Fine-tuning mBERT

word embeddings (Section 4.2) and dependency-
based syntax-incorporated word embeddings (Sec-
tion 4.3). In the following sub-sections, we de-
scribe the three systems respectively. Due to time
constraints we did not use XLMR in the systems
with feature extraction.

4.1 Fine-Tuning

The fine-tuning setup follows the architecture de-
signed by Wang et al. (2019),5 but extends to
datasets in multiple languages. A span classifica-
tion head is stacked on top of pre-trained language
models, and attends only to the target words. The
span classification head consists of a span atten-
tion extractor and a classifier. The span attention
extractor is responsible for extracting the span em-
beddings, namely the target words embeddings.
First, the unnormalized attention score of each to-
ken of the input document is computed. Span atten-
tion scores are the normalized scores of all tokens
inside the span. Given the attention distributions
over spans, each span gets a weighted representa-
tion of the last-layer hidden states of either mBERT,
mDistilBERT or XLMR.

In this task, only the two target word spans will
be returned, by masking out the rest of input. The
attended span embeddings are then passed to the
classifier, a linear transformation layer, to produce
the output logits, which have a dimension of two,
since there are only two labels (True or False). Fig-
ure 1 exemplifies the model structure when fine-
tuning mBERT. The same structure also applies to
XLMR and mDistilBERT.

5The package for SuperGLUE tasks is available at https:
//github.com/nyu-mll/jiant

4.2 Target Words Embeddings

In this setup, the multilingual language models
serve as pure feature extractors, to get target word
embeddings from last-layer hidden states. The in-
put sample of a sentence-pair will then be the con-
catenation of the pair of target word embeddings.

We feed the two sentences separately to the mod-
els, and concatenate the embeddings for the two
target words.6 The extracted feature vectors are
then fed to a classifier to perform the binary classi-
fication task. We experimented with two classifiers,
logistic regression (LR) and a multi-layer percep-
tron (MLP).

4.3 Dependency-based Syntax-Incorporated
Embeddings

In this setup we ran a limited number of experi-
ments. Only four languages (English, French, Chi-
nese, and Russian)7 and two pre-trained language
models (mBERT and mDistilBERT) are explored.

The reasoning behind using syntax information
to improve WiC classification results is as follow-
ing. Given a pair of sentences, where the first sen-
tence is “The cat chases after the mouse”, and the
second one is “Click the right mouse button”, the
target word mouse has different head words: in the
first sentence, the singular verb chases is the head
word, whereas in the second sentence, the noun
button is the head word. Since it is more natural
for a real mouse (as a small rodent) to be chased by
its predators than to be related to a button, while in
contrast, it is more common for a computer mouse
(as a hand-held pointing device) to have a button
than to be chased, the head words therefore reveal
information on different contexts of the target word.
The same reasoning applies to dependent words as
well.

First, each sentence is parsed using the spaCy
dependency parser,8 from which we extract the tar-
get word, its head word, and its dependent word(s).
Next, the sentence is passed to mBERT or mDis-
tilBERT, and the corresponding target word em-
bedding, head word embedding, and dependent

6We also experimented with concatenating the two sen-
tences before feeding it to the LM, which gave slightly better
results in some experiments. For consistency among all exper-
iments we do not report these results.

7The latest version of spaCy (3.0.0), which is the depen-
dency parsing library used in this work, does not support de-
pendency parsing for Arabic, thus we do not run experiments
on Arabic in this setup.

8https://spacy.io/usage/
linguistic-features#dependency-parse
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Figure 2: Construct a dependency-based syntax-
incorporated embedding for a sentence-pair

word embedding(s) are retrieved, and concatenated.
Note that if the target word has no head or de-
pendent word, the null token embedding9 is used
instead; if the target word has more than one de-
pendent word, all dependent word embeddings are
summed element-wise.10 Finally, the concatenated
embeddings of two constituent sentences are fur-
ther concatenated to form the sample feature vector
of the sentence-pair, which is then fed to an MLP.

Figure 2 illustrates the process of constructing
one such dependency-based syntax-incorporated
embedding for a sentence-pair, of which the first
sentence is Le chat court après la souris. The de-
fault embedding size of mBERT/mDistilBERT is
768. The sizes of different concatenated embed-
dings are shown in Figure 2. Again, we experi-
mented with two classifiers, logistic regression and
a multi-layer perceptron.

5 Experimental Setup

Dataset Only the datasets provided by SemEval-
2021 Task 2 are used, see Table 2. All systems are
trained on the English set, the multilingual devel-
opment sets are used during development, and the

9That is, simply feeding the word null into
mBERT/mDistilBERT and using the generated embed-
ding directly.

10We also explored averaging the dependent word embed-
dings, which gave equivalent results to summing.

Train Dev Test
en-en 8000 500 1000
ar-ar – 500 1000
fr-fr – 500 1000
ru-ru – 500 1000
zh-zh – 500 1000
en-ar – – 1000
en-fr – – 1000
en-ru – – 1000
en-zh – – 1000

Table 2: SemEval-2021 Task 2 Datasets. At develop-
ment time, we only use half of the provided size (1000)
of each dev set.

systems are tested on the multilingual and cross-
lingual test sets.

Fine-tuning The three multilingual language
models (mBERT, mDistilBERT, XLMR) are fine-
tuned for three iterations, with batch size of 32,
learning rate of 1e-5, and parameters optimized
with AdamW (Loshchilov and Hutter, 2018), pro-
vided by Huggingface’s Transformers library 11.

Logistic Regression All logistic regression (re-
ferred to as “LR” in the following sections) models
are trained for 150 iterations, with batch size of 32,
learning rate of 0.0025 and parameters optimized
with standard stochastic gradient descent (SGD).

MLP All MLP models are 2-layer and follow the
architecture suggested by Du et al. (2019), output-
ing classification label based on the probability:

p = softmax(L2(ReLU(L1(e)))) (1)

where e is in the input embedding, Li(x) = Wix+
bi are fully-connected layers, W1 ∈ RH×H and
W2 ∈ R2×H are layer parameter matrices, and H
is the input embedding size. All MLP models are
trained for maximum 200 iterations, with learning
rate of 0.001 and parameters optimized with Adam
(β1 = 0.9, β2 = 0.999) (Kingma and Ba, 2015).

Language Model We use the base version of all
multilingual language models, with 12 layers, 12
attention heads, and hidden dimension of 768. Due
to time constraints we did not use XLMR in the
systems with feature extraction and an MLP.

11https://huggingface.co/transformers/
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System en-en zh-zh fr-fr ru-ru ar-ar en-zh en-fr en-ru en-ar

Fine-tune
XLMR 84.5% 78.3% 76.7% 73.1% 75.1% 66.3% 70.9% 73.6% 65.2%
mBERT 82.9% 76.2% 80.3% 73.6% 75.6% 62.2% 66.3% 63.1% 59.4%
mDistilBERT 75.5% 68.0% 66.8% 64.8% 68.9% 51.8% 53.4% 51.9% 50.9%

Feature
Extractor

XLMR + LR 53.9% 55.4% 54.8% 57.2% 53.0% 58.2% 55.8% 55.4% 54.7%
mBERT + LR 53.4% 53.5% 49.7% 51.7% 53.1% 52.0% 52.8% 52.8% 51.1%
mDistilBERT + LR 55.7% 50.5% 52.6% 52.5% 51.9% 54.0% 52.5% 52.0% 51.6%
mBERT + MLP 67.7% 51.4% 57.6% 54.2% 54.0% 47.4% 62.6% 55.6% 53.2%
mDistilBERT + MLP 66.6% 59.1% 59.8% 61.8% 56.0% 48.2% 63.2% 57.4% 52.3%
mBERT + Syntax + MLP 61.4% 52.7% 57.6% 57.0% – 53.4% 57.8% 55.6% –
mDistilBERT + Syntax + MLP 67.0% 56.6% 58.2% 57.6% – 54.0% 57.2% 56.2% –

Table 3: System results on test sets. At task evaluation time, two fine-tuned systems were submitted, mBERT and
XLMR; other systems were tested at post-evaluation time.

6 Results and Analysis

The evaluation results on the test sets are shown in
Table 3. We can see that the fine-tuning approach
is preferable to the feature extraction approach. All
feature extraction variants fall behind the fine-tuned
systems by a large margin. In many cases the sys-
tems based on feature extraction is just over chance
performance (50%), and in a few cases it is even
below it.

Among the fine-tuned systems, XLMR and
mBERT give the best results, whereas mDistil-
BERT falls behind by quite a large margin in most
cases, in several cases by more than 10 percentage
points. The performance of mDistilBERT is es-
pecially weak in the cross-lingual setting. XLMR
gives the best results for all cross-lingual language
pairs, with an improvement over mBERT of 4.1–
10.5 percentage points. The improvement is largest
for English–Russian. For the multilingual set-
ting, the difference between mBERT and XLMR is
smaller with at most 3.6 percentage points. XLMR
gives the best score in two cases and mBERT in
three cases.

Among the systems with feature extraction, the
relative performance of the three sets of contex-
tual embeddings differ from the fine-tuning. Here,
mDistilBERT are competitive to the other two em-
beddings. We only use XLMR with LR, and again,
we see that it gives the best performance in the
cross-lingual setting among all systems with LR,
just as with fine-tuning. In the multilingual set-
ting, XLMR is also strong, having the best result
for three out of five languages. Compared to fine-
tuning, mDistilBERT performs surprisingly well
here. It is on par or better than mBERT in most
cases across all settings.

Comparing the different architectures used with
the feature extraction strategy, we see that us-
ing an MLP is preferable to LR, leading to large
improvements in most cases. An exception is

English–Chinese, where the MLP without syntax
performs worse than LR. For English–French on
the other hand, the MLP outperforms LR by around
10 percentage points, whereas we see small im-
provements for English–Russian. Finally, the ad-
dition of syntax leads to mixed results. For the
English–Chinese system, we see large improve-
ments, whereas we see the opposite for English–
French. For English–Russian as well as for all
multilingual systems, the differences are overall
smaller.

We also note that the performance is stronger
for English–English than for the other languages in
most settings. This is expected, since we only have
English–English training data. A notable exception
is for LR, where English–English performs consid-
erably worse than in all other settings and is on par
with the other languages in the same setting. With
fine-tuning we overall see stronger results in the
multilingual setting, than in the cross-lingual set-
ting, where we mix language pairs. We do not see
this difference for our feature extraction systems,
however.

7 Conclusion and Future Work

We have investigated the use of three large lan-
guage models for multilingual and cross-lingual
word-in-context disambiguation. We found that
fine-tuning the language models is preferable to us-
ing them as feature extractors either for an MLP or
for logistic regression. Trying to add dependency-
based syntax information in the MLP gave mixed
results. We also found that XLMR performed bet-
ter than mBERT in the cross-lingual setting, both
with fine-tuning and feature extraction, whereas the
two models had a more similar performance in the
multilingual setting. mDistilBERT did not perform
well with fine-tuning, but was competitive to the
other models in the feature extraction setting. We
submitted our two best systems, fine-tuning with
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XLMR and mBERT to the shared task.
The fact that XLMR performs better than

mBERT in the cross-lingual setting seems to in-
dicate that it has a better representation of words
across languages than mBERT and mDistilBERT.
We think it would be worth investigating this hy-
pothesis in more detail. XLMR and mBERT also
use different sub-word models and another research
direction is to explore the impact of this difference.
We would also like to investigate the effect of using
representations from different layers of the pre-
trained multilingual language models.
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Abstract

In this paper, we present a system for the solu-
tion of the cross-lingual and multilingual word-
in-context disambiguation task. Task organiz-
ers provided monolingual data in several lan-
guages, but no cross-lingual training data were
available. To address the lack of the officially
provided cross-lingual training data, we de-
cided to generate such data ourselves. We de-
scribe a simple yet effective approach based
on machine translation and back translation of
the lexical units to the original language used
in the context of this shared task. In our exper-
iments, we used a neural system based on the
XLM-R (Conneau et al., 2020), a pre-trained
transformer-based masked language model, as
a baseline. We show the effectiveness of the
proposed approach as it allows to substantially
improve the performance of this strong neu-
ral baseline model. In addition, in this study,
we present multiple types of the XLM-R based
classifier, experimenting with various ways of
mixing information from the first and second
occurrences of the target word in two samples.

1 Introduction

The goal of the second task of SemEval-2021
(Martelli et al., 2021) is to perform multilingual
and cross-lingual word-in-context disambiguation.
More specifically, participants are asked to distin-
guish whether the meanings of a target word in two
provided contexts are the same or not. Organizers
provided a training set of 8 000 English language
(en-en) context pairs and validation sets of 1 000
context pairs for English-English (en-en), French-
French (fr-fr), Russian-Russian (ru-ru), Arabic-
Arabic (ar-ar), and Chinese-Chinese (zh-zh) lan-
guages. Since no cross-lingual training data were
provided, except for a very small trial set barely
usable for training, we decided to venture into gen-
erating such data automatically.

Essentially, the given task is a binary classifica-
tion problem. The first question was which super-
vised model to use for the classification of context
pairs. Recently, pre-trained masked language mod-
els such as BERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020) have been used to reach
promising results in a variety of similar NLU clas-
sification tasks. Thus, we decided to make use of
contextualized embeddings from XLM-R, which
provides multilingual-lingual embeddings for more
than 100 languages, covering all language pairs of
interest in the shared task. In all our experiments,
this model is used as the backbone.

A straightforward way of solving tasks where
two contexts are to be compared, as the word-in-
context tasks, is to use deep contextualized em-
beddings and train a classifier over these embed-
dings as has been explored in the original monolin-
gual word-in-context task (Pilehvar and Camacho-
Collados, 2019). Note that commonly embeddings
of two contexts are simply concatenated (Ma et al.,
2019) and this operation is asymmetric. In our
work, we explored various symmetric ways of ag-
gregating embeddings from two contexts.

The contributions of our work are two-fold. First,
we present a simple yet effective method for the
generation of cross-lingual training data, showing
that it can substantially improve the performance
compared to the model trained using monolingual
data. Second, we test various ways of encoding
two input target word occurrences contexts using
the XLM-R model.

2 Baseline Supervised WiC System

Massively multilingual transformers pretrained
with language modeling objectives XLM-R were
shown to be useful for zero-shot cross-lingual trans-
fer in NLP (Lauscher et al., 2020). As a baseline,
we rely on a supervised system that takes as an
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Figure 1: Principal scheme of the supervised model used in our experiments. Context pairs are sent to XLM-R
base and then contextualized embeddings of target words are merged and sent to MLP which outputs the prediction
probability of them having the same meaning. XLM-R is frozen.

input two sentences and spans corresponding to
occurrences of the target word. Pre-trained multi-
lingual encoders are used to represent sentences in
different languages in the same space.

2.1 Multilingual Sentence Encoder

We use XLM-R masked language model (Conneau
et al., 2020) as the basis in our experiments as it
supports all required languages by the shared task.
This is a multilingual transformer-based masked
language model pre-trained on a large corpus con-
sisting of texts from the Web in 100 languages.
This model is a strong baseline on various NLU
tasks. Besides, our preliminary experiments have
shown that it is capable of encoding sentences writ-
ten in different languages in the same vector space.
This property, therefore, is crucial as it allows
similar methods, which were used to successfully
solve the monolingual word-in-context task in the
past (Pilehvar and Camacho-Collados, 2019).

Figure 1 presents the overall schema of the
model used in our experiments. The XLM-R model
is used for obtaining contextualized embeddings of
the target words, while a multi-layered perceptron
is used to perform the classification. We thoroughly
tested various meta-parameters of this architecture.
Different aggregation methods are presented in the
following section.

2.2 Symmetric Aggregation of Deep
Contextualized Embeddings

Each training example consists of two contexts
with marked target words and a label representing
these words being in the same or different mean-
ings. In our approach, both contexts are sent to
XLM-R, and then contextualized embeddings for
target words (averaged activations from two last
layers) are extracted and merged into one embed-

ding with the following symmetric procedure: con-
catenate element-wise product of two embeddings
and the absolute value of the element-wise differ-
ence of two embeddings. This helps to obtain a
vector containing deep contextualized representa-
tion of a target word in both contexts. Then this
merged embedding is sent to a 3-layer MLP which
outputs the probability of two words been in the
same senses (Figure 1).

More specifically, we test different ways of ag-
gregating embeddings from two contexts. We con-
ducted several experiments, including two asym-
metric aggregation approaches and four symmetric.
Let ~a = {a1, ...an} be the contextualized embed-
ding of a target word from the first context and
~b = {b1, ...bn} – from the second.

The tested two following commonly used asym-
metric approaches of merging two embeddings:

1. Concatenating of embeddings:
~c = {a1, ..., an, b1, ..., bn}

2. Difference of embeddings:
~c = {a1 − b1, ..., an − bn}

Besides, we tested four symmetric approaches
to embedding aggregation listed below:

1. Sum of embeddings:
~c = {a1 + b1, ..., an + bn}

2. Elementwise product of embeddings:
~c = {a1 · b1, ..., an · bn}

3. Absolute value of difference of embeddings:
~c = {|a1 − b1|, ..., |an − bn|}

4. Concatenation of variants 2 and 3:
~c = {a1 ·b1, ..., an ·bn, |a1−b1|, ..., |an−bn|}
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Figure 2: An illustration of the cross-lingual data generation. Given two sentences, we pick one and translate it
to a target language. Then in order to find the position of a target word, every lexical unit is back-translated and
compared with a target lemma. If the target word is found, the translated sentence is used in addition to the second
sentence from the initial pair as a new cross-lingual training example.

3 Generation of Cross-lingual Training
Data using Machine Translation

In this section, we describe a machine-translation-
based method for the generation of synthetic train-
ing data for the cross-lingual word-in-context task
to address the lack of cross-lingual training data
usable for the supervised model described above.

3.1 Method

We suggest the forward-backward translation ap-
proach, which helps not just to translate a sentence
but to identify the position of a target word which
is essential for the word-in-context task.

We decided to use the provided 8 000 English-
English pairs of texts and translate them to the
desired languages. But there is a difficulty: after
translation the position of target word in the con-
text is unknown, or even target word is replaced
by several words like in the following example of
Russian-English translation (the target words are
underlined):

• ru: “налей кипяток в стакан”

• en: “pour boiling water into a glass”

In our experiments, we filter similar examples
which do not have a uniword translation of a target
word.

Overall, our algorithm amounts to the following
procedure:

Figure 3: Amount of the English training/development
data and amount of synthetic cross-lingual data gener-
ated from it.

1. Translate a sentence from the source language
to a target with a neural machine translation.1

2. Back translate every word independently with-
out a context. For the translation of single
words, we use the word2word2 library

3. If there is a target lemma in the list of back-
translated words, then the lemma index in the
back-translated words list is the index of the
target word in the translated sentence.

4. If there is no target lemma in the list of back-
translated words, then we do not use this sen-
tence.

1https://github.com/ssut/
py-googletrans (Google translate Python API)

2https://github.com/kakaobrain/
word2word
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Figure 4: Examples of generated synthetic cross-lingual data.

Method Type fr-fr

Concatenating A 67.0± 2.0
Difference A 65.4± 1.3

Summation S 79.6± 1.3
Elementwise product S 81.8± 1.4
Absolute difference S 81.5± 1.8
Concat of symmetric S 82.1± 1.4

Table 1: Symmetric (S) vs asymmetric (A) ways
of merging XLMR-large contextualized embeddings.
Concatenation of symmetric: concatenation of elemen-
twise multiplication and absolute difference.

A schematic illustration of our algorithm is pre-
sented in Figure 2.

3.2 Generation Result

The synthetic examples for English-Russian are
presented in Figure 4. The first two sentence pairs
(with the False, F label) represent negative train-
ing examples, i.e., pairs of sentences in which tar-
get words are used in different senses (across lan-
guages). The last two sentence pairs (with the True,
T label) represent contexts where words are used
in the same sense. As one may observe, the gener-
ated examples are semantically coherent, and the
position of the target word was identified correctly
using our back-translation heuristic.

The overall amount of generated training cross-
lingual examples for each language compared to
the amount of initial English language data pre-
sented in Figure 3. The unequal number of samples
is due to the translation errors and the fact that back
translation does not always point to the original
word. That is why we also present results for the
fixed sizes of synthetic datasets for each language
in the Table 2.

4 Experiments and Results

Below we report the results of the two setups of
this shared task: multi- and cross-lingual settings.
We train the model six times; reporting mean and
standard deviation of accuracy on the test dataset.

4.1 Results on Various Embedding
Aggregation Methods

All embedding aggregation methods were tested on
the French language development set, been trained
on the English training set. The experimental re-
sults are presented in Table 1. Experimental results
demonstrate that the suggested symmetric aggrega-
tion of embeddings is a better choice for such sym-
metric problems like two context comparisons than
a common asymmetric aggregation. We suppose
that this experimental fact is caused by the symmet-
ric nature of a comparison problem and hence all
similar tasks should exploit symmetrically merged
embeddings.

4.2 Results on Multilingual Datasets
In a multilingual setting, context pairs are provided
in four languages, but pairs are written in the same
language. As XLM-R provides contextualized text
representations in the same space for different lan-
guages, we supposed that our XLM-R based model
should work in a zero-shot setting: being trained
on only one language shows decent results on other
languages. To verify our hypothesis, we conducted
the following experiments:

1. Training only on 8 000 MCL-WiC English
context pairs (zero-short setting).

2. Training on 8 000 MCL-WiC English context
pairs (from the training set) + 5 000 multi-
language pairs (from development set).

The results are presented in Table 2: substan-
tially higher results than the random baseline (50
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Training set en-en fr-fr ru-ru ar-ar zh-zh

English train data 87.5± 0.9 82.1± 1.4 78.9± 1.7 69.2± 1.9 65.2± 1.5
English train and multilingual dev 89.9± 0.8 84.1± 1.5 86.5± 1.1 72.4± 1.3 70.2± 1.0

Table 2: Results on test data in multi-lingual setting.

Training set en-fr en-ru en-ar en-zh

English train data 64.1± 2.7 61.4± 2.1 59.1± 2.1 52.9± 1.3
English train and multilingual dev 66.5± 1.2 62.0± 1.0 58.9± 1.8 52.1± 0.7

Synthetic for each language (fixed) 70.1± 2.1 69.7± 1.9 63.1± 2.1 60.1± 1.4
Synthetic for each language (full) 72.6± 2.0 71.4± 1.4 62.7± 2.1 60.1± 1.4
All data 73.5± 1.9 72.8± 1.5 58.8± 1.7 52.1± 0.6

Table 3: Results on test data in cross-lingual setting.

percent) are obtained. Note that in this case, the
dataset is balanced, so the most frequent class clas-
sifier is equivalent to the random one. This con-
firms the fact that a zero-shot transfer using XLM-
R is possible.

4.3 Results on Cross-lingual Datasets
In a cross-lingual setting, context pairs are pro-
vided in four languages, and pairs are written in
different languages. The main challenge of the task
is cross-lingual Word-in-Context disambiguation.
We approach this task from two sides: zero-shot
learning capabilities of multilingual XLM-R based
systems and generation with a machine translation
of cross-lingual synthetic training data. To ver-
ify that zero-shot learning works in a cross-lingual
setting and synthetically generated data improves
the results in cross-lingual tests, we performed the
following experiments:

1. Training only on 8 000 MCL-WiC English
context pairs (zero-short setting).

2. Training on 8 000 MCL-WiC English context
pairs + 10 000 multi-language pairs.

3. Training on synthetic cross-lingual examples.
Training and testing each language separately.

4. Training on all data including MCL-WiC train,
development sets, and synthetic cross-lingual
data for all languages simultaneously.

Results are presented in the Table 3. The best re-
sults for Russian and French are obtained using all
the available data, including the generated synthetic
dataset. For Arabic and Chinese, the best results

are obtained using synthetic data only. Overall,
performance in all settings for Chinese and Ara-
bic is substantially lower. This may be due to the
more complex morphological structure of these lan-
guages and the way how the XLM-R pre-trained
model handles it (while the European languages
like French and Russian have similar alphabet struc-
tures). Overall, the experiments suggest the useful-
ness of the generated synthetic data for the solution
of the cross-lingual word-in-context task.

5 Conclusion

In this paper, we presented a solution to the cross-
lingual word-in-context task. The main challenge
of this task, as formulated by the organizers, is
the lack of explicit training data. To address it,
we developed a way of generating synthetic cross-
lingual data for the word-in-context disambiguating
task; we demonstrate the positive influence of such
synthetic data on the performance of a model on
test datasets.

As the baseline model in our experiments, a su-
pervised model based on XLM-R pre-trained lan-
guage model (Conneau et al., 2020) was used. We
performed tests of various settings based on this
model and demonstrated that symmetric aggrega-
tion of embeddings for context comparison tasks
outperforms asymmetric ways on zero-shot and
supervised settings.

The code and the produced data, enabling repro-
ducing our experiment, are available online.3

3https://github.com/skoltech-nlp/
cross-lingual-wic
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Abstract
This paper presents our contribution to
SemEval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambigua-
tion (MCL-WiC). Our experiments cover En-
glish (EN-EN) sub-track from the multilingual
setting of the task. We experiment with sev-
eral pre-trained language models and investi-
gate an impact of different top-layers on fine-
tuning. We find the combination of Cosine
Similarity and ReLU activation leading to the
most effective fine-tuning procedure. Our best
model results in accuracy 92.7%, which is the
fourth-best score in EN-EN sub-track.

1 Introduction

The increasing progress in Natural Language Pro-
cessing is closely related with development of word
representations. The context-independent word em-
beddings, such as word2vec (Mikolov et al., 2013)
and fastText (Bojanowski et al., 2017) brought the
idea of measuring the relatedness of the meanings
as the distance between the vectors encoding them.
The introduction of the methods of pre-training con-
text dependent embeddings, such as ELMo (Peters
et al., 2018), ULMFit (Howard and Ruder, 2018),
and BERT (Devlin et al., 2018) made the next cru-
cial breakthrough overcoming the shortcomings of
previous methods to encode the meaning. Despite
the fact that the primal objective of word embed-
dings is to encode the meaning of words, it is not
obvious how to evaluate them directly. While com-
mon manner to examine the superiority of partic-
ular type of embeddings is to look at their perfor-
mance on some downstream tasks, the more direct
way to evaluate their ability to represent semantic
is challenging.

SemEval-2021 Task 2: Multilingual and Cross-
lingual Word-in-Context Disambiguation (MCL-
WiC) (Martelli et al., 2021) presents a new frame-
work to evaluate embeddings. In this paper we

present our contribution for the task. We ex-
plore the potential of different pre-trained context-
dependent embeddings based on pre-trained lan-
guage models. We find that the Cosine Similarity
can produce fruitful results when used for fine-
tuning the weights of the pre-trained models, while
adding linear layers to learn the similarity from the
limited data leads to instant overfitting.

2 Background

The traditional approach to evaluate the ability of
embeddings to catch the meaning of words is Word
Sense Disambiguation (WSD) task (Navigli, 2009).
WSD is defined as classification problem, when a
given word is classificated between its predefined
senses. WSD by design comes with an important
limitation, being connected directly with prede-
fined sense inventories such as WordNet1 (Fell-
baum, 2005).

The Word in Context (WiC) benchmark (Pile-
hvar and Camacho-Collados, 2019) addresses these
limitations. The task proposes a binary classifica-
tion setting for English, when, given two sentences
si and sk and two words wi and wk in them, the sys-
tem needs to decide whether the word wi in si and
wk in sk have same or different meanings. The main
advantage of WiC task is a possibility to expand its
consideration to the languages that lack such sense
inventories.

MCL-WiC extends the WiC approach to new
senses and new languages, covering data in five
languages: Arabic, Chinese, English, French and
Russian. The task provides data of two types: in
the multilingual setting one needs to predict the
label to the pair of sentences in one language (AR-
AR, ZH-ZH, EN-EN, FR-FR, RU-RU sub-tracks),
in the cross-lingual setting the first sentence is in
English and the second one is in one of the four

1https://wordnet.princeton.edu
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other considered languages (EN-AR, EN-ZH, EN-
FR, EN-RU sub-tracks).

After preliminary experiments we decided to fo-
cus our efforts on the only sub-track with training
data, namely the English sub-track from the mul-
tilingual setting. Our solution2 is fourth placed in
the EN-EN leaderboard with 92.7% accuracy and
is 0.6% behind the winner.

3 System overview

Approaching the task we conduct multiple experi-
ments with a variety of architectures, however all
of them are deeply based on contextual embed-
dings fine-tuning. For our experiments we use
pre-trained embeddings from BERT and XLM-
RoBERTa (Conneau et al., 2020) models and fine-
tune them for our task.

3.1 Target word embeddings

Design of BERT and XLM-RoBERTa models as-
sumes that text is first split to tokens and embed-
dings for these tokens are evaluated. Therefore
we define our technique to obtain the embeddings,
representing target words in the sentences.

For a single sentence we take embeddings of all
sub-tokens corresponding to the target word in it
and max pool them into one embedding. Repeat-
ing this procedure for both sentences in each pair
we obtain two embeddings as the result: first —
corresponding to target word in the first sentence
and second — corresponding to target word in the
second sentence.

3.2 Multilayer Perceptron Architecture

In our initial setup we build a system based on
Multilayer Perceptron neural network. The purpose
of this approach is to train the system to predict
that target words have the same meaning in both
sentences.

This model calculates embeddings of the target
word in both sentences of the pair and concatenates
them together, taking the result as an input layer.
The model contains one hidden layer with 100 neu-
rons, ReLU activation before it and an output layer,
activated by sigmoid.

Interpreting the model output as the probability
that target words have the same meaning in both of
the sentences, we predict True if the output turns

2Source code, experiments, requirements and results can
be found at https://github.com/zhestyatsky/
MCL-WiC

out to be greater than 0.5 or we predict False other-
wise.

To enrich the knowledge of the model about the
task we also experiment with a slightly different
input, making use of [CLS] tokens. Each [CLS]
token represents the whole sentence. Taking [CLS]
tokens embeddings for each sentence in a pair we
concatenate them together and afterwards concate-
nate the result with an input layer (consisting of tar-
get word embeddings concatenation) defined above.
We use the resulting embedding as an input layer
for our model and do not change other parameters
in the setup.

3.3 Cosine Similarity Architecture

As an alternative to Multilayer Perceptron approach
we define a Cosine Similarity approach, illustrated
on Figure 1. which proves to be our best system for
the task. The purpose of this approach is to train
the system to predict the probability that the target
word has the same meaning in both sentences.

During training our system takes embeddings of
the target word in each sentence in a pair and calcu-
lates Cosine Similarity between them. It activates
the similarity through ReLU layer. The result value
is considered the output of the model.

After the training is finished we have to make
predictions, which is achieved by defining the prob-
ability threshold as a hyperparameter. In this way
we predict True if the output of the model is greater
than the threshold or False otherwise.

To maximize the accuracy of the model we cal-
culate the probability threshold by building the Re-
ceiver Operating Characteristic (ROC) curve and
choosing the value corresponding to the maximum
difference between true positive and false positive
rates.

We note that in this approach no new weights
are introduced in contradistinction to Multilayer
Perceptron approach. Therefore only pre-trained
weights of BERT and XLM-RoBERTa models are
fine-tuned.

To provide a comparison option for Cosine Sim-
ilarity approach we also try applying sigmoid as an
activation instead of ReLU.

3.4 Datasets

Speaking about the datasets for training and valida-
tion we fully utilize train and development English
data provided by the competition organisers for
the EN-EN sub-track. However, to achieve the
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Figure 1: The scheme presents Cosine Similarity Architecture, which was used in the model achieving the best
performance in our experiments.

best possible results we extend our train and de-
velopment datasets with WiC dataset (Pilehvar
and Camacho-Collados, 2019)3, included to Super-
GLUE (Wang et al., 2019) benchmark, for English
sentence pairs.

We also conduct an experiment with our best
model, using only default datasets provided by
competition organisers. This experiment will be
described at the end of Results section.

4 Experimental setup

In our setup we mix train and development data and
split it randomly by unique lemmas in proportion
97.5% to 2.5%. Having 14680 samples in the first
chunk and and 386 samples in the second chunk
we use the first chunk for training and the second
for validation.

During training, the data is processed by batches
of size 8. Each sentence is split into 118 tokens
maximum. In this way it is guaranteed that the
longest sentence in the dataset is not going to be
truncated.

Experiments with four different types of embed-
dings are conducted4:

3https://pilehvar.github.io/wic/
4https://huggingface.co/transformers

• bert-base-cased: 12-layer, 768-hidden, 12-
heads, 109M parameters;

• bert-large-cased: 24-layer, 1024-hidden, 16-
heads, 335M parameters;

• xlm-roberta-base: ∼270M parameters with
12-layers, 768-hidden-state, 3072 feed-
forward hidden-state, 8-heads;

• xlm-roberta-large: ∼550M parameters with
24-layers, 1024-hidden-state, 4096 feed-
forward hidden-state, 16-heads.

We train our models for a maximum of 8 epochs
and define an early stopping criteria. Every half of
epoch (after training on the half of all the batches)
we check if the loss on validation dataset is decreas-
ing. If the loss does not decrease for 2 checks in a
row, we stop training.

In all our experiments we use Binary Cross En-
tropy Loss as the loss function and AdamW opti-
mizer with a learning rate set to 1e-5.

To conduct experiments we use version 1.7.1 of
PyTorch (Paszke et al., 2019) together with version
0.8.2 of torchvision5 and version 0.8.1 of torchtext6,

5https://github.com/pytorch/vision
6https://github.com/pytorch/text

165



version 1.1.6 of PyTorch Lightning7 framework
and version 4.2.2 of HuggingFace’s Transformers
(Wolf et al., 2020). From the latter we obtain BERT
and XLM-RoBERTa model implementations.

As we define a probability threshold as a hy-
perparameter in Cosine Similarity approach, we
provide its values for all experimental configura-
tions in the Table 1.

embeddings activation threshold
xlm-roberta-large sigmoid 0.680
xlm-roberta-base 0.632
bert-large-cased 0.609
bert-base-cased 0.678

xlm-roberta-large ReLU 0.638
xlm-roberta-base 0.642
bert-large-cased 0.519
bert-base-cased 0.509

Table 1: Probability thresholds for Cosine Similarity
Architecture. Abbreviations used: activation stands
for activation function used, threshold stands for prob-
ability threshold of the model.

5 Results

In the Table 2 the results of the fine-tuning of lan-
guage models with Multilayer Perceptron on top
are presented. During the experiments we found
out that for this dataset not only additional linear
layers can not learn to measure the distance effec-
tively, but they lead to overfitting in a few epochs.
It is seen by the number of the passed epochs before
the early stopping.

As [CLS] token is designed to accumulate sen-
tence meaning we expected it to make the represen-
tations for each instance in a pair more complete.
The results in the Table 2 show that the usage of
[CLS] tokens give a moderate improvement to all
models except for one with xlm-roberta-large em-
beddings.

Pre-trained language models, like BERT and
XLM-RoBERTa, have the property of associating
close vectors with similar words. Therefore to pro-
vide a baseline for the model described in Cosine
Similarity approach we measure the accuracy of
it without additional fine-tuning. Due to the tech-
nique used to evaluate the probability thresholds,
the accuracies for configurations with different acti-
vations are identical in this case. Accuracies for dif-

7https://github.com/PyTorchLightning/
pytorch-lightning

embed add cls epochs val test
XLMR-l yes 2.5 0.585 0.579
XLMR-b 2.5 0.580 0.580
BERT-l 3.5 0.585 0.548
BERT-b 2.5 0.588 0.565
XLMR-l no 2 0.484 0.519
XLMR-b 2.5 0.590 0.611
BERT-l 3 0.598 0.583
BERT-b 2.5 0.601 0.592

Table 2: Accuracy of models with Multilayer Percep-
tron Architecture. Abbreviations used: embed stands
for embeddings, add cls defines if [CLS] token embed-
ding was used, val stands for accuracy on validation
dataset, test stands for accuracy on test dataset. We
refer to xlm-roberta-large as XLMR-l, to xlm-roberta-
base as XLMR-b, to bert-large-cased as BERT-l and
to bert-base-cased as BERT-b.

ferent embeddings and thresholds for sigmoid and
ReLU activations can be found in Table 3. Viewing
the results on validation dataset we can estimate
the quality of the approach and the results on test
dataset confirm its relevance. Best accuracy on
validation dataset is provided by bert-large-cased
embeddings. In addition, the thresholds in Table 3
show how differently the vector spaces are arranged
for BERT and XLM-RoBERTa models: for the sec-
ond, a threshold of about 0.99 distinguishes vectors
of words with different meanings from words with
the same meanings.

embed sigm
thld

ReLU
thld val test

XLMR-l 0.73 0.995 0.645 0.659
XLMR-b 0.72 0.994 0.666 0.719
BERT-l 0.66 0.64 0.710 0.780
BERT-b 0.69 0.77 0.690 0.780

Table 3: Accuracy of models with Cosine Similar-
ity Architecture without fine-tuning. Abbreviations
used: embed stands for embeddings, sigm thld stands
for probability threshold of model using sigmoid ac-
tivation, ReLU thld stands for probability threshold
of model using ReLU activation, val stands for accu-
racy on validation dataset, test stands for accuracy
on test dataset. As models are not fine-tuned, accu-
racies on validation and test datasets are independent
of the activation function. We refer to xlm-roberta-
large as XLMR-l, to xlm-roberta-base as XLMR-b, to
bert-large-cased as BERT-l and to bert-base-cased as
BERT-b.
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Finally, Table 4 presents results of the experi-
mental setup when the language models are fine-
tuned using Cosine Similarity measure. It is worth
mentioning that in such a setup there are no addi-
tional weights and only the layers of the language
model are changing. It can be seen that such an ar-
chitecture allows th model not to overfit for longer
epochs.

embed activ epochs val test
XLMR-l sigm 6 0.661 0.748
XLMR-b 3 0.679 0.746
BERT-l 3 0.728 0.823
BERT-b 3 0.676 0.727
XLMR-l ReLU 5.5 0.785 0.876
XLMR-b 2 0.730 0.769
BERT-l 4.5 0.808 0.927
BERT-b 4 0.790 0.889

Table 4: Accuracy of models with Cosine Similarity
Architecture. Abbreviations used: embed stands for
embeddings, activ stands for the activation function
used, sigm stands for sigmoid activation function, val
stands for accuracy on validation dataset, test stands
for accuracy on test dataset. We refer to xlm-roberta-
large as XLMR-l, to xlm-roberta-base as XLMR-b, to
bert-large-cased as BERT-l and to bert-base-cased as
BERT-b.

While conducting the experiments, we judged
the models by their performance on the validation
dataset, not being able to check how representative
it is. According to the obtained scores, the valida-
tion dataset is representative enough and is more
challenging for the models than the test dataset.

To provide a convenient report we conduct an
experiment with our best model (using bert-large-
cased embeddings together with Cosine Similarity
Architecture, using ReLU activation), which only
uses data provided by organisers. We perform no
further processing with the data and use it as is:
train dataset is used for training and development
dataset for validation. Being trained for 4 epochs
the model in the experiment demonstrates 0.886 ac-
curacy on validation dataset and 0.913 accuracy on
test dataset. This result shows that using additional
data leads to better performance.

6 Error analysis

Our best model leads to accuracy 92.7%. It means
that our model has erroneously labeled 73 sen-
tences in the 1000-sentence testset. The error anal-
ysis revealed that our model is not biased towards

one or another class, it produced 37 false nega-
tive predictions and 36 false positives predictions.
The next observation is related to the construction
feature of the dataset. The dataset is organized
in the following manner: for each combination of
lemma and POS-tag there are two instances in the
dataset. All three possible combinations of labels
are presented, with prevalent case when one pair is
labeled False and second True. The peculiarity of
the dataset is that both instances have the same first
sentence. We found that 20 out of 73 errors have
these repeating first sentence. In other words, if
the model produces incorrect prediction for one in-
stance for lemma it tends to make a mistake for the
second instance in the dataset. Due to the described
peculiarity of the data, we can not speculate that
certain lemma is a stumbling block for the model
or it is just a context of the first sentence, that for
example differs by genre or thematically from sec-
ond sentence and complicates the prediction. The
manual analysis of the errors has not revealed in-
stances that could be considered hard and unclear
for human assessment.

In order to reveal objectively hard instances
among the errors of the best model, we have in-
tersected the mislabeled pairs for all the models
fine-tuned with Cosine Similarity. The intersection
indicated that all but two instances were predicted
correctly by at least one of the models. We can
conclude that no objectively hard instances were
presented in the erroneously labeled pairs by the
best model. Additionally, the possible conclusion
could be that an ensemble of our models could
result in even more powerful solution for the task.

7 Conclusion

We have provided an overview of different ap-
proaches to fine-tune pre-trained language models
for the task that is naturally suitable for them – de-
tecting the distance between representations of the
words.

We have showed that, for the data of given
amount and type, learning distance between words
in context with Multilayer Perceptron neural net-
work is not applicable and generally leads to over-
fitting.

Using Cosine Similarity to predict probability
during pre-trained embeddings fine-tuning leads to
much more promising results, when activated with
ReLU layer.
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Abstract

In this paper, we introduce our system that
we participated with at the multilingual and
cross-lingual word-in-context disambiguation
SemEval 2021 shared task. In our experiments,
we investigated the possibility of using an all-
words fine-grained word sense disambiguation
system trained purely on sense-annotated data
in English and draw predictions on the seman-
tic equivalence of words in context based on
the similarity of the ranked lists of the (English)
WordNet synsets returned for the target words
decisions had to be made for. We overcame the
multi,-and cross-lingual aspects of the shared
task by applying a multilingual transformer for
encoding the texts written in either Arabic, En-
glish, French, Russian and Chinese. While our
results lag behind top scoring submissions, it
has the benefit that it not only provides a binary
prediction whether two words in their context
have the same meaning, but also provides a
more tangible output in the form of a ranked
list of (English) WordNet synsets irrespective
of the language of the input texts. As our frame-
work is designed to be as generic as possible,
it can be applied as a baseline for basically
any language (supported by the multilingual
transformed architecture employed) even in the
absence of any additional form of language spe-
cific training data.

1 Introduction

A major obstacle in solving word sense disambigua-
tion (WSD) problems in a supervised manner is the
scarcity of annotated training corpora. As the con-
struction of high quality sense-annotated training
data can be extremely labor-intensive and difficult
(Gale et al., 1992), the Word-in-Context (WiC) dis-
ambiguation task was recently proposed by Pile-
hvar and Camacho-Collados (2019) as a surrogate
for the traditional WSD problem. While in the tra-
ditional fine-grained WSD setting, the aim is to

assign a precise and often nuanced meaning to a
word in its context according to some sense inven-
tory, WiC is framed as a binary classification prob-
lem, where the task is to decide whether two target
words originating from a pair of input sentences
have the same meaning. This kind of binary deci-
sion can also be made in the absence of a nuanced
sense inventory, making the annotation process less
demanding and also more suitable across languages
(Raganato et al., 2020).

In this paper, we analyze the utilization of multi-
lingual transformer-based language models for per-
forming both multi-lingual and cross-lingual WiC
in the zero-shot setting, by employing nothing but
English sense annotated training data and utilizing
the model predictions in a transductive model that
is capable of performing zero-shot WSD and WiC
disambiguation for any language that is supported
by the multilingual transformer encoder model that
gets employed.

Loureiro and Jorge (2019) showed that a simple,
nearest neighbor approach relying on contextual
word embeddings can achieve impressive WSD re-
sults in English. In our follow-up work (Berend,
2020), we demonstrated, how sparse contextual-
ized word representations can be exploited for ob-
taining significant improvements over the LMMS
approach introduced by Loureiro and Jorge (2019).
Our shared task participation was focused on com-
paring the two techniques in a zero-shot multilin-
gual and cross-lingual WiC evaluation setting.

2 System overview

At the core of our multi,-and cross-lingual WiC
systems, we employed fine-grained WSD sys-
tems, originally intended to solely handle English
texts. The two models that we employed were
the LMMS (Loureiro and Jorge, 2019) and the S-
LMMS (Berend, 2020) approaches. We dub the
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latter solution as S-LMMS, highlighting its resem-
blance to the LMMS approach and the fact that
it operates with sparse contextualized word rep-
resentations. Both LMMS and S-LMMS requires
sense-labeled training data for constructing their
respective fine-grained WSD models.

We provide a brief overview of the two ap-
proaches and encourage readers interested in more
details to read the original papers (Loureiro and
Jorge, 2019; Berend, 2020) introducing them.
LMMS and S-LMMS both has in common, that
they encode the inputs with a transformer model
(BERT-large). LMMS constructs a prototype vec-
tor for each English synset based on the BERT-
encoded vectors of the sense-annotated training
data and the actual contents of the English WordNet
glosses. For a given token in its context, LMMS
takes its BERT-encoded contextualized vector and
finds the nearest synset prototype for determining
its sense.

The way S-LMMS differs from LMMS is that it
additionally incorporates a sparsity inducing dictio-
nary learning step, which turns the contextualized
word representations into a sparse format, i.e., to
such vectors that contain a high fraction (> 90%)
of zero coefficients. Additionally, the methodology
for creating the synset prototype vectors has sub-
stantial differences between the two approaches,
as LMMS uses the actual contextualized embed-
dings pertaining to a certain synset as prototypes,
whereas S-LMMS distills a vectorial representation
to each synset based on an information theoretic
measure.

The important technical change that we per-
formed over the previously described fine-grained
WSD models, so that they can be employed in
the cross-lingual setting, is that we replaced the
BERT-large encoders that the LMMS and S-LMMS
models use by default to the XLM-RoBERTa-large
(Conneau et al., 2020) architecture. We shall refer
to the variants of LMMS and S-LMMS that were
obtained by relying on XLM-RoBERTa as an en-
coder as opposed to BERT-large as mLMMS and
mS-LMMS, owing to the multilingual nature of
XLM-RoBERTa. We used the transformers library
(Wolf et al., 2020) for obtaining the contextualized
multilingual embeddings for our experiments.

When performing fine-grained WSD in English,
one can simply restrict the scope of predicting the
most likely synset for some word to those that are
deemed viable for a given word in WordNet. Addi-

tionally, one can also filter the synsets over which
the prediction is performed, based on the part-of-
speech category of a word in question. With these
heuristics, it is possible to reduce the number of
synsets that a word can belong to a few dozens of
synsets even for the most ambiguous cases.

In order to test a solution that is as generic as
possible, we did not integrate any of these heuris-
tics into our framework, meaning that our mod-
els returned a ranked list over all the 117,659 En-
glish WordNet synsets to any word from some
sentence. This way, our solution can also work
basically any language (supported by the multilin-
gual transformer employed), even in the absence
of a multilingual sense-inventory resource such as
BabelNet (Navigli and Ponzetto, 2010) and also
when we have no access to the part-of-speech in-
formation, nor to a part-of-speech tagger for some
language. These design choices ensures that we
are able to handle a much wider range of languages
as if we decided otherwise. To this end, we regard
our approach a particularly good fit being used as
a baseline for WSD related evaluations involving
low-resource languages.

As mentioned previously, our *LMMS models
assigned a ranked list of 117,659 English synsets
to every target word irrespective of the language of
the sentence it was written in. Since the ranking of
the synsets for a given word was performed over all
the synsets of WordNet, it would be too restrictive
to expect that words with identical meaning should
be assigned the exact same most likely English
synset. To this end, we measured the similarity for
a pair of ranked lists that a model returned for a
pair of words in their contexts and decided about
the semantic equivalence of the two words based
on that similarity score. As the similarity scores
calculated for the ranked lists of synsets that fit
those pairs of words that have the same meaning
are expected to be higher on average, we decided
to determine a threshold for the similarity scores
of the ranked lists above which we predicted the
two words to have the same meaning, and to have
a different meaning otherwise.

We experimented with three strategies for mea-
suring the similarity of two ranked synset lists for
a pair of words. Let S1 and S2 refer to the ranked
lists of WordNet synsets assigned to two words.
As the bottom of the ranking is arguably not as
meaningful as its top-ranked elements, we decided
to formulate S

(100)
1 and S

(100)
2 . These ranked lists
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differed from S1 and S2 in that they contained their
top 100-ranked elements, respectively.1

Since we only focus on the highest ranked
synsets from S1 and S2, it is almost sure that cer-
tain element from S

(100)
1 are not included in S

(100)
2 ,

and vice versa. As such, the usage of standard rank
correlation scores would be inconvenient for mea-
suring the similarity between ranked lists S

(100)
1

and S
(100)
2 . One motivation behind the introduction

of ranking-biased overlap (RBO) (Webber et al.,
2010) was particularly this, i.e. to provide such a
distance metric that is capable of operating between
non-conjoint rankings. RBO is an overlap-based
metric, that can operate over such rankings when
the ranked elements themselves are not totally iden-
tical. To this end one of our metric for measuring
the similarity between S

(100)
1 and S

(100)
2 was based

on the RBO metric.
Our other approach for measuring the similarity

of ranked lists S(100)
1 and S

(100)
2 was to simply take

their Jaccard similarity, i.e. the fraction of the size
of their intersection and the elements in their union.
As a third approach, we calculated the harmonic
mean of the mean reciprocal rank (MRR) of the
highest ranked synset from S

(100)
1 in the ranked

list S(100)
2 and similarly, that of the highest ranked

synset from S
(100)
2 in S

(100)
1 . We then based our

predictions with the similarity scores calculated by
either of the above manner.

Instead of using some supervised approach, we
determined a threshold for the similarity score for a
pair of ranked synset lists S(100)

1 and S
(100)
2 , above

which we predicted that the words they got as-
signed to had identical meaning. We determined
this threshold in a transductive manner, without us-
ing any of the labeled training or development set
sentence pairs at all. For the cross-lingual evalua-
tion it would have been impossible at the first place,
as no annotated pairs of sentences were released
during the shared task.

We used expectation maximization for determin-
ing the similarity threshold above which we pre-
dicted a pair of words to have the same meaning.
That is, we took all the similarity scores that we
calculated for a certain test set based on the S

(100)
1

and S
(100)
2 ranked synset lists, and fitted a Gaus-

sian Mixture Model over the similarity scores. That
way, we managed to fit a Gaussian distribution for

1Experiments with different thresholds (10, 25, 50, 250
and 500) also provided similar results that we omit for brevity.

the similarity scores of pairs of words with identi-
cal and different meanings. We identified the fit-
ted Gaussian distribution with the higher expected
value to be the one that corresponds to the distribu-
tion of similarity scores for those words that have
identical meaning. As expectation maximization
algorithms are prone to find local optima, we initial-
ized each model 100 times and chose the one which
resulted in the best log-likelihood score. Our deci-
sions for a particular test sample was then based on
the density functions on the similarity scores of the
two classes determined by the best fitting model.

3 Experiments

We tested our approach on both the multilin-
gual and the cross-lingual subtasks of the shared
task (Martelli et al., 2021). The multilingual test
sets consisted of sentence pairs that were written in
the same language (either Arabic, English, French,
Russian or Chinese), whereas, an input was com-
prised of an English and a non-English (either Ara-
bic, French, Russian or Chinese) sentence for the
cross-lingual scenario.

The fine-grained WSD model that we built
our system on was trained over English sense-
annotated training data. We used two sources of
training signal, the SemCor dataset as well as the
Princeton WordNet Gloss Corpus (WNGC), which
has been shown to improve fine-grained WSD re-
sults (Vial et al., 2019; Berend, 2020). Unless
stated otherwise, we used these three sources of
sense-annotated training data for obtaining our
*LMMS models.2

3.1 Monolingual all-words WSD experiments

We first evaluated LMMS and S-LMMS models
on standard fine-grained all-words disambiguation
data included in the unified evaluation framework
from (Raganato et al., 2017). What we were inter-
ested here is the change in the standard WSD per-
formance of these systems when replacing the En-
glish specific BERT-large model that LMMS and S-
LMMS originally employ to XLM-RoBERTa-large.
At this point we evaluated our fine-grained WSD
performance in terms of F-score over the concate-
nation of the five standard evaluation benchmarks
from SensEval2 (Edmonds and Cotton, 2001), Sen-
sEval3 (Mihalcea et al., 2004), SemEval 2007 Task
17 (Pradhan et al., 2007), SemEval 2013 Task 12

2Our source code can be found at https://github.
com/begab/sparsity_makes_sense
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Layer(s) used LMMS S-LMMS

21 0.758 0.790
22 0.763 0.785
23 0.760 0.786
24 0.745 0.780

21-24 0.757 0.788

(a) BERT-large

Layer(s) used mLMMS mS-LMMS

21 0.702 0.757
22 0.692 0.753
23 0.679 0.749
24 0.648 0.728

21-24 0.692 0.754

(b) Using XLM-RoBERTa-large

Table 1: Comparison of the model performances towards fine-grained WSD using the standard benchmark from (Ra-
ganato et al., 2017) (consisting of the concatenated test sets of the SensEval2-3 and the SemEval 2007, 2013 and
2015 shared tasks on fine-grained WSD), when using different layers from different transformer models and model
variants *LMMS.

(Navigli et al., 2013), SemEval 2015 Task 13 (Moro
and Navigli, 2015). This test set consisted of 7,253
English test cases in total.

Table 1 includes our results using the four dif-
ferent models that were using different layers from
the transformer model that was employed for en-
coding the input texts. As expected, replacing the
English specific transformer model to a multilin-
gual encoder resulted in a decreased performance,
however, the overall decrease was not very se-
vere. Comparison of the results in Table 1a and
Table 1b reveals that the performance of S-LMMS
is less affected by the integration of the multilin-
gual RoBERTa model in place of the English-only
BERT model for encoding. Additionally, using the
encodings from the 21th layer of the transformer
models seem to provide a slight edge over the uti-
lization of the concatenation of the last four layers
irrespective of the encoder and the specific WSD
model used. To this end, we participated in the
shared task-related with such *LMMS models that
were using the contextualized word representations
from the 21th layer alone, as opposed to the average
of the last four layers.

3.2 Evaluation on the shared task data

In Table 2, we list those test scores that we ob-
tained by differently configured versions of our
architecture. Our results span the different strate-
gies for performing all-words fine-grained WSD
(mLMMS/mS-LMMS) and different strategies for
calculating the similarity between two ranked list
of most likely synsets assigned to the test words
(Jaccard/MRR/RBO) as described earlier in Sec-
tion 2.

We can see from Table 2 the same phenomenon
as for our monolingual fine-grained WSD evalua-

tions in Table 1, i.e., the mS-LMMS approach had
a clear advantage over LMMS for both the multi-
lingual and the cross-lingual evaluation settings.

Regarding the effects of choosing different ways
to calculate the similarity scores between a pair of
ranked lists of synsets, the application of the Jac-
card similarity and the RBO metric-based similar-
ity seems to perform very similarly, with the mean
reciprocal rank based similarity scoring slightly un-
derperforming the other two alternatives. Overall,
the results seem to be balanced over the languages,
with the choice of the fine-grained WSD system
being more influential to the final results as the
choice of the similarity calculation between the
ranked lists of synsets returned by them to a pair of
test words.

For training our *LMMS models, we decided to
experiment with the integration of a recent source
of sense tagged training dataset, UWA (Loureiro
and Camacho-Collados, 2020), which is a sense-
annotated corpus containing unambiguous words
from Wikipedia and OpenWebTex. We relied
on the recommended version of the UWA corpus
which contains 10 example sentences for each un-
ambiguous word. By expanding the number of
sense annotated training text, it becomes possible to
increase the coverage of the fine-grained WSD sys-
tems. We investigated the downstream effects for
our WiC system of extending the amount of sense
annotated training data used by our fine-grained
WSD systems.

Our evaluation results over the same set of mod-
els as in Table 2, with the only difference that we
additionally used the UWA10 sense-annotated cor-
pus for creating our all-words WSD models are
included in Table 3. This additional training cor-
pus was not always helpful, however, increased our
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Jaccard MRR RBO
mLMMS mS-LMSS mLMMS mS-LMMS mLMMS mS-LMSS

ar 60.0 61.4 62.1 60.7 59.2 59.5
en 62.6 67.2 70.6 70.4 62.6 66.1
fr 62.1 66.6 62.4 60.9 60.7 66.9
ru 58.9 67.1 63.9 66.6 56.6 67.3
zh 55.9 63.8 56.0 63.8 56.7 64.6

avg. 59.9 65.2 63.0 64.5 59.2 64.9

(a) Multilingual results

Jaccard MRR RBO
en-* mLMMS mS-LMSS mLMMS mS-LMMS mLMMS mS-LMSS

ar 59.9 66.3 59.1 64.4 61.3 62.2
fr 61.2 63.9 59.5 63.1 59.6 64.6
ru 63.7 66.4 61.2 60.2 62.7 65.9
zh 64.2 65.3 51.5 65.6 62.9 66.3

avg. 62.3 65.5 57.8 63.3 61.6 64.8

(b) Cross-lingual results

Table 2: The effects of applying different similarity mea-
sures (Jaccard/MRR/RBO) to the different fine-grained
WSD approaches (mLLS/mS-LMMS) integrated into
our zero-shot multilingual and cross-lingual WiC frame-
work.

average accuracy by a slight (≈ 1%) margin.

4 Conclusions

In this paper, we introduced our cross,-and multilin-
gual WiC framework that we approached from an
all-words fine-grained word sense disambiguation
perspective. As such, our model not only provides
a yes or no answer for a pair of words in their con-
texts, but also provides a more tangible explanation
for it in the form of the similarity between the
ranked lists of English WordNet synsets assigned
to the target words.

During the design of our approach, we made
such choices that would make our framework con-
veniently applicable to new languages without the
need for any training data. Although the results
of our framework lags behind the top performing
systems, due to of its convenient applicability to
new languages and the fact that practically no ad-
ditional training data is required for applying it
to new and possibly low-resourced languages, we
think it can provide an easy to use baseline in fur-
ther WiC-related research efforts.
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Abstract

This paper describes our system for Task
4 of SemEval-2021: Reading Comprehen-
sion of Abstract Meaning (ReCAM). We
participated in all subtasks where the main
goal was to predict an abstract word miss-
ing from a statement. We fine-tuned the
pre-trained masked language models namely
BERT and ALBERT and used an ensemble
of these as our submitted system on Sub-
task 1 (ReCAM-Imperceptibility) and Sub-
task 2 (ReCAM-Nonspecificity). For Sub-
task 3 (ReCAM-Intersection), we submitted
the ALBERT model as it gives the best results.
We tried multiple approaches and found that
Masked Language Modeling(MLM) based ap-
proach works the best.

1 Introduction

Computers’ ability to understand, represent, and
express text with abstract meaning is a fundamen-
tal problem towards achieving true natural lan-
guage understanding. In past decades, significant
advancement has been achieved in representation
learning. SemEval-2021 Task 4 : Reading Com-
prehension of Abstract Meaning (ReCAM) (Zheng
et al., 2021) explores the ability of machines to
understand abstract concepts and proposes to pre-
dict abstract words just as humans do while writing
article summaries. In the shared task, text pas-
sages are provided to read and understand abstract
meaning. It consists of three subtasks where the
first two subtasks are based on two different defi-
nitions of abstractness 1) Imperceptibility (Spreen
and Schulz, 1966) and 2) Non-specificity (Changizi
et al., 2008) and the third subtask discusses their
intersection.

Many cloze-style reading comprehension
datasets like CNN/Daily Mail (Hermann et al.,
2015) and Children’s Book Test (CBTest) dataset
(Hill et al., 2016) and models (Dhingra et al., 2016;

Munkhdalai and Yu, 2017) similar to this task
exist, where a missing word has to be inferred.
However, these previous datasets and models have
mostly focused on inferring concrete words or
concepts like named entities, but this task moves
the focus from concreteness to abstractness of
words in reading comprehension. This can prove
to be quite useful for current ongoing research in
the field of abstractive summarization.

We participated in all the three subtasks. We
mainly used an ensemble of BERT and ALBERT
as our final model for submission on subtasks 1 and
2. We were ranked 13th on Subtask 1 and 11th on
Subtask 2. We submitted the ALBERT model on
Subtask 3. All of our code is made publicly avail-
able on Github1. We approached this task in two
ways. One is a Multiple Choice Question answer-
ing (MCQ) based approach and other a Masked
Language Modeling (MLM) approach. Through
experiments, we concluded that such tasks are best
addressed using a masked language model.

The rest of the paper is organised as follows.
Section 2 describes the problem statement formally
and also gives a brief description of the dataset pro-
vided by the task organizers. Section 3 introduces
the related work. Section 4 describes our proposed
approach and Section 5 gives the experimental de-
tails. We enlist our results in Section 6 with a brief
error analysis. Finally, we give concluding remarks
in Section 7.

2 Background

2.1 Problem Description

A passage P, a followup question Q with a @place-
holder and a list of candidate answer words W =
{W1,W2,W3,W4,W5} are given as an input to
the model. The task is to output the correct answer

1https://github.com/amittal151/
SemEval-2021-Task4_models
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Figure 1: Few ambiguous examples in Subtask 1 Dev set (Option marked in green is the correct answer)

Wi from W (Wi ∈W ) by learning the function F
such that Wi = F (P,Q,W )

The first two subtasks focus on the two different
definitions of abstractness and the third subtask
captures the relationship between the two views of
abstractness. The evaluation metric for all three
subtasks is the accuracy of the predictions made by
the model. The subtasks are enlisted below :

1. ReCAM-Imperceptibility - Abstract words
refer to ideas and concepts that are not imme-
diately perceivable by our senses like culture,
objective, etc.

2. ReCAM-Nonspecificity - According to this
definition, abstract words refer to holistic
terms, e.g., animal, body, etc.

3. ReCAM-Intersection - In the third subtask,
the system needs to be trained on one defi-
nition of abstractness (Imperceptibility) and
evaluated on the other (Nonspecificity) and
vice-versa.

Task Training Dev Test
1 3227 837 2025
2 3318 851 2017

Table 1: Number of examples in dataset

2.2 Data Description

The task organizers have provided training and val-
idation dataset for Subtask 1 and Subtask 2. Each
training and validation set example is in the form
of a dictionary containing an article, a question and
5 options. One word in the question is missing and
is represented by “@placeholder”, and we have to
predict the word out of the given 5 options.

The data set has English news articles and ques-
tions are constructed from the summaries of these
articles. The data statistics are provided in table
1. The dataset poses two major challenges. Firstly,
the passages are quite long. Their distribution is
shown in figure 2 and 3. The long article length
leads to a loss of context when we truncate the ar-
ticle in a transformer based model due to its max
token length limits. Secondly, the dataset contains
some ambiguous examples where more than one
correct answer could be feasible or the question’s
context is missing from the article. Some examples
are shown in the Figure 1.

Figure 2: Task 1 Article statistics

3 Related Work

Much work has been done for the prediction of con-
crete words unlike ours where we need to predict
abstract words in reading comprehensions. Gated
Attention Reader (Dhingra et al., 2016) predicts
missing concrete words in CNN/Dailymail datasets
with a high accuracy. The attention mechanism
plays a crucial role in recognizing which sections
of the article are more important to answer the ques-
tions. Extracting context from the article is a vital
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Figure 3: Task 2 Article statistics

part of the task. This task requires comprehensive
natural language understanding, going beyond the
meaning of individual words and sentences. We ex-
plored some of the pre-trained transformer models
(Vaswani et al., 2017) as these capture the context
better due to the self-attention mechanism. More-
over, pre-trained models are readily available.

The task is somewhat similar to a multiple choice
question answering task. We experimented with
the MCQ based approach as mentioned by Rad-
ford (2018) where a linear layer is built over the
transformer and the correct answer is predicted by
applying softmax over the probabilities of each
option.

One approach to get context from the article is to
extract the most relevant sentences to the question
with sentence similarity techniques (Reimers and
Gurevych, 2019). We experimented with this ap-
proach and extracted “Top-k” sentences that were
most semantically similar to the given question
from the article.

One of the major challenge in this task is to
handle the long length of the article. Pappagari
et al. (2019) discuss the approach of using hierar-
chical transformers for text classification problem
to tackle long passages. BERT is applied to text
segments and an LSTM layer or transformer is ap-
plied to get document embedding.

Another approach is to model the shared task as
a masked language modeling task. The transformer
based models like BERT (Devlin et al., 2018) and
ALBERT (Lan et al., 2020) have been trained via
the masked language modeling objective. BERT
has also been trained on the Next Sentence Predic-
tion task, and ALBERT has been trained on the
Sentence Ordering task. In Lan et al. (2020), it is
mentioned that Sentence Ordering task is a better

way to understand the similarity and extracting con-
text from two sentences and thus, ALBERT works
better than the BERT model.

4 System Overview

We explored multiple models and methodologies.
We first experimented using an encoder with an
attention based approach. From their results, we
observed that an MLM based approach would work
better than an MCQ based approach.

Consequently, we tried BERT and ALBERT
models and their ensemble with the MLM based
approach. However, for comparison purposes, we
also worked with the MCQ method and its system
is described below along with our other approaches.

4.1 Encoders with Attention

4.1.1 Binary Classification with Attention
We tried a binary classification based approach
where we give each option a score of being a cor-
rect answer. Our model consisted of two encoders,
followed by a binary classifier. One encoder is for
encoding the question and one for encoding the
article. First, we feed the question into the question
encoder which gives us the context vector of the
question. Then, we feed the article along with the
hidden weights from the question encoder into the
article encoder and apply attention weights over
them to find the context of question within the arti-
cle. Finally, we input an option word, the hidden
weights obtained from the article encoder and the
context vector from question encoder into the bi-
nary classifier layer which gives us the score for the
given option. The option word with highest score
is predicted as our answer.

4.1.2 Cosine Similarity of predicted word
with options

In this approach, we use the article and question en-
coders as described in the first approach to encode
the article and question. However, instead of using
a binary classifier, we used a decoder layer to pre-
dict the missing word. We used the “@placeholder”
token’s hidden embedding as an input to the de-
coder layer along with the context vector from
question encoder and hidden weights from article
encoder. This layer predicts a word from vocabu-
lary which would fit in the place of “placeholder”.
We then compute this word’s cosine-similarity with
the given 5 options. The most similar option word
is predicted as the answer. This method is similar
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Figure 4: Masked Language Model (Image Src : (Devlin et al., 2018))

to an MLM based approach, and the first approach
used above is somewhat similar to an MCQ based
approach. This method gave slightly better results
than the first approach, and thus, it gave us an idea
that an MLM model should work better for our
subtasks as compared to an MCQ based model.

4.2 Transformer based Models
4.2.1 Multiple choice Question Answering
The architecture of this approach is similar to that
proposed by Radford (2018). We have a linear
layer over a transformer model like BERT which
takes the embedding of [CLS] token and calculates
the cosine similarity of this token with given 5
options. Since, the [CLS] token represents the
aggregate sequence representation (Devlin et al.,
2018), it encodes the context of article and question
together. The input sequence to the model is the
concatenation of article and question (where the
“@placeholder” is replaced by an option) delimited
with the [SEP] token. On top of this, we have a
softmax layer which calculates the score for each
given option.

4.2.2 Masked Language Modeling
We used the transformer models like BERT and AL-
BERT for masked language modeling since they
have been trained via the MLM objective. In this
approach, the input sequence to our model is the
concatenation of question and article tokens delim-
ited with the [SEP] token where the “@placeholder”
word in the question has been masked. We truncate
the article from the end to fit into the maximum
token sequence length. Since our task requires
context reading from the article, we used different
sentence embedding of the transformer models for
question and article. An example of input sequence
is given in Figure 4. The model’s output is a prob-
ability vector with probability scores of replacing

the masked token with any word in the vocabulary.
We used the scores computed for the given 5 op-
tions and predicted option with the highest score
as the correct answer.

We did an ensemble of BERT and ALBERT
model predictions by taking the average score for
each option predicted by these models. If the scores
of BERT model predictions of the 5 options in a
given example are B = {B1, B2, B3, B4, B5} and
the scores of ALBERT model predictions are A =
{A1, A2, A3, A4, A5}, then our Ensemble model
gives the scores

S = {Si : Si =
Ai +Bi

2
∀i ∈ {1, 2, 3, 4, 5}}

We later also did an ensemble of two ALBERT
models where one is fine-tuned on the given sub-
task, and the other one is not. This gave us the
best results on Subtask 1 and Subtask 2. However,
we tried this approach in the post-evaluation phase
and thus, we did not submit this system on the
leaderboard.

Model Task 1 Task 2
GAReader (baseline) 0.251 0.243
Binary Classification
with Attention

0.201 0.212

Cosine Similarity ap-
proach

0.256 0.249

Table 2: Results of Encoder Based Approaches on Dev
sets (Metric : Accuracy)

5 Experimental Setup

Our implementation uses the PyTorch library
(Paszke et al., 2019) for deep learning models and
the Transformers library by HuggingFace (Wolf
et al., 2020) for the pre-trained transformer models
and corresponding tokenizers.
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Model Task 1 Task 2
Task 3

(Train 1, Val 2)
Task 3

(Train 2, Val 1)
1 BERT (MCQ approach) 0.195 0.202 0.201 0.198
2 BERT 0.6654 0.6523 0.475 0.449
3 BERT Large - without Article 0.681 0.690 0.5347 0.5364
4 BERT Large 0.7455 0.7403 0.6451 0.5913

5
ALBERT xxlarge - without Article -

Not Finetuned
0.7011 0.7262 0.7262 0.7011

6 ALBERT xxlarge - Not Finetuned 0.8172 0.8190 0.8190 0.8172
7 ALBERT xxlarge - Finetuned 0.8291 0.8345 0.7426 0.6977
8 Ensemble (4 + 6) 0.8375 0.8401 0.7826 0.7729
9 Ensemble (6 + 7)* 0.8685 0.8554 0.8143 0.8064

Table 3: Transformer models’ results on Dev sets of each task (Metric : Accuracy)

* Modified System after submission and not submitted in the task

We first experimented with the baseline model,
Gated-Attention reader (Dhingra et al., 2016) pro-
vided by the task organizers. This model did not
give good results, as shown in Table 2.

Then, we experimented with our Encoder based
approaches as described in Section 4. We experi-
mented with various loss functions like NLL loss,
MSE and CrossEntropy loss. But, the results were
poor for these methods too (Table 2). However, the
Cosine similarity based approach (Section 4.1.2)
performed slightly better than the Binary classifica-
tion with Attention approach (Section 4.1.1) indi-
cating that an MLM approach should work better
than an MCQ approach.

To verify our claim, we experimented with the
BERT Base model with the MCQ approach, which
gave quite less accuracy, no better than a ran-
dom prediction. However, the BERT model with
the MLM approach performed way better on all
the subtasks. We experimented with both large
and small variants of BERT and ALBERT mod-
els where the large variants performed better as
expected. We fine-tuned both the models without
freezing any layers with Adam optimizer (Kingma
and Ba, 2017). We fine-tuned the BERT model for
3 epochs and ALBERT model for 1 epoch. We
used the learning rate of 5e-5 and a max-sequence
length of 256 for both BERT and ALBERT. We
also used pre-trained ALBERT model without any
fine-tuning in some of our experiments.

We also experimented with the input sequence
to understand and compare the degree of context-
reading done in ALBERT and BERT models. We
changed the input sequence to contain only ques-

tion tokens and then passed this sequence to our
models. We then compared these results with the
results obtained after passing the complete input
sequence containing both article and question to-
kens. BERT gave an improvement of around 5-6%
after passing the complete input sequence. How-
ever, ALBERT shows much more improvement
of around 11-12% with the complete sequence. It
shows that ALBERT ’s training on a Sentence Or-
dering task is more effective for MLM tasks like
ours than the BERT’s training on Next Sentence
Prediction task.

We then experimented with the ensemble of
BERT Large and ALBERT xxlarge-v2 model pre-
dictions. We experimented by assigning different
weights to BERT and ALBERT models and found
out that equal weights to both works better. We
later did an ensemble of the fine-tuned ALBERT
model with a non fine-tuned ALBERT model. It
gave much improved results on Subtask 1 and Sub-
task 2.

6 Results and Analysis

The results of all the transformer based approaches
are given in Table 3. The recurrence based models
did not work and predicted answers with a ran-
dom probability. We used GloVe (Pennington et al.,
2014) vector embeddings that are not contextual-
ized, unlike BERT embeddings. Moreover, the task
requires some world knowledge since we need to
predict an abstract word whose meaning can possi-
bly be encoded if it is trained on large English cor-
pus. Transformer based models are trained on large
corpora and implicitly learn concepts grounded in
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Type Example

WC

Article
... ”Tennis chose me. It’s something I never fell in love with,” Tomic told Australia’s Channel
Seven. ”Throughout my career I’ve given 100%. I’ve given also 30%. But if you balance it out, I
think all my career’s been around 50%.” ....

Question Bernard Tomic says he has never ” really tried ” throughout his tennis career, adding that he has
probably been @placeholder at “around 50% ”.

Options (A) held (B) aiming (C) honoured (D) operating (E) shown
Scores (A) 16.994 (B) 29.573 (C) 8.331 (D) 18.471 (E) 11.549

WN

Article

.... ”These are home games that we have to win,” McClaren said. ”We are not performing
individually and collectively the way that we did up until the Leicester replay. Has that taken too
much out of us? I don’t know. ”We are not getting the rub of the green and we were doing that
before. We are not scoring the first goal and we are not scoring goals....

Question Manager Steve McClaren says Derby County ’s @placeholder have dropped and he has demanded
an immediate response.

Options (A) chances (B) body (C) standards (D) side (E) artefacts
Scores (A) 28.372 (B) 7.169 (C) 27.527 (D) 10.246 (E) 8.395

CC

Article

Chiriac Inout was found in John Bright Street at about 23:30 GMT on 29 November, one of the
coldest nights of the year. Police are investigating after CCTV appeared to show someone searching
his pockets while he laid in a loading area behind The Victoria pub. An inquest date is yet to be
fixed, the coroner’s office confirmed.

Question A coroner has named a rough sleeper who may have had property @placeholder before he died in
Birmingham city centre .

Options (A) lost (B) collapsed (C) stolen (D) delays (E) flowers
Scores (A) 13.214 (B) 12.342 (C) 27.909 (D) 2.336 (E) 4.510

CN

Article
.... The Blue Peter team say that Lindsey is safe and on her way back to dry land. Sport Relief said:
”Lindsey’s Sport Relief challenge was always going to be incredibly hard and zorbing many miles
across the Irish Channel is a huge achievement. . . . . . .

Question Blue Peter ’s Lindsey Russell has ended her attempt to cross the @placeholder between Northern
Ireland and Scotland in a giant inflatable barrel for Sport Relief .

Options (A) gap (B) boundary (C) sea (D) title (E) difference
Scores (A) 24.295 (B) 26.728 (C) 26.874 (D) 4.482 (E) 18.486

Table 4: Some examples where our model makes mistakes or give correct results on Subtask 2 dev dataset. The
options highlighted in blue are the correct answers and options highlighted in red are predicted by our model.

* WC - Wrong Confident - 27 such examples
* WN - Wrong Confused - 109 such examples
* CC - Correct Confident - 446 such examples
* CN - Correct Confused - 269 such examples

the world. Hence, transformer based approaches
work better in our case.

The BERT model with the MCQ approach uses
the embeddings of the ‘[CLS]’ token to predict the
correct option. But, it doesn’t exploit the position
of “@placeholder” token and hence it becomes
difficult for the model to predict the correct result.

We observe that our Ensemble models work bet-
ter on Subtask 1 and Subtask 2 as compared to the
BERT and ALBERT models. However, on Sub-
task 3, the ALBERT model, which is not fine-tuned
gives the best results. It owes to the fact that sub-
tasks 1 and 2 differ a lot. If we fine-tune our model
on one of the subtask, then it performs worse on
the other.

For our final submission, we submitted our En-
semble model (8) (Table 3) for Subtask 1 and Sub-
task 2. We also submitted the fine-tuned ALBERT
model on these subtasks. In Subtask 1, we are
ranked 13th with our Ensemble model (8) with

an accuracy of 0.8212 on test set. In Subtask 2,
we are ranked 11th with the fine-tuned ALBERT
model with an accuracy of 0.8761 on test set. Sur-
prisingly, in Subtask 2, fine-tuned ALBERT model
performed better than our Ensemble model on the
test set. This is possibly because our ensemble
system performed only marginally better than fine-
tuned ALBERT model on dev set. In Subtask 3, we
submitted the non fine-tuned ALBERT model.

For understanding the mistakes made by our sub-
mitted Ensemble system, we analysed the confi-
dence scores of our model’s predictions. We per-
formed the analysis of the system on the dev set
of Subtask 2. We set a threshold factor (TF) of
“1.4” for deciding between confident and confused
predictions. If the confidence score of the model’s
predicted option is P and the score for the correct
option word is T , then the model is confident in its
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predicted answer if the following condition holds :

P ≥ TF ∗ T

It turns out that the model makes 50% confident
predictions out of all the predictions in the dev set.
Also, the model makes 20% wrong predictions con-
fidently, while in 80% of the wrong predictions,
model is confused between two options. In many
cases, it is unable to understand the context prop-
erly and in a few cases, the model lacks the neces-
sary world knowledge (Table 4). In first example in
Table 4, the model predicts ‘aiming’ as the answer
quite confidently. However, ‘operating’ is a more
appropriate option due to the context given in the
article. This example shows that our system fails
to read the context properly in some cases. Also,
consider the second example in Table 4. Here, the
model is confused between two options : ‘chances’
and ‘standards’. Although, it is mentioned in the
article clearly that Derby is performing poor in a
past few matches, the model is not confident in
predicting ‘standards’ which is the most suitable
option here. It implies that our model is gener-
ally confused between all the option words that
are semantically applicable in the question state-
ment. Consider example 4 from Table 4. Here, the
model is confused between option words ‘sea’ and
‘boundary’ because both of them fit well into the
question. In order to make model more confident
on such examples, we need to incorporate world
knowledge into our system.

We also performed a similar post-competition
analysis on our Ensemble System (9) (Table 3)
and found out that it continues to make similar
mistakes. But, in cases like example 1 in Table 4,
it gives correct results. This is because, we used
an ALBERT fine-tuned model instead of BERT
fine-tuned model in this system which is better in
context-reading as compared to BERT. Thus, this
system gave slightly improved results.

7 Conclusion

The task of predicting abstract words with con-
text from a question and article is quite novel in
itself. We showed that this task can be modelled
better as a masked language modeling task rather
than multiple choice question answering task. The
transformer based approaches worked best, where
we used BERT and ALBERT models and their
ensembles. These models are pretrained models
and hence they perform better on our small dataset

after fine-tuning. We were able to improve the re-
sults of ALBERT model with our Ensemble model
on subtasks 1 and 2, but on Subtask 3, the AL-
BERT model performs better. In future, we shall
try to improve our results on Subtask 3. In our
current approaches, we haven’t used options while
training the model. We can try using a pairwise
ranking loss function to rank the options according
to their scores with a linear layer built on top of
transformer models. This will help the model to
predict answers more confidently and hence might
also improve results. Moreover, we have used the
same approach for Subtask 1 and 2. In future, we
aim to incorporate common sense knowledge, for
example, prototypical knowledge about activities
in the form of scripts (Modi and Titov, 2014; Modi,
2016, 2017; Ostermann et al., 2018), or in the form
of semantic networks like ConceptNet (Speer et al.,
2018) for tackling two different definitions of ab-
stractness and incorporating some knowledge in
the two subtasks.
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Yishay Carmiel, and Najim Dehak. 2019. Hierarchi-
cal Transformers for Long Document Classification.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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Abstract
This paper describes our system ECNU ICA 1
for SemEval-2021 Task 4: Reading Compre-
hension of Abstract Meaning. For this task,
we utilize knowledge-enhanced Graph Atten-
tion Networks with a novel semantic space
transformation strategy. It leverages heteroge-
neous knowledge to learn adequate evidences,
and seeks for an effective semantic space of
abstract concepts to better improve the ability
of a machine in understanding abstract mean-
ings of natural language. Experimental results
show that our system achieves strong perfor-
mance on this task in terms of both impercep-
tibility and nonspecificity.

1 Introduction

Recent years have witnessed the remarkable suc-
cess of pre-trained language models in machine
reading comprehension (MRC). Nevertheless, new
research points out that these dominant approaches
rely heavily on superficial text pattern-matching
heuristics to achieve shallow comprehension on
natural language (Zhang et al., 2020). For humans,
the basic ability to represent abstract concepts guar-
antees an in-depth understanding of natural lan-
guage. Consequently, teaching machines to better
comprehend abstract meaning is a significant and
urgent step to push the frontier technique of MRC
forward.

If computers can understand passages as human
do, we expect them to accurately predict abstract
words that people can use in summaries of the given
passages. Thus, researchers have recently proposed
a reading comprehension of abstract meaning (Re-
CAM) task in SemEval 2021. Unlike some previ-
ous datasets such as CNN/Daily Mail (Hermann
et al., 2015) that request computers to predict con-
crete concepts, e.g., named entities, ReCAM re-
quires machines to fill out abstract words removed

*Equal corresponding authors.

from human written summaries. In ReCAM, sub-
task 1 and subtask 2 respectively evaluate the per-
formance of machines towards imperceptibility and
nonspecificity, two formal definitions of abstract-
ness in natural language understanding(Spreen and
Schulz, 1966; Changizi, 2008). Specifically, con-
crete words refer to things, events, and proper-
ties that we can perceive directly with our senses
(Spreen and Schulz, 1966; Coltheart, 1981; Turney
et al., 2011), e.g., donut, trees, and red. In contrast,
abstract words refer to the ideas and concepts that
are distant from immediate perception. Examples
for abstract words include objective, culture, and
economy. Subtask 1 requires machines to perform
reading comprehension of abstract meaning for im-
perceptible concepts, while subtask 2 concentrates
on hypernyms, which is more abstract and different
from the concrete concepts (Changizi, 2008).

To better understand the abstract meaning, we
utilize the Knowledge-Enhanced Graph Attention
Network (KEGAT) architecture with a novel se-
mantic space transformation strategy for ReCAM.
It well incorporates structured knowledge base such
as ConceptNet (Speer et al., 2017) and exploits
a novel representation transformation strategy to
improve the ability of machines in natural language
understanding. The main contributions of our sys-
tem are as follows:

• We utilize the KEGAT architecture to accom-
plish two subtasks in Reading Comprehen-
sion of Abstract Meaning, leveraging hetero-
geneous knowledge resources to provide ade-
quate evidences and relying on Graph Atten-
tion Networks for the better reasoning.

• The proposed semantic space transformation
strategy seeks for an effective representation
mapping from concrete objects to abstract con-
cepts, enabling machines to better understand
the abstract meanings of natural language.
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• Extensive experiments show that our system
achieves strong performance on this task in
terms of both imperceptibility and nonspeci-
ficity.

2 Methodology

In this section, we describe the framework of our
system and propose some strategies to enhance the
reasoning ability of the model. An overview of the
architecture is depicted in Figure 1.

2.1 Input Module

We cast the ReCAM task as a classification prob-
lem. For each instance, we assume that P is the
passage, Q is the question, A is the number of can-
didate options, andOi stands for the options, where
i ∈ {1, 2, . . . , A}. For a specific training instance,
we first replace the “@placeholder” in Q with Oi,
and thus the resulting question-answer pair can be
denoted as QOi. Then we concatenate the passage
and question-answer pairs as [CLS] P [SEP] QOi

[SEP], and denote this converted input as Ui for
convenience. Although various approaches can be
exploited to encode this Ui, we primarily adopt the
basic way, in which tokens are represented with
the one-hot vectors and the positional encoding is
added, providing the model with a new embedding
as EUi for every Ui.

2.2 Reasoning Module

Since pre-trained language models have achieved
state-of-the-art performance in various NLP
tasks (Devlin et al., 2019; Yang et al., 2019; Lan
et al., 2020), we adopt the pre-trained architec-
ture to process the embedding EUi that is obtained
from the previous step to get the high-level rep-
resentation as Êbase

Ui
. Specifically, we use Elec-

tra (Clark et al., 2020), a word-sensitive pre-trained
language model which is composed of N -layer
transformer encoders (Vaswani et al., 2017) de-
picted in the middle of Figure 1. Then, we utilize
a Knowledge-Enhanced Graph Attention Network
(KEGAT) component to accomplish the reasoning
process based on all relevant entities and the high-
level representation of the entire question-answer
pair from the pre-trained model. The working prin-
ciple of our KEGAT model is introduced later.

As shown in Figure 1, our KEGAT model mainly
consists of a Graph Attention Network, a self-
attention submodule and a multi-layer perceptron
(MLP). It enables a multi-level reasoning process

from entities to sentences. For the entity level,
we utilize some structured knowledge from Con-
ceptNet with a different integration approach to
achieve the goal of conducting inferences over new
constructed subgraphs. Here, we adopt the N-gram
method to extract all entities from the converted in-
put Ui, and use edge weight as the probability to se-
lect a maximum of k adjacent nodes from Concept-
Net for subgraph construction. Suppose the number
of entities is n, we construct n subgraphs in total,
and the subgraphs may be connected with edges.
Next, we utilize the conceptnet-numberbatch* to
obtain the i-th entity embedding as the initial rep-
resentation h(0)i , which is subsequently refined by
the L-layer Graph Attention Network (GAT). In the
refinement process, the GAT module automatically
learns an optimal edge weight between two entities
in these subgraphs based on the ReCAM task, in-
dicating the relevance of adjacent entities to every
central entity. In other word, for a central entity, the
GAT tries to only assign higher weight values to
those edges connected with several most reasonable
adjacent entities from the constructed subgraph,
and discards some irreverent edges. Thus, the ab-
stract semantic inference ability of our model is
highly improved with the knowledge incorporated
by the refined subgraphs. The working principle of
our GAT is in Eq. 1–3.

h
(l+1)
i = σ

(
1

M

M∑

m=1

∑

j∈Ni

α
(l)
ijm

W(l)
m h

(l)
j

)
(1)

α
(l)
ij = softmaxj

(
f([W(l)h

(l)
i ;W(l)h

(l)
j ])
)

(2)

We update each entity node based on Eq. 1, where
σ(·) represents a ELU function (Clevert et al.,
2016), W is the network parameter, h(l)i is the repre-
sentation from the l-th layer of GAT, andNi stands
for all adjacent nodes to the i-th entity. M is the
number of independent attention mechanisms in
Eq. 2, and a(l)ij is the relevance degree of the j-
th adjacent entity with respect to the i-th entity.
Besides, f(·) represents a projection function con-
verting the vector to a real number, and [; ] stands
for the concatenation operation. Finally, we define

Êgnn
Ui

=
1

n

n∑

i=1

h
(L)
i (3)

to be the final representation for entity subgraphs
that are obtained from the GAT.

*ConceptNet-Numberbatch:
https://github.com/commonsense/conceptnet-numberbatch
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Figure 1: The overview of our system for ReCAM.

From the sentence level, we adopt a self-
attention submodule and several MLPs to promote
the model to reason over both entities and input
sentences. We first utilize a MLP to fuse the sym-
bolic and semantic representations and then take a
self-attention operation for refinement. Thus, the
entity-level representation can be further refined
by taking the question-answer pair as a reference.
To sum up, some valuable dimensions can be high-
lighted to retain the most reasonable information
from the fused representations Êall

Ui
to improve the

reasoning ability. We formulate these steps as Eq.
4 and Eq. 5.

Êall
Ui

= MLP([Êbase
Ui

; Êgnn
Ui

]) (4)

GUi = σ(SelfAttn(Êall
Ui
)) (5)

where GUi is the refined representation, SelfAttn(·)
represents a self-attention operation, and σ(·) is the
activation function. Finally, we concatenate GUi

and Êbase
Ui

to obtain the entire reasoning represen-
tation as

ÊUi = [GUi ; Ê
base
Ui

] (6)

2.3 Prediction Module
With the previous multi-level reasoning process,
we obtain the representation of converted inputs
as {ÊUi}Ai=1 for each instance. In the prediction
module, we use a multi-layer perceptron to solve

the downstream tasks of ReCAM based on Eq. 7–
9.

Pi = MLP(ÊUi), P
′ = softmax(P ) (7)

y = argmax(P ′) (8)

L = −
A∑

i=1

y∗i logP
′
i (9)

where y represents the prediction result, and P ′i
stands for the probability of selecting the i-th op-
tion label. P is the output of the MLP, where
P ∈ RA×1. L is the training objective to mini-
mize negative log-likelihood and y∗ here stands for
one-hot vector of the optimal label.

2.4 Adaptive Strategies

Noise Reduction Strategy Previous methods of
knowledge integration often lead to inevitable noise
(Zhong et al., 2019; Wang et al., 2019), and it is
still an open research problem to balance the im-
pact between noise and the amount of incorporated
knowledge. (Weissenborn et al., 2018; Khashabi
et al., 2017). Our KEGAT can alleviate the noise
that is caused by incorporated structured knowl-
edge to a certain extent. This module accomplishes
the goal of identifying the most reasonable exter-
nal entities and discarding the irreverent ones. For
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example, we rely on both entity-level and sentence-
level inference thoroughly that is discussed in the
previous Reasoning Module part to achieve this
goal. Furthermore, we remove several unimportant
types of edges to avoid unnecessary noises, such as
”/r/DistinctFrom”, ”/r/ExternalURL”, etc.

Semantic Space Transformation Strategy Un-
like some previous MRC tasks that request com-
puters to predict concrete concepts, ReCAM task
here asks models to fill out abstract words removed
from human written summaries. Thus, we utilize a
semantic space transformation strategy to convert
ordinary semantic representation into abstract rep-
resentation for classification. Specifically, for the fi-
nal answer prediction, this approach deals with the
hidden vector representation V which is obtained
ahead of the prediction module. One method is to
extend the dimension (ED) of V . For instance, we
use a MLP to expand V by 500 dimensions and
then perform the downstream classification predic-
tion. The second attempt is to transform V directly
with a nonlinear activation function, such as RELU.
And another method is to transform V through a
simple deep neural network (DNN), which is de-
picted in the right of Figure 1.

3 Experiments

3.1 Datasets and Metric

In the ReCAM task, it requires the model to fill
out abstract words removed from human written
summaries. The total number of abstract words
that can be selected is five. We utilize Accuracy as
a metric to evaluate model performance.

3.2 Experimental Settings

In our experiment, we set the maximum sentence
length as 210 and the batch size as 16. During train-
ing, we freeze all layers and learn 2 epochs with
a learning rate of 0.001 except for the last classifi-
cation layer, In the fine-tuning phase, we unfreeze
all layers and learn 10 epochs with a learning rate
of 0.000005. Like the training phase, it is benefi-
cial to use the weights of the pre-trained language
model to correct the randomly initialized classifi-
cation layer. All layers of the entire model in the
fine-tuning phase are suitable for classifying down-
stream tasks with the low learning rate. For each
phase, we save model parameters when it reaches
the highest accuracy on the dev set, and load it at
the beginning of the next phase. In addition, we

adopt the Adam optimizer (Kingma and Ba, 2015)
and set epsilon to be 0.000001 for the gradient
descent. We train our model with Titan XP GPUs.

3.3 Results
Table 1 shows the results of the top five teams from
the leaderboard for ReCAM task (by February 10).
Our system achieves the 3rd place in Subtask 1 in
terms of Accuracy. And it can be concluded from
Table 2 that our system has the ability to solve the
ReCAM task.

Besides, we test the performance of our system
with the strategies mentioned in Section 2.4. Here,
“+KEGAT” represents our proposed model with
Knowledge-Enhanced Graph Attention Networks,
“+ED ”, “+RELU”, “+DNN” refer to our system
with different semantic space transformation strate-
gies. In addition, Dev Acc. and Test Acc. stand
for the accuracy on the dev set and test set respec-
tively. Table 2 shows the experimental results of
our system on the ReCAM task. In this table, the
baseline model GA Reader provided by the com-
petition organizer is not ideal, and its performance
is slightly higher than 20% with our actual testing.
We conclude that on the dev set, our system respec-
tively achieves the relative improvement of 6.69%
and 4.24% on subtask 1 and subtask 2 when adding
KEGAT submodule compared with the fine-tuned
Roberta large. Moreover, we test the performance
of three ensemble models shown in the bottom of 2,
and the “Electra-large ED + Electra-large KEGAT-
RELU ” ensemble obtains the best performance
on the dev set, which respectively outperforms the
fine-tuned Roberta large model with the relative im-
provement of 7.41% and 5.29% on subtask 1 and
subtask 2. Here, this ensemble framework refers
to the combination of two models. Therefore, it
can be concluded that the ensemble models with
the semantic space transformation strategy greatly
improve the reasoning ability of our system, and
the single system with multiple strategies performs
well in most cases.

3.4 Further Discussion
To further investigate this task, we have addition-
ally assessed the impact of data bias on the model
performance. By statistics, the average length of
passages in the dev sets of subtask 1 and subtask
2 are 268.8 and 434.6, respectively. In general,
longer passages often consist of more noise that
greatly influences answer reasoning process of the
model. We only select a portion of contents from
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Subtask 1 Subtask 2
Rank Team Name Accuracy Rank Team Name Accuracy

1 Silvilla 95.11 1 PINGAN Omini-Sinitic 95.29
2 PINGAN Omini-Sinitic 93.04 2 Silvilla 94.89
3 ECNU ICA 1 (ours) 90.47 3 tt123 93.41
4 tt123 89.98 4 ECNU ICA 1 (ours) 93.01
5 cxn 88.69 5 cxn 92.91

Table 1: Top 5 results for ReCAM task.

Subtask 1 Subtask 2
Model Dev Acc.(%) Test Acc.(%) Dev Acc.(%) Test Acc.(%)

GA Reader 24.61 - 22.79 -

Our Architectures
-w fine-tuned Roberta-large 85.18 - 87.30 -
-w Electra-large 90.80 89.28 91.07 90.48
-w Electra-large + KEGAT 91.87 89.37 91.54 92.01
-w Electra-large + KEGAT-RELU 92.35 90.37 91.89 92.11
-w Electra-large + ED 91.51 90.12 91.65 90.95
-w Electra-large + DNN 91.40 - 91.77 -

Ensemble Models -w Electra-large
+ KEGAT 91.99 - 92.36 -

ED + KEGAT 92.47 - 92.48 -
ED + KEGAT-RELU 92.59 90.47 92.59 93.01

Table 2: Experimental results of ReCAM task.

Subtask1 Subtask2

AVG length 268.8 434.6

Position Dev Acc.(%) Dev Acc.(%)
0-210 90.80 91.07

211-420 89.31 89.65

Table 3: Performance on different contents of passage.

the given passage for this assessment instead of the
whole passage. Specially, in the given dataset, we
take a fixed length of 210 as the content interval
by intercepting it at two different positions, namely
token ID 0 ∼ 210 and token ID 211 ∼ 420. Then
we fine-tune the Electra-large model for each sub-
task using their own training set and compare the
performance of the fine-tuned Electra model on
two different passage intervals. It means that we
have conducted experiments with different passage
contents twice. Table 3 reports the results of our
system on these different passage intervals. In this

table, compared to the experiment that adopts the
passage content with position from 0 to 210, in-
tercepting the one with position from 211 to 420
leads the performance to drop by about 1 ∼ 2%
on these two subtasks. Thus, we conclude that the
positional bias indeed affects model performance
to some extent.

4 Conclusion

We utilize a knowledge-Enhanced Graph Attention
Network architecture with semantic transformation
strategies for machines to better comprehend the
abstract meanings of natural language. It well in-
corporates heterogeneous knowledge and relies on
Graph Attention Networks to learn adequate evi-
dences. The subsequent semantic transformation
enables an effective representation mapping from
concrete objects to abstract concepts. Our system
achieves strong performance on this comprehen-
sion task in terms of both imperceptibility and non-
specificity. We hope this work can shed some lights
on the study of in-depth reading comprehension.
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Abstract

In this article, we present our methodologies
for SemEval-2021 Task-4: Reading Compre-
hension of Abstract Meaning. Given a fill-in-
the-blank-type question and a corresponding
context, the task is to predict the most suitable
word from a list of 5 options. There are three
sub-tasks within this task: Imperceptibility
(subtask-I), Non-Specificity (subtask-II), and
Intersection (subtask-III). We use encoders
of transformers-based models pre-trained on
the masked language modelling (MLM) task
to build our Fill-in-the-blank (FitB) models.
Moreover, to model imperceptibility, we de-
fine certain linguistic features, and to model
non-specificity, we leverage information from
hypernyms and hyponyms provided by a lexi-
cal database. Specifically, for non-specificity,
we try out augmentation techniques, and other
statistical techniques. We also propose vari-
ants, namely Chunk Voting and Max Context,
to take care of input length restrictions for
BERT, etc. Additionally, we perform a thor-
ough ablation study, and use Integrated Gradi-
ents to explain our predictions on a few sam-
ples. Our best submissions achieve accura-
cies of 75.31% and 77.84%, on the test sets
for subtask-I and subtask-II, respectively. For
subtask-III, we achieve accuracies of 65.64%
and 62.27%. The code is available here.

1 Introduction

A very common assessment in schools is question-
answering based on a given “comprehension pas-
sage”. Students are given a comprehension passage,
from which they are supposed to glean necessary
information, and answer short questions (such as
fill-in-the-blanks-type question) based on what they
have garnered from the given passage. While trying
to find the most appropriate word for the blank, the
children look at the words surrounding the blank

∗ Equal contribution. Author ordering determined by coin flip.

(“context”). The word should be such that when the
word fills the blank, the sentence makes sense and
it is grammatically correct. Inspired by this, and
perhaps, after the enormous success of Transform-
ers (Vaswani et al., 2017), researchers at Google
came up with a large number of “pretraining tasks”
and built knowledge-heavy language models which
could be fine-tuned on various natural language
processing (NLP) downstream tasks. One of the
earlier pretraining tasks was “Masked Language
Modelling (MLM)”, one of the two pretraining
tasks of the breakthrough model, BERT (Devlin
et al., 2019). The approach here was similar to how
kids are taught language at school: some tokens in
the text were randomly “masked” and the model
was trained to predict these masked tokens.

SemEval-2021 Task-4 (Zheng et al., 2021) fo-
cuses on a similar idea. Every sample has an article,
and a corresponding question. The question has
a blank which the model is supposed to predict
from a set of 5 options. The novelty in the task
lies in its 3 subtasks: Imperceptibility (subtask-
I), Non-Specificity (subtask-II), and Intersection
(subtask-III). A description of these subtasks is
given in Section 3. In this work, we propose using
BERT and its derivative models such as DistilBERT
(Sanh et al., 2019), ALBERT (Lan et al., 2019) and
RoBERTa (Liu et al., 2019). Further, we propose 2
BERT variants: (1) BERT Voting; (2) BERT Max.
Context. Most importantly, we also model the con-
cepts of imperceptibility and non-specificity. For
imperceptibility, we create statistical embeddings
using features that have a high correlation with
concreteness. For non-specificity, we propose two
approaches: (1) we augment the dataset by replac-
ing some nouns in the article by their hypernyms;
and (2) we use the options’ hyponyms to decide the
most appropriate option. We also experiement with
GA-Reader (Dhingra et al., 2017b) and GSAMN-
based approaches (Lai et al., 2019) by trying out
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their various combinations with BERT.
In Section 2, we perform a succinct literature

survey. Section 3 elucidates our approach, includ-
ing the modelling aspect, the various variants of
the base model, and the different ways we model
imperceptibility and non-specificity. In Section 4,
we perform an extensive ablation and comparative
study.

2 Background

The advent of large-scale question answering sys-
tems began with straightforward tasks, like the one
introduced by the SimpleQuestions Dataset (Bor-
des et al., 2015), which consisted of knowledge-
base fact triples which were later used to answer
questions. However, this dataset would only judge
a model based on the ability to relate the facts to
the question at hand. The purpose of NLP research
is to be able to create a generalised model that
may answer questions based on any context, thus
datasets like the CNN Daily Mail (Hermann et al.,
2015) and SQuAD (Rajpurkar et al., 2016) were
created. In a typical question-answering dataset, an
original and anonymised context is provided before
each question. Before transformers, methods con-
sisting of LSTM/GRUs were used to achieve good
results on the aforementioned tasks. These datasets
however, always had answers in the passage.

The CLOTH (Xie et al., 2018) dataset focuses on
passages from middle-school and high-school text,
with multiple fill-in-the-blanks in the passage. The
ReCAM (Zheng et al., 2021) dataset puts a twist to
archetypal fill-in-the-blank datasets by providing
answer choices that are abstract in some form and
which are not available in the passage itself. The
models created for the QA task have to take into
account semantic relations between the options and
the context. GA-Reader (Dhingra et al., 2017b),
is one such model, which utilises a multi-hop ar-
chitecture with a novel attention mechanism, that
serves as a baseline to this task.

3 Methodology

3.1 MLM-Based Transformers for
Cloze-Style QA

The first model we employ follows a cloze-style
question answering approach, in which we use var-
ious pretrained transformer models as encoders,
followed by a decoder layer, which helps us to
select the correct answer.

Animal

Dog Fish

Terrier Hound Seafish Freshwater Fish

Animal

Figure 1: An example of a Hypernymy Tree

Specifically, we leverage BERT along with some
of its popular and successful variants such as: Dis-
tilBERT, ALBERT, and RoBERTa. In the MLM
task, tokens in the text are randomly masked, and
the model is trained in a self-supervised way to
predict these masked tokens. Conceptually, these
transformers-based models are expected to take
care of bidirectional context while predicting the
masked token.

In our method, firstly, the transformer model
learn the contextual embeddings of the article and
the question. For the next block, the embedding of
the masked token (i.e., the blank) is passed through
a fully-connected layer, of which, the number of
outputs corresponds to the size of the vocabulary
space for the pretrained model. Each candidate
option is first tokenised using WordPiece tokeniser
(Wu et al., 2016), and mapped to the vector in the
output vocabulary space. If the candidate option
generates multiple tokens, we average the mapped
scores. The model chooses the option with the
highest logit value. An overview of the model is
given in Figure 2.

3.2 Improvement Approaches

3.2.1 Imperceptibility:

Nouns can be clearly demarcated into two broad
categories: Concrete Nouns, and Abstract Nouns.
Concrete Nouns are words that represent tangible
concepts, i.e., any noun referring to a name, place,
object, material, etc. is considered a concrete word.
Concrete words refer to concepts that can be felt by
5 human senses: Sight, Sound, Smell, Taste, and
Touch. In contrast, any noun alluding to an abstract
concept that cannot be experienced by our senses
is an abstract word (Spreen and Schulz, 1966). In
subtask-I, the model has to predict the most ac-
curate and the most imperceptible word from the
given options. To model the imperceptibility of
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Figure 2: Architecture of Transformer-based FitB Model

every word, we incorporate certain linguistic fea-
tures which are highly correlated with the notion
of “imperceptibility”. These linguistic features are
listed below:

Length and Frequency of the Word In existing
literature, authors have claimed that there exists
strong evidence that concrete words are, in general,
shorter than abstract words (Tanaka et al., 2013). A
reasonable justification provided is that more fre-
quently used words tend to be short (Feng et al.,
2011) and since humans have a penchant for de-
scribing objects, places, or things near them, these
frequently used words are generally concrete nouns.
It is rather intuitive that humans would prefer ease
in the pronunciation of oft-used words. Moreover,
many abstract words in the English language are
formed by adding suffixes to the root word, such as
“coarse” becomes “coarseness”, “forget” becomes
“forgetfulness” and so on (Tanaka et al., 2013).

Number of Senses of the Word In Linguistics,
polysemy refers to the capacity for a word to have
multiple meanings or senses. Abstract nouns are
observed to be more “polysemous” than concrete
nouns (Tanaka et al., 2013). For example, in Word-
Net (Fellbaum, 1998), the word “dog” has 8 senses,
while the word “love” has 10 senses.

Number of Hyponyms Tanaka et al. 2013 find
a direct correlation between the abstractness of a
noun and the number of hyponyms the word has.
We consider the number of hyponyms of the most
commonly occurring sense of the word, and the
average number of hyponyms of all the senses of
the word.

Score-based Features Abstract nouns evoke
emotions in humans. SentiWordNet (Baccianella
et al., 2010), another lexical database like Word-
Net, gives scores based on the how positive, neg-
ative or objective they are. Abstract words have
a higher positive/negative score, while concrete
words have a higher objective score. Again, here,
we consider these scores for the most commonly
occurring sense, and the average scores of all the
senses of the word.

Depth in Hypernymy Tree This feature is more
suited for non-specificity. However, we include
this as a feature of imperceptibility since the con-
cepts of imperceptibility and non-specificity are
related. For example, consider the words ”money”
and ”property”. The latter is more imperceptible
and non-specific than the former. Moreover, this is
particularly useful for Subtask-III. Therefore, the
depth of a word in the hypernymy tree is directly
proportional to the concreteness of the word.
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From the features above, we have a 13-
dimensional vector for every word in the lexicon.
The embedding is created so that every dimension
is directly proportional to the concreteness of the
word. For example, the length of a word is in gen-
eral, indirectly proportional to the concreteness of
the word, so we take the length dimension of the
vector as large value− length of word, where
we take 10, 000 as the large value. The large
value chosen was the same for all features which
are indirectly proportional to concreteness.

Towards improving the trained model, we use a
method which we term as the Difference Method.
If the difference of the top-2 probabilities predicted
by the model is greater than a certain threshold,
this implies that the model is sure of the predic-
tion it has made. However, if the difference is less
than the tunable threshold, the model is ambivalent
about whether the option with the highest probabil-
ity or the option with the second highest probability
is correct. In this case, we compute for how many
dimensions the value of the linguistic embedding
of the second word is less than the value of the
linguistic embedding of the first word. If the ma-
jority of the values (i.e., 7) are less, we change the
prediction of the model to the second-most proba-
ble option. The threshold is tuned on the dev set.
Furthermore, we use a Threshold Method towards
improving the model performance. If the high-
est probability is less than a tunable threshold, the
model is unsure of its predictions and we consider
the improvement approaches on the option with the
second-highest probability.

3.2.2 Non-Specificity
According to Spreen and Schulz, 1966, a highly
specific word refers to a very particular instance,
while a non-specific word refers to a generic con-
cept, i.e., it encompasses many classes/instances.
For example, consider the words “animal”, “bird”
and “eagle”. The words are listed in increasing
order of specificity.

We find parallels between the definition of
specificity/non-specificity and the linguistic phe-
nomenon of hypernymy. Schreuder and Baayen,
1995 define a hypernym as “a word with a general
meaning that has basically the same meaning of a
more specific word”. The more specific word is the
corresponding hyponym. In simpler terms, each
word is related to some super-types and sub-types,
called as hypernyms and hyponyms, respectively.
In linguistics, hyponymy is a semantic relation be-

tween a hyponym denoting a subtype and a hyper-
nym denoting a supertype.

For example, in figure 1, as we traverse up the
hypernymy tree, assuming we consider the word
“dog”, we find that its hypernym is “animal”, which
is much broader than “dog”. On the other hand, as
we go down the hypernymy tree, we find more spe-
cific terms for the word “dog” such as “terrier”. Es-
sentially, hyponyms represent “IS-A” relationships.
For example, “terrier” is a “dog”. We leverage the
hypernymy property of words to help the model
in deciding the most non-specific option. The two
methods which we implement are:

Hypernym Augmentation Method In order to
infuse a sense of non-specificity (other than train-
ing on the given dataset for non-specificity), we
augment the dataset for subtask-I. We randomly se-
lect n nouns from the article by using a basic POS
Tagging pipeline. For each noun, we use the Lesk
algorithm (Lesk, 1986) to find the most appropriate
sense of the word based on its context. For this
sense of the word, we find its hypernyms, pick a
hypernym uniformly at random from this list of hy-
pernyms and replace the noun in the article with the
hypernym. We do this for all 2n combinations, i.e.,
corresponding to every sample, we have 2n aug-
mented samples. Furthermore, we randomly mask
tokens in this dataset and train BERT on the MLM
task, on this dataset. This serves a dual purpose.
Firstly, it serves as a sort of domain adaptation, and
secondly, it infuses a sense of non-specificity in the
model.

While finetuning BERT MLM on the augmented
dataset, we freeze two layers, due to time and
computational constraints. We replace the nor-
mal BERT Encoder in our BERT FitB model with
the BERT Encoder fine-tuned on the augmented
dataset.

Hyponyms Options Method Here, we use the
Difference Method/Threshold Method. If the model
is sure of its prediction, we keep the prediction of
the model. Otherwise, we generate hyponyms for
each option using WordNet. After the hyponyms
are tokenised, we use the trained model’s output
and map each hyponym token to the output vocab-
ulary space and get the corresponding scores. We
then take the maximum score amongst all of the
hyponyms as the predicted probability for that op-
tion. The reason for incorporating this approach
pertains to how the transformer models were pre-
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trained. Consider the following sentence: “He had
a [MASK] and it was bitter”. Now, suppose that
we have two options: “beer” and “drink”. Gen-
erally, our transformer-based model would look
at the word “bitter” and predict “beer”. However,
“drink” is more non-specific than “beer”.

3.2.3 BERT Fill-in-the-blanks Variants
To address the limitations of the vanilla
transformer-based models, we attempt mul-
tiple modifications to the proposed baseline
transformer models, specifically for BERT. The
major limitation of the pretrained BERT model
that we’ve used, is the restriction on the length
of the tokenised inputs. Only 512 tokens from a
sample can be processed by BERT in one parse
and hence, some articles end up getting truncated
and context is lost. The following are some of
the modifications we’ve made to improve the
performance of our models:

Voting We tokenise the question and the article.
We split the article into chunks and pair each chunk
with the question such that the length of the to-
kenised (chunk, question) pair is 512. While
splitting the article into chunks, we keep a max-
overlap stride of 128 so that the context of the pre-
vious chunk is not lost. We train the model on these
newly formed (chunk, question) pairs. During in-
ference, we take the weighted sum of the logits.
For BERT FitB Voting (Similarity), the weights are
calculated as:

weightij =
ui.vj
||ui||||vj ||

(1)

where ui is the embedding of the question in the ith

sample, and vj is the embedding of the jth chunk
of the sample’s article. To find the embeddings,
we extract the [CLS] embedding from a pretrained
BERT encoder.

We also try out an alternate way of defining the
weights:

weightij =
|{qi toks.} ∩ {chunkj toks.}|

|{chunkj toks.}|
(2)

where {qi toks.} is the set of tokens in the ith sam-
ple’s question, and {chunkj toks.} is the set of
tokens in the jth chunk of the sample. |.| repre-
sents the cardinality of a set. We call the method
BERT FitB Voting (Exact Matching).

We normalise the computed weights:

norm weightij =
weightij∑ni
j=1weightij

(3)

where ni is the number of chunks in the ith sample.
The idea behind this is that higher the similarity

between the question and the article’s chunk, higher
is the weight assigned to the logits returned by
the trained model with the question-chunk pair as
input. In Equation 2, we find the fraction of tokens
common between the question and chunk.

Max Context This method is a slight modifica-
tion of the Voting Method. Instead of training the
model on all (chunk, question) pairs for a partic-
ular sample, we train the model on the pair with
the highest weight. The weights are calculated as
described in Equation 2.

3.2.4 GA-Reader-based Approaches
We propose a few modifications to the baseline,
namely GA-Reader (Dhingra et al., 2017a) pro-
vided by the organisers.

GA-Reader BERT We use GA-Reader on top of
BERT embeddings. This could lead to potential im-
provement in performance for subtask-I as BERT
embeddings are more feature-rich than GloVe em-
beddings.

GA-BERT Based on the Gated-Attention
Reader, we came up with an approach that uses
Gated-Attention across two-BERT streams. The
first stream takes in the question input, and works
like the regular BERT model. The second stream
takes the article input. Assume the layer outputs for
layer L are QL and AL, respectively, for question
and article streams. Then, to the layer L + 1 for
question stream, QL is passed as input, while to
layer L + 1 for article stream, GA(QL, AL) is
passed, where GA is the Gated-Attention function.
This is done for all 12 layers of BERT-BASE.
Finally, on this model, two types of heads are
attached - Selection and Pooling (similar to BERT
FitB), and Attention Classification (similar to
GA-Reader). The logits for each head are concate-
nated and a fully-connected layer is added on top.
Since this is a major change in the architecture of
BERT, this model needs a significant amount of
pretraining.

Answer-Attention Since GA-Reader also at-
tends to the candidate answer embeddings, we also
attempt an approach where we pass the options
to the BERT model. On the option embeddings
and the [MASK] token embeddings, we apply mul-
tiplicative attention (dot product) to get attention
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Model Information Imperceptibility Non-Specificity
Model Variant Val Acc. Test Acc. Val Acc. Test Acc.

BERT Fill-in-the-Blank base 67.03% 66.77% 64.39% 65.74%
BERT Fill-in-the-Blank large 74.79% 75.30% 72.73% 75.16%

DistilBERT Fill-in-the-Blank base 67.03% 66.02% 63.69% 62.67%
RoBERTa Fill-in-the-Blank base 52.45% 51.11% 33.73% 35.99%
RoBERTa Fill-in-the-Blank large 51.02% 52.44% 33.14% 34.95%
ALBERT Fill-in-the-Blank base-v2 31.42% 30.46% 31.84% 31.14%
ALBERT Fill-in-the-Blank large-v2 31.06% 30.76% 30.08% 33.27%

GA-Reader (baseline) - 21.23% 21.51% 21.50% 21.86%

Table 1: Results of the Vanilla Fill-in-the-Blank(FitB) Models and GA-Reader

scores. These scores are directly used as logits for
the prediction.

3.2.5 GSAMN-based Approaches

BERT-GSAMN-Cloze Lai et al. (2019) pro-
pose a combination of Gated-Attention and Self-
Attention - Gated Self-Attention (GSA). They show
improvements on smaller datasets compared to
Compare-Aggregate Approaches. We use two GSA
layers on top of BERT Embeddings, and use the
same decoder and selection method as BERT FitB.

4 Experimental Setup

In all our experiments, we use the PyTorch im-
plementations of the transformers-based models
provided by the HuggingFace (Wolf et al., 2019).
The metric for all the 3 subtasks is accuracy. For
subtask-I, to obtain the linguistic features men-
tioned in 3.2, and to obtain the hypernyms and hy-
ponyms for subtask-II, we use the lexical database,
WordNet provided by NLTK (Bird and Loper,
2004), a library in Python. For both subtasks, we
train our models on train + trial dataset, and evalu-
ate them on the dev set.

The training and the evaluation of systems was
on Google Colaboratory’s free GPU (NVIDIA
K80/P100). The training time varies with the mod-
els. It is around 1-2 hours for the base variants and
2-4 hours for the large models, which is well within
the 12 hour limit of Colab. DistilBERT took about
half an hour for training.

For finetuning the BERT FitB Hypr Aug Model
on the augmented dataset on the MLM task, we use
Nvidia-DGX Station with the following specifica-
tions: four 32 GB Tesla V100 GPUs, 256 GB RAM
and forty Intel Xeon 2.20GHz processors since it
is a computationally intensive task.

4.1 Hyperparameters

For all our experiments, we use Adam Optimiser
(Kingma and Ba, 2017) and Cross Entropy Loss.
For choosing the optimal set of hyperparameters,
we run a Grid Search on our models. We zero
in on a learning rate of 1e-5. Schedulers such as
Linear Scheduler, Cosine Annealing Scheduler, etc.
seem to have a negative impact on the results. For
the FitB models, we keep all the layers unfrozen.
Additionally, the maximum input length is kept as
512. We train our models for 4 epochs, keeping a
batch size of 2.

4.2 Ablation Study/Results

Among the vanilla models, BERT FitB Large per-
forms the best. This is understandable when it
comes to DistilBERT and ALBERT, since these
models are pruned and distilled for faster compu-
tation. Notably, DistilBERT gives comparable per-
formance to BERT FitB Base. A slightly surpris-
ing observation was that there is a degradation in
accuracy on using RoBERTa. This could be be-
cause even though it was pretrained more robustly
than BERT on the MLM task, it was not pretrained
on the Next Sentence Prediction Task, and hence,
might perform worse on Textual Entailment tasks.
A peculiar observation is that the large variants of
ALBERT FitB and RoBERTa FitB models perform
worse than their base variants. This may imply
that more training data is needed to train the large
variants. For subtask-I, in table 2, we also demon-
strate the results of BERT Ensemble, in which we
ensemble (i.e., averaging over the predictions) two
checkpoints saved during the training process.
When it comes to the Difference Method using Lin-
guistic Features for imperceptibility, we observe
an improvement on the dev set, but a slight fall is
observed while evaluating it on the test set. This
might be solved by careful tuning of the threshold.

194



The polls are already years overdue and were scheduled for Sunday . They were postponed because of an ongoing stalemate between the government and a group of
opposition senators over an electoral law . Haiti is the poorest country in the region and is still struggling to recover from a 2010 earthquake . Protesters lit piles of
wood in the central neighbourhood of Bel Aire before marching to a wealthy hillside neighbourhood , where riot police guarded hotels , shops and Haiti ' s elections
office . Some demanded President Michel Martelly ' s resignation for his " inability to organise elections in the country " . Two opposition activists who had
organised the protest were arrested by police for " public unrest and inciting violence " . Mid - term senate elections in Haiti had been due in May 2012 , while the
municipal poll is three years behind schedule as Haiti slowly emerges from the earthquake which left much of the country devastated in 2010 . In June , President
Michel Martelly decreed that the elections be held on 26 October . The date was set after lengthy talks mediated by the president of Haiti ' s Bishops ' Conference ,
Cardinal Chibly Langlois , intended to overcome the political deadlock between the opposition and the government . But after the National Assembly failed to pass
an electoral law in time , the office of Mr Martelly announced another postponement on Sunday . No new date has been set , but the statement said that " President
Michel Martelly , in his constant concern to guarantee political stability , promises to pursue consultations with the different sectors of national life in order to hold
the elections as soon as possible " . Opposition politicians accuse President Martelly of wanting to rule by decree - a likely scenario if no elections are held before
the lower chamber ' s term runs out in January . The government argues that opposition politicians are also dragging their feet in the hope of extending their time in
office without elections . Thousands of Haitians marched in the capital Port - au - Prince on Sunday in protest at a delay in the country ' s [MASK] and municipal
elections .

Options: Local, Annual, Legislative, Municipal, Devastating

Figure 3: Explanation of a Correctly Classified Sample from Subtask-I (Imperceptibility). The correct option is
highlighted in green.

Model Variant Val Acc. Test Acc.
BERT FitB LF large 75.75% 75.06%

DistilBERT FitB LF base 68.10% 65.73%
BERT FitB ENS large 75.15% 77.28%

BERT FitB ENS LF large 75.87% 75.26%
BERT FitB EM large 76.58% 76.35%

BERT FitB EM LF large 76.82% 76.10%
BERT FitB VS large 76.58% 76.54%

BERT FitB VS LF large 76.82% 76.20%
BERT MC large 74.07% 73.76%

Table 2: Results and Ablation Study of the Improve-
ment Methods on Subtask-I0

In the future, we aspire to learn embeddings us-
ing these Linguistic Features as input to common
models such as Word2Vec (Mikolov et al., 2013).

For non-specificity, with the hypernym augmen-
tation method, BERT FitB achieves lower accuracy.
A possible reason for this could be that replacing
the nouns with their hypernyms in some contexts
changes the meaning of the sentence (even though
we use Lesk Algorithm for WSD, not all hyper-
nyms make sense). For example, the word “drink”
is replaced with “food”. For the hyponyms method,
we can improve our results by recursively gener-
ating hyponyms for a particular option, instead of
taking the immediate hyponyms. Again, threshold
tuning may help.

In Table 3, a positive sign for the Difference
Method or the Threshold Method is the improve-
ment in the results of BERT FitB Voting (Exact
Matching) when we consider the hyponyms. The
accuracy jumps from 72.86% to 75.79% on the dev
set and from 77.83% to 78.98% on the test set. This
reinforces our claim that with more careful tuning
of the threshold, we might get improvements on
the test set in other methods.

Model Variant Val Acc. Test Acc.
BERT FitB Hypo large 75.09% 72.83%

BERT FitB Hypr Aug large 62.26% 60.78%
BERT FitB Hypr Aug Hypo large 64.51% 55.52%

BERT FitB EM large 72.86% 77.83%
BERT FitB EM Hypo large 75.79% 78.98%

BERT FitB VS large 73.09% 77.59%
BERT FitB VS Hypo large 75.56% 78.63%

BERT MC large 71.33% 71.21%

Table 3: Results and Ablation Study of the Improve-
ment Methods on Subtask-II0

BERT FitB Voting performs better than vanilla
BERT FitB on both subtasks. This is intuitive since
in the latter, we truncate the article to 512 tokens
without any consideration of how much context
is lost. Voting, on the other hand, considers all
contexts and hence, gives a superior performance.

For GA-Reader-BERT, when compared with the
GA-Reader baseline, the accuracy improves from
21% to 39% on subtask-I dev set. Due to com-
putational restrictions, we couldn’t pretrain GA-
BERT, and only fine-tuned it for subtask-I to get an
idea about its performance, which was sub-optimal
(19%). The Answer-Attention system gave us a
dev score of ≈61% on subtask-I, which is much
higher than the baseline.

BERT-GSAMN-Cloze achieves ≈31% accuracy
on subtask-I dev set. The reasons for this could
be lack of pretraining, unlike the original paper, or
different way to getting the output logits. We see
improvement as we reduced number of layers to
1(≈38%) and to 0(≈73%). Hence, we discarded
this approach.

0LF=Linguistic Features, ENS=Ensemble, FitB=Fill-in-
the-Blank, EM=Exact Matching, VS=Voting (similarity),
MC=Max Context, Aug=Augmentation, Hypr=Hypernym,
Hypo=Hyponym
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The Royal College of Physicians of Edinburgh warned that being overweight may now be considered " the norm " . It claimed a tax would help fund the " spiralling
" healthcare costs associated with the problem . The British Soft Drinks Association ( BSDA ) insisted that the case is " not compelling " . It cited research which
suggested a 20 % tax would save just four calories per day . Liverpool University chair of clinical epidemiology , Simon Capewell , is due to speak at a conference
on the issue in Edinburgh later , entitled : " Obesity : A 21st Century Epidemic " . Professor Capewell will cite Mexico as one example where a 10 % sugary drinks
tax is believed to have contributed to a 10 % reduction in the consumption of such beverages while Finland , France , Hungary , Latvia and the USA have also
introduced sugar taxes . He said : " The revenues raised can then be invested back into initiatives to increase children ' s health in these countries , as is happening in
Mexico . " Scotland has an excellent track record in addressing public health issues . Notable achievements include smoke - free public places and proposals for
minimum unit pricing for alcohol . We need to explore how these developments could be repeated with sugary drinks . " Gavin Partington , BSDA director general ,
said : " The efforts by soft drinks companies including product reformulation , smaller pack sizes and increased promotion of low and no - calorie drinks have led to
a 7 % reduction in calories from soft drinks in the last three years . " It ' s also worth noting that politicians in Belgium and Denmark rejected the notion of a tax in
2013 and the experience in France shows that while sales of soft drinks initially fell after a tax was introduced in 2012 , they have increased since . " Doctors have
called for the introduction of a tax on sugary [MASK] and drinks to tackle what they describe as an " obesity epidemic " .

Options: Food ,Terms, Head, Unit, Snacks

Figure 4: Explanation of a Correctly Classified Sample from Subtask-II (Non-Specificity). The correct option is
highlighted in green.

Imperceptibility Non-Specificity
Model Test Acc. Model Test Acc.

BERT FitB 65.64% BERT FitB 61.83%
DistilBERT FitB 52.16% BERT FitB with Hyponyms 59.95%

DistilBERT FitB + Linguistic Features 51.61% BERT FitB with Hypernym Augmentation 45.98%
BERT FitB + Linguistic Features 65.54% BERT FitB Voting (Exact Matching) 62.27%

BERT FitB Ensemble + Linguistic Features 64.95% - -

Table 4: Submitted Results of Subtask-III: Testing the performance of a system that is trained on one subtask and
evaluated on the other.

4.3 Analysis of BERT FitB using Integrated
Gradients

We use the method of Integrated Gradients (Sun-
dararajan et al., 2017). We follow Ramnath et al.
(2020) to compute the word-wise attribution scores
for BERT FitB for both subtasks. We compute
the Integrated Gradients of the target with respect
to the embedding outputs. The Riemann Right
Approximation Method with nsteps = 25 is used.
After obtaining the token-wise attribution scores,
we obtain the word-wise attribution scores by using
token-to-word offset mapping. We pick the top-10
word-wise attribution scores and normalise them.
To implement IG, we use the Captum (Kokhlikyan
et al., 2020) library. In favour of brevity, we present
one example for each subtask.

In Fig. 3, the correct answer is “legislative”. The
attribution scores of words like senate, senators,
municipal and President are high, as is demon-
strated by the intensity of the colour. The word
“legislative” is, in a sense, more imperceptible than
any of the words mentioned above. The senate is
the legislative branch of the government, and sena-
tors are its members; municipal refers to municipal
corporations which are the grassroots governing
bodies, etc. Moreover, other words such as elec-
tions, political, country also have high attribution
scores. These words are related to “legislative”

which exhibits the fact that BERT FitB is not only
able to learn the concept of imperceptibility, but is
also able to predict a suitable word.

Similarly, in Fig. 4, the correct answer is “food”.
Note that “snacks” is also an option; however, food
is more non-specific than “snacks” and hence, food
is the correct option. Another interesting thing to
note is the high attribution scores for words/phrases
like calories, beverages, sugar and sugary drinks.
This backs the fact that the model is able to learn
the concept of non-specificity, i.e., the above men-
tioned words are essentially hyponyms of “food”.

5 Conclusion

We tried out myriad approaches, taking care to
not only focus on the architecture aspect, but also
how we can quantify imperceptibility and non-
specificity. Although we did not achieve favourable
improvements in all approaches, we did observe
gains in accuracy on the dev set. We reckon that
with more careful tuning of parameters such as the
threshold in the Difference Method, we will be able
to achieve these gains on the test set.

We further interpreted the outputs of
transformers-based models using Integrated
Gradients, and demonstrated that transformer
models are able to learn the concepts of impercep-
tibility and non-specificity. In the future, we intend
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to solidify our proposed approaches and carry out
further research in this interesting field.
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Abstract

This paper introduces our systems for all three
subtasks of SemEval-2021 Task 4: Reading
Comprehension of Abstract Meaning. To help
our model better represent and understand ab-
stract concepts in natural language, we well-
design many simple and effective approaches
adapted to the backbone model (RoBERTa).
Specifically, we formalize the subtasks into
the multiple-choice question answering format
and add special tokens to abstract concepts,
then, the final prediction of QA is considered
as the result of subtasks. Additionally, we em-
ploy many finetuning tricks to improve the per-
formance. Experimental results show that our
approach gains significant performance com-
pared with the baseline systems. Our system¶

achieves eighth rank (87.51%) and tenth rank
(89.64%) on the official blind test set of sub-
task 1 and subtask 2 respectively.

1 Introduction

The computer’s ability in understanding, represent-
ing, and expressing abstract meaning is a funda-
mental problem towards achieving true natural lan-
guage understanding. SemEval-2021 Task 4: Read-
ing Comprehension of Abstract Meaning (ReCAM)
provides a well-formed benchmark that aims to
study the machine’s ability in representing and un-
derstanding abstract concepts (Zheng et al., 2021).

The Reading Comprehension of Abstract Mean-
ing (ReCAM) task is divided into three subtasks,
including Imperceptibility, Nonspecificility, and
Interaction. Please refer to the task description
paper (Zheng et al., 2021) for more details. To
address the above challenges in ReCAM, we first
formalize all subtasks as a type of multiple-choice

§Corresponding author.
¶Our Code is publicly available at https://github.

com/indexfziq/IIE-NLP-Eyas-SemEval2021.

Question Answering (QA) task like (Xing et al.,
2020). Recently, the large Pre-trained Language
Models (PLMs), such as GPT-2 (Radford et al.,
2019), BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), demonstrate their excellent ability
in various natural language understanding tasks
(Wang et al., 2018; Zellers et al., 2018, 2019). So,
we employ the state-of-the-art PLM, RoBERTa, as
our backbone model. Moreover, we design many
simple and effective approaches to improve the per-
formance of the backbone model, such as adding
special tokens, sentence re-ranking, label smooth-
ing and back translation.

This paper describes approaches for all subtasks
developed by the IIE-NLP-Eyas Team (Natural
Language Processing group of Institute of Infor-
mation Engineering of the Chinese Academy of
Sciences). Our contributions are summarized as
the followings:

• We design many simple and effective ap-
proaches to improve the performance of the
PLMs on all three subtasks, such as special
tokens, sentence re-ranking, siamese encoders
and back translation and label smoothing;

• Experiments demonstrate that our proposed
methods achieve significant improvements
compared with baselines and we obtain the
8th-place in subtask-1 and the 10th-place in
subtask-2 on the final official evaluation.

2 Approaches

Since the format of the tasks in ReCAM is the same,
we use the unified framework to address all tasks.
The following is the detail of our methods.

Task Definition We first present the description
of symbols which are used in this paper. Formally,
suppose there are seven key elements in all sub-
tasks, i.e. {D,Q,A1, A2, A3, A4, A5}. We sup-
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pose the D denotes the given article, the Q denotes
the summary of the article with a placeholder, the
A∗ denotes the candidate abstract concepts for all
subtasks to fill in the placeholder.

Multi-Choice Based Model The pre-trained lan-
guage models have made a great contribution to
MRC tasks. Recently, a significant milestone is
the BERT (Devlin et al., 2019), which gets new
state-of-the-art results on eleven natural language
processing tasks. In this section, we present the
description of the multi-choice based model which
we use in all subtasks. Consider the BERT-style
model RoBERTa’s (Liu et al., 2019) stronger per-
formance than BERT, we utilize it as our backbone
model, which introduces more data and bigger mod-
els for better performance. A multiple-choice based
QA model M consists of a PLM encoder and a
task-specific classification layer which includes a
feed-forward neural network f(·) and a softmax
operation. For each pair of question-answer, the
calculation ofM is as follow:

scorei =
exp(f(Si))∑
i′ exp(f(Si′))

(1)

Si = PLM([Q;Ai;D]) (2)

where the [·] is the input constructed according to
the instruction of PLMs, and the S∗ is the final
hidden state of the first token (<s>). For more de-
tails, we refer to the original work of PLMs (Liu
et al., 2019). The candidate answer which owns a
higher score will be identified as the final predic-
tion. The modelM is trained end-to-end with the
cross-entropy objective function.

Special Tokens Considering the great perfor-
mance of special tokens in entity and relation ex-
traction (Zhong and Chen, 2021), as well as of the
prompt template on commonsense reasoning (Xing
et al., 2020), we attach special tokens to highlight
the semantic representation of candidate abstract
concepts in the input layer. To help the PLMs rep-
resent and understand the abstract concept (i.e. op-
tion word in ReCAM tasks) in textual description
(i.e. summary of the article in ReCAM task), we
use <e> and </e> to add on both ends of the ab-
stract concept, i.e. <e> abstract concept
</e>. It is interesting that the special tokens are
useful features contributing to most of the system’s
boost, and we have tried many other useful special
tokens which will be discussed in section 4.

Sentence Ranking As the given passage is too
long to be deal with the Pre-trained Language Mod-
els (PLMs), we consider refining the passage in-
put by rearranging the order of the sentences in
the passage. With this reorder process, the sen-
tence, which is more critical to the question, can
appear at the beginning of the passage. Although
the passage’s sequential information is sacrificed,
we keep the more question-relevant information
of the passage. Supposing the passage D contains
N sentences, i.e., D = {W1,W2, ...,WN}, where
each sentence Wn = {t1, t2, ..., tM} including M
tokens. We denote the given cloze-style question
as Q. To rank the sentences in D, we resort BERT
to compute the similarity score between each sen-
tence, i.e. Wn, and Q following the algorithm in
Zhang et al. (2020). After ranking, the sentences
in D are sorted in descending order of similarity
scores, and we can get a rearranged passage D̂ as
the passage input to the QA model. In the imple-
ment progress, D̂ will be truncated to fit into the
PLM encoder with our setting max length.

Siamese Encoders When exploring the dataset,
we find that the complete question statement, rep-
resenting the result statement after replacing the
placeholder token with the candidate option, also
contains the semantic information which can help
to make the judgment about options. Based on
the observation, we propose a siamese encoders
based architecture to inject the additional complete
question statement information while not influence
the input with passage. On the other hand, it can
be seen as introducing an auxiliary task to assist
the main task. Specifically, the training of siamese
encoder based architecture is as following:

l1i = PLM([Q̂i])[0] (3)

l2i = PLM([Q;Ai;D])[0] (4)

P 1(Ai|Q̂) = softmax(f(l1i )) (5)

P 2(Ai|D,Q) = softmax(f(l2i )) (6)

where the PLM(·) stands for PLM encoder, Q̂i
is the complete question statement, i indicates the
i-th candidate answer, f(·) is the feed forward net-
work. To coordinate the two losses, we opt for
an uncertainty loss (Kendall et al., 2018) to ad-
just it adaptively through σ{1,2} as: L(θ, σ1, σ2) =
1

2σ2
1
L1(θ)+ 1

2σ2
2
L2(θ)+ logσ21σ

2
2 , where L{1,2} are

the cross-entropy loss between the model predic-
tion P {1,2} and the ground truth label respectively.
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Back Translation Generally speaking, more suc-
cessful neural networks require a large number of
parameters, often in the millions. In order to make
the neural network implements correctly, a lot of
data is needed for training, but in actual situations,
there is not as much data as we thought. The role
of data augmentation includes two aspects. One
is to increase the amount of training data and im-
prove the generalization ability of the model. The
other is to increase the noise data and improve the
robustness of the model. A large number of the
works (Buslaev et al., 2018; Bloice et al., 2019;
Chen et al., 2020; Cubuk et al., 2020; Sato et al.,
2018; Zhu et al., 2020) consider the data augmen-
tation to make better performances. In the field
of computer vision, a lot of work (Buslaev et al.,
2018; Bloice et al., 2019; Chen et al., 2020; Cubuk
et al., 2020) uses existing data to perform opera-
tions, such as flipping, translation or rotation, to
create more data, so that neural networks have bet-
ter generalization effects. Adding Gaussian distri-
bution to text processing (Sato et al., 2018) can
also achieve the effect of data augmentation. Be-
sides, some works (Miyato et al., 2017; Zhu et al.,
2020) utilize the adversarial training methods to
do the data augmentation. For convenience and
simplicity, we adopt the back translation (Sennrich
et al., 2016) to increase the amount of training data,
which is used to construct pseudo parallel corpus
in unsupervised machine translation (Lample et al.,
2018). Specifically, we use the Google API† to
translate the passage into French, and then trans-
late the translation into English in turn. The pseudo
parallel corpus can be obtained as:

{D′} = bkt({D}) (7)

where {D′} means the translated English corpus
that we used as data agument, bkt is back transla-
tion.

As for the question, given the existence of the
special character placeholder, forced translation
may result in grammatical errors and semantic gaps.
Therefore, the questions and options will be kept
original. After getting the pseudo parallel corpus,
we train our model with the training data together
with the cross-entropy loss function.

Label Smoothing Furthermore, for improving
the generalization ability of the model trained on
sole task and prevent the overconfidence of model,

†The web page is available at https://translate.google.com

Subtask Train Trail Dev Test

Imperceptibility 3227 1000 837 2025
Nonspecificility 3318 1000 851 2017

Table 1: Data scale of each subtask.

Hyper-parameter Value

LR {1e-5, 2e-5}
Batch size {16, 32}
Gradient norm 1.0
Warm-up {0.1, 1, 2}
Max. input length (# subwords) 200
Epochs [3, 10]

Table 2: Hyper-parameters of our approach.

we consider training model with label smoothing
(Miller et al., 1996; Pereyra et al., 2017). Label
smoothing can maintain uncertainty over the la-
bel space during training. When training with label
smoothing, for classification tasks, the hard one-hot
label distribution is replaced with a softened label
distribution through a smoothing value α, which
is a hyperparameter. Specifically, for hard one-hot
label distribution, the target category’s probability
will be assigned to 1.0 and others are 0.0. Label
smoothing will soften the label distribution by mod-
ifying the probability distribution with a discount.
Then, the target category’s probability will be 1−α,
and the probabilities of the rest categories are α

K−1 ,
where K is the number of task categories. In our
experiments, we set the smoothing value α = 0.1.

3 Experiments and Results

3.1 Experimental Setup
In all subtasks, the scale of each task is shown in
Table 1. We train the model on training data and
the related pseudo data generated by back transla-
tion, then select hyper-parameters based on the best
performing model on the dev set, and then report
results on the test set.

Our system is implemented with PyTorch and we
use the PyTorch version of the pre-trained language
models‡. We employ RoBERTa (Liu et al., 2019)
large model as our PLM encoder in Equation 2. The
Adam optimizer (Kingma and Ba, 2014) is used
to fine-tune the model. We introduce the detailed
setup of the best model on the development dataset.
For subtask-1 and subtask-2, the hyper-parameters
are shown in Table 2.

‡https://github.com/huggingface/transformers
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Models Trial Acc. Dev Acc.

ROBERTALARGE(Liu et al., 2019) 85.85 82.12
(1) w/ special tokens 87.81 87.69
(2) w/ sentence ranking 86.54 83.52
(3) w/ label smoothing 86.88 85.85
(4) w/ siamese encoders 86.62 83.22
(5) w/ back translation 87.23 84.32

Our Approach 87.81 87.69

Table 3: The results of our system on subtask-1.
Our approach is the final, stable and best model:
ROBERTALARGE with special tokens. We finally obtain
87.51 Acc. on the official blind test set.

Models Trial Acc. Dev Acc.

ROBERTALARGE(Liu et al., 2019) 88.51 85.93
(1) w/ special tokens 87.47 88.98
(2) w/ sentence ranking 87.29 86.84
(3) w/ label smoothing 87.67 87.08
(4) w/ siamese encoders 87.34 86.18
(5) w/ back translation 88.41 87.54

Our Approach 87.10 89.54

Table 4: The results of our system on subtask-2.
Our approach is the final, stable and best model:
ROBERTALARGE with special tokens and label smooth-
ing. We finally obtain 89.64 Acc. on the official blind
test set.

3.2 Evaluation Results

Imperceptibility From Table 3, we can see the
results of our system on subtask-1 of ReCAM.
Compared to the backbone model RoBERTa large
model, our methods achieve significant improve-
ments. It is interesting that the special token is the
most helpful part for the Imperceptibility subtask.

Nonspecificility Table 4 summarizes the results
of our approachs on subtask-2 of ReCAM. In Non-
specificility subtask, the model with special tokens
and label smoothing performs best. Compared to
the backbone model ROBERTALARGE, all our meth-
ods achieve better performance.

Interaction We also perform subtask-3 of Re-
CAM, Interaction, which aims to provide more
insights into the relationship of the two views on
abstractness. In this task, we test the performance
of our system that is trained on one definition and
evaluated on the other. The results of our system’s
performance on Imperceptibility and Nonspecifi-
cility subtasks which is shown in Table 5. We can
find that our model is relatively robust for different
abstract concepts.

Trained on Tested on Test Acc.

Subtask-1 Subtask-1 87.51
Subtask-1 Subtask-2 84.13
Subtask-2 Subtask-2 89.64
Subtask-2 Subtask-1 81.09

Table 5: The results of our approach on subtask-3.

Special Token Trial Acc. Dev Acc.

<e> </e> 88.01 87.10
<#> </#> 88.63 86.93
<$> </$> 88.12 86.26
# /# 87.34 85.89
$ /$ 87.73 86.13

N/A 86.23 83.12

Table 6: The results of models with different special
tokens on subtask-1.

4 Analysis and Discussion

4.1 Ablation Study

In this part, we perform an ablation study of our ap-
proaches (special tokens, sentence re-ranking, label
smoothing, siamese encoders and back translation).

Table 3 and 4 shows that our proposed meth-
ods help the backbone model better represent and
understand the abstract concepts. Note that the
special tokens bring the PLMs with the best im-
provements in both subtask-1 and subtask-2. It is
possible that the special tokens teach the model to
focus on the abstract concept in a stronger manner.
Moreover, other common tricks bring with little
improvements.

4.2 Discussion of Special Tokens

We also search for the best special tokens for Re-
CAM on the dev set of subtask-1. e stands for
the word entity. # and $ are common special
tokens for NLP downstream applications.

As shown in Table 6, <e> </e> enhance the
representations of abstract concepts best of all. #
and $ work well. In addition, the <> and </>
could be helpful for PLMs to pay attention to the
abstract concepts. Moreover, it is interesting that
each special token helps PLMs choose the right
abstract concepts which are submerged in long se-
quential tokens (including article and summary).
This result strengthen the point that special tokens
can enhance the representation of abstract concepts
in PLM based approaches.
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5 Conclusion

In this paper, we design many simple and effec-
tive approaches to improve the performance of the
PLMs on all three subtasks. Experiments demon-
strate that the proposed methods achieve significant
improvement compared with the PLMs baseline
and we obtain the eighth-place in subtask-1 and
tenth-place in subtask-2 on the final official evalu-
ation. Moreover, we show that special tokens are
useful features contributing to most of the system’s
boost, which work well in enhancing PLMs for rep-
resentating and understanding abstract concepts.
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Abstract
This paper presents a technical report of our
submission to the 4th task of SemEval-2021,
titled: Reading Comprehension of Abstract
Meaning. In this task, we want to predict
the correct answer based on a question given
a context. Usually, contexts are very lengthy
and require a large receptive field from the
model. Thus, common contextualized lan-
guage models like BERT miss fine representa-
tion and performance due to the limited capac-
ity of the input tokens. To tackle this problem,
we used the longformer model to better pro-
cess the sequences. Furthermore, we utilized
the method proposed in the longformer bench-
mark on wikihop dataset which improved the
accuracy on our task data from (23.01% and
22.95%) achieved by the baselines for subtask
1 and 2, respectively, to (70.30% and 64.38%).

1 Introduction

Reading comprehension is the ability to understand
a passage either by human or machine. One of the
great benchmarks to evaluate this ability is to try
to answer specific questions related to the passage
(Rajpurkar et al., 2016). Generally, this problem
can contain single or multiple documents as con-
text (containing relevant information needed to un-
derstand and answer the question), a question (a
sentence with at least one asking parameter), and
an answer (which is the parameter value of the
question).

In the Task of Reading Comprehension of Ab-
stract Meaning (ReCAM), we have one passage as
a context, one question and five candidate answers
(Zheng et al., 2021). The goal is to identify the
correct answer based on the context and the given
question. You can see a sample of the data in Table
1. For each instance of the data, there is a passage,
a question with a missing word that should be filled
based on the passage, and five candidate answers
to the question.

Passage ... observers have even named it af-
ter him, “Abenomics”. It is based on
three key pillars - the “three arrows”
of monetary policy, fiscal stimulus
and structural reforms in order to
ensure long-term sustainable growth
in the world’s third-largest economy.
In this weekend’s upper house elec-
tions ...

Question Abenomics: The @Placeholder and
the risks

Answer (A) chances (B) prospective (C)
security (D) objectives (E) threats

Table 1: An instance of the data.

The task divides into two subtasks: impercepti-
bility and non-specificity(Zheng et al., 2021).

• imperceptibility: this level of abstract words
refers to ideas and concepts that are distant
from immediate perception; such as culture,
economics, and politics.

• non-specificity: In contrast to concrete words,
this subtask includes more abstract words
which focus on a different type of definition;
for example, a concrete word like ‘cow‘ could
be interpreted as an ‘animal‘ which is con-
sidered as a more abstract word (Changizi,
2008).

The main challenges of this task are the abstract
meaning concept representation as well as the ma-
chine reading comprehension. This is the main
reason we have utilized contextualized language
representation models to tackle abstract meaning
representation problems.

In this paper, we use an end-to-end deep con-
textualized architecture to model this task. This
model is also capable of considering more than
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one passage as the context, and more than five
candidate answers. Since we use the long doc-
ument transformer model (Longformer (Beltagy
et al., 2020)), no limitation is considered in con-
text passage length. We have evaluated this model
both on subtask-1 and subtask-2 which resulted in
70% and 64% accuracy, respectively. Therefore,
we have about 40% improvement compared to the
baseline, which is a Gated Attention (GA) model
(Zheng et al., 2021).

The rest of the paper is as follows: Section 2
describes the related works and the background.
Section 3 includes the description of the proposed
method. Section 4 contains the evaluation metrics
used as well as a brief discussion, which is then fol-
lowed by a conclusion and future works in section
5.

2 Background and Related Works

Many approaches have been presented in the liter-
ature, from pipeline-based models to end-to-end
ones. Each module is also well-investigated from
rule-based models to deep learning ones. Despite
various configurations presented in the literature to
model this problem, most of the systems consist of
three modules(Baradaran et al., 2020):

• Language representation: this module is re-
sponsible to encode the inputs. Context, ques-
tion, and answer need to be represented as
numeric values for computational algorithms
to be usable on them. Dense vectorized rep-
resentations are the most popular methods,
which allow us to use the majority of machine
learning algorithms.

• Reasoning: this module is used to find demon-
strations of why the answer is assumed to
be valid. It can also be used as a limiter for
searchable context.

• Prediction: this module aims to generate, re-
trieve or select the correct answer based on
the task description.

Recent studies are provided as follows with re-
spect to these modules that the last two modules
have been merged. In the end, the longformer
model is presented as our mainstay in this paper.

2.1 Word and text representation
One of the most important problems in NLP is rep-
resentation learning. The earliest models for word

representation in the time of deep learning were the
models proposed in (Pennington et al., 2014) and
(Mikolov et al., 2013), which utilized the weights
learned for an auxiliary task (a simplified version
of the task of language modeling) for word repre-
sentation. Similarly, methods proposed in (Le and
Mikolov, 2014) and (Liu et al., 2015) utilized a sim-
ilar structure for sentence, paragraph, or document
representation learning.

While these methods were quite effective, it has
been shown that using neural language models as a
way of word representation results in much better,
and context-aware representations. In (Howard and
Ruder, 2018) it has been shown that fine-tuning
language models as sentence encoders result in a
significant performance improvement. At the same
time, (Peters et al., 2018) used language models
directly as word representations, which resulted in
significant improvements. In (Devlin et al., 2018)
a transformer model was trained for the task of
masked language models, which resulted in sig-
nificant improvements, surpassing human perfor-
mance in many NLP tasks. One of the shortcom-
ings of transformers is the lack of a memory mech-
anism, which results in (theoretically) lower recep-
tive field compared with LSTMs (Beltagy et al.,
2020) this shortcoming was addressed by improv-
ing the self attention mechanism in transformers
so that it would have a (theoretically) unbounded
receptive field. More details are presented later in
this section.

2.2 Natural language understanding
Natural language understanding (NLU) is an um-
brella term, referring to any tasks that require ma-
chine comprehension. Compared to other NLP
tasks, NLU requires the model to be able to under-
stand and reason about the data (Semaan, 2012).
While great progress has been made in this field by
using contextual word representation (Devlin et al.,
2018), it has been found that designing the model
itself must not be neglected (Zhu et al., 2018). On
the other hand, it has been shown that utilizing
a transfer learning setting to share knowledge be-
tween different NLU tasks results in better per-
formance with fewer data and fewer parameters
(Pilault et al., 2020), which proves a significant
similarity between these tasks.

2.3 The Longformer
Deep contextualized language models like
BERT(Devlin et al., 2019) have been well investi-
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gated in the literature and achieved state-of-the-art
results on various tasks. However, these models
suffer from performance limitations due to their
self-attention layer which results in quadratic space
and time complexity concerning the sequence
length. In contrast, this model removes the
self-attention layer from the base language models,
so the limitation resolves and the complexity scales
to linear. In order to increase the quality of the
model compared to basic models, they have added
a global attention layer to the model end which
significantly outperforms state-of-the-art models
on long document (passage) tasks and competitive
on normal documents. Also, this configuration
increases the performance on both normal and
lengthy inputs which makes it a good alternative
for tasks containing large inputs. This model
is also evaluated on a similar task on WikiHop
dataset(Welbl et al., 2018) and improved the results
in terms of accuracy(Beltagy et al., 2020).

3 Method

As mentioned in section 1, given a passage, a ques-
tion, and a set of answers to the question, the goal
is to predict the correct answer among the candi-
dates, which can be seen as a benchmark to evaluate
how well the model can comprehend the abstract
meaning. To do so, we considered an end-to-end
deep learning architecture based on the transformer
architecture.

Specifically, we used contextual word embed-
dings based on the transformer to better discover
and encode the information contained in the pas-
sage. In our model, both subtasks use the same ar-
chitecture as shown in figure 1, although we did not
experiment on the possibility of multi-task learning.
The word representation models are fine-tuned on
the data for better performance. The fine-tuning
procedure could allow us to extract additional, task-
related information which could result in better
accuracy in the evaluation phase.

To model this problem, let c = {c1, c2, ..., cI}
denote the passage as the context, where ci corre-
sponds to the ith token (word or subword, depend-
ing on the tokenization technique used) and I is
the number of tokens in the passage. Similarly,
the question is considered as q = {q1, q2, ..., qK}
where K denotes the length of the question, and
qk corresponds to the kth token of the question.
Each answer also denotes as ej which is only one
abstract word (j ∈ {1, 2, ..., 5}). Then we concate-

nate the question and the candidates as:

a = [q; e1; e2; ...; e5]. (1)

The size of this sequence is A = K + 5 as we
have only 5 candidates. Generally, this can be an
arbitrary length based on the dataset.

Note that we introduce special tokens to sepa-
rate the context, the question, and the candidates,
similar to (Beltagy et al., 2020). Specifically, we
introduce the tokens <s> and </s> for separating
the context, <q> and </q> for separating the the
question, and the tokens <ent> and </ent> for
separating the candidates from each other. In the
case of multiple passages, all passages are concate-
nated to form a single context. These tokens are
randomly initialized and fine-tuned.

We used the Longformer model introduced in
(Beltagy et al., 2020) as the pre-trained contex-
tual embedding model in our method. Since the
context could be too long, we split the context se-
quence to separate chunks. Each chunk length
is equal to maximum sequence length the model
could accept appending the sequence a; in fact,
model max length = len(chunk)+len(a). If cl

denote each chunk, this sequence could be showed
as:

b = [cl; a] (2)

where the full context is c = {c1, c2, ..., cL}, and
L is the last chunk. The size of this sequence is B
so B = L+A.

After feeding the input b to the Longformer
model, we apply a global attention only on a (con-
catenated question and answer candidates), and
the rest is the context. As the longformer model
utilizes a base model (like RoBERTa without the
self-attention layer, in our case), we denote this
as basemodel function that outputs the encoded
sequence of the input. If GAttn denotes the global
attention function, we have:

di = basemodel(b) (3)

gi = GAttn(di).1(i ∈ A) (4)

where di is the raw output vector for each input
token. The global attention function is applied if it
is a question or answer candidate token. Then, we
extract the outputs corresponding to the question
and the candidates tokens, i.e. we have:

hj = GAttn(a, cl) (5)
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Figure 1: The model architecture. The concatenated input vector will be encoded using the base model (like
RoBERTa without the self-attention layer, in our case). A global attention(Luong et al., 2015) will be applied to
the question and the candidate answers representations with respect to the passage as the context. The logit (score)
of each ent token will be calculated using a linear transformation function, then the prediction distribution over the
answer candidates (ent tokens) will be outputted using a softmax layer.

Finally, we obtain the logit of each candidate
(<ent> tokens) as xj (xj = hj if j correspond to
a candidate), average over different chunks, and
apply a linear transformation:

fj = vTxj (6)

where the vector v is trainable, and fj is the score
of each candidate. And the probability distribution
over the candidates will be calculated using a soft-
max layer on the logits. The predicted answer is
the argmax of the softmax output. we fine-tuned
the model using the cross-entropy loss.

4 Evaluation

Although we only participated in the second sub-
task, we will evaluate our model on both subtasks
here. We will explain our configurations for utiliz-
ing the model on the task as well as other baselines
which are the BERT-base as an alternative model
and the Gate-Attention (GA) as our task baseline.
Finally, a brief discussion will be done based on
the results.

4.1 Metrics

Popular metrics to evaluate these models are F1,
EM (Exact Match or accuracy), and MRR (Mean

Reciprocal Rank). As the precision and recall in
our task are equal, so F1 = Precision = Recall. Also,
F1 and EM are the same. And, the use of MRR is
optional, so the metrics used to evaluate the result
are the accuracy and the F1.

4.2 Baseline configuration

The baseline model (GA) is trained for 30 epochs,
each epoch containing 101 mini-batches. The train
batch size is set to 32. Dropout with the rate of
0.5 is also applied to the hidden states, and the
learning rate is set to 0.001. The dimensionality of
the GloVe embedding is 300, and the hidden size
is set to 128. Training and evaluation take about 2
hours on a single v100 GPU.

4.3 BERT configuration

We use the same configuration as our method ex-
cept for the global attention mechanism. In fact,
we consider the output vector of each chunk as our
final vector to be linearly transformed into single
logit, followed by a softmax layer using the cross-
entropy loss. Similarly, the logit is averaged over
different chunks, before applying the linear trans-
formation. Note that the maximum sequence length
here is bounded to 512 tokens, and the model in-
cludes the n2 attention mechanism. We use the
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Metrics Baseline(GA) BERT Our Method
Accuracy 23.01% 63.43% 70.30%
Macro Avg F1 22.83% 63.38% 70.23%
Weighted Avg F1 22.76% 63.40% 70.27%

Table 2: Subtask1 evaluation metrics on the test set

Metrics Baseline(GA) BERT Our Method
Accuracy 22.95% 58.76% 64.38%
Macro Avg F1 22.42% 58.72% 64.35%
Weighted Avg F1 22.45% 58.75% 64.40%

Table 3: Subtask-2 evaluation metrics on the test set

base version of the model and fine-tuned it on each
subtask.

4.4 Our method configuration

We used the same model introduced in section 3 for
both subtasks. The model was initialized using the
Longformer-base pre-training weights, then fine-
tuned in each of the subtasks. Due to the perfor-
mance issues, the model max sequence length is set
to 4096 tokens which are sufficient in our case. We
also used the RoBERTa-large tokenizer to tokenize
the input sequence as the Longformer model has
been trained on using this configuration. We used
a batch size of 32 and a maximum learning rate of
3e-5 using the Adam optimizer with beta2=0.98.
We then assumed the validation check interval to
250 which indicates the number of gradient updates
between checking validation loss. And a weight
decay of 0.01 has been considered to regularize the
model and avoid overfitting.

Our proposed model is trained for 15 epochs for
each task. Fine-tuning the model takes about six
hours, and inference takes about nine seconds for
each sample on a single V100 GPU.

4.5 Evaluation od Subtask 1

Subtask1 measures imperceptibility abstract level
of language understanding. This subtask includes
3227 training samples, 837 validation samples, and
2025 test samples. The size of the biggest sample
in terms of context length is about 2000 tokens. We
have achieved an accuracy of 70% on the valida-
tion set, which improves our baseline by about 40
percent. Table 2 showed the results of this subtask.

4.6 Evaluation on Subtask 2

Subtask2 measures the non-specificity level of ab-
stract meaning in reading comprehension. It in-

cludes 3318 training samples, 851 validation sam-
ples, and 2017 test samples. The best accuracy
on the validation set is 64%. Table 3 showed the
results of this subtask.

4.7 Discussion

We used two baselines to find out the effect of us-
ing a pre-trained model rather than a simple RNN
model. Although this task offers a higher level of
representation, using the pre-train models is help-
ful, and there is a higher chance of modeling such
abstract concepts.

The results on subtask2 are weaker than subtask1
in pre-trained models. This can be the consequence
of limited semantic representation for abstract word
which indicates the subtask2 includes more abstract
words in terms of abstract level; for example, the
word ’animal’ could be matched to any animal, like
’cat’ or ’dog’, but the word ’entity’ is hard to be
represented as it could be matched to a large num-
ber of words. And the model faces a limitation in
the knowledge representation. Another assumption
could be the data enrichment that these model has
been trained on. As most of the available texts
for training consist of concrete words, it is more
likely to leverage the language understanding to
less abstract words to achieve a better result.

Comparing our method which is based on long-
former model to usual language models like BERT
indicates a new insight in terms of passage length
and the attention mechanism. Popular language
models like BERT and RoBERTa use a n2 attention
which requires a large receptive field to represent
long passages. This results in the performance lim-
itation which bounds the input sequence up to 512
tokens. In contrast, the longformer global atten-
tion mechanism relaxes this limitation as we only
need to pay attention to a small factor of context
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and more focus on the local window. So the recep-
tive field will not overflow and saves the necessary
information to better represent the language.

We have analyzed the errors that mostly affect
our model performance. We think that the prob-
lem is the contextual representation of the language
modeling, which is not well-suited in our method
i.e. concatenating the context, question, and answer.
The main disadvantage of concatenating the candi-
date answers to each other is the missing fine con-
textual representation as the state-of-the-art models
consume the position embedding. Additionally, in-
correct candidates register additional noise to each
word representation as well as the placeholder in
the question.

5 Conclusion and Future works

We have shown how different approaches can be
leveraged to machine reading comprehension of
abstract meaning. We reformulated the longformer
model to learn abstract meaning as a new level of
semantic in machine reading comprehension. This
method can also be improved by taking advantage
of external knowledge and task-specific model ar-
chitectures that optimize the current baseline.
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Abstract

In this work, we present our approach and
findings for SemEval-2021 Task 5 - Toxic
Spans Detection. The task’s main aim was
to identify spans to which a given text’s tox-
icity could be attributed. The task is chal-
lenging mainly due to two constraints: the
small training dataset and imbalanced class
distribution. Our paper investigates two tech-
niques, semi-supervised learning and learn-
ing with Self-Adjusting Dice Loss, for tack-
ling these challenges. Our submitted system
(ranked ninth on the leader board) consisted
of an ensemble of various pre-trained Trans-
former Language Models trained using either
of the above-proposed techniques.

1 Introduction

Content moderation has become the topic of most
conversations regarding social media platforms.
However, with over 4 billion active internet users,
it is impossible to moderate each piece of message
generated online manually. Therefore, the focus
is now shifting towards tackling the issue using
machine learning methods.

Various toxicity detection datasets (Wulczyn
et al., 2017; Borkan et al., 2019) and models
(Pavlopoulos et al., 2017; Liu et al., 2019; Seganti
et al., 2019) have been successfully developed over
the years to tackle the issue of moderation. How-
ever, these have mostly focused on identifying
whole comments or documents as either toxic or
not. In semi-automated settings, a model merely
generating a toxicity score for each comment, some
of which can be very lengthy, is not of much help
to human moderators. To tackle this issue, the Se-
mEval 2021 Task 5 : Toxic Spans Detection is intro-
duced (Pavlopoulos et al., 2021). The task involves
identifying text spans in a given toxic post that con-
tributes towards the toxicity of that post. The task
aims to promote the development of a system that

would augment human moderators by giving them
more insights into what actually contributes to the
text’s toxicity.

The task is challenging mainly due to the follow-
ing reasons: a) small size of the dataset b) character-
istics of text samples extracted from social media
leading to difficulties such as out-of-vocabulary
words and ungrammatical sentences c) class im-
balance in the dataset d) inconsistencies in data
annotations. We approached this task as a sub-
token level sequence labeling task. Fine-tuned pre-
trained transformer language models (Qiu et al.,
2020) are the backbone of all our approaches. We
investigated two main techniques to enhance the re-
sults of the fine-tuned transformer models, namely
Semi-Supervised Learning (Yarowsky, 1995; Liu
et al., 2011) and fine-tuning with Self-Adjusting
Dice Loss (Li et al., 2020). This paper reports the
results of our experiments with these different tech-
niques and pre-trained transformer models. Our
submitted system consisted of an ensemble of dif-
ferent pre-trained transformer models and achieved
an F1 score of 0.6895 on the test set and secured
9th position on the task leaderboard. All of our
code is made publicly available on Github1.

The rest of this paper is organized as follows.
Section 2 discusses the previous works in the fields
of offensive language detection and span identifi-
cation. Section 3 describes the dataset. Section 4
explains the proposed approaches. Section 5 re-
ports the results of various experiments with the
proposed approaches, and section 6 analyzes the
proposed approaches via ablation studies. We con-
clude with an error analysis of our model perfor-
mance in section 7 and concluding remarks in sec-
tion 8.

1https://github.com/architb1703/Toxic_
Span
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2 Related Work

As the task involves detecting toxic spans in a text,
we present the related work in two parts: (i) Offen-
sive Language Detection and (ii) Span Identifica-
tion.

Offensive Language Detection: Research
work has been done on different abusive and of-
fensive language identification problems, rang-
ing from aggression (Kumar et al., 2018) to hate
speech (Davidson et al., 2017), toxic comments
(Saif et al., 2018), and offensive language (Laud
et al., 2020; Pitsilis et al., 2018). Recent contribu-
tions to offensive language detection came from the
SemEval-2019 Task 6 OffensEval (Zampieri et al.,
2019). The task organizers concluded that most
top-performing teams either used BERT (Liu et al.,
2019) or an ensemble model to achieve SOTA re-
sults. Interestingly, the task of locating toxic spans
is relatively novel, and its successful completion
can be groundbreaking. A recent approach with a
narrower scope is by Mathew et al. (2020), who
focused on the rationality of decision in the task of
hate speech detection.

Span Identification: Span detec-
tion/identification tasks include numerous
tasks like named entity recognition (NER) (Nadeau
and Sekine, 2007), chunking (Sang and Buchholz,
2000) and keyphrase detection (Augenstein et al.,
2017). (Papay et al., 2020) analyzed the span
identification tasks via performance prediction
over various neural architectures and showed that
the presence of BERT component in the model
is the highest positive predictor for these tasks.
Inspired by this observation, we have built our
model based on the transformer architecture,
further exploiting the benefits of semi-supervised
learning and modified Dice Loss.

3 Dataset

3.1 Data Description

The competition dataset comprises around 10K
comments extracted from the Civil Comments
Dataset and annotated using crowd-raters. The or-
ganizers released the dataset in 3 phases: trial, train,
and test. The trial dataset consisted of 690 texts,
whereas the training dataset consisted of 7939 texts.
Moreover, the test set on which our system was fi-
nally evaluated consisted of 2000 text samples.

In the initial stages of the competition, we de-
cided to use only the training dataset to build upon

our approaches. We further split the training set
into train, dev, and test sets for evaluation purposes
using an 80:10:10 split (Div A). Once we tested and
finalized our approaches, we combined the train
and test set of Div A with the trial set as our final
training set (Div B). Due to the small size of the
dataset, these additions to the training set of Div
A will positively impact the model performance.
However, to ensure that we could compare our final
models with our previous results, we transfer the
dev set directly to Div B. Further details regarding
the constitution of these splits is provided in the
Appendix A.

3.2 Pre-processing

Tokenization: For the sake of preserving the to-
ken spans, we first tokenized our data and then per-
formed data cleaning. For tokenizing, we used the
NLTK TreebankWord Tokenizer2, which is a rule-
based tokenizer that tokenizes text on spaces and
punctuation, hence preserving the original form of
the words.

Data Cleaning: We then cleaned each token
using different operations such as expanding con-
tractions and removing digits and full stops.

4 Proposed Approach

4.1 Methodology

Pre-trained transformer models built using the
transformer architecture (Vaswani et al., 2017) have
been able to achieve, via transfer learning tech-
niques, SOTA performance for most NLP tasks in
recent times. We fine-tuned pre-trained transformer
models with linear classifier head for performing
sequence labeling for this task, which meant per-
forming subtoken-level classification (Fig.1a). Our
baseline model used the pre-trained BERT-Base-
Cased model, fine-tuned with cross-entropy loss
and AdamW optimizer. The different hyperparam-
eter values used for training the baseline and all
subsequent models are reported in the Appendix B
to facilitate replication of results. Subsequently, we
improved upon this baseline using two techniques,
semi-supervised learning and Self Adjusting Dice
Loss. Along with this, we fine-tuned multiple
different transformer models like BERT(Devlin
et al., 2019), Electra(Clark et al., 2020), Distil-
BERT(Sanh et al., 2020), and XLNet(Yang et al.,

2https://www.nltk.org/_modules/nltk/
tokenize/treebank.html
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2020) for our Dice-Loss Approach and found differ-
ences in the predictions of the different transformer
models to be beneficial for the final ensemble.

Self Adjusting Dice Loss One of the main is-
sues with our dataset was that of class imbalance.
For the sub-tokens derived from the BERT-Base-
Cased tokenizer, the ratio of toxic to non-toxic sub-
tokens was 1:10.16. However, we could not tackle
this issue with over/under-sampling due to the na-
ture of our problem, and training with a weighted
cross-entropy loss function did not improve results.
Therefore, we experimented with training with the
Self-Adjusting Dice Loss (Li et al., 2020) which
was proposed as an objective function for dealing
with imbalanced datasets in NLP. The original dice
coefficient is an F1-oriented statistic used to gauge
the similarity of two sets. The paper proposed a
loss function based on a modified dice coefficient,
which they reported to achieve a better F1 score
than models trained with cross-entropy loss.

DL = 1− 2(1− pi1)α(pi1).yi1 + γ

(1− pi1)α(pi1) + yi1 + γ

Here, for the ith training instance, pi1 is the pre-
dicted probability of positive class and yi1 is the
ground truth label. The loss function also has
two hyperparameters, alpha and gamma, which
we tuned for our models.

Semi-Supervised Learning The Civil Com-
ments Dataset from which our training data was
extracted consists of over 1 million comments; how-
ever, due to annotation constraints, the training
set only had 7000 data samples. (Shams, 2014)

have shown that for text classification tasks, unla-
belled data from a suitable data source could be
used to train semi-supervised models that achieve
better results than a model trained using supervised
learning. Also, (Jurkiewicz et al., 2020) showed
that the semi-supervised learning technique of self-
training could improve performance on span iden-
tification tasks. Hence, we extracted 40000 toxic
samples from the Civil Comments Dataset, which
were labeled with a toxicity score of 0.7 or higher,
and used these to perform four iterations of semi-
supervised model training (Fig. 1b). We exhaus-
tively divided the unlabelled samples into four
batches of 10000 each and used each batch for
exactly one iteration. As shown in Fig. 1b, for
each iteration, pseudo labels were predicted for
the complete batch using the model trained in the
previous iteration, then these pseudo-labels along
with the ground truth training labels were used to
train the next model. For this approach, we only
fine-tuned one transformer model, namely the pre-
trained BERT-Base-Cased model.

4.2 Post-preprocessing

After obtaining the sub-token level labels from our
model, we post-processed the results to convert
them into an array of toxic character offsets. To
perform this, we had mapped each sub-token to
its offset span during tokenization and used that to
retrieve the offsets of all the characters in the toxic
sub-tokens. We also include all characters lying
between two consecutive sub-tokens if both the
sub-tokens are marked toxic. This was necessary
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as spaces and punctuation were included in the
toxic spans given by the annotators, as shown by
the results in section 6.

5 Experiments and Results

The competition used the span level F1 score, cal-
culated individually for each text sample from its
character offsets and averaged over all the text sam-
ples, as the metric to evaluate system performance.
We decided to use this metric for hyperparameter
tuning and reporting the final results. However, dur-
ing the training process, the models were checked
for overfitting using the token level F1 score, which
was also a good indicator of model performance
as our training approach was that of a sequence
labeling task.

The first set of experiments we performed were
on the Div-A dataset. Our baseline model achieved
an F1 score of 0.669 on the dev split on this set.
The organizers also released a baseline model, con-
sisting of a Spacy statistical model trained on the
competition training dataset and evaluated on the
competition trial dataset. The organizer’s baseline
achieved an F1 score of 0.600 on the trial dataset.
This score was significantly lower than that of our
baseline model, and therefore we use our baseline
model only to compare the performance of our sub-
sequent models.

We then fine-tuned a BERT-Base-Cased model
with the Self-Adjusting Dice Loss and AdamW
optimizer and tuned the loss function’s two hy-
perparameters. The scores we obtained for the
different hyperparameter values are reported in Ta-
ble 9 in Appendix C. We got our best performing
model with the hyperparameter values alpha-0.7
and gamma-0.25, achieving an F1 score of 0.6725
on the dev split.

Model Dev F1 Score
BERT-Base-Cased 0.669

SSL Iteration-1 0.6837
SSL Iteration-2 0.6842
SSL Iteration-3 0.6882
SSl Iteration-4 0.6893

Table 1: Results for Semi-Supervised learning model

Next, we trained the BERT-Base-Cased model
on the semi-supervised learning paradigm with
cross-entropy loss and AdamW optimizer. For
the first iteration, we used our baseline model to
compute the pseudo labels. The model achieved

improved results with each iteration (Table 1), and
our final model was scoring 0.6893 on the dev split.

To end this stage of experimentation, we com-
puted the results on the test split of the Div-A
dataset. We were able to make two inferences.
Firstly the semi-supervised learning model had the
best performance with an F1 score of 0.6774 on the
test set but had a significantly worse score than it
had on the dev set. Secondly, the dice loss trained
model performed significantly better than the cross-
entropy trained baseline with an F1 score of 0.662
compared to 0.648.

After this, we changed to the Div-B dataset and
trained multiple different transformer models with
the Self Adjusting Dice Loss. We found that the
BERT-Base-Cased, Electra-Small, Electra-Base,
and DistilBert-Base-Uncased models had peak per-
formance for the hyperparameter values alpha-0.7
and gamma-0.25. However, for the XLNet-Base
model, peak performance was achieved for alpha-
0.4 and gamma-0.25. On further experimentation
with these models, we also found that adding a
full stop to the text samples during evaluation pro-
vided consistently better results on the dev set. The
results obtained have been reported in Table 2.

Model WFS FS
BERT-Base-Cased 0.6754 0.6827

Electra-Small 0.6813 0.6861
Electra-Base 0.6776 0.6846

DistilBERT-Base-Unc. 0.6749 0.6773
XLNet-Base 0.6798 0.6852

SSl Iteration-4 0.6893 0.6932

Table 2: Effect of full stop on dev set during evaluation.
Here WFS and FS represent without full stop and with
full stop resp.

The final results of models trained either on mod-
ified Dice Loss or using Semi-Supervised learning,
with full stop added during evaluation, are reported
on the Div-B dev split and the competition test set
in Table 3.

6 Ablation Study

After the competition, we wanted to study the effect
of our different preprocessing and postprocessing
techniques. We employ three main data cleaning
techniques during our preprocessing, expanding
contractions, removing numbers, and removing full
stops. To study each particular technique’s impact,
we created three new Div-B datasets, each having
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Model Dev Test
1 BERT-Base-Cased* 0.6827 0.668
2 Electra-Small* 0.6861 0.6771
3 Electra-Base* 0.6846 0.6720
4 DistilBERT-Base-Unc.* 0.6773 0.6822
5 XLNet-Base* 0.6852 0.6757
6 SSl Iteration-4 0.6932 0.672

Ensemble (1,2,3,4,5,6) 0.6927 0.6895

Table 3: F1 Score on dev and competition test set
* - Models trained with modified Dice Loss

one of the preprocessing techniques missing. We
then trained BERT-Base-Cased and Electra-Small
models with Self Adjusting Dice Loss on each of
these sets and evaluated the performance on their
respective dev sets. The results are reported in
Table 4 with the following acronyms:

• TD - All preprocessing steps used
• WNUM - Without removing numbers
• WFS - Without removing fullstops
• WCON - Without expanding contractions

Dataset BERT-Base-Cased Electra-Small
TD 0.6754 0.6813

WNUM 0.6781 0.6809
WFS 0.6713 0.6743

WCON 0.671 0.6829

Table 4: F1 Score for different preprocessing tech-
niques on dev set

The results show that removing numbers and ex-
panding contractions both had contrasting effects
on the two models. This shows that we could have
yielded better results by trying different preprocess-
ing techniques for the different transformer models.
Apart from that, we see that the most positive effect
on model performance came from removing full
stops from the training data in both cases.

We also wanted to see the effect of our post-
processing step. For that, we compared the per-
formance of the BERT-Base-Cased model on the
Div-B dev split. As expected, the results showed
minor improvement due to our postprocessing as
the score increased from 0.6748 to 0.6754.

7 Error Analysis

The results we have obtained have brought to light
some problems that need to be resolved. First of
all, the data annotations have many issues, lead-
ing to a lower F1 score even though the predicted

Example Set Val Test
E.S

Val:41 Test:394
0.0731 0.0380

N.E.S
Val:753 Test:1606)

0.7265 0.8493

All
Val:794 Test :2000

0.6927 0.6895

Table 5: System performance over empty span (E.S)
and non-empty span(N.E.S) examples over Div-B split

toxic spans are more appropriate in many cases.
We have included some examples in Appendix D.
In some cases, the annotations are not uniform in
what toxicity label they assign to the same word
over different text samples. We have also observed
that complete sentences were marked as toxic just
because of the presence of a few toxic words in
them. These irregularities in the annotations make
it difficult for the model to generalize on the data.

Besides the incorrect annotations, we further
try to analyze the type of mistakes our system is
making. The dataset contains numerous examples
where no toxic spans are annotated. Such a case
arose when the annotators had difficulty in attribut-
ing toxicity to a particular span. Investigating our
model performance shows that our model highly
under-performs on such examples. Table 5 depicts
the drastic difference in the performance of the
system over empty span examples (E.S) and non-
empty span examples (N.E.S). Upon closely follow-
ing E.S examples, we discovered that annotations
of such examples carry more subjectivity than the
others. In such cases, our model usually labels the
word with the most negative sentiment as toxic and
thus performs poorly.

In addition to the empty span examples, we also
discover that our model fails to capture the full
context in some cases. For e.g., in the phrase “no
more Chinese,” our model only predicts the word
Chinese as toxic, whereas the complete phrase at-
tributes to the toxicity of the sentence. Another
problem is our model’s inconsistency in labeling
the corresponding noun and adjective pairs in a sen-
tence. However, similar types of inconsistencies
were also found in the annotations and are therefore
difficult to avoid [Appendix D].

8 Conclusion

The task of detecting toxic spans in the text is a
novel one, and there is no doubt about how impor-
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tant a model trained successfully for this task can
turn out to be for online content moderation. How-
ever, the data gathered from online platforms tend
to be noisy and corrupted. Coupled with the limita-
tions of generating large-scale annotated datasets in
real life, they pose two daunting challenges. In con-
clusion, our final submission shows that transfer
learning through pre-trained transformer models
can achieve competitive results for this task. Us-
ing modified loss functions and semi-supervised
learning, even more can be extracted from limited
annotated data. Moreover, considering the subjec-
tivity involved in span detection, the task can also
be expanded to report severity scores of spans and
classify the type of toxicity. This will further help
simplify and rationalize online content moderation.
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Appendix

A Dataset

We worked on two different splits of the data
across different stages of competition. Table 6
represent the no. of examples in train, val and test
across Div-A and Div-B split.

Div-A Div-B
Train 6351 7835
Dev 794 794
Test 794 2000
Total 7939 10629

Table 6: Distribution of examples across Div-A and
Div-B split

Div-A is basically a 80:10:10 split of the training
data released by the organisers whereas Div-B split
uses the train and test set of Div-A along with
competition trial data as its training set. Div-B
uses the official test set as its test set while keeping
the dev set same as that of Div-A.

B Model Training

In this section, we provide the hyperparameter
values we used while training our final models to
facilitate the replication of our results at a later time.
The acronyms correspond to:

• LR : Learning Rate
• ML : Max Len
• LC : Data Lowercase
• DL : Dice Loss (Alpha, Gamma)

Hyperpara. BERT-Base-Cased Electra
LR 1E-5 3E-5
ML 500 500
LC False True
DL 0.7,0.25 0.7,0.25

Table 7: Hyperparameter Values for BERT-Base-Cased
and Electra (Small and Base)

For baseline model and semi-supervised learning
model, the cross-entropy loss function provided in
PyTorch was used with default hyperparameters.
For AdamW optimizer, we used weight decay rate
of 0.01 for all model parameters apart from the
bias, gamma and beta terms, for which we used 0
weight decay.

Hyperpara. Distil-Base-Unc. XLNet-Base
LR 1E-5 3E-5
ML 500 400
LC True False
DL 0.7,0.25 0.4,0.25

Table 8: Hyperparameter Values for Distil-Base-Unc.
and XLNet-Base

C Results

C.1 Dice Loss Results
In this section, we report the results of our hyper-

parameter tuning for training with Self Adjusting
Dice Loss. The result reported are for BERT-Base-
Cased model on the Div-A dataset.

Parameter Values Dev F1 Score
Alpha-0, Gamma-1 0.665
Alpha-0, Gamma-2 0.657

Alpha-0.5 Gamma-1 0.652
Alpha-0.7, Gamma-1 0.671
Alpha-0.8, Gamma-1 0.668

Alpha-0.7, Gamma-0.5 0.6723
Alpha-0.7, Gamma-0.25 0.6725

Table 9: BERT-Base-Cased trained with Self Adjusting
Dice Loss on Div-A train split

D Error Analysis

We manually crawled through a part of dataset
and found several inadequate annotations as de-
scribed through table 11. Apart from erroneous
annotations, we also found some examples of in-
consistency in the structure of annotations. Table
10 outlines a few such pairs where different strate-
gies are used for annotating similar texts. These
examples highlight the inconsistencies in labelling
of corresponding noun-adjective pairs.

Text Ground Truth
You are an idiot [’idiot’]

You are truly witless All tokens
F***ing moron .... [’F***ing’]

Fucking moron needs... [’Fucking’,’moron’]
Hilary is a liar... All tokens

Trump is an idiot. [’idiot’]

Table 10: Irregularity in annotation for similar text-
samples.
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Text Ground Truth Suggested
I have no doubt it was Photoshopped(by an idiot, for an idiot) [’idiot’] [’idiot’,’idiot’]

She’s a Marxist twit. [’Marxist’] [’Marxist’, ’twit’ ]
Move to Russia and be a fascist pig all you want. All tokens [’fascist’, ’pig’]

lame. really really lame and cheap shot. pathetic actually.
[’lame’, ’lame’,

’actually’]
[’lame’, ’lame’,

’pathetic’]
So ”f*** you all”, ”kiss my a–” and ... [’f***’] [’f***’,’a–’]

You are just a stick buthole! [] [’stick’,’buthole’]

Table 11: Shows the words labelled toxic as ground truth(from annotators) and suggested accurate annotations
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Abstract

With the ever-increasing availability of digital
information, toxic content is also on the rise.
Therefore, the detection of this type of lan-
guage is of paramount importance. We tackle
this problem utilizing a combination of a state-
of-the-art pre-trained language model (Charac-
terBERT) and a traditional bag-of-words tech-
nique. Since the content is full of toxic words
that have not been written according to their
dictionary spelling, attendance to individual
characters is crucial. Therefore, we use Char-
acterBERT to extract features based on the
word characters. It consists of a Character-
CNN module that learns character embeddings
from the context. These are, then, fed into
the well-known BERT architecture. The bag-
of-words method, on the other hand, further
improves upon that by making sure that some
frequently used toxic words get labeled accord-
ingly. With a ∼4 percent difference from the
first team, our system ranked 36th in the com-
petition. The code is available for further re-
search and reproduction of the results1.

1 Introduction

The user generated digital content is increasing
rapidly every second of the day. This can include
some toxic language whose detection can be diffi-
cult due to the complexities of human languages.
We address this problem by participating in Se-
mEval Workshop 2021 Task 5 (Pavlopoulos et al.,
2021).

In many cases, the data, which are considered to
be toxic, contain words that have not been written
in their standard forms. There might also be a lot
of misspelling or letter replacements. In addition,
usually the words that are considered to be the most
offensive are bleeped which makes them difficult
to be recognized if we use a model which learns the

1https://github.com/IMPLabUniPr/
UniParma-at-semeval-2021-task-5

content representation based on the words. Apart
from word related issues, the context also plays
a crucial role in the meaning that a word conveys
since words in different contexts can have various
meanings.

Therefore, in order to cope with these issues,
we opt for a recently pre-trained language model
which has been trained on character level. Char-
acterBERT (El Boukkouri et al., 2020) is a deep
neural network model that has been pre-trained
on Wikipedia and OpenWebText (Gokaslan and
Cohen) corpora using the BERT architecture (De-
vlin et al., 2019) with an addition of a character-
aware Convolutional Neural Network (CNN) (Kim
et al., 2016; Peters et al., 2018). BERT-based mod-
els have now become pervasive in many different
natural language processing tasks such as read-
ing comprehension (Xu et al., 2019), named entity
recognition (Liang et al., 2020), sentiment analysis
(Karimi et al., 2020), and language understanding
(Jiao et al., 2020) as well as similar ones to toxic
language detection such as propaganda detection
(Jurkiewicz et al., 2020). While the BERT model is
beneficial in extracting the contextual information
from the text on the word level, the character-aware
CNN attends to the individual letters which helps
in dealing with out-of-vocabulary, unknown and
rare words.

In addition to using a deep language model for
detecting toxic language, we employ a very simple
Bag-of-Words model that can achieve a close per-
formance to that of the deep model. By building
a dictionary of toxic words from the training data
and by taking into account their frequency and ratio
of toxicity, we come up with a simple model that
performs as closely as about 2 percent difference
in performance to the deep model’s result. More-
over, we improve the results of CharacterBERT by
combining it with the output of a version of the
Bag-of-Words model.
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spans text
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39]

Another violent and aggressive immigrant killing
a innocent and intelligent US Citizen.... Sarcasm

[0, 1, 2, 3] Damn, a whole family. Sad indeed.
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] What a knucklehead. How can anyone not know

this would be offensive??

Table 1: Three examples from the training set

2 System Description

Our system consists of four main stages namely,
pre-processing, applying CharacterBERT, applying
Bag-of-Words model, and finally combining the
results of the two models. We describe each of
these stages in the following subsections.

2.1 Pre-processing

The training dataset consists of rows of various
lengths and an array of character spans indicating
their toxic parts. Each row can contain several
sentences. Table 1 shows three examples of the
training data.

We approach the task of toxic spans detection as
a sequence labelling task where each word of the
input row is classified into one of the predefined
classes. We define three classes of {B, I, O}, mean-
ing that each word can be the first word (B) of a
set of continuous toxic words, in between (I), or
not toxic (O). Therefore, in order for both of our
models to be able to process these inputs, we first
need to break the rows into words and label them
as one of the above-mentioned classes. This was
carried out by simply splitting each input row at
the space characters. Then, after creating a dataset
that has been labeled on the word level, we can use
it as the input of our models. The same is done
for the Bag-of-Words model with a difference in
treating the bleeped words which is described in
Subsection 2.3.

2.2 CharacterBERT

CharacterBERT model is almost identical to the
well-known BERT model with a difference in ini-
tial embedding. In the general BERT model, words
are broken into pieces and the embeddings for
these word pieces are computed. In Character-
BERT, however, words are divided into letters or
characters. Then, using CNN modules the embed-
dings are computed on the character level (Figure
1). This makes the network extract features on the

Figure 1: The difference between the BERT and Char-
acterBERT models is the way they compute the ini-
tial embeddings. The former uses word-piece embed-
dings while the latter uses character embeddings. Fig-
ure taken from El Boukkouri et al. (2020).

lowest level, making it suitable for contexts which
contain many unseen vocabulary terms such as mis-
spelled words or technical jargon. After the initial
character-aware CNN layer, there is the BERTbase
architecture which contains 12 layers (blocks) of
Transformer (Vaswani et al., 2017) with the hidden
size of 768 and 12 attention heads. The final layer
representations are converted into logits using a
fully connected layer after which a Softmax layer
is applied to extract the token’s (word’s) class.

2.3 Bag-of-Words Model

This model is a simple script of fewer than 80 lines
of code. However, its performance on the Toxic
Spans Detection task can get very close to the Char-
acterBERT model which has millions of parame-
ters. In this model, by examining the training set,
we first build a dictionary of toxic words with their
frequency. Table 2 presents the top ten words of
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Figure 2: Performance of the Bag-of-Words model on validation set. The frequencies and ratios are the minimum
thresholds that specify whether or not to consider a word toxic.

Word Frequency
stupid 973
idiot 557
idiots 353
stupidity 223
ignorant 190
dumb 157
moron 147
fool 141
pathetic 138
crap 121

Table 2: Top 10 toxic words in the training set

this dictionary in terms of frequency.
Then, we locate the words from the toxic dictio-

nary in each sentence of the test set. If the word
is found and its frequency as well as its toxicity
ratio in the training set are higher than certain val-
ues, it is labeled as toxic. This ratio which we call
toxicity ratio (defined below) along with the term
frequency are the only parameters of the Bag-of-
Words model.

toxicity ratio =
labeled as toxic frequency

total frequency

The test dataset also contains words that are
bleeped. Since these words can be considered toxic
with a high certainty (otherwise they would not be
bleeped), we extract them separately from the test
set and label them directly as toxic.

2.4 Combining the Two Models

In order to get the improved version of the toxic lan-
guage labeling, the union of the spans detected by

the bag-of-words model and that of CharacterBERT
is taken. The results will improve if there are words
labeled correctly with the Bag-of-Words model that
are not in the output for CharacterBERT. This can
be achieved by specifying a high toxicity ratio for
a word to be labeled as toxic. Also, the wrongly
labeled tokens should not be too many since it can
have a negative effect on the F1 score. Therefore,
the frequency with which a toxic word appears
should be somewhat high. Striking a balance be-
tween these two parameters can help improve the
output of CharacterBERT.

3 Experiments and Results

3.1 Performance of CharacterBERT

We ran the experiments for the general domain
CharacterBERT with its default setting on a GPU
(GeForce RTX 2070) which had 8GB of memory.
We specified batch sizes of 4 for both training and
testing and fine-tuned it on the toxic data only for
one epoch which produces an F1 score of 65.13. It
is worth noting that more training did not improve
the performance.

3.2 Analysis of the Bag-of-Words model

In order to experiment with the Bag-of-Words
model, we divide the original training set into a
resized training set with 7000 sentences and a val-
idation set with 939 sentences which were taken
from the end of the original training set. Then, we
find the best parameters on the validation set and
using those parameters on the test data, we get a
performance of almost 63 percent which is only
2 percent smaller than our deep model. Figure 2
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Model F1
CharacterBERT 65.13
BoW (v1) 51.75
BoW with best parameters (v2) 62.79
CharacterBERT + BoW (v2) 65.87
CharacterBERT + BoW (v1) 66.72

Table 3: Comparing results of the proposed models.
The boldfaced one is the submitted version. BoW: Bag-
of-Words model.

Word Frequency Toxicity Ratio
stupid 973 0.78
idiot 557 0.84
idiots 353 0.81
stupidity 223 0.77
moron 147 0.71
idiotic 98 0.74
hypocrite 75 0.88
shit 56 0.72
scum 52 0.70
hypocrites 44 0.76

Table 4: Words selected as the toxic words with min-
imum frequency of 40 and minimum toxicity ratio of
0.7 (BoW (v1))

shows this model’s performance for its two parame-
ters on the validation set. One parameter represents
the minimum frequency with which a toxic word
appears in the resized training set and the other one
is its minimum toxicity ratio in the resized training
data.

We can see from Figure 2 that the best results
are achieved when the minimum frequency is 20
and the minimum ratio is 0.3 or 0.4. Since a larger
ratio can be a sign of more toxicity, we choose 0.4
as the ratio and a frequency of 20 as the thresholds
with which we apply the model on the test set. This
gives an F1 score of 62.79 percent (Table 3) which
is not that much below the result of the deep model.

We can also see from Table 3 that although com-
bining the output of the Bag-of-Words model with
that of CharacterBERT improves the results a lit-
tle bit, it is still is not as significant as the first
version. In the first version of the Bag-of-Words
model, which was found during our primary exper-
iments, the minimum word frequency is 40 and the
minimum toxicity ratio is 0.7. With these parame-
ters, only 10 words are selected from the training
set. The frequency and toxicity ratio of these words
can be seen in Table 4.

Figure 3: Heatmap of the results (F1 scores) with differ-
ent values of term frequency and toxicity ratio before
combining with CharacterBERT

Figure 4: Heatmap of the results (F1 scores) with dif-
ferent values of term frequency and toxicity ratio after
combining with CharacterBERT

Although the performance of this version is a
lot lower than the second version (v2) of the BoW
model, it helps to improve the performance of Char-
acterBERT. The reason for this behavior can be
attributed to the fact that models with higher thresh-
olds both in terms of frequency and toxicity ratio
tend to output more certain results, albeit fewer
words than the ones that should be labeled as toxic.
Therefore, many toxic words that are less probable
are not extracted and F1 score drops.

Looking at Figure 3, we can see that, indeed,
the best parameters from the experiments on the
validation set (ratios 0.3 and 0.4 with frequencies
10 and 20) yield some of the best results on the
test set. However, when these results are combined
with the output of the CharacterBERT, we see that
the higher the toxicity ratio the better the results
(Figure 4) until 0.7 which gives the maximum im-
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provement. The 0.8 ratio makes the predictions still
a little better but 0.9 does not affect them since the
words that are labeled as toxic with this certainty
have most probably been found also by Character-
BERT.

4 Conclusion

We described the system we utilized to detect toxic
language. In our approach, we first fine-tune Char-
acterBERT, a character-level pre-trained language
model, on the toxic training data. Then using a sim-
ple bag-of-words model, we further improve the
results of this system. The Bag-of-Words model
labels the words based on their frequency and the
ratio of toxicity in the training data. We showed
that this model, although extremely simple, gives a
close performance to that of CharacterBERT with
millions of parameters.
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Abstract
The real-world impact of polarization and tox-
icity in the online sphere marked the end of
2020 and the beginning of this year in a nega-
tive way. Semeval-2021, Task 5 - Toxic Spans
Detection is based on a novel annotation of a
subset of the Jigsaw Unintended Bias dataset
and is the first language toxicity detection
task dedicated to identifying the toxicity-level
spans. For this task, participants had to auto-
matically detect character spans in short com-
ments that render the message as toxic. Our
model considers applying Virtual Adversarial
Training in a semi-supervised setting during
the fine-tuning process of several Transformer-
based models (i.e., BERT and RoBERTa), in
combination with Conditional Random Fields.
Our approach leads to performance improve-
ments and more robust models, enabling us to
achieve an F1-score of 65.73% in the official
submission and an F1-score of 66.13% after
further tuning during post-evaluation.

1 Introduction

Nowadays, online engagement in social activities
is at its highest levels. The lockdowns during the
2020 COVID-19 pandemic increased the overall
time spent online. In Germany for instance, Leme-
nager et al. (2021) observed that 71% of considered
subjects increased their online media consumption
during this period. Unfortunately, online toxicity is
present in a large part of the social and news media
platforms. As such, automated early detection is
necessary since toxic behavior is often contagious
and leads to a spillover effect (Kwon and Gruzd,
2017).

Recently, a significant effort was put into the
detection of toxic and offensive language (van
Aken et al., 2018; Paraschiv and Cercel, 2019;
Tanase et al., 2020b,a), but the challenging na-
ture of these problems leaves several avenues un-
explored. In addition, most shared tasks focus

on the distinction between toxic/non-toxic (Wul-
czyn et al., 2017; van Aken et al., 2018; Juuti
et al., 2020) or offensive/non-offensive posts in var-
ious languages (Struß et al., 2019; Zampieri et al.,
2019a,b, 2020; Mandl et al., 2020; Aragón et al.,
2020). The Semeval-2021 Task 5, namely Toxic
Spans Detection (Pavlopoulos et al., 2021), tack-
les the problem of identifying the exact portion of
the document that gives it toxicity. The provided
dataset is a subset of the Jigsaw Unintended Bias
in Toxicity Classification dataset1, with annotated
spans that represent toxicity from a document.

In this paper, we describe our participation in the
aforementioned Toxic Spans Detection task using
several Transformer-based models (Vaswani et al.,
2017), including BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), with a Conditional
Random Field (CRF) (Lafferty et al., 2001) layer
on top to identify spans that include toxic language.
We introduce Virtual Adversarial Training (VAT)
(Miyato et al., 2015) in our training pipeline to
increase the robustness of our models. Further-
more, we enhance part of our models with charac-
ter embeddings based on the Jigsaw Unintended
Bias dataset to improve their performance. Finally,
we compare the proposed models and analyze the
impact of various hyperparameters on their perfor-
mance.

The rest of the paper is structured as follows.
The next section introduces a review of methods
related to toxic language detection, sequence label-
ing, and adversarial training (Kurakin et al., 2016).
The third section discusses the employed models,
as well as the VAT procedure. Results are presented
in the fourth section, followed by discussions, con-
clusions, and an outline of possible future works.

1https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification
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2 Related Work

Toxic Language Detection. There are several re-
search efforts to detect toxic texts based on the
Jigsaw Unintended Bias dataset, out of which most
focus on the Kaggle competition task - predict-
ing the toxicity score for a document. Morzhov
(2020) compared models based on Convolutional
Neural Networks (CNNs) (Kim, 2014) and Recur-
rent Neural Networks (Cho et al., 2014) with a
Bidirectional Encoder Representations from Trans-
formers (BERT) architecture (Devlin et al., 2019),
obtaining the best performance from an ensemble
of all used models. Gencoglu (2020) and Richard
and Marc-André (2020) used the same dataset to
improve on the automatic detection of cyberbully-
ing content.

Sequence Labeling. Predicting the type for
each token from a document rather than provid-
ing a label for the whole sequence is a task often
associated with named entity recognition (Ma and
Hovy, 2016), but can be performed in other Natural
Language Processing pipelines, including part-of-
speech tagging (Ling et al., 2015) and chunking
(Hashimoto et al., 2017). A common practice in se-
quence tagging models (Peters et al., 2018; Avram
et al., 2020; Ionescu et al., 2020) is to use a CRF
as a final decoding layer.

Adversarial Training. Researched first in im-
age classification (Szegedy et al., 2013), adver-
sarial examples are small input perturbations that
are hardly distinguishable for humans, but can
dramatically shift the output of a neural network.
These examples can be used in adversarial train-
ing (AT) (Goodfellow et al., 2014) as a regular-
ization method that can increase the robustness of
the model. Using the worst-case outcome from a
distribution of small norm perturbations around an
existing training sample, a new data point is created
and inserted into the training process.

Extending AT to a semi-supervised setting, VAT
(Miyato et al., 2016) does not require label infor-
mation for the adversarial examples. VAT aims
to increase the local distributional smoothness by
adding perturbations to the embedding output. Re-
cently, several studies (Kumar and Singh, 2020; Liu
et al., 2020; Si et al., 2020) focused on applying
VAT in Transformer-based models and obtained
improvements in comparison to baseline methods
on several classification tasks.

3 Method

3.1 Corpus

The dataset for the competition is a subset of the
Jigsaw Unintended Bias in Toxicity Classification
English language corpus, with annotated spans that
make the utterance toxic. From the 8,597 trial and
train records, 8,101 had at least one toxic span. By
cross-referencing with the original Jigsaw dataset
which contains additional information, we retrieved
the toxicity scores for each text and determined
that the mean toxicity score for the train and test
set were very close (0.8429 versus 0.8440; see Fig-
ure 1 for corresponding kernel density estimates).
Moreover, only 17 out of 2,000 test data rows had
a toxicity score below 0.75. Nevertheless, an off-
balance was noticed between the test and train set
- 80.3% entries from the test set had at least one
toxic span versus a considerably higher density of
94.2% in the train set.

Figure 1: Kernel density estimate using Gaussian ker-
nels for the toxicity scores in both the training and test
data.

The training dataset was split into sentences
while ensuring that there are no splits inside a toxic
span and there are no sentences shorter than three
words. Under these settings, our training dataset
consists of a total of 26,589 sentences, including
10,117 records that contained toxic spans; 15%
were selected for validation. Another 2,000 en-
tries were provided by the competition organizers
for testing; the labels for this dataset were made
available after the competition.

For our unsupervised training samples, we se-
lected 20,000 random records from the Jigsaw
dataset, making sure there was no overlap with
the Semeval-2021 training data. Additionally, we
replaced all URL-s with a special token and applied
lower case on all records.
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Model F1-score
validation
set

F1-score
competition
test set

LSTM-CRF-VAT 75.82% 62.49%
LSTM-CRF-VAT+chars 76.27% 63.65%
BERT-base-CRF 79.25% 62.32%
BERT-base-CRF-VAT 80.66% 64.59%
BERT-toxic-CRF-VAT* 81.08% 65.73%
BERT-news-CRF-VAT 80.80% 64.57%
BERT-news-CRF-VAT (γ=0.6) 81.01% 66.13%
BERT-news-CRF-VAT+chars 80.79% 64.57%
RoBERTa-large-CRF-VAT 78.13% 62.73%

Table 1: F1-scores for predictions on the validation and test set.
* marks the model from the official submission.

3.2 Virtual Adversarial Training

The robustness of the model in Adversarial Train-
ing is improved through examples that are close
to available training data, but the model would be
likely to assign a different label than the training
one, thus leading to loss increase. In VAT, Miyato
et al. (2018) adapted the adversarial training from
supervised to semi-supervised settings by adding
an additional loss using the Kullback–Leibler di-
vergence between the predictions of the original
data and the same data with random perturbations.
Since the output distributions are compared, the
information about labels is not needed for the ad-
versarial loss:

Ladv = KL(P (ŷ|e,Θ)||P (ŷ|e+ d,Θ)) (1)

where e is the embedding associated with the sam-
ple, d the perturbation, and ŷ is the predicted out-
put.

True labels are required in general to compare
the losses and find the worst case perturbations.
However, this can be avoided by bounding the norm
of the perturbation δ to η; thus, the value of the
perturbation becomes:

d = arg max
δ;||δ||2<η

KL(P (ŷ|e,Θ)||P (ŷ|e+δ,Θ)) (2)

Afterwards, we can estimate the perturbation d
using also the gradient g and a hyperparameter ε
for the magnitude by applying the second-order
Taylor approximation and a single iteration of the
power method:

d =
g

||g||2
ε (3)

where

g = ∇δKL(P (ŷ|e,Θ)||P (ŷ|e+ δ,Θ)) (4)

In order to reduce the complexity and computa-
tion for the gradient, we ignore the dependency on
Θ. Also, the number of power iterations can be an-
other hyperparameter for the model. The final loss
function used by all models is a combination of the
supervised and unsupervised adversarial loss:

Ltotal = γLsup + (1− γ)Ladv (5)

where γ is another tunable hyperparameter.

3.3 Implementation Details

In our experiments, pre-trained Transformer mod-
els are followed by a linear transformation of their
last hidden state, and a final CRF layer. More pre-
cisely, we compare the effectiveness of several fla-
vors of BERT models, alongside the VAT technique
as follows: BERT base, a 768-dimensional model
provided by Google (BERT-base-CRF-VAT), Uni-
tary’s toxic BERT (Hanu and Unitary team, 2020)
(BERT-toxic-VAT), BERT pre-trained on fake and
hyperpartisan news (Paraschiv et al., 2020) (BERT-
news-CRF-VAT), and RoBERTa-large-CRF-VAT,
the equivalent of BERT-base-CRF-VAT that relies
on RoBERTa instead of BERT.

In addition to these models, we experimented
with enhancing the BERT-based representation
with character embeddings (Kim et al., 2016).
These character representations were trained on
the entire Jigsaw dataset using a CNN-BiLSTM
model (Ma and Hovy, 2016) with the next char-
acter prediction objective. We concatenated the
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obtained character-level embeddings with the afore-
mentioned Transformer’s last hidden state, and re-
fer to this variant as BERT-news-CRF-VAT+chars.

As baseline systems, we design two methods:
LSTM-CRF-VAT with GloVe embeddings (Pen-
nington et al., 2014) and a LSTM-CRF-VAT+chars
having character-level embeddings and VAT. In
all BERT-based models, we used a maximum se-
quence length of 96 tokens and a sequence of 64 to-
kens for the LSTM baseline. Since the input words
can consist of more than one token, we assign the
toxicity label to a word if at least one component
token is inferred as toxic.

The best hyperparameters for the BERT-base
model were determined through grid search on the
development set. The identified optimal values
(ε = 2, η = 0.1, and two power iterations) were
used in all other flavors; γ was set to 0.5 in the final
loss function to balance both approaches. Further-
more, all BERT-based models were trained for one
epoch in contrast with the LSTM-CRF-VAT and
LSTM-CRF-VAT baselines that were trained for
three epochs and four epochs, respectively.

4 Results

The evaluation metric for the Toxic Spans Detec-
tion task was an adapted version of the F1-score
(Da San Martino et al., 2019) that takes into ac-
count the size of the overlap between prediction
spans and golden labels.

Results for all developed models with the afore-
mentioned hyperparameters (i.e., γ = 0.5, ε =
2, η = 0.1, and two power iterations) are presented
in Table 1. Since the training data had a slightly
different distribution of the span density, part of our
models that performed worse on our dev set per-
formed better on the competition test set. Adding
the character embedding representation to BERT-
based models did not prove to be of use in our
pre-evaluation tests, but in post-evaluation, we no-
ticed that slightly tweaking the γ hyperparameter
for the loss from 0.5 to 0.6 brought the F1-score to
66.13%. Despite performance on the validation set
was insensitive to the change in γ between 0.5 and
0.6, the results on the test set were more than 1.5%
apart. This is mostly due to the unsupervised train-
ing that is strengthening the model’s confidence on
edge cases which would lower its precision.

Figure 2 introduces the influence of the pertur-
bation magnitude ε on the overall performance of
three models. The impact of ε in the adversarial

training effectiveness is significant, but it is also
highly dependant on the used model and can only
be determined experimentally.

Our models performed well on the detection task,
learning not only common toxic expressions like
”moron”, ”stupid”, ”pathetic troll”, ”disgusting”,
”hang-em high”, but also obfuscated expressions
like ”f*cking nasty” and ”b*tchy”. Nonetheless,
the models fail to detect more obscured words like
”you don’t know s***” or ”Kill this F’n W*ore on
site”. All models have the tendency to over-predict
toxicity by adding words to the toxic expression -
for example, ”What a pile of shit” was automati-
cally labeled as ”What a pile of shit”.

The character-level embeddings boosted the per-
formance of the baseline LSTM-CRF-VAT model
but did not improve any BERT model since it leads
to detecting longer spans as toxic (see Table 2)
which in return lowers precision.

Figure 2: Impact of the perturbation magnitude ε on the
F1-scores for the predictions on the official test set.

5 Discussions and Error Analysis

In this section, we analyze the BERT-toxic-CRF-
VAT performance versus the golden label values
from the competition test set. The precision and
recall for our best model are 65.74% and 85.54%,
respectively, which are indicative of a tendency
to over-predict toxic spans. As we mentioned in
section 3.1, even though almost all documents in
the test set had a high toxicity score in the original
Jigsaw dataset, many had no annotated toxic spans.
Indeed, there were 295 records where our model
detected a toxic span and none were labeled in
the test set. Table 3 includes examples of such
detected spans those labeling is subjective and other
detection errors. Words like ”stupid”, ”dumb”, and
”crap” were assigned as toxic throughout the test
data due to their high presence in the training data
spans. There were also milder errors, spans that
overlap with the golden labels, but the model omits
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Annotated sample BERT-news-
CRF-VAT+chars

BERT-toxic-CRF-VAT

Greedy pig strikes again! Greedy pig strikes again! Greedy pig strikes again!
What’s honorable is
telling idiots that they’re
idiots (even if tardily)

What’s honorable is
telling idiots that they’re
idiots (even if tardily)

What’s honorable is
telling idiots that they’re
idiots (even if tardily)

A fool and our money are
soon to be parted.

A fool and our money

are soon to be parted.

A fool and our money are
soon to be parted.

Table 2: Examples of model predictions with character embeddings (BERT-news-CRF-VAT+chars) and without
(BERT-toxic-CRF-VAT), compared to the official annotations. The toxic spans are highlighted.

Annotated sample Model predictions
As is Drumpf a lying gasbag. As is Drumpf a lying gasbag .
The Liberals should listen to the economic ex-
perts and dramatically increase immigration
levels (at least 500,000 per year). Stop listen-
ing to the loser racist trash.

The Liberals should listen to the economic ex-
perts and dramatically increase immigration
levels (at least 500,000 per year). Stop listen-
ing to the loser racist trash .

AK Jen - Russia is no longer a communist na-
tion. Stop spouting that - it makes you look
stupid.

AK Jen - Russia is no longer a communist na-
tion. Stop spouting that - it makes you look
stupid .

The ”human rights” squad need a swift kick in
the derriere.

The ”human rights” squad need a swift
kick in the derriere .

Rabidly anti-Canadian troll . Rabidly anti-Canadian troll .
Lord have Mercy on us, Trump is running
amok

Lord have Mercy on us, Trump is running
amok.

You are a nut ball You are a nut ball
Lives in Thailand?
So like every other racist, he’s a hypocrite

Lives in Thailand?
So like every other racist, he’s a hypocrite

Terry Stahlman is a worthless piece of human
excrement!

Terry Stahlman is a
worthless piece of human excrement!

People who are anti-immigration are weak, ly-
ing, racist whiners .

People who are anti-immigration are weak, ly-
ing, racist whiners.

Some people don’t need dope to be dopey. Some people don’t need dope to be dopey .
But that’s what you get now for minimum wage.
Increasing that to a ’livable wage’ for the exact
same people is stupid!

But that’s what you get now for minimum wage.
Increasing that to a ’livable wage’ for the exact
same people is stupid !

They can’t, it’s jammed with an overload of
their hero’s excrement .

They can’t, it’s jammed with an overload of
their hero’s excrement.

holy fuck you troglodytes cant even handle the
simple act of meming

holy fuck you troglodytes cant even handle
the simple act of meming

Meanwhile Taxed is now complaining his
Hyundai Santa Fe is a piece of crap

Meanwhile Taxed is now complaining his
Hyundai Santa Fe is a piece of crap

Only in that sick and twisted brain stem of
yours.

Only in that sick and twisted brain stem of
yours.

Table 3: Examples from the competition test dataset of differences between the annotations and the predictions
from BERT-toxic-CRF-VAT model. The toxic spans are highlighted.
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part of the sequence of words. Samples like ”You
are a nut ball” detected only as ”You are a nut ball”
or ”So like every other racist, he’s a hypocrite”
marked by the model as ”So like every other racist,
he’s a hypocrite” can be perceived as likely errors
even for human annotators.

6 Conclusions and Future Work

In this paper, several Transformer-based models
(i.e., BERT and RoBERTa) were tested together
with Virtual Adversarial Training to increase their
robustness for identifying toxic spans from textual
information. Our experiments argue that apply-
ing VAT increases performance and that domain-
specific models have higher performance when
compared to larger general models.

In terms of future work, we plan to experiment
with self-supervised adversarial training (Chen
et al., 2020) to improve the robustness of our mod-
els. As we noticed in this dataset too, online users
find clever ways to hide offensive and toxic ex-
pressions. Adversarial training can be effectively
employed to detect these attempts and a study of
its impact on offensive and hate speech classifiers
is worth pursuing as follow-up leads.
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Abstract

Toxicity detection of text has been a popular
NLP task in the recent years. In SemEval-
2021 Task-5 Toxic Spans Detection, the fo-
cus is on detecting toxic spans within En-
glish passages. Most state-of-the-art span de-
tection approaches employ various techniques,
each of which can be broadly classified into
Token Classification or Span Prediction ap-
proaches. In our paper, we explore simple
versions of both of these approaches and their
performance on the task. Specifically, we use
BERT-based models - BERT, RoBERTa, and
SpanBERT for both approaches. We also com-
bine these approaches and modify them to
bring improvements for Toxic Spans predic-
tion. To this end, we investigate results on four
hybrid approaches - Multi-Span, Span+Token,
LSTM-CRF, and a combination of predicted
offsets using union/intersection. Additionally,
we perform a thorough ablative analysis and
analyze our observed results. Our best submis-
sion - a combination of SpanBERT Span Pre-
dictor and RoBERTa Token Classifier predic-
tions - achieves an F1 score of 0.6753 on the
test set. Our best post-eval F1 score is 0.6895
on intersection of predicted offsets from top-
3 RoBERTa Token Classification checkpoints.
These approaches improve the performance by
3% on average than those of the shared base-
line models - RNNSL and SpaCy NER.

1 Introduction

Offensive language can include various categories
such as threats, vilification, insults, calumniation,
discrimination and swearing (Pavlopoulos et al.,
2019). Detection of such language is necessary for
ease of moderation of content on social media. De-
spite their popularity, toxicity detection tasks have
focused majorly on sequence classification, rather

∗ Equal contribution. Author ordering determined by coin
flip.

than sequence tagging. Finding which spans make
a comment or document toxic in nature is crucial
in explaining the reasons behind their toxicity. Ad-
ditionally, such attributions would allow for more
efficient semi-automated quality-based moderation
of content, especially for verbose documents, in
comparison to quantitative toxicity scores.

In SemEval-2021 Task-5, Pavlopoulos et al.
(2021) provide a dataset of 10k English texts fil-
tered from Civil Comments (Borkan et al., 2019)
dataset. Each text is crowd-annotated with char-
acter offsets that make the text toxic. The task
is to predict these character offsets given the text.
The work presented in this paper aims to provide a
comprehensive analysis of simple Token Classifica-
tion (TC) and Span Prediction (SP) methods across
multiple BERT-based models - BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and SpanBERT
(Joshi et al., 2020). Additionally, we experiment
with a few hybrid approaches - Multi-Span (MSP),
where the model is trained on multiple spans simul-
taneously; Span+Token (SP-TC), where the model
is trained on both kinds of tasks simultaneously;
LSTM-CRF (LC), which uses a LSTM and CRF
layer on top of BERT-based models; and a com-
bination of predicted offsets for above techniques
using union/intersection. In Section 2, we perform
a compendious literature survey. Section 3 eluci-
dates our approach, including the modelling aspect,
the various variants of the base model, and the dif-
ferent Hybrid Systems. In Section 4, we describe
our experimental setup and hyperparameters used
for our methods. Lastly, in Section 5 we analyze
our results and perform ablative analysis on our
systems.

2 Background

Before the advent in research pertaining to toxic
texts, Warner and Hirschberg (2012) modeled hate
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speech as a word sense disambiguation problem
where SVM was used for classification of data.
Mehdad and Tetreault (2016) used RNN Language
Model with character and token based methods
to classify the text. Recently, however, toxic text
detection has garnered a lot of attention (Nobata
et al., 2016; Park and Fung, 2017; Pavlopoulos
et al., 2017; Wulczyn et al., 2017). The increase
in offensive language research can partly be cred-
ited to various workshops such as Abusive Lan-
guage Online1 (Waseem et al., 2017) , as well as
other fora, such as GermEval for German texts,2

or TRAC (Kumar et al., 2018) and Kaggle chal-
lenges3.

Hanu and Unitary team (2020) introduced Detox-
ify, a comment detection library modeled using
HuggingFace’s transformers (Wolf et al., 2020) to
identify inappropriate or harmful text online as a
result of participation in three such challenges. In
a contemporary work, Pavlopoulos et al. (2020)
discuss context requirement for toxicity detection.

In SemEval 2020-Task 11 (Da San Martino et al.,
2020), the first sub-task - Span Identification - aims
at detecting the beginning and the end offset for the
propaganda spans in news articles. This sub-task
is similar to SemEval 2021-Task 5. The proposed
approaches for the sub-task can be broadly classi-
fied into Span Prediction or Token Classification.
Most teams use multi-granular transformer-based
systems for token classification/sequence tagging
(Khosla et al., 2020; Morio et al., 2020; Patil et al.,
2020). Inspired by Souza et al. (2019), Jurkiewicz
et al. (2020) use RoBERTa-CRF based systems. Li
and Xiao (2020) use a variant of SpanBERT span
prediction system.

3 Models

3.1 Token Classification Models

3.1.1 Baseline Models
From the models already provided with the dataset,
we use RNNSL and SpaCy NER Tagging baselines
for token-wise classification.

RNNSL model is a combination of a single Bi-
LSTM layer with a randomly initialized embedding
layer. It uses a three-label classification task for
each word in the sentence. The labels used are:
special token, non-toxic word, and toxic word. For

1https://sites.google.com/site/
abusivelanguageworkshop2017/

2https://projects.fzai.h-da.de/iggsa/
3Jigsaw Toxic Comment Classification Challenge

each word, the corresponding offsets are added to
the predicted spans. A word with containing any
toxic offset is marked as toxic during training.

SpaCy NER Tagging model is an NER classifier
built on SpaCy Language Models. It is used to
predict the entities which are labelled as TOXIC in
the text using the spans provided.

3.1.2 BERT-based Token Classification
Models

These models comprise a BERT-based model and
a classification layer over each final token embed-
ding which predicts whether a token is toxic or not.
Based on these classifications, we add the offsets
for those tokens (not words) which are marked as
toxic by the model. Figure 1a represents a Token
Classification Model.

3.2 Span Prediction Models

3.2.1 BERT-based Span Prediction Models
We use the BERT-based Span Prediction (Figure
1c) models based on Extractive Question Answer-
ing systems similar to work on SQuAD (Rajpurkar
et al., 2016) and MRQA (Fisch et al., 2019). In
these systems, the output at each token is a start
logit and an end logit denoting whether that token
is a start token or an end token of the span, depend-
ing on the softmax value. Since the Toxic Spans
text can have multiple toxic spans, we take differ-
ent contiguous spans from the given offsets, and
make several ‘samples’ out of the example. Each
span becomes an ‘answer’ for the particular text
sample. We use the word ‘offense’ as a dummy
question. Thus, each contiguous span leads to one
‘sample’ for every example (Table 1).

Text Spans
...an idiot - just an embarrassingly un-
informed, ignorant,...

idiot, ignorant

Question Context Answer
offense ...an idiot - just an embarrass-

ingly uninformed, ignorant,...
idiot

offense ...an idiot - just an embarrass-
ingly uninformed, ignorant,...

ignorant

Table 1: Conversion of Toxic Spans example to sam-
ples for single-span Span Prediction.

We store the start index of the text, similar to
the SQuAD (Rajpurkar et al., 2016) dataset, and
process the data to provide start and end token
positions during training. The classifier layer on
top of the encoder embeddings performs a binary
classification task for start and end positions. A
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(b) Span+Token
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(c) Span Prediction

BERT-based Model
[EMB]

CLFR

1 0
S E

[EMB]

CLFR

0 1
S E

[EMB]

CLFR

0 0
S E

[EMB]

CLFR

1 0
S E

[EMB]

CLFR

0 1
S E

[EMB]

CLFR

0 0
S E

[EMB]

CLFR

0 0
S E

[CLS] dumb ignorant boy pathetic troll [SEP]

(d) Multi-Spans
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Figure 1: BERT-based Approaches*

*CLFR = Classifier, [EMB] = Token Embedding, NT = Non-Toxic, T = Toxic, D = Dummy, X = Don’t Care, S = Start, E = End.

span is scored using the sum of predicted start and
end logits. From top-K start and end logits, valid
predicted answer spans4 are chosen during post-
processing. A union of all the corresponding offsets
is taken to give the final prediction for the example.
A threshold is learned on the span scores using the
resulting dev set F1 score on offsets, which is then
used for test set prediction. All spans with score
above threshold are considered to be toxic spans.

3.3 Hybrid Systems

3.3.1 Multi-Spans
In Section 3.2, we allow each context to have mul-
tiple single-span answers during training. This is
counter-intuitive, as the model is only trained to
handle a single-span at a time, and expected to pre-
dict multiple single-spans during prediction. Two
toxic spans in text are equally important to predict,
and thus, should not be shown at different times
during training. To mitigate this issue, we try an
approach which we refer to as the ‘Multi-Spans’
(MSP) approach. Here, we take all the ground start
and end token positions during training, and use
Binary Cross Entropy on each of the start/end log-
its. This essentially treats the task as a multi-label
classification problem. Hence, during training, all
the ground spans are used in the same iteration with
the example, and only one ‘sample’ per example
is generated. Figure 1d depicts a representation of
the system. Note that two tokens - dumb and pa-
thetic are marked as the start token. Similarly, both
ignorant and troll are marked as the end token.

4Valid spans are those which have end index greater than
start index, and length less than a maximum span length.

3.3.2 LSTM-CRF
A recently popular approach in Named-Entity
Recognition tasks has been to use Conditional Ran-
dom Fields (CRF) with BERT-based models. In-
spired by the CRF-based approaches (Souza et al.,
2019; Jurkiewicz et al., 2020), we use BERT-based
models with a single BiLSTM layer and a CRF
layer. During training, the CRF loss is used and
during prediction, Viterbi Decoding is performed.
Though CRF is generally used for word-level clas-
sification, we do not mask inner and end tokens
for a word as it degrades dev set performance for
our systems. Hence, all the tokens of a word are
considered for classification.

3.3.3 Spans+Token
For this system, we use a combination of the two
tasks - Token Classification and single-span Span
Prediction. We use two classification layers on the
token-wise embeddings - one for start and end pre-
diction, and the other for token classification. Train-
ing is done simultaneously on both tasks, and the
cross-entropy loss for each classifier is weighted.
The overall loss is given as:

L(ŝ, ê, p̂, s, e, p) = −
∑

t

p̂t log pt

−(
∑

t ŝt log st +
∑

t êt log et)

2

where st,et, and pt are labels for start, end and
token classifiers for token t, while ŝt,êt and p̂t are
predictions. This is done to equally scale both SP
and TC task losses. During prediction, we consider
top-K start and end scores. From the valid spans,
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the score is calculated as the average of start and
end logit scores, as well as the mean of toxicity
logits over the span under consideration. The score
is given as:

S(is, ie) =
ŝis + êie

2
+

∑ie
k=is

t̂k

e− s+ 1

where is and ie are start and end indices, ŝis and
êie are start and end logits at those indices, and t̂k
is toxicity logit at index k. A threshold, similar
to Section 3.2 is tuned on the dev set. The pre-
dicted offsets taken from the predicted spans are
considered to be toxic.

3.3.4 Combination of Offset Predictions
Chen et al. (2017) proposed using the predictions
from top few checkpoints and averaging the results
to achieve better classification scores. Based on a
similar line of thought, we also combine the pre-
dicted spans for various checkpoints of a model,
as well as across different models using union or
intersection.

4 Experimental Setup5,6

4.1 Hardware Requirements

The training and the evaluation of systems was
performed on Google Colab’s free GPU (NVIDIA
K80/P100). The training time varies with the mod-
els. For each model, it is around 4-6 hours, which
is well-within the 12 hour limit of Colab.

4.2 Models & Hyperparameters

For RNNSL, a Keras-based BiLSTM model is
provided. We use a max length of 192, batch
size of 32 and a dropout of 0.1. The training is
done using Adam Optimizer with early stopping
(patience period = 3), which in our case halts at
5 epochs. The embedding/hidden state size used
is 200. A threshold is used to classify a word as
toxic on the predicted toxic word probability. This
threshold is tuned on the trial dataset. For SpaCy,
the en core web sm model is used with 30 itera-
tions.

For all BERT-based models, we use Hugging-
Face’s transformers (Wolf et al., 2020) in PyTorch.
For CRF, we use the pytorch-crf (Kurniawan, 2018)
library. We use a batch size of 4, train for 3 epochs,

5Our code can be found at: https://github.com/
gchhablani/toxic-spans-detection.

6We also use Integrated Gradients to understand what the
models focus on. For discussion, see Appendix B.

use a linear learning rate decay, and an AdamW
optimizer with a weight decay of 0.01. The ini-
tial learning rate is 2e−5. During tokenization, the
maximum length allowed is 384, with the excep-
tion of RoBERTa Span+Token where it is 512. We
use LARGE models for all - BERT, RoBERTa and
SpanBERT, unless otherwise specified.

For Token Classification, we add a label for the
[CLS] token if the percentage of toxic offsets in
text is greater than 30% in order to provide a proxy
text classification objective for the system. For
span-based models, the K used for top-K start and
top-K end logit selection is 20, and the maximum
allowed answer length is 30 tokens. For LSTM-
CRF systems, a dummy label is used for the [CLS]
token, while the prediction mask for other special
tokens is set to 0. A dropout of 0.2 is used. For
Span Prediction systems, the overlapping stride is
set to 128.

The training dataset used is tsd train.csv and
the dev set used is tsd trial.csv file, unless other-
wise specified. For all systems, we evaluate the F1

scores using the provided script on the checkpoints
which give the lowest dev set loss.

5 Results and Analysis

In favor of brevity, for this section, we use
the following abbreviations: BT=BERT,
RBTa=RoBERTa, SBT=SpanBERT, SP=Span
Prediction, TC=Token Classification,
MSP=Multi-Span, LC=LSTM-CRF, B=Base,
TBT=ToxicBERT, TRBTa=ToxicRoBERTa,
TT=Trained on Train+Trial, (x,∩)=Intersection of
offsets from x-best checkpoints, (x,∪)=Union of
offsets from x-best checkpoints.

In Table 2, we mention scores for our approaches.
The scores are evaluated are performed after the
evaluation phase, using the hyperparameters men-
tioned in Section 4.2. We observe that the high-
est score is obtained by SBT-TC (0.6856). The
baseline scores (RNNSL/SpaCy) are good (≈0.65)
considering that these models are not pre-trained.
Notably, SP systems perform worse than their TC
counterparts. A good reason could be the self-
attention used in BERT-based models. Since the
interaction is between tokens, and not spans, it is
expected that each token is well represented and
less consideration will be given to the span repre-
sentation around a single token. The reason why
SBT-TC performs best out of all the LARGE mod-
els could be the random-spans Masked Language
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Model Train F1 Trial F1 Test F1

RNNSL 0.5904 0.5904 0.6514
SpaCy 0.6282 0.5729 0.6573
BT-TC 0.6944 0.6942 0.6781

RBTa-TC 0.6791 0.6769 0.6834
SBT-TC 0.6873 0.6789 0.6856
BT-SP 0.6639 0.6465 0.6663

RBTa-SP 0.6401 0.6386 0.6665
SBT-SP 0.6432 0.6212 0.6561
BT-MSP 0.5218 0.4941 0.5406

RBTa-MSP 0.5056 0.4886 0.5244
SBT-MSP 0.5190 0.5004 0.5084
BT-SP-TC 0.6676 0.6214 0.6186

RBTa-SP-TC 0.6395 0.6101 0.5901
SBT-SP-TC 0.6608 0.6491 0.5959

BT-LC 0.6887 0.6843 0.6835
RBTa-LC 0.7236 0.6861 0.6787
SBT-LC 0.7200 0.6982 0.6801

Table 2: F1 scores for our approaches (Post-Eval).

Modeling used in its pre-training. However, BERT
and RoBERTa take over for other approaches.
LSTM-CRF approaches perform as good as To-
ken Classification approaches, and BT-LC achieves
the second highest score (0.6835). MSP performs
poorly, in contrast to what is expected. Multi-Span
Extraction is still an active problem in Deep NLP
with only a few recent works (Segal et al., 2020;
Yang et al., 2020) on it, which still incorporate
sequence tagging approaches. Spans+Token ap-
proaches perform better than Multi-Span, but are
worse than both TC and SP approaches across all
BERT-based models.

Lastly, from combined checkpoint predictions

Combination Test F1

RBTa-TC(3,∪) 0.6765
RBTa-TC(3,∩) 0.6895
SBT-SP(3,∪) 0.5879
SBT-SP(3,∩) 0.6585

RBTa-TC(3,∪)∪SBT-SP 0.6573
RBTa-TC(3,∪)∩SBT-SP 0.6765
RBTa-TC∪ SBT-SP(3,∪) 0.5840
RBTa-TC∩SBT-SP(3,∪) 0.6883

Table 3: F1 scores for combined predictions.

(Table 3), we get out best scoring system - RBTa-
TC(3,∩) - which achieves a score of 0.6895. How-
ever, our best official submission7 was a variant of
the third best combination - RBTa-TC(3,∪)∩SBT-
SP (0.6765). It is also observed that intersection ap-

7The most significant of our official submission scores are
present in Appendix A.

proaches perform better than corresponding union
and single checkpoints approaches, while union
approaches perform worse than single checkpoints.
This means that the individual checkpoints are pre-
dicting some extra offsets to be toxic.

5.1 Ablative Analysis

Model Train F1 Trial F1 Test F1

TBT-TC 0.6753 0.6628 0.6792
TRBTa-TC 0.7244 0.6954 0.6773

TBT-SP 0.6638 0.6560 0.6584
TRBTa-SP 0.6475 0.6358 0.6746
BT-B-TC 0.6966 0.6746 0.6881

RBTa-B-TC 0.6641 0.6482 0.6834
BT-B-SP 0.6605 0.6434 0.6611

RBTa-B-SP 0.6481 0.6464 0.6661
RNNSL-TT 0.6844 0.6882 0.6259

RBTa-TC-TT 0.7707 0.7788 0.6823
SBT-SP-TT 0.7116 0.7092 0.6669

Table 4: F1 scores for ablative approaches.8

In Table 4, we present results on TBT8 and
TRBTa9 for TC and SP approaches. These are
BASE models fine-tuned on the Civil Comments
Dataset. Since the Toxic Spans dataset has similar
text data, we expect these models to perform better
than BASE models. We observe that TBT-TC and
TRBTa-SP perform slightly better than BT-TC and
RBTa-SP, despite being BASE models. Also, BT-
SP and RBTa-TC are only slightly better than their
‘Toxic counterparts.
Yet, in comparison, BASE models - BT-B and
RBTa-B, without any multi-stage pre-training per-
form better than their ‘Toxic’ counterparts, and are
comparable, if not better than their LARGE coun-
terparts. This means that there not enough data
for LARGE models, and hence, they tend to overfit.
However, the reasons behind worse performance
of ‘Toxic’ systems is unclear.
We also evaluate scores for a few systems on the
test set after 3 epochs of training on both train and
trial data (-TT). We observe that the performance
on both train and trial datasets increases signifi-
cantly (≈7-10%), showing that these datasets have
similar distribution. However, the performance on
test decreases for RBTa-TC-TT and RNNSL-TT in
comparison to the Table 2, which shows that test set
distribution might be slightly different for TC task.
For SBT-SP-TT, we see a slight increase, showing

8https://huggingface.co/unitary/
toxic-bert

9https://huggingface.co/unitary/
unbiased-toxic-roberta
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scope of improvement for SP systems with more
data.
Lastly, we evaluate the token-based predictions and
span-based predictions for SBT SP-TC separately.
Surprisingly, token predictions achieve a F1 score
of 0.6522 on the test set, which is much better than
using both token and spans (0.5959). However,
for span-based predictions, we only achieve an F1

score of 0.1510. This means that the system is fo-
cusing heavily on token-based-predictions. Hence,
we need to re-evaluate our architectural decisions
in order to successfully incorporate both token and
spans together.

6 Conclusion

Based on our results and analysis, we conclude that
Token Classification systems have an edge over
Span Prediction methods on this task. BASE mod-
els perform better than LARGE models in either of
the approaches, which could imply need for more
data to train LARGE models. Our Multi-Span ap-
proach performs poorly, but Span+Token approach
shows some promise and we need to re-evaluate
our architectural choices. The reason why Toxi-
cBERT/ToxicRoBERTa perform worse than BASE
models is also an avenue for further analysis. Fi-
nally, our individual BERT-based models tend to
predict extra offsets for the task. While checkpoint
ensembling using intersection is a good way to ad-
dress this issue, we will explore other remedies in
a future work.
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A Official Submissions

During the evaluation period, we performed a
‘cleaning’ of the data by removing starting/trailing
whitespace and punctuation characters in spans.
Additionally, we include those partial words in
spans which had more than half the number of char-
acters in the span, and discard remaining partial
words from spans. We considered this version of
the tsd train.csv and tsd trial.csv to be ‘clean train’
and ‘clean trial’, respectively. During the post-eval
period, we found out potential issues with the clean-
ing, and thus, we use original files. Additionally,
since the distribution of tsd test.csv is expected
to be similar to tsd train.csv and tsd trial.csv,
the scores are much better for models trained on
tsd train.csv file instead of clean train.csv. How-
ever, some of our official submissions were from
systems trained on the ‘clean train’ data. Keeping
that in mind, we report our official scores for our
top-few approaches in Table 5.

Model Trained On Test F1

RNNSL Train+Trial 0.6446
SpaCy Train+Trial 0.6470
RNNSL ∪ Spacy Train+Trail 0.6510
RBTa-TC Clean Train 0.6270
RBTa-TC(3,∪) Clean Train 0.6469
SBT-SP Train 0.6631
RBTa-TC(3,∪) ∩
SBT-SP

Clean Train, Train 0.6753

Table 5: Official Submission Scores

B Integrated Gradients

We use Integrated Gradients(Sundararajan et al.,
2017) from the Captum(Kokhlikyan et al., 2020)
library for qualitative analysis of predictions for
the SpanBERT-SP, and the RoBERTa-TC models.
We calculate Integrated Gradients of the targets
with respect to the embedding layer outputs. The

Riemann Right numerical approximation method
is used, with n steps=50. Following Ramnath et al.
(2020), we calculate token-wise importance dis-
tributions and word-wise distributions for a few
examples. We refer the paper to the reader for
more details.

For the Token Classification model, the targets
are softmax outputs of toxicity logits of those to-
kens which the model predicts to be toxic, with a
score greater than 0.5. For all such toxicity logits
as targets, we calculate attributions with respect to
the embedding layer outputs for all the tokens, and
average them to get token-wise importance scores.
For the Span Prediction model, we find start and
end indices for all the predicted spans, and cal-
culate respective attributions, add them, and then
average them to get token-wise importance scores.

Text: offense See a shrink you pathetic troll .

Ground Spans: [ 'pathetic troll' ]
Predicted Spans: [ 'pathetic troll' ]

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

(a) SpanBERT Span Prediction

Text: See a shrink you pathetic troll.

Ground Spans: [ 'pathetic troll' ]
Predicted Spans: [ 'pathetic','troll' ]

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

(b) RoBERTa Token Classification

Figure 2: Qualitative Example of Attributions - Exam-
ple 1

Text: offense Stupid is as stupid does Gump was right

Ground Spans: [ 'Stupid','stupid' ]
Predicted Spans: [ 'Stupid is as stupid' ]

(a) SpanBERT Span Prediction

Text: Stupid is as stupid does Gump was right

Ground Spans: [ 'Stupid','stupid' ]
Predicted Spans: [ 'Stupid','stupid' ]

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

(b) RoBERTa Token Classification

Figure 3: Qualitative Example of Attributions - Exam-
ple 2

We observe in Figure 2a that the Span Prediction
model performs correct prediction. However, on
average, the word ‘shrink’ gets higher importance
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Text : Why does this author think she can demand, or is owed anything from either of these two
people? One guy is a goon, the other is illiterate. They aren’t law makers, teachers, or in any kind
moral authority position. They are entertainers who get punched for her pleasure, and will likely live
out their days mentally debilitated from the repeated blows to the head.
Do we get to comb deeply through this authors personal history and determine all the groups she
owes apologies or explanations to? Why not? As an opinion maker in a national news paper and
instructor of young people, she has far, far more influence on Canadians than two ignorant punchies.
The arrogance of these pseudo-intellectual academics is astounding. Since they are so enlightened
and pure, YOU owe THEM an explanation and an apology as to why you’re so dumb and ignorant.
Ground Spans: [dumb]

BT-B-SP []
BT-B-TC [dumb, ignorant]
BT-LC [dumb, ignorant]
BT-MSP [dumb]
BT-SP []
BT-TC [dumb, ignorant]
BT-SP-TC [dumb and ignorant]
RBTa-TC(3,∩) [dumb, ignorant]
RBTa-TC∩SBT-SP(3,∪) [dumb, ignorant]
SBT-SP(3,∩) []
RBTa-TC(3,∪)∩SBT-SP []
RBTa-TC(3,∪) [go, dumb, ignorant]
RBTa-TC∪ SBT-SP(3,∪) [dumb and ignorant]
SBT-SP(3,∪) [dumb and ignorant]
RBTa-TC(3,∪)∪SBT-SP [go, dumb, ignorant]
RNNSL [ignorant, dumb, ignorant]
RNNSL-TT [goon, ignorant, dumb, ignorant]
RBTa-B-SP []
RBTa-B-TC [dumb]
RBTa-LC [on, ignorant, dumb, ignorant]
RBTa-MSP []
RBTa-SP []
RBTa-TC [dumb, ignorant]
RBTa-SP-TC [ignorant, dumb and ignorant]
RBTa-TC-TT [dumb, ignorant]
SpaCy [ignorant]
SBT-LC [ignorant, dumb, ignorant]
SBT-MSP [dumb and ignorant]
SBT-SP []
SBT-SP-TT [dumb and ignorant]
SBT-TC [ignorant, dumb, ignorant]
SBT-SP-TC [ignorant, dumb and ignorant]
TBT-SP []
TBT-TC [ignorant]
TRBTa-SP []
TRBTa-TC [dumb, ignorant]

Table 6: The prediction output of the models for an example in the test set.

241



than ‘pathetic troll’. This is in contrast with Fig-
ure 2b where the Token Detection model misses
out on space (because it only considers tokens)
and focuses more on the words ‘pathetic’, ‘troll’.
However, the word ‘shrink’ seems to be important
in both cases. This means that while Token Clas-
sification models perform better, there are cases
which are missed by these approaches. Addition-
ally, some words outside of the span may contribute
to toxicity of a particular span. We will be analyz-
ing such words in a future work.

C Model Predictions

The predictions of the various systems for one ex-
ample that is present in the test set, are listed in
Table 6. The examples provide the following intu-
ition about the data and the systems:

• The spaces in between the words are, pre-
dictably, ignored by the the token based mod-
els. Moreover, the conjunctives like ‘and’ are
ignored as well. This means that additional
post-processing of the data will lead to im-
provements in performance of token classifi-
cation systems.

• Sometimes, random words like ‘go’ and ‘on’
are selected to be toxic, which means that
these types of prepositions and verbs can be
removed by exact matching in the string, un-
less they form parts of larger spans.

• The best checkpoints of the span-based mod-
els tend to predict empty spans for the selected
example. However, when using checkpoint
ensembling, we see that union models return
accurate spans.

• The ground spans are not entirely correct and
are ambiguous. For example, it is not clear
whether the word ‘ignorant’ should be consid-
ered to be toxic. The models, based on other
examples, predict ‘ignorant‘ to be toxic, but
it is not present in the ground spans. This
means that finding the toxic spans is not a triv-
ial task for humans, and annotation can not be
performed easily by crowd-workers.

• In some cases, one of the occurrences of
the word ‘ignorant’ is considered to be toxic,
while the other is predicted to be benign. The
first instance of ‘ignorant’ does not seem to be
as toxic as the second instance and therefore,

more analysis needs to be done to determine
the ‘degree’ of toxicity of the spans. This can
be a good direction for future research.
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Abstract
Toxicity is pervasive in social media and poses
a major threat to the health of online commu-
nities. The recent introduction of pre-trained
language models, which have achieved state-
of-the-art results in many NLP tasks, has trans-
formed the way in which we approach natu-
ral language processing. However, the inher-
ent nature of pre-training means that they are
unlikely to capture task-specific statistical in-
formation or learn domain-specific knowledge.
Additionally, most implementations of these
models typically do not employ conditional
random fields, a method for simultaneous to-
ken classification. We show that these modifi-
cations can improve model performance on the
Toxic Spans Detection task at SemEval-2021
to achieve a score within 4 percentage points
of the top performing team.

1 Introduction and Motivation

Moderation is crucial to promoting healthy online
discussions. The anonymity afforded by computer-
mediated communication enables individuals to
engage in toxic behaviour which they would oth-
erwise not consider. Although many datasets and
models focusing on toxicity detection have been
released, most of them classify entire sequences
of text, and do not highlight the individual words
that make a text toxic. The Toxic Spans Detection
task at SemEval-2021 (Pavlopoulos et al., 2021)
focuses on the evaluation of systems that can accu-
rately identify toxic spans within text. Highlighting
such spans can provide more information to human
moderators in the form of attribution, instead of
an unexplained toxicity score per post, and is thus
a crucial step towards successful semi-automated
moderation. In this paper we focus on the shared
task, wherein systems are expected to extract a
list of toxic spans, or an empty list, per text. A
toxic span is defined as a sequence of words that
contributes to a text’s toxicity.

Since 2018, NLP models have adopted the con-
cept of generative pre-training on a diverse cor-
pus of unlabelled text, followed by supervised fine-
tuning on specific tasks (Radford et al., 2018). Pre-
trained models are built to simulate anthropomor-
phic learning, wherein existing knowledge can be
adapted to new tasks without the need to train on
these tasks from scratch - a requirement of tra-
ditional machine learning models. This idea of
transfer learning, whilst powerful, leads to models
being fine-tuned on target tasks using significantly
fewer epochs than was previously standard. This
reduced training on the target task means that task-
specific statistical information or domain-specific
knowledge may not be learned by these models.

Such task-specific data may include count-based
information, which has been shown to improve
the performance of pre-trained models in sequence
classification tasks (Lim and Madabushi, 2020;
Prakash and Madabushi, 2020), or domain-specific
knowledge, such as information pertaining to word
toxicity, which has been shown to be one of the
most predictive features of offensive commentary
(Noever, 2018).

Additionally, pre-trained models tend to use a
fully connected layer for classification tasks. This
classification layer, however, makes an individual
localised prediction for each token without account-
ing for predictions made on other tokens. A CRF
(Lafferty et al., 2001), on the other hand, max-
imises the probability of the entire sequence of
predictions. This makes it more effective for cases
where neighbouring predictions may influence each
other. NER is one such application, where the de-
cision to assign a certain label to a token may be
influenced by the labels assigned to neighbouring
tokens. Souza et al. (2020) combined the transfer
capabilities of BERT (Devlin et al., 2019) with the
structured predictions of a CRF, with the addition
of a CRF yielding performance improvements in
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several token-level tasks.
Thus, this work aims to test the following hy-

potheses:

Hypothesis 1 Count-based information can aid
pre-trained models in token classification tasks.

Hypothesis 2 Pre-trained models are unlikely to
capture domain-specific information. Such infor-
mation is likely to improve their performance in
token classification tasks.

Hypothesis 3 Adding a CRF, which affords a
sentence-level predictive scope, will improve pre-
trained model performance in token classification
tasks.

To ensure reproducibility, our program code,
including hyperparameters, is made available on-
line1.

2 Related Work

Count-based information has been shown to im-
prove the performance of pre-trained models in
sequence classification tasks. Lim and Madabushi
(2020) proposed an ensemble model of BERT and
TF-IDF, which combined the sentence-level infor-
mation captured by BERT with the corpus-level
information provided by TF-IDF. The ensemble
model performed 5 percentage points better than a
standard BERT model on Subtask A at OffensEval-
2020 (Zampieri et al., 2020), achieving a score
within 2 percentage points of the top performing
team. Similarly, Prakash and Madabushi (2020)
employed an ensemble model of RoBERTa (Liu
et al., 2019b) with a multilayer perceptron using
TF-IDF features as input. The ensemble model
improved upon the base RoBERTa model by 7 per-
centage points to achieve state-of-the-art results
on the RumourEval-2019 dataset (Gorrell et al.,
2019). We use these studies as a basis for our first
hypothesis described in Section 1, and employ a
similar method for incorporating TF-IDF features
described in Section 3.

Domain-specific information has been shown to
be an effective measure of toxicity. Noever (2018)
evaluated the relative predictive value of 28 fea-
tures of syntax, sentiment, emotion, and outlier
word dictionaries for online toxicity detection. By
rank-ordering features through feature selection,
the most predictive feature of offensive commen-
tary was shown to be a simple bad word list. Peder-

1https://github.com/erikdyan/toxic_
span_detection

sen (2019) compared two logistic regression classi-
fiers against a simple word list model on Subtask
A at OffensEval (Zampieri et al., 2019), with the
rule-based model performing 4 percentage points
better than either logistic regression model. Sec-
tion 3 discusses our methodology for adding word
list features, which capture key word information
in the offensive language domain, to pre-trained
models.

As discussed in Section 1, a CRF is a method
for simultaneous token classification which is not
commonly employed by pre-trained models. Souza
et al. (2020) proposed a BERT-CRF model archi-
tecture composed of a token-level classifier on top
of a BERT model followed by a linear-chain CRF.
Models with a CRF improved upon or performed
similarly to models without one on NER tasks in
the Portuguese language. This study is, to the
best of our knowledge, one of the few that directly
compares the performance of a base BERT model
against a BERT-CRF model. The improvements
arising from adding a CRF supports our third hy-
pothesis described in Section 1, which aims to ex-
plore whether similar improvements will arise in
the context of toxic span detection.

Submissions to past toxicity detection tasks at
SemEval, such as OffensEval and OffensEval-2020,
highlight how effective BERT can be for toxic-
ity detection. Liu et al. (2019a) used a fine-tuned
BERT model to achieve state-of-the-art results on
Subtask A at OffensEval, and seven of the top ten
teams used BERT. Similarly, the top ten teams
on Subtask A at OffensEval-2020 all used BERT,
RoBERTa, or XLM-RoBERTa (Conneau et al.,
2020), sometimes as part of ensemble models with
CNNs and LSTMs. (Wiedemann et al., 2020) sub-
mitted the best performing model, which used an
ensemble of ALBERT (Lan et al., 2020) models
of different sizes. The success of these models in
toxicity detection tasks led us to choose to use a
BERT-based model for this work.

3 Methodology

Our pre-trained model of choice was DistilBERT
(Sanh et al., 2020), which we used as a baseline
measure of performance. We explore and present
four models in addition to the baseline DistilBERT
model in this paper:
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1. DistilBERT+TF-IDF
2. DistilBERT+Word List
3. DistilBERT+TF-IDF+Word List
4. DistilBERT+CRF

To build a basis for comparison, all models were
trained using the training data provided by the
task organisers and evaluated against the validation
dataset. The best performing models were then
submitted for evaluation against the test dataset
during the task evaluation period. The training pro-
cess was performed five times, using a different
random seed each time. This is because varying
the random seed used in fine-tuning BERT models
can yield substantially different results, even if the
models are the same and identical hyperparameters
are used (Dodge et al., 2020). The best performing
version of each model was used for the remainder
of the study.

In Section 1, we hypothesised that adding count-
based information to pre-trained models would im-
prove model performance in token classification
tasks. TF-IDF is a count-based statistical measure
that captures corpus-level information, accounting
for global correlations and associations between
words. Use of TF-IDF captures word importance,
enabling the identification of key words. This word
importance could contribute to the identification of
a text’s toxicity, as shown by Lim and Madabushi
(2020); Prakash and Madabushi (2020). Thus, we
tested our first hypothesis by integrating TF-IDF
with the DistilBERT model.

One of the most straightforward approaches for
toxicity detection is to use a word list, whereby the
toxicity of a sequence is determined by compar-
ing the words it contains against a list of known
toxic words. Such domain-specific information has
been shown to be effective for toxicity detection
(Noever, 2018; Pedersen, 2019). We tested our
second hypothesis by adapting a word list feature
for token classification and integrating it with the
DistilBERT model.

We incorporated the TF-IDF and word list fea-
tures by modifying the DistilBERT model. First,
we removed the token classification layer on top
of the baseline DistilBERT model. Then, for the
TF-IDF feature, we appended each token’s TF-IDF
weight to its hidden state output vector. For the
word list feature, we appended a value of 0 or 1.
A value of 1 was used if the token appeared in the
word list, whilst a value of 0 was used if it did not.
These vectors were then pushed through a fully

connected layer for classification.
We tested our third hypothesis by adding a CRF,

a method for simultaneous token classification, to
the DistilBERT model. We followed the more suc-
cessful fine-tuning approach used by Souza et al.
(2020), which uses a linear classification layer and
updates all weights, including BERT’s, during train-
ing. The CRF takes the output scores from the
classification layer as input and computes the log-
likelihood of the given sequence of tags. The model
was trained to maximise the log-likelihood of the
correct tag sequence.

4 Results

Table 1 shows how the best performing version
of each model performed when tested against the
validation dataset.

Model F1 Score
DistilBERT 0.58896
DistilBERT+TF-IDF 0.58930
DistilBERT+Word List 0.59296
DistilBERT+TF-IDF+Word List 0.58613
DistilBERT+CRF 0.58615

Table 1: Best F1 score achieved by each model, tested
against the validation dataset.

We observe that the inclusion of count-based
features did improve model performance, though
the increase was very slight. A larger improve-
ment resulted from the use of a word list, whilst
model performance worsened when both TF-IDF
and word list features were used together and when
a CRF was added.

As model performance on the validation dataset
was very similar, all models were submitted to the
task evaluation stage. Table 2 shows the results of
each model tested against the test dataset, whilst Ta-
ble 3 shows how our best performing model ranked
out of the 91 participating teams.

Model F1 Score
DistilBERT 0.66937
DistilBERT+TF-IDF 0.67609
DistilBERT+Word List 0.67136
DistilBERT+TF-IDF+Word List 0.67393
DistilBERT+CRF 0.67409

Table 2: F1 score achieved by each model, tested
against the test dataset.
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Rank Team F1 Score
1 HITSZ-HLT 0.70830
2 S-NLP 0.70770
3 hitmi&t 0.69848

· · ·
25 UoB 0.67609

Table 3: Ranking and F1 score achieved by each team’s
best performing model, tested against the test dataset.

It is clear that the F1 scores achieved by all mod-
els were very similar when tested against the test
dataset, with the DistilBERT+TF-IDF model im-
proving upon the baseline DistilBERT model the
most. It is worth noting, however, that whilst this
difference is only 0.00672, that same difference
would have increased our ranking by 6 ranks had
it been added to our final F1 score. Section 5 anal-
yses the significance of the results achieved and
studies the differences between the predictions of
the DistilBERT and DistilBERT+TF-IDF models
in greater detail.

5 Discussion and Analysis

It is difficult to conclude with any certainty whether
the addition of our proposed features improved
model performance, as the scores achieved are very
similar. Whilst the increase in performance ob-
served may indeed be due to our additions to the
model, we also propose two alternative theories.

The similarity in results may be due to the rel-
ative length of the token vectors compared to the
length of the additional features. The hidden out-
put from DistilBERT represents each token as a
vector of length 768; the addition of one or two el-
ements to each token vector may not be significant
enough to discernibly impact model predictions.
That being said, there are still small variations in
performance between the models. Whilst this may
be due to the addition of new features, it may also
be due to variations in the random seed used during
fine-tuning. Our most improved model performed
0.00672 F1 points better than the baseline Distil-
BERT model - a figure within the performance vari-
ation range observed during tests involving the ran-
dom seed (the DistilBERT+TF-IDF model ranged
by 0.00922 from 0.58008 to 0.58930, for example).
Despite our efforts to counteract this, time and re-
source limitations meant we were only able to train
each model five times instead of the more rigorous
ten.

We conduct a more detailed analysis into the

predictions of the baseline DistilBERT model and
our best performing (DistilBERT+TF-IDF) model.
Tables 4 and 5 show the confusion matrix of
each model, respectively. These matrices are con-
structed using a subset of the test dataset from
which the tokens correctly predicted by both mod-
els to be non-toxic have been removed. We subset
the dataset in this way to significantly reduce the
size of the data and to remove less interesting to-
kens. Table 4 shows that the baseline DistilBERT
model tends to overpredict toxic labels, resulting
in 1466 false positives. Table 5 shows that the ad-
dition of the TF-IDF feature helps to mitigate this,
with the DistilBERT+TF-IDF model correctly pre-
dicting over 100 of DistilBERT’s false positives as
true negatives - an overall improvement of 2.5% on
this subset of the test set.

Predicted
Non-Toxic Toxic

Tr
ue Non-Toxic 202 1466

Toxic 682 1829

Table 4: Confusion matrix of the DistilBERT model
on a subset of the test dataset from which the to-
kens correctly predicted by both the DistilBERT and
DistilBERT+TF-IDF models to be non-toxic have been
removed.

Predicted
Non-Toxic Toxic

Tr
ue Non-Toxic 310 1358

Toxic 692 1819

Table 5: Confusion matrix of the DistilBERT+TF-IDF
model on a subset of the test dataset from which the
tokens correctly predicted by both the DistilBERT and
DistilBERT+TF-IDF models to be non-toxic have been
removed.

In addition to an exploration of the results and
confusion matrix, we perform an error analysis
by manually comparing the true labels and predic-
tions of the DistilBERT and DistilBERT+TF-IDF
models. We first observe that there are some in-
consistencies in the true labels. For example, the
phrase “. . . racist, sexist, narcissistic, pathological
liar . . . ” is marked as non-toxic, whereas “. . . sexist
rubbish . . . ” is marked as toxic. Another trend ob-
served is that both models struggle to correctly pre-
dict phrases containing ordinarily non-toxic words
which become toxic given the context. For exam-
ple, consider the phrases “Trump troll”, “Bunch of
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cowards”, “Total rubbish”, and “PATHETIC LIB
LOSER”. Whilst the true labels classify all of these
phrases as toxic, both models only predicted the
words “troll”, “cowards”, “rubbish”, “pathetic”,
and “loser” to be toxic.

These trends highlight some of the inherent dif-
ficulties involved in token classification tasks for
both machine learning models and human annota-
tors.

6 Conclusion and Future Work

This work explored the possibility of improving
pre-trained model performance on the token classi-
fication task of toxic span detection. As discussed
in Section 1, we hypothesised that adding 1) count-
based information, 2) domain-specific knowledge,
and 3) a CRF can aid pre-trained models in token
classification tasks. Whilst our experimental results
(Section 4) seem to suggest that all three of these
features improve the performance of DistilBERT,
we note that they do so only marginally (Section
5). Further analysis, however, showed that, whilst
the overall F1 improvement from adding TF-IDF
was small, the addition of a count-based feature
helped to reduce DistilBERT’s overprediction of
toxic tokens.

We believe that these improvements, whilst
small, provide an interesting avenue of exploration.
We intend to further explore how these and other
similar features interact with pre-trained models in
the task of token classification.
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Abstract
Social network platforms are generally used
to share positive, constructive, and insightful
content. However, in recent times, people of-
ten get exposed to objectionable content like
threat, identity attacks, hate speech, insults, ob-
scene texts, offensive remarks or bullying. Ex-
isting work on toxic speech detection focuses
on binary classification or on differentiating
toxic speech among a small set of categories.
This paper describes the system proposed by
team Cisco for SemEval-2021 Task 5: Toxic
Spans Detection, the first shared task focusing
on detecting the spans in the text that attribute
to its toxicity, in English language. We ap-
proach this problem primarily in two ways: a
sequence tagging approach and a dependency
parsing approach. In our sequence tagging ap-
proach we tag each token in a sentence under
a particular tagging scheme. Our best perform-
ing architecture in this approach also proved
to be our best performing architecture over-
all with an F1 score of 0.6922, thereby plac-
ing us 7th on the final evaluation phase leader-
board. We also explore a dependency parsing
approach where we extract spans from the in-
put sentence under the supervision of target
span boundaries and rank our spans using a
biaffine model. Finally, we also provide a de-
tailed analysis of our results and model perfor-
mance in our paper.

1 Introduction

It only takes one toxic comment to sour an online
discussion. The threat of abuse and harassment
online leads many people to stop expressing them-
selves and give up on seeking different opinions.
Toxic content is ubiquitous in social media plat-
forms like Twitter, Facebook, Reddit, the increase
of which is a major cultural threat and has already
lead to a crime against minorities (Williams et al.,
2020). Toxic text in online social media varies de-
pending on targeted groups (e.g. women, LGBT,

gay, African, immigrants) or the context (e.g. pro-
trump discussion or the metoo movement). Toxic
Text online has often been broadly classified by
researchers into different categories like hate, of-
fense, hostility, aggression, identity attacks, and
cyberbullying. Though the use of various terms for
equivalent tasks makes them incomparable at times
(Fortuna et al., 2020), toxic speech or spans in this
particular task, SemEval-2021 Task 5 (Pavlopoulos
et al., 2021), has been considered as a super-set of
all the above sub-types.

Figure 1: Toxic spans in sentences

While a lot of models have claimed to achieve
state-of-the-art results on various datasets, it has
been observed that most models fail to generalize
(Arango et al., 2019; Gröndahl et al., 2018). The
models tend to classify comments as toxic that have
a reference to certain commonly-attacked entities
(e.g. gay, black, Muslim, immigrants) without the
comment having any intention to be toxic (Dixon
et al., 2018; Borkan et al., 2019). A large vocabu-
lary of certain trigger terms leads to a biased pre-
diction by the models (Sap et al., 2019; Davidson
et al., 2017). Thus, it has become increasingly im-
portant in recent times to determine parts of the text
that attribute to the toxic nature of the sentence, for
both automated and semi-automated content mod-
eration on social media platforms, primarily for the
purpose of helping human moderators deal with
lengthy comments and also provide them attribu-
tions for better explainability on the toxic nature
of the post. This in turn would aid in better han-
dling of unintended bias in toxic text classification.
SemEval-2021 Task 5: Toxic Spans Detection fo-
cuses on exactly this problem of detecting toxic
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spans from sentences already classified as toxic on
a post-level.

In this paper, we approach the problem of mul-
tiple non-contiguous toxic span extraction from
texts both as a sequence tagging task and as a stan-
dard span extraction task resembling the generic
approach and architecture adopted for single-span
Reading Comprehension (RC) task. For our se-
quence tagging approach, we predict for each token,
whether it is a part of the span. For our second ap-
proach, we predict and compute a couple of scores
for each token, corresponding to whether that token
is the start or end of the span. In addition to this,
we deploy a biaffine model to score start and end in-
dices, thus adopting the methodology for multiple
non-contiguous span extraction.

2 Literature

Previous work on automated toxic text detection,
and its various sub-types, focuses on developing
classifiers that can flag toxic content with a high
degree of accuracy on datasets curated from vari-
ous social media platforms in English(Carta et al.,
2019; Saeed et al., 2018; Vaidya et al., 2020), other
foreign languages (Zhang et al., 2018; Mishra et al.,
2018; Qian et al., 2019; Davidson et al., 2017;
Kamal et al., 2021; Leite et al., 2020) including
code-switched text (Mathur et al., 2018a,b; Kapoor
et al., 2019) and multilingual text (Zampieri et al.,
2019). This topic has also evidenced a number of
workshops (Kumar et al., 2018) and competitions
(Zampieri et al., 2019, 2020; Basile et al., 2019;
Mandl et al., 2019).

Recent work shows transformer based architec-
tures like BERT (Devlin et al., 2019) have been
performing well on the task of offensive language
classification (Liu et al., 2019a; Safaya et al., 2020;
Dai et al., 2020). Transformer based architectures
have also produced state-of-the-art performance on
sequence tagging tasks like Named Entity Recog-
nition (NER) (Yamada et al., 2020; Devlin et al.,
2019; Yang et al., 2019) span extraction (Eberts and
Ulges, 2019; Joshi et al., 2020) and QA tasks (De-
vlin et al., 2019; Yang et al., 2019; Lan et al., 2020).
Multiple span extraction from texts has been ex-
plored both as a sequence tagging task (Patil et al.,
2020; Segal et al., 2019) and as span extraction as
in RC tasks(Hu et al., 2019; Yu et al., 2020).

Very recently HateXplain (Mathew et al., 2020)
proposed a benchmark dataset for explainable hate
speech detection using the concept of rationales.

Attempts have also been made to handle identity
bias in toxic text classification (Vaidya et al., 2020)
and also to make robust toxic text classifiers which
help adversaries not bypass toxic filters (Kurita
et al., 2019).

3 Methodology

For our sequence tagging approach, we explore
two tagging schemes. First, the well known BIO
tagging scheme, where B indicates the first token
of an output span, I indicates the subsequent tokens
and O denotes the tokens that are not part of the
output span. Additionally, we also try a simpler
IO tagging scheme, where words which are part of
a span are tagged as I or O otherwise. Formally,
given an input sentence x = (x1,...,xn), of length
n,and a tagging scheme with |S| tags (|S| = 3 for
BIO and |S| = 2 for IO), for each of n tokens the
probability for the tag of the i-th token is

pi = softmax(f(hi)) (1)

where p ∈ Rm×|S|, and f is parameterized func-
tion with |S| outputs.

Our other approach is based on the standard
single-span extraction architecture widely used for
RC Tasks. With this approach, we extract toxic
spans from sentences under the supervision of tar-
get span boundaries, but with an added biaffine
model for scoring the multiple toxic spans instead
of simply taking top k spans based on the start and
end probabilities, thus giving our model a global
view of the input. The main advantage of this ap-
proach is that the extractive search space can be
reduced linearly with the sentence length, which is
far less than the sequence tagging method. Given
an input sentence x = (x1,...,xn), of length n, we
predict a target list T = (t1,...,tm) where the number
of targets is m and each target ti is annotated with
its start position si, its end position ei and the class
that span belongs to (only one in our case, toxic).

However, to adapt to the problem of extracting
multiple spans from the sentence, instead of taking
the top k spans based on the start and end prob-
abilities, we apply a biaffine model (Dozat and
Manning, 2016) to score all the spans with the con-
straint si ≤ ei. Post this we rank all the spans in
descending order and choose every span as long it
does not clash with higher-ranked spans.
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4 Dataset

The dataset provided to us by the organizers of the
workshop consisted of a random subset of 10,000
posts from the publicly available Civil Comments
Dataset, from a set of 30,000 posts originally an-
notated as toxic (or severely toxic) on post-level
annotations, manually annotated by 3 crowd-raters
per post for toxic spans. The final character offsets
were obtained by retaining the offsets with a proba-
bility of more than 50%, computed as a fraction of
raters who annotated the character offsets as toxic.
Basic statistics about the dataset can be found in
Table 1.

Sentences Spans
Train 7939 10298
Dev 690 903
Test 2000 1850

Table 1: Number of sentences and spans

Additionally, we provide a quick look into the
length-wise distribution of spans across the train,
development, and test set in Table 2. As we observe,
the majority of the spans are just a single word in
length and mostly comprise of the most commonly
used cuss words in the English language. In our
Results Analysis section, we show how this metric
stands important for training and evaluating our
systems and for the future development of toxic
span extraction datasets.

Train Dev Test
1 7897 687 1650
2-4 1617 153 174
>=5 784 63 26

Table 2: Length-wise segregation of the number of non-
contiguous spans

5 Evaluation Metric

To evaluate the performance of our systems we
employ F1 as used by Da San Martino et al. (2019).
Let system A return a set St

A of character offsets,
for parts of the post found to be toxic. Let St

G be
the character offsets of the ground truth annotations
of post t. We calculate F1 score of St

A w.r.t St
G as

follows where |.| denotes set cardinality.

P t (A,G) =

∣∣St
A ∩ St

G

∣∣
∣∣St

A

∣∣ (2)

Rt (A,G) =

∣∣St
A ∩ St

G

∣∣
∣∣St

G

∣∣ (3)

F t
1 (A,G) =

2 · P t (A,G) ·Rt (A,G)

P t (A,G) + Rt (A,G)
(4)

If predicted span i.e St
A is empty for a post t then

we set Ft
1(A,G) = 1 if the gold truth i.e St

G is also
empty, else if St

G is empty and St
A is not empty

then we set Ft
1(A,G) = 0.

6 System Description

6.1 Sequence Tagging Approach
For our sequence tagging approach we employ
the commonly used BiLSTM-CRF architecture
(Huang et al., 2015) used predominately in many
sequence tagging problems, but with added contex-
tual word embeddings for each word using trans-
former and character-based word embeddings. We
experiment with a total of 5 transformer architec-
tures, namely BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019b),
ALBERT (Lan et al., 2020) and SpanBERT (Joshi
et al., 2020). For all of the above mentioned trans-
former architectures, the large variant of the trans-
former was used except ALBERT for which we
use its xlarge-v2 variant. First, the tokenized word
input is passed through the transformer architecture
and the output of the last 4 encoder layers is con-
catenated to obtain the final contextualized word
embedding ET for each word in the sentence. Ad-
ditionally, we also pass each character in a word
through a character-level BiLSTM network, to ob-
tain character-based word embeddings for the word
EC as used by Lample et al. (2016). Finally, both
these word embeddings, ET and EC, for each word
are concatenated and passed through a BiLSTM
layer followed by a CRF layer to obtain the best
probable tag for each word in the sentence.

6.2 Dependency Parsing Approach
For our dependency parsing approach, we employ
a similar approach as proposed by Yu et al. (2020),
using a biaffine classifier to score our spans post-
extraction. This methodology fits best to our pur-
pose of multiple toxic span extraction from sen-
tences compared to span extraction systems in gen-
eral RC tasks which are capable of extracting just
a single span from a sentence (Yang and Ishfaq).
For each word first we extract it’s BERT, FasText
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Figure 2: Sequence Tagger Model

and character-based word embeddings. We used
BERTLarge for all our experiments and used the
recipe followed by Kantor and Globerson (2019)
to extract contextual embeddings for each token.
After concatenating both the word embeddings and
character embeddings for each word, we feed the
output to a BiLSTM layer. We then apply two sep-
arate FFNNs to the output word representations x
to create different representations (hs / he) for the
start/end of the spans. These representations are
then passed through a biaffine model for scoring
all possible spans (si,ei), where si and ei are start
and end indices of the span, under the constraint
si ≤ ei (the start of the span is before its end) by
creating a l × l × c scoring tensor rm, where l is
the length of the sentence and c is the number of
NER categories + 1(for non-entity). We compute
the score for a span i by:

hs(i) = FFNNs (xsi) (5)

he(i) = FFNNe (xei) (6)

rm(i) =hs(i)
>Umhe(i)

+ Wm (hs(i)⊕ he(i)) + bm
(7)

We finally assign each span a category y′ based
on

y′(i) = arg max rm(i) (8)

Post this, we rank each span that has a category
other than non-entity and consider all the spans for
our final prediction as long as it does not clash with
higher ranked spans with an additional constraint,

whereby, an entity containing or is inside an entity
ranked before it will not be selected.

FFNN_Start FFNN_End

Biaffine
Classifier

BERT, fastText & Char Embeddings

Bi-LSTM1 Bi-LSTM2 Bi-LSTMn

Figure 3: Biaffine Model

7 Experimental Setup

Data was originally provided to us in the form of
sentences and the corresponding character offsets
for the toxic spans of the sentence. Before con-
verting the character offsets to our required format
for our respective approaches, we apply some ba-
sic text pre-processing to all our sentences. First,
we normalize all the sentences by converting all
white-space characters to spaces. Second, we split
all punctuation characters from both sides of a
word and also break abbreviated words. These
pre-processing steps help improve the F1 score of
both our approaches as shown in Table 6. Post
these pre-processing steps, we formulate our tar-
gets for both our approaches. For our sequence tag-
ging approach, we tag each word in the sentence
with its corresponding tag based on the tagging
scheme we follow, BIO or IO. For our span extrac-
tion approach, we convert the sequence of character
offsets into its corresponding word-level start and
end indices for each span. In Fig. 4, we provide
a pictorial representation of the above mentioned
procedures we follow for data preparation for both
our approaches.

We use PyTorch1 Framework for building our
Deep Learning models along with the Transformer

1https://pytorch.org/
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implementations, pre-trained models and, specific
tokenizers in the HuggingFace2 library.

We mention the major hyperparameters of our
best-performing systems experimental setting for
our dependency parsing approach and span extrac-
tion approach in Tables 3 and 4 respectively.

Parameter Value
BiLSTM size 256
BiLSTM layer 1
BiLSTM dropout 0
Transformer size 1024
Transformer encoder layers last 4
Char BiLSTM Hidden Size 25
Char BiLSTM layers 1
Optimiser Adam
Learning rate [1e-3,1.56e-4]

Table 3: Major hyperparameters of Sequence Tagger
model

Parameter Value
BiLSTM size 200
BiLSTM layer 3
BiLSTM dropout 0.4
FFNN size 150
FFNN dropout 0.2
BERT size 1024
BERT encoder layers last 4
fastText embedding size 300
Char CNN size 50
Char CNN filter width [3,4,5]
Embeddings dropout 0.5
Optimiser Adam
Learning rate 1e-3

Table 4: Major hyperparameters of Dependancy Pars-
ing model

We train all our sequence tagging models with
2http://huggingface.co/

stochastic gradient descent in batched mode with a
batch size of 8. In the training phase, we keep all
layers in our model, including all the transformer
layers trainable. We start training our model at a
learning rate of 0.01, with a minimum threshold
limit of 0.0001, and half the learning rate after ev-
ery 4 consecutive epochs of no improvement in
the F1 score of the development set. We train our
model to a maximum of 100 epochs or 4 consec-
utive epochs of no improvement at our minimum
learning rate.

We train our our model for dependency parsing
approach with Adam optimizer in batched mode
with a batch size of 32 and a learning rate of 0.0001
for a maximum of 40,000 steps. With this approach
too, we keep all layers trainable in the training
phase except the BERT Transformer layers. Pre-
trained BERT and fastText embeddings were just
used to extract context-dependent and independent
embeddings respectively and BERT was not fine-
tuned in the training phase.

The training was performed on 1 NVIDIA Titan
X GPU. Our code is available on Github3.

8 Results

In Table 5 we present F1 scores for all our systems
trained for both our sequence tagging and span
extraction approaches. For our sequence tagging
approach, we divide our results according to the
transformer architecture and tagging scheme used
for that experiment.

Model Scheme Test Dev
XLNet IO 0.6922 0.6945
XLNet BIO 0.6653 0.6683
spanBERT IO 0.6777 0.6744
spanBERT BIO 0.6887 0.6730
RoBERTa IO 0.6647 0.6967
RoBERTa BIO 0.6849 0.6789
BERT IO 0.6830 0.6814
BERT BIO 0.6852 0.6815
ALBERT IO 0.6621 0.6702
ALBERT BIO 0.6679 0.6431
Biaffine - 0.6731 0.6627

Table 5: Test and Dev Results of different models on
various tagging scheme

Our best performing architecture proved to be
the sequence tagging system with XLnet trans-

3https://github.com/Sreyan88/SemEval-2021-Toxic-
Spans-Detection
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former trained with IO tagging scheme. Addi-
tionally, in Table 6 we show how the LSTM and
CRF over the transformer architecture , and our pre-
processing step mentioned in Section 7 affect the
performance of our best performing architecture.

F1 ∆

Our Model 0.6922 -
- LSTM 0.6912 0.0010

- CRF 0.6850 0.0072
- Pre-processing 0.6759 0.1630

Table 6: Impact of LSTM, CRF and pre-processing on
learning

9 Results Analysis

9.1 Length vs Performance

We wanted to understand how the performance of
the system varied with varying lengths of spans. Ta-
ble 7 summarizes the performance of our best per-
forming systems on all approaches experimented
by us, on the test dataset spans, divided into 3 sets
according to their length in terms of the number of
words that help to make the span.

Model Span length F1
1 0.6546

Seq. Tagger (IO) 2-4 0.1750
>=5 0.0596
1 0.6588

Seq. Tagger (BIO) 2-4 0.1524
>=5 0.09198
1 0.6486

Dependency Parsing 2-4 0.0514
>=5 0.0

Table 7: Span Length vs. Performance

9.2 Learning context

Majority of single word spans in the dataset are
the most commonly used cuss words or abusive
words in the English language, i.e., words that can
be directly classified as toxic and are not context-
dependant, e.g. ”stupid”,”idiot” etc., with spans
longer than a single word having a lesser ratio of
such words. We acknowledge the fact that an AI-
based system should be able to do much more, like
learning the context behind which a word is used,
than just detect common English cuss words from a
sentence, which can be otherwise done by a simple

Figure 5: Toxicity classification of the word ”black” in
toxic and non-toxic context

dictionary search. The deteriorating performance
of the model with an increase in span length makes
us dig deeper into our test set results to find out
if our model is being able to detect context-based
toxic spans from sentences. We follow a two step
procedure to analyze this. First, we calculate our
model performance on single-word spans consist-
ing of just the top 25 most commonly occurring
context-independent cuss words4. Table 8 shows
an analysis of these results. Second, we take the
word ”black” and analyze two sentences in our test
where the word black was mentioned in a toxic and
non-toxic context. Fig. 5 shows how our model
indeed tags the latter black as toxic and the former
one as non-toxic.

Single Word Cuss Spans Others
0.6894 0.1736

Table 8: F1 score of context independent cuss words

10 Conclusion

In this paper, we present our approach to SemEval-
2021 Task 5: Toxic Spans Detection. Our best
submission gave us an F1 score of 0.6922, plac-
ing us 7th on the Evaluation Phase Leaderboard.
Future work includes independently incorporating
both post level and sentence level context for de-
termining the toxicity of a word, and also collating
a dataset with toxic spans comprising of a healthy
mixture of simple cuss words (which can always be
attributed as toxic independant of the context) and
words for which the toxicity of the word depends
on the context in which it appears, thereby mak-
ing better systems towards contextual toxic span
detection.

4List of cuss words used for analysis can be found in our
GitHub repository
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Abstract

This paper describes the system submitted to 
SemEval 2021 Task 5: Toxic Spans Detec-
tion. The task concerns evaluating systems 
that detect the spans that make a text toxic 
when detecting such spans are possible. To ad-
dress the possibly multi-span detection prob-
lem, we develop a start-to-end tagging frame-
work on the top of RoBERTa based language 
model. Besides, we design a custom loss func-
tion which take distance into account. In com-
parison to other participating teams, our sys-
tem has achieved 69.03% F1 score, which is 
slight lower (-1.8 and -1.73) than the top 1 
(70.83%) and top 2 (70.77%), respectively.

1 Introduction

In recent years, social networks and microblog-
ging sites’ popularity have increased, attracting
more users. With a huge user base, social media
will continue to publish a large amount of user-
generated content. As the use of social media
increased, other undesirable phenomena and be-
haviors emerged. Social media users often abuse
this freedom to spread abusive or hateful posts or
comments. In many cases, the user-generated con-
tent is offensive or proactive, and users may have to
deal with threats such as cyberattacks or cyberbully-
ing, and other undesirable (Warner and Hirschberg
2012). Therefore, the issue of detecting and pos-
sibly limiting the spread of toxic post has become
increasingly important.

Although several toxicity or abusive language de-
tection datasets (Wulczyn et al. 2016; Borkan et al.
2019) and models (Borkan et al. 2019; Pavlopou-
los et al. 2017; Zampieri et al. 2019) have been
released, most of them classify whole comments or
documents, and do not identify the spans that make
a text toxic. But highlighting such toxic spans can

* Corresponding author.

assist human moderators (e.g., news portals mod-
erators) who often deal with lengthy comments, 
and who prefer attribution instead of just a system-
generated unexplained toxicity score per post. The 
evaluation of systems that could accurately locate 
toxic spans within a text is thus a crucial step to-
wards successful semi-automated moderation.

For this reason, SemEval 2021 set up the task 
Toxic Spans Detection to detect and extract the 
spans that make a text toxic, when detecting such 
spans is possible (Pavlopoulos et al. 2021). To ad-
dress the possibly multi-span extraction problem, 
we develop a start-to-end tagging framework with 
custom distance loss, which can tag the start and 
end position of a toxic span. Based on this scheme, 
we can effectively deal with the multi-span extrac-
tion problem.

The rest of the paper is organized as follows: 
Section 2 provides system overview. Section 3 
describes our approach in detail. Our experiment 
is discussed in Section 4. We conclude our work in 
Section 5.

2 System Overview

2.1 Preprocessing and Word Embedding

The training dataset contains 3 columns:
ID - Contains a unique number to identify each 

training example.
Spans - Contains a list of indexes that indicates 

the position of toxic spans.
Text - Contains the text that need to detect and 

extract the toxic spans.
Note that the spans are not given in text, We 

transformed the indexes to text first. Besides, we 
append the ”negative” word to the end of each post 
serving as the indicator. We use word embeddings 
as input to the model. Word embedding is a dis-
tributed vector representation of words (Mikolov 
et al. 2013), capturing the syntactic and semantic in-
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formation of words. Effective word embedding can 
get better performance. After comparison, we use 
the RoBERTa-based pre-training language models 
as sentence encoder for word embedding.

2.2 Sequence Tagging
Sequence tagging as a general methods can be used 
in wide applications, such as named entity recogni-
tion, relation extraction, machine reading compre-
hension and so on.

The tagging scheme can be divided into BIO 
(Zheng et al. 2017), BIOES (Huang et al. 2015) and 
others, in which B denotes the first token of an 
output span, I denotes subsequent tokens in a span, 
O denotes tokens that are not part of an output span, 
E denotes the last token of an output span and S 
denotes token that is an output span.

3 Model Description

Our model has two steps as follows: 1. Concatenate 
the ”negative” word at end of each post. 2. Obtain 
the word embedding of each token in the post to 
form the final representation and predict the start 
and end probabilities for each token as output.

Figure 1 shows the general structure of the sys-
tem. More details for the systems components are 
shown in the following subsections.

3.1 Embedding Layer
As input sequence X of length T is composed of 
word tokens: X = {x1, . . . , xT }. Each token xt is 
replaced with the corresponding vocabulary index 
V (t). The embedding layer transforms the token 
into vector et ∈ Rd which is selected from the 
embedding matrix E according to the index, where 
d is the dimensionality of the embedding space.

In order to indicate the model extract toxic or 
negative spans, we append the word embedding 
vector of ”negative” to the end of each post. We 
take the mean of last two hidden layer’s weight as 
word embedding. The example of sentence con-
structed is also shown in Figure 1.

3.2 Tagging scheme
Although the classical BIOES tag based model can 
obtain competitive result, we think the training 
dataset is not big enough to learn so many tags. 
So different the above methods, we apply the start-
to-end tagging scheme that predicting start and end 
probabilities for each token. The different target se-
quence used by several loss function are as shown 
in Figure 1.

3.3 Loss Function
3.3.1 Classical Cross-Entropy Loss
At the beginning, we use the classical binary cross-
entropy loss, which creates a criterion that mea-
sures the Binary Cross Entropy between the target
and the output. The loss can be described as:

`(x, y) = L = {l1, . . . , lN}>

ln = − [yn · log xn + (1− yn) · log (1− xn)]

3.3.2 Label Smoothing Loss
Consider that, we are using roBERTa(Liu et al.
2019) as encoder, which is a large pre-trained lan-
guage model. and may cause the over-fitting prob-
lem. To prevent this, we apply the label smooth-
ing(Szegedy et al. 2015) method and change the
’0’ in the target sequence to small value 0.025. The
computation method is same with cross-entropy
loss.

3.3.3 Kullback-Leibler Divergence Loss
Besides the handcrafted label smoothing loss, we
also tried the KLDivLoss, which is a useful dis-
tance measure for continuous distributions and is
often useful when performing direct regression
over the space of (discretely sampled) continuous
output distributions.

The target sequence is the same with the above
binary cross-entropy loss. The loss can be de-
scribed as:

l(x, y) = L = {l1, . . . , lN}
ln = yn · (log yn − xn)

where the index N spans all dimensions of input
and L has the same shape as input.

3.3.4 Custom Distance Loss
We notice that the cross-entropy loss pay equal
weight to each position’s loss, no matter how far the
distance between it and the target. To penalize more
on the distant false prediction, we propose a custom
distance loss, which use an auxiliary sequence that
generated by insert equal interval from 0 to 1 center
on the ’1’ target. And use the mean dot product to
compute the distance loss.

4 Evaluation

4.1 Data
The shared task provides trail, training and testing
datasets to be used by all participants. The statistics
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Figure 1: Start-to-end Tagging Framework

of trail, training and testing dataset can be shown
in Table 1.

Trail Train Test
Without span 43 485 394

With span 647 7454 1606
Total 690 7939 2000

Table 1: Datasets for SemEval-2021 Task 5

In this task, we apply the 5-fold cross-validation
method and only use the official training data set
for training and validating.

4.2 Evaluation Measure

To evaluate the responses of a system, we employ
the F1 score, as in Martino et al. 2019. Let system
Ai return a set StAi

of character offsets, for parts of
the post found to be toxic. Let Gt be the character
offsets of the ground truth annotations of t. We
compute the F1 score of system Ai with respect to
the ground truth G for post t as follows, where ||
denotes set cardinality.

F t
1 (Ai, G) = 2·P t(Ai,G)·Rt(Ai,G)

P t(Ai,G)+Rt(Ai,G)

P t (Ai, G) =

∣∣∣St
Ai
∩St

G

∣∣∣∣∣∣St
Ai

∣∣∣

Rt (Ai, G) =

∣∣∣St
Ai
∩St

G

∣∣∣
|St

G|

If StG is empty for some post t (no gold spans are
given for t), we set F1t (Ai,G) = 1 if StAi

is also
empty, and F1t (Ai,G) = 0 otherwise. We finally

average F1t (Ai, G) over all the posts t of an evalu-
ation dataset T to obtain a single score for Ai.

4.3 Experiments

The model is implemented using Pytorch (Paszke 
et al. 2019). We experiment with RoBERTa (Liu 
et al. 2019) based pre-trained language model as en-
coder, including RoBERTa-base-squad2(Deepset), 
twitter-RoBERTa-base-sentiment (Barbieri et al. 
2020) and DistillRoBERTa-base (Sanh et al. 2019) 
And we take the average of last two hidden layers’s 
weights as embedding. Our model is trained with 
AdamW (Loshchilov and Hutter 2017) optimizer 
with initial learning rate 0.00003 and weight de-
cay coefficient 0.012. The max sequence length is 
512 and dropout (Srivastava et al. 2014) rate is 0.5 
to prevent our model from over fitting. And the 
threshold is set to 0.5. The final submission which 
scores 69.03 is equipped with both the bi-nary 
cross-entropy loss, custom distance loss and 
voting ensemble mechanism.

4.4 Results and Analysis

In order to evaluate the effect of the custom loss 
function, we compare our approach with its variant.

Variant 1: The variant only use the cross-entropy 
loss.

Variant 2: The variant only use label smoothing 
loss.

Variant 3: The variant only use Kullback-Leibler 
divergence loss.

We take DistillRoBERTa-base as encoder for 
all of the above experiments. Table 2 show that 
the variant 2 model has the lowest score, which
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Model F1 score
Variant 1 0.6662
Variant 2 0.6347
Variant 3 0.6618

Our Model 0.6754

Table 2: Performance of Our System and Its Variants

may cased by the enormous ’0’ label. Besides,
the model with binary cross-entropy loss and cus-
tom distance loss obtains the best result. Thus we
decide to use the model as our final ensembling
element.

4.5 Voting Ensemble

As mentioned above, we tried several RoBERTa
besed pre-trained language model as encoder. In
this section, we will discuss the performance dif-
ference between them.

Encoder F1 score
DistillRoBERTa-base 0.6754

RoBERTa-base-squad2 0.6793
twitter-RoBERTa-base-sentiment 0.6742

Table 3: Performance of Different Encoder

As shown in Table 3, we can find that the over-
all score’s difference is slight. But when we take 
a closer look at the performance, the result on sin-
gle example is different. And the RoBERTa-base-
squad2 encoder achieved best result, which may 
caused by the training method.

Text: ”good side of trump? are you kidding me?
trump has no good side all bad, he is divisive, a 
racist and bigot, pathological liar, scammer, tax 
cheat, sexual pervert,”

Golden Spans: [’pathological liar’, ’scammer’, 
’sexual pervert’]

DistillRoBERTa-base: [’racist and bigot’, ’sex-
ual pervert’]

RoBERTa-base-squad2: [’racist’, ’scammer’, 
’sexual pervert’]

twitter-RoBERTa-base-sentiment: [’racist and 
bigot, pathological liar, scammer’, ’sexual pervert’]

As shown above, Complementing and correcting 
each other may improve the overall performance 
due to the difference. This is exactly what ensemble 
learning is good at. Ensembling of several models 
is widely used method to improve the performance 
of the overall system by combining predictions of

several models, such as as for they provide comple-
mentary information.

Considering this, we decide to apply the model
ensemble methods, particularly the vote mecha-
nism was applied. In which, if the number of oc-
currences of one index is bigger than 3 in the all
above model’s predictions, the index will be add to
the final result, otherwise it will be exclude. The
ensemble result obtains 69.03% F1 score on the test
data set without any rule correction or dictionary
based post process. Our model ranks in the top 10
among nearly 100 participating teams with slight
lower (-1.8 and -1.73) than the top 1 (70.83%) and
top 2(70.77%), respectively.

5 Conclusion and future work

In this paper, we propose a start-to-end tagging
framework with custom distance loss function for
SemEval-2021 Task 5. The performance of our
model which is equipped with distance loss and
voting mechanism better than its variants. But the
distance loss target is assigned manually, which
may have low generalization ability to different
data set and task. We will try to improve its perfor-
mance and apply this tagging scheme to other task
in future work.
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John Pavlopoulos, Léo Laugier, Jeffrey Sorensen, and
Ion Androutsopoulos. 2021. Semeval-2021 task 5:
Toxic spans detection (to appear). In Proceedings of
the 15th International Workshop on Semantic Evalu-
ation.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017. Deeper attention to abusive
user content moderation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1125–1135, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2015. Re-
thinking the inception architecture for computer vi-
sion. CoRR, abs/1512.00567.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceedings
of the Second Workshop on Language in Social Me-
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Abstract
This paper presents our system submission to
task 5: Toxic Spans Detection of the SemEval-
2021 competition. The competition aims at
detecting the spans that make a toxic span
toxic. In this paper, we demonstrate our
system for detecting toxic spans, which in-
cludes expanding the toxic training set with
Local Interpretable Model-Agnostic Explana-
tions (LIME), fine-tuning RoBERTa model for
detection, and error analysis. We found that
feeding the model with an expanded train-
ing set using Reddit comments of polarized-
toxicity and labeling with LIME on top of
logistic regression classification could help
RoBERTa more accurately learn to recognize
toxic spans. We achieved a span-level F1 score
of 0.6715 on the testing phase. Our quantita-
tive and qualitative results show that the pre-
dictions from our system could be a good sup-
plement to the gold training set’s annotations.

1 Introduction

Toxic messages remain a small but persistent part of
online communications (Fortuna and Nunes, 2018;
Jurgens et al., 2019). NLP methods have been
developed to identify these comments, often rely-
ing on deep-language models (Vidgen et al., 2019).
However, the part of the message that is specifi-
cally toxic is often unknown. Such information is
useful not only for validating and explaining the
judgments of models (Carton et al., 2018), but can
also be useful for moderators to use when making
decisions and working with these models in their
deployment (Carton et al., 2020; Liu et al., 2021).
This paper describes our model1 and error analysis
for SemEval-2021 Task 5: Toxic Spans Detection
(Pavlopoulos et al., 2021).

Our model uses a deep learning approach to
identify which tokens are toxic. The approach

1The code is available at https://github.com/
davidjurgens/offensive-span-detection.

is motivated by two strands of prior work show-
ing (1) that large language models can effectively
serve as sequence-to-sequence (seq2seq) models
and (2) that pre-training on a similar task can im-
prove downstream performance (Phang et al., 2018;
Gururangan et al., 2020). Here, we treat the toxic-
span detection tasks as a seq2seq task, where given
a sequence of tokens, the model outputs per-token
judgments of whether the token is in the toxic
span. Given the limited training data for Task
5, we increase our training data by generating a
silver-standard set of span judgments from LIME
explanations (Ribeiro et al., 2016) fropm a model
trained to recognize toxic and non-toxic language.
These additional judgments are intended to help
the model learn the basic span recognition task and
identify general toxic language, before fine-tuning
on the Task 5 data.

2 System Description

Our core system relies on a standard RoBERTa
model (Liu et al., 2019) that is trained on a
sequence-to-sequence task in two phases. The first
phase pretrains the model with heuristically-created
spans, gathered from Reddit comments labeled for
their toxicity. The second phase fine-tunes this
model on the organizer-provided data. Figure 1
shows the overview of the system. All the data
used in the paper is in the English language.

2.1 Pretraining to Recognize Toxicity

To identify toxic spans, we hypothesize that pre-
training the RoBERTa model on a similar task
would lead to better downstream performance.
Therefore we generate a similar dataset (silver
dataset) to the training data (gold dataset) and
heuristically label it with spans by using LIME
(Ribeiro et al., 2016) on a toxicity classification
task.
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Gold Dataset
~7k

Reddit Dataset
~800k

LIME on (TF-IDF + Logistic Regression)

Evalution

Silver Dataset
~400k toxic + (0, 200,

400)k nontoxic

Pre-trained RoBERTa 

Train on RoBERTa-base

Fine-tuned RoBERTa

Fine-tuning

Figure 1: Diagram of our data and architecture. The
central hypothesis tested is whether pre-training a
RoBERTa model on machine-generated rationales for
toxicity could improve performance.

Data Silver data was drawn from a sample of all
Reddit comments made between January to June
2018. As social media data, these comments con-
tain similar lexical and syntactic patterns as the
social media comments data as the gold standard,
which was made on the Civil Comments platform.
Prior work has shown that pre-training RoBERTa
models to recognize this type of social media data
improve downstream performance (Nguyen et al.,
2020). However, Reddit posts can vary substan-
tially in their length. To avoid introducing con-
founding effects from pre-training a model on posts
of substantially different lengths, we compute the
Inter-quartile Range (IQR) of the lengths of Reddit
comments and remove all comments identified as
outliers. This process effectively removes very long
or very short comments. Ultimately, the mean num-
ber of words in the training data and Reddit data
are roughly similar: 35.87±34.92 words (mean and
standard deviation) in the training data, compared
with 36.79±30.57 in the Reddit data.

Identifying Toxic Comments The Reddit data
contains a mix of toxic and non-toxic conversations,
which we aim to use for training. To identify toxic
conversations, we use the Perspective API to label
all comments in the dataset (Wulczyn et al., 2017).
The API returns a continuous score reflecting the
degree of a comment’s toxicity. This toxicity score
is then converted into a binary label to use in train-
ing a LIME model to generate rationales for why a
comment is (or is not) toxic. We follow the insights
from Hua et al. (2020) and set a threshold of 0.7,
above which a comment is considered toxic and
0.3, below which the comment is non-toxic. These
thresholds were intended to help create easy ex-
amples of toxic language for generating rationales
as a way of scaffolding the learning for the down-
stream task. This process led to a labeled dataset
of 288.5M comments with binary toxicity labels,
of which 9.4% were labeled toxic.

Generating Heuristically-Labeled Toxic Spans
Our final silver dataset is created by sampling com-
ments from the larger labeled Reddit comments
and using a LIME model to generate toxic span
labels. LIME is a form of interpretable machine
learning that explains the decisions of a classifier
using a local approximation to identify which fea-
tures led to a classification decision. Here, we use
a simple logistic regression (LR) model trained
on TF-IDF features and use LIME to generate a
rationale of the classifier’s decision which identi-
fies which words are contributing to the toxicity
decision. The underlying LR model is trained on
a balanced sample of 800K toxic/non-toxic com-
ments (not the silver data). This balanced sample
is derived in the same way as silver data. The
model’s hyperparameters were tuned using 10-fold
cross-validation, with thae learning rate of 0.01 and
strength of the regularization (C) at 1 under L1 loss.
In a test of a held-out 200K instances, the model
attained a binary F1 of 0.985.

Our silver data is created by generating LIME
explanations using the trained LR classifier on a
separate 800K comments balanced between toxic
and non-toxic. This size is roughly 100x the Task-
provided data. In generating explanations, LIME
assigns local weights to each token on its weight to
drive the correct prediction. To create toxic spans
from these continuous-valued weights, we apply
a threshold above which we consider the token
as the toxic span. The threshold was identified
by generating LIME explanations for all of 8629
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documents from the Task’s training data and then
choosing the threshold that maximized the Span F1
between the 8629 training documents’ toxic spans
and the discretized LIME explanations, using a grid
search with a step of 0.001 in [0.05,0.50]; the final
threshold was set to 0.169.

2.2 Model Training

Our model uses a common RoBERTa base and dif-
fers according to which data the model is trained on.
The pre-training setup trains a RoBERTa model on
a seq2seq task where the input sequence of tokens
generates a binary sequence denoting whether the
input token was inside or outside of a toxic span.
Due to the dataset sizes, pre-training was done for
one epoch. The fine-tuning setup starts from either
the off-the-shelf RoBERTa parameters or from a
RoBERTa model initialized through silver-data pre-
training. This model is trained in the same way as
in pre-training on a binary seq2eq task using the
Task-provided data. Models are fine-tuned for 10
epochs and parameters are chosen using the epoch
with the best performance on the trial data.

In internal testing, we compared models that
have been pre-trained, fine-tuned, or both, using
varying amounts of silver data. All hyperparameter
choices are reported in the Appendix A.

3 Results

Our best model attained a Span F1 of 0.672, and
although close in score to the top result (0.708),
was ranked 30 in the Task. Surprisingly, this best-
performing model did not make use of the pre-
training on silver data. To better understand the
performance, we ran two follow-up analyses to
test how different strategies for training affected
performances and an error analysis for what were
common themes in errors.

3.1 Does Pre-training Make a Difference?

In assessing the impact of pre-training, we analyze
the submitted model along with five other mod-
els: (1) a fine-tuned model using a batch size of
8, (2) a pre-trained only model that makes no use
of the Task data, and (3-5) pre-trained and fine-
tuned models that use different amounts of silver
data. The performances of all models are shown in
Table 1.

For the initial comparison, we contrast the fine-
tuned model (Table 1, Row 1; denoted FT) with
the pre-trained and fine-tuned model on all silver

Model Batch Size Silver Data F1
FT 8 N/A 0.675
FT 16 N/A 0.672†

PT 8 400k/400k (1:1) 0.613
PT + FT 8 400k/0 (1:0) 0.660
PT + FT 8 400k/200k (2:1) 0.660
PT + FT 8 400k/400k (1:1) 0.659

Table 1: Performance at recognizing toxic spans (Span
F1) for models trained on just the Task-provided
training data (baseline), Pre-Trained (PT) on different
amounts and ratios of silver data, and Fine-Tuned (FT)
on training data. Ratios denote the number of non-
toxic:toxic examples. † is the model submitted to the
Task.

data (Table 1, Row 6; denoted PTFT). Both models
agree on 1281 (65%) of the 2000 test instances.
For these agreed cases, both models attain a Span
F1 of 0.776—higher than either models regular
performance. In these matching predictions, the
ground-truth spans have an mean length of 1.13
tokens, mainly concentrated on commonly-labeled
offensive words, like “morons”, suggesting that
both models are adept at identifying overtly toxic
words. In contrast, for the 21 test documents whose
spans have ≥5 words, both models perform poorly
with a Span F1 of 0.3489 for the FT model and
0.2077 for the PTFT model.

The FT model performs considerately better than
PTFT model on documents with ≥5 tokens la-
beled as ground-truth spans, which is likely due
to differences between the LIME-labeled data and
the Task’s training data. For example, the LIME
model generates spans ≥5 tokens in only 693 of
the 800K silver context, suggesting LIME tends to
give shorter toxic span labels.

This bias affects the downstream model perfor-
mance in the test set where 29 of the 2000 test con-
texts have a span of≥2 consecutive toxic words. In
those contexts, the FT model achieves a mean Span
F1 of 0.523 while the PTFT model has only 0.369.
Indeed, the FT model produces spans (average span
length: 19.0345) that are ∼224% longer than the
PTFT model (average span length: 8.4828). This
difference is more obvious than the overall predic-
tion results, as seen in Table 2.

In the remaining cases where the FT and PTFT

model predictions differ, the FT model has 296 pre-
dictions with a better Span F1 score, of which 216
predictions have longer span. For example, in test
context 100, “Stupid is as stupid does Gump was
right,” both of the “stupid” tokens are highlighted
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Span Size FT model PTFT model
Characters 9.30 ± 6.44 7.05 ± 3.48

Tokens 2.14 ± 1.72 1.61 ± 1.00

Table 2: Differences in model prediction length shows
that pretraining on LIME-generated toxicity rationales
(PTFT) generally produces shorter spans at both span
and token levels.

by the FT model, while the PTFT model only labels
out the first “stupid”.

However, the tendency of the FT model to pre-
dict longer spans does not always yield higher per-
formance. The PTFT model has 237 predictions
with better Span F1 scores.

The FT model has a longer span prediction in
the 202 of the 237 predictions, but the qualitative
results are very different from the above-mentioned
example. In multiple cases when the ground-truth
spans are empty, the PTFT model can also predict
empty spans. However, the FT model has a lower
tendency to predict empty spans in those cases. For
example, in non-toxic test context 3, “The paral-
lels between the ANC and the Sicilian Mafia are
glaring...”, the FT model labels “Sicilian” as toxic,
while the PTFT model output is (correctly) empty.

Looking at contexts where there are no underly-
ing toxic spans, the two models perform slightly
differently. There are 394 out of 2000 test contexts
with empty ground-truth spans. For those contexts,
the FT model only gets a mean Span F1 score of
0.058, while the PTFT model gets 0.079.

In contrast to the FT model, the PTFT model has
less-accurate predictions on the overtly/commonly
toxic spans. For example, there are 430 total
“stupid” or “stupidity” related words labeled as
toxic by the ground-truth spans. The FT model
is able to label 383/430 as toxic, while the PTFT

model only labels 331/430. As we know, words
like “stupid” can be more contextually-sensitive
when compared to other common offensive words.
They could be used in a toxicity-neutral way in
many contexts. In the PTFT model’s pre-training
phase, we fed 400,000 non-toxic documents for the
RoBERTa model. These non-toxic documents sup-
plied more non-offensive context for certain toxic
words than the small-sized gold dataset. The extra
contextual information learned by the pre-trained
model can somehow decrease the performance of
the PTFT model.

3.2 Common Themes in Errors
From the error analysis in the above section, we
have noticed that the PTFT model does not per-
form well when it comes to predicting long toxic
spans, empty toxic spans, and toxic phrases. With
a deeper dive into the differences between PTFT

model predictions and ground-truth spans, we can
get a better sense about how is our PTFT model
doing and what insights could be recommended for
annotators.

In order to perform both qualitative and quantita-
tive error analyses, we randomly sampled 200 test
contexts where predictions from the PTFT model
do not conform with ground-truth labels. The over-
all mean Span F1 score on those mispredictions
is 0.289; compared to the random sample with a
mean of 0.274. We categorize the mistake types
from the sampled contexts and provide examples
in Table 3.

Model Errors The first four categories (Cate-
gory 1–4) in Table 3 demonstrate the mistakes
made by the PTFT model and ground-truth annota-
tions.

Category 1 shows where the PTFT model iden-
tifies valid toxic spans not present in ground truth,
which accounts for 101 (50.5%) of the model er-
rors in the 200 sampled contexts. In these cases,
annotators marked nothing as toxic in 58 contexts.
However, most of the overlooked toxic spans are
overly-common toxic words like Examples 491 and
1374 in Table 3.

In comparison, in Category 2, there are 81 out of
200 sampled contexts with unmarked toxic span la-
bels in the PTFT model output, in which the PTFT

model produced an empty span or an incorrect span
as toxic in four cases. Example 642 in Table 3
shows a typical case were a relative rare toxic word,
“caca,” is overlooked by the model. In the remain-
ing cases, the PTFT model has shorter predictions
than the ground truth toxic spans, matching the
low performance on predicting longer toxic spans
(§3.1). In some cases, when multiple toxic spans
exist in the same document, ground truth only la-
bels one or two spans of them (e.g. Examples
1852 and 1486). While in other cases, ground truth
would label more toxic spans (e.g. Example 346).
The inconsistencies from ground truth annotations
occur more when it comes to the multiple-word
labeling, which will be described more in the next
analysis for Category 5.

The missing labels from both scenarios are
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Category % Examples

1. Toxic not labeled by
ground-truth spans

50.5
491. this guy is an idiot . I’ll disclose I’m male....
1374. That is a bunch of horse sh*t .
1776. Stupid leftists. Stupid Democrats. I sincerely..

2. Toxic not labeled by the
PTFT model

40.5

1852. That’s because Floater sucks . That dudes voice is
so fucking annoying!
1486. uhhh Hillary Clinton is a serial killer and thief
346. ...Drivers in Anchorage are lazy, stupid and impa-
tient...
642. What a load of caca!! ...

3. Not toxic but labeled by
ground-truth spans

0.5 876. Ergo, America is overrun with the insane.

4. Not toxic but labeled by the
PTFT model

13.5 273. Extremist Muslims want to kill infidels. Moderate
Muslims cook the extremists a hot lunch.
1802. either you can afford to lose $1300. in an hour or
you’re a moron

5. Inconsistent
multiple-word/phrase
annotation by ground-truth

4

773. Very true. Still sick bastards .
1496. Trump is an impulsive idiot . He will get us all
killed.
1776. Stupid leftists. Stupid Democrats. I sincerely
believe...
1447. Brooks, would you please join the damn Democrat
party and be done with it ?

6. Inconsistent word annotation
by ground-truth

41.5

968. ok then you dont use gasoline, plastic or such anything
else right??? ya hypocrite bs stupidity as usual
348. ...Hawaii Democrats deny ordinary citizens their con-
stitutional right to self-defense with firearms, including
concealed carry... Hypocrites !

7. Inconsistent repeated word
annotation by ground-truth

2

413. There is a difference between being tolerant and be-
ing stupid . She and her supporters want America to be

stupid .
137. I cannot fathom the stupidity of McCain believing

any cooperation from the ... The man must be the stupidest
person in D.C.

8. Inconsistent sentence
annotation by ground-truth

12.5
894.You are a nut ball.
1374.That is a bunch of horse sh*t .

Table 3: An error analysis of 200 predictions of our PTFT model relative to the ground-truth span. All of the
sample contexts in the Examples column begin with the context index starting from 0. The first four categories
show the differences in between the toxic spans labeling from PTFT model (shaded in blue) and the ground-truth
span (bolded). The last four categories show the commonly-seen inconsistencies existing in the ground-truth
annotations. Within the last four categories, examples are shown in pairs. Within each pair of examples, the upper
example shows the suggested toxic spans based on the majority decisions made by the test context annotation
(shaded in yellow) and the ground truth labeling decision by the annotators (bolded). In contrast, the lower example
within each category shows where the consistency of annotation breaks compared to the upper example.

straight-forward in their formats and contexts. Be-
sides, there are 20 contexts that both the ground-
truth spans and PTFT model missed the toxic span
partially or completely.

Generally, ground truth annotation seldom labels
non-toxic spans as toxic (Category 3). On the con-
trary, it is common for our PTFT models to make
mistakes on labeling non-toxic spans (Category
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4). It happens mostly in the cases when the PTFT

model misinterprets the context (e.g. Examples
273 and 1802).

Inconsistencies in Ground Truth Labels The
last four categories (5–8) in Table 3 show common
inconsistencies in annotation decisions, which we
hope could aid in improving consistency in future
work.

In Category 5, the standard for spans labeling
is not consistent for which words are included in
the toxic phrase. In some cases, when a sentence is
fairly short (< 5 words) and contains toxic words,
the ground truth annotation would label out the ad-
jective used for describing the trailing noun (e.g.
Example 1469). However, in other cases (e.g. Ex-
ample 773), the standard would change by skipping
the adjectives. Moreover, this inconsistent annota-
tion also occurs in the case when the underlying
nouns are almost the same (e.g. Examples 1447
and 1776).

Categories 6 and 7 comprise the majority of the
inconsistencies in the annotation standards by the
ground truth. These inconsistencies commonly
manifest for frequent toxic words. For instance, in
Examples 968 and 348, both of the ”hypocrite(s)”
should be toxic given the context and there is no
more than one other toxic word within the docu-
ment. The omission of common toxic words is the
major source for this category. In many cases, the
subtle variations of the document context would
make it even harder to maintain a unified standard
across different annotators. Hence, the introduction
of some model-based labeling (or checking) could
greatly improve the inconsistencies of this case.

In the sampled contexts, 25 documents consist of
only one sentence. Annotators varied in how much
of these contexts to label (Category 8), occasion-
ally marking the entire sentence as offensive (20%
of these single-sentence contexts), as in Example
894. However, in a few cases (4 of 25), annota-
tors labeled nothing as toxic (e.g. Example 1374).
Interestingly, 9 of 25 cases where ground truth ei-
ther labels the entire sentence or nothing, our PTFT

model is able to identify the toxic word(s), suggest-
ing the model is still effective for short contexts.

4 Discussion and Future Work

Based on error analysis, our PTFT model suffers
from low performance when generating predictions
on non-toxic contexts or long toxic spans. A modi-
fied error function that rewards for edge-case sce-

narios can potentially improve the PTFT perfor-
mance. Moreover, during the pre-training, we ap-
plied a simple-cutoff on the local weights to make
labeling decisions for LIME explanations. The
cutoff was determined solely based on evaluations
with the Task data. If the LIME labeling could
introduce more robust variants in the loss evalua-
tion, the silver data span labeling might be more
representative of the Task data’s annotation logic.

Through comparing silver data with the gold
data, we find the toxicity of some words is influ-
enced by the broader linguistic environment. While
the silver and gold data both consist of online com-
ments, their time spans and topics are very different.
The gold data uses contexts from 2015-2017 and
has a concentration on political news; while the
silver data covers 6 months of 2018 with no fo-
cused topics. Our qualitative analysis finds that the
addition of non-toxic examples in the silver data
influenced the model to consider overly common
toxic words less toxic than they were in the gold
data. Future work is needed to identify the opti-
mal ratio of the toxic and non-toxic samples and to
address domain/register differences in the data.

Last, the current approach could invite several
natural improvements. For example, in the pre-
training phase, we used TF-IDF embedding and lo-
gistic regression for the base of LIME explanations.
This combination was chosen for its efficiency in
the LIME training phase. However, many other em-
bedding and model combinations rendered much
better classification results, which may generate
better rationales for pre-training.

5 Conclusion

We presented our system for SemEval-2021 Task
5 on Toxic Span Prediction. Our initial approach
used explainable machine learning (LIME) to gen-
erate a heuristically labeled span dataset, which
was used to pre-train a RoBERTa model to rec-
ognize toxic spans. However, our results show
that when fine-tuned on the task data, the resulting
model generates slightly shorter explanations and
ultimately performs slightly worse than a model
trained only on the Task’s training data—likely due
to bias towards shorter spans generated by LIME.
In our subsequent error analysis, we show that the
majority of our model’s errors (50.5%) are associ-
ated with missed annotations in the ground truth,
suggesting that actual model performance may be
higher in practice.
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Abstract
Simultaneous span detection and classification
is a task not currently addressed in standard
NLP frameworks. The present paper describes
why and how an EncoderDecoder model was
used to combine span detection and classifi-
cation to address subtask 2 of SemEval-2021
Task 6.

1 Introduction

Task 6 of SemEval-2021 studies the detection of
persuasion techniques (Dimitrov et al., 2021). The
task considers English language memes, which in
subtasks are to be classified, divided into classified
fragments having a begin and end, and classified
when text is combined with images.

Of the three subtasks described in the paper, the
present paper primarily addresses resolving subtask
2:

Given only the ”textual content” of
a meme, identify which of the 20 tech-
niques are used in it together with the
span(s) of text covered by each technique.
This is a multilabel sequence tagging
task.

The figure below illustrates span detection and
classification for three technique classes for a
meme.

Figure 1: Span detection and classification: overlap-
ping spans and spans extending over multiple sentences

In the above figure the ellipsis at the end of the
sentence denotes the continuation of the second

sentence. Note that loaded language and name
calling both apply to the same span, that is, the
word ”CRACKHEAD”. Note furthermore, that the
span for smears overlaps with both of these spans
and ranges over more than one sentence.

The present paper describes a novel approach to
resolving these requirements by generating XML-
like start and end tokens to delineate spans. The
following illustrates this for the message in figure
1.

<SMEARS>
WHY DO THEY KEEP SAYING RELEASE THE
<LOADED−LANGUAGE>
<NAME−CALLING>
CRACKHEAD
</NAME−CALLING>
</LOADED−LANGUAGE>
? “n HUNTER ...
</SMEARS>

It attained an F1 score on the test set that is
about in the middle of the baseline and the highest
ranking score.

The choice of this approach of generating
markup to identify spans was made on the basis
that it was technically possible, easily understand-
able at a behavioral level of input and output, and
using a model that is pre-trained for dealing with
spans. The aim was not so much to attain the high-
est score as to explore how effective this approach
is in a proof-of-concept and what problems need to
be overcome to bring it to good performance.1

2 Background

Propaganda messages are constructed using spe-
cific rhetorical techniques. The current task is to
identify within a message in what fragment a par-
ticular technique is invoked.

1The code for the described system is avail-
able at: https://github.com/ceesroele/
SemEval-2021-Task-6.
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A simpler task is to identify fragments of a mes-
sage in which any propaganda technique is used.
Effectively, this comes down to classifying any
part of a message as being either propaganda or
not. It is a sequence labeling problem that can be
resolved for example using a BIO tagging format,
where BIO stands for Begin, Inside, and Outside.
To classify a span of tokens as propaganda we can
use B-PROP to designate the begin of the span,
I-PROP to indicate the token being inside the ear-
lier begun span, and O to designate a token not
being part of a span. (Chernyavskiy et al., 2020).

For our case this approach can be extended
by adding new labels for each technique, e.g.
B-SMEARS, I-SMEARS, B-NAME-CALLING,
B-LOADED-LANGUAGE, and so on for all
twenty technique classes. But looking at
figure 1 we see that if CRACKHEAD is
a token, we have to simultaneously label
it as I-SMEARS, B-NAME-CALLING, and
B-LOADED-LANGUAGE. The extension of the ap-
proach by just adding labels is not applicable to our
situation in which spans can overlap.

One solution for this problem is to retain
the assumption that each input token is to be
tagged, but add virtual depth. This approach
was taken for the PRopaganda persuasion
Techniques Analyzer (PRta) (Da San Mar-
tino et al., 2020). It is based on an architecture
where each input token maps to as many output to-
kens as there are technique classes, plus one extra
for no technique. Additionally, it uses a comple-
mentary output indicating confidence of any propa-
ganda technique being present at the sentence level,
which is used as a gate for predicting the presence
of any specific techniques.

The sequence labeling method described at the
beginning of this section is effectively a sequence-
to-sequence translation, where the input and output
sequence consist of the same number of tokens.
This allows us to match input with output based
on position. To generate a marked up version of a
message we need to allow an output sequence to
have a length that differs from the input sequence.

By using an EncoderDecoder model we can gen-
erate arbitrary transformations of an input message
including changing its length. This can be used
for abstractive dialogue, question answering, and
summarization. A state of the art EncoderDecoder
model is BART, a denoising autoencoder built with
a sequence-to-sequence model. (Lewis et al., 2020).

BART uses a standard Tranformer-based neural
machine translation architecture to couple a bidi-
rectional encoder with a left-to-right decoder. Pre-
training BART was done by first corrupting text
with an arbitrary noising function and then training
a sequence-to-sequence model to reconstruct the
original text.

2.1 Data
There are two datasets available for task 6. The
first is the Propaganda Techniques Corpus (PTC)
dataset from SemEval-2020 Task 11. It consists
of about 550 English language news articles in
which spans - defined by begin and end positions
- have been annotated with one out of 18 propa-
ganda techniques. In practice a number of these
techniques have been combined. For example, the
three techniques whataboutism, straw men, and
red herring have been conflated into the single
label whataboutism,straw men,red herring. As a
result, the dataset has effectively been annotated
with 14 labels. Moreover, these composite labels
don’t identify individual labels in the 2021 dataset,
which makes them unsuitable for training. That
leaves only 12 usable labels in the PTC.

The 2021 dataset consists of about 660 English
language memes. These are short texts consist-
ing of mostly short sentences and relatively many
uppercase characters. Here fragments have been
identified by start and end indexes and are labeled
with one of a total of 20 classes. The differently
labeled fragments may overlap, that is, a certain
span of text may belong to fragments belonging to
different classes.

The table below shows the number of fragments
per dataset, the average number of words per frag-
ment, the number of fragments spreading over
more than one sentence, and the relative number
of uppercase characters in fragments ( upper / (up-
per+lower)).

Dataset Spans Words > 1 Upper
PTC 2020 5610 8.6 223 0.04
Memes 2021 1497 7.6 224 0.53
Total set 7107 8.4 447 0.14

Table 1: Data

Regarding the data, we make the following ob-
servations:

• For 8 of the classes there is data only in the rel-
atively small 2021 memes dataset, which with
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many short sentences and a lot of uppercase
is structurally different from the PCT 2020
dataset

• For some classes as much as half the charac-
ters in their fragments are in uppercase

• The median number of words in a fragment
significantly varies per class. E.g. smears,
causal oversimplification , and whataboutism
have median numbers of words of respectively
16, 20, and 25, while name calling/labeling,
loaded language , and repetition have median
numbers of words of respectively 3, 2, and 1.

• The median number of sentences by frag-
ments is 1 and for a handful of classes 2.

The above findings will inspire a number of
choices specified in the Experimental Setup below.

2.2 Pre-training is key
The success of language models like BERT (Devlin
et al., 2019) derives in great part from a division
of labor and domain. In the first step, a model is
trained on a large body of unmarked data. This
results in a model that has many linguistic rela-
tions represented in its weights, but that by itself
is of little use. In the second step, that resulting
pre-trained model is fine-tuned with data from a
specific domain.

Given the comparative smallness of the two
datasets at our disposal, leveraging pre-training
can be expected to greatly enhance the quality of
predictions.

However, it is worth considering what the pre-
training entails. Take BERT. It was trained in part
on English Wikipedia articles. But now we are
looking at memes full of uppercase characters, con-
taining persuasion techniques that we hope are not
used in Wikipedia. Said differently, the data the
model was pre-trained on might not be representa-
tive for our domain.

More abstract, but no less important, is the
method of pre-training. Is the used method of
Masked Language Modeling (MLM) supporting
our task? We are interested in spans of text, possi-
bly running across multiple sentences. Besides next
sentence prediction, BERT’s methodology primar-
ily consists of replacing a percentage of individual
tokens with a mask token. However effective this
may be, it is not optimized for spans.

SpanBERT (Joshi et al., 2020) is effectively
BERT trained with a different masking method:

• mask contiguous random spans, rather than
random tokens, and

• train the span boundary representations to pre-
dict the entire content of the masked span,
without relying on the individual token repre-
sentations within it

SpanBERT outperforms BERT substantially on
span selection tasks such as question answering
and coreference resolution.

The present paper concerns a specific implemen-
tation for span detection and classification. Under-
standing pre-training helps us understand both why
the presented system has a certain success and what
its limitations are.

3 System overview

3.1 Generating markup

As sketched in the Background section, the prob-
lem we need to resolve is how to simultaneously
represent a span of text and one of a multitude of
labels. Our solution is to step away from attempts
to map onto a classification structure and instead
regenerate the original text, but now with XML-
like markup to indicate the start, end, and class of
each fragment.

We regenerate the input text using an EncoderDe-
coder model. Popularly expressed, it reads a text,
and then generates a sequence of words. In order
to add our markup for fragments we need two help
functions, let’s call them encipher and decipher.
The encipher function takes text plus metadata on
fragments and converts this into a string with XML-
like markup. We need this to create our training
data. The decipher function takes a string includ-
ing XML-like markup and extracts metadata in the
form of start, end, and class from it.

For each of the labels, the names for our tech-
nique classes, we create a start tag and an end tag.
In order to let the tokenizer treat them each as sin-
gle tokens, we add all these tags as tokens to the
tokenizer.

3.2 Using the BART EncoderDecoder model

In principle it is possible to implement Encoder
and Decoder on the basis of taking a pre-trained
model for each, e.g. RoBERTa for the Encoder
and BERT for the Decoder. Finding from a single
trial was that in such a setup training went very
slow and outcome was dissatisfactory. Instead we
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selected BART (Lewis et al., 2020) as an integrated
EncoderDecoder model.

BART has a number of pre-training methods
that are of interest in trying to understand its perfor-
mance. Only the first one is part of the pre-training
methodology of BERT.

• token masking, like BERT

• token deletion, random tokens are deleted
and the model must decide which positions
are missing tokens

• text infilling, a number of spans with varying
lengths are sampled and replaced with a single
mask token. Note that this is different from
SpanBERT pre-training where each token of
the span is replaced with a mask token.

• sentence permutation, sentences are shuf-
fled in random order

• document rotation, a token is randomly cho-
sen and the document is rotated to start with
that token

We will get back to this when we evaluate the
result.

3.3 Easy to generalize
Recuperating, we initialize the model by adding
start and end tags for each technique class to the
tokenizer. We use encipher to create marked up
versions of input texts to train the model. To obtain
fragments for given inputs we must decipher gener-
ated marked up texts to extract meta-data. Besides
having markup, the generated text may be different
from the input. Directly deriving span positions
from the markup tags leads to errors when that hap-
pens. This is to some degree mitigated by using an
algorithm that searches for the best place of the tag
in the original input string.

The novelty of the described system is in us-
ing a standard EncoderDecoder model to generate
markup. No special architectural changes were
made, no domain dependencies were introduced,
and only minor pre- and postprocessing is done. It
is therefor easy to turn the system into a general
purpose span detection and classification system.

4 Experimental setup

4.1 Data and Training
The articles of the PTC 2020 dataset were reduced
to smaller segments on the basis of fragments.

for each fragment:
take all covering sentences
while another fragment overlaps ..

.. with any sentence in the segment
add fragment and those sentences

Any sentences remaining, that is, not covered
by any fragment, were ignored. The memes of the
2021 dataset were not split.

Mixing the 2020 and 2021 datasets for a sin-
gle training run led to worse results than hav-
ing a staged training of first the PTC 2020 data
as pre-training and then the 2021 memes data as
fine-tuning. For training the datasets were split
train:dev:test as 70:20:10. Training was done with
a batch size of 8 for 25 epochs.

4.2 Framework

The system uses the Seq2SeqModel of Simple
Transformers2, a task-oriented framework built
on top of Hugging Face Transformers3. It uses
the Hugging Face pre-trained BART model iden-
tified with model type ”bart” and model name
”facebook/bart-base” . This is a model consist-
ing of 6 encoder and decoder layers, 16-heads, and
139M parameters.

4.3 Configuration

Where training was done mostly with default set-
tings, text generation required improved settings.
We want enough tokens in the output for the full
input plus markup, we want a relatively low penalty
on length, to compensate for the previous setting,
we want a relatively high penalty on repetition, and
we perform a beam search. Experimentally, we
came to the following settings as being optimal:

Parameter Value
max length 200
length penalty 0.4
repetition penalty 2.0
do sample True
num beams 3
top p 0.8

Table 2: Seq2SeqModel configuration

2See: https://simpletransformers.ai/. The
used version is 0.60.6. To be able to add begin and end markers
as tokens to the seq2seq model a modification was made. It
can be found in the github repository for the system discussed
here, referred to in the first footnote.

3 See: https://huggingface.co/
transformers/. The used version is 4.3.2
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5 Results

The system’s F1 score of 0.268 on subtask 2 on
the test set scores about in the middle between the
baseline and the highest ranking score.

Rank Team F1 score Precision Recall
1 Volta .482 .501 .464
5 WVOQ .268 .243 .299

baseline .010 .034 .006

Table 3: Subtask 2 scores on the test set

Looking at errors we made the following obser-
vations:

• Beginning and end tags in the generated text
regularly don’t match.

• Generated text contains changed words and
even added words, which leads to faulty iden-
tifications of spans.

Why does this happen? First, beginning and end
tags are introduced as new tokens in the relatively
small datasets we fine-tune with. Transformer mod-
els have no notion of syntactic connection between
them and standard BART has not been pre-trained
to relate these tokens correctly. Second, through its
pre-training methodology BART is geared towards
relative ”freedom” in filling in spans. That’s what
makes it suitable for summarization and question-
answering. But what we need for markup genera-
tion is almost verbatim regeneration of the input.

6 Conclusion

The described system for span detection and simul-
taneous classification offers a proof−of−concept
for a novel approach to sequence tagging based on
generating a version of a message with markup for
labels. Its F1 score on the leaderboard is in the
middle between the baseline and the top score.

Drawback of the approach is that two types
of systemic errors are introduced: tags lacking a
matching tag, and tokens generated that are not
in the original message. These are not resolved
by fine-tuning the model and they cannot be ad-
dressed with the standard configuration parameters
of message generation in the sequence-to-sequence
model.

Future research should aim at resolving these
systemic errors. Matching tags could be addressed
through changes in the decoder’s generation algo-
rithm. Having the tokens in the output be the same

as those in the input could be improved by amend-
ing the loss function for fine-tuning training of the
model.

Only when these two issues are resolved will
further optimization of the approach be worth in-
vesting effort in.
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Abstract

In this paper, we describe our system submit-
ted to SemEval 2021 Task 7: HaHackathon:
Detecting and Rating Humor and Offense. The
task aims at predicting whether the given text
is humorous, the average humor rating given
by the annotators, and whether the humor rat-
ing is controversial. In addition, the task also
involves predicting how offensive the text is.
Our approach adopts the DeBERTa architec-
ture with disentangled attention mechanism,
where the attention scores between words are
calculated based on their content vectors and
relative position vectors. We also took ad-
vantage of the pre-trained language models
and fine-tuned the DeBERTa model on all the
four subtasks. We experimented with sev-
eral BERT-like structures and found that the
large DeBERTa model generally performs bet-
ter. During the evaluation phase, our system
achieved an F-score of 0.9480 on subtask 1a,
an RMSE of 0.5510 on subtask 1b, an F-score
of 0.4764 on subtask 1c, and an RMSE of
0.4230 on subtask 2a (rank 3 on the leader-
board).

1 Introduction

Humor, appreciated by people with almost any age
or cultural background, is perhaps one of the most
fascinating human behaviors. Besides providing en-
tertainment, humor can also be beneficial to mental
health by serving as a moderator of life stress (Lef-
court and Martin, 2012), and plays an important
role in regulating human-human interaction. As
Reeves and Nass (1996) have pointed out, people
respond to computers in the same way as they do
to real people, which indicates that modeling hu-
mor computationally could bring positive effects in
human-computer interaction (Nijholt et al., 2003).
Despite being universal to human beings, the extent
to which people find something humorous varies
according to one’s age, gender, or socio-economic

status, making humor a highly subjective experi-
ence. This poses many challenges to the field of
computational humor. Abundant research has been
done to enable computers to automatically decide
whether humor is entailed in a given piece of text.
Early work (Mihalcea and Strapparava, 2005; Mi-
halcea et al., 2010) uses manually engineered fea-
tures to recognize humor in text, while more recent
work (Chen and Soo, 2018; Weller and Seppi, 2019)
adopts deep learning approaches and pre-trained
language models.

SemEval 2021 Task 7: HaHackathon: Detect-
ing and Rating Humor and Offense (Meaney et al.,
2021) aims at detecting and rating humor as well
as offense in short English text. There are four
subtasks involved. Subtask 1a is a binary classifica-
tion task, predicting if the text would be considered
humorous for an average user. Subtask 1b is a
regression task and predicts the humor rating of
the text if it is considered humorours. Subtask 1c
is again a binary classification task and predicts
whether the humor rating is controversial, whose
ground-truth label is decided based on the variance
of the annotators’ ratings. This task also involves
offense detection. Subtask 2a predicts how offen-
sive the text is for a general user. All the regression
subtasks have scores ranging from 0 to 5.

In this paper, we present our system submit-
ted to SemEval 2021 Task 7. We followed the
architecture of DeBERTa (He et al., 2020), an im-
proved version of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) by using two novel
techniques: disentangled attention and decoding
enhanced masking. We mainly relied on the disen-
tangled attention mechanism, where the attention
weights of the input words are calculated based
on their content vectors and relative position vec-
tors. For the four subtasks, we used the same base
structure and the only difference is at the output
layer, where the classification tasks have two out-
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put units and the regression tasks only have one.
The pre-trained DeBERTa model has two variants
that differ in size. During the evaluation phase,
the large version achieved an F-score of 0.9480 on
subtask 1a, an RMSE of 0.5510 on subtask 1b, an
F-score of 0.4764 on subtask 1c, and an RMSE of
0.4230 on subtask 2a (rank 3 on the leaderboard).
In addition, we also experimented with the BERT
and RoBERTa models as our baselines, and found
them generally under-performed by DeBERTa. Our
code has been made publicly available.1

2 Related Work

Mihalcea and Strapparava (2005) used several
human-centric features such as alliteration and syn-
onym to recognize humor in one-liners. Mihalcea
et al. (2010) approached the problem by calculat-
ing the semantic relatedness between the set-up
and the punchline. Morales and Zhai (2017) pro-
posed a generative language model and leveraged
background text sources to identify humor in Yelp
reviews. Liu et al. (2018) proposed to model sen-
timent association between elementary discourse
units and designed features based on discourse re-
lations. Xie et al. (2020) calculated the uncertainty
and surprisal of the set-up and the punchline ac-
cording to the incongruity humor theory, which
were found useful in humor recognition. Recent
work also developed neural network based models
to recognize humor in text. Chen and Lee (2017)
and Chen and Soo (2018) adopted convolutional
neural networks, while Weller and Seppi (2019)
used a Transformer architecture.

3 Dataset

SemEval 2021 Task 7 provides three datasets: the
training set (8,000), the validation set (1,000), and
the final test set (1,000). Table 1 summarizes the
statistics of the three datasets, and lists the respec-
tive information of humorous (positive) and non-
humorous (negative) examples. Each example is a
piece of English text accompanied by four features:
is humor (subtask 1a), humor rating (sub-
task 1b), humor controversy (subtask 1c),
and offense rating (subtask 2a). For subtask
1b and 2a, the labels range from 0 to 5. Table 2
gives two samples, one being humorous and the
other non-humorous.

1https://github.com/yuboxie/
semeval-2021-task-7

Train Validation Test

# positive 4,932 632 615
Avg # tokens 24.48 22.04 26.14

# negative 3,068 368 385
Avg # tokens 25.95 26.12 29.36

# total 8,000 1,000 1,000
Avg # tokens 25.05 23.54 27.38

Table 1: Statistics of the provided datasets. Here the
respective information of humorous (positive) and non-
humorous (negative) examples are also listed.

For subtask 2a, whose goal is to predict the of-
fense rating of the input text, we also visualize top
200 frequent unigrams for examples with offense
rating ≥ 2 and < 2, respectively, illustrated as two
word clouds (Figure 1a and Figure 1b). As we can
observe, Figure 1a contains words that are expected
to appear in offensive text, usually targeting at a
specific group of people (e.g., “black”, “gay”, “chi-
nese”, “muslim”, etc.), while Figure 1b contains
more ordinary words, which generally do not imply
offense.

4 System Overview

With the increasingly powerful neural networks
such as the Transformer (Vaswani et al., 2017),
the performance on many downstream NLP tasks
has been greatly improved by fine-tuning large
pre-trained language models on smaller but task-
specific datasets. Traditional Transformer-based
language models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) use absolute
positional embeddings in the input layer, which
are added up with the word embeddings and serve
as the input to the following Transformer layers.
The self attention weights between the tokens are
calculated solely based on their hidden represen-
tations. However, recent work (Shaw et al., 2018;
Dai et al., 2019) has shown that relative position
representations are more effective for NLP tasks.

Our system leverages the disentangled attention
mechanism from the DeBERTa model (He et al.,
2020), where the attention weights between input
tokens are calculated based on their content vec-
tors as well as their relative positions. As shown
in Figure 2, for each Transformer layer, Hi’s are
the input representations from last layer, and Ho

i ’s
are the output representations after applying the
self attention. Instead of using absolute positional
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text is humor humor rating humor controversy offense rating

Here’s a FedEx joke - actually,
you’ll get it tomorrow.

1 3.21 0 0

When humans make mistakes,
it doesn’t mean they’re evil, it
means they’re human.

0 - - 0.1

Table 2: Two samples from the training set.

(a) Word cloud of examples with offense rating ≥ 2 (b) Word cloud of examples with offense rating < 2

Figure 1: Word clouds of the data according to the offense rating.

embeddings at the input layer, we create a relative
positional embedding table, which is shared across
all layers, to represent the relative position between
token i and token j. More specifically, the index
of the relative position between token i and j is
defined as

δ(i, j) =





0 if i− j ≤ −k,
2k − 1 if i− j ≥ k,
i− j + k otherwise,

(1)

where k is the maximum distance we consider. Sim-
ilar to normal Transformer attention mechanism,
the content representations H and the relative po-
sition representations P ∈ R2k×d are transformed
to queries, keys, and values:

Qc = HW c
q ,K

c = HW c
k ,V

c = HW c
v ,

Qp = PW p
q ,K

p = PW p
k .

(2)

Then, the attention weight Aij between token i and
token j are calculated as follow:

Aij = Qc
iK

c
j
T +Qc

iK
p
δ(i,j)

T
+Kc

jQ
p
δ(j,i)

T
. (3)

When aggregating the input representations H , we
apply a scaling factor 1/

√
3d to obtain the output

representations Ho:

Ho = softmax
(

A√
3d

)
V c. (4)

For subtask 1a and 1c, which are binary clas-
sification tasks, we use softmax output layer and

cross entropy loss. For subtask 1b and 2a, which
are regression tasks, we use mean square error as
the loss function. Otherwise, the base structure
is the same, and we initialize the model with the
pre-trained DeBERTa weights.

5 Experimental Setup

We evaluated and compared our system with sev-
eral baselines on the provided dataset, whose statis-
tics are provided in Section 3. In this section, we
are going to elaborate the setup of our experiment.

5.1 Baselines

In our experiment, we consider the following ap-
proaches as our baselines:

• Bag of words (BoW). In this approach, we
neglect the order of the input tokens, and sim-
ply add up the word embeddings of the tokens
to form the vector representation of the input
text. We implemented logistic regression for
subtask 1a and 1c, and linear regression for
subtask 1b and 2a, using the 300d GloVe word
embeddings (Pennington et al., 2014).

• Convolutional neural network (CNN). Con-
volutional neural networks have been widely
adopted in computer vision and image recog-
nition. When applied to NLP tasks, the input
is a 2D matrix with each row being the word
embeddings of the respective token, and the
convolution is operated along the rows, with a
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Figure 2: An illustration of the model architecture.

Subtask 1a Subtask 1b

Precision Recall F-Score Accuracy RMSE

BoW 0.7884 / 0.8141 0.7712 / 0.8067 0.7778 / 0.8099 0.7990 / 0.8220 0.5433 / 0.5617
CNN 0.8289 / 0.8524 0.8221 / 0.8485 0.8252 / 0.8503 0.8390 / 0.8590 0.6661 / 0.6399
Bi-LSTM 0.8340 / 0.8620 0.8438 / 0.8610 0.8381 / 0.8615 0.8470 / 0.8690 0.5645 / 0.5504
BERT (base) 0.9061 / 0.9119 0.9462 / 0.9593 0.9257 / 0.9350 0.9040 / 0.9180 0.4994 / 0.5402
BERT (large) 0.9246 / 0.9442 0.9320 / 0.9350 0.9283 / 0.9395 0.9090 / 0.9260 0.5099 / 0.5500
RoBERTa (base) 0.9398 / 0.9469 0.9383 / 0.9577 0.9390 / 0.9523 0.9230 / 0.9410 0.5259 / 0.6320
RoBERTa (large) 0.9597 / 0.9515 0.9415 / 0.9561 0.9505 / 0.9538 0.9380 / 0.9430 0.4994 / 0.5326
Our system (base) 0.9463 / 0.9521 0.9209 / 0.9382 0.9334 / 0.9451 0.9170 / 0.9330 0.4978 / 0.5456
Our system (large) 0.9707 / 0.9604 0.9446 / 0.9463 0.9575 / 0.9533 0.9470 / 0.9430 0.4923 / 0.5538

Table 3: Performance of subtask 1a and 1b on the validation / test set.

fixed window size. We follow the CNN model
in the work of Chen and Lee (2017), which
includes an extra highway layer before the fi-
nal fully connected layer, allowing shortcut
connections with gate functions.

• Bidirectional long short-term memory (Bi-
LSTM). LSTM (Hochreiter and Schmidhu-
ber, 1997) has shown to perform quite well in
handling sequential inputs, making it suitable
for many NLP tasks. Bidirectional LSTM in-
corporates two LSTMs, one in the forward
direction and the other in the backward direc-
tion, thus better modeling the context. In this
approach, we use a Bi-LSTM with hidden size
200 and one hidden layer.

• BERT. BERT (Devlin et al., 2019) is a
deep bidirectional Transformer pre-trained on
BooksCorpus and English Wikipedia, with
two training objectives: (1) masked language
model, where some of the input tokens are
randomly masked and are to be recovered by
the model; (2) next sentence prediction, where

the goal is to predict if the input second sen-
tence follows the first one. By fine-tuning
the pre-trained BERT, the performance of a
wide range of NLP tasks can be largely im-
proved, compared with previous models such
as LSTMs.

• RoBERTa. RoBERTa (Liu et al., 2019) is an
optimized version of BERT, which was trained
on bigger datasets and longer sequences. In
addition, the next sentence prediction objec-
tive was removed, which was found to slightly
improve the performance of downstream tasks.
RoBERTa reportedly achieved better results
than BERT on benchmarks such as GLUE,
RACE and SQuAD.

5.2 Implementation

All the Transformer-based models in the experi-
ment have two variants that differ in model size.
The base version has 12 Transformer layers, 768
hidden units, and 12 multiheads. The large ver-
sion has 24 Transformer layers, 1024 hidden units,
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Subtask 1c Subtask 2a

Precision Recall F-Score Accuracy RMSE

BoW 0.5539 / 0.5585 0.5539 / 0.5584 0.5538 / 0.5584 0.5538 / 0.5626 0.9418 / 0.7207
CNN 0.5052 / 0.5084 0.5051 / 0.5084 0.5012 / 0.5055 0.5032 / 0.5057 0.8238 / 0.6913
Bi-LSTM 0.4907 / 0.4908 0.4907 / 0.4919 0.4905 / 0.4817 0.4905 / 0.5089 0.7825 / 0.6666
BERT (base) 0.5455 / 0.4924 0.5649 / 0.4659 0.5550 / 0.4788 0.5585 / 0.5398 0.5681 / 0.5228
BERT (large) 0.5013 / 0.4891 0.6071 / 0.5627 0.5492 / 0.5233 0.5142 / 0.5350 0.5550 / 0.5022
RoBERTa (base) 0.4873 / 0.4537 1.0000 / 1.0000 0.6553 / 0.6242 0.4873 / 0.4537 0.5634 / 0.5310
RoBERTa (large) 0.5027 / 0.4695 0.9221 / 0.9104 0.6506 / 0.6195 0.5174 / 0.4927 0.5013 / 0.4566
Our system (base) 0.4873 / 0.4537 1.0000 / 1.0000 0.6553 / 0.6242 0.4873 / 0.4537 0.5484 / 0.4653
Our system (large) 0.4943 / 0.4574 0.9903 / 0.9032 0.6595 / 0.6072 0.5016 / 0.4699 0.4794 / 0.4516

Table 4: Performance of subtask 1c and 2a on the validation / test set.

and 16 multiheads. We used the Adam opti-
mizer (Kingma and Ba, 2015) with learning rate
5 × 10−6, and a batch size of 16. All the mod-
els were trained until the minimum loss value is
reached on the validation set.

5.3 Evaluation Metrics

For classification tasks 1a and 1c, we use precision,
recall, F-score, and accuracy as the evaluation met-
rics. For regression tasks 1b and 2a, we use the
root mean square error as the evaluation metric:

RMSE =

√√√√ 1

N

N∑

n=1

(ŷn − yn)2, (5)

where ŷn is the predicted value, and yn is the
ground-truth value.

6 Results

The performance of our system and the baselines is
shown in Table 3 (subtask 1a and 1b) and Table 4
(subtask 1c and 2a). We show the performance
scores on both the validation and the test set. Gen-
erally speaking, the large version of our system per-
forms quite well on all the four subtasks, compared
with the other models. It can also be observed that,
Transformer-based models always outperform the
traditional methods by a large margin, except for
subtask 1c, where all the models perform poorly
and similarly. We conjecture this is because humor
controversy is itself a highly subjective task, which
is difficult even for humans. We also observe that
large version of BERT-like models are generally
better than their base counterparts, which is natural
since larger models with more parameters usually
bring better performance.

Table 5 gives the confusion matrix of our system
on the test set in subtask 1a. We can see that in

Ground-truth
P N Total

Predicted
P 582 24 606
N 33 361 394

Total 615 385 1,000

Table 5: The confusion matrix of our system (large) on
the test set (subtask 1a). P: Positive, N: Negative.

both positive and negative cases, the system per-
forms quite well and makes only few errors. We
manually examined some cases where our system
makes a false prediction, and found that when our
system predicts humorous but the ground-truth is
non-humorous, the input text usually contains a
question, e.g.,

There are 2 kinds of families on Thanks-
giving. Which one are you?

We infer this is because most of the humorous
examples in the training set contains a question,
usually followed by a short answer serving as the
punchline.

7 Conclusion

In this paper, we describe our system submitted
to SemEval 2021 Task 7. We adopted the disen-
tangled attention mechanism from the DeBERTa
model, and participated in all the four subtasks.
During the evaluation phase, we got a rank of 3 on
the leaderboard for subtask 2a. For future work,
we would like to combine human-centric features
with the current architecture using the disentan-
gled attention mechanism, and develop a hybrid
model. In addition, we plan to expand the provided
dataset with extra jokes from various sources such
as Reddit forums, hoping to further improve the
performance of our system.
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Abstract

This paper introduces the result of Team Gren-
zlinie’s experiment in SemEval-2021 task 7:
HaHackathon: Detecting and Rating Humor
and Offense in English. This task has two sub-
tasks. Subtask1 includes the humor detection
task, the humor rating prediction task, and the
humor controversy detection task. Subtask2
is an offensive rating prediction task. Detec-
tion task is a binary classification task, and the
rating prediction task is a regression task be-
tween 0 to 5. 0 means the task is not humor-
ous or not offensive, 5 means the task is very
humorous or very offensive. For all the tasks,
this paper chooses RoBERTa as the pre-trained
model. In classification tasks, Bi-LSTM and
adversarial training are adopted. In the regres-
sion task, the Bi-LSTM is also adopted. And
then we propose a new approach named com-
pare method. Finally, our system achieves an
F1-score of 95.05% in the humor detection
task, F1-score of 61.74% in the humor contro-
versy detection task, 0.6143 RMSE in humor
rating task, 0.4761 RMSE in the offensive rat-
ing task on the test datasets.

1 Introduction

Humorous is one kind most interesting, most has
the power, most has the universal significance trans-
mission art. Therefore, humor is one of the ways
to improve the quality of daily conversation. In the
field of natural language processing, how to make
the computer learn humor and improve the qual-
ity of human-computer interaction is an important
problem. The previous researches task was only to
input the humorous corpus into the deep learning
network and let the algorithm learn how to generate
humorous dialogue. In this case, the sentences are
often problematic. Because humor is an abstract
concept, in different situations, the degree of humor
and the way of humor will be different. Therefore,
before the computer learns to generate humorous

sentences, it is an important task for the computer
to understand humor and distinguish different de-
grees and forms of humor.

This paper mainly discusses how to identify
these humorous sentences automatically. In
SemEval-2021 task 7, subtask1 includes the hu-
mor detection task, the humor rating predicts task
and the humor controversy detection task (Meaney
et al., 2021). Subtask2 is an offensive rating predict
task. In the detection task, the Bi-LSTM and adver-
sarial training (Tramèr et al., 2017) is adopted, we
also try to use FocalLoss to solve the data unbal-
ance problem. In the regression task, the Bi-LSTM
is also adopted. And then we propose a new method
named compare method is also adopted.

The rest of the paper is as follows: Section 2
briefly introduces the related work. Section 3 de-
scribes the optimization approach to be used in
detail. Section 4 describes the experiment process
in detail. Section 5 is the conclusion of this paper.

2 Related Work

On large corpora, pre-trained models (PTMs) can
learn common language representation, which is
beneficial for subsequent NLP tasks and can avoid
training new models from scratch (Wang et al.,
2018). With the development of computing power
and the improvement of training skills, the architec-
ture of PTMs is advancing from shallow to deep.

The goal of the first version of PTMs is to learn
good word embedding. Since these models are
no longer needed by downstream tasks, they are
usually very superficial for computational efficien-
cies, such as skip-gram (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014). Although these
pre-trained embeddings can capture the semantic
meaning of words, they are context-free and cannot
capture the advanced concepts in the context, such
as polysemy disambiguation, syntactic structure,
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semantic role, anaphora, and so on. The second
version of PTMs mainly learn context word embed-
ding, such as ELMo(Peters et al., 2018), OpenAI,
GPT(Radford et al., 2019) and BERT(Devlin et al.,
2018). These learned coders still need to represent
words in context through downstream tasks. Be-
sides, various pre-training tasks are proposed to
learn PTMs for different purposes.

Given the pre-trained model, downstream algo-
rithms like Random Forest, SVM, Logistic Regres-
sion, or single linear layer can be adopted to get
the result.

Recent studies have extended the humor detec-
tion task to the field of multi-modality and used ges-
ture, speech prosody, and other features in humor
detection task(Li et al., 2020). They also began to
work on the joint training and integration of humor
detection task and humor generation task(Weller
et al., 2020). However, these models still regard hu-
mor detection as a binary classification task, with-
out considering humor scoring and controversy.

3 Methods Description

Baseline Model In these tasks, RoBERTa is
adopted as the baseline model, and softmax is
adopted as the activation function in the classifi-
cation task. In the regression task first, we try to
use ReLU as the activation function, then we use
sigmoid as the activation function, and multiply the
output of sigmoid by 5. But we find the method
without activation function does the best in regres-
sion task. If we add ReLU after regression task,
the RMSE will reduce 0.1 0.2. So the activation
function is not adopted in the baseline model. To
avoid the negative output of the model in the scor-
ing model, we need to add ReLU as an activation
function in the test phase.

In the regression task, the Mean Square Loss is
adopted as the loss function. In classification tasks,
we use the CrossEntropy Loss as the loss function.

Method1: Bi-LSTM In this paper, all the sub-
task use the Bi-LSTM to extract more abundant
features. In this model, Bi-LSTM is added after the
pre-trained model. [CLS] (classification symbol)
always be added before sentence, and use classifier
to compute [CLS] representation to get the result.
So, there is a problem, that is, the sentence rep-
resentation from Bi-LSTM will not integrate on
symbol [CLS]. But we need the representation of
[CLS] for the next step. So the output of Bi-LSTM
is sent into a new defined transformer layer, encode

the sentence representation into the symbol [CLS].
Finally, the sentence representation will send into
a single linear layer to get the result.

Method2: adversarial training Then the adver-
sarial training is adopted to improve the baseline
model. Adversarial training is an important way to
enhance the robustness of neural networks. In the
process of confrontation training, the samples will
be mixed with some small disturbances, and then
make the neural network adapts to this change, so
it has the robustness to the confrontation samples.
In the field of the language model, adversarial train-
ing improves both robustness and generalization
(Morris et al., 2020).

Adversarial training can be summarized as the
following maximum and minimum formula,

min
θ

E(Z,y)∼D

[
max
‖θ≤ε‖

(L(Fθ(X + δ)), y)

]
(1)

Where X represents the input representation
of the sample, θ represents the disturbance su-
perimposed on the input, Fθ() is the neural net-
work function, y is the label of the sample, and
L(Fθ(X + δ)), y) represents the loss obtained by
superimposing a disturbance θ on the sample X ,
and then comparing it with the label y through the
neural network function. max(L) is the optimiza-
tion objective, that is to find the disturbance that
maximizes the loss function. In short, the added
disturbance should confuse the neural network as
much as possible.
minθ E(Z,y)∼D is the minimization formula to

optimize the neural network, that is, when the dis-
turbance is fixed, we train the neural network model
to minimize the loss of training data, that is to say,
the model has certain robustness and can adapt to
the disturbance.

In this method, FGM (Fast Gradient Method)
(Miyato et al., 2016) is adopted. The idea is very
simple, that is, let the direction of disturbance in-
crease along the gradient, and the increase along
the gradient means the maximum loss. The formula
of FGM is as follows.

δ = ε · g

‖g‖2
(2)

Where ε is a constant, which controls the degree
of disturbance rejection. g = ∇X(L(Fθ(X)), y),
i.e. the gradient of loss function L with respect to
input X.
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Method3: FocalLoss In the classification task,
we can see that the data ratio of humorous and
non-humorous sentences is close to 2:1, and then
in humor’s data, the ratio of controversy and non-
controversy is close to 1:1, but We assume that
non-humorous sentences are also non-controversy
sentences. Therefore, these two tasks are faced
with the problem of data imbalance. To solve this
problem, we use the FocalLoss (Lin et al., 2017) as
the loss function. The FocalLoss is as follows.

FocalLoss(pt) = −αt (1− pt )γ log( pt) (3)

Where pt is the probability of the label t that
is outputted by the classifier. N is the number of
labels. α and γ are constant.

Method4: Compare Method This method is
only for humor rating predict task and offensive rat-
ing predict task. In the few-shot classification tasks,
traditional approach is given a pair of sentences in
the same class and given a pair of sentences in dif-
ferent classes. Let the classifier identify whether
the pair of sentences is the same class or differ-
ent classes. So the latent feature of each label in
the sentence can be extracted. Unfortunately, this
approach can’t be used in regression tasks.

Based on this idea, we proposed the compare
method. This method extends the above idea to the
regression task. The approach is shown in figure
1. In this model, we input sentence A with rating
L(A), and sentence B with rating L(B), then three
different models that realize the function of Madd

(L(A) plus L(B)),Msub AB (L(A) minus L(B)), and
Msub BA (L(B) minus L(A)). It means to use these
models to encode pairs of sentences and output
Zadd, Zsub BA, Zsub AB . Then put these features
into the classifier. Let the output ratings become the
addition and the subtraction of the pair of sentences’
rating.

Furthermore, the sentence representation which
rating is close to the addition and subtraction of
the pair of sentences’ ratings can be used to intro-
duce the Zadd, Zsub BA, Zsub AB by minimizing
the MSELoss of Zadd, Zsub BA, Zsub AB and sen-
tence representation. In this task, this approach is
not adopted because of the lack of data.

The three models have the same construction. To
simplify the computation, the last layer’s hidden
output from RoBERTa is set as the feature of each
token. Then these token features are concatenated
like ”[CLS] (sentence) [SEP] (another sentence)
[SEP]”. And send the concatenated output to a

single transformer layer to get the [CLS] output for
classifying.

The loss function Closs and the Addloss is as
follows. In the equation, ML is MSELoss and
C is our model, C(FA) means the output of our
model. These loss functions are the loss of the
single sentence result and the loss of the result of
Zadd, Zsub BA, Zsub AB .

Closs =ML(C(FA), L(A))+
ML(C(FB), L(B))

(4)

Addloss =
ML(C(Zadd), L(A) + L(B))+
ML(C(Zsub AB), L(A)− L(B))+
ML(C(Zsub BA), L(B)− L(A))

(5)

4 Experiment Setup

Datasets First of all, we try to find the relation-
ship between tasks. In the beginning, we think that
those with low humor ratings or high offensive rat-
ings may be controversial, but unfortunately, we
find many Counterexamples in the datasets. Then
we tried to train several tasks together, but the result
was not as good as that of training it independently.
So we train these tasks independently.

Secondly, in the task of humor scoring and hu-
mor controversy detection, only humorous sen-
tences need to be rating predicted and detected. In
the data set, only humorous sentences have humor
ratings and humor controversy labels. Therefore,
how to deal with the label of non-humorous sen-
tences is an important problem. We have tried to set
the controversy label of non-humorous sentences to
2, that is, the third category, but this approach will
identify humorous sentences as the third category,
which will interfere with the model. Therefore,
in this paper, we set the rating of non-humorous
sentences to 0, and the controversy label to 0, i.e.
non-controversy.

Parameters setting In this section, the hyper-
parameter is the same in all subtasks. The optimizer
is AdamW with a 3e-5 learning rate and 1e-8 adam
epsilon. The pre-trained model has 12 transformer
layers and 768 hidden sizes. The max sequence
length is 180. The batch size is 8. And weight
decay is 0.

5 Result

The result of the test datasets is shown in Table
1. Final results in line 1 is results in evaluation
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Figure 1: Compare Method Construction

phase. FGM+FocalLoss and compared method
are adopted. and other line are the result in post
evaluation phase. In this phase, we reduce the
learning rate. In table 1, it can be seen that the
result of all optimize methods in the controversy
detection task is worse than the baseline model.
Because we set the non-humorous sentences as
non-controversy, This will greatly interfere with the
model’s judgment of non-controversy sentences. In
the evaluation datasets, i.e. predicted results from
non-humorous sentences are used to calculate the
F1-score, these approaches do optimize the base-
line model. But these approaches do not play an
optimization role in the test phase. So we can make
this conclusion. Then FGM and Bi-LSTM will
make the model extract more abundant features,
which will undoubtedly aggravate the interference
of non-humorous sentences and reduce the predic-
tion accuracy of the model.

FocalLoss didn’t work as expected and didn’t
get better results. Because FocalLoss usually use
in the datasets that 0 label is more than 1 label, but
in the humor detection task, 1 label is more than
0. Although we adjusted the alpha in FocalLoss to
0.67, FocalLoss still failed to get better results.

FGM optimizes the baseline model in humor de-
tection, humor rating, and offensive rating tasks.
and based on FGM, Bi-LSTM does more better
in these tasks. Because Bi-LSTM can extract sen-
tence features in more detail, especially bidirec-
tional sequence features. Experiments show that
these features are more conducive to downstream
tasks.

Finally, Compare Method only optimizes the

offensive rating predict task, but it not good at hu-
mor rating predict task, we think the non-humorous
sentences. We speculate that non-humorous sen-
tences with a 0 rating interferes with the compari-
son of two randomly selected sentences in compare
method. The number of sentences that select non-
humorous sentences for comparison is too large to
help the model predict rating, so the auxiliary task
interferes with the baseline model.

6 Conclusion

This paper introduces the experiment in SemEval-
2021 task 7 HaHackathon: Detecting and Rating
Humor and Offense. In this article, we propose two
main assumptions. The first point is that the model
is difficult to obtain the real meaning of the tag
according to the change of the 0-5 rating. So the
method of adding the auxiliary task on the baseline
model was proposed. The auxiliary task is com-
paring different sentences according to the number
proposed by us all to strengthen and supplement
this process. This method does the best in offensive
rating predict task, achieve 0.4761 RMSE. Second,
the output of the pre-training model is similar to
the word vector, which needs further processing to
be more suitable for downstream tasks. So we try
to use Bi-LSTM. Indeed Bi-LSTM does the best,
achieve the 95.05% F1-Score in the humor detec-
tion task, and 0.6143 RMSE in the humor rating
task. These approaches do not play an optimized
role in the controversy detection task. The baseline
does the best, achieve the 61.74% F1-score. The
main reason for this problem lies in the interference
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Model Humor F1 Humor RMSE Controversy F1 Offensive RMSE
Final results 0.9386 0.6312 0.5455 0.4761 RoBERTa
0.9344 0.6961 0.6174 0.5146
FGM 0.9481 0.6311 0.5614 0.4847
Bi-LSTM+FGM 0.9505 0.6143 0.5609 0.4956
FGM+FocalLoss 0.9386 - 0.5454 -
Compare Method - 0.6906 - 0.4761

Table 1: The result of several optimize approach on test datasets

of non-humorous sentences. So there is still room
for improvement, such as eliminating the influence
of non-humorous sentences, adjust the model pa-
rameters and try other pre-trained models. Or try
to use a classification model and regression model
in machine learning, such as Bayesian or CRF, to
process the output of BERT. Therefore, the future
work is to find a better way to remove the influence
of non-humorous sentences and find a better way
to optimize the controversy detection task. And
then do more experiments to get better results.
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Abstract

This paper describes our system participated
in Task 7 of SemEval-2021: Detecting and
Rating Humor and Offense. The task is de-
signed to detect and score humor and of-
fense which are influenced by subjective fac-
tors. In order to obtain semantic information
from a large amount of unlabeled data, we ap-
plied unsupervised pre-trained language mod-
els. By conducting research and experiments,
we found that the ERNIE 2.0 and DeBERTa
pre-trained models achieved impressive perfor-
mance in various subtasks. Therefore, we ap-
plied the above pre-trained models to fine-tune
the downstream neural network. In the process
of fine-tuning the model, we adopted multi-
task training strategy and ensemble learning
method. Based on the above strategy and
method, we achieved RMSE of 0.4959 for sub-
task 1b, and finally won the first place.

1 Introduction

Humor, as a highly subjective phenomenon, can
be affected by various factors. Automatic humor
recognition relies on annotated data to determine
whether the text is humorous or not (Mihalcea and
Strapparava, 2005). However, such a binary clas-
sification does not capture the level of humor, so
assessing the level of humor is of great significance
(Garimella et al., 2020). Since humor can be influ-
enced by many factors, such as age, and may offend
others. Based on such a situation, SemEval-2021
Task 7 focuses on linking humor and offense across
different age groups (Meaney et al., 2021). But
there are still many challenges to this task. For ex-
ample, the dataset for the task is small and the texts
are short, which does not allow for adequate train-
ing. To address these issues, we utilized unsuper-
vised pre-trained language models and fine-tuned
these models for specific downstream subtasks. Af-
ter conducting research and extensive comparative

experiments, the results show that ERNIE 2.0 (Sun
et al., 2019b) and DeBERTa pre-trained models
performed best on the subtasks. These large un-
supervised language models were pre-trained on a
large amount of unlabeled data to extract valuable
lexical, syntactic, and semantic information from
the corpus. Vector representations of text com-
puted by these models are applied to fine-tune the
downstream neural networks for the subtasks. The
multi-task training and ensemble learning method
significantly improve our model’s performance.

The rest of the paper is organized as follows:
Section 2 provides a brief description of the re-
lated work, and Section 3 describes our proposed
approach in detail. In Section 4, the experiments
are described in detail and the results are presented.
Finally, we summarize the whole paper and discuss
future research directions in Section 5.

2 Related Work

In the early research of humor and offense detec-
tion and evaluation, traditional machine learning
methods and n-gram language model were mostly
used.

Recent research has shown that unsupervised
language pre-trained models using large amounts
of unlabeled data have achieved state-of-the-art re-
sults in a large number of natural language process-
ing tasks. For example, BERT (Devlin et al., 2018)
is a model built based on Transformer Encoder,
which is used for downstream tasks by pre-training
on the masked language models task and the next
sentence prediction task, and then for fine-tuning.
Inspired by this approach, many pre-training lan-
guage models have been proposed. For example,
ALBERT (Lan et al., 2019) adopts Factorized Em-
bedding Parameterization and Cross-layer param-
eter sharing strategies, and adds the sentence or-
der prediction task, so that the model can greatly
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Figure 1: Architecture of our model for multi-task training. The public section is shared by all subtasks, while
the private section is subtask-specific. First, text is transformed into subwords, and ERNIE 2.0 generates the cor-
responding contextual vector representation. Then different loss functions are set for each subtask to generate
task-specific representations. This is eventually used for classification and regression subtasks in different scenar-
ios.

reduce the number of parameters without lose ac-
curacy compared to BERT. RoBERTa (Liu et al.,
2019b) removes the next sentence prediction task
and uses dynamic MASK, which is optimized for
BERT. DeBERTa (He et al., 2020) improves the
BERT and RoBERTa models by using two new
techniques. The first one is using Disentangled at-
tention mechanism and secondly, Enhanced mask
decoder is used. MT-DNN (Liu et al., 2019a) com-
bines Multi-task Learning and pre-trained models
to improve the performance of various natural lan-
guage processing tasks.

ERNIE 1.0 (Sun et al., 2019a) employs an entity-
level and phrase-level mask, the extension of its
training corpus and the use of multiple rounds of
conversation to replace sentence pair classification
further enhance the model’s semantic representa-
tion capability. ERNIE 2.0 (Sun et al., 2019b) is
an optimized version of ERNIE 1.0, which intro-
duces a large number of pre-training tasks and con-
tinuously updates the pre-training model through
multi-task learning to help the model learn lexical,
syntactic and semantic representations efficiently.
ERNIE 2.0 constructs three pre-training tasks,
namely word-aware pre-training tasks, structure-
aware pre-training tasks and semantic-aware pre-
training tasks. The performance of the model is
improved by constructing pre-training tasks from
multiple perspectives. The ERNIE 2.0 model out-
performed BERT and XLNet (Yang et al., 2019)
almost across the board on the English task and
achieved the best results on 7 GLUE tasks; on the
Chinese task, the ERNIE 2.0 model outperformed

BERT across the board on all 9 Chinese NLP tasks.

3 Our Approach

3.1 Multi-task training

To mitigate overfitting for specific tasks, we adopt
a multi-task training strategy that combines pre-
trained language model and multi-task training (as
shown in Figure 1). Based on the above strategy,
it makes the learned representation generalizable
across tasks and improves the performance of vari-
ous downstream subtasks.

The architecture of our model is shown in Fig-
ure 1, with the pre-trained model ERNIE 2.0 as
the public section, which is used for generating se-
mantic information common to downstream tasks.
and the multi-task training as the private section,
where individual subtasks are trained to produce
task-specific representations by using different loss
functions.

When we fine-tune our model, the input to the
model is the data from all subtasks. Words from
the text in different subtasks are first processed
by tokenizer to generate subwords. After the sub-
words are transformed into tokens by the mapping
of the lexicon, the tokenized sentences are stitched
together with [CLS] and [SEP] as the input to the
ERNIE 2.0 model to obtain the contextual vector
representation corresponding to each token. Multi-
task training is a fully-connected layer followed by
the ERNIE 2.0 model, and the four downstream
subtasks optimize the subtask-specific model by
constructing different loss functions for gradient
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Figure 2: 8-fold cross-validation and ensemble. The training set is divided randomly for 8 times by setting different
random seeds. In each division, the training set T is divided into 8 parts, of which 7 parts are respectively used
as the training set and the remaining 1 part is used as the validation set. And finally the average of all saved best
models predicted on the test set are the final results.

updating. For the classification task we first use the
sigmod activation function to constrain the output
between 0 and 1 before using the BCE loss func-
tion, and for the regression task we use the MSE
loss function.

3.2 Ensemble
We adopt cross-validation for training as a way to
improve the robustness of our model, as shown in
Figure 2. We first divided the training set eight
times by setting different random seeds. Therefore,
8 folds of data are generated, with 7000 training
samples and 1000 validation samples in each fold.
When fine-tune our model for each fold, the best
model for each subtask at each fold of training is
saved. For subtask 1a and subtask 1c, the evalu-
ation metric is F1-Score, and for subtask 1b and
subtask 2a the evaluation metric is RMSE. finally,
we take the mean of all the best saved models af-
ter making predictions on the test set as the final
results.

4 Experiment

4.1 Experimental details
All of our experiments were run on the Nvidia Tesla
V100. In order to obtain more valuable informa-
tion from the limited training data and to reduce
overfitting to some extent, we adopt the multi-task
training strategy and ensemble learning method.

For the training of the per-fold model, we choose
the Adam optimizer, set the epoch to 10, and use
early stopping strategies according to the perfor-
mance on the validation set. Considering the small
amount of data in the training set, we set a smaller

learning rate for the ERNIE 2.0 model layer and
a larger learning rate for the fully connected layer
where the subtasks are trained together. Specifi-
cally, when fine-tuning our model, we adopt the
grid search strategy with the learning rate ranging
from 2e-5 to 5e-5 and the batch size ranging from
32 to 48. Besides, we set the learning rate as a
linear function and use a warm-up strategy in the
training phase. The ensemble approach we adopt is
mainly based on the average prediction results. The
specific methods are as follows: for the classifica-
tion subtask, the prediction probabilities of all base
models in each category are averaged, and then
the category with the highest probability is taken
as the prediction result; while for the regression
subtask, the prediction values of all base models
are averaged as the final prediction result.

4.2 Comparison experiments

In order to verify the effectiveness of our proposed
multi-task training strategy based on the ERNIE
2.0 model, we set up two comparison experiments.
They are described as follows:

(1) Comparison experiments of multi-task train-
ing together and single-task training separately
based on ERNIE 2.0 model.

(2) Comparison experiments of single-task sep-
arate training based on ERNIE 2.0 and DeBERTa
models.

4.3 Experimental Results

Table 1 summarizes the results on the validation
set of all the models we tried based on the 8-fold
cross-validation method. We can see that under
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Models Is multi task Task 1a (F1-Score) Task 1b (RMSE) Task 1c (F1-Score) Task 2a (RMSE)
DeBERTaxlarge False 0.9603 0.4492 0.6598 0.4817
ERNIE 2.0xlarge False 0.9656 0.4542 0.6388 0.4746
ERNIE 2.0xlarge True 0.9727 0.4475 0.6566 0.4722

Table 1: The results of different models under the 8-fold cross-validation method. The table describes the results of
the DeBERTa and ERNIE 2.0 models on four subtasks in the case of single-task training separately and multi-task
training together. For subtask 1a and subtask 1c, the evaluation metric is F1-Score, and for subtask 1b and subtask
2a the evaluation metric is RMSE.

the evaluation metrics of each subtask, The num-
ber of parameters in the ERNIE 2.0 model (425M)
is less than the DeBERTa model (750M), but the
ERNIE 2.0 pre-trained model performs better than
the DeBERTa model on several subtasks. Besides,
Compared to single-task training, the strategy of
using multi-task training shows a significant im-
provement in performance. Moreover, The impact
of ensemble learning method on improving model
performance is significant.

5 Conclusion

In this paper, we proposed a multi-task training sys-
tem based on ERNIE 2.0. We describe the architec-
ture of the model and the training process in detail.
Besides, we experimentally demonstrate that the
strategy performs better with multi-task training
compared to single-task training. Moreover, the
ensemble learning method makes the model more
robust. As a result, we have won the first place in a
subtask for the competition of SemEval-2021 task
7. In our future work, we will further explore pre-
trained language model and optimize the multi-task
training.
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Abstract

Humor and Offense are highly subjective due
to multiple word senses, cultural knowledge,
and pragmatic competence. Hence, accurately
detecting humorous and offensive texts has
several compelling use cases in Recommenda-
tion Systems and Personalized Content Moder-
ation. However, due to the lack of an extensive
labeled dataset, most prior works in this do-
main haven’t explored large neural models for
subjective humor understanding. This paper
explores whether large neural models and their
ensembles can capture the intricacies associ-
ated with humor/offense detection and rating.
Our experiments on the SemEval-2021 Task 7:
HaHackathon show that we can develop rea-
sonable humor and offense detection systems
with such models. Our models are ranked third
in subtask 1b and consistently ranked around
the top 33% of the leaderboard for the remain-
ing subtasks.

1 Introduction

Like most figurative languages, humor/offense
pose interesting linguistic challenges to Natural
Language Processing due to its emphasis on mul-
tiple word senses, cultural knowledge, sarcasm,
and pragmatic competence. A joke’s perception is
highly subjective, and age, gender, and socioeco-
nomic status extensively influence it. Prior humor
detection/rating challenges treated humor as an ob-
jective concept. SemEval 2021 Task 7 (Meaney
et al., 2021) is the first humor detection challenge
that incorporates the subjectivity associated with
humor and offense across different demographic
groups. Users from varied age groups and genders
annotated the data with the text’s humor and have
provided an associated score for the same. It is also
quite a generic phenomenon that a text might be

∗ Authors contributed equally to the work. Names is
alphabetical order.

humorous to one and normal/offensive to another.
Rarely has it been noticed that the same content
is globally accepted as witty. To the best of our
knowledge, Meaney et al. (2021) is the first initia-
tive towards annotating the underlying humor as
controversial or not. Understanding whether a text
is humorous and/or offensive will aid downstream
tasks, such as personalized content moderation, rec-
ommendation systems, and flagging offensive con-
tent.

Large Language Models (LLMs) have recently
emerged as the SOTA for various Natural Lan-
guage Understanding Tasks (Lewis et al., 2019;
Raffel et al., 2019; Conneau et al., 2019; Zhang
et al., 2020). However, typical day-to-day texts,
where these models have shown state of the art
performance, are less ambiguous than texts hav-
ing puns/jokes. Training and evaluating LLMs in
the context of highly ambiguous/subjective English
texts would serve as an excellent benchmark to fig-
ure out the current shortcomings of these models.
This paper studies various large language models –
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), ERNIE-2.0 (Sun
et al., 2019) and DeBERTa (He et al., 2020) and
their ensembles – for humor and offense detection
tasks. Additionally, we explore a Multi-Task Learn-
ing framework to train on all the four sub-tasks
jointly and observe that joint training improves the
performance in regression tasks.

We have achieved significant performance on all
the subtasks and have consistently ranked ∼ 1

3

rd

of the total submissions. We were ranked (1) 21st

with an F-score and accuracy of 94.8% and 95.81%
respectively in Task 1a, (2) 3rd with an RMSE
score of 0.521 in Task 1b, (3) 9th with an F-score
and accuracy of 45.2% and 62.09% respectively
in Task 1c; and (4) 16th with an RMSE score of
0.4607 in Task 2. We release the code for models
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and experiments via GitHub1

We organize the rest of the paper as: we begin
with a description of the challenge tasks followed
by a brief literature survey in section 2. We then
describe all of our proposed models in section 3
with training details in section 4 and present the
experimental results in section 5. Finally, we ana-
lyze our findings and conclude in section 6, and 7
respectively.

2 Background

2.1 Problem Description

SemEval 2021 Task 7: HaHackathon: Detecting
and Rating Humor and Offense (Meaney et al.,
2021) involves two main tasks – humor detection
and offense detection. The organizers further sub-
divide the task into following subtasks:

1. Humor detection tasks:

(a) Task 1a involves predicting whether a
given text is humorous.

(b) Task 1b requires predicting the humor
rating of a given humorous text.

(c) Task 1c incorporates humor subjectivity
by posing a classification problem of pre-
dicting whether the underlying humor is
controversial or not.

2. Task 2 is an offense detection task and
is posed as a bounded regression problem.
Given a text, we need to predict a mean score
denoting the text’s offensiveness on a scale of
0 to 5, with 5 being the most offensive.

2.2 Related Works

Transfer Learning ULMFiT (Howard and Ruder,
2018) used a novel neural network based method
for transfer learning and achieved SOTA results on
a small dataset. Devlin et al. (2018) introduced
BERT to learn latent representations in an unsu-
pervised manner, which can then be finetuned on
downstream tasks to achieve SOTA results. Lan
et al. (2019); Liu et al. (2019); Sanh et al. (2019);
Sun et al. (2019) have proposed several improve-
ments to the BERT model. In this paper, we ana-
lyze the effects of using these different base models
in the context of humor and offense detection.

1https://github.com/aishgupta/
Quantifying-Humor-Offensiveness

Humor & Emotion Detection Weller and Seppi
(2019) first proposed the use of transformers
(Vaswani et al., 2017) in humor detection and out-
performed the state of the art models on multiple
datasets. Ismailov (2019); Annamoradnejad (2020)
extended the use of BERT models to humor classi-
fication. Fles, can-Lovin-Arseni et al. (2017) did hu-
mor classification by comparing and ranking tweets
while Docekal et al. (2020) edit the tweet and rank
the extent of humor for the edited tweet on a scale
of 0 to 3 (most funny). There has been extensive
research in the area of text emotion prediction and
generation (e.g., Witon et al. (2018); Colombo et al.
(2019); Goswamy et al. (2020); Singh et al. (2021)).
Demszky et al. (2020) curated a large scale emo-
tion detection dataset and achieved SOTA results
by finetuning a BERT model. However, none of
these works delve into humor analysis’ subjectivity,
which is a prime focus of this task.

Sentiment and Pun Analysis Li et al. (2019); Mal-
toudoglou et al. (2020) study BERT based models
for sentiment analysis. Ke et al. (2019) uses a com-
bination of sentence embedding, POS tagging and
word-level sentiment polarity scores for sentiment
classification. Zhou et al. (2020) uses contextual-
ized and pronunciation embeddings for each word
and pass these through a neural network to detect
and localize pun in the sentence. However, none of
these works focus on the subjectivity of the under-
lying sentiment and pun in the text.

3 System Overview

3.1 Data

The challenge dataset comprises of a train set
(labeled 8000 texts) and a public-dev set (la-
beled 1000 texts). Each text input is labeled as
1/0 if it is humorous or not and rated with the of-
fensiveness score on a scale of 0-5. If a text is
classified as humorous, it is further annotated with
humor rating and classified as controversial or not.
For our single-task models (Section 3.2), we train
on the train + public-dev set after obtaining
a suitable stopping epoch by training and validat-
ing on the train and public-dev respectively.
For our multi-task models (Section 3.3), we train
on 8200 texts sampled randomly from train and
public-dev sets and use remaining 800 text in-
puts for validation.
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Figure 1: Different Model architectures used for Humor/Offense detection/rating.

3.2 Single Task Model

As the tasks are evaluated independently, we have
explored LLMs for each task/subtask indepen-
dently and will be referring to them as single task
models. Inspired by Demszky et al. (2020), for
each task, we add a classification (for Task 1a, 1c)
or a regression (for Task 1b, 2) head on top of the
pretrained models like BERT, RoBERTa, ERNIE-
2.0, DeBERTa and XLNet and train the model end-
to-end (Figure 1a). This ensures that the model
learns features solely related to the task, enhancing
the performance. Also, as we only add a classi-
fication/regression head, the number of learnable
parameters does not increase much. This helps us
in finetuning the model on such a small dataset for
a few number of epochs avoiding overfitting and
resulting in better generalization.

3.3 Multi Task Learning

Collobert and Weston (2008) demonstrated that
Multi-Task Learning (MTL) improves generaliza-
tion performance across tasks in NLP. The different
tasks though uncorrelated, share the same underly-
ing data distribution. This can be of great help for
tasks 1b and 1c where labeled instances are far less
than for task 1a or 2. Exploiting the fact that all
tasks share same data distribution, we propose to
learn a model jointly on all the tasks. Specifically,
we consider hard parameter sharing among differ-
net tasks and parameterize the base models using a
neural network, followed by two heads for classifi-
cation and regression tasks (Figure 1b). Our base
model includes LLMs like BERT, RoBERTa, and
ERNIE. Contrary to the LSTM layer, which helps
in learning features using all the token level embed-

dings, the Fully Connected (FC) layer focuses only
on the embedding of [CLS] token. Hence, having
these two branches allow the model to focus on
different tasks using the same sentence embedding
and helps in learning enhanced embeddings for task
1b and 1c with much lesser labeled dataset.

3.4 Ensembles

Mostly LLMs differ in their training procedure,
and architecture. These big language model frame-
works are trained on wide set of datasets for a va-
riety of tasks. Though, they all have comparable
performance, they may still capture different as-
pects of the input. We try to leverage such var-
ied informative embeddings based predictions by
combining multiple models trained with different
basenet using following strategies:
Jointly trained Model Embeddings: All the big
language frameworks have shown huge perfor-
mance improvement on multiple tasks owing to
their highly informative latent input embeddings.
We propose to learn an ensemble leveraging diverse
aspects of the input captured by varied LLMs by
concatenating their latent embeddings and mapping
them to low dimensional space for task prediction.
We use this method in learning ensembles of single
task models explained in 3.2.
Aggregation of Trained Model Predictions:
Joint-training though more informative and power-
ful, is a computationally intensive approach. Thus
as an alternative, we use a weighted averaging of
multiple pretrained models without compromising
much on the performance.

1. Weighted Aggregate of Regression Out-
puts: For an ensemble of k models trained
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Model
Task1-a Task1-b Task1-c Task2

F-Score Accuracy RMSE F-Score Accuracy RMSE

STM (BERT) - - 0.5841 0.5934 0.4829 0.4997
STM (RoBERTa) 0.9523 0.9410 0.5929 0.6242 0.4536 -
STM (ERNIE-2.0) 0.9541 0.9430 0.5546 0.4113 0.5252 0.4716

STM (XLNet) - - 0.5656 0.5892 0.5171 -
STM (DeBERTa) 0.9532 0.9420 0.5491 - - -

STM (Agg. Ensemble) 0.9581 0.9480 0.5480 0.4520 0.6209 0.4750
MTM (BERT) 0.9374 0.9210 0.5794 0.5080 0.5496 0.5049

MTM (RoBERTa) 0.9477 0.9350 0.5873 0.5479 0.5170 0.5141
MTM (ERNIE-2.0) 0.9530 0.9420 0.5541 0.5389 0.5187 0.4961

STM + MTM (Agg. Ensemble) 0.9520 0.9400 0.5210 0.5321 0.5252 0.4520

Table 1: Metrics on the test dataset for the major models on all the sub-tasks. MTM stands for Multi-Task Model,
STM stands for Single Task Model, and Agg. Ensemble is Aggregation Based Ensembling without having to
jointly train all the models together.
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Figure 2: Weighted-Average Ensembling: The data is
tokenized and then passed to the respective model. A
weighted sum is done to obtain the final predictions. λi
represents the weight for model i.

using different LLMs as basenet, the aggre-
gate output ŷ is computed as ŷ =

∑k
i=1 λi · ŷi

where yi and λi represents the output and
weight of the ith model respectively. The
weights λi are obtained through extensive grid
search on the held out validation dataset or set
to a 1

k when trained on the entire dataset with-
out a validation set. The complete approach
is shown in figure 2.

2. Voting Based Classification: This is one of
the most popular approach of learning an en-
semble and does not involve any hyperparam-
eters or retraining of any of the constituent
models. This involves training multiple mod-
els independently and using maximum among
all the predictions as the final output. For a bi-
nary classification task, the final output ŷ is by
max-voting across the independent models.

4 Experimental Setup

We used Pytorch (Paszke et al., 2019) and Hug-
gingFace (Wolf et al., 2020) library for our models,
and Google Colab GPUs for training and inference.
We use ADAMW (Loshchilov and Hutter, 2019)
and ADAM (Kingma and Ba, 2017) optimizer with
initial learning rate of 2e−5 for training single task
and multi task models respectively. For each of
the models we follow a dedicated training pipeline
described in subsequent sections.

4.1 Data preprocessing

We split the dataset into training and validation
data as described in Section 3.1. The sentences
are annotated with a [CLS] token in the beginning
and given as an input to the model. We performed
additional experiments by removing stopwords but
noticed a slight deterioration in the performance.

4.2 Loss Functions

Task 1a & 1c are instances of binary classification
problem and thus have been trained using cross-
entropy loss. For predicting humor and offense rat-
ing i.e., Task 1b and 2, we have used mean squared
error as the loss function.

4.3 Training Details

All the models are trained for n epochs where n is
a hyper-parameter tuned on the validation set using
early stopping criteria. For single task models, we
split train data into training and validation set
to learn the optimal value of n and then train the
model from scratch on train + public-dev
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Rank
Task1-a Task1-b Task1-c Task2

F-Score Accuracy RMSE F-Score Accuracy RMSE

Rank-1 0.982 0.9854 0.4959 0.4943 0.6302 0.4120
Rank-2 0.975 0.9797 0.4977 0.4699 0.6279 0.4190
Rank-3 0.960 0.9676 0.5210 0.4699 0.6270 0.4230

Ours 0.948 (21) 0.9581 (21) 0.5210 (3) 0.452 (9) 0.6209 (9) 0.4607 (16)

Table 2: Comparison of our results with those on top of the leaderboard. (*) indicates our rank on the leaderboard
in that task.

set for n epochs. In case of multi task models, all
the tasks do not converge at the same rate. Thus,
we train multi task models on randomly sampled
8200 texts from train + public-dev dataset
and validate on the remaining 800 texts. We use
early stopping criteria on validation dataset inde-
pendently for each task.

5 Results

We have trained multiple single task and multi
task models using basenet LLMs like BERT, Distil-
BERT, RoBERTa, XLNet, Albert (Lan et al., 2019),
Electra (Clark et al., 2020), DeBERTa, and ERNIE-
2.0. We also learned ensembles of single task mod-
els by either training a classification/regression
head on concatenated input embeddings or us-
ing weighted aggregate of the models’ predictions.
Apart from this, we also explored voting based
ensemble of multi-task models. All our models per-
form comparably on all tasks and the major models
are reported in Table 1. We also compare our best
model performance with the top 3 submissions on
the leaderboard and report it in Table 2.

6 Analysis

6.1 Data Augmentation

One recurring issue across all our trained mod-
els is the high susceptibility to overfitting. Data
Augmentation is a widely accepted solution to re-
duce overfitting by generating slight variants of the
given dataset and is extremely useful for a smaller
dataset.

One such approach is Masked Language Mod-
elling (MLM), used to perform context-specific
data augmentation (Ma, 2019) and has been used
in training LLMs. However, following this data
augmentation during training has consistently de-
graded the performance of our models. We hy-
pothesize that this is due to the mismatch be-

tween the contextual meaning and the associated
humor/offense. MLM-based augmentation strate-
gies, with models pre-trained to preserve the sen-
tence’s meaning, fail to capture the associated hu-
mor/offense.

Often the selection of words in a sentence is re-
sponsible for its humor/offensive rating. Replacing
such words by their synonyms can change the hu-
mor/offense rating substantially. Hence, using such
a data augmentation approach during training will
inject heavy noise in the ground truth resulting in
deteriorated performance.

6.2 Correlation across Tasks

Contrary to our belief, we fail to ascertain any di-
rect relationship between the humor controversy
and the offense rating prediction task. We compute
the mean offense rating for the texts labeled as con-
troversial and for texts marked as non-controversial.
The computed mean values are too close to each
other to demonstrate any direct correlation conclu-
sively.

6.3 Dataset Size

In literature, finetuning LLMs on small size task
specific dataset has shown remarkable task perfor-
mance. However, our single dedicated task models
could not perform better than our multi-task model
for Task 1b. We attribute this to relatively small
size of supervised dataset available for Task 1b in-
comparison to other tasks. In our multi task models,
though we have lesser labeled text for Task 1b, our
sentence embeddings are still updated using the
complete available dataset. Thus, our multi task
model learns underlying distribution better than sin-
gle task model owing to join learning and shared
parameters for task 1b and 2. We believe that this
is the main reason for the enhanced performance of
our model on Task 1b which has lesser supervised
data available in comparison to Task 1a or 2.
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7 Conclusion

We have presented several experiments using large
language models like BERT, XLNet, etc., and their
ensembles for humor and offense detection and
rating. We also discuss some of the underlying
challenges due to the subjective nature of humor
and offense detection task. Using these, we explain
why standard training practices used to prevent
overfitting, like data augmentation, do not work in
this context. Our experiments suggest that even
though these models can reasonably capture hu-
mor and offense, they are still far from understand-
ing every intricacy arising out of subjectivity. To
tackle some of the problems highlighted in this pa-
per, a compelling direction would be online data
augmentation by alternating between training the
embeddings and generating new texts to preserve
the humor/offensiveness. Additionally, pretraining
these models on datasets annotated by diverse an-
notators to capture a more comprehensive world
knowledge should further help in generalization.
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Abstract

In this paper we describe the systems used by
the RoMa team in the shared task on Detecting
and Rating Humor and Offense (HaHackathon)
at SemEval 2021. Our systems rely on data rep-
resentations learned through fine-tuned neural
language models. Particularly, we explore two
distinct architectures. The first one is based on
a Siamese Neural Network (SNN) combined
with a graph-based clustering method. The
SNN model is used for learning a latent space
where instances of humor and non-humor can
be distinguished. The clustering method is ap-
plied to build prototypes of both classes which
are used for training and classifying new mes-
sages. The second one combines neural lan-
guage model representations with a linear re-
gression model which makes the final ratings.
Our systems achieved the best results for hu-
mor classification using model one, whereas for
offensive and humor rating the second model
obtained better performance. In the case of the
controversial humor prediction, the most sig-
nificant improvement was achieved by a fine-
tuning of the neural language model. In general,
the results achieved are encouraging and give
us a starting point for further improvements.

1 Introduction

Detecting humor has become a popular research
field at the same time that the bad phenomenon
of offensiveness spreading exaggeratedly grows in
social media. In this scenario it is very frequent to
find out alarming volumes of heterogeneous data
such as textual messages, images, advertisements,
etc., that harm some age groups, ethnicity, sexual
gender or other demographic characteristics ( Betul

Keles and Niall McCrae and Annmarie Grealish ,
2020). Most of these harmful contents are often
masquerade as innocent jokes or simply as a funny
content. Therefore, it is crucial to shed light on
the commonalities and differences between both
phenomena in order to properly addressing the chal-
lenge of computationally distinguishing humorous
messages from aggressive or offensive ones.
Recognizing humorous and offensive utterances
on written messages is a very difficult task for hu-
man beings and even more for computers (Waseem,
2016). These difficulties increase when the textual
messages are isolated from the context in which
they are produced. Additional knowledge from
gestures, prosody features, visual content, situ-
ational environment and sociocultural rules play
an important role in how humans properly under-
stand the real meaning behind funny and hateful
contents. All this makes humor recognition and
offensiveness detection challenging tasks within
Natural Language Processing (NLP) and Human-
Computer Interaction (HCI). On this line, the Task
7, HaHackathon: Detecting and Rating Humor and
Offense at SemEval-2021 aims at computationally
recognizing humor and offensiveness in English
tweets (Meaney et al., 2021).

To address the four subtasks launched in Ha-
Hackathon we propose two distinct architectures
which rely on neural language model based rep-
resentation (deep-representation), particularly
learned by Transformer architectures. Our first
architecture combines the learned representation
with a SNN in order to learn in automatically way a
metric for discriminating a pair of messages of
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the same class from a pair of messages of dif-
ferent classes. Also, we considered applying a
graph-based clustering method to each class inde-
pendently for creating representative prototypes.
These prototypes were used to build the training
and testing pairs. Our second architecture relied
on the principle of fusing representations. For that,
the deep-representation are mixed with linguistic
information (linguistic-representation) and given
as inputs to a linear regression model which is spe-
cialized in predicting humor and offensive scores.
The paper is organized as follows: in Section 2
we briefly introduce the description of the four
subtasks. Section 3 presents our proposed archi-
tectures and gives details about their modules. In
Section 4 are described the experiments and re-
sults. Finally, we present our conclusions and pro-
vide interesting directions that we plan to explore
in future work. The source code associated with
this paper is online available on GitHub: https:

//github.com/mjason98/semeval21_humor.

2 Task Descriptions

We investigated the performance of our proposed
architectures in the four subtasks introduced in Ha-
Hackathon: i) given a tweet determining whether it
is humorous or not (subtask 1a); ii) given a tweet
predicting the humor rate in the range of 0 to 5,
where 0 indicates that it is not a funny message
and 5 indicates that the message is strong humor-
ous (subtask 1b); iii) given a tweet determining
whether it is considered as controversial (i.e., it is
rated with highly variable values of humor from
one annotator to another) (subtask 1c); the last sub-
task, iv) given a tweet predicting its offensiveness
rating in a range of 0 to 5, where 0 indicates the
tweet does not contain any kind of offensiveness
and 5 indicates that the message is strong offensive
(subtask 2).

Organizers provided a dataset for training and
test labeled according to the objectives of each
subtask. The whole dataset was manually anno-
tated by several annotators in order to minimize
the noise in the data and increase the agreement
in the annotation procedure. The dataset is com-
posed by 8000 tweets for training and 1000 tweets
for testing purposes, respectively. The training set
contains 3068 funny and 4932 non-funny tweets.
This slight imbalance in the training set imposes
an additional difficulty to the learning algorithm
for accurately predicting the funny messages. The

problem increases in the task of controversial hu-
mor prediction where only 2465 tweets are labeled
as controversial and the remainder 5535 are non-
controversial. The most complex scenario regard-
ing the data distribution is appreciated in the tasks
of humor and offensiveness rating. At a first glance
on the Figure 1 can be inferred that the majority of
the offensive scores are accumulated in the interval
(0,1). As a consequence of that, the tweets which

Figure 1: Histograms of humor and offensiveness score
distribution

are not offensive at all or those with scores closer
to zero are over-represented whereas the tweets
with strong offensive content are under-represented
in the dataset. Therefore, from the learning per-
spective, it is more difficult to score tweets which
strong offensive content. Conversely to this sce-
nario, the funniness scores are distributed more
uniform. Also, it is important to highlight that
tweets with offensive scores greater than 0 in most
cases also were scored as funny tweets. This rela-
tion reveals the usage of some humor devices as a
way for masqueraded offensive messages.

3 Our Proposals

In this section we present the proposed models and
provide details about their modules. Our models
have a modular structure. They are composed of
both, an encoder module (Encoder) and a predic-
tion module (Classifier), which are trained inde-
pendently. Particularly, we evaluate two distinct
methods for the classification module. The first
one is based on a Siamese neural network and the
second one relies on fusing representations and
training a linear regression model.

3.1 Encoder Modules

The Encoder plays an important role because it is
concerned with learning an abstract representation
that vanishes the colinearity between its features
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and compresses the textual information on a sin-
gle dense vector. In our proposal, the encoders are
based on Transformer models (TM), specifically
on RoBERTa (Liu et al., 2019) and XLNet (Yang
et al., 2020) architectures. Moreover, we employed
BERTweet (Nguyen et al., 2020) which is based
on the structure and pre-training procedure like
RoBERTa, but using an English tweets corpus that
makes it easier to fine-tune on NLP tasks where the
texts are short and informal.
For fine-tuning the TM-based encoders we add up
an intermediate layer that receives the vectors from
the output sequence of the TM. On this sequence
of vectors, we explore three variants for selecting
the best way of representing the message: i) the
vector in the first position (associated to the CLS
token), ii) the normalized sum of all vector in the
sequence, and iii) the vector in the last position of
the sequence. On this layer, we stacked an output
layer that makes the final prediction for the tar-
geted task. For that purpose, we follow the strategy
proposed in the Universal Language Model Fine-
Tuning (ULMFiT) (Howard and Ruder, 2018). For
each layer of the TM a different learning rate is set
up, increasing it using a multiplier while the neural
network gets deeper. This multiplier increases 0.1
points from a layer Li to another Li+1. We use this
dynamic learning rate to keep most information
from the pre-training at shallow layers and biasing
the deeper ones to learn about the specific tasks.

On the humor predicting subtask the BERTweet
encoder was employed, whereas for offensiveness
rating the three TMs were considered and trained
using a multitask learning strategy for predicting of-
fensive scores and irony together. Particularly, for
irony detection we used the data proposed in Task
3: Irony Detection Task at SemEval 2018 (Van Hee
et al., 2018).

3.2 Classification Modules

In this section we describe the architecture of the
two proposed classification modules.

3.2.1 SiaNet
To address the humor detection task we propose
a SNN (Koch et al., 2015; Bromley et al., 1993)
whose functionality lies on extracting features from
the input messages, in such a way that a pair of
messages belonging to the same class are closer and
in case of belonging to opposite class move away
w.r.t a distance function. In this work we use the
Euclidean distance. The distance learned by this

network is used as a criterion to determine, given
an unlabeled message, whether it is more likely to
belong to the positive class (e.g. humorous) than
to the negative class (e.g. non-humorous). For that
purpose, we define in each class a set of prototypes
which are used to compare against the unlabeled
message. These prototypes are obtained by means
of a graph-based clustering method. After having
the clusters, for each of them is selected a prototype
(real message), which is able to represent the most
information contained on that group.

Prototype Selection Strategy
The SiaNet model requires a pair of messages
as input in both training and test phases. Dur-
ing the training stage, pairs of two labeled mes-
sages are used, and in the test phase, the label of a
new message is predicted considering its similar-
ity with positives (humorous) and negatives (non-
humorous) messages. As consequence, the meth-
ods employed to obtain the pairs and select the
humor and non-humor messages for comparing at
the training stage, impact directly on the learning
process of the model.

In this work, instead of sampling positive and
negative messages randomly, we propose to in-
clude an additional step that aims at obtaining pro-
totypical instances (prototypes, henceforth) of both
classes. For that, we build a graph of β-distance,
analogous to the β-similarity graphs proposed in
(Garcia, 2005), for the humor (GP ) and non-humor
(GN ) classes. The nodes in the graphs represent the
tweets from the training set and the edges joining
two nodes are weighted with the distance between
them.
In the β-distance’s graphs the edges with weights
greater than the threshold β are removed, allowing
only the closest representations being in the same
connected subgraph. Notice that, the representation
of the messages associated to nodes are obtained
from the Encoder module. Afterwards, we detect
communities on the β-distance’s graph GP and
GN respectively, using the InfoMap (Edler et al.,
2020) algorithm based on the map equation (Ros-
vall et al., 2009). The map equation is a flow-based
and information-theoretic method. By minimizing
it over all the possible network partitions, InfoMap
reveals important aspects of the network structure
with respect to the dynamics on the network.
As result it is obtained a set of subgraphs giP ∈ GP

and giN ∈ GN and the nodes they contain with
their respective flow values. For each subgraph
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giC , C ∈ [P,N ] we select the node xmax with the
highest flow value. We assume that this node acts
as a representative node for giC , and consequently
it is also a prototypical message for the class C.
All prototypical messages for the humorous and
non-humorous classes are obtained and defined
as Humor Prototype Set (PSet) and Non-Humor
Prototype Set (NSet) respectively. In Figure 2 are
depicted the projection of each class messages, and
their respective prototypes.

Figure 2: Scatter encoder representations per class with
the identified prototypes

Siamese Neural Net Architecture
The network architecture consists of two input mes-
sages and one output that indicates how distant
they are according to their representation (Brom-
ley et al., 1993). Both messages are encoded by
using the fine-tuned Transformers model (see Sec-
tion. 3.1). Later, each input is passed through two
dense layers (with 64 hidden neurons), which map
the encoding to a smaller dimension by learning
specific features. We must annotate that both in-
put messages are fed to the same two dense layers
(i.e., the new encodings are computed using the
same weights in both cases). Later, the representa-
tions of the messages are compared to each other
through a distance metric. The specific features
the model learns to extract, make that messages
representations corresponding to opposite classes
have a distance greater than the threshold defined
in the loss function used. Particularly, we used
the Contrastive Loss (Hadsell et al., 2006) with a
threshold of 0.85, this value was set empirically.

For training the SNN, the dataset needs to be
processed for constructing pairs of messages from
the same class and pairs of messages from distinct
classes. Once defined the sets of prototypes PSet

and NSet (as described in the Prototype Selection
Strategy), we create training examples associated

to each message x into the training dataset, with
x /∈ PSet∪NSet. For that, we sampled randomly k
intra-class examples, by pairing x with prototypes
from its class, and generate m inter-class examples
paring x with their closest prototypes from the con-
trary class.
During the test phase, given an unlabeled message,
we obtain the encoding of z by using the Encoder
module. After that, we predict the distance of
z with respect to the prototypes in the PSet and
NSet using the SNN. Based on the previously com-
puted distances, we evaluate two rules for deciding
whether z should be classified under the humorous
or non-humorous classes:
i) Minimum, we assign z to the class of its nearest
prototype as follows:

ŷ = argmin
i
{SNN(z, xi,j)} (1)

where xi,j is the prototype message j with label
i = {0, 1}.
ii) Mean, we assign z to the class of the Prototype
Set with lowest average distance:

Si =
1

Ci

Ci∑

j=1

SNN(z, xi,j)

ŷ = argmin
i
{Si} (2)

where Ci ∈ {|PSet|, |NSet|} and xi,j is the proto-
type message j with label i = {0, 1}.
3.2.2 Multiview-based Linear Regression

Module
Ensemble methods usually combine data represen-
tations or the decisions of multiple models to obtain
improved results over those obtained individually.
These decisions are made from valuable features ex-
tracted by models’ intermediate layers, which vary
depending on their architecture and the dataset they
have been trained on.
Combining all those information into a single pre-
diction unit instead of synthesized predictions, is
consistent if we seek to take into account different
views of the information, especially when dealing
with such complex and subjective tasks as offen-
siveness detection and in general sentiment analysis
are.
We propose to fusing four distinct representations
of the tweets and use this mixing deep-features
for training a linear regression method. Three of
the representations are based on fine-tuned trans-
former encoders and the other is based on affective
features.
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Encoder Settings
Considering the underlying relation between hu-
morous and offensive language observed in the Ha-
Hackathon dataset (please, see Figure 1), the rela-
tion among offensiveness with other forms of toxic
speech (e.g. aggressiveness and hate) presented in
(Poletto et al., 2020) and the common usage of fig-
urative devices like irony in social media for com-
municating indirectly hateful messages (Cignarella
et al., 2018; Frenda, 2018). We fine-tuned the
RoBERTa-based models on the dataset provided in
the shared tasks HatEval 2019 (Basile et al., 2019),
OffensEval 2019 (Zampieri et al., 2019), Irony De-
tection Task at SemEval 2018 (Van Hee et al., 2018)
and HaHackathon itself. The fine-tuning was car-
ried out using a smooth learning rate on the Masked
Language Modeling (MLM) task. We masked ran-
domly 15% of the tokens from each message, and
fit them for three epochs, following the strategy
proposed in (Liu et al., 2019).

For training the Encoders to address the Ha-
Hackathon specific target, the placed intermediate
layer after the encoder heads, is fed with the con-
catenation of the three variants to get the TM output
(see Section. 3.1). This layer is the one employed
to obtain the message encodings. We combine the
offensiveness rating in HaHackathon with the la-
bels of irony in the dataset of SemEval 2018 Task
3 (Van Hee et al., 2018). This idea relies on the
observed relation between humor and offensive-
ness ratings within the provided data, where many
offensive messages can be considered as ironic or
harmful forms of humor (see last two examples in
Table 4).
To avoid outliers in the dataset for misleading the
training process, we employed the Minkowski error
(Bishop, 1995) in the regression subtask, which is
less sensitive to outliers than the standard mean
squared error. It is defined as follows:

ErrorMinkowski =

∑
(|y − ŷ|)kc

n
(3)

Where y is the label for one example, ŷ is the pre-
dicted value, n the number of examples and kc the
Minkowski coefficient which we set to 1.4 empiri-
cally.

The Affective Features
Conversely to the three representations above, the
Affective Features representation was obtained
from a word-level recurrent neural network, trying
to capture how affective information from different

dimensions flows along the messages (Kar et al.,
2018). For this purpose, we constructed an em-
bedding matrix whose features were based on an
affective information set proposed by (Farı́as et al.,
2016) containing basic emotions (i.e., sadness, sur-
prise, fear, etc). The embedding vectors involved
52 components between binary and no binary val-
ues, and the vocabulary was built from the affective
resources, hence words not expressing emotional
charge at all were encoded with the null vector.

The information obtained from this embedding
for a message was fed into an BiLSTM (Bidirec-
tional Long Short Term Memory) architecture simi-
lar to ELMO (Peters et al., 2018). Deeper BiLSTM
output was fed, to an intermediate layer to con-
dense the information passed later to the output
layers. For training this model we used a multitask
approach focusing on predicting how offensive a
message is, as well as how funny it is, by using the
data provided for HaHackathon.

Linear Regression
As we can be observed in Figure 3, the encoding
provided by transformer models differ regarding
the space region in which the offensive features
are projected. We can infer that one representation
helps the others by providing information not cap-
tured simultaneously.

Figure 3: Scatter encoders representations

Considering that, there is no co-linearity between
the features extracted from one encoder to another.
We hypothesize they can be combined through a
parsimonious model to prevent overfitting. Based
on that, we decided to employ a Ridge Regression
Model, setting the α hyper-parameter employed for
the L2 regularization on the loss function to 1.0.
During the experiments we also construct another
ensemble based on Recurrent Neural Networks
(RNN) which receive all four encodings and treat
them as a sequence of the message. The elements
of this sequence are weighted through an Addi-
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tive Attention layer and combined employing an
LSTM layer in order to decide from a time step
i.e., from one encoding to another, which of the
features must be kept through the entire sequence
analysis i.e., all four encodings. The output of this
layer is then fed into two parallel output layers to
predict whether a message is offensive or not and
its offensiveness degree.
The data over-representation for messages with of-
fensiveness rating equal to 0 makes that, from the
standpoint of deciding whether a message is offen-
sive or not, the data be balanced (i.e., labeling the
messages with offensiveness rating higher than 0
as offensive). This allowed to us using the alter-
native classification task in the multitask learning
approach employed for this model, taking into ac-
count that it helps to learn common features among
these offensiveness-related tasks.

4 Experiments and Results

In this section we describe the conducted experi-
ments for evaluating the performance of our sys-
tems on HaHackathon development dataset (dev-
dataset). For that, we employed the metrics pro-
posed by the task organizers, F1-score over the pos-
itive class and accuracy (Acc) for classification sub-
tasks, and the Root Mean Squared Error (RMSE)
for regression subtasks.

Encoder Modules

The SiaNet model and the Ridge Regression model
are fed with information of the messages extracted
through their respective encoder modules, this
makes our first effort focused on tuning them
for obtaining the best representation. For both
approaches, SiaNet and Ridge Regressor, the
encoders were optimized using the RMSprop
method (Hinton et al., 2012).

Firstly, for obtaining the multi-viewed represen-
tation of the messages, the RoBERTa, BERTweet
and XLNet encoders were fine-tuned using (MLM)
unsupervised learning. For that, we considered
three additional related-datasets (Basile et al., 2019;
Zampieri et al., 2019; Van Hee et al., 2018) and the
HaHackathon dataset itself. Afterwards, since the
multi-viewed representation was constructed for
rating offensiveness, the three models were trained
specifically for this regression task by exploring
two main ideas based on multitask learning strat-
egy (MTL): i) The first one aims at capturing the

information shared among the four subtasks pro-
posed in the HaHackathon dataset; ii) The second
one, aims at capturing the indirect negative speech
behind humorous messages, for that we introduced
the irony prediction task (Irony) combined with
offensiveness prediction. Specifically, we used the
dataset proposed in (Van Hee et al., 2018) for ad-
dressing the irony prediction task.
Table 1 shows the results of applying both strate-
gies for each transformer encoder. As can be ob-
served, by making the model to extract features
also useful for irony detection we achieved the
best performance. Nevertheless, the first strategy

Model
Strategy

HAHA Irony No MTL
BERTweet 0.70 0.65 0.81
RoBERTa 0.75 0.63 0.67
XLNet 0.69 0.68 0.70

Table 1: MTL strategies for offensiveness rating subtask.
HAHA refers to MTL with all HaHackathon subtasks
and Irony refers to MTL with irony detection task

yields our best result at predicting whether or not a
message can be considered as controversially hu-
morous. We also tried to avoid using MTL with the
three transformers encoders, fine-tuning them for
the offensiveness regression subtask, but in terms
of RMSE the performance decreased on 0.07 in
average.
Similarly it happened when it was not accom-
plished the MLM fine-tuning. The error was
slightly increased for RoBERTa from 0.58 to 0.64
when this stage was avoided and for BERTweet, it
increased from 0.65 to 0.91. We hypothesize this
technique helped the model to reduce the impact
of isolated offensive terms, which may influence
the regression stage on messages that are not even
offensive.
For fine-tuning the encoder module of SiaNet we
explored if it was more convenient to set a single
learning rate for the whole model or follow the
ULMFiT strategy addressing the humor prediction
task. The second approach obtained the best perfor-
mance in terms of F1-Score/Acc with (0.94/0.92)
w.r.t (0.90/0.88) reached by the first one. We also
tried to apply MTL to this approach, but this did
not yield any improvement, reaching 0.93/0.91.
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Prediction Modules
For classifying unlabeled tweets with SiaNet we
evaluated the two methods described in Section
3.2.1 alongside the upper bound of clusters ex-
tracted from GP and GN by InfoMap (50, 250
and 300 clusters) and how the TM output sequence
was used according to the strategies described in
Section 3.1. Among the combinations resulting
from that evaluation, the best-performed was the
one involving the minimum criterion for labeling
the messages, the highest upper bound for allowed
instances on PSet and NSet respectively (300) and
taking the normalized sum of the TM output se-
quence, reaching under F-Score/Acc the measure-
ments (0.9505/0.9370).
Also, we added Gaussian noise to the encoding
inputs for decreasing overfitting when training the
Siamese as part of the conducted experiments, re-
sulting on improving the loss in the dev-set from
0.11 when the noise is not added to 0.06.
In the training phase of the Linear Ridge regres-
sion method we evaluated the impact of the distinct
representations on the performance of our model.
Looking at Table 2, we noted that each transformer

model XLNet RoB BT AF Off

Ridge

+ + + + 0.55
+ + + - 0.61
- + + - 0.65
+ + - + 0.58
+ - + + 0.59
- + + + 0.62

LSTM + + + + 0.55
LSTM-Att + + + + 0.57

Table 2: Feature representation combination through the
ensemble

encoder played an important role in characteriz-
ing the messages, also the affective features cap-
tured important information about the offensive
language, which helped in each combination. The
LSTM based models also had a good performance
when combining all the representations, especially
the one with no attention mechanism.

Summarizing, participating in HaHackathon we
addressed the humor prediction task with the
SiaNet model. For the humor rating subtask we
used the Multiview-based Linear Ridge Regression
model, fine-tuning the transformer encoders under
the humor and offensiveness rating subtasks simul-
taneously after applying MLM. The controversy

humor prediction subtask was addressed through
the BERTweet model using MTL with all four sub-
tasks from HaHackathon. Finally, the offensiveness
rating was predicted by the Multiview-based Lin-
ear Ridge Regression, but fine-tuning the encoders
with MTL and combining offensiveness rating sub-
task with irony detection.

4.1 Error Analysis

In the humor prediction subtask, we found out
that more than 40% of prototypes obtained from
the humorous class have the structure ques-
tion?argumentation (Q?A, see Table 3). We hy-
pothesize that some tweets were misclassified as
humorous due to sharing this structure with positive
prototypes. In fact, within the examples labeled by
our architecture as funny when they were not, the
ones having this structure represented the 38% of
this type of misclassification.

Tweet
What do you call an Asian guy that
always shows up before he needs to? Earl Lee
Why did the slave go to college? So
he could pickup his Master’s degree.
What do you call a 60-year old
whose puberty just started? A late boomer.

Table 3: Prototype tweets annotated as humor with the
structure of Q?A

For the offensiveness prediction task, the most
critical failures (i.e., absolute difference between
the real value and the predicted one) were analyzed
from two standpoints: first when the model pre-
dicts a lower value than the real one as the first two
examples in Table 4 or a higher value as in the last
two cases. As we can observed how it happened in
the most mispredicted examples, the model gives
higher offensiveness values to messages containing
phrases that characterize social groups usually be-
ing a target of hate spreading or bullying on social
media. This is possibly caused by the origin of
data used for pre-training the transformer encoders,
which were in charge of finding an encoding for
the tweets.

4.2 Official Results

Regarding the official results on the test set, we
made submissions in all four sub-tasks. The base-
line proposed by the organizers consisted of a
Naive Bayes model with bag of words features
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Tweet Value Predicted
What do you call a homosexual man on a wheel chair? A human being 0.15 2.5
What do you call it when two female spies fall in love? Lesbianage 0.6 1.89
Wanna hear a joke? Women’s rights. 3.35 1.79
What belongs to me but is used the most by others? My ex-wife 1.9 0.43

Table 4: Some examples mispredicted by our model

and Support Vector Regression for the classifica-
tion and regression substasks respectively.
In subtask 1a we ranked at place 22nd among 58
teams, with F-Score/Acc of 0.948/0.9576, whereas
the best system reached 0.982/0.9854. In subtask
1b with a RMSE of 0.5905 and among 50 teams
we ranked at 30th place and the best system had
an RMSE of 0.4959. For subtask 1c we obtained
the 10th position from 36 teams, our F-Score/Acc
was 0.4732/0.6197 and the best system obtained
0.4943/0.6302. Finally, in subtask 2 we were the
14th team of 48 in total, with a RMSE of 0.4532
with a difference from the best ranked system of
0.0412.

5 Conclusions and Future Work

In this work we presented two models for ad-
dressing humor and offensiveness prediction in
English tweets. Both models employ the deep-
representations learned by Transformers methods
for encoding the messages. The first model is based
on a Siamese Neural Network combined with a
graph-based clustering method. The second model
combines feature representations learned by three
transformers language models with affective fea-
tures captured by an BiLSTM-based model. These
representations are used to train a linear regres-
sion model. The achieved results show that the
Siamese architecture outperformed the fine-tuned
Transformer models for humor detection task. The
performance of this architecture relies on how the
tweets are represented by the encoder and the strat-
egy to find the Positive and Negative sets of pro-
totypes. In the second model, the affective fea-
tures play an important role to determine the offen-
siveness scores with any combination of features
learned by the state-of-the-art language models,
showing that they successfully captured underly-
ing affective cues present in offensive and funny
speech. We plan to investigate two interesting di-
rections as future works. The first direction is an
in-depth study of the harmfulness of humor on
human stereotypes taking advantage of the over-

lapping between offensiveness and humor in the
HaHackathon dataset. The second one is an exhaus-
tive analysis of clustering methods for building pro-
totypes and how they may influence the learning of
the Siamese Neural Network for humor prediction.
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2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

Zeerak Waseem. 2016. Are You a Racist or Am I See-
ing Things? Annotator Influence on Hate Speech
Detection on Twitter. In Proceedings of the First
Workshop on NLP and Computational Social Science,
pages 138–142, Austin, Texas. Association for Com-
putational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le.
2020. XLNet: Generalized Autoregressive Pretrain-
ing for Language Understanding. arXiv preprint
arXiv:1906.08237.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 75–86, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

305



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 306–316
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

SemEval-2021 Task 8: MeasEval – Extracting Counts and Measurements
and their Related Contexts

Corey A Harper1,2, Jessica Cox1, Curt Kohler1, Antony Scerri1,
Ron Daniel, Jr.1 and Paul Groth2

1Elsevier Labs, Suite 800, 230 Park Avenue, New York, NY 10169, USA
1{c.harper, j.cox, c.kohler, a.scerri, r.daniel}@elsevier.com

2University of Amsterdam, Postbus 94323 / 1090 GH, Amsterdam
2{c.a.harper, p.t.groth}@uva.nl

Abstract
We describe MeasEval, a SemEval task of
extracting counts, measurements, and related
context from scientific documents, which is
of significant importance to the creation of
Knowledge Graphs that distill information
from the scientific literature. This is a new
task in 2021, for which over 75 submissions
from 25 participants were received. We ex-
pect the data developed for this task and the
findings reported to be valuable to the scien-
tific knowledge extraction, metrology, and au-
tomated knowledge base construction commu-
nities.

1 Introduction

Counts and measurements are an important part of
scientific discourse (Rijgersberg et al., 2011). It is
relatively easy to find measurements in text (Fop-
piano et al., 2019a), but a bare measurement like
17mg is not informative without knowing what it is
referring to. For example, it is important to know
whether a quantity is 17mg of a medicine dosage or
17mg of concrete additive. Only recently have at-
tempts been made to identify the named entity and
property being measured (Hundman and Maamann,
2017). Extracting such information is challenging
because the way scientists write can be ambiguous
and inconsistent. Furthermore, the location of this
information relative to the measurement can vary
greatly, and might even be in a different sentence.

Being able to extract measurement informa-
tion automatically can enable the construction of
databases of measured properties. Such databases
are important in biomedicine (Hao et al., 2016), en-
gineering (Foppiano et al., 2019a), and other scien-
tific disciplines (Bergmann et al., 2017), but the ap-
proaches used for populating these databases do not
generalize widely. Furthermore, knowledge graphs
(Hogan et al., 2021) frequently aggregate quanti-
tative data reported in the literature and are often

built through a largely manual curation process. Ex-
amples include: LITTERBASE1 (Bergmann et al.,
2017), which aggregates observations of marine
litter distribution; NeuroElectro2 (Tripathy et al.,
2014), which collects information on electrophysi-
ological properties of neurons; and various model
organism databases like the Zebrafish Information
Network3 (Sprague, 2006), which provide sum-
maries of gene information.

Beyond knowledge graphs and curated
databases, clinical health contexts often require
extraction of measured values for lab results and
patient observations. Moreover, scientific research
frequently relies on precise measurements for
reproducibility of experimental methods (Kaiser,
2018). Measured property extraction could be of
value in many other contexts, such as fact checking
and news validation or in statistical analysis for
public policy (Einav and Levin, 2014).

Research in information extraction and knowl-
edge graph creation has concentrated on forming
triples by extracting entities and relations (Kon-
stantinova, 2014). Little attention has been paid
to the extraction of measured properties, entities,
and conditions or contexts, yet these elements are
needed to place measurements into a database and
for their subsequent use in comparison and calcu-
lation. Units and measures are an important part
of the semantic web, though research has largely
been focused on ontology design (Rijgersberg et al.,
2013). There is, thus, a need for understanding the
state of the art on this important task.

The aim of this paper is to introduce the Mea-
sEval shared task for the extraction of counts,
measurements, and related context from English-
language scientific documents, as well as to present
an analysis of the results of participant systems on

1https://litterbase.awi.de/
2https://neuroelectro.org/
3http://zfin.org/
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the task.
The rest of this paper is organized as follows.

We begin with a description of related work. This
is followed by the description of the task itself
(Section 3) and the associated data and annotation
procedure (Section 4). The evaluation regime is
detailed in Section 5 including baselines. Subse-
quently, we present an analysis of the results of
the systems on the task. Finally, we summarize
the various participating systems approaches and
conclude.

2 Related Work

There is a substantial body of work discussing units
of measurement, ontologies to describe them, sys-
tems designed to extract them, as well as related
work on knowledge graphs of numerical attributes.
Automated extraction of measured quantities, such
as 520 +/- 8 items/kg, is straightforward and many
tools exist to perform this task (Foppiano et al.,
2019b; Deus et al., 2017; Hao et al., 2016). To build
a knowledge graph, we must put these measure-
ments in context. We need to determine the proper-
ties being measured (e.g. abundances), the entities
that exhibit those properties (e.g. the Maowei Sea),
and possible qualifying conditions under which
measurements are obtained (e.g. the date and depth
of the sampling). These properties, entities, and
conditions can then be mapped to those that are
used in the knowledge graph, so that the measure-
ments can be normalized into a common system.

There are a number of ontologies that cover units
of measurement, such as Quantities, Units, Dimen-
sions, and Types Ontologies (QUDT)4 and the On-
tology of Units of Measure and Related Concepts
(OM) (Rijgersberg et al., 2013). These and oth-
ers are discussed in a survey paper by (Steinberg
et al., 2017). Most of these ontologies focus on
conversion between different systems of measure-
ment, and on classifying types of measurement
or domain of application, but do not necessarily
address the “thing” being measured. The Joint
Committee for Guides in Metrology’s (JCGM) In-
ternational Vocabulary of Metrology covers this in
slightly more depth, discussing measurement units
and quantity values, then talking about quantities
themselves, which it defines as a “property of a phe-
nomenon, body, or substance” (Joint Committee
for Guides in Metrology, 2012). We find that this
nomenclature, while precise, is likely to be con-

4http://www.qudt.org/

fusing to non-metrologists from both an evaluation
and annotation perspective, so to support the data
annotation process for this task we use a simplified
nomenclature.

Metrology research in the Semantic Web com-
munity is often focused on ontology alignment for
Units of Measurement ontologies. Kaladevi et al.
(2016) look at aligning unit ontologies to support
merging data across many weather information sys-
tems, while Do and Pauwels (2013) more generally
look at using MathML for aligning unit ontologies.
Efforts around designing linked data models for
semantic sensor streams for the Internet of Things
also utilize the Units of Measurement ontology
for representing measurement information (Bar-
naghi et al., 2013). None of this work addresses
extraction of measurements and their contexts nor
building knowledge graphs from such information.

Other research explores creating databases of nu-
meric attributes. Kotnis and Garcıa-Duran (2019)
infer new values using linear regression for neigh-
boring entities in a knowledge graph. Gupta et al.
(2015) use a logistic regression with distributional
vectors. Davidov and Rappoport (2010) use a sys-
tem of averages and boundary values to infer an
estimated numeric attribute value. Rather than im-
puting new values from related entities, MeasEval
starts from a value and puts it into the context of
measured entities and measured properties, work-
ing toward a knowledge representation of numeric
data.

3 Task Description

MeasEval is an entity recognition and semantic re-
lation extraction task focused on finding counts and
measurements, attributes of those quantities, and
additional information including measured entities,
properties, and measurement contexts.

MeasEval is composed of five sub-tasks that
cover span extraction, classification, and rela-
tion extraction, including cross-sentence relations.
Given a paragraph from a scientific text:

• For each paragraph of text, identify all spans
containing quantities (e.g. 12 kg). Quantities
are treated as strings, and are not converted or
normalized.

• For each identified Quantity, identify the Unit
of Measurement (e.g. kg), if one exists. For
each Quantity classify additional value Mod-
ifiers (e.g. count, range, approximate, mean,
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etc.) that apply to the Quantity.

• For each identified Quantity, identify the Mea-
sured Entity (e.g. bed inventory) it applies to
(if one exists) and mark its span. If an associ-
ated Measured Property (e.g. concentration)
also exists, identify it and mark its span.

• Identify and mark the span of any Qualifier
(e.g. after incubation) that is needed to record
additional related context to either validate or
understand each identified Quantity.

• Identify relationships between Quantity, Mea-
sured Entity, Measured Property, and Quali-
fier spans using the HasQuantity, HasProperty,
and Qualifies relation types.

More detailed definitions can be found be re-
viewing the MeasEval Annotation Guidelines.5 We
describe each of the elements to be extracted in
more detail in the next section.

4 Annotated Data

4.1 Data Model
As shown in Figure 1, the MeasEval annotation
model consists of Quantities, MeasuredEntities,
MeasuredProperties, and Qualifiers. A Quantity
can be either a count or a measurement, with mea-
surements being composed of a Unit and a Value.
Values also can have additional attributes such as
“isMean”, “isApproximate”, or “isRange”. Quanti-
ties can be directly related to a MeasuredEntity, or
can be indirectly related to a MeasuredEntity via
a MeasuredProperty. Qualifiers provide additional
information that is required to interpret the mea-
surement. These include things like the pressure at
which a boiling point was observed, or the depth
and location where an ocean sample was taken.
Since texts may contain different parts of this in-
formation, all relationships are optional. A Mea-
suredEntity can be related to a MeasuredProperty
or a Quantity, a MeasuredProperty can be related a
Quantity, and a Qualifier can have a relationship to
any span.

4.2 Corpus and Annotations
Annotations are drawn from 110 CC-BY licensed
articles that have been made previously available
by Elsevier Labs. 6 These articles were the ba-

5https://github.com/harperco/MeasEval/
tree/main/annotationGuidelines

6https://github.com/elsevierlabs/
OA-STM-Corpus

Figure 1: Annotation Model. All relationships are op-
tional.

sis of a previous SemEval task for SemEval 2017
(Augenstein et al., 2017). These 110 articles are
distributed evenly across 10 subject areas.

From these 110 articles, the MeasEval dataset
includes 428 paragraphs containing 1663 Quanti-
ties. These are split into a training data set of 1164
Quantities (313 paragraphs) and an evaluation set
of 499 Quantities (135 paragraphs).

All paragraphs were annotated by at least two
annotators, then reviewed and reconciled during
an adjudication meeting, often including a third
annotator. The MeasEval data release included
training data, as well as original annotations from
multiple annotators for a 248 Quantity subset of the
training data. This was to provide deep information
on inter-annotator agreement, and also to allow
participants to do their own analysis on how their
algorithms perform relative to humans.

The inter-annotator agreement (IAA) shows
some variation in interpretation when humans are
performing this task. The review process serves
to resolve much of the disagreement and to ensure
that the data is as consistent as possible given the
challenging nature of the task. For this subset of
data in this IAA set, Table 1 shows Krippendorff’s
Alpha values for each class.

Annotation Class Krippendorff’s Alpha

Quantity 0.943
MeasuredProperty 0.641
MeasuredEntity 0.546
Qualifier 0.334
Unit 0.866

Table 1: Krippendorf’s Alpha scores for subset of data
included in Inter-Annotator Agreement dataset.

4.3 Data Formats

To increase the usability of the data, multiple for-
mats are provided. The MeasEval data includes a
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Figure 2: BRAT Example of a Quantity with related annotations.

text file and a set of annotations for each paragraph
of scientific text. Annotations are provided in a tab-
separated value (.tsv) file format, and in the BRAT
annotation format. The BRAT format is for the
purpose of visualization and review, but the official
data format for the task is the .tsv, which is used
for submissions and evaluation. For .tsv and .txt
files, there is one file per paragraph of annotated
text, and the .tsv file contains all annotations. For
the BRAT files, there are one .ann and one .txt file
per annotated Quantity.

For example, given the BRAT annotations illus-
trated in Figure 2, the data will have a raw text file
(S0016236113008041-3153.txt), a BRAT annota-
tion file per Quantity (S0016236113008041-3153-
1.ann, and S0016236113008041-3153-2.ann), and
a tab-separated file containing all annotations from
each Quantity (S0016236113008041-3153.tsv).

More detail on each of these formats, includ-
ing examples, as well as all MeasEval training and
evaluation data, inter-annotator agreement annota-
tions, and annotation guidelines can be found on
the MeasEval Github repository. 7

5 Evaluation

Evaluation is scored by providing a single SQuAD-
style (Rajpurkar et al., 2016) F1 (Overlap) score
for each submission, averaged across all nine com-
ponents of the five subtasks. The 9 components are
the Quantity, MeasuredProperty, MeasuredEntity,
and Qualifier spans; the Modifier and Unit exten-
sions to Quantity, and the HasQuantity, HasProp-
erty, and Qualifies relationships. The evaluation
script also provides a number of other metrics, de-
scribed below.

In order to effectively evaluate all 9 components
of the sub-tasks, it is necessary to first pin all Quan-
tities in a submission to the corresponding Quanti-
ties in the gold data. As an example, consider the
sentence “The dog weighed 25 pounds, while the
average weight of the cats was 9 lbs.” We want to
avoid crediting correct MeasuredEntities if asso-

7https://github.com/harperco/MeasEval

ciated with the wrong Quantity. For example, if
a submission listed “dog” as the MeasuredEntity
associated with the average weight of 9 lbs, this
would be incorrect.

The first pass matches each submission “annot-
Set” ID to a corresponding Gold Set annotationId,
and propagates this matched identifier across all of
the data.

From there, the script calculates Precision, Re-
call, F-measure, and an Exact Match and SQuAD-
style F1 (overlap) score. Exact Match and F1
are averaged across the entire submission. Ex-
act Match is a binary value of 0 or 1, while F1
is a token level overlap ratio of submission to gold
spans, where tokenization is done using simple
white space delimiters. For components that do not
include a span, Exact Match and F1 scores are the
same. Relations are also scored with a binary Exact
Match and F1 score if the relation types match and
both endpoints match either exactly or with some
overlap.

Any span, unit, modifier, or relationship found
in the gold data, but not the submission, or found
in the submission, but not the gold data is included
as a “penalty row” with a score of 0 in order to
sufficiently penalize both false positives and false
negatives when averaging scores. This calculation
leads to very fine-grained differences in the distri-
bution of scores in the results tables.

Although not used for calculating leaderboard
rankings, the evaluation code can also provide all
the same scores micro-averaged by scoring compo-
nent, by subject area, or by paragraph for further
analysis of error. Additional documentation as well
as the evaluation code itself can be found on the
MeasEval GitHub repository. 8

5.1 Baseline Models

MeasEval also includes two very similar baseline
models. Baseline 1 is the best-performing of these,
and scores an overall F1 (Overlap) of 0.239 in the
evaluation as reported in Tables 2 and 3. Base-

8https://github.com/harperco/MeasEval/
tree/main/eval
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Team Name Overall Quantity Unit Modifier MeasuredEntity MeasuredProperty Qualifier

LIORI* 0.519 0.861 0.722 0.642 0.437 0.467 0.163
jarvis@tencent* 0.473 0.855 0.719 0.523 0.398 0.437 0.000
zyy 77 0.448 0.842 0.697 0.507 0.383 0.385 0.000
zz362 0.433 0.821 0.720 0.498 0.344 0.365 0.000
Counts@IITK* 0.432 0.861 0.406 0.245 0.077 0.804 0.614
yorkey 0.399 0.745 0.661 0.314 0.344 0.365 0.000
XMSHI 0.392 0.736 0.624 0.313 0.348 0.353 0.000
CLaC-BP* 0.389 0.855 0.677 0.546 0.251 0.318 0.107
clockwise9* 0.369 0.850 0.618 0.000 0.327 0.350 0.000
UPB* 0.369 0.742 0.533 0.277 0.331 0.374 0.040
Baseline 0.239 0.827 0.561 0.000 0.053 0.064 0.005
KGP* 0.278 0.787 0.748 0.309 0.113 0.012 0.005
Stanford MLab* 0.272 0.818 0.760 0.408 0.000 0.000 0.000
BuckschJ 0.263 0.825 0.695 0.375 0.000 0.000 0.000
CLaC-np* 0.241 0.756 0.495 0.408 0.056 0.006 0.000
FabianW 0.238 0.826 0.624 0.438 0.060 0.045 0.006
ugeijtsv 0.229 0.759 0.582 0.210 0.000 0.000 0.000
Jo 0.212 0.754 0.377 0.291 0.000 0.000 0.000
joe o123 0.185 0.376 0.383 0.242 0.000 0.000 0.000
SU-NLP 0.001 0.007 0.002 0.000 0.000 0.000 0.000

Table 2: Top result for each team/user, ordered by Overall F1 along with micro-averages for each annotation
span, for units, and for modifiers. Team Names marked with * have submitted system information for further
analysis and discussion. Top, second, and third place scores per category represented by bold, underline, and
italics respectively.

line 1 use spaCy Named Entity Recognition (NER)
models for each of the four classes independently.
Unfortunately, some training examples need to be
thrown away because spaCy’s NER functionality
does not support overlapping spans in the same
model. Since there is frequently an overlap be-
tween MeasEval spans of different types, this ne-
cessitates training each annotation type separately,
and stripping out edge cases where multiple anno-
tations of the same type intersect.

Baseline 1 generates a deduplicated list of all
units in the training data, and checks each Quantity
against this list. If there are one or more matches
in this comparison, the system returns the “longest
last matching” unit, ensuring that cm would be pre-
ferred to m in “22 cm” and that s would be preferred
to m in “approximately 22 s”. The baseline does
not attempt the Modifier component, though could
be augmented with a set of regular expressions that
search the Quantity string for key phrases and sym-
bols, including “approximately”, “between”, “>”,
and “∼”.

Once the NER models and unit matching are
completed, baseline 1 matches Quantities to Mea-
suredEntities, MeasuredProperties, and Qualifiers
using a knockout match algorithm based on proxim-
ity. So each MeasuredProperty matches the nearest
Quantity, each MeasuredEntity matches the nearest
MeasuredProperty or Quantity, and each Qualifier

matches the nearest span of any type. Baseline 2
is a variant that does much simpler matching, tak-
ing each span in the order they appear in the data.
Baseline 2 does not appear in the results tables, but
scores an overall F1 (Overlap) of 0.223. The code
for both baselines is available in a Jupyter notebook
on the MeasEval Github repository. 9

6 Results and Discussion

During the 21-day evaluation period (January 10
through 31, 2021), 26 CodaLab users submitted a
total of 89 submissions, of which 77 passed valida-
tion and were successfully scored by the evaluation
script. Given the complexity of the task, we opted
to allow for five submissions total during the evalu-
ation, although some collaboration between users
meant that some teams were able to effectively sub-
mit more than five times. We note that submissions
did not calculate scores on sub-tasks, thus mak-
ing it difficult to overly optimize models using just
the overall score. The relatively generous submis-
sion allowance does not seem to have presented too
much of an over-fitting problem, as scores remain
relatively low on all tasks, although the collabo-
ration could have given some participants a slight
advantage in the rankings.

Table 2 shows the top submission from each of

9https://github.com/harperco/MeasEval/
blob/main/baselines/first-baseline.ipynb
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the 19 teams that submitted successfully, as well
as the top performing baseline. 10 of the 19 ex-
ceed the benchmark of the baseline spaCy model.
In addition to the overall F1 scores, Table 2 shows
micro-averaged F1 across the four annotation spans
as well as Units and Modifiers. Table 3 provides
this same breakdown for each of the three relation-
ship types. Team names marked with an asterisk (*)
represent teams which have either submitted sys-
tem description papers or responded to a request
for system information.

The overall top-performing model was at least
tied for top performance in five out of 6 of the
component scores in Table 2, but interestingly, the
second best and third best performing models var-
ied across scoring component. Models that did
particularly well at Quantities, Units, or Modifiers,
may have had their overall performance reduced
by lower performance at the MeasuredEntity and
MeasuredProperty spans.

Table 3 shows the scores for the Relation Ex-
traction subtasks: HasQuantity, HasProperty, and
Qualifies. These largely align with the annotation
span components of the scoring which they are de-
pendent on. In both Table 2 and Table 3 it is worth
noting that only 7 teams attempted extraction of
Qualifiers and the Qualifies relation, as these were
the most difficult aspects of the task.

Team Name HasQuantity HasProperty Qualifies

LIORI* 0.482 0.318 0.092
jarvis@tencent* 0.424 0.257 0.000
zyy 77 0.387 0.229 0.000
zz362 0.375 0.203 0.000
Counts@IITK* 0.311 0.183 0.064
yorkey 0.375 0.203 0.000
XMSHI 0.373 0.199 0.000
CLaC-BP* 0.308 0.147 0.058
clockwise9* 0.366 0.167 0.000
UPB* 0.350 0.242 0.019
Baseline 0.075 0.007 0.000
KGP* 0.076 0.006 0.000
Stanford MLab* 0.000 0.000 0.000
BuckschJ 0.000 0.000 0.000
CLaC-np* 0.028 0.000 0.000
FabianW 0.037 0.007 0.000
ugeijtsv 0.000 0.000 0.000
Jo 0.000 0.000 0.000
joe o123 0.000 0.000 0.000
SU-NLP 0.000 0.000 0.000

Table 3: Top result for each team/user for the Rela-
tion Extraction components of the score. Team Names
marked with * have submitted system information for
further analysis and discussion. Top, second, and
third place scores per category represented by bold,
underline, and italics respectively.

Figure 3: Visualization of average scores for each scor-
ing component across top score for all participants.

Figure 3 provides a visualization of the distri-
bution of scores for each scoring component from
Tables 2 and 3. From this, it is clear that Quantity
and Unit are the easiest aspects of the shared task,
which makes intuitive sense. The relatively high
scores for Modifier is also of interest, as these are
the components of the extraction that capture uncer-
tainty and variance in value, which is an important
part of the task and not one that we expected to
see handled as well as it was. This clearly demon-
strates that the various Quantity contextualization
subtasks are far more difficult and more work is
needed in how best to handle the extraction of re-
lated MeasuredEntities, MeasuredProperties, and
Qualifiers.

Figure 4 provides a visualization of the distribu-
tion of scores for 9 of the 10 subject areas in the cor-
pus. The mathematics subject area has been omit-
ted from this graphic due to under-representation
in both the training and evaluation datasets.

6.1 Impact of Duplicates

As noted previously, the MeasEval evaluation algo-
rithm was designed toward lenience, and as a result
sometimes inflates scores if multiple submission
annotations match a single entry in the gold data.
This was done to allow submissions to get credit
for submitting multiple Quantity annotations that
partially matched a single gold data span as well as
to generally not penalize systems that might make
multiple predictions pinned to the same numeric
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Figure 4: Visualization of average scores for each sub-
ject area across top score for all participants.

value.
However, allowing duplicates can in some cases

result in inflated scores. This is especially evident
in cases where submissions contained entries that
duplicated entire annotations sets. For a small num-
ber of submissions that exhibited annotation set
level duplicates, a post-processing routine removed
all set level duplicates before final evaluation, re-
sulting in the scores in Table 2 and Table 3.

Additionally, Quantity-level duplicates can also
potentially inflate Quantity scores, but should have
a neutral impact on other components of scoring.
For example, if a system identified the same Quan-
tity two times, but found a different MeasuredEntity
for each occurrence, the submission will score extra
points associated with the Quantity, and potentially
the Unit and Modifiers if those are also correct, but
will only get points for the correct MeasuredEn-
tity while being penalized for the incorrect Mea-
suredEntity. An ablation analysis was performed
for the eight submissions covered by system pa-
pers, assessing the impact of these duplicates on
the Overall F1 (Overlap) metric.

Table 4 gives the extent of duplication for these
submissions, the initial overall score from Table
3, the overall score with exact quantity duplicates
removed, and the overall score with both exact and
overlapping duplicates removed. For example, if
the gold data includes the Quantity “approximately
23 mm”, and a submissions included annotation
sets with both “23 mm” and “approximately 23
mm”, the exact match duplicate removal would not

drop either score, whereas the overlapping match
score would drop whichever occurred last in the
submission, whether or not it is the correct answer.

Team Name F1
Count
Exact /
Overlap

F1 w/out
Exact

F1 w/out
Any

Duplicates

LIORI 0.519 125 / 32 0.499 0.487
jarvis@tencent 0.473 0 / 11 0.473 0.470
Counts@IITK 0.432 0 / 0 0.432 0.432
CLaC-BP 0.389 0 / 0 0.389 0.389
UPB 0.369 0 / 1 0.369 0.369
KGP 0.278 0 / 0 0.278 0.278
Stanford MLab 0.272 0 / 0 0.272 0.272
CLaC-np 0.241 55 / 0 0.231 0.231

Table 4: Ablation analysis of duplicates and Overall
F1 (Overlap) score for each of the eight Teams with
System Papers.

The general downward trajectory seen while re-
moving duplicates that are not at the set level is
informative. Partly this is due to declining Quan-
tity score from duplicate removal, but some effect
is attributable to the possibility that deduplication
deletes a correct MeasuredProperty or Measure-
dEntity and leaves an incorrect one, given that they
may include different values. The ablation analysis
simply removes all but the first occurrence, so there
is no control over whether removed values are a
closer match to the gold data.

6.2 Multiple Hypotheses Hypothesis

The results of de-duplication analysis, the relatively
low inter-annotator agreement scores, and deeper
consideration of the annotation guidelines present
an interesting hypothesis. It could be that the differ-
ent interpretations of the context of a measurement
are not automatically right or wrong. It could be
that different interpretations are useful in different
downstream applications. While it is out of scope
in for this task description, future work may look
more closely at categorization of the areas where
annotators disagreed and systems produced multi-
ple interpretations, to see if there is alignment in
the differences and whether there are patterns to
the variance.

7 Summary of Participating Systems

The MeasEval track at SemEval-2021 received
nine system description paper submissions, eight of
which are represented in the analysis in Table 4. A
ninth paper formulated a new task from the MeasE-
val dataset focusing on just the relation extraction
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part of the problem. One system only attempted
the Quantity, Unit, and Modifier parts of the task,
while another did not submit any Qualifier spans
or Qualifies relationships. Four of the nine systems
have released code or models.

There are several points of similarity between
the eight main submissions. All but one of the
systems are based on the BERT architecture (De-
vlin et al., 2018) or a derivative, such as SciBERT
(Beltagy et al., 2019), BioBERT (Lee et al., 2019),
or RoBERTa (Liu et al., 2019). All but one used
a pipeline architecture, starting with Quantity ex-
traction. All but one used sequence tagging with
a BIO encoding scheme, and four followed the
sequence tagger by a Conditional Random Fields
(CRF) model to assemble tokens into spans and
improve accuracy over simple token-level classi-
fiers. Unit and Modifier extraction was either done
using a character-level BiLSTMs, another BERT
model, or a rule-based approach. Finally, it was
common to see MeasuredEntity, MeasuredProperty,
and Qualifier, and sometimes the relation extrac-
tion components, stacked together in a multi-task
sequence tagging model as a final stage, taking
both the original sentences and Quantity spans as
input. One system diverged from the sequence tag-
ging tagging approach and used templated question
answering techniques to handle the relation extrac-
tion along with related spans. Table 5 provides a
high-level summary of frequency of architectures
and techniques in use by more than one system.

Technique / Model Submission Count

BERT 3
BioBERT 1
SciBERT 3
RoBERTa 1
CRF 4
BiLSTM Units / Mods 3
Rule-based Units / Mods 3
Dict-based Units / Mods 2
Question Answering 1
Sequence Tagging 7

Table 5: Summary of techniques and architectures used
in MeasEval System Description Submissions.

7.1 System Specifics
Davletov et al. (2021) (LIORI), achieve their state-
of-the-art performance using pre-trained models
RoBERTa (Liu et al., 2019) and LUKE (Yamada
et al., 2020). They use LUKE to fine-tune an NER
model for Quantity extraction, and a RoBERTa-
based multi-task model for all other spans. Mod-

ifiers are predicted as Quantity-types. All other
spans, including units, are extracted using Ques-
tion Answering style sequence tagging (start/end
logits) without question prompts for each annota-
tion type queried for each extracted Quantity.

This sequential ensemble approach of Quantity-
detection followed by either “all-in-one-multi-task”
extraction or a staged approach to one or more of
the other subtasks proved very common among the
top-performing systems.

Cao et al. (2021) (jarvis@tencent), do initial
Quantity extraction with an ensemble of a Pointer
Net (Vinyals et al., 2015) and a CRF. They use a
BERT-based classifier for Modifier tagging and a
rule-based system for Units, and then use relation-
specific taggers with the same architecgure as the
Quantity-tagger for all other task components.

Gangwar et al. (2021) (Counts@IITK) similarly
tag Quantities witha SciBERT sequence tagger and
a CRF model and SciBERT for Modifiers, but use
a Character based bidirectional LSTM for Unit tag-
ging. They then encode the Quantity into SciBERT
input when tagging MeasuredEntity and HasQuan-
tity, and iteratively mark new spans in the input
when tagging then next sub-task, using a rule-base
for assembling the necessary relationships. Their
performance on Quantity, Unit, and Modifier was
near the top performing, but they struggled with
MeasuredProperty and HasProperty.

Therien et al. (2021) (CLaC-BP) use SciBERT
in a token-level multi-class classifier across all span
classes. This is an interesting approach, given the
opportunity for joint inference between the various
types of spans. However, it penalizes them in that
each token in their model can only be one class,
while there are cases when a Quantity and Mea-
suredEntity from one set may be part of, e.g. a
Qualifier in another. Quantity spans are then fed to
another SciBERT model for Modifier typing, and
rule-based systems are used for Units and for the
Relations between spans.

Avram et al. (2021) (UPB) use RoBERTa along
with a CRF for Quantity extraction. They also
tested SciBERT and BERT. They achieved their
best results on their dev subset with SciBERT,
but their best results on evaluation set came from
RoBERTa. They use a BiLSTM to extract Units
and classifier Modifiers, and then use a templated
Question Answering system as a joint entity and
relation extraction system for the remaining sub-
tasks. Unlike LIORI, who did not use prefixes or
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suffixes in their question templates, UPB asks more
natural language questions of the form “What is
the measured property of the quantity ?”

Karia et al. (2021) (KGP) also use BioBERT af-
ter testing various BERT-based pre-trained models,
but depart from many of the other submissions by
using a binary classifier rather than BIO tags and
CRF layers for Quantity sequence tagging. Mod-
ifiers and Units are handled using keywords and
dictionary matching, while they use a multi-task
BERT model for the remaining components, first
finding MeasuredEntity based on the Quantity pre-
dictions, then fusing these results for the remaining
spans and relations. They also continued refining
their approach into the post-evaluation phase, and
reported improving their score from an Overall F1
(Overlap) of 0.278 to 0.456.

Liu et al. (2021) (Stanford MLab) only tackle
the Quantity, Unit, and Modifier subtasks. Notably,
they report building their system for these com-
ponents from inception to submission in under 48
hours. They use BERT-large for IOB sequence
tagging for Quantities, use a similar IO sequence
tagging scheme on Quantities to tag Units, and a
multi-class classifier to classify Quantities to the
appropriate Modifiers. Their system performs well
on all subtasks they attempted, even scoring second
place overall for Units.

Lathiff et al. (2021) (CLaC-np) diverge from
other submissions in their approach. They pre-
process their text using GATE and ANNIE, and use
custom rules to further clean up tokenization. They
treated Stanford Core Dependency Parse trees as
graphs to extract subgraphs starting each path query
from the CD tokens to identify MeasureEntities,
MeasuredProperties and Qualifiers with the use of
Graph CNN. They relied on the models from CLaC-
BP to map from their tokens to annotation spans
for each type in assembling their final submission.

Finally, not shown in Table 1 is Veyseh et al.
(2021). They formulated their own task based on
the MeasEval data. Although they did not sub-
mit a solution during the evaluation period, they
have submitted a system description paper describ-
ing a novel approach to relation extraction, which
they have evaluated on MeasEval sub-task 5. Using
our Gold Quantity, MeasuredEntity, MeasuredProp-
erty, and Qualifier spans as input (without annota-
tion sets), they compared their approach to two
other baseline models. They encode contextual em-
beddings, positional embeddings, and entity types

for each annotation span, and perform dependency
path reasoning along with an “Information Bottle-
neck” regularization technique to complete their
Relation Extraction task.

8 Conclusion

In this paper, we present the design, the data, the
evaluation the process, the results, and the systems
for MeasEval at SemEval 2021. The shared task is
challenging, partly due to the relatively small train-
ing data, and partly due to the inter-relationships
between many different components of the task.
Quantity and Unit identification, and to a lesser
extent Modifier typing, appear to be the simplest
parts of the task based on average performance,
with one participating system building their end-
to-end pipeline for these components in under 48
hours. The contextual elements MeasuredEntity,
MeasuredProperty, and Qualifier, and their relation-
ships, are far more difficult, which is not surprising
given that these are subject to more human anno-
tator disagreement. The challenge of context is
especially pronounced in the Qualifier span and
Qualifies relationship.

Common components shown in Table 5 include
the BERT family of pre-trained neural language
models, CRF models, BiLSTMs, and rule-based
components. In general, the task does not appear to
require whole new novel models and architectures,
but rather pipelines and cascading ensembles stitch-
ing together various existing methods. There is still
room for improvement on this task, and whether
progress will come from novel models or creative
applications of existing techniques remains to be
seen. Work also remains to be done in applying the
entities and relationships extracted for this task to
the larger end goal of scientific knowledge graph
construction and related downstream applications.
Future work could be done to further analyze ar-
eas of error and disagreement in these annotations,
and to investigate entity linking across Quantity,
MeasuredEntity, and MeasuredProperty annotation
spans to various measurement ontologies and to
domain-specific entity and property ontologies.
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Abstract

Understanding tables is an important and rel-
evant task that involves understanding table
structure as well as being able to compare and
contrast information within cells. In this pa-
per, we address this challenge by presenting a
new dataset and tasks that addresses this goal
in a shared task in SemEval 2020 Task 9: Fact
Verification and Evidence Finding for Tabu-
lar Data in Scientific Documents (SEM-TAB-
FACTS). Our dataset contains 981 manually-
generated tables and an auto-generated dataset
of 1980 tables providing over 180K statement
and over 16M evidence annotations. SEM-
TAB-FACTS featured two sub-tasks. In sub-
task A, the goal was to determine if a statement
is supported, refuted or unknown in relation to
a table. In sub-task B, the focus was on iden-
tifying the specific cells of a table that provide
evidence for the statement. 69 teams signed
up to participate in the task with 19 success-
ful submissions to subtask A and 12 successful
submissions to subtask B. We present our re-
sults and main findings from the competition.

1 Introduction

Tables are ubiquitous in documents and presenta-
tions for conveying important information in a con-
cise manner. This is true in many domains, stretch-
ing from scientific to government documents. In
fact, surrounding text in these articles are often
statements summarizing or highlighting some in-
formation derived from the primary source of data
in tables. A relevant example is shown in Figure 1
from a Business Insider article analyzing the im-
pact of Covid-19 (Aylin Woodward and Gal, 2020).
Describing all the information provided in this ta-
ble in a readable manner would be lengthy and
considerably more difficult to understand. Despite
their importance, popular question answering (e.g.
SQuAD and Natural Question (Rajpurkar et al.,

∗ Equal Contribution
§ Corresponding Author

Figure 1: Surrounding text often highlights some infor-
mation from the table but does not capture all data. Al-
ternately, the linked text may be subjective or even mis-
leading without the original table to check the claims.

2016; Kwiatkowski et al., 2019)) and truth verifi-
cation tasks (e.g. SemEval-2019 Fact Checking
Task (Mihaylova et al., 2019)) have not focused on
tables, being composed solely of written text. This
is likely due to their complexity to parse and under-
stand, despite their rich amount of information.

Further, the structure of tables allows much more
information to be presented in an efficient manner
as humans can interpret meaning in the spatial re-
lationship between cells. However, due to their
challenging nature, recent algorithms have been
less successful at extracting (Hoffswell and Liu,
2019) and understanding header and data structure
in tables (Cafarella et al., 2018). In addition, any hi-
erarchical and nested headers (common in printed
documents) increases the difficulty in interpreting
data cells, as shown in Figure 2.

In this paper, we propose to bridge this gap with
statement verification and evidence finding using
tables from scientific articles. This important task
promotes proper interpretation of the surrounding
article. In fact, the misunderstanding of tables can
lead to the reporting of fake news that we see as
being all too prevalent today.
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Figure 2: A complex table sourced from (East et al.,
2018) with hierarchical column and row structure. Ad-
ditional difficulty follows from row hierarchy not being
delineated by separate columns.

We present the first SemEval challenge to ad-
dress table understanding. We introduce a brand
new dataset of 1980 tables from scientific articles
that addresses two challenging tasks important to
table understanding:

A: Statement Fact Verification Given a state-
ment, determine whether it is supported, re-
futed or unknown according to the table.

B: Cell Evidence Selection Given a statement, se-
lect the cells in the table that provide evidence
supporting or refuting the statement.

The rest of this paper is formatted as follows: We
first discuss related work. We then present a new
large table understanding dataset containing close
to 2000 tables that is the first to provide evidence
labels at the cell level for statements and the first to
focus on scientific articles. We provide a detailed
analysis of the dataset including several baseline
results. We then discuss the performance and ap-
proaches of the 19 participants in our challenge
and end with an aggregated analysis of participat-
ing teams. Finally, we discuss future work.

2 Related Work

Natural Language Inference (NLI) The table
evidence task can be best understood as a variation
of the natural language inference task (Dagan et al.,
2005), but on tabular data. NLI asks whether one
(or more) sentence entails, refutes, or is unrelated
to another sentence; our framing asks whether a
given table entails, refutes, or is unrelated to a
sentence. Several datasets have been created for
studying NLI, such as SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2018), and SciTail (Khot
et al., 2018).

Table QA This task is also closely related to the
problem of search and question answering on ta-

bles. The closest example would be, given a ta-
ble that is known to contain the relevant informa-
tion, return cell values that answer a natural lan-
guage question (Pasupat and Liang, 2015). A varia-
tion requires analyzing a collection of tables rather
than a single one, along with the natural language
question (Sun et al., 2016). Two of the most re-
cent works are TAPAS (Herzig et al., 2020) and
TaBERT (Yin et al., 2020), which jointly pre-train
over textual and tabular data to facilitate table QA.
However, such approaches have previously focused
on traditional natural language questions (“What is
the population of France?”) rather than inference
statements (“France has the highest population in
Europe”), which may be entailed, refuted or un-
knowable from the given table.

Related Datasets The works closest to our
dataset are TabFact (Wenhu Chen and Wang, 2020)
and INFOTABS (Gupta et al., 2020). Both datasets
were sourced from Wikipedia tables and contain hy-
pothesis and premise pairs. TabFact has entailment
and refute hypothesis types while INFOTABS has
an additional “neutral” hypothesis category, much
like our “unknown” statements. Both works show
that neural models still lag far behind human per-
formance for the fact checking task with tables.

While both datasets have been great at kindling
interest in fact verification with tabular data, our
dataset differs in two key aspects. First, we source
from scientific articles in a variety of domains
rather than Wikipedia infoboxes. Scientific tables
have very specialized vocabulary and can be more
difficult to interpret. Additionally, scientific tables
have much more complex structure, like hierarchi-
cal column and row headers, rendering the assump-
tion that the first column/row is the header unhelp-
ful. Finally, tables are often directly referenced in
scientific text unlike Wikipedia tables that are gen-
erally stand-alone. This creates an opportunity to
leverage natural statements that depict the original
author’s style and intent. The second key differen-
tiator of SEM-TAB-FACTS is the accompanying
evidence annotations. We believe the future of fact
verification and AI in general will be in cooperation
with humans rather than in replacement. Thus, it
is essential that models are able to present explana-
tions for decisions on the relationship between the
statement and table by showing the most relevant
cells in a potentially very large table.
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Source #Tables #Entailed #Refuted #Unknown #Relevant #Irrelevant

Train Crowdsourced 981 2,818 1,688 0 0 0

Train Auto-generated 1,980 92,136 87,209 0 1,039,058 15,467,957

Development 52 250 213 93 3,048 2,8495

Test 52 274 248 131 3,458 26,724

Table 1: Statistics for our SEM-TAB-FACTS dataset.

3 Dataset Details

Our dataset consists of two forms of generation: (1)
a crowdsourced dataset, and (2) an auto-generated
dataset. Table 1 presents the statistics of the dataset.
We detail our dataset creation process in the follow-
ing sections.

3.1 Data extraction and preprocessing
We sourced our tables from scientific articles be-
longing to active journals that are currently being
published by Elsevier and are available on Sci-
enceDirect1. We utilized Elsevier ScienceDirect
APIs2 to scrape scientific articles which belong to
this list, and satisfy the following criteria: (1) the
article is open-access3, (2) the article is available
under “Creative Commons Attribution 4.0 (CC-
BY)” user license4, and (3) the article has at least
one table. We downloaded 1,920 articles belonging
to 722 journals which contained 6,773 tables. We
further filtered out complicated tables (e.g. multi-
ple tables in a single table) using hand-written rules
to get a set of 2,762 candidate tables from 1,085
articles for annotation. We also extracted sentences
mentioning the table within the scientific article as
candidate statements, which are corrected and then
labeled manually by the annotators.

3.2 Crowdsourced labeling
The manually generated statements were collected
using the crowdsourcing platform Appen5. We col-
lected five entailed and five refuted statements for
each table from the business preferred operators
(BPO) on Appen. The BPO crowd is composed of
employees hired by Appen on an hourly basis at a
constant pay rate determined by Appen. We found

1https://www.elsevier.com/__data/
promis_misc/sd-content/journals/
jnlactive.xlsx

2https://dev.elsevier.com/sd_apis.html
3https://www.elsevier.com/open-access
4https://www.elsevier.com/about/

policies/open-access-licenses/
user-licences

5https://appen.com/

that the workers were much more motivated for the
task as they were able to ask questions if needed
and we were also able to provide direct feedback
to the workers. We initially attempted generat-
ing statements with workers from the Appen open-
crowd, which is on-demand, but the quality was
very poor as it was hard to automatically validate
naturally generated statements. Our instructions
explicitly lay out 7 types of statements and ask that
workers attempt to make one of each type. We en-
courage the use of different sets of cells whenever
possible. The types of statements are aggregation,
superlative, count, comparative, unique, all and us-
age of caption or common sense knowledge. These
are derived from the INFOTABS analysis (Gupta
et al., 2020). We asked workers to avoid subjective
adjectives like “best”, “worst”, “seldom” and look-
up statements that only require reasoning with one
cell. The pay for each statement set was 75 cents.
In total, we collected 10000 statements for 1000
unique tables. See Figure 3 for an example table
with its manually generated and natural statements.

Additionally, for our training data, we conducted
a verification task to check for grammatical issues
and doubly verify the statement label for both the
generated and natural in-text statements. The verifi-
cation task was paid at 3 cents per statement, which
equates to 30 cents per table. We restricted the
verification task to the workers in the open-crowd
from English speaking countries. After verifica-
tion, we only preserved the statements that were
verified to be grammatically correct and the new la-
bel matched the original label. Natural statements
were also verified in the same process. Although
natural statements were generally factually correct,
they were sometimes not able to be verified by the
referenced table. Additionally, these statements
often required rewording to ensure that all parts of
the statement can be verified by the table, which
was a step taken only for the development and test
sets. This left us with 981 tables and 4506 state-
ments. The majority of the removals were due to
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Figure 3: Sample crowd-sourced statements for one table (sourced from (Carney et al., 2020)). Please note that
these are the original statements without any further corrections nor rephrasing.

grammatical errors as most BPO workers are not
native English speakers. See Table 1 (first row) for
detailed statistics of the crowd-sourced training set.

We initially attempted to collect the develop-
ment and test sets as well as evidence annotations
via the same method as the training set. However,
we found that the quality was not gold-level and
thus we (three of the authors) decided to manually
correct the statements and annotate the evidence
ourselves. All authors first annotated a small set of
102 statements to test inter-annotator agreement for
statement relationship and evidence labeling. Out
of 102 statements, we found 5 statements where
at least one of three annotators disagreed on the
relationship and a further 5 statements where the
relationship was agreed but the evidence annotation
differed. The other 92 were in complete agreement,
indicating high agreement. Therefore, the annota-
tions for the rest of the dev set were annotated by
just one person. The test set was annotated fully by
one author and the two other authors checked the
annotations with all disagreements being resolved.
See Figure 4 for a screenshot of the statement anno-
tation correction and evidence annotation interface.
See the third and fourth rows of Table 1 for detailed
statistics of the dev and test sets.

3.3 Automatically generated statements

IBM Watson™ Discovery6 is an AI-powered
search and text analytics engine for extracting an-
swers from complex business documents. One of
the available functionalities is a Table Understand-
ing service that produces a detailed enrichment of
table data within an html document. We use this
service to identify the body and header cells, as
well as the cell relationships, within our dataset.
We then proceed to use a set of templates to auto-
matically create statements about each table. We
begin by identifying which cells and columns are
numeric and non-numeric using a simple regex. Un-
like non-numeric cells, numeric cells and columns
are appropriate for specific templates that expect
numeric values, such as ‘Value [V] is the maxi-
mum of Column [C]’, where every value in column
[C] has been identified as numeric. We also gen-
erate evidence for some of these templates. The
template and evidence generation rules along with
their inputs are detailed in Table 2. This process
generated 3,512,978 statements from 1,980 tables
which were highly skewed in favor of refuted state-
ments. This dataset was then down-sampled to a
maximum of 50 statements per table while ensuring
a more even distribution between the two classes to
form our final released auto-generated dataset. The

6https://www.ibm.com/cloud/watson-discovery
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Figure 4: Screenshot showing the labeling interface for statement rephrasing, relationship labeling and evidence
annotation.

full statistics for the auto-generated training data is
shown in the second row of Table 1.

4 Evaluation Metrics

4.1 Task A: Statement Fact Verification

The goal of task A is to determine if a statement is
entailed or refuted by the given table, or whether, as
is in some cases, this cannot be determined from the
table. We show two evaluation results. The first is
a standard 3-way Precision / Recall / F1 micro eval-
uation of a multi-class classification that evaluates
whether each table was classified correctly as En-
tailed / Refuted / Unknown. This tests whether the
classification algorithm understands cases where
there is insufficient information to make a deter-
mination. The second, simpler evaluation, uses
the same P/R/F1 metric but is a 2-way classifica-
tion that removes statements with the “unknown”
ground truth label from the evaluation. The 2-way
metric still penalizes misclassifying refuted/ en-
tailed statement as unknown.

4.2 Task B: Cell Evidence Selection

In Task B, the goal is to determine for each cell
and each statement, if the cell is within the mini-
mum set of cells needed to provide evidence for
the statement (“relevant”) or not (“irrelevant”). In

other words, if the table were shown with all other
cells blurred out, would this be enough for a human
to reasonably determine that the table entails or re-
futes the statement? The evaluation calculates the
recall and precision for each cell, with “relevant”
cells as the positive category. For some statements,
there may be multiple minimal sets of cells that
can be used to determine statement entailment or
refusal. In such cases, our dataset contains all of
these versions. We compare the prediction to each
ground truth version and count the highest score.

5 Experiments

We present our baseline experimental setup for
each task below.

Task A We employ state-of-the-art Table-BERT
implementation7 as proposed by Wenhu Chen
and Wang (2020). We utilize Table-BERT’s best
performing configuration (Table-BERT-Horizontal-
T+F-Template) as (1) using entity-linking to find
the relevant columns for a statement, (2) flattening
the table by scanning horizontally to form natural
statements from the relevant columns and their cell
values and (3) classifying the flattened table and
the statement using the sentence pair classification

7https://github.com/wenhuchen/
Table-Fact-Checking
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Input Template Evidence Example Statements

col i,
col j

‘The’ + col i head + ‘is’ + col i val + ‘,
when the’ + col j head + ‘is’ + col j val

col i head, col j head,
col i val, col j val

The Code is AG3 when the Locality is Los
Aguanances3.

col col val + ‘is in’ + col head col val, col head for en-
tailed; col for refuted

AG3 is in Code.

col unique or same values col for entailed; None
for refuted

Sup./Inf. has the same values.

col[#] ‘The maximum of’ + col head +‘is’+val col[#] for entailed;
None for refuted

The maximum of Length(mm) is 2.22.

col[#] ‘The minimum of’ + col head +‘is’+val col[#] for entailed;
None for refuted

The minimum of Length(mm) is 1.54.

col[#] ‘The mean of’ + col head + ‘is’ + val col[#] The mean of Length(mm) is 1.83.

col[#] ‘The median of’ + col head + ‘is’ + val col[#] The median of Length(mm) is 1.73.

col[#] ‘The mode of’ + col head + ‘is’ + val col[#] The mode of Length(mm) is 1.54, 1.73, 2.22.

Table 2: Template and evidence rules used for auto-generated ground truth. The examples are derived from Table
4 in Figure 4.

setting in BERT. To overcome the lack of unknown
statements in our dataset, we supplement each table
with randomly chosen statements from other tables.
In Table-BERT, if the entity linking results in no
matches, the flattened table is marked as [UNK].
As our dataset contains unknown statements, in
such cases we consider all columns to be a match
and flatten the entire table.

Using the above process, we perform the follow-
ing experiments (1) apply the Table-BERT model
out-of-the-box (2) re-train Table-BERT model with
unknown statement and apply on our test data (3)
fine-tune the model in (2) with our manual+auto-
generated data and apply on our test data. We
also compare these experiments with a majority
baseline with entailed as our majority class. The
results are presented in Table 3. Applying Table-
BERT model out-of-the-box provides some im-
provement over a majority-baseline. However,
when the model is retrained with previously miss-
ing unknown statements, the performance improves
for three-way classification. Further fine-tuning the
model with our training dataset (both manual and
auto-generated) provides the best performance on
the two-way F1-score.

Task B We present the following two baselines
for Task B: (1) a random baseline where each cell
is marked relevant or irrelevant randomly (2) a
simple word-match-based baseline where a cell is
marked relevant if it overlaps with the statement.
The baseline results are presented in Table 4.

Experiment Test
2-way 3-way

majority-baseline 52.42 42.16

original Table-BERT 56.77 45.58

re-trained Table-BERT 52.96 48.33

+ FT with SEM-TAB-FACTS 56.81 48.24

Table 3: Task A baseline results using F1-score.

Experiment Dev Test

random-baseline 21.18 20.47

word-match 49.53 47.39

Table 4: Task B baseline results using F1-Score

6 Competition Results

We present two leaderboards for each task8. The
official leaderboard is from participants who have
given us detailed descriptions on their system and
affirmed that they did not incorporate any informa-
tion from the test set that changed their final model.
This is a more accurate representation of system
quality. The unverified leaderboard is composed of
participants who either did not give enough detail
or have affirmed that they incorporated some test
data information in their final model. The partici-
pants did not have access to labels for test data but
some teams altered their models upon examining

8We made the assumption that teams would not make
any use of the test data, as is usually the case for algorithm
evaluation, but we did not make this explicit ahead of time and
some teams did not realize this was an issue. We decided to
have two leaderboards to have a fair comparison for all teams.
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Team 3-way F-Score 2-way F-Score

Official Leaderboard

King001 84.48 88.74
THiFly Queen 83.76 84.55

RyanStark 81.51 87.22
sattiy 77.32 84.96

BreakingBERT@IITK 69.31 76.81
Volta 67.34 72.89

TAPAS 66.81 73.13
AttesTable 65.59 71.72

Yaoxu 60.76 75.8
Beary-group 58.37 72.56

ok-team 57.79 71.84
SUNLP 47.92 59.58

FishToucher 41.83 52.01
KaushikAcharya 36.23 23.08

Unverified Leaderboard

Skywalker 92.55 95.15
MagicPai 90.88 94.03
endworld 82.35 88.16

Paima 81.96 88.85
ravikranc 57.90 71.99

Table 5: Task A Leaderboard

the input data in the test set. Although we discour-
aged this approach, we present the results in hopes
it can give some interesting information about how
much improvement might be possible with having
access to input test data.

19 teams participated in Task A. Of the 14 teams
on the official leaderboard, King001 obtained the
highest score for task A for both the 2-way (88.74)
and 3-way (84.48) F-scores. However, the top three
participants have comparable scores. All teams
except for the last two beat our best baseline in
Table 3. The unverified leaderboard includes 5
teams and contains higher scores thank in the of-
ficial leaderboard. However, due to the reasons
outlined above, we cannot say with certainty that
the results are reproducible. The full leaderboard
results for all participants are in Table 5.

Task B is a much harder task and fewer teams
participated in this challenge. Of the 12 teams
that participated, 8 are in the official leader-
board. The best score is 65.17 by Breaking-
BERT@IITK(65.17) which is noticeably lower
than the F-scores in Task A. Similarly to Task A
the results in the unverified leaderboard are consid-
erably higher. The full leaderboard results for all
participants are in Table 6.

We summarize the system details for all partic-
ipating teams in Tables 7 (Task A) and 8 (Task
B). In general, deep learning was the most pop-
ular approach used by the participants e.g. BiL-

Team F-Score

Official Leaderboard

BreakingBERT@IITK 65.17
Volta 62.95

King001 62.14
FishToucher 60.06
RyanStark 54.96

Sattiy 48.56
AttesTable 43.02

KaushikAcharya 33.81

Unverified Leaderboard

MagicPai 88.74
SkyWalker 73.05
endworld 57.85

Paima 51.97

Table 6: Task B Leaderboard

STM with attention, BERT (Devlin et al., 2019) etc.
Most of the participants used transformer-based
models to train their systems with flavors ranging
from general-domain BERT (Devlin et al., 2019) to
table-understanding specific versions like TAPAS
(Herzig et al., 2020), TaBERT (Yin et al., 2020)
and Table-BERT (Wenhu Chen and Wang, 2020).
One third of the participants employed some form
of ensembling technique in their submission.

Most of the participants have used the manu-
ally generated ground-truth in the development of
their systems, with only one team not finding it
useful. Further, a large percentage of participants
have used the auto-generated ground truth in their
systems with three teams not finding it helpful in
their evaluation.

In terms of external resources, a majority of the
participants used external table understanding re-
sources in their systems. Further, most of the par-
ticipants employed pre-processing techniques like
acronym completion, removing special characters,
etc... A substantial percentage of participants used
techniques like incorporating word embeddings,
entity resolution etc. Finally, a large number of
participants used TabFact (Wenhu Chen and Wang,
2020) as an external dataset.

We also conducted additional analyses on partic-
ipant submissions on the official leaderboard. We
show through the average confusion matrix for Task
A in Table 9 that the Unknown label was the most
difficult. In fact, there were more unknown state-
ments incorrectly labelled as entailed than were cor-
rectly categorized. Naturally, the statements with
the lowest accuracy (< 25%) consist of mainly
unknown statements, especially those statements
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Team Description

AttesTable
(Varma et al., 2021)

Extended TAPAS to 3 classes by fine-tuning it. Employed a novel way of synthesizing “unknown”
samples.

BreakingBERT@IITK
(Jindal et al., 2021)

Ensemble models with TAPAS and TableBERT Transformers in a hierarchical two-step method for
3-way classification (unknown vs not unknown first)

Beary-group Used TAPAS model with TabFact task, and added unique features. Employed prepossessing tricks like
k-fold validation and replacing the characters and did hyperparameter tuning.

BOUN
(Köksal et al., 2021)*

Used text augmentation techniques such as back translation and synonym swapping on the TAPAS
model. Domain adaptation and joint learning using SemTabFacts and TabFact datasets.

endworld Data Cleaning. Ensemble combining 80 instances of trained TaPas-Large and label smoothing.

FishToucher Motivated by TaPas, used BERT and enriched the embedding layer with two new token type embed-
dings: row and column ids* (*The team mistakenly submitted an old model version, see paper for more accurate scores)

Kaushik Acharya
(Acharya, 2021)

Parsed statements into candidate logical form; mapped result to handwritten rules, to then execute
over relevant cells (identified using string matching and universal dependency parsing)

King001 Trained 20 instances of TaPas, SAT and Table-Bert for an ensemble of 60 models. Used preprocessing
like acronym completion, rules to align the table content with the question content, label smoothing.

MagicPai Multi-model training using models such as TaBERT, tapas wikisql, tapas TabFact, tapas masklm.
Finally rule amendments and aligning the distribution of training and test data

ok-team TAPAS pretrained on TabFact with preprocessing of data (like transforming English numerals to
Arabic numerals, removing special characters etc.)

Paima Fine-tuned TAPAS optimized to perform window scanning on statement-related table data. Pre-
processing to reduce abbreviations for table headers, and identifying operation expressions.

RyanStark Multi-model TaBERT pretrained Model fusion. Pre-processing such as case and abbreviations.

Sattiy
(Ruan et al., 2021)

Ensemble of 6 fine-tuned pre-trained models on the augmented data with content snap-shot input.
Augmented the data provided by expanding the labels. Used Fast Gradient Method and added
disturbance to the embedding layer to obtain a more stable word representation and a more general
model.

SkyWalker Deep learning, LPA rules, TAPAS dataset

SUNLP BERT for sequence classification, transfer learning

TAPAS
(Müller et al., 2021)

Ensemble of TAPAS (BERT-large-like) models: trained with a Mask-LM task on Wikipedia tables,
intermediate pre-training data and TabFact data. Hierarchical two-step method for 3-way classification.
Added neutral statements during training: random and by removing one of the evidence columns.

THiFly Queen
(Yuxuan et al., 2021)

Ensemble models in a hierarchical two-step method. 8-model to identify unknown statements and
9-model ensemble to classify entailed/refuted. Incorporated different ensemble weights for various
statement types (count, superlative, unique).

Volta
(Gautam et al., 2021)

Finetuned TAPAS that was pretrained on TabFact. Pre-processing to standardize multiple header rows
to a single header.

Yaoxu Added numeric and enumerate features to TAPAS and also statistic information (such as count) as a
new row/column to the table.

Table 7: Descriptions of systems from participants for Task A. *Note: Team BOUN did not participate in the
official leaderboard.

Team Description

BreakingBERT
@IITK

An ensemble of an individual cell-based NLI approach and a similarity approach with the cells and
statement

FishToucher BERT CLS tokens for statement and table cells are used to determine cell relationships to each other, and
the statement (for relevant cells)

Kaushik
Acharya

Relevant cells are output as part of Task A

RyanStark BOW approach with rules applied based on word matches in header and data cells.

Volta Finetuned TAPAS for cell selection. Different models for entailed and refuted statements. Used transfer
learning and header standardization.

Table 8: Descriptions of systems from participants for Task B (when provided)
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Refuted Entailed Unknown

Refuted 164 81 3

Entailed 46 226 2

Unknown 16 72 43

Table 9: Task A average confusion matrix

that have words overlapping with those in the table.
Out of the entailed and refuted statements, ones
that require numerical reasoning, like range, count
or comparisons seemed to be most challenging.
The statements with the highest accuracy (> 95%)
generally had most words or numbers exactly over-
lapping with those in the table. In task B, out of the
statements with less than 30% evidence F-score,
86% were ones with a refuted relationship. Con-
versely, the statements with greater than 70% F-
score, 74% were ones with an entailed relationship.
This shows that it is more difficult to find the most
direct evidence to prove that a statement is refuted
by a table than it is to show the positive evidence
that a particular statement is supported by it. We
believe this is an interesting line of research for
future studies.

7 Conclusion and Future Works

In this paper, we presented the data and competi-
tion results for SEM-TAB-FACTS, Shared Task 9
of SemEval 2021. We created a large dataset via
automated and crowdsourced fact verification as
well as evidence finding for tables. Our 19 teams
had a variety of techniques to tackle this unique but
very relevant problem. The evidence finding scores
are still quite low and have a large improvement po-
tential. Additionally, the test set may be expanded
in future versions of this task with a combination of
manually generated, natural, and automated state-
ments.
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Abstract

Recently, there has been an interest in factual
verification and prediction over structured data
like tables and graphs. To circumvent any false
news incident, it is necessary to not only model
and predict over structured data efficiently but
also to explain those predictions. In this pa-
per, as part of the SemEval-2021 Task 9, we
tackle the problem of fact verification and evi-
dence finding over tabular data. There are two
subtasks. Given a table and a statement/fact,
subtask A determines whether the statement is
inferred from the tabular data, and subtask B
determines which cells in the table provide ev-
idence for the former subtask. We make a com-
parison of the baselines and state-of-the-art ap-
proaches over the given SemTabFact dataset.
We also propose a novel approach CellBERT
to solve evidence finding as a form of the Nat-
ural Language Inference task. We obtain a 3-
way F1 score of 0.69 on subtask A and an F1
score of 0.65 on subtask B.

1 Introduction

Textual Inference, also known as natural language
inference (Bowman et al., 2015), plays an impor-
tant role in the study of natural language under-
standing and semantic representation. Due to the
unprecedented amount of information generated
over the internet, it becomes essential for machines
to comprehend new information based on previ-
ous knowledge. Recent social events like political
elections and pandemic spread have also shown
the need for intelligent fact-checking systems that
majorly depends on textual Inference over the sci-
entific data.

Though Textual Inference is well explored, the
current works mainly deal with unstructured Evi-
dence in the form of sentences (Dagan et al., 2005).

∗ Authors equally contributed to this work. Names in
alphabetical order.

Verification under structured and semi-structured
Evidence, such as tables, graphs, and databases,
remains unexplored. Tables are ubiquitous in doc-
uments and presentations for concisely conveying
important information; however, Inference on struc-
tured data like tables or graphs is much more diffi-
cult than simple text format due to complex struc-
ture and non-universal schema for the representa-
tion of data. Though recently, there has been work
on Tabular Inference problems ( Zhong et al., 2020;
Cho et al., 2018; Sun et al., 2018; Wenhu Chen
and Wang, 2020; Eisenschlos et al., 2020; Pasupat
and Liang, 2015; Wang et al., 2018 ) explaining the
prediction, evidence finding is still an unexplored
area.

Through the SemEval-2021 Task 9 (Wang et al.,
2021) we have tried to solve the Tabular Inference
problem over scientific tables by providing an an-
swer as well as a solution to our reasoning. In
other words, given the structured table data and
statement, we aim to classify the statement as en-
tailed, unknown (neutral), or contradiction. In ad-
dition, we also aim to classify each cell of the ta-
ble whether it is relevant or irrelevant in making
the aforementioned prediction. Our contribution is
three-fold:

• We perform an empirical study of current
state-of-the-art models on the SemTabFact
dataset for the task of statement verification
(see Section 5.1).

• We implement TableSciBERT, TableR-
oBERTa and develop a heuristic-based
classifier. We achieve a 3-way F1 score of
0.69 on statement verification by ensembling
TableSciBERT and TAPAS with our heuristic
method (see Section 3.1).

• We propose a new model CellBERT, for the
task of Evidence finding from the tables. We
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achieve an F1 score of 0.65 on Evidence
finding by ensembling CellBERT with our
heuristic-based approach (See Section 3.2).

The code for all our experiments and pre-trained
models are available on GitHub1.

2 Background

2.1 Related Work

Recently, Wenhu Chen and Wang (2020) proposed
TabFact, a dataset with 16k Wikipedia tables and
118k human-annotated natural language statements,
labeled as either ENTAILED or REFUTED. The
authors proposed the TableBERT model for the task
of fact-checking. TableBERT uses the pre-trained
BERT (Devlin et al., 2018) model and fine-tunes
it using the TabFact dataset as a simple NLI task
by linearizing the table along with the fact. The
linearized table is then concatenated with the state-
ment which after tokenization is given as input to
the BERT model which is used for binary classifi-
cation to predict the nature of the statement.

The paper also proposed LPA (Latent Program
Algorithm) to formulate the table fact-checking as
a program synthesis problem. LPA uses reinforce-
ment learning to optimize the task reward of this
structured prediction problem directly, as was done
in Neural Symbolic Machines (NSM) (Liang et al.,
2016). Zhong et al. (2020) used the combination
of the linguistic and symbolic reasoning integrated
with an understanding of a given table’s structural
format.

Herzig et al. (2020) developed the TAPAS model
that performs question-answering over tables with-
out generating logical forms. It uses weak supervi-
sion and predicts the answer by selecting table cells
and optimally applying aggregation operators (for
example: count, sum, average etc.) to the selected
cells . An input instance to the model is the com-
bination of the tokenized question and flattened
table, separated by an [SEP] token (see Figure 1).
In addition to BERT embeddings, TAPAS incor-
porates the table’s structural information via row,
column, and rank embeddings. Since TAPAS uses
flattened tables, it also suffers from the limitation
of self-attention computation over long input se-
quences like BERT. Due to this reason, it fails to
capture information over large tables or /databases
containing/ multiple tables.

1https://github.com/vijit-m/TablEval

Figure 1: Flow chart explaining the functioning of
TAPAS model using the two classification layers.

Besides this, the model’s expressivity is limited
to a form of aggregation over a few cells of the
table; hence, it fails to handle questions requiring
multiple aggregation operations properly.
Recently, Eisenschlos et al. (2020) adapted TAPAS
for the task of fact-checking. They introduced two
intermediate pre-training tasks learned from the
MASK-LM model. The first task is based on coun-
terfactual statements, generated by creating one
positive and one negative from every relevant State-
ment extracted from Wikipedia statements and ta-
bles. The second task is based on synthetic state-
ments that generate a sentence by sampling from a
set of logical expressions.

Let S and T represent the statement/fact and the
table, respectively, which are given as input to the
model. Furthermore, let ES and ET represent the
corresponding input embeddings. The sequence
of statement and the table given by E = [E[CLS];
ES;E[SEP];ET] is passed through the transformer,
f and a contextual representation is obtained for
every token. The entailment probability P (S|T ) is
modeled using a single hidden layer neural network
obtained by computing the output of [CLS] token:

P (S|T ) =MLP (f[CLS](E)) (1)

To handle large size tables, Table pruning is done
using Heuristic exact match (HEM). In this method,
the columns are ranked by a relevance score and
added in order of decreasing relevance. Columns
that exceed the maximum input length are skipped.

Our task for statement verification differs from
the works mentioned above in the aspect that we
have a third label, ‘unknown’, where the table fails
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to provide any information to infer the Statement.
Moreover, no prior work has been performed con-
cerning the task of evidence finding.

2.2 Problem Defintion
The problem statement is articulated around the
following two related subtasks.
Subtask A - Table Statement Support: Given
a statement/fact, some of which will be directly
adapted from the linking text, and a table, deter-
mine whether the table’s information supports the
Statement. In this classification problem, a state-
ment is assigned one of the following labels:

• Fully Supported: Statement is supported by
data found within the table (denoted by 1).

• Refuted: Statement is contradicted by table
(denoted by 0).

• Unknown: Not enough information in table
to assess statement veracity (denoted by 2).

Mathematically, the problem can be described as,
given a table T and a statement S, we need to learn
a mapping FA to the output yA, where y ∈ {0, 1, 2}.
See examples in table 1 and table 2.
Subtask B - Relevant Cell Selection: Given a
statement and a table, determine which table cells
form relevant evidence for the Statement (if any).
A table cell is evidence for a statement if it helps
support or refute a part of the statement. In this sub-
task each cell of the table is assigned the following
labels:

• Relevant: the cell must be included (denoted
by 1).

• Irrelevant: the cell must not be included (de-
noted by 0).

Mathematically, each cell xij ∈ T (where i, j cor-
respond to row and column number respectively),
needs to be assigned a value yB ∈ {0, 1}. See
examples in table 1 and table 2.

Body Sensation Agoraphobic Pleasant
number museum lovely
palpitation shop happiness
heartbeat boat Joyous

Table 1: 2 A sample table and statement with correct
results for subtask B. violet: Relevant Cell, red: Irrele-
vant Cell

Statement Label
Palpitation is a bodily sensation Supported

Joyous and boat have same strength Unknown
Lovely is an agoraphobic situation Refuted

Table 2: Statements and Labels corresponding to Sub-
task A

Corpus Collection: The training and testing data
is sourced from open-access scientific articles with
tables using APIs provided by Science Direct for
data mining. The data is procured in XML for-
mat and each table is also provided in image
format since the size and styling of table con-
tents are useful in understanding the table struc-
ture. Two separate datasets (with varying com-
plexity) are provided, one in which the statements
are automatically-generated, the second one where
statements are generated manually by humans. The
automatically generated statements are relatively
more complex (Wang et al., 2021) and more in
number as compared to the Manually generated
statements.

Annotation Process: Each statement in the
SemTabFact dataset is adapted from existing text
and verified by at least one human reader. Multi-
ple readers verify a smaller proportion to assess
inter-annotator agreement.

Data Preprocessing: The Tables in the dataset
have multiple sub-columns, unlike the Wikipedia
tables in the TabFact dataset. The Training dataset
had few errors like label classification errors and
Grammatical errors. To overcome this, data is pre-
processed and cleaned before feeding it into the
models. During the Data Cleaning, statements with
no labels are removed, and subcolumns are inter-
polated to handle the tables’ complex header struc-
ture.

The subcolumns are also merged with the table
headers in the case of multiple Table headers that
improve the results. The tables are provided with
surrounding text along with the captions. During
preprocessing, the surrounding text is combined
with captions which together serve as captions to
the subtask A model. Refer to Section 3.1 for our
system description for subtask A. (See Appendix
A for preprocessing details). We also discuss the
result of this step on our model’s performance in
Section 6
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Source #Tables #Entailed #Refuted #Unknown #Relevant #Irrelevant
Manual 981 2818 1688 0 0 0

Auto-gen. 1980 92136 87209 0 1039058 15467957
Development 52 250 213 93 3048 28495

Test 52 274 248 131 3458 26724

Table 3: Dataset statistics for different datasets within SemTabFacts.

Figure 2: Approach for Subtask B

3 System Desciption

3.1 Subtask A

Our proposed model for subtask A is an ensemble
of TableSciBERT, TAPAS, and a heuristic-based
approach. We first use a similarity-based approach
to predict and segregate ‘unknown’ statements, and
then we predict the remaining statements using
an ensemble of TableSciBERT and TAPAS. Given
a statement, S and table, T , in order to classify
whether S is ‘unknown’ or not, we first calculate
the similarity score between S and each cellC ⊂ T
using equation 2. Here, Sim is a similarity func-
tion, C is the content of the cell, si is i-th token of
the statement S after removing stop words and cj
is the j-th token of cell (for handling multi-word
cells). We use the nltk library (Bird et al., 2009) to
tokenize the statement and cell contents. The simi-
larity function takes as input two tokens and outputs
the similarity between them in 0 to 1 (higher score
representing more similar). For each token in the
statement, we first iterate through all the tokens
of the cell and compute the maximum of scores
obtained by Sim function for each token in the
cell and the particular token of the statement. We
then sum it over all the tokens of the statement to
compute the score, sc. We obtain the aggregated
score, ss over the whole table T by adding score
sc, of each cell c ⊂ T (see equation 3). Refer to
Section 4.1 for more information about the types
of similarity functions we experimented with.

sc =
∑

i

max
j

(Sim(cj , si)), si ⊂ S, cj ⊂ C (2)

ss =
∑

c

sc, where C ⊂ T (3)

We use ss as the similarity score between state-
ment S and table T . If ss < λa, we label the

statement as ‘unknown’ where λa is a hyperparam-
eter. If ss ≥ λa we proceed with the two-way
classification using our ensemble of TableSciBERT
and TAPAS.

Note that these TableSciBERT and TAPAS mod-
els were fine-tuned upon two labels only (viz-a-vis
Entailed and Refuted). The ensemble is done by ap-
plying weighted average upon prediction probabili-
ties of TAPAS and TableSciBERT. TableSciBERT
(from TableBERT) was developed by replacing the
BERT base model with SciBERT (Beltagy et al.,
2019). SciBERT is a pre-trained language model
based on BERT, which is fine-tuned upon large
scale scientific data. Since the SemTabFact dataset
is from scientific articles, using SciBERT makes
sense intuitively.

TAPAS and TableSciBERT were trained on
the training set (both autogenerated and manual
dataset) and the development set. The table pruning
method using the Heuristic exact match (HEM) was
applied for the large complex tables in an Autogen-
erated dataset to handle the input embedding size.
We also experimented with other transformers mod-
els like BioBERT (Lee et al., 2020), CovidBERT3

but SciBERT gave the best result. Furthermore, we
experimented with training them as a 3-label clas-
sifier as well. Refer to the Section 3.2 for details.

For training TableSciBERT and other table trans-
former 3-label variants we augmented the training
data with statements having ‘unknown’ label, in or-
der to balance the scarcity of unknown labels in the
provided data. The augmentation for a table was
done by randomly sampling statements from other
tables provided in the dataset having ‘entailed’ or
‘refuted’ as the true label. The motivation behind
using this strategy was that these statements served
as statements with an ‘unknown’ label for this ta-
ble. During sampling, we ensured that entailed and

3https://huggingface.co/gsarti/covidbert-nli
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refuted statements are equal in number to prevent
any bias.

Overall, given a table T and statement S, the
complete pipeline is a two-step process:

• We first perform the binary classification of
whether S is ‘unknown’ or not using the Sim-
ilarity heuristic. If the predicted label is ‘un-
known’, it is taken as the final prediction; oth-
erwise, we proceed to the next step.

• We use the ensemble of TAPAS and Ta-
bleSciBERT models to predict the ‘entailed’
or ‘refuted’ label of S. Here, S are the state-
ments that were NOT classified as ‘unknown’
in the previous step.

3.2 Subtask B

For subtask B, we developed an ensemble of two
different techniques:

• CellBERT: We propose a new method Cell-
BERT as a BERT-base model that is fine-
tuned upon an individual cell-based Natural
Language Inference Task. We preprocess the
training data given to us in Subtask B (which
consists of only auto-generated statements) to
generate NLI input samples of the form de-
scribed in Figure 2. Mathematically, given a
statement S and a table T , we need to label
each cell c in the table as relevant or irrelevant.
For CellBERT, each cell’s label is individually
determined along with the supporting infor-
mation of row and column headers. In other
words, if the coordinates of a cell c are given
by (x, y), where x is the row number and y
is the column number, the coordinates of the
row header and column header cells are given
by (x, 1) and (1, y) respectively.

The motivation behind using row and column
headers information is that these capture the
‘type’ of data present in the cell. The com-
bination of the row header, the cell, and the
column header’s contents represent the NLI
task’s premise. The hypothesis is taken as the
statement provided. Note that using this ap-
proach, we ended up with around a million
data points to train upon. Due to the unavail-
ability of adequate computational resources,
we restricted to using only 0.1% of the prepro-
cessed training data.

• Similarity: We observed that Scientific Ta-
bles contained many entities for which pre-
trained word embeddings are unavailable, and
thus supervised approaches like CellBERT,
fails to capture the required relationship. To
overcome this, we used a cell-wise similarity
algorithm, which calculates the score sc of
each cell C with the statement S same as in
equation 2. We used sc as the similarity score
between statement S and cell C. If sc < λb
we label the cell as ‘irrelevant’, where λb is a
hyperparameter. Otherwise, we label the cell
as ‘relevant’.

4 Experiments

4.1 Subtask A
Following the TabFact’s TableBERT, we fine-tuned
our own TableBERT model on the SemTabFact
dataset for Subtask A. We also experimented
with mutations of TableBERT by using RoBERTa
(TableRoBERTa), XLNet (TableXLNet), and SciB-
ERT (TableSciBERT) as well. We also experi-
mented with implementing BiGRU layers on top
of these table transformers. All our experiments
were conducted using PyTorch (Paszke et al., 2019)
Deep Learning library.

We experimented with a dataset (D1) which con-
tained the Manual dataset along with the Autogen-
erated statements. A caveat to D1 was that auto-
generated statements that have common tables with
the manual dataset were only used. This was done
because every model we trained upon only on the
manual dataset was overfitting. The overfitting was
due to an insufficient number of statements, i.e.,
4056 in the Manual Dataset. After preparing the
dataset D1, we had a total of 72k statements.
For the similarity-based approach, we manually
experimented with various non-semantic similarity
approaches like edit distance and binary-matching4

as well as embedding space-based semantic simi-
larity approaches by first computing the word vec-
tor. We computed word vectors using GloVe (Pen-
nington et al., 2014), BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) . Cosine similar-
ity and euclidean distance was used to compute
similarity between two vectors. The non-semantic
based binary-matching approach outperformed oth-
ers upon the validation set; therefore, we used it

4We define binary matching score between two tokens t1
and t2 as 1 if the lower-cased, lemmatized and stemmed form
of both the tokens is the same otherwise it is taken as 0.
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to evaluate our results on the test set. In our final
submitted model, SciBERT was fine-tuned for 3
epochs upon the combined dataset D1 and develop-
ment dataset, with learning rates as 5e− 5, 5e− 6
and 1e− 6 for each epoch. Batch size was kept as
6 with maximum sequence length of 512 tokens.
TAPAS was fine tuned upon the auto-generated,
manual and development datasets separately for 6,
12 and 5 epochs respectively. Learning rate was
kept the same as 2e− 5 for each epoch with maxi-
mum sequence length as 512. Dropout probability
was set to 0.07. For ensemble, we used weights 0.7
and 0.3 for TAPAS and TableSciBERT respectively.
We set the hyperparameter λa as 2 in our similarity
heuristic.

4.2 Subtask B

For Subtask B, we preprocessed the dataset into
input samples as shown in Figure 2, and fine-tuned
a BERT base model. Since the number of state-
ments given corresponding to the auto-generated
dataset is large and also accounting for the fact that
each cell in the table is a separate input example,
the number of tuples of (cell, statement) were very
large (over ten million data points). Therefore, only
0.1% of all tuples (≈ 30k data points) were used
to train CellBERT, and the rest of the data was
discarded. Note that the 0.1% of the data that we
selected to train CellBERT was kept completely
balanced with respect to true labels. We also exper-
imented with including and not-including header
information during fine-tuning as well. See table 5.

Here as well, for the similarity-based approach,
we manually experimented with the same non-
semantic similarity approaches like edit distance
and binary-matching as well as embedding space-
based semantic similarity approaches we used in
Section 4.1. In Subtask B too, the non-semantic
based binary-matching approach outperformed oth-
ers upon the validation set, hence we used the same
to evaluate our results on the test set. For our final
model, the hyperparameter λb was set to 1. For
CellBERT we fine-tuned a BERT base model for
5 epochs with batch size 16 and learning rate as
2e− 5.

5 Results

5.1 Subtask A

The organizers use two evaluation metrics for sub-
task A:

• 3-way-F1: This is a standard precision/recall
evaluation (Three-Way) of a multi-class classi-
fication that evaluates whether each statement
is classified as Entailed / Refuted / Unknown.

• 2-way-F1: The second evaluation method is
a Two Way method in which statements with
the unknown ground truth label are not taken
into consideration.

In both methods, first F1 scores are calculated for
each table, which is then averaged across all tables
for the final F1 score. The results of subtask A on
the test set are shown in table 4:

Model Task A 2-way
F1

Task A 3-way
F1

(TAPAS+TableSciBERT)-
2-Label+Similarity 0.7681 0.6931

BERT-3-Label 0.5963 0.5295
TAPAS -2-Label

+ Similarity
0.7547 0.6824

SciBERT-2-Label
+ Similarity

0.6172 0.5534

RoBERTa-3-Label 0.6186 0.5271
(RoBERTa+BiGRU)

3-Label
0.5986 0.5113

Table 4: Test Data Result (Average F1-scores) for sub-
task A

Confusion Matrix of Test set on
(TAPAS+TableSciBERT)-2-Label+Similarity
is shown in fig. 3
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Figure 3: Confusion Matrix of Testset on
(Tapas+TableSciBERT)-2-Label+Similarity.

The best results for subtask A were obtained us-
ing (TAPAS+TableSciBERT)-2-Label+ Heuristic-
based Similarity with 0.768 as 2-way F1 and 0.693
as 3-way-F1. TAPAS-2-Label+ Heuristic Based
Similarity also gave second-best results with 0.755
as 2-way F1 and 0.682 as 3-way-F1. We have
experimented with other table transformers like
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RoBERTa, BERT, and XLNet, but none of these
gave promising results. Models like RoBERTa-
3-Label, BERT-3-Label have been trained on the
three labels and gave 0.527 and 0.529, respectively,
as 3-way-F1. From the experiments, we observed
that the models trained on 3 label classification
performed poorly in classifying statements with
‘unknown’ label.

5.2 Subtask B

The metric used by the organizers calculates the
recall and precision for each cell, with “relevant”
cells as the positive category. Similar to Task A, the
score is averaged over all statements in each table
first, before calculating average across all tables.
The results for subtask B on test data are shown in
table 5. We obtained the best F1 of 0.6517. We
have also shown the results of other variants of
Cell-BERT, which are classified on the basis of row
and column headers (see Table 5).

S.No Method F1
1. Similarity 0.6414
2. CellBERT 0.5380
3. CellBERT - DevT 0.6465

4. CellBERT - DevT
+ Similarity Ensemble 0.6517

5.
CellBERT

(only cell context)
0.4891

6.
CellBERT

(cell+row header
information)

0.5213

7.
CellBERT

(cell+column header
information)

0.5199

8.
CellBERT

(cell+row+column
header information)

0.5380

Table 5: Test Data Result (Average F1-scores) for sub-
task B

6 Error Analysis

Subtask A: On analyzing the training dataset, we
realized that many statements require aggregation
methods like sum, count, max, and min over the
tabular data to determine whether a statement is en-
tailed or refuted (or if it is ‘unknown’). It requires
a symbolical understanding of the text that can not
be understood using simple NLI based approaches

like Table-BERT and other table transformers. On
the other hand, TAPAS outperforms other models
primarily due to pre-training on the corpus of syn-
thetic and counterfactual statements, as discussed
in Section 2.1.

We noticed that TableSciBERT performed well
as compared to other Table Transformers on sub-
task A. It makes intuitive sense as the dataset is cre-
ated from scientific texts and consequently has sci-
entific statements. The organizers also mentioned
that the training and testing data is sourced from
open access scientific articles with tables using
APIs provided by Science Direct for data mining
in the task description.

Further, we improved the F1 score on the
TAPAS model by 2% by using the multiple header
merging technique (See Appendix A). The reason
being that the merged headers have more semantic
information as they contain the sub-headers too.
We have explained the pre-processing step of
tables with multiple headers and sub-columns
in the Appendix. For 3-way classification, the
table transformers gave unsatisfactory results, for
example, RoBERTa 3-Label with F1 of 0.527
primarily due to two reasons, first we need
complete domain knowledge of the related table
to tag a statement to be unknown, and second,
no data were available for the unknown label in
the training set. We obtain 3-way F1 of 0.693,
with (TAPAS+SciBERT)-2-Label+Similarity
model, as our similarity heuristic was successfully
able to classify 91% of the statements predicted
unknown as true unknown labels. This might
be possible because many unknown statements
in the development and test set are completely
independent of the table given.

Subtask B: We noticed that CellBERT performs
best when header information is included while
fine-tuning. An interesting point to note is that
CellBERT trained only on autogenerated dataset
provides an F1 score of 0.538, whereas when it
was later fine-tuned upon the Development Dataset
which had Manual based dataset (CellBERT-DevT),
it boosted the results on the test set to F1 score of
0.646. The reason being the Test Dataset being
a Manual based dataset, whereas the earlier Cell-
BERT model was trained on the more complex
autogenerated dataset.

The heuristic-based Similarity approach was per-
forming surprisingly well on the test set as well,
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giving us a comparable result of 0.641 F1. Al-
though both the approaches are entirely different,
the scores are comparable. This motivated us to
analyze each method’s predictions, but we could
not come up with a convincing hypothesis for what
might be the reason for this observation. However,
we noticed a common trend in both methods. When
the number of cells in a table is large, and the num-
ber of relevant cells is very less, both models failed
to identify relevant cells in such cases. In other
words, both models had difficulty in identifying
true positives.

7 Conclusion

This paper attempts a solution to an under-explored
but essential problem: Statement Verification and
Evidence Finding with Tables. There have been
various works related to a binary classification of
statements. Still, evidence finding for these classi-
fications is a difficult and novel challenge. We are
successfully able to present an ensemble of TAPAS
model, table transformer-based TableSciBERT, and
similarity heuristic trained for subtask A with 2-
way F1 of 0.768 and 3-way F1 of 0.693. In subtask
B, we implemented the CellBERT - DevT+ Simi-
larity Ensemble method as our best model with an
F1 score of 0.652.

In the future, we plan to progress in implement-
ing new models that can tackle both linguistic and
symbolic reasoning. We aim to extend the TAPAS
model to 3 labels, requiring large data for training
in unknown labels for good results. In the case
of subtask B, we are planning to experiment with
other NLI techniques and models. Besides, we
will be looking into using more data for training
CellBERT and other NLI models as well.
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Appendix

A Preprocessing of the Multiple Header
files

The provided dataset had many Tables with multi-
ple headers and subcolumns, as shown in table 6.

Since most of our models take a single header as
input only and with an equal number of columns in
every row, we had to convert such tables to suit our
input type. There were two processes involved for
preprocessing such Tables.

Intrapolation: For one table, we would calcu-
late the maximum numbers of columns in the Ta-
ble and then interpolate all other rows with less
columns to eventually have an equal number of
columns in every row. Resulting table 7 obtained
by interpolation of table 6 is shown below

ExperMatter
UserB UserC

Base1 Base2 Base1 Base2
Gold 5.6 7 8
Silver 3.4 6.7 8.0 6.7

Table 6: Table with multiple headers and subcolumns

ExperMatter UserB UserB UserC UserC
Base1 Base2 Base1 Base2

Gold 5.6 7 8
Silver 3.4 6.7 8.0 6.7

Table 7: Table after Intrapolation
Header Merging: Since the input our model

has to be a single header file we had to merge such
rows as shown below. Final table obtained after
Preprocessing is shown in table 8.

ExperMatter UserB
Base1

UserB
Base2

UserC
Base1

UserC
Base2

Gold 5.6 7 8
Silver 3.4 6.7 8.0 6.7

Table 8: Table after preprocessing

B Other Experiments with training data

We have also provided the results for 2-way F1 on
the development set, which we have created out
of the training dataset in table 9 were trained on
only two labels. We divided both the Manual and
Auto-generated training data into Train and Dev
set with a split of 90 : 10, respectively. Various
combinations of Train and Dev data were used
to train different models. The models given in
table 9 were trained on only two labels as both of
the training datasets do not contain unknown labels,
and this is also the reason why we have not shown
3-way F1.
TAPAS model gave us the best here too, with an
F1 score of 97.1 when the Autogenerated train set
and Dev set were used, while it gave us the best F1
score of 76.7 when the Autogenerated + Manual
train set and Manual Dev set were used. We have
not included any of the models trained only on the
Manual train dataset because the provided Manual
data is very small in numbers and the results of
any model trained on manual train set were not
very promising. Clearly TAPAS outperforms all
the models and gives the best results on both the
Datasets.
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Model Train
set

Dev
set

Metrics (On Dev set)
Precision Recall F1 Accuracy (%)

TAPAS Auto Auto 99.4 94.7 97.1 94.32
TAPAS Auto+Manual Manual 82.6 71.5 76.7 70.83
TableBERT Auto Auto 87.5 85.9 86.7 86.00
TableRoBERTa Auto Auto 63.5 63.1 63.3 64.05
TableRoBERTa +

BiGRU
Auto Auto 64.7 63.4 66.0 67.13

TableSciBERT Auto Auto 71.0 69.8 70.4 70.74
TableBERT Auto Manual 58.8 58.2 58.5 58.95
TableRoBERTa Auto Manual 52.9 50.7 51.8 51.95

Table 9: Results on the Development set created by us
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Abstract

Disagreement between coders is ubiquitous in
virtually all datasets annotated with human
judgements in both natural language process-
ing and computer vision. However, most su-
pervised machine learning methods assume
that a single preferred interpretation exists for
each item, which is at best an idealization.
The aim of the SemEval-2021 shared task on
Learning with Disagreements (Le-wi-Di) was
to provide a unified testing framework formeth-
ods for learning from data containing multiple
and possibly contradictory annotations cover-
ing the best-known datasets containing infor-
mation about disagreements for interpreting
language and classifying images. In this pa-
per we describe the shared task and its results.

1 Introduction

The assumption that natural language (nl) expres-
sions have a single and clearly identifiable inter-
pretation in a given context, or that images have a
preferred labels, still underlies most work in nlp
and computer vision. However, there is now plenty
of evidence that this assumption is just a conve-
nient idealization; virtually every project devoted
to large-scale annotation has found that genuine
disagreements are widespread.
In nlp, that annotator/coder disagreement can

be genuine—i.e., resulting from debatable, diffi-
cult, or linguistic ambiguity—has long been known
for anaphora and coreference (Poesio and Artstein,
2005; Versley, 2008; Recasens et al., 2011).1 But
in recent years, we have also seen evidence that
disagreements among subjects/coders are common
with virtually every aspect of language interpreta-
tion, from apparently simple aspects such as part-
of-speech tagging (Plank et al., 2014b), to more

1See also the analysis of disagreements in OntoNotes and
word senses in Pradhan et al. (2012), Passonneau et al. (2012),
and Martínez Alonso et al. (2016).

complex ones like semantic role assignment (Du-
mitrache et al., 2019), to subjective tasks such
as sentiment analysis (Kenyon-Dean et al., 2018),
and to the inferences that can be drawn from sen-
tences (Pavlick and Kwiatkowski, 2019).

In computer vision, as well, the assumption that
gold labels may be specified for items has proven
an idealization (Rodrigues and Pereira, 2018)—in
fact, possibly even more than for nlp. In many
widely used crowdsourced datasets for computer vi-
sion, different coders assign equally plausible labels
to the same items. The problem of disagreement
among coders, including experts, on the classifi-
cation of noisy image data has arisen in many cv
applications. This includes classification of astro-
nomical images (Smyth et al., 1994), medical image
classification (Raykar et al., 2010), and numerous
others (Sharmanska et al., 2016; Rodrigues and
Pereira, 2018; Firman et al., 2018).
Many ai researchers have concluded that rather

than attempting to eliminate disagreements from an-
notated corpora, we should preserve them—indeed,
some researchers have argued that corpora should
aim to collect all distinct interpretations of an ex-
pression (Smyth et al., 1994; Poesio and Artstein,
2005; Aroyo and Welty, 2015; Sharmanska et al.,
2016; Plank, 2016; Kenyon-Dean et al., 2018; Fir-
man et al., 2018; Pavlick and Kwiatkowski, 2019).
Poesio and Artstein (2005) and Recasens et al.
(2012) suggest that the best way to create resources
capturing disagreements is by preserving implicit
ambiguity—i.e., having multiple annotators label
the items, and then keeping all these annotations,
not just an aggregated ‘gold standard’. A number
of corpora with these characteristics now exist (Pas-
sonneau and Carpenter, 2014; Plank et al., 2014a;
Dumitrache et al., 2019; Poesio et al., 2019; Ro-
drigues and Pereira, 2018; Peterson et al., 2019)
Much recent research has explored the question

of whether corpora of this type, besides being more
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accurate characterizations of the linguistic reality
of language interpretation and image categoriza-
tion, are also better resources for training nlp and
computer vision models, and if so, what is the
best way for exploiting disagreements in modeling.
Beigman Klebanov and Beigman (2009) used in-
formation about disagreements to exclude items on
which judgements are unclear (‘hard’ items). In
the CrowdTruth project (Aroyo and Welty, 2015;
Dumitrache et al., 2019) information about disagree-
ment is used to weigh the items used for training.
Plank et al. (2014a) proposed to use the information
about disagreement to supplement the gold label
during training. Finally, methods were proposed for
training directly from the data with disagreements,
without first obtaining an aggregated label (Sheng
et al., 2008; Rodrigues and Pereira, 2018; Peterson
et al., 2019; Uma et al., 2020). Only limited com-
parisons of these methods have been carried out
(Jamison and Gurevych, 2015), and the sparse re-
search landscape remains fragmented; in particular,
methods applied in cv have not yet been tested in
nlp, and vice versa.

The objective of SemEval-2021 Task 12, Learn-
ing with Disagreements (Le-wi-Di), was to provide
a unified testing framework for learning from dis-
agreements in nlp and cv using datasets containing
information about disagreements for interpreting
language and classifying images. The expecta-
tion being that unifying research on disagreement
from different fields may lead to novel insights and
impact ai widely.

2 Task organization

In order to provide a thorough benchmark for meth-
ods for learning from disagreements, we identified
five well-known datasets for very different nlp and
cv tasks, all characterized by providing a multi-
plicity of labels for each instance, by having a size
sufficient to train state-of-the-art models, and by
evincing different characteristics in terms of the
crowd annotators and data collection procedure. We
found or developed near–state-of-the-art models for
the tasks represented by these datasets. Both ‘hard’
and ‘soft’ evaluation metrics were employed (Uma
et al., n.d.).
The shared task was set up on the CodaLab

Competitions platform,2 which enables training
and uniform evaluation on these datasets, such

2https://www.microsoft.com/en-us/research/project/
codalab/

that the crowd learning adaptations of the base
models proposed by participants to the task would
be directly comparable.
In this section, we briefly introduce the five

datasets included in the benchmark and our evalua-
tion criteria. We also elaborate on the setup of the
shared task.

2.1 Data

There are by now quite a few datasets preserving
disagreements, and covering many levels of lan-
guage interpretation; remarkably, none of these has
ever been used for a shared task like the one we
are proposing, and the majority of them have never
been used for a shared task at all. Our shared task
has aimed at leveraging this diversity. The datasets
included are outlined in this section and their char-
acteristics are summarized in Table 1. Figure 1
shows the observed agreement of each dataset.

Figure 1: Observed Agreement for each dataset

2.1.1 The Gimpel et al. pos corpus
One widely used resource for developing
disagreement-aware nlp models is the dataset of
Twitter posts annotated with pos tags collected by
Gimpel et al. (2011). Plank et al. (2014b) mapped
the Gimpel tags to the universal pos tag set (Petrov
et al., 2012) and collected at least five crowdsourced
labels per token from 177 annotators. This dataset
contains 14K training examples (English words/
tokens) annotated by 177 annotators. Each item
was annotated between five and 177 times, 16.38
times on average. For this shared task, we selected
8.3K, 3K, and 3.1K tokens as training, development
and test sets respectively.

2.1.2 The pdis corpus
The Phrase Detectives corpus (Poesio et al., 2019)
is a crowdsourced coreference corpus collected
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pos pdis humour ic-labelme cifar-10h

Number of items 14,000 96,305 18,002 10,000 10,000
Number of crowd workers 177 1,741 272 59 2,457
Number of categories 12 2 2 8 10
Average annotations per item 16.37 11.87 5.00 2.50 51.10

Table 1: Summary of dataset characteristics

with the Phrase Detectives gamified online plat-
form (Poesio et al., 2013).3 We use pdis, a simpli-
fied version of the corpus containing only binary
information status labels: Discourse New (the en-
tity referred to has never been mentioned before)
and Discourse Old (it has been mentioned). pdis
consists of 542 documents, for a total of 408K to-
kens and over 96K markables. These documents
were annotated by game players who produced an
average of 11.87 annotations per markable.
Forty-five of the documents (5.2K markables),

collectively called pdgold, additionally contain
expert-adjudicated gold labels. This subset of pdis
was designated as the test set. The training and
development datasets consist of 473 documents
(and 86.9K markables) and 24 documents (4.2K
markables) respectively.

2.1.3 The Humour dataset
The comprehension and appreciation of humour
is known to vary across individuals (Ruch, 2008),
making disagreement over the perceived funniness
of jokes an appealing subject of study. For our
training data, we used the corpus of Simpson et al.
(2019), which consists of 4,030 short texts (3398
jokes, mostly based on puns, and 632 non-jokes such
as proverbs and aphorisms). 28,210 unique pairings
of these texts were presented to five crowdsourcers
each, who indicated which text in the pair (if either)
they found to be funnier. The goal is to learn a
model that can predict binary pairwise labels that
can predict which of two short texts is funnier.
The 4,030 text instances were split into 60%

(2,418 texts, 9,916 unique pairs) for the training
set and 20% (806 texts, 1,086 unique pairs) for the
development set. Since this dataset has already
been published, we constructed a new test dataset
along similar lines: 1,000 short texts (all punning
jokes) were paired in 7,000 different ways, and
each of these 7,000 pairs was then presented to five
crowd workers for a preference judgement.4

3https://github.com/dali-ambiguity
4us-based workers from Amazon Mechanical Turk were

2.1.4 The LabelMe corpus
Much research on learning from disagreements
was motivated by computer vision datasets, so we
intended to include some of these, too. Possibly
the most widely used such corpus is the LabelMe
dataset5 (Russell et al., 2008). It classifies outdoor
images according to 8 categories: highway, inside
city, tall building, street, forest, coast, mountain
or open country. Using Amazon Mechanical Turk,
Rodrigues and Pereira (2018) collected an average
of 2.5 annotations per image from 59 annotators for
10K images in this dataset.

We randomly selected 5K, 2.5K, and 2.5K images
for training, development, and testing respectively,
careful to keep the label proportions in each subset
close to the proportions in the 10K dataset.

2.1.5 The cifar-10h corpus
Krizhevsky’s (2009) cifar-10 dataset consists of
60K tiny images from the web, carefully labelled
and expert-adjudicated to produce a single gold la-
bel for each image in one of 10 categories: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. Peterson et al. (2019) collected crowd
annotations for 10K images from this dataset (the
designated test portion) using Amazon Mechanical
Turk, creating the cifar-10h dataset6 which we use
for this shared task.

We randomly selected 7K, 1K, and 2K images for
training, development and testing respectively. We
kept as much data as we could for training without
jeopardizing the evaluation process, as the base
model was found to be sensitive to data size. As
with the original dataset, each subset we created
contains an equal number of images per category.

2.2 Evaluation metrics

While recent research questions the assumption that
a single ‘hard’ label (a gold label) exists for every

employed, paid in line with the federal minimum wage.
5http://labelme.csail.mit.edu/Release3.0
6https://github.com/jcpeterson/cifar-10h
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item in a dataset, the models proposed for learn-
ing from multiple interpretations are still largely
evaluated under this assumption, using ‘hard’ mea-
sures like accuracy or class-weighted F1 (Sheng
et al., 2008; Plank et al., 2014a; Martínez Alonso
et al., 2015; Sharmanska et al., 2016; Rodrigues
and Pereira, 2018). For reference and comparison
reasons, we also evaluate the models produced for
this shared task using F1.

However, a way of evaluating models as to their
ability to capture disagreement is needed, especially
for datasets with substantial extent of disagreement.
The simplest ‘soft’ metric of this type is to evaluate
ambiguity-aware models by treating the probability
distribution of labels they produce as a soft label,
and comparing that to the full distribution produced
by annotators, using, for example, cross-entropy.
This approach was adopted in, inter alia, (Peter-
son et al., 2019; Uma et al., 2020). Peterson et al.
(2019) tested this approach on image classification
tasks, generating the soft label by transforming the
item annotation distribution using standard normal-
ization. In this shared task we also use standard
normalization to produce soft labels for the humour
dataset. Uma et al. (2020) show that the choice of
soft label encoding function depends on the char-
acteristics of the dataset. For pos and ic-labelme,
they show that a softmax function over the annotator
distribution is preferable over standard normaliza-
tion. On the other end, for pdis, training a soft-loss
model using the posterior probability produced by
Hovy et al.’s (2013) mace probabilistic aggregation
model as a soft label produces predictions that a
most accurate with respect to the gold.
Therefore, in this shared task we used different

soft label encoders to generate soft labels from
annotator distributions for the test data.

2.3 Task setup
CodaLab was the designated site for hosting
SemEval-2021 competitions.7 Le-wi-Di was run
in two main phases:

Practice phase. In the practice phase, the goal
was to trainmodels for each task to learn from crowd
annotations, given (1) the training data (consisting
of raw and preprocessed input data and crowd an-
notations), (2) the development data with no labels,
and (3) the base models (discussed in Section 3).
While participants were encouraged to start with the

7Our competition can be found at https://competitions.
codalab.org/competitions/25748.

base models and extend them, we did not make this
mandatory. Participants could test the performance
of their models on the development set by making
predictions on the given development input data
and then uploading their submissions to CodaLab
for preliminary testing. We permitted up to 999
submissions in this phase. The ‘leader board’ was
made public to allow participants not only to see
how their models performed, but also to compare
the performance of their model to those submitted
by other participants.

Evaluation phase. The evaluation phase was the
official testing phase of the competition. In this
phase, we released test data (without labels) but we
also released the gold labels and crowd annotations
for the development set to facilitate quick offline
testing and refining of models and model selection.
The number of submissions for this phase was lim-
ited to ten submissions per participant to prevent
the participants from fine-tuning their models on
the test data.8 The allowed number of submissions
was later increased to 999 to more encourage sub-
mission attempts. The leader board was also kept
public in this phase. Each participant could see the
best model of each of the tasks using each of the
evaluation metrics.

Post-campaign evaluation. As our aim was to
make this benchmark available beyond the competi-
tion to researchers developing disagreement-aware
models, we included a third, post-evaluation phase
to allow lifetime access to the data. Researchers
participating in this phase will be able to access the
same data as in the evaluation phase and test their
models on the test data for the various tasks.

3 Base models and baselines

In order to encourage the participants to focus on the
development of methods for learning from disagree-
ment, as opposed to achieving higher performance
by developing better models, we provided ‘base’
models for each of the tasks represented by the
aforementioned corpora. In this section, we briefly
discuss the baselinemodels for each task that we pro-
vided. In Section 5, we report the results using these
base models and two crowd learning approaches:
majority voting and the soft loss method (Peterson
et al., 2019; Uma et al., 2020).

8This proved unnecessary as the inherent difficulty of the
shared task was enough of a deterrent.
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The pos tagging model. The pos tagger is a bi-
lstm (Plank et al., 2016) with additional use of
attention over the input word and character embed-
dings, as used in Uma et al. (2020).

The pdis classification model. The model for
this task was developed by comparing architectures
from two models: a state-of-the-art coreference
model and a state-of-the-art is classification model.
We combined the mention representation compo-
nent of Lee et al.’s (2018) coreference resolution
system with the mention sorting and non-syntactic
feature extraction components of the is classifica-
tion model proposed by Hou (2016)9 to create a
novel is classification model that outperforms Hou
(2016) on the pdis corpus. The training parameters
were set following Lee et al. (2018).

The humour preference learning model. We
use as base model for this task Gaussian process
preference learning (gppl) with stochastic varia-
tional inference, as described and implemented by
Simpson and Gurevych (2020). As an input vector
to gppl, we first take the mean word embedding of a
text, using 300-dimensional word2vec embeddings
trained on the Google News corpus (Mikolov et al.,
2013). Then, we compute the frequency of each
unigram in the text in a 2017 Wikipedia dump,
and each bigram in the text in a Google Books
Ngram dataset. Finally, we concatenate the mean
unigram and bigram frequencies with the mean
word embedding vector to obtain the input vector
representation for each short text. The gppl model
is trained on pairwise labels from the training set
to obtain a ranking function that can be used to
score test instances or output pairwise label proba-
bilities. As a Bayesian model, it takes into account
sparsity and noise in the crowdsourced training
labels, and moderates its confidence accordingly.
Hence, it is a strong baseline for accounting for
disagreement among annotators. This same gppl
approach set the previous state of the art on the
humour dataset (Simpson et al., 2019).

The LabelMe image classification model. For
this task, we replicated the model from Rodrigues
and Pereira (2018). The images were encoded using
pretrained cnn layers of the vgg-16 deep neural
network (Simonyan et al., 2013). This encoding
is passed into a feed-forward neural network layer

9This model was developed for fine-grained information
status classification on the isnotes corpus (Markert et al.,
2012; Hou et al., 2013).

with a relu activated hidden layer with 128 units.
A 0.2 dropout is applied to this learned represen-
tation which is then passed through a final layer
with softmax activation to produce the model’s
predictions.

The cifar-10 image classification model. The
trained model provided for this task is the ResNet-
34A model (He et al., 2016), a deep residual frame-
workwhich is one of the best performing systems for
the cifar-10 image classification. We made avail-
able to participants the publicly available Pytorch
implementation of this ResNet model.10

4 Participating systems

Unfortunately, we observed a dramatic difference
in the number of participants that signed up to
the competition (over 100 groups), the number of
groups that participated in the trial phase, and the
number of groups that submitted a run for official
evaluation.11 Only one group, uor, submitted
in the evaluation phase (Osei-Brefo et al., 2021).
However, they did submit models for each of the
tasks, and did adopt a learning from disagreements
approach.

pos tagging. For pos tagging, uor developed a
novel pos tagging model by fine-tuning the bert
language model (Devlin et al., 2019). The (tweet,
token) pairs were encoded in the form

[cls] Tweeted text [sep] Token [sep]

where the ‘[cls]’ token was added for classification
and the ‘[sep]’ token separated the tweet from the
token under consideration. To learn the class for the
token, the learned classification token was passed
through a single feed-forward neural network layer
with softmax activation. The output of this layer
represented the probabilities of the token belonging
to each of the 12 classes.
To extend this model for crowd learning, uor

added an adaptation of the crowd layer from Ro-
drigues and Pereira (2018). Rather than compute a
single loss from the crowd layer as Rodrigues and
Pereira (2018) do, uor compute a joint loss from
both the crowd layer and the base model (without
the crowd layer bottleneck).

10https://github.com/KellerJordan/ResNet-PyTorch-
CIFAR10

11Two participating groups cited an inability to come up
with a novel crowd learning paradigm as the reason they did
not submit for official evaluation.
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pdis classification. For this task, uor also used
a fine-tuned bert together with Rodrigues and
Pereira’s (2018) crowd layer. Each (document,
markable) pair was encoded as follows:

[cls] + Document + [sep] + Markable + [sep]

where the ‘[cls]’ and ‘[sep]’ tokens are used in the
same manner as in pos tagging.

Humour preference learning. For humour pref-
erence learning, the participant submitted predic-
tions using the base model without modifications.

LabelMe image classification (ic-labelme).
For this task, uor adapted the Rodrigues and Pereira
(2018) crowd layer to the base model.

cifar-10h image classification (ic-cifar10h).
For ic-cifar10h, the crowd labels were aggregated
into hard labels using majority voting. However,
uor combined Zagoruyko and Komodakis’s (2016)
WideResNet model, which has been shown to out-
perform He et al.’s (2016) ResNet with the novel
Sharpness-Aware Minimization (sam) optimization
technique, proposed by Foret et al. (2020), that has
been shown to efficiently improve model general-
ization, especially on noisy, singly labelled data.

5 Results and discussion

Table 2 contains the results of various models dis-
cussed in Sections 3 and 4 on this shared task
when evaluated based on the hard metric (i.e., the
class-weighted F1 with respect to the gold labels)
and the soft metric (the cross-entropy between the
soft labels for each task—see Section 2.2—and the
model prediction for that task). The best results for
each task are highlighted in bold.

uor concentrated their effort on the ic-cifar10h
dataset, on which they did achieve good results
and outperformed the baseline (see below). In the
other datasets, their official results at the end of the
evaluation phase were less competitive.
With the pos and pdis datasets, the model pro-

posed by uor, adding a crowd layer on top of bert,
achieved substantially worse results than training
from a label aggregated using majority voting or
training using a soft-loss function, both according
to the hard evaluation metric (F1) and the soft met-
ric (ce). The ranking between soft-loss method,
aggregation, and crowd layer with pos is consistent
with that obtained by Uma et al. (n.d.), but the
results obtained by uor are much worse for reasons
that will require further investigation. (With pdis,

Uma et al. (n.d.) obtain comparable results with
soft-loss functions and with the crowd layer.) More
generally, the results show that although the hard
label (the majority voting aggregate of the annotator
distribution) and the soft label (a probability distri-
bution encoding of the annotator distribution) were
drawn from the same annotator distribution with
this dataset, given the same base model, training by
targeting the soft label (base model + soft loss) out-
performs training using majority voting aggregates
(base model + majority voting) regardless of which
evaluation metric is used to compare the models.
For the humour preference learning task, again,

the base model outperforms uor’s submission on
both metrics, but in this case the difference in
performance between gppl and uor is much less
substantial with the hard metric, although it remains
large according to the soft metric. This large differ-
ence may be due to a technical issue that requires
further investigation, since uor’s submission was
also supposed to have been produced by the same
base system. A possible reason for poor cross-
entropy error is the use of discrete labels, which
are heavily penalized for overconfidence by cross-
entropy error. On this soft metric, the Bayesian
probabilistic approach of gpplmay have advantages
over approaches with poorer calibration, which re-
mains to be explored in future work. The gppl
approach therefore remains the state of the art with
this dataset.
For ic-labelme, again, soft-loss training

achieved better hard and soft scores than both
aggregation training with majority voting labels
and the uor extension of the base model using a
crowd layer adapted from Rodrigues and Pereira
(2018). The finding that the uor group’s adaption
of the Rodrigues and Pereira (2018) crowd layer
yielded lower F1 than training using majority voting
is unexpected, given that in Rodrigues and Pereira
(2018); Uma et al. (2020) and Uma et al. (n.d.),
the crowd layer, particularly the dl-mw variant,
was shown to be a competitive approach to learn-
ing from crowds and always outperforms majority
voting. However, uor’s crowd layer does achieve
better soft evaluation (cross-entropy) scores than
majority voting.
There is one dataset, however, on which uor

outperformed the two baselines: ic-cifar10h.
For this dataset, uor used Zagoruyko and Ko-
modakis’s (2016) WideResNet image classifier
trained using majority voting aggregated labels and
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Task Model Hard score (F1) Soft score (cross-entropy)
pos base model + majority voting 0.753 2.263
pos base model + soft loss 0.767 1.084
pos uor (bert + Crowd Layer) 0.125 2.331
pdis base model + majority voting 0.906 0.397
pdis base model + soft loss 0.928 0.273
pdis uor (bert + Crowd Layer) 0.474 0.830

humour base model (gppl) 0.557 0.728
humour uor 0.513 3.697

ic-labelme base model + majority voting 0.806 2.833
ic-labelme base model + soft loss 0.833 1.691
ic-labelme uor (base model + Crowd Layer) 0.784 1.769
ic-cifar10h base model + majority voting 0.646 2.610
ic-cifar10h base model + soft loss 0.698 1.052
ic-cifar10h uor (WideResNet + sam) 0.769 0.827

Table 2: Results on the benchmarks and participant submissions on all the tasks using F1 (higher is better) and
cross-entropy (lower is better)

Foret et al.’s (2020) sam optimization technique.
The results show that WideResNet outperforms
ResNet with this task both according to the hard
metric and the soft metric. Interestingly, this is
the one dataset in which the Deep Learning from
Crowds approach of Rodrigues and Pereira (2018)
works best according to Uma et al. (n.d.), outper-
forming both soft-loss training and majority voting
training. It would thus be interesting to understand
if the performance of uor’s model could be further
increased by adopting one of these methods.12

6 Conclusion

This shared task presented the first unified testing
framework for learning with disagreements. The
datasets include sequence labelling, three classifica-
tion tasks, and preference learning, hence provide a
testbed for a wide range of challenges when learning
from multiple annotators. We proposed to evalu-
ate not just the ‘hard’ performance against a gold
standard, but also the ability to predict the distri-
bution of different interpretations of the data—that
is, the alternative labellings provided by different
annotators. The results show the benefit of soft loss
functions that account for the distribution of labels
in the training data. However, modelling alternative

12As a postscript, we should note that after the end of the
official competition we did carry out an investigation of the
reasons for the poor performance of uor’s models on the
tasks other than ic-cifar10h. Some points emerging from
the discussion are presented in the participants’ paper for the
shared task.

interpretations of data remains an under-researched
topic in nlp and computer vision. To encourage
future work on learning with disagreements, the
shared task and datasets will remain available for
evaluating new methods.
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Abstract

This paper presents the Source-Free Domain
Adaptation shared task held within SemEval-
2021. The aim of the task was to explore adap-
tation of machine-learning models in the face
of data sharing constraints. Specifically, we
consider the scenario where annotations exist
for a domain but cannot be shared. Instead,
participants are provided with models trained
on that (source) data. Participants also receive
some labeled data from a new (development)
domain on which to explore domain adapta-
tion algorithms. Participants are then tested on
data representing a new (target) domain. We
explored this scenario with two different se-
mantic tasks: negation detection (a text classi-
fication task) and time expression recognition
(a sequence tagging task).

1 Introduction

Data sharing restrictions are common in NLP
datasets. For example, Twitter policies do not al-
low sharing of tweet text, though tweet IDs may
be shared. The situation is even more common
in clinical NLP, where patient health information
must be protected, and annotations over health text,
when released at all, often require the signing of
complex data use agreements.

The Source-Free Domain Adaptation shared task
presents a new framework that asks participants to
develop semantic annotation systems in the face
of data sharing constraints. A participant’s goal is
to develop an accurate system for a target domain
when annotations exist for a related domain but
cannot be distributed. Instead of annotated training
data, participants are given a model trained on the
annotations. Then, given unlabeled target domain
data, they are asked to make predictions. This is

a challenging setting, and much previous work on
domain adaptation does not apply, as it assumes
access to source data (Ganin et al., 2016; Ziser and
Reichart, 2017; Saito et al., 2017; Ruder and Plank,
2018), or assumes that labeled target domain data
is available (Daumé III, 2007; Xia et al., 2013; Kim
et al., 2016; Peng and Dredze, 2017).

Two different semantic tasks in English were cre-
ated to explore this framework: negation detection
and time expression recognition. These represent
two common types of classification tasks: negation
detection is typically formulated as predicting an
attribute of a word or span given its context, and
time expression recognition is typically formulated
as a named entity tagging problem. Both of these
tasks have previously been run as shared tasks, and
had at least two different domains of data available,
and we had access to experienced annotators for
both tasks, allowing us to annotate data in a new
domain.

Negation detection is the task of identifying
negation cues in text. This task has been widely
studied by previous work (Chapman et al., 2007,
2001; Harkema et al., 2009; Sohn et al., 2012) in-
cluding the development of a variety of datasets
(Uzuner et al., 2011; Mehrabi et al., 2015). How-
ever, there are still large performance losses in the
cross-domain setting (Wu et al., 2014).

For negation detection, we provided a “span-
in-context” classification model, fine-tuned on in-
stances of the SHARP Seed dataset of Mayo Clinic
clinical notes, which the organizers have access
to but cannot currently be distributed. (Models
were approved to be distributed, as the data is dei-
dentified.) In the SHARP data, clinical events are
marked with a boolean polarity indicator, with val-
ues of either asserted or negated. As development
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Source Collection Source Domain Instances Negated instances

train SHARP Seed Mayo Clinic clinical notes 10,259 902
dev i2b2 2010 Partners HealthCare clinical notes 5,545 1,115
test (unlabeled) MIMIC III Beth Israel ICU progress notes 622,703 -
test (labeled) MIMIC III Beth Israel ICU progress notes 9,580 958

Table 1: Size of the negation detection datasets. The train set is never distributed to the participants.

Source Collection Source Domain Documents Time entities

train THYME Mayo Clinic clinical notes 278 18,020
dev TimeBank News 99 2,231
test (unlabeled) - Food security 47 -
test (labeled) - Food security 17 1,900

Table 2: Size of the time expression recognition datasets. The train set is never distributed to the participants.

data, we used the i2b2 2010 Challenge Dataset, a
de-identified dataset of notes from Partners Health-
Care. The evaluation dataset for this task consisted
of de-identified intensive care unit progress notes
from the MIMIC III corpus (Johnson et al., 2016).

Time expression recognition has been a key com-
ponent of previous temporal language related com-
petitions, like TempEval 2010 (Pustejovsky and
Verhagen, 2009) and TempEval 2013 (UzZaman
et al., 2013). For this task, we followed the Compo-
sitional Annotation of Time Expressions (SCATE)
schema (Bethard and Parker, 2016) used in in Sem-
Eval 2018 Task 6 (Laparra et al., 2018). As in nega-
tion detection, previous works have also oberved
a significant performance degradation on domain
shift (Xu et al., 2019).

For time expression recognition, we provided
a sequence tagging model, fine-tuned on de-
identified clinical notes from the Mayo Clinic,
which were available to the task organizers, but
are difficult to gain access to due to the complex
data use agreements necessary. (Models were ap-
proved to be distributed, as the data is deidentified.)
The development data was the annotated news por-
tion of the SemEval 2018 Task 6 data whose source
text is from the freely available TimeBank. For
evaluation, we used a set of annotated documents
extracted from food security warning systems.

The main impact of this task is to drive the NLP
community to address the serious challenges of
data sharing constraints by designing new domain
adaptation algorithms that allow source data and
target data to remain separate, rather than assuming
they can be shared freely with each other.

2 Data and Resources

In this section, we describe both negation detection
and time expression recognition tasks, the models
fine-tuned on a difficult-to-obtain set of annotated
data, the development data representing a new do-
main on which participants can explore their ap-
proaches for domain adaptation, and the test data
representing another new domain on which the
systems developed by participants are evaluated.
Details of the different data sets can be found in
Tables 1 and 2.

2.1 Negation detection
The negation detection track asks participants to
classify clinical event mentions (e.g., diseases,
symptoms, procedures, etc.) for whether they are
being negated by their context.

For example, the sentence:

(1) Has no diarrhea and no new lumps or
masses

has three relevant events (diarrhea, lumps, masses),
two cue words (both no), and all three entities are
negated. This task is important in the clinical do-
main because it is common for physicians to docu-
ment negated information encountered during the
clinical course, for example, when ruling out cer-
tain elements of a differential diagnosis.

This task can be treated as a “span-in-context”
classification problem, where the model jointly
considers both the event to be classified and its
surrounding context. For example, a typical
transformer-based encoding of this problem for
the diarrhea event in the example above looks like:
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(2) Has no <e> diarrhea </e> and no new
lumps or masses .

Pre-trained model Participants were provided
with a “span-in-context” classification model,
trained on the 10,259 instances (902 negated) in
the SHARP Seed dataset of de-identified clinical
notes from Mayo Clinic, which the organizers had
access to but cannot currently be distributed. In
the SHARP data, clinical events are marked with
a boolean polarity indicator, with values of either
ASSERTED or NEGATED.

Development data Participants could use as de-
velopment data the i2b2 2010 Challenge Dataset, a
de-identified dataset of notes from Partners Health-
Care, containing 5,545 entities labeled with an as-
sertion status in the set {ASSERTED, NEGATED,
UNCERTAIN, HYPOTHETICAL, CONDITIONAL,
FAMILYRELATED}. We provided scripts that ex-
tracted i2b2 entities and simplified the label set to
{NEGATED, NOTNEGATED}. Since the i2b2 2010
dataset consisted of notes from two sources, Part-
ners and MIMIC III, the latter of which overlaps
with our proposed test set, our script also filtered
the development instances to contain only those
from the Partners notes.

Test data During the testing period, participants
were provided with the raw text of 622,703 in-
stances drawn from the MIMIC III corpus1, which
contains manually de-identified progress notes for
patients from the intensive care unit of Beth Israel
Deaconess Medical Center, with entities of interest
already identified. From this, we manually anno-
tated 9,580 instances of which 958 were negated.

2.2 Time expression recognition
The time expression recognition track, which repre-
sents a sequence-tagging task, uses the fine-grained
time expression annotations that were a component
of SemEval 2018 Task 6 (Laparra et al., 2018). For
example:

(3) In

MONTH-OF-YEAR

January of

YEAR

2009 , she experi-
enced acute onset lower abdominal pain

NUMBER

four to five

PERIOD

hours

AFTER

after her meal.

This task can be treated as a sequence classification
problem, as in other named-entity tagging tasks.

1https://mimic.physionet.org/

Pre-trained model Participants were provided
with a sequence tagging model, trained on the
18,020 time expressions in the clinical portions of
the SemEval 2018 Task 6, that were available to the
task organizers, but are currently difficult to gain
access to due to the complex data use agreements.

Development data Participants could use as de-
velopment data the annotated news portion of the
SemEval 2018 Task 6 data. The source text is from
the freely available TimeBank2, and the 2,231 time
entity annotations were from the freely available
SCATE GitHub repository3.

Test data During the testing period, participants
were provided with the raw text of 47 reports drawn
from food security warning systems 4 and asked
to predict time expressions. From this, we used 17
documents that included 1,900 time entities, anno-
tated by two independent annotators and an adjudi-
cator.

3 Evaluation Metrics

Negation detection was evaluated using the
precision/recall/F1 of the negated class, as used
in most published work. Time expression
recognition was evaluated using the standard
precision/recall/F1 previously used for the entity-
finding portion of SemEval 2018 Task 6.

In both cases, the metrics are defined as:

P (S,H) =
|S ∩H|
|S|

R(S,H) =
|S ∩H|
|H|

F1(S,H) =
2 · P (S,H) ·R(S,H)

P (S,H) +R(S,H)

where S is the set of items predicted by a system
and H is the set of items manually annotated by
humans.

4 Baseline Systems

To provide a comparison benchmark, we proposed
two baselines for both negation detection and time
expression recognition:

2https://www.cs.york.ac.uk/
semeval-2013/task1/index.php%3Fid=data.
html

3https://github.com/bethard/
anafora-annotations

4Like the UN World Food Programme https://www.
wfp.org/ or the Famine Early Warning Systems Network
https://fews.net/.
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source dev test

Sub-task System P R F1 P R F1 P R F1

Negation Src-Trained - - 0.820 0.851 0.818 0.834 0.917 0.516 0.660
Negation Dev-Tuned - - - - - - 0.908 0.611 0.730
Time Expression Src-Trained 0.967 0.968 0.968 0.775 0.768 0.771 0.849 0.746 0.794
Time Expression Dev-Tuned - - - - - - 0.827 0.782 0.804

Table 3: Performance of the baselines on the source domain, where Source-Trained (Src-Trained) was trained,
and the two target domains (dev and test). For Dev-Tuned, dev set was also used for training.

Source-Trained Models pre-trained on only the
source train data, i.e., the models that the or-
ganizers shared with the participants as ex-
plained in Section 2.

Dev-Tuned Models pre-trained on the source data
(i.e., Source-Trained) and then fine-tuned on
the labeled dev data.

All baselines were built on RoBERTa (Liu et al.,
2019) using the HuggingFace Transformers li-
brary.5

Table 3 shows the performance of the baselines
on negation detection and time expression recog-
nition respectively. In both cases, there is a big
drop in the performance of Source-Trained when
it is applied to out-of-domain datasets. Using the
development data to continue training the model
(Dev-Tuned) provides some improvement for both
tasks, but it is still far from in-domain performance.

5 Participating Systems

Since our goal was to see a set of experiments
as varied as possible, we did not impose any con-
straint on the approaches participants could submit,
including the use of any of the unlabeled or labeled
data provided. The task had 9 participants that sub-
mitted 20 unique runs in total, as shown in Table 4.
For each task, 2 submissions per team were al-
lowed. There were 5 participants and 8 submission
in negation detection, and 7 participants and 12
submissions in time expression recognition. Only
3 participants took part in both tasks.

5.1 Negation detection
BLCUFIGHT-1 tried a self-training method fixing
the top classifier so only the feature extractor was
updated. Then, they ran an ensemble of 3 models.
BLCUFIGHT-2 built an unlabeled dataset selecting

5https://github.com/huggingface/
transformers.

2,000 instances from the development set, 2,000
from the test set and 2,886 from the training set.
They used that unlabeled dataset progressively to
continue fine-tuning the distributed model (for 2
epochs) following a self-learning approach. They
additionally selected some negative prefixes and
negative words as rules. The final predictions were
obtained from an ensemble of 5 models.

UArizona-1 used the development data to con-
tinue fine-tuning the distributed model (for 10
epochs). Then, they randomly sampled 3,000 ex-
amples from unlabeled test data and performed 2
self-learning iterations, using a 0.95 threshold to
filter the pseudo training examples.

IITK-1 also adapted the model with pseudo la-
bels obtained from a sample of 25,000 instances
from the test data. They selected predictions
with low entropy as the pseudo training examples,
performed data-augmentation on the selected in-
stances, and used the resulting set to continue train-
ing the distributed model. IITK-2 applied an adap-
tive version of this approach by slowly increasing
the entropy threshold after each epoch and filtering
again the training instances.

MedAI-1 and MedAI-2 followed a self-learning
strategy preceded by a negation-aware pre-training
process. For the latter, they built a dataset applying
some heuristics on the test data. First, they manu-
ally collected a dictionary including negation cues,
such as “not”, “no”, “no longer”. Second, they
selected the nouns within a 3 token window around
occurrences of the negation cues. Finally, they
labeled the cue-noun pairs as negated instances.

Observations: Self-learning was the most
widely applied technique (6 out of 8 submissions).
3 submissions extended this with heuristics, 2
submissions extended it with data augmentation,
and 2 applied it with a model ensemble. Only
2 submissions leveraged the development set
of which only 1 used the labeled data. All the
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submission task dev data test data annotation other main technique

BLCUFIGHT-1 neg. No No No No sf-train + ens
BLCUFIGHT-2 neg. Unlabeled Yes No No sf-learn + heur + ens
UArizona-1 neg. Labeled Yes No No sf-learn
IITK-1 neg. No Yes No No sf-learn + dt-augm
IITK-2 neg. No Yes No No sf-learn + dt-augm
MedAI-1 neg. No Yes Heuristics No neg-train + sf-learn
MedAI-2 neg. No Yes Heuristics No neg-train + sf-learn
Boom-1† neg. - - - - -
BLCUFIGHT-1 time Unlabeled Yes No No teach + sf-learn + heur + ens
BLCUFIGHT-2 time Unlabeled Yes No No teach + sf-learn + heur
Self-Adapter-1 time No Yes No No sf-learn
Self-Adapter-2 time No Yes No No sf-learn
PTST-UoM-1 time Labeled Yes No No sf-learn
YNU-HPCC-1 time Labeled No No No train in dev + ens
YNU-HPCC-2 time Labeled No No No train in dev + ens
UArizona-1 time No Yes Manual Yes act-learn + dt-augm
UArizona-2 time No Yes Manual Yes act-learn + dt-augm
KISNLP-1 time Labeled No No No train in dev + dt-augm
KISNLP-2 time Labeled No No No train in dev + dt-augm
Boom-1† time - - - - -
†We did not receive feedback for these submissions.

Table 4: Some details on the tasks submissions. For each submission, the table reflects the task (neg. stands
for negation) where it participates, if it uses the unlabeled or labeled development data (dev data), if it uses the
unlabeled test data, if participants carried out some manual or heuristics-based annotation, if other source of
data is used and the main techniques applied. List of abbreviations in the main technique column: act-learn
for active learning, dt-augm for data augmentation, ens for ensemble, heur for heuristics, neg-train for negation-
aware pre-training, sf-learn for self learning, sf-train for self training, teach for mean teacher.

submissions but one used the unlabeled test data
to produce a training set for the target domain,
either in the form of pseudo-labeled instances (5
submissions) or by heuristic-driven annotation (2
submissions). No submissions used additional
resources.

5.2 Time expression recognition

BLCUFIGHT-1 and BLCUFIGHT-2 proposed an
unsupervised mean-teacher framework that updates
the model in a self-learning manner. Additionally,
they used a set of string-matching heuristics de-
rived from the development set, e.g., “spring” or
“summer” for Season-Of -Year, and “decades” for
Period. BLCUFIGHT-1 ensembled 2 models for a
better robustness.

Self-Adapter-1 and Self-Adapter-2 generated
pseudo training examples by running the provided
model on the test documents and selecting the sen-
tences where the highest words’ entropy was lower
than 0.1. In Self-Adapter-1, they combined the

predictions of both a fixed version and a trainable
version of the model. Self-Adapter-2 used only the
trainable model. In both submissions, the trainable
model was updated by applying 3 iterations of the
sloughing trick, i.e., training the model iteratively
with the pseudo-labels obtained by the model of
the previous iteration.

PTST-UoM-1, also following a self-training ap-
proach, built, for each unlabeled input sentence, a
chart containing high probability label sequences
produced by the distributed model and applied it as
a supervision signal. They used the labeled devel-
opment data for tuning some of the hyperparame-
ters.

UArizona-1 combined active learning and data
augmentation. They ran 5 iterations of the follow-
ing steps: 1) predict the unlabeled test data and then
select 32 sentences with high entropy calculated as
the sum of the entropy of all tokens in the sentence;
2) manually label time entities in the 32 sentences;
3) for each manually labeled time entity, generate
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5 additional training examples using 5 new words
with same entity type; 4) train the model on the
resulting dataset. The same method was used by
UArizona-2, but, in this case, they fixed some errors
in the manual annotations.

KISNLP-1 and KISNLP-2 used the development
labeled data as a fine-tuning resource, which was
complemented by a data augmentation process.
They did not use the unlabeled test data, nor any
other resource.

YNU-HPCC-1 and YNU-HPCC-2 also used the
labeled portion of the development set. They fine-
tuned 4 popular transformer-based pre-trained mod-
els: RoBERTa, BERT (Devlin et al., 2019), Distil-
BERt (Sanh et al., 2020) and ALBERT (Lan et al.,
2020). The final prediction was given by hard vot-
ing strategy, integrating the results of the 4 models
along with Source-Trained.

Observations: Self-learning (5 submissions)
and data augmentation (4 submissions) were the
most commonly followed approaches. 2 submis-
sions extended a self-learning technique with man-
ually created heuristics. Only 3 submissions pro-
posed ensemble methods. In this task, the devel-
opment set was more frequently exploited and 4
submissions made use of the labeled data to con-
tinue fine-tuning the provided model. The test set
was manually annotated by 2 submissions that fol-
lowed an active learning approach, along with some
additional resources. 4 submissions did not use the
unlabeled test data.

6 Evaluation Results

Tables 5 and 6 shows the performance of the sys-
tems described in Section 5 on negation detection
and time expression recognition. For comparison,
the tables also include the performance of the base-
lines described in Section 4.

6.1 Negation detection

As shown in Table 5, 7 out of 8 submissions on
negation detection outperform Source-Trained but
only 4 performed better than Dev-Tuned.

The best results were obtained by MedAI-1 and
MedAI-2, achieving 16.2 and 9.2 percentage points
of F1 more than Source-Trained and Dev-Tuned,
respectively. These model had a large recall im-
provement (14.5 points more than Source-Trained
and 24.0 more than Dev-Tuned) at the expense of
a slight degradation in precision.

System P R F1

MedAI-1† 0.902 0.756 0.822
MedAI-2† 0.902 0.756 0.822
UArizona-1+† 0.880 0.680 0.767
BLCUFIGHT-2∗† 0.913 0.616 0.736
IITK-2† 0.876 0.624 0.729
Boom-1 0.929 0.597 0.727
IITK-1† 0.939 0.566 0.706
BLCUFIGHT-1 0.528 0.639 0.578
Dev-Tuned 0.908 0.611 0.730
Source-Trained 0.917 0.516 0.660

Table 5: Official results (ranked by F1) on negation de-
tection. Superscripts indicate that the submission used:
∗unlabeled dev, +labeled dev or †unlabeled test data

IITK-1 and Boom-1 outperform both baselines
in terms of precision but obtain a worse recall than
Dev-Tuned.

The 3 best submissions on this task (MedAI-1,
MedAI-2 and UArizona-1) make use of some kind
of labeled data. In the case of MedAI-1 and MedAI-
2, this data belongs to the target test domain, which
could explain the good results of these 2 submis-
sions. BLCUFIGHT-2, the next best performing
system and the only other one that outperforms
both baselines, also applies some manual supervi-
sion in the form of hand-crafted rules.

In general, self-learning proved to be an effec-
tive technique for negation detection, especially
in terms of recall, while data-augmentation also
shows recall improvements in some cases. As
usual, ensemble models are helpful. Including
some manual supervision drove the largest gains.

6.2 Time expression recognition

Table 6 shows that for time expression recogni-
tion, 9 out of 12 submissions outperformed Source-
Trained and only 3 obtained a better performance
than Dev-Tuned. The gains were generally smaller
than on negation detection, with the best mod-
els being only 2.1 percentage points of F1 above
Source-Trained and 1.1 percentage points above
Dev-Tuned.

As in negation detection, the best performing sys-
tem (BLCUFIGHT-1) utilizes some form of manual
supervision. In this case, they apply a set of manu-
ally created string matching heuristics in combina-
tion with a self-learning approach that is boosted
by a model ensemble.

In this task, the use of the labeled development
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System P R F1

BLCUFIGHT-1∗† 0.847 0.785 0.815
Self-Adapter-1† 0.873 0.757 0.811
BLCUFIGHT-2∗† 0.834 0.787 0.810
YNU-HPCC-2+ 0.817 0.791 0.803
Self-Adapter-2† 0.839 0.760 0.797
PTST-UoM-1+† 0.901 0.713 0.796
UArizona-1† 0.786 0.804 0.795
UArizona-2† 0.783 0.807 0.795
Boom-1 0.869 0.732 0.795
KISNLP-1+ 0.810 0.777 0.793
KISNLP-2+ 0.798 0.764 0.781
YNU-HPCC-1+ 0.872 0.655 0.748
Dev-Tuned 0.827 0.782 0.804
Source-Trained 0.849 0.746 0.794

Table 6: Official results (ranked by F1) on time expres-
sion recognition. Superscripts indicate that the submis-
sion used: ∗unlabeled dev, +labeled dev or †unlabeled
test data

set is more frequent. 5 of the submissions made use
of this data, but none obtained better results than
Dev-Tuned, although YNU-HPCC-2 got a close F1

score. In the case of PTST-UoM-1, this explained
by the fact that they only consulted this set to fine-
tune the hyperparameters of their model, although
this strategy was enough to obtain the best preci-
sion among all systems. The approach of KISNLP-
1 and KISNLP-1 is the same as Dev-Tuned but
combined with some data-augmentation, resulting
in a drop in performance. This may be caused by
only using the development set to perform the aug-
mentation since, after all, it belongs to a different
domain than the test documents. YNU-HPCC-2
is the only submission, along with YNU-HPCC-1,
that utilized other pre-trained transformers, in an
ensemble mode, besides the model provided.

UArizona-1 and UArizona-2 are the only sub-
missions that tried an active learning strategy. The
approach performed slightly better than Source-
Trained but worse than Dev-Tuned. This contrasts
with the best performing model on negation detec-
tion that also implemented a manual annotation
process on test data, but it is explained by the much
more complex annotation scheme of time expres-
sions. UArizona-2 obtains the best recall on the
task.

Self-Adapter-1 is the only submission that out-
performs Dev-Tuned without using any kind of
manual supervision. The only difference with re-

spect to Self-Adapter-2, that did not perform as
well, is that the original model trained on the source
domain is consulted to produce pseudo-examples
in every iteration of their self-learning technique.
This seems to counteract a possible degradation of
the predictions caused by updating the model with
pseudo-labels.

7 Future directions

Self-learning and data augmentation were the most
frequently used techniques. Some systems, in-
cluding the best performing ones, incorporated
some kind of manual supervision in the form of
active-learning, hand-crafted heuristics or semi-
automatically building a training set. This suggests
that future work on source-free domain adaptation
will focus on acquiring data instances for the tar-
get domain either automatically or manually, and
use such data to continue fine-tuning the source-
domain model.

Any new approaches will have to address some
fundamental challenges. Errors in the generation of
pseudo-labels propagate in successive self-learning
iterations degrading the performance. Continual
fine-tuning on data from a new domain can lead
to catastrophic forgetting, especially if the data is
restricted to certain instances like those drawn from
high-confident predictions of the source model.
Manually supervised approaches, such as active
learning, do not necessarily solve these problems
due to the complexity of some annotation schemes,
like in time expressions recognition, and the re-
duced number of labels that this methods can yield.

Some of the experiments carried out during this
task have approached these issues and should be
taken as an starting point for future research.

8 Conclusion

In this paper, we have described the Source-
Free Domain Adaptation shared task held within
SemEval-2021. In this task, participants were
asked to adapt a given model to a target domain
when the access to both labeled and unlabeled
source data is restricted. In contrast to previous
tasks on domain adaptation, participants were only
provided with a trained model and the target unla-
beled data. Systems were evaluated on two tasks,
negation detection and time expression recognition,
that are paradigmatic examples of two common
types of machine-learning problems in natural lan-
guage processing: text classification and sequence
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labeling.
9 participants took part in the challenge with 20

different systems. In negation detection, 8 submis-
sions were received from 5 participants while 7
participants submitted 12 runs for time expression
recognition. 3 participants presented approaches
for both tasks. 7 out of 8 submissions for negation
detection and 9 out of 12 submissions for time
expression recognition outperformed the model
trained on the source domain. Compared to the
same model fine-tuned on the development data, 4
systems in negation detection and 3 in time expres-
sion recognition showed a better performance.

This is the first time that such a framework is for-
mally designed and aims to draw the community’s
attention to a challenging problem that seriously
affects the deployment of NLP models to real-life
scenarios, like health institutions.

The scripts and the code of the baselines, along
with the development and test data, can be obtained
from the task’s GitHub repository.6 The trained
models are available in the HuggingFace model hub
for both negation detection7 and time expression
recognition.8 The CodaLab9 leader-board of the of
the post-evaluation phase will continue to accept
submissions indefinitely.
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Abstract
Domain adaptation assumes that samples from
source and target domains are freely accessi-
ble during a training phase. However, such as-
sumption is rarely plausible in the real-world
and may causes data-privacy issues, especially
when the label of the source domain can be
a sensitive attribute as an identifier. SemEval-
2021 task 10 focuses on these issues. We par-
ticipate in the task and propose novel frame-
works based on self-training method. In our
systems, two different frameworks are de-
signed to solve text classification and sequence
labeling. These approaches are tested to be ef-
fective which ranks the third among all system
in subtask A, and ranks the first among all sys-
tem in subtask B.

1 Introduction

Deep neural networks have achieved remarkable
success in a variety of applications across different
fields while with huge expense of laborious large-
scale training data annotation. To avoid expensive
data labeling, domain adaptation(DA) methods was
proposed to fully utilize previously labeled datasets
and unlabeled data on hand in a transductive man-
ner, which obtained promising results in sentiment
analysis, part-of-speech tagging, machine transla-
tion, etc. (Glorot et al., 2011; Yang and Eisenstein,
2014; Chu and Wang, 2018)

Unsupervised Domain Adaptation(UDA) aims
to reduce the domain shift between labeled and un-
labeled target domains. Early works (Blitzer et al.,
2006; Pan et al., 2010) learnt domain-invariant fea-
tures to link the target domain to the source domain.
Along with the growing popularity of deep learning,
plenty of works benefited from its powerful repre-
sentation learning ability for domain adaptation.
Those methods typically minimized the distribu-
tion discrepancy between two domains (Plank et al.,
2014), or deployed adversarial training (Ganin and
Lempitsky, 2015; Bousmalis et al., 2016; Li et al.,
2018).

However, a crucial requirement in the methodol-
ogy of these methods is that all samples from both
domains are freely available during the training pro-
cess, which is inefficient in data transmission and
may violate the data privacy policy. For example,
it is not allowed to share tweet texts according to
Twitter policies, though tweet IDs can be shared.
The situation is even more common in clinical NLP,
where patient health information must be protected,
and annotations over health text, when released at
all, often require the signing of complex data use
agreements.

SemEval 2021 task 10 focuses on the problem
of source-free domain adaptation for semantic pro-
cessing. Subtask A of task 10 is negation detection
which aims to classify clinical event mentions (e.g.,
diseases, symptoms, procedures) for whether they
are being negated by their context. Traditional sys-
tems, such as one of the first algorithms NegEx
(Chapman et al., 2001) was based on rules. Sub-
sequently, syntax-based methods were developed
(Huang and Lowe, 2007; Mehrabi et al., 2015). In
recent years, some researchers explored new gener-
ation of transfer learning models (BERT) to solve
this task (Khandelwal and Sawant, 2019), outper-
forming the previous state-of-the-art systems by a
significant margin.

Subtask B of task 10 is time expression recogni-
tion which aims to find time expressions in text. It
is a sequence labeling task as (Laparra et al., 2018)
described in their work. A few of works combined
traditional machine learning with rules achieved
good performances (Olex et al., 2018). Some stud-
ies got character-level contextual embeddings (Xu
et al., 2019) and applied to this task, yielding ma-
jor performance improvements over the previous
state-of-the-art.

In this paper, we propose two different unsuper-
vised frameworks for each subtask in source-free
setting. For negation detection task, we design a
framework which obtain pseudo labels with high
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confidence by using reliable pseudo labels as proto-
types. For time expression recognition, we design
an unsupervised teacher-student framework with
Mean Teacher.

2 System description

For subtask A, we used a pseudo-labeling training
method. To reduce the uncertainty from the pseudo
labels, we only chose those with high confidence
to fine-tune the model. Finally, we ensembled 5
models to make the model have better robustness
and results. For subtask B, we started by data pre-
processing. Then, we enlarged the training set with
pseudo-labeled sentences, which were predicted on
the test set by teacher model. In addition, Mean
Teacher helps to generate better pseudo labels. Fi-
nally, we used the ensemble model to make predic-
tions and add manual expressions. Each module
will be introduced in detail in the following sec-
tions.

2.1 subtask A: Negation detection

2.1.1 Pre-processing
Samples in the test data was split by punctuation to
a single sentence which included the entity being
detected.This was done to avoid the impact of the
irrelevant context. All white spaces were removed.

2.1.2 Architecture
For negation detection, we utilized the RoBERTa-
base (Liu et al., 2019) pretrained model fine-
tuned on the 10,259 instances (902 negated) in the
SHARP Seed dataset which is different from the
target domain. To adapt the source domain to the
target domain, we kept the feature extractor of the
source model fixed and trained the classifier mod-
ule by using pseudo labels with high confidence
(He and Zhou, 2011). It aims to learn a domain-
specific classifier learning module.

Our model is composed of two parts, the first
part is Adaptive Prototype Memory (APM) (Kim
et al., 2020), which provides pseudo labels with
high confidence for the target model. The second
part is the target model where parameters of the
feature extractor are fixed, i.e., does not participate
in training.The overall architecture of our model is
shown in Fig.1

Pseudo Labeling: Pseudo labeling (Lee et al.,
2013) was originally proposed for semi-supervised
learning. Since Pseudo labeling is a simple and
efficient method, it gains popularity in other trans-

Figure 1: Overall flow of subtask A framework. In the
figure, D, F, C and L represent Data, Feature extractor
Classifier and Loss, respectively. The subscripts s and
t indicate whether they come from the source domain
or the target domain. Dashed lines indicate fixed model
parameters.

ductive learning problems like Domain Adapta-
tion. The main idea is to label unlabeled data with
the maximum predicted probability and perform
fine-tuning together with labeled data. For this task,
we don’t have labeled training data, so our method
uses a more reliable pseudo-labels to fine-tune the
model.

APM: To obtain reliable pseudo labels, predic-
tion uncertainty is measured by self-entropy, i.e.,
H(x) = −∑ p(x)log(p(x)). The smaller the en-
tropy is, the more confidence of the prediction
is. First of all, we calculated the normalized self-
entropy of target samples.

H(xt) = −
1

logNc
(xt)log(l(xt))

where Nc refers to the number of classes, l(xt) is
the output of the target classifier, xt represents the
samples from the target domain. The next step is to
select the reliable part among all target samples, i.e.,
the part with smaller entropy. In order to minimize
the influence of incorrect pseudo labels, we chose
20% as a threshold to get reliable samples. So the
top 20% target samples of the smaller entropy are
stored in the APM.

Based on prototypes from APM module which
can represent each class, we can assign labels to
unlabeled target data according to similarity score:

S(xt) =
1

|Mc|
∑

pc∈Mc

pTc ft
||pc||2||ft||2
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where c represents two classes, i.e., “negated” or
“not negated”, ft and pc stand for the embedded
feature of target data and prototype respectively.

Loss Function: Pseudo labels generated by the
first part are used to train the classifier of the tar-
get model. During the training process, to avoid
the influence of unstable pseudo labels, our loss
consists of two parts. One is the loss of the source
classifier, and the other is the loss of the trainable
target classifier.

Ltotal(Dt) = (1−α)Lsource(Dt)+αLtarget(Dt)

At the beginning, loss of the source classifier ac-
counts for a large proportion, it is added for reg-
ularization, because the generated label may be
unstable. With the increase of training steps, the
proportion of source decreases gradually, while
the proportion of the loss of the target classifier
increases.

2.1.3 Ensembling
To obtain a more robust model, we trained five
models by changing the hyper parameters, and inte-
grated the five models by voting ensemble method.
Test data were passed through the ensembled model
as the final output of the system.

2.2 Subtask B: Time expression recognition

Figure 2: Overall flow of subtask B framework

2.2.1 Pre-processing
• Denoising: Since the first two lines of the

development set text are the descriptions of
the file name and would not appear in the
test set, we removed the first two lines of all
verification set texts.

• Training set: Development set and randomly
selected partial test set.

2.2.2 Teacher and Student architecture
The main part of our system for subtask B is the
teacher-student framework (Liang et al., 2020),
which is an unsupervised method. Specifically, The
teacher model is initialized by student model. To
avoid losing too much information of other classes,
we proposed to use soft labels. Recall that for the n-
th token in the m-th sentence, the output probability
simplex over C classes is denoted as:

[fn,1 (Xm; θ) , . . . , fn,C (Xm; θ)] .

After the teacher model generated
soft labels from training set (let denote{
Sm = [sm,n]

N
n=1

}M
m=1

the soft pseudo-labels
generated from teacher model), in order to further
address the uncertainty in the data, we selected
tokens based on the prediction confidence. That is
to say, we selected a set of high confidence tokens
from the m-th sentence by

Hm =
{
n : max

c
sm,n,c > ε

}
,

where ε ∈ (0, 1) is a tuning threshold. The high
confidence selection essentially enforces the stu-
dent model to better fit tokens with high confidence,
and therefore is able to improve the model robust-
ness against low-confidence tokens. Loss1 is de-
noted as:

Loss1 =
1

M

M∑

m=1

`KL

(
S(t)
m , f (Xm; θ)

)

where `KL(·, ·) denotes the KL-divergence-
based loss:

`kl(Sm, f(Xm; θ)) =
1

|Hm|
∑

n∈Hm

C∑

c=1

−sm,n,clogfn,c(Xm; θ).

2.2.3 Mean Teacher
In our architecture, we also added Mean Teacher
loss to update student model. Mean Teacher (Tar-
vainen and Valpola, 2017) is a simple but effec-
tive method to improve teacher model performance.
After the weights of the student model have been
updated with gradient descent, the teacher model
weights are updated as an moving average of the
student weights as follows:
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θ′t = αθ′t−1 + (1− α)θt,

where α is a smoothing coefficient hyperparam-
eter. Loss2 denote Mean Teacher loss (same as the
formula in 2.2.2), but `KL(·, ·) denotes:

`kl(Sm, f(Xm; θ)) =
1

N

N∑

n=1

C∑

c=1

−sm,n,clogfn,c(Xm; θ).

Accordingly, the student model can be optimized
by minimizing the loss (consists of Loss1 and
Loss2).

The process described above is repeated periodi-
cally to train the student model. Eventually, early
stopping is adapted to prevent student model from
overfitting.

2.2.4 Post-processing
• Ensembling: Ensemble has shown its power

on effectively improving the robustness and
accuracy of each individual prediction (Opitz
and Maclin, 1999; Rokach, 2010). By ensem-
bling predictions from models with different
hyper-parameters or architectures, we can get
better results than each individual model. In
our system, we set different hyper-parameters
on learning rate and random seed. In this case,
two ensembled model generate predictions in-
dividually and we take the union of the two
independent predictions as model predictions.

• Manual rules: Through observation on the
data, we obtained a set of feature words
which appear frequently. Specifically, we
labeled feature words “daily” and “annual”
with “Calendar-Interval”, label “minutes” and
“decades” with “Period”, label “ago” and “be-
fore” with “Before” etc.

3 Experiments

3.1 Data
SemEval 2021 Task 10 released the training, devel-
opment and test dataset.

For subtaskA, the development data is the i2b2
2010 Challenge Dataset, a de-identified dataset of
notes from Partners HealthCare, containing 2886
unlabeled train instances (entities in sentence con-
text), and 5545 dev instances with a corresponding
labeling for with negation status. The test data is
from the MIMIC III corpus v1.4, which is much

Train Dev Test
Positive - 1115 958
Negative - 4430 8622

Total 2886 5545 9580

Table 1: Data distribution of subtask A.

messier than the development data. The detailed
statistics are shown in Table 1.

For subtask B, we found that the category labels
were severely imbalanced. Specifically, the training
set and the dev set have label types which are not
mutually exclusive. In addition, the dev set labels
is mainly distributed in Month-Of-Year, Day-Of-
Month, Period, etc., while the test set labels are
mainly distributed in Month-Of-Year, Season-Of-
Year, Year, etc.

3.2 Evaluation Metrics

F1, Precision and Recall were used to evaluate
the performance of both subtask A and subtask B.
The evaluation will verify whether the predicted
“label” is the same as the desired “label” which is
annotated by human workers, and then calculate its
F1 scores, precision and recall.

3.3 Experimental Details

Hyper-Parameters of subtask A. Since we were
training the model with unlabeled data, we added
the same amount of dev and test data as train data
to fine-tune the model to get better results. We
use an Adam optimizer to tune the parameters with
learning rate = 5e-5, max seq length = 128, batch
size = 32, seed = 40 and we trained each model for
2 epochs. Then we used the APM module to get
M = 400 prototypes which represents each class.
By computing the similarity between each target
sample and all prototypes in APM, we obtained
8658 pseudo-labels with high confidence.

Hyper-Parameters of subtask B. For subtask
B, we trained our two ensemble model (each with
three models) on unlabeled data with seed = 32,42,
learning rate = 2e-5,2.5e-5,3e-5, we trained each
model for 5 epochs with early stopping. We also
used an AdamW optimizer to tune the parameters
with epsilon = 1e-6, batch size = 16.

4 Results

The performance of our system and the task base-
lines for both subtasks are shown in following ta-
bles.
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Model F1 Precision Recall
Baseline 0.660 0.917 0.516
Baseline(fine-tuned) 0.730 0.908 0.611
SFDA w/o Lsource 0.674 0.874 0.548
SFDA w/o APM 0.686 0.927 0.545
SFDA 0.717 0.936 0.581
SFDA+ensemble 0.736 0.913 0.616

Table 2: Results of different ablation experiments for
subtask A. All the models are trained on training data,
development data and test data.

Table 2 shows the results of several ablation ex-
periments. Compared with models without APM
or Lsource, we found that adding both together im-
proved the performance of the model. The voting
ensemble model of single models trained with ex-
tra development and test data outperforms all other
models and achieves the highest F1 score.

Model F1(dev) F1(test)
SFDA(t) w/o Lsource 0.838 0.661
SFDA(t) w/o APM 0.814 0.717
SFDA(t) 0.859 0.707
SFDA(t)+ensemble 0.873 0.720
SFDA(t+d) w/o Lsource 0.864 0.689
SFDA(t+d) w/o APM 0.851 0.668
SFDA(t+d) 0.868 0.718
SFDA(t+d)+ensemble 0.870 0.725

Table 3: Results of models trained on different data
sets. SFDA(t) refers to the model trained on train data
and SFDA(t+d) represents the model trained on both
train data and development data.

Table 3 shows the results of models trained on
different data sets. Since we don’t need labeled
data to train the model, we added development and
test data to train the model. Compared with our
final model which was trained on three data sets,
models trained on fewer data sets, i.e., only on
train data or on both train data and development
data perform less well.

Figures 3 and 4 show the confusion matrix of
the classification results of baseline model and our
model on the test dataset. This corresponds to Base-
line and SFDA+ensemble in Table2, respectively.
Compared with baseline, we predicted more true
positive samples. However, the false prediction of
negative samples as positive has increased. As a
result, the recall and F1 score of our model have
been improved, but the precision has decreased a
little.

Figure 3: The confusion matrix of the baseline model

Figure 4: The confusion matrix of our model

Table 4 shows the results of several ablation ex-
periments. Without soft labels, we can find that F1
score drop significantly. A possible explanation is
that the soft labels preserve more information and
generate better labels. Based on soft labels, MT
and manual rules marginally improve the F1 scores.
Finally, the ensemble model (MT+soft+rules) out-
performs all other models and achieves the highest
F1 score.

Table 5 shows the results of our model trained
on dev set. Compared with the dev set, the F1 of
the test set dropped by an average of 2%.

Error analysis. For subtask A, we conducted
statistics and analysis on the classification results
of Baseline model and our best model. There are
474 sentences that both Baseline model and our
best model predict correctly. The entity being de-
tected usually follow the word that express negative

1Model pre-trained on only the source data (official pro-
vided).

2Model pre-trained on the source data and then fine-tuned
on the dev set (official provided).

3Here MT refer to Mean Teacher.
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Model F1 Precision Recall
Baseline1 0.794 0.849 0.746
Baseline(fine-tuned)2 0.804 0.827 0.782
MT3 0.755 0.747 0.763
soft 0.807 0.859 0.761
MT+soft 0.801 0.854 0.754
MT+soft+rules 0.812 0.863 0.767
MT+soft+rules(ensemble) 0.815 0.847 0.785

Table 4: Results of different ablation experiments for
subtask B. Our models are trained on training set.

Model F1(dev) F1(test)
Baseline 0.746 0.794
Baseline(fine-tuned) - 0.804
MT 0.767 0.747
soft 0.815 0.791
MT+soft 0.813 0.799
MT+soft(ensemble) 0.832 0.814

Table 5: Results of subtask B. Our models are trained
on dev set.

meanings in these sentences closely. e.g. ”... no
<e>erythema </e>...”, ”... denies <e>chest pain
</e>...” ... There are 116 sentences that our model
predicts correctly but the baseline predicts incor-
rectly. In this part, there are some long-distance
keywords or parallel phrases. e.g. ”... No tobacco,
EtOH, or <e>IV drug use </e>” There are 348
sentences that are not predicted correctly by both
models. For these, we consider to add some hand-
craft rules to improve the results of the model.

For subtask B, we conducted a manual error
analysis. For the raw text “during the harvest
season”, both our model and baseline model in-
correctly labeled “harvest” with “Season-Of-Year”
instead of “harvest season”, “harvest” is just the
activity, though if it instead said “harvest season”,
we would annotate that whole thing as a “Season-
Of-Year”. For the raw text “February (27,661)”,
baseline model incorrectly label “27” with “Day-
Of-Month” while our model didn’t, which proves
the effectiveness of our architecture. In addition,
we list a detailed description of the recall of subtask
B in Table 6.

5 Conclusion

We introduce two different frameworks which are
both based on self-training method for text clas-
sification and sequence labeling in SemEval 2021
task 10, in order to address the problems of source-

free, labeled training data scarcity. In subtask
A, we used a metric learning method, combin-
ing pseudo labeling with prototype network and
achieve good results. In subtask B, we employed
teacher-student framework, and then we propose to
use high-confidence soft labels to further improve
the self-training. Our system takes third place in
subtask A and first place in subtask B.

In future, we would like to introduce adversarial
training and more data augmentation approaches in
our model to further facilitate source-free domain
adaptation.

Acknowledgments

Thanks for Shucheng Zhu’s suggestions on writ-
ing this paper. Pengyuan Liu is the corresponding
author.

References
John Blitzer, Ryan McDonald, and Fernando Pereira.

2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 confer-
ence on empirical methods in natural language pro-
cessing, pages 120–128.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain separation networks. arXiv preprint
arXiv:1608.06019.

Wendy W Chapman, Will Bridewell, Paul Hanbury,
Gregory F Cooper, and Bruce G Buchanan. 2001.
A simple algorithm for identifying negated findings
and diseases in discharge summaries. Journal of
biomedical informatics, 34(5):301–310.

Chenhui Chu and Rui Wang. 2018. A survey of domain
adaptation for neural machine translation. arXiv
preprint arXiv:1806.00258.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-
vised domain adaptation by backpropagation. In In-
ternational conference on machine learning, pages
1180–1189. PMLR.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.

Yulan He and Deyu Zhou. 2011. Self-training from
labeled features for sentiment analysis. Information
Processing & Management, 47(4):606–616.

Yang Huang and Henry J Lowe. 2007. A novel hybrid
approach to automated negation detection in clinical
radiology reports. Journal of the American medical
informatics association, 14(3):304–311.

362



Aditya Khandelwal and Suraj Sawant. 2019. Neg-
bert: A transfer learning approach for negation
detection and scope resolution. arXiv preprint
arXiv:1911.04211.

Youngeun Kim, Sungeun Hong, Donghyeon Cho, Hy-
oungseob Park, and Priyadarshini Panda. 2020. Do-
main adaptation without source data. arXiv preprint
arXiv:2007.01524.

Egoitz Laparra, Dongfang Xu, Ahmed Elsayed, Steven
Bethard, and Martha Palmer. 2018. Semeval 2018
task 6: Parsing time normalizations. In proceed-
ings of the 12th International Workshop on Semantic
Evaluation, pages 88–96.

Dong-Hyun Lee et al. 2013. Pseudo-label: The simple
and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges
in representation learning, ICML, volume 3.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
What’s in a domain? learning domain-robust text
representations using adversarial training. arXiv
preprint arXiv:1805.06088.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er,
Ruijia Wang, Tuo Zhao, and Chao Zhang. 2020.
Bond: Bert-assisted open-domain named entity
recognition with distant supervision. In Proceed-
ings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
pages 1054–1064.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Saeed Mehrabi, Anand Krishnan, Sunghwan Sohn,
Alexandra M Roch, Heidi Schmidt, Joe Kesterson,
Chris Beesley, Paul Dexter, C Max Schmidt, Hong-
fang Liu, et al. 2015. Deepen: A negation detection
system for clinical text incorporating dependency re-
lation into negex. Journal of biomedical informatics,
54:213–219.

Amy Olex, Luke Maffey, Nicholas Morgan, and Brid-
get McInnes. 2018. Chrono at semeval-2018 task 6:
a system for normalizing temporal expressions. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 97–101.

David Opitz and Richard Maclin. 1999. Popular en-
semble methods: An empirical study. Journal of ar-
tificial intelligence research, 11:169–198.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain senti-
ment classification via spectral feature alignment. In
Proceedings of the 19th international conference on
World wide web, pages 751–760.

Barbara Plank, Anders Johannsen, and Anders Søgaard.
2014. Importance weighting and unsupervised do-
main adaptation of pos taggers: a negative result. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 968–973.

Lior Rokach. 2010. Ensemble-based classifiers. Artifi-
cial intelligence review, 33(1):1–39.

Antti Tarvainen and Harri Valpola. 2017. Mean teach-
ers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning
results. arXiv preprint arXiv:1703.01780.

Dongfang Xu, Egoitz Laparra, and Steven Bethard.
2019. Pre-trained contextualized character embed-
dings lead to major improvements in time normal-
ization: A detailed analysis. In Proceedings of the
Eighth Joint Conference on Lexical and Computa-
tional Semantics (* SEM 2019), pages 68–74.

Yi Yang and Jacob Eisenstein. 2014. Fast easy unsu-
pervised domain adaptation with marginalized struc-
tured dropout. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 538–544.

Type R(Baseline) R(Ours) Type R(Baseline) R(Ours)
Month-Of-Year 0.99 0.993 Between 0.812 0.79
Season-Of-Year 0.055 0.348 Two-Digit-Year 0.1 0
Year 0.988 0.988 Before 0.667 0.818
Number 0.88 0.855 After 0.915 0.872
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This 0.528 0.537 Day-Of-Week 1.0 1.0
Period 0.816 0.827 NthFromStart 0 0
Modifier 0.826 0.855 Union 0 0
Part-Of-Day 1.0 1.0

Table 6: Recall of each type of subtask B.
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Abstract

There is currently a gap between the natural
language expression of scholarly publications
and their structured semantic content model-
ing to enable intelligent content search. With
the volume of research growing exponentially
every year, a search feature operating over
semantically structured content is compelling.
The SemEval-2021 Shared Task NLPCONTRI-
BUTIONGRAPH (a.k.a. ‘the NCG task’) tasks
participants to develop automated systems that
structure contributions from NLP scholarly ar-
ticles in the English language. Being the first-
of-its-kind in the SemEval series, the task re-
leased structured data from NLP scholarly ar-
ticles at three levels of information granular-
ity, i.e. at sentence-level, phrase-level, and
phrases organized as triples toward Knowl-
edge Graph (KG) building. The sentence-
level annotations comprised the few sentences
about the article’s contribution. The phrase-
level annotations were scientific term and pred-
icate phrases from the contribution sentences.
Finally, the triples constituted the research
overview KG. For the Shared Task, partici-
pating systems were then expected to auto-
matically classify contribution sentences, ex-
tract scientific terms and relations from the sen-
tences, and organize them as KG triples.

Overall, the task drew a strong participation de-
mographic of seven teams and 27 participants.
The best end-to-end task system classified con-
tribution sentences at 57.27% F1, phrases at
46.41% F1, and triples at 22.28% F1. While
the absolute performance to generate triples re-
mains low, in the conclusion of this article, the
difficulty of producing such data and as a con-
sequence of modeling it is highlighted.

1 Introduction

Traditional search models over scholarly communi-
cation are now changing toward Knowledge Graph
(KG) models operating on structured fine-grained

scholarly content offering enhanced contextual
search results. Several initiatives exist to this end:
Google Scholar, Web of Science (Birkle et al.,
2020), Microsoft Academic Graph (Wang et al.,
2020), OpenAIRE Research Graph (Manghi et al.,
2019), Open Research Knowledge Graph (Auer,
2018), Semantic Scholar (Fricke, 2018) to name
just a few. These KG models differ in their content,
their level of detail, etc., as they represent diverse
aspects of scholarly communication.

Text, of course, is of seminal importance to Sci-
ence. It is as important as experimentation itself;
unpublished research lacks validity. Seen in an-
other angle, it is hard to imagine a medium other
than discourse that can convey a comprehensive
picture of the scholarly investigation. For the wider
research audience, it is interesting to read the full
“stories” of Science.

Nonetheless, since scientific literature is grow-
ing at a rapid rate (Johnson et al., 2018) and re-
searchers today are faced with this publications
deluge (Landhuis, 2016), it is increasingly tedious,
if not practically impossible to keep up with the
research progress even within one’s own narrow
discipline. In this regard, among the existing schol-
arly knowledge structuring initiatives, the Open
Research Knowledge Graph (ORKG) (Auer et al.,
2020) is posited as a solution to the problem of
keeping track of research progress minus the cog-
nitive overload that reading dozens of full papers
impose. It aims to build a comprehensive KG that
publishes the research contributions of scholarly
publications per paper, where the contributions are
interconnected via the graph even across papers.
The ORKG digital library (DL) framework can be
accessed here https://www.orkg.org.

Motivated by the availability of a next-
generation DL, we present the SemEval-2021 NLP-
CONTRIBUTIONGRAPH (NCG) Shared Task as a
step in the easier knowledge acquisition of contri-
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butions for researchers - the automated structuring
of the unstructured article contributions. To this
end, via the NCG task, we have formalized the
building of such a scholarly contributions-focused
graph over NLP scholarly articles as an automated
task. In the subsequent paper, we detail our task
in terms of its resources, organization, participants,
and evaluations.

2 Data

The NCG Shared Task comprised a dataset of NLP
scholarly articles annotated for their contributions.
The contributions were structured to be integrable
within KG infrastructures such as the ORKG (Ja-
radeh et al., 2019) that capture research overviews.
The contributions were annotated in three differ-
ent information granularities, i.e. (1) Contribution
sentences: a set of sentences about the article’s con-
tribution; (2) Scientific terms and relations: a set of
terms and relational predicates in the contribution
sentences; and (3) Triples: semantic statements
that pair the terms with a predicate, modeled to-
ward subject-predicate-object RDF statements for
KG building. This latter set of annotations formed
the actual graph. Inspired after article sections,
the Triples were organized under three (manda-
tory) or more of 12 total information units (IUs),
viz. RESEARCHPROBLEM, APPROACH, MODEL,
CODE, DATASET, EXPERIMENTALSETUP, HY-
PERPARAMETERS, BASELINES, RESULTS, TASKS,
EXPERIMENTS, and ABLATIONANALYSIS.

2.1 Data Annotation Scheme

A trial annotation stage preceded the annotation of
the Shared Task dataset. In this stage, an annotation
scheme was prescribed. This involved specifying
the annotation data granularities and the 12 IUs
for organizing the triples. Observations were also
obtained about the position in the articles where
the authors generally stated the contribution. The
trial annotations were conducted in two steps: a
pilot annotation step (D’Souza and Auer, 2020)
followed by an adjudication step (D’Souza and
Auer, 2021). The resulting scheme itself was called
the NLPCONTRIBUTIONGRAPH (NCG) scheme.

For the trial stage, a relatively small dataset of 50
articles uniformly distributed across five NLP tasks,
i.e. machine translation, named entity recognition,
question answering, relation classification, and text
classification, were selected.

Overall, after the pilot annotation task the follow-

ing core question was answered. Could a scheme
be defined such that it would encompass all anno-
tation decisions of the task? In reality, it was found
that the scheme could only define high-level anno-
tation decisions such as: where in the article could
the contribution information generally be found?
E.g., the title, the abstract, a few lines in the Intro-
duction, the first few lines of the Results section.
This still entailed making subjective decisions such
as if the model is not described in the Introduction
then the first few lines of the model description sec-
tion would need to be annotated. The scheme also
specified the 12 IUs for organizing the structured
triples. The choice of the specific IU for organizing
the triples was based on the closest section title.

After the two-step trial annotation stage, the
intra-annotation agreement between the pilot and
adjudication steps, in terms of F1, was 67.92%
for sentences, 41.82% for phrases, and 22.31%
for triple statements indicating that with increased
granularity of the information, the annotation adju-
dication was greater (2021).

The trial annotations were made by a postdoc-
toral researcher in Computational Linguistics. The
same experienced annotator also annotated the full
dataset. Next, we explain the NCG data with a
focus on the KG and then offer two supporting
examples as illustrations of the data.

2.2 Understanding our Knowledge Graph
The NCG KG used two levels of knowledge sys-
tematization: 1) At the root, it defined a dummy
node called CONTRIBUTION. And following the
root node, 2) it defined the 12 nodes introduced
earlier and generically referred to as Information
Units or IUs. Each scholarly article’s annotated
contribution triple statements were organized un-
der three (mandatory) or more of these IU nodes,
depending on whether they applied to the article.
Next, we provide details about each IU.

RESEARCHPROBLEM The research challenge
addressed by a contribution. In other words, a focus
of the research investigation or the issue for which
a research solution was proposed.

APPROACH or MODEL The contribution of the
paper as the solution proposed for the research
problem. This unit was called APPROACH when
the solution was proposed as an abstraction, and
was called MODEL if the solution was proposed in
practical implementation terms. Further, in case
the solution was not referred to as approach or
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model in the article, the reference was normalized
as either APPROACH or MODEL. E.g., references
like “method” or “application” were normalized as
APPROACH; on the other hand, references like “sys-
tem” or “architecture,” were normalized to MODEL.
This unit captured only proposed system highlights.

CODE The contribution resource; the link to the
software on an open-source hosting platform such
as Gitlab or Github or on the author’s website.

DATASET Like CODE, this a contributed re-
source in the form of a dataset.

EXPERIMENTALSETUP or HYPERPARAME-
TERS Details about the platform including both
hardware (e.g., GPU) and software (e.g., Tensor-
flow library) for implementing the machine learn-
ing solution; and of variables, that determine the
network structure (e.g., number of hidden units)
and how the network is trained (e.g., learning rate),
for tuning the software to the task objective. It was
called EXPERIMENTALSETUP only when hardware
details were provided.

BASELINES The systems that a proposed AP-
PROACH or MODEL were compared with.

RESULTS The main findings or outcomes re-
ported in an article for the RESEARCHPROBLEM.

TASKS The APPROACH or MODEL, particularly
in multi-task settings, are tested on more than one
task, in which case, this unit was defined to capture
all the experimental tasks. Unlike the earlier units,
the TASKS IU was a container for more than one
of the earlier mentioned IUs. Specifically, each
task listed in TASKS could include one or more of
the EXPERIMENTALSETUP, HYPERPARAMETERS,
and RESULTS as sub-information units.

Furthermore, since it is common in NLP for
tasks to be defined over datasets, experimental
tasks are often synonymous with the experimen-
tal datasets, therefore this unit was also applied in
articles where the datasets were explicitly listed
instead of the task names.

EXPERIMENTS The second container informa-
tion unit, like TASKS, defined to include one
or more of the previous discussed units as sub-
information units. This unit encapsulated several
TASKS themselves and consequently, the units that
TASKS encapsulated, i.e. EXPERIMENTALSETUP

and RESULTS, or a combination of APPROACH,
EXPERIMENTALSETUP and RESULTS.

ABLATIONANALYSIS A form of RESULTS that
describes the performance of components in an
APPROACH or MODEL.

2.3 Data Examples
Below, we show two examples of two different IUs,
viz. RESEARCHPROBLEM and MODEL, respec-
tively, as illustrations of our data.

Figure 1: Annotated data in JSON format for the
RESEARCHPROBLEM Information Unit for the pa-
per “Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation.”

Example 1 In this example, the RESEARCH-
PROBLEM IU is modeled for the following ref-
erence paper: Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Ma-
chine Translation (Cho et al., 2014). We show two
formats of our data: the JSON format (see Fig. 1)
with all three annotated information granularities;
and the triples format (see Table 1) showing only
the annotated data for a KG. In the JSON data, the
dummy root node CONTRIBUTION is left unspeci-
fied, however, it is specified in the triples. For this
data, three phrases that named the research problem
were annotated. The phrases were attached to the
dummy root node by the predicate “has research
problem.” Further, in the JSON data, following the
predicate “from sentence,” the selected contribu-
tion sentences are listed.

Example 2 In this example, a subpart of the
MODEL IU is annotated for the following refer-
ence paper: Convolutional Neural Network Ar-
chitectures for Matching Natural Language Sen-
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(Contribution, has, Statistical Machine Translation)
(Contribution, has, SMT)
(Contribution, has, Phrase - Based SMT)

Table 1: Annotated RESEARCHPROBLEM Information
Unit contribution data as triples. This data is obtained
from the JSON data shown in Fig 1.

tences (Hu et al., 2014). See Fig. 2 for the JSON
format and Table 2 for the triples data.

Figure 2: Annotated data in JSON format for the
MODEL Information Unit for the paper “Convolutional
Neural Network Architectures for Matching Natural
Language Sentences.”

(Contribution, has, Statistical Machine Translation)
(Model, propose, deep neural network models)
(deep neural network models, adapt, convolutional strat-
egy)
(convolutional strategy, to, natural language)

Table 2: Annotated MODEL Information Unit contri-
bution data as triples. This data is obtained from the
JSON data illustrated in Fig. 2.

2.4 Data Statistics

Overall, the NCG Shared Task dataset had 50 ar-
ticles in the trial data, 237 articles in the training
data, and 155 articles in the test data. The trial data
articles uniformly spanned five tasks, the training
data spanned 24 tasks, and the test data spanned 10

tasks. For the Shared Task itself, participants were
encouraged to merge the trial and training datasets.
Thus, the overall training data had 287 articles rep-
resenting 29 unique tasks. The training and test
tasks were mutually exclusive except for one, i.e.
‘natural language inference.’ Table 3 shows further
detailed statistics of the NCG dataset in terms of
each of the annotated information granularities.

Our full dataset is publicly released on-
line (D’Souza et al., 2021).

3 Task Description

Our comprehensive NCG Shared Task formalism
was as follows. Given a scholarly article A in plain-
text format, the goal was to extract (1) a set of con-
tribution sentences Csent = {Csent1 , ..., CsentN },
(2) a set of scientific knowledge terms and pred-
icates from Csent referred to as entities E =
{e1, ..., eN}, and (3) to organize the entities E as
a set of (subject,predicate,object) triple statements
T = {t1, ..., tN} toward KG building organized
under three or more of the 12 total IUs.

Task Evaluation Phases. The task comprised
three evaluation phases, thereby enabling detailed
system evaluations.

Evaluation Phase 1: End-to-end Pipeline. In this
phase, systems were tested for the comprehensive
end-to-end KG building task described in the for-
malism above. Given a test set of articles A in
plaintext format, the participating systems were ex-
pected to return: (1) a set of contribution sentences
Csent, (2) a set of scientific knowledge terms and
predicates from Csent, i.e. entities E, and (3) the
entities in E organized in a set of triple statements
T toward KG building. System outputs were evalu-
ated for the three aspects and overall.

Evaluation Phase 2, Part 1: Phrases and Triples.
In this phase, systems were tested only for their
capacity to extract phrases and organize them as
triples. Given a test set of articles A in plain-text
format and contribution sentences Csent from each
article, each system was expected to return: (1) the
entities E, and (2) the set of triple statements T .

Evaluation Phase 2, Part 2: Triples. In this phase,
systems were tested only for the triples formation
task. Thus, given gold entities E for the set of
Csent, systems were expected to form triple state-
ments T .
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Dataset info-
units

sentences entities total
triples

total
unique
triples

subject predicate object

TRIAL 217 1,029 4,777 2,924 2,782 1,427 1,181 2,512
TRAIN 1,050 5,064 30,485 18,679 17,356 8,173 4,538 13,335
TEST 642 2,720 16,435 10,623 10,002 4,951 2,447 8,282

Table 3: NLPCONTRIBUTIONGRAPH Shared Task 2021 Overall Corpus Statistics

4 Task Setup

Online Competition We used the CodaLab
platform for running the competition on-
line https://competitions.codalab.org/

competitions/25680. For the convenience of
the participants, the task was divided into four
phases. In the Practice phase, which began on
Aug 16, 2020, we released the participant kit that
included the full training dataset along with the
Python code of the official scoring program https:

//github.com/ncg-task/scoring-program. In
the Evaluation phases that lasted from Jan 10 till
Feb 1, 2021, we provided the participants with
masked versions of the test set based on the current
evaluation phase. The test set annotations in each
phase were uploaded to CodaLab and were not
available to the participants. To obtain results, the
participants were expected to upload their system
outputs to Codalab where they were automatically
evaluated by our script and reference data stored
on the platform. In each evaluation phase, teams
were restricted to make only 10 submissions and
only one result, i.e. the top-scoring result, was
shown on the leaderboard.

Before the task began, our participants
were onboarded via our task website
https://ncg-task.github.io/. Further,
participants were encouraged to discuss their
task-related questions via our task Google groups
page at https://groups.google.com/forum/#!
forum/ncg-task-semeval-2021.

The NCG Data Collection of Articles Our base
collection of scholarly articles was downloaded
from the publicly available leaderboard of tasks in
AI called https://paperswithcode.com/. While
paperswithcode predominantly represents the NLP
and Computer Vision research fields in AI, we re-
stricted ourselves just to its NLP papers. From
their overall collection of articles, the tasks and
articles in our final data were randomly selected.
The raw articles’ pdfs needed to undergo a two-step
preprocessing before the annotation task. 1) For
pdf-to-text conversion, the GROBID parser (GRO,

2008–2020) was applied; following which, 2) for
plaintext pre-processing in terms of tokenization
and sentence splitting, the Stanza toolkit (Qi et al.,
2020) was used. The resulting pre-processed ar-
ticles could then be annotated in plaintext format.
Note, our data consists of articles in English.

Evaluation Metrics The NCG Task participat-
ing team systems were evaluated for classifying
contribution sentences, extracting scientific terms
and relations, and extracting triples (see specific
details in Section 3). The results from the three
evaluations parts were also cumulatively averaged
as a single score to rank the teams. Finally, for
the evaluations, the standard precision, recall, and
F1-score metrics were leveraged.

This completes our discussion of the NCG task
in terms of its dataset definition and overall orga-
nization description. In the remainder of the pa-
per, we shift our focus to the participating teams.
Specifically, we describe the participating systems
and examine their results for the NCG task.

5 Participating System Descriptions

The NCG Shared Task received public entries from
7 participating teams in all. In this section, we
briefly describe the teams’ systems in terms of the
three parts of the NCG task, i.e. contribution sen-
tence classification, scientific terms and relations
extraction, and triples extraction.

5.1 Contribution Sentence Classification

To identify the contribution sentences from articles,
systems adopted one of two strategies: a binary
classification objective, or a multi-class classifica-
tion objective. In the first strategy, sentences were
either classified as contribution sentences or not. In
the second strategy, sentences were classified in a
13-class classification task as one of the 12 IUs or
as a non-contribution sentence. Next, we describe
these strategies. Note, the asterisk superscripts
against team names, where present, correspond to
∗ ∗ ∗ 3rd best, ∗∗ 2nd best, and ∗ 1st best systems
in the Shared Task, respectively.
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Binary Classifiers Team YNU-HPCC (Ma et al.,
2021) employed BERT as a binary classifier to
classify the contribution sentences. Team IN-
NOVATORS (Arora et al., 2021) also employed
a BERT-based binary classifier wherein each
instance was a set of 10 sentences with addi-
tional sentences as context features to the model.
Team KnowGraph@IITK∗∗∗ (Shailabh et al., 2021)
used the standard SciBERT + BiLSTM architec-
ture (Beltagy et al., 2019) as a binary sentence
classifier. Team UIUC BioNLP∗ (Liu et al., 2021)
employed BERT-based binary sentence classifier
with features that handled sentence characteristics
w.r.t. their context in the article - specifically, its
closest preceding topmost and innermost section
headers and its position in the article.

Multi-class Classifiers Team DULUTH (Mar-
tin and Pedersen, 2021) framed a 13-class multi-
class classification task. They employed de-
BERTa (He et al., 2020) as their classifier. Team
ECNUICA (Lin et al., 2021) employed three pre-
trained transformer models, viz. RoBERTa (Liu
et al., 2019), SciBERT (Beltagy et al., 2019), and
BERT (Devlin et al., 2019) as an ensemble classi-
fier. They formulated a multi-class classification
task as well. The features to BERT models are the
original sentence, contextual information as pre-
vious and next sentence to the original sentence,
and a sub-title of the paragraph with the separator
token ([SEP]) in between. Team ITNLP∗∗ (Zhang
et al., 2021) employed a BERT-based multi-class
classifier that leveraged sentence context and the
paragraph heading as additional features.

These binary and multi-class sentence classifiers,
were also adapted to our following dataset charac-
teristics.

5.1.1 Contribution sentences data imbalance
Characteristically, of all the sentences in training
data scholarly articles, only 10% were annotated as
contribution sentences. Thus, our dataset presented
an imbalanced classification task.

Teams YNU-HPCC, DULUTH,
KnowGraph@IITK∗∗∗ and UIUC BioNLP∗

trained their classifiers on the given data. While
INNOVATORS and ITNLP∗∗ downsampled the
non-contribution sentences. INNOVATORS
established a threshold based on cumulative
contributing sentence bigram scores as a filter;
ITNLP fixed the ratio of positive to negative
samples as an integer and tuned the value.

5.1.2 Differing tasks coverage between the
training and the test datasets

Since only one task was in common between the
training and the test datasets, this meant that sys-
tems trained only on the training data would be
applied on articles from nine new tasks as test data.
To this end, Team ECNUICA hypothesized that if
the classifier could see, i.e. somehow be trained
on, the test data tasks, its performance could be
boosted. They, thus, adopted the strategy of re-
training their classification ensemble with silver-
labeled test data instances. This followed the stan-
dard setup of training the classifier on the actual
training data, applying it to the test data, and incre-
mentally retraining the classifier leveraging the few
confidently classified test instances. The instances
were marked as silver training data only when all
three ensemble classifiers predicted the same class.

5.2 Scientific Terms and Relations Extraction
After identifying the contribution sentences, sys-
tems then had to extract their scientific terms and
relational predicates.

Sequence Labeling Systems Majority, i.e. six,
of the seven participating systems adopted a se-
quence labeling approach.

1. Team YNU-HPCC used a pre-trained BERT
model for sequence labeling of each token,
obtaining embeddings for each token in the
sequence, with softmax and argmax top layers
which were shared across all tokens.

2. Team DULUTH trained a feature-based
maximum-entropy Markov model (MEMM)
to predict scientific terms in the contribution
sentences.

3. Team ECNUICA extracted entities using
RoBERTa (Liu et al., 2019) with a CRF layer
and a BIO sequence labeling scheme. The in-
put sequences to RoBERTa are modified with
sub-title information.

4. Team KnowGraph@IITK∗∗∗ extracted
phrases in the sentence by adding BiLSTM
layers to the SciBERT + CRF model as a
sequence labeler. To mark phrase boundaries,
they used the BILUO scheme.

5. Team ITNLP∗∗ employed the standard BERT-
based model, however, in a sequence label-
ing setting. They trained ten different models
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by 10-fold cross-validation and used a voting
count threshold scheme to extract the final set
of entities.

6. Team UIUC BioNLP∗ used a BERT-CRF
model for phrase extraction and type classifi-
cation (Souza et al., 2019). They employed
the BIO scheme to distinguish the scientific
terms vs. predicate phrases.

Rule-based System Team INNOVATORS lever-
aged an unsupervised rule-based approach for
phrase extraction. Using spaCy (Honnibal et al.,
2020), they obtained dependency parses for each
sentence. They then implemented a set of depen-
dency tree node traversal heuristics for phrase ex-
traction based on the dependency parses.

5.3 Triples Extraction

1. Team YNU-HPCC first classified the scien-
tific terms in subject, predicate, and object
roles using three binary BERT classifiers.
These triples from each contribution sentence
were then organized as the 12 IUs leverag-
ing a 12-class contribution sentence classifier.
This team, however, did not participate in the
end-to-end evaluation task.

2. Team DULUTH applied Stanford Core NLP’s
dependency parser (Chen and Manning, 2014)
to generate a dependency parse for each con-
tribution sentence. They used the dependency
parse structures to assign subject, relation, and
object phrase roles to the extracted scientific
terms. These were then organized as triples
per IU obtained by their 13-class sentence
classifier. The overall end-to-end pipeline sys-
tem score achieved by this system is 28.38%.

3. Team INNOVATORS implemented a set of
rules based on the dependency parses to form
triples from the extracted scientific terms.
They used a CNN-based architecture for clas-
sifying the contribution sentences as the 12
IUs. Their end-to-end score was 32.05%.

4. Team ECNUICA approached the triples for-
mation task in two steps: i) they formed triple
candidates based on the scientific term se-
quence order in the sentence. Additionally,
they employed a set of predefined predicates
when the predicates were not directly found
in the sentence. ii) They then employed a

SciBERT-based binary classifier to classify
the triples as true or false candidates. Their
overall end-to-end system score was 33.35%.

5. Team KnowGraph@IITK∗∗∗ addressed the
RESEARCHPROBLEM, CODE, BASELINES

and ABLATIONANALYSIS IUs by a heuristics-
based approach. For the remaining eight IUs
triples, they followed a 3-step approach: i)
identify predicates from the scientific terms
using a binary SciBERT+BiLSTM classifier;
and ii) formed triples by arranging the terms
and predicates in exact order as they appear
in the original sentence; and iii) employ an
8-class SciBERT + BiLSTM classifier to clas-
sify the triples. Their overall end-to-end sys-
tem score was 37.83%.

6. Team ITNLP∗∗ extracted triples as follows:
i) they formed all possible triples candidates
from the classified scientific terms; and ii)
employed a binary BERT classifier for true
or false candidates. Prior to BERT classifi-
cation, they perform the negative candidate
triples downsampling as follows: by artifi-
cially generating them using random replace-
ment (RR) of one of the arguments of the true
triples with a false argument; and by random
selection (RS) of triples where no argument
is a valid pair of another. Additionally, each
of their system components obtained boosted
performances with the Friendly Adversarial
Training strategy (Zhang et al., 2020). Their
overall end-to-end system score was 47.03%.

7. Team UIUC BioNLP∗ categorized the triples
into six types based on our dataset character-
istics. Four of the six types were: structur-
ing intra-sentence information; linking sen-
tence information to IU; linking IU to the root
node; and structuring inter-sentence informa-
tion. The first two of the four broad types were
further subdivided into two based on whether
the predicate was found in the sentence or
was the term “has.” Each of the six types were
addressed by a specifically trained BERT clas-
sifier. They obtained an overall end-to-end
system score of 38.28% within the task dead-
line and 49.72% a day later after fixing phrase
component offset errors.1

1Per the task timeline, i.e. within the Phase 1 end-to-end
system evaluation, the team achieved 38.28% F1 within the
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1 2.1 2.2
ITNLP https://github.com/itnlp606/nlpcb-graph 47.03 68.63 79.31
UIUC BioNLP https://github.com/Liu-Hy/nlp-contrib-graph 38.28∗∗ 76.12 85.94
KnowGraph@IITK https://github.com/sshailabh/
SemEval-2021-Task-11

37.83 63.18 76.0

ECNUICA 33.35 71.13 81.45
INNOVATORS https://github.com/HardikArora17/
SemEval-2021-INNOVATORS

32.05 52.52 59.71

DULUTH https://github.com/anmartin94/DuluthSemEval2021Task11 28.38 49.21 45.62
YNU-HPCC https://github.com/maxinge8698/SemEval2021-Task11 75.79 65.41

Table 4: The seven NLPCONTRIBUTIONGRAPH participating teams with their averaged F1 scores over individual
subtasks per evaluation phase. Column “1” - Evaluation Phase 1: End-to-end Pipeline F1; Column “2.1” - Evaluation Phase
2, Part 1: Phrases and Triples F1; and Column “2.2” - Evaluation Phase 2, Part 2: Triples Extraction F1.
**system submission had error in phrase offsets for task submission; actual task performance was 49.72 F1.

Model Sentences Phrases Information Units Triples
F1 P R F1 P R F1 P R F1 P R

UIUC BioNLP 57.27 53.61 61.46 46.41 42.69 50.83 72.93 66.67 80.49 22.28 22.3 22.26
ITNLP 56.19 51.74 61.46 45.22 41.6 49.55 72.93 66.67 80.49 13.79 13.39 14.23
KnowGraph@IITK 46.8 39.69 57.01 35.4 28.99 45.44 60.54 44.13 96.34 8.57 6.53 12.45
ECNUICA 39.78 26.21 82.48 32.03 20.73 70.37 54.05 42.86 73.17 6.78 4.28 16.29
INNOVATORS 39.87 39.32 40.45 15.63 13.27 19.01 71.72 82.54 63.41 0.97 14.29 0.5
DULUTH 38.1 44.83 33.12 7.08 13.07 4.86 64.41 60.0 69.51 3.94 9.2 2.51

Table 5: Evaluation Phase 1: End-to-end Pipeline Results
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Figure 3: (a) Phrases and (b) Triples extraction results

6 Shared Task Results

In this section, we present the results of the seven
participating teams’ systems.

The results in Table 4 show the cumulative
scores of the participating teams in each of the
three evaluation phases in our Shared Task. We
refer the reader to Section 3 for a detailed descrip-
tion of the three evaluation phases. In each phase,
Teams were officially ranked by these scores. Next,
we examine the scores by the individual extraction

task deadline due to an error in their submission offsets for
phrases. Thus, they are officially 2nd after the ITNLP team
within the Shared Task timeline for Phase 1.

tasks that constituted building the NLPCONTRIBU-
TIONGRAPH per article.

6.1 Contribution Sentences Classification

As a first step toward building the NLPCONTRI-
BUTIONGRAPH, systems were evaluated for identi-
fying contribution sentences. This was done only
in the Evaluation Phase 1 of the Shared Task, i.e.
the phase that tested the end-to-end systems. These
results are shown in Table 5 under column “Sen-
tences.” This subtask attained a high score of
57%. The top two teams, i.e. UIUC BioNLP∗

and ITNLP∗∗, differed by only 1 point. Comparing
these performances to a baseline, a default system
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would return all titles as candidate contribution sen-
tences. This results in a score of 10.78% F1 at
90% precision and 5.7% recall. In contrast to the 1
sentence per article result in the default computa-
tion, our actual data averages at 17 sentences per
article. Thus the default score was computed on
a significantly underestimated data sample as also
reflected by its low recall. Nevertheless, the top
systems significantly outperform this default score
with both systems averaging at 20 sentences per
article. The least score was also significantly better
than the default at 38.1% F1 at an average of 12
sentences per article.

With F1 less than 60%, the task shows itself chal-
lenging. Some teams ascribed this to the dataset
characteristic that contribution sentences consti-
tuted only a minority of the sentences in the ar-
ticle (<10%) and thus, overall, presented imbal-
anced data. To address this they downsampled the
data. However, from the two participant systems
that used a downsampling strategy, it could not be
conclusively verified as an effective strategy since
these systems performed on opposite ends of the
performance spectrum. On the other hand, incor-
porating the closest section header and sentence
position as features in the BERT model showed it-
self an effective and reliable strategy for sentence
classification. This modeled the dataset better since
the sentences were annotated from a few sections
and the sentences were usually close to the section
header. The system UIUC BioNLP∗ that incorpo-
rated such features outperformed all other systems
including the ones with the downsampling strategy,
i.e. ITNLP∗∗ and INNOVATORS.

Finally, how did bootstrapping the test data as
silver-labeled data impact model performance?
Team ECNUICA that adopted this strategy did not
obtain a balanced harmonic mean between their
precision and recall achieving the highest recall
among all teams of 82.48% and the lowest preci-
sion of 26.21%. Thus this strategy did not show
itself too effective and reliable.

6.2 Scientific Terms and Relations Extraction

These results are shown in Table 5 under column
“Phrases” for the end-to-end systems. The highest
F1 obtained on this task was 46.41%. However, this
score was impacted by the pipeline setup such that
the low performance in sentence classification im-
pacted the performance in this stage. We conducted
a separate evaluation phase to control for this as-

pect. In other words, we examined how would the
systems perform only on extracting terms and re-
lations given gold contribution sentences? These
results are shown in Figure 3 (a). In fact, the bar
chart offers a perspective on the significant differ-
ences in system performances when applied on
automatically extracted sentences versus gold data.
The systems showed the same performance ranking
order in both settings. This is a somewhat expected
result since none of the systems implemented any
specific noisy sentence handling strategy in which
case performance differences may have risen. In
conclusion, the best result was 46.4% F1 in the
end-to-end setting and was 78.6% F1 when given
gold sentences.

Notably, the pipeline systems were 10 points
lower for extracting phrases than for sentences.

6.3 Triples Extraction

The final extraction task to build the NCG per ar-
ticle was to form triples from the extracted terms
and relations. These results for the pipeline sys-
tems are shown in Table 5 under column “Triples.”
The best performance was 22.28% F1 and the 2nd
best was significantly lower at 13.79% F1. To
evaluate system performances purely for extract-
ing triples, thereby cancelling out the effect of the
pipeline setup, additional evaluations were con-
ducted wherein gold data were incrementally made
available to the system. These results are shown
in Figure 3 (b). Given only the gold sentences, the
best team attained 43.44% F1; given gold terms
and relations in addition, they achieved 61.29%
F1. A score of 61.29% F1 is a strong performance
on a still fairly difficult task given the annotation
decision subjectivity that may have crept into the
data thereby producing considerable variations in
annotation patterns. This is discussed in Section 7.

Identifying only the Information Unit Labels
We conducted a meta-evaluation for identifying
the set of IU labels per article. These results are
shown in Table 5 under column “Information Units.”
The top two teams were tied at 72.93% F1 with the
second best score at 60.54% F1. Like sentence clas-
sification, a default system could be implemented
for this task as one that output just the three manda-
tory IUs, i.e. RESEARCHPROBLEM, MODEL, and
RESULTS for all articles. The scores from this de-
fault system were 69.01% F1, 81.67% precision,
and 59.76% recall. It is 9 points better than the 2nd
best. When given gold sentences, systems could
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be evaluated for identifying just the IUs since the
classification were dependent on the underlying
sentences. These results are shown in Fig. 4.

A notable exception in the results is that the
IU classification score by Team INNOVATORS re-
mained unchanged regardless of pipelined or gold
sentences as input. This is because their downsam-
pling heuristic once designed did not rely on the
underlying data when filtering. It is likely that the
new gold sentences information was not used at all.
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Figure 4: Information Unit identification results
in Evaluation Phase 1: End-to-end Pipeline with
Pipelined Sentences (blue bars) and Evaluation Phase
2, Part 1 and Part 2 with Gold Sentences (red bars)

7 Discussion

Finally, we conclude our Shared Task paper with
a discussion on the perceived limitations of our
dataset that can potentially be addressed in future
work. Thereby, a new dataset will present new
opportunities to evaluate systems on this novel task.

Single Annotator Annotations The NCG
Shared Task dataset was annotated by a single
annotator. Further, the design of the annotation
scheme was supported by only an intra-annotator
consensus agreement score for that annotator.
Since this work is the first-of-its-kind in proposing
an initial scheme, and given the complex nature
of this annotation task with the need to design a
model within a realistic timeframe, our annotation
procedure is well-suited.

However, as discussed in our related
work (D’Souza and Auer, 2021), in the next
stage, we advocate for a blind, multi-stage, and
multi-annotator annotation process for the NCG
scheme, recognizing it as a potentially better
annotation model. We find that such a process

while incorporating multiple worldviews could
better address annotation inconsistencies that may
have crept in in our current dataset.

Non-uniform Distribution of Articles As dis-
cussed earlier, our combined training dataset had
29 tasks and the test data had 10 tasks. However,
these tasks did not have a uniform distribution of
articles in our data. In the training data, the num-
ber of articles per task ranged from a maximum
of 101 in one task, i.e. “natural language infer-
ence,” to a minimum of one article in seven tasks
- 58.62% of the training data tasks had less than 5
articles. The test dataset, on the other hand, fol-
lowed a more uniform distribution than the training
data ranging from a maximum of 32 articles to a
minimum of seven articles at an average of 15.5%
articles per task. While our training dataset had
over 200 articles, it may not have been sufficiently
representative to learn uniform patterns. Thus in a
new version of the dataset, a more uniform repre-
sentation of the tasks will be attempted.

8 Conclusions

We have detailed the NLPCONTRIBUTIONGRAPH

Shared Task that entailed structuring research con-
tributions in NLP articles as structured KGs. This
task is the first-of-its-kind to be organized in the
SemEval series. It attracted a strong participation
demographic of 27 participants and seven teams -
BERT transformer models were a popular choice
among the participant systems in two different ca-
pacities, i.e. as classifiers or sequence labelers.
Our task also saw the use of traditional parsers
such a dependency syntax parsing technology. Fur-
ther, some systems leveraged a hybrid approach
including a combination of heuristics and machine
learning. While the end-to-end task performance
was low showing the task considerably challeng-
ing, each individual subtask toward obtaining an
NCG, i.e. contribution sentence classification, sci-
entific terms and relations extraction, and triples
formation, demonstrated high performances in the
subtask-only evaluation setting, i.e. when given
gold data from the previous stage. The best system
adopted a hybrid approach which seemed the most
effective strategy for building the NCG.

The NCG dataset is publicly available (D’Souza
et al., 2021) and a KG overview of a structured
form of our paper is here https://www.orkg.org/
orkg/comparison/R74774.
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A Per Information Unit Evaluations

Table 7 shows triple extraction F1 scores for each
of the IUs. The scores from each of the three eval-
uation phases in our Shared Task are separated by
slash symbols. Recall that from the second evalua-
tion phase, the gold data were made available to the
systems starting with sentences (Evaluation Phase
2, Part 1: Phrases and Triples) followed by the
terms and relations additionally (Evaluation Phase
2, Part 2: Triples).

Comparing the performances across IUs, we see
the CODE IU was the easiest to extract. In Phase
1, the best F1 was 83.33%. In both Phase 2, Part
1 and Part 2, the best F1 was 100.0%. This is an
expected result for CODE to be easiest to extract
since it had the simplest annotation patterns; an
example is depicted in Fig. 5.

Training Data Test Data
1 CODE 1.0 1.03
2 RESEARCHPROBLEM 2.78 2.13
3 DATASET 13.78 22.5
4 APPROACH 15.55 17.61
5 MODEL 18.06 20.14
6 ABLATIONANALYSIS 18.82 21.19
7 BASELINES 20.13 15.3
8 RESULTS 23.31 23.0
9 HYPERPARAMETERS 23.78 19.78
10 EXPERIMENTALSETUP 27.53 27.47
11 TASKS 34.63 -
12 EXPERIMENTS 54.65 39.06

Table 6: Average no. of triples per Information Unit

Table 6 shows the average number of triples per
IU reflecting, in a sense, their complexity. We hy-
pothesize that the more the triples, the more com-
plex the extraction task. Comparing these numbers
with the results in Table 7, we see that 5th ranked
IU, i.e. MODEL, showed the next easiest to extract
after CODE, at 38.14% F1, in the end-to-end setting.
Following which, we see that the 2nd ranked IU, i.e.
RESEARCHPROBLEM, obtained an F1 of 35.79%.
Nevertheless, confirming our hypothesis, we found
a negative correlation (r -0.65) between the training
data triples size per IU and the end-to-end system
performances, i.e. for IUs with fewer triples the
extraction score is higher for most IUs. The nega-
tive correlations were progressively stronger from
Part 1 to Part 2 in Evaluation Phase 2 (r -0.75 and
r -0.79), respectively.
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Team RESEARCHPROBLEM APPROACH MODEL CODE
UIUC BioNLP 26.17/ 53.19/ 89.41 11.54/ 20.2/ 28.87 38.14/ 55.31/ 76.9 57.14/ 80.0/ 100.0
ITNLP 35.79/ 43.18/ 78.35 0.0/ 0.0/ 0.0 16.03/ 22.65/ 51.42 83.33/ 100.0/ 100.0
KnowGraph@IITK 24.62/ 25.81/ 97.56 4.94/ 5.93/ 0.0 8.2/ 19.18/ 34.48 83.33/ 100.0/ 100.0
ECNUICA 6.45/ 65.12/ 89.89 1.75/ 17.83/ 28.93 0.0/ 29.73/ 56.67 0.0/ 80.0/ 80.0
INNOVATORS 9.88/ 9.88/ 3.25 0.0/ 0.0/ 3.8 0.0/ 0.0/ 7.55 50.0/ 50.0/ 0.0
DULUTH 0.0/ 4.71/ 58.73 0.0/ 2.06/ 21.78 7.23/ 7.14/ 35.36 0.0/ 40.0/ 88.89
YNU-HPCC -/ 2.9/ 5.07 -/ 2.53/ 7.22 -/ 3.52/ 18.29 -/ 0.93/ 0.56
Team EXPERIMENTALSETUP HYPERPARAMETERS BASELINES
UIUC BioNLP 28.37/ 52.42/ 67.27 5.6/ 35.71/ 39.44 20.69/ 50.85/ 74.34
ITNLP 18.78/ 29.87/ 42.16 4.0/ 6.06/ 12.63 0.0/ 16.67/ 27.69
KnowGraph@IITK 12.14/ 13.53/ 12.7 4.37/ 7.88/ 8.48 3.47/ 6.78/ 33.33
ECNUICA 14.79/ 25.88/ 42.34 3.36/ 13.4/ 3.36 9.11/ 34.62/ 51.06
INNOVATORS 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0
DULUTH 1.54/ 6.33/ 30.47 4.04/ 7.89/ 21.43 5.56/ 3.23/ 17.5
YNU-HPCC -/ 4.24/ 16.7 -/ 0.88/ 2.58 -/ 0.87/ 3.5
Team RESULTS EXPERIMENTS ABLATIONANALYSIS
UIUC BioNLP 20.62/ 37.77/ 56.4 7.19/ 8.96/ 10.61 23.01/ 31.78/ 61.36
ITNLP 8.85/ 17.47/ 42.5 1.48/ 1.42/ 0.0 8.6/ 6.35/ 11.63
KnowGraph@IITK 10.86/ 17.55/ 28.94 3.33/ 1.96/ 0.0 4.23/ 3.74/ 35.16
ECNUICA 15.37/ 26.25/ 49.0 7.86/ 6.06/ 13.86 3.94/ 4.6/ 8.82
INNOVATORS 0.0/ 0.0/ 7.36 0.0/ 0.0/ 0.0 0.0/ 0.0/ 0.0
DULUTH 7.2/ 8.04/ 30.96 0.0/ 1.72/ 5.97 0.0/ 0.0/ 12.29
YNU-HPCC -/ 3.56/ 16.63 -/ 0.68/ 2.73 -/ 1.05/ 2.79

Table 7: Per Information Unit F1 scores per evaluation phase of the seven participating teams. The three scores
in each row are from the three evaluation phases in the Shared Task as follows [Evaluation Phase 1: End-to-end
Pipeline]/[Evaluation Phase 2, Part 1: Phrases and Triples]/[Evaluation Phase 2, Part 2: Triples]. Best scores are
in bold.

Model Information Units Triples
F1 P R F1 P R

UIUC BioNLP 72.93/83.98 66.67/76.77 80.49/92.68 22.28/25.01 22.3/25.08 22.26/24.94
ITNLP 72.93/82.49 66.67/76.84 80.49/89.02 13.79/14.26 13.39/13.98 14.23/14.56
KnowGraph@IITK 60.54/72.32 44.13/57.04 96.34/98.78 8.57/10.0 6.53/7.87 12.45/13.72
ECNUICA 54.05/56.76 42.86/45.0 73.17/76.83 6.78/6.72 4.28/4.24 16.29/16.12
INNOVATORS 71.72/80.0 82.54/92.06 63.41/70.73 0.97/0.97 14.29/14.29 0.5/0.5
DULUTH 64.41/77.11 60.0/76.19 69.51/78.05 3.94/4.05 9.2/10.42 2.51/2.51

Table 8: Evaluation Phase 1: End-to-end Pipeline Results with (APPROACH, MODEL) IUs normalized to AP-
PROACH and (EXPERIMENTALSETUP, HYPERPARAMETERS) IUs normalized to EXPERIMENTALSETUP. Best
scores are in bold. Scores before the slash are from original dataset and scores after the slash are from the normalized dataset.

Figure 5: Annotated data in JSON format for the CODE
Information Unit for the paper “Deep Joint Entity Dis-
ambiguation with Local Neural Attention.”

B Normalized APPROACH and
EXPERIMENTALSETUP Evaluations

In Table 8, we revisit overall scores from Table 5
for two evaluation aspects in the end-to-end system
evaluations, i.e. only for extracting Information
Units and Triples. We revisit just these two aspects
because they were impacted when we obtained nor-
malizations of four IU labels into two, respectively,

i.e. APPROACH and MODEL as APPROACH and
EXPERIMENTALSETUP and HYPERPARAMETERS

as EXPERIMENTALSETUP. By this, we can ob-
serve system performances on a simplified version
of our task. Observing “Triples” F1, we see that the
ordering of the system performance without and
with normalization remain unchanged - the best
score obtained a 3 points boost.
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Abstract

We propose a cascade of neural models that
performs sentence classification, phrase recog-
nition, and triple extraction to automatically
structure the scholarly contributions of NLP
publications in English. To identify the most
important contribution sentences in a paper,
we used a BERT-based classifier with posi-
tional features (Subtask 1). A BERT-CRF
model was used to recognize and character-
ize relevant phrases in contribution sentences
(Subtask 2). We categorized the triples into
several types based on whether and how their
elements were expressed in text, and addressed
each type using separate BERT-based classi-
fiers as well as rules (Subtask 3). Our sys-
tem was officially ranked second in Phase 1
evaluation and first in both parts of Phase 2
evaluation. After fixing a submission error
in Phase 1, our approach yielded the best re-
sults overall. In this paper, in addition to
a system description, we also provide fur-
ther analysis of our results, highlighting its
strengths and limitations. We make our code
publicly available at https://github.com/
Liu-Hy/nlp-contrib-graph.

1 Introduction

With the deluge of scientific publications in recent
years, keeping pace with the literature and manag-
ing information overload have become increasingly
challenging for researchers. There is a growing
need for tools that can automatically extract and
structure semantic information from scientific pub-
lications to facilitate advanced approaches to infor-
mation access and knowledge curation (Shen et al.,
2018).

The field of natural language processing (NLP)
has witnessed an enormous growth in recent
years with advances in deep learning, and there
are increasing efforts in developing methods
to extract scholarly knowledge from NLP pub-

lications (QasemiZadeh and Schumann, 2016;
D’Souza and Auer, 2020b). One such effort is
NLPCONTRIBUTIONS, an annotation scheme for
describing the scholarly contributions in NLP pub-
lications and a corpus annotated using this anno-
tation scheme (D’Souza and Auer, 2020b). This
corpus has been proposed for training and test-
ing of machine reading models, whose output can
be integrated with the Open Research Knowledge
Graph framework (ORKG) (Jaradeh et al., 2019).
ORKG formalizes the research contributions of a
scholarly publication as a knowledge graph, which
can further be linked to other publications via the
graph. The goal of the NLPContributionGraph
(NCG) shared task (D’Souza et al., 2021) is to fa-
cilitate the development of machine reading models
that can extract ORKG-compatible scholarly con-
tribution information from NLP publications. The
shared task consists of three subtasks (see D’Souza
et al. (2021) for a more detailed description):

• Subtask 1: Identification of contribution sen-
tences from NLP publications

• Subtask 2: Recognition of scientific terms and
relations in contribution sentences

• Subtask 3: Extraction and classification of
triples that pair scientific terms with relations

In this paper, we describe our contribution to NCG
shared task. We built a cascade of neural classi-
fication and sequence labeling models based on
BERT (Devlin et al., 2019). For subtask 3, we
characterized triples based on whether and how
their elements are expressed in text, and employed
different models for each category. We also ex-
plored rule-based heuristics to improve model per-
formance. Our models had the best overall perfor-
mance in the shared task (57.27%, 46.41%, and
22.28% F1 score in subtasks 1, 2, and 3, respec-
tively). The results are encouraging for extracting
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Figure 1: End-to-end system diagram.

scholarly contributions from scientific publications,
although there is much room for improvement.

2 System Overview

In this section, we first describe our data prepro-
cessing steps. Next, we discuss our models for each
subtask, and the experimental setup for our end-to-
end system (Phase 1). We provide an overview of
the system in Figure 1 and provide examples for
illustration, when necessary.

2.1 Data preprocessing
The participants of the shared task were provided
three kinds of input: a) plain text files of the pub-
lications converted from PDF using Grobid1, b)
sentences and tokens identified using Stanza (Qi
et al., 2020), and c) triples and source texts orga-
nized by their information units (e.g., APPROACH)
in JSON format.

2.1.1 Identifying headers and positional
information

One major preprocessing step was to identify sec-
tion headers in the publications and associate them

1https://grobid.readthedocs.io/

with individual sentences. For sentence classifica-
tion (subtask 1), we incorporated the topmost and
innermost section headers associated with a sen-
tence into its representation. The topmost header
indicates the general role that a sentence plays in
the article, while the innermost header provides
more specific context for the sentence. For exam-
ple, one topmost/innermost header pair is EXPERI-
MENT/DATA SET AND EXPERIMENT SETTINGS.

In the absence of explicit section information
in the input, we used rule-based heuristics to ex-
tract these headers. With the first heuristic (Heuris-
tic1), we simply identified the sentences following
blank lines in plain text files as section headers. In
Heuristic2, we first identified candidate headers as
sentences that contain fewer than 10 words, have
the first letter capitalized, do not end with several
stopwords (by, as, in, that, or and), do not contain
question marks in the middle or end with some
punctuation (comma, colon or full stop). Next,
we determined the case format used for headers
in the publication by counting the occurrences of
each case format type (e.g., all uppercase: EX-
PERIMENTAL SETUP). Among the headers that
conform to the determined case format, we dis-
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tinguished topmost headers as those that contain
several lexical cues (e.g., background, method) and
are shorter than 5 words. Finally, we associated
each sentence with the nearest preceding topmost
and innermost header.

To incorporate headers into the sentence rep-
resentation, we join the topmost and innermost
header together with a colon between them and
refer to it as the “title” of the sentence. In the case
where a sentence is directly governed by a top-level
header or it is a header itself, the title consists of
the topmost header only.

We characterize the position of each sentence
in the document with a combination of numeric
features:

• The offset of the sentence in the entire paper.

• The offset of the sentence with respect to its
topmost header.

• The offset of the sentence with respect to the
header extracted using Heuristic1.

Each of these offset features are divided by the num-
ber of sentences in the corresponding discourse (en-
tire paper or the section) to extract a proportional
sentence position feature. Thus, for every sentence,
a total of six positional features (three offsets, three
proportional sentence positions) are computed.

2.1.2 JSON Parsing
We created two additional models to assist with
triple extraction: a) a multi-class sentence classi-
fier that labels each sentence with a single infor-
mation unit and b) a binary phrase classifier that
labels phrases as scientific terms vs. predicates (de-
scribed below). To train these models, we extracted
additional information from JSON files. First, we
matched the contribution sentences with the source
text in the JSON files to get the information unit
labels of the sentences. Second, we aligned the
phrases with the triples in the same information
unit, and determined whether each phrase is a pred-
icate or term based on its location in the triple.

2.2 Subtask 1: Contribution Sentence
Classification

We built a binary classifier to determine whether
each sentence describes a contribution of the pub-
lication. Our analysis revealed that this decision
was not simply based on the semantics of the sen-
tence, but also its position in the document. On

one hand, the section header associated with the
sentence provides important clues about the role
of the sentence in the larger context. For example,
the header “Related Work” indicates that sentences
in this section are likely to discuss the contribu-
tions of prior research. On the other hand, some
parts of the documents are naturally more salient
than others (e.g. title, abstract, the first few lines
of each section), where authors tend to summarize
the most important information. To operationalize
these insights, we designed a model that captures
the information about the sentence, its topmost and
innermost headers as well as its position in the
document, as discussed above.

We used a BERT model to encode the sentence
and its title (i.e., concatenated headers) separately
and concatenated their textual representation to-
gether with the positional features to obtain a sen-
tence representation. We then fed this representa-
tion into two dense layers, and used a final softmax
layer for classification (Figure 2).

Figure 2: Sentence classification model architecture

2.3 Subtask 2: Phrase Recognition

Subtask 2 is similar to a named entity recogni-
tion (NER) task, although the participating systems
were only required to extract relevant text spans
and not to categorize them. One major difficulty
with this subtask is that phrases do not align neatly
with sentence constituents (e.g., noun phrases) and
they vary greatly in length and in what counts as
their boundaries (e.g. best results and our best
results are both valid phrases).

For this subtask, we used a BERT-CRF model
for phrase extraction and type classification (Souza
et al., 2019). The raw text of the sentence is taken
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as the model input. A BIO scheme that incorpo-
rates phrase types (scientific term vs. predicate) is
used (e.g., B-Predicate, I-Term, O). The probabil-
ities produced by the BERT model are fed into a
Conditional Random Field (CRF) layer (Lafferty
et al., 2001) for end-to-end training. We note that
while phrase type classification is not necessary for
subtask 2, we perform it since it is useful for our
subtask 3 model, described next.

2.4 Subtask 3: Triple Extraction

Subtask 3 involves organizing phrases into triples.
In information extraction, semantic triples are typ-
ically composed of subject, predicate, and object
terms each corresponding to specific textual spans.
This is not always the case in this subtask. While
in most cases all three terms are extracted from a
single sentence, a non-negligible number of triples
consist of at least one phrase that does not come
from the sentence (e.g. (TASKS, has, Coreference
resolution), where the subject is an information
unit and the predicate is not a sentence element).

To better understand triple characteristics, we
categorized them into several types based on their
composition, and created separate relation classifi-
cation models for each type. The triple categoriza-
tion is presented in Table 1. For each type, we list
their functions in information organization, their
proportion to all triples, along with some examples.
We note that input to the training process for triple
extraction varies by the type of the triple (described
for each type in Section 2.4.2).

2.4.1 Information Unit Classification
To aid triple extraction, we modified the binary
classification model that we trained for subtask 1
to further classsify contribution sentences by their
information units (multi-class classification). The
process of labeling contribution sentences with in-
formation units was briefly described in Subsec-
tion 2.1.2.

In analyzing the information units, we identi-
fied two special pairs (MODEL vs. APPROACH

and EXPERIMENTAL-SETUP vs. HYPERPARAM-
ETERS). In the dataset, no document contains
both units of a pair. The decision of which unit
to choose is made at the document level. Therefore,
we merged the labels of similar units before feed-
ing the examples into the multi-class classification
model.

After classification, we used lexical rules to split
these units. Our rules were based on the following

observations. First, the MODEL vs. APPROACH

distinction seems related to how the authors men-
tion their work in the abstract and section headers
of the paper. Second, EXPERIMENTAL-SETUP is
often used instead of HYPERPARAMETERS when
the hardware or the framework used in the study is
specified (e.g. V100 GPU, Pytorch).

We did not recognize CODE information units
using this model, since we found that such sen-
tences can be identified with a very high accuracy
using a simple rule based on presence of a URL in
the sentence.

2.4.2 Neural models for triple extraction
We extract triples of type A, B, C and D (Table
1) by formulating them as neural relation classifi-
cation tasks. All the classifiers are vanilla BERT
classifiers (one linear layer followed by softmax).
For each type, we observed the patterns in the train-
ing data, and addressed the most common ones.
Ignoring the less frequent patterns inevitably led to
a lower recall ceiling in our models.

Type A This type, in which all triple elements are
mentions in the sentence, represents the majority of
the triples. The corresponding model classifies the
triples as a whole (“triple classification”). To the
best of our knowledge, little research has been done
on relation classification among three phrases; how-
ever, the Transformer model at the core of BERT is
versatile enough to succeed in a wide range of tasks.
As our training examples, we take every combina-
tion of a predicate and two terms in a sentence as
a candidate triple, and train a model that predicts
whether the three phrases constitute a triple or not.
We encode the relation between three phrases by
marking their boundaries in the sentence, as shown
in Example 1. We use angle brackets to enclose
predicates, and square brackets to enclose terms.

(1) In this paper , we explore an alternate [[
semisupervised approach ]] which does <<
not require >> [[ additional labeled data ]] .

Type B To identify triples of type B (two terms
from the sentence and the relation type one of has,
name, or None), we classify the relation between
each pair of terms in a sentence that are not re-
lated by a type A triple. We found that 96% of
these triples preserve the order of the two terms
in the sentence, so we also preserve the order for
extraction.
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Composition Examples Role Pct.

Type A Three phrases in a sentence (Deep - ED, obtain,
BLEU score)

Organize the
semantics of a
sentence.

57%

Type B
Two terms in a sentence with
an added predicate has or
name

(ByteNet Decoder, has,
30 residual blocks)

Organize the
semantics of a
sentence.

7%

Type C
Information unit (subject),
and two phrases in a sentence
(predicate and object)

(HYPERPARAMETERS,
use, cross - entropy loss)

Link a sentence
to its
information unit.

9%

Type D
Information unit (subject),
has (predicate), and a term in
the sentence (object)

(HYPERPARAMETERS,
has, starting learning
rate)

Link a sentence
to its
information unit.

9%

Type E

CONTRIBUTION (subject),
has (predicate), information
unit (object) OR
CONTRIBUTION (subject),
fixed (predicate), and a phrase
(object) for the information
units RESEARCH PROBLEM
and CODE

(CONTRIBUTION, has,
RESULTS),
(CONTRIBUTION, has
research problem,
neural machine
translation)

Link the
“Contribution”
node of each
paper to an
information unit.

9%

Type F Cross-sentence triples
(Positional Encoding,
inject, some
information)

Structure the
information
across sentences

3%

Table 1: Triple types, their roles, and frequency. Types A-D are addressed using neural models and Types E-F
with rules. 6% of triples do not fit in these categories and are not shown.

Type C Type C triples involve an information
unit name as the subject along with a predicate and
object from the sentence. We found that 89% of
these triples take the first predicate and the first
term in a sentence as their predicate and object re-
spectively. Furthermore, in 98% of these sentences,
the first predicate precedes the first term. Therefore,
we classify each sentence whose first predicate pre-
cedes the first term, to predict whether a triple of
this type can be extracted from the sentence. To
train this classifier, we prepend the information unit
name to the sentence text with a colon in between,
as in Example 2 (Model is the information unit).

(2) [[ Model ]] : In this work , we << introduce
>> [[ a new type of linear connections ]] for
multi - layer recurrent networks .

Type D Type D triples are similar to Type C, but
instead of a predicate phrase from the sentence,
they involve the non-sentence predicate has. We
found that 95% of these triples in the training set
take the first term in the sentence as their object,
and the first predicate in the sentence, if one exists,
almost always follows the first term. Therefore, we
classify each sentence that conforms to this pattern,
to predict whether the information unit name and
the first term constitute a has relation. We prepend
the info unit name to the sentence in the same way

as in Type C.

2.4.3 Rule-based triple extraction
Triples of type E and F are extracted using heuris-
tic rules. For type E, the subject is always CON-
TRIBUTION. The predicate can be has, in which
case the object is the name of an information unit.
If the related information unit is CODE or RE-
SEARCH PROBLEM, the predicate is a fixed pred-
icate (Code or has research problem, re-
spectively) and the object is a phrase from the sen-
tence. These rules use phrase and information units
identified in earlier steps (Sections 2.3 and 2.4.1,
respectively).

We developed the following rules to extract
cross-sentence triples (type F):

1. If the first sentence has a single entity, and the
second sentence has at least 2 entities, we as-
sign the entity in sentence 1 as the subject and
the first and second entities in sentence 2 as
the predicate and object, respectively. We add
this triple to the list only if both subject and
predicate are noun phrases, which prevents
many false positives. We also add the cor-
responding triple in the form of INFO-UNIT-
has-subject (e.g. MODEL-has-Encoder). In
many sentences that follow this rule, the first
sentence is a section header.
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Avg F1
Information Units Sentences Phrases Triples
F1 P R F1 P R F1 P R F1 P R

Our system 49.72 72.93 66.67 80.49 57.27 53.61 61.46 46.41 42.69 50.83 22.28 22.30 22.26
IAA 52.82 79.73 78.83 80.65 67.44 67.25 67.63 41.84 45.36 38.83 22.28 23.76 20.97

Table 2: End-to-end performance (Evaluation Phase 1). IAA: intra-annotator agreement.

2. If the two sentences each contain a single term
and sentence 1 term is a substring of sentence
2 term or if sentence 1 term is an acronym
of sentence 2 term, we create the following
triple: term 1-name-term 2. We extract a
term’s acronym by combining the initials of
each token in the entity. An example of a term
pair that follows this rule is (GLUE, General
Language Understanding Evaluation).

These rules are applied to consecutive sentences
only. In the training set, we found 812 triples that
follow these rules, 649 (80%) of which could be
identified correctly using these rules.

2.5 Experimental Setup

We implemented our models using Simple Trans-
formers2. We used SciBERT (Beltagy et al., 2019)
as the pre-trained language model. To train our
models, we used a batch size of 16, and empirically
found the best learning rate for each model between
10−5 and 10−4. One exception was that in our sen-
tence classification model (subtask 1), we used a
fixed learning rate of 10−5 to fine-tune the BERT,
and a larger learning rate between 5 × 10−5 and
10−3 for the dense layers. We used the AdamW
optimizer (Loshchilov and Hutter, 2017) and the
polynomial decay scheduler with the power of 0.5.
We ran the experiments on a Google Cloud VM
instance, using a Tesla V100 GPU.

3 Results

All the subtasks were evaluated on F1 scores, and
among them, triple extraction is evaluated by the
micro-average of F1 scores on each information
unit. In the end-to-end evaluation (Phase 1), the
participants were provided with the raw input to
perform all three subtasks sequentially. We were
officially ranked second in Phase 1, due to a submis-
sion error that resulted in phrase extraction F1 of
zero. Our correct submission achieved an average
F1 of 49.7%, the best score among all participating
teams. Table 2 shows our performance in Phase 1,

2https://github.com/ThilinaRajapakse/
simpletransformers

and the intra-annotator agreement (IAA) on each
subtask (D’Souza and Auer, 2020a).

We observe that, although the performance of
our system on sentence classification is lower than
human performance (57.27% vs. 67.44% F1), us-
ing its own sentence predictions, our system out-
performs human annotators on phrase recognition
(46.41% vs. 41.84% F1), and reaches compara-
ble performance to human annotators on triple ex-
traction. We also note that our system generally
performs better in terms of recall than precision.

We were officially ranked first in both parts of
Evaluation Phase 2. In Part 1, the participants
were provided with the sentences labels to con-
duct phrase recognition and triple extraction se-
quentially; in Part 2, both the sentence labels and
the phrase labels were provided to extract triples.
We essentially followed our method in Phase 1 on
phrase recognition and triple extraction, but made
several attempts to improve the performance, which
we discuss in Section 4. Our results in both parts of
the Phase 2 evaluation are shown in Table 3. Com-
pared to Phase 1 evaluation, we observe a signifi-
cant improvement in phrase recognition (46.41%
vs. 78.57% F1) in Part 1 and in triple extraction
(22.28% to 43.44% and 61.29% F1) when ground
truth contribution sentences and phrases are pro-
vided.

4 Performance Analysis

In this section, we analyze the performance of sev-
eral components of our system and compare dif-
ferent schemes for entity representation and triple
extraction. We also discuss some possible methods
for improvement based on our shared task results
and follow-up experiments.

4.1 Contribution Sentence Classification

We conducted ablation experiments to evaluate the
effect of features for contribution sentence classifi-
cation. Table 5 shows the model performance on
the 10% validation set when using all features, us-
ing either the title or the position features together
with the sentence, and using the sentence only.
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Information Units Phrases Triples
F1 P R F1 P R F1 P R

Part 1 82.49 76.84 89.02 78.57 76.86 80.35 43.44 45.06 41.94
Part 2 82.49 76.84 89.02 - - - 61.29 65.19 57.82

Table 3: Performance in phrase and triple extraction (Evaluation Phase 2). Note that we focused only on triple
extraction in Part 2, therefore the information unit extraction performance remains the same.

Unit
name

Research
problem

Ap-
proach Model Code Dataset

Experi-
mental
Setup

Hyperpa-
rameters

Base-
lines Results Tasks Experi-

ments
Ablation
analysis

F1 94.64 24.14 86.22 87.50 80.00 58.29 72.61 91.45 94.65 90.48 83.16 90.68

Table 4: Information unit classification performance.

Settings F1 P R
Sentence + title + position 65.11 63.96 66.30

Sentence + title 63.87 61.00 67.03
Sentence + position 52.28 46.38 59.89

Sentence only 51.39 49.00 54.03

Table 5: Results of ablation experiments on contribu-
tion sentence classification task.

We observe the title information significantly im-
proves the performance, and the position features
are also helpful, to a lesser extent. Combining the
title and the position features gives the best perfor-
mance on contribution sentence classification.

4.2 Information Unit Classification
In Evaluation Phase 2, the ground truth labels for
contribution sentences increased the performance
of our base model on information unit classifica-
tion from 72.93% to 76.84% F1. To further im-
prove our method, we ensembled 45 multi-class
sentence classifiers by averaging their output (us-
ing bagging), which increased the F1 score to
78.65%. Next, we improved our rules for distin-
guishing the special pairs (MODEL vs. APPROACH

and EXPERIMENTAL-SETUP vs. HYPERPARAM-
ETERS) by adjusting the lexical cues with more
careful observation of the data, which results in our
final performance (82.49% F1 in Table 3).

For further analysis, we evaluated the classifi-
cation performance on each information unit, as
shown in Table 4. The related confusion matrix is
shown in Fig. 3. We observe that severe confusion
mainly occurs between MODEL vs. APPROACH

and EXPERIMENTAL-SETUP vs. HYPERPARAM-
ETERS, pairs that we grouped together in neural
classification. This shows that while our sentence
classification model has good accuracy, there is
still much room for improvement in the rule-based
differentiation of similar units.

Figure 3: Confusion Matrix

The differentiation between MODEL and AP-
PROACH is particularly challenging. While some
papers aim at discussing an abstract idea and some
focus on system implementation, most papers fall
in the gray area between them. We also attempted
neural classification on the abstracts to deal with
this issue, but the result were not satisfactory.

4.3 Phrase extraction and classification

Specific BIO VS. simple BIO Alternative to our
method of using specific BIO tags to indicate
phrase types (Subsection 2.3), we also used an-
other scheme (“simple BIO”), in which we only
used (B, I, O) tags to mark phrase boundaries.

With this scheme, we first trained a BERT-CRF
model to extract the phrases, and then trained a
binary BERT classifier to predict phrase types. The
sentence along with the phrase marked by special
tokens is fed into the BERT model for binary clas-
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Settings
Phrase extraction Phrase classification

F1 P R F1 P R
Specific BIO 76.09 75.57 76.62 98.13 98.00 98.25
Simple BIO 77.13 76.33 77.95

98.27 98.70 97.85
Simple BIO + ensemble 78.57 76.86 80.35

Table 6: Phrase extraction and classification performance. We take predicate as the positive label to calculate the
F1 score for phrase classification.

sification. The performance comparison of these
schemes is shown in Table 6. While both schemes
are effective, simple BIO outperforms specific BIO
in phrase extraction by a small margin, so we used
this scheme in Evaluation Phase 2.

The difference may be due to the noise in phrase
types. Specifically, there is a good number of
gerund phrases, on which the predicate-term differ-
entiation is challenging. Moreover, in some cases,
a verb phrase is used as a term to form triples.
Combined with the relatively low intra-annotator
agreement, these observations suggest that uncer-
tainty and noise in the data affects the performance
of the models. Note that the specific BIO scheme
eliminates the need for a separate phrase classifica-
tion model, making it preferable when the training
and inference speed is a concern.

Error analysis and improvement We investi-
gated the wrong predictions of our phrase extrac-
tion model, and found that most errors are due to
boundary detection issues. For example, in one
sentence, the model predicts all layers of repre-
sentation as a phrase, while all layers, of, repre-
sentations are annotated as three separate phrases.
The opposite situation also occurs, when the model
predicts a single unit as separate phrases. Another
type of boundary error occurs when the model can-
not predict correctly whether to include a non-core
phrase element, like an adverb, in the phrase or
not (e.g., it predicts see that whereas the annotated
phrase is also see that). We believe that a relaxed
boundary match evaluation can be considered for
this task.

We attribute these errors to the uncertainty in
semantic granularity, and attempted to alleviate
the problem by ensembling. We get 12 bootstrap
samples from the training data, and on each sample,
we train the model and save its snapshot after each
epoch from the 3th epoch to the 10th epoch, to
get a total of 96 submodels. To aggregate their
predictions, we extract a phrase in a sentence only
if it is predicted by more than N submodels, where

N is a hyperparameter around 48. We present the
result in Table 6 for comparison. We observe that
ensembling noticeably improved phrase extraction
(from 77.13% to 78.57% F1).

4.4 Triple extraction

Triple vs. pairwise classification In addition to
triple classification method (Subsection 2.4.2) to
extract type A triples, we also used pairwise classi-
fication for this task. In this scheme, we considered
every (subject, predicate, object) triple as a compo-
sition of two (predicate, term) pairs, or “candidate
pairs”, and used a neural model to predict whether
the two phrases in the pair are associated. After pre-
diction, we reconstructed triples from the predicted
pairs using rules. If a predicate is predicted to be
associated with two terms, we combine them into
a triple while preserving the order of the two terms
in the sentence (subject first). If one predicate is
associated with more than two terms, we only ex-
tract the triples in which the predicate is located
between the two terms in the sentence. With only a
few exceptions, we confirmed the effectiveness of
these reconstruction rules; in other words, the per-
formance of the pairwise scheme depends mainly
on the classification accuracy on candidate pairs.

We compared the performance of the two
schemes for type A triple extraction on the 10%
validation set. We also attempted to address the im-
balance of class labels resulting from both schemes
by downsampling and class weight adjustment.

Settings F1 P R
No Pair 91.33 91.23 91.43

adjustment Triple 75.95 70.58 82.20

Downsampling
Pair 91.31 89.09 93.63

Triple 80.04 79.43 80.66
Class Pair 91.30 88.93 93.79

weight Triple 80.37 81.35 79.42

Table 7: Performance of the pairwise classification
scheme.

In the pairwise classification scheme (Table 7),
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F1 P R
No adjustment 87.54 85.93 89.22
Downsampling 75.59 62.32 96.04
Class weight 83.35 74.94 93.89

Table 8: Performance of the triple classification
scheme.

there is a 11% drop in the F1 score from the candi-
date pair classification to triple prediction, which is
not unexpected as the model needs to correctly clas-
sify both of the candidate pairs to correctly predict
a triple.

Table 8 shows the performance of the triple
classification scheme, which achieves better per-
formance compared to the pairwise classification
scheme (87.54% vs. 80.37% F1). We also observed
that the best performance was obtained without
dealing with the imbalanced data. It seems that
despite constituting a small portion of the dataset
(9.7%) , the number of the positive samples is large
enough for the model to learn useful patterns.

Type-specific performance We also evaluated
our deep learning methods for the extraction of the
four types of triples, as shown in Table 9.

Type F1 P R
A 87.54 85.93 89.22
B 55.56 88.24 40.54
C 83.33 77.96 89.51
D 75.86 78.11 73.74

Table 9: Performance of triple extraction on each type.

Whereas our models for Type A, C, and D per-
form generally well, our model for Type B is far
less accurate. Type B is a little special among the
four types in that it requires the prediction of rela-
tion types. The type has is more difficult to pre-
dict than name, because the sentence often lacks
semantic clues about the belonging or inclusion re-
lationship between the two terms. A plausible idea
is to incorporate has into the input, but it is difficult
to do so without breaking the grammatical integrity
of the sentence. We leave this improvement for
future work.

Coordination in triple extraction A common
problem we observed in our triple extraction mod-
els is the failure to account for coordination be-
tween terms. Example 3 shows a sentence with the
terms in bold, and the two type C triples associating

them. Our model only extracts the first triple, and
misses the second.

(3) The MoE consists of a number of experts,
each a simple feed - forward neural network,
and a trainable gating network which selects
a sparse combination of the experts to process
each input.
(APPROACH, consists of, number of ex-
perts)
(APPROACH, consists of, trainable gat-
ing network)

We attempted to address this issue in post-
processing, and used Stanza dependency parser (Qi
et al., 2020) to detect coordination of words in
phrases. If one phrase is used in a triple, we gen-
erated a parallel triple by replacing the term with
the other. While this method improves recall (from
57.57% to 58.41%), it also led to precision errors
(from 65.15% to 61.77%), its overall effect being
negative (from 61.13% to 60.04% F1). We plan to
refine this approach in future work.

5 Conclusion

We developed a system to generate structured rep-
resentations of research contributions described in
NLP publications in a manner compatible with the
ORKG framework, achieving the top performance
in the NCG shared task. We combined a cascade
of state-of-the-art BERT-based classification and
sequence labeling models with rule-based methods.
In particular, we proposed a novel approach for
triple extraction, where we tackled triples with dif-
ferent characteristics using different relation classi-
fication methods. We also explored various alterna-
tives to the components in our end-to-end system to
analyze the contribution of individual components.

In future work, we plan to improve the differ-
entiation of similar units (e.g., MODEL vs. AP-
PROACH), improve the extraction of type B triples,
and address coordinated triples more thoroughly.
We did not attempt to extract approximately 6% of
the triples that did not fit in our classification (Table
1). These often involve nested information units,
and we also hope to explore them in more depth in
future work.
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Abstract

SemEval-2021 Task 8: MeasEval aims at im-
proving the machine understanding of mea-
surements in scientific texts through a set of en-
tity and semantic relation extraction sub-tasks
on identifying quantity spans along with vari-
ous attributes and relationships. This paper de-
scribes our system, consisting of a three-stage
pipeline, that leverages pre-trained language
models to extract the quantity spans in the text,
followed by intelligent templates to identify
units and modifiers. Finally, it identifies the
quantity attributes and their relations using lan-
guage models boosted with a feature re-using
hierarchical architecture and multi-task learn-
ing. Our submission significantly outperforms
the baseline, with the best model from the post-
evaluation phase delivering more than 100%
increase on F1 (Overall) from the baseline.

1 Introduction

Most scientific experiments are accompanied by
relevant measurements, which help researchers to
quantify their observations and qualitative argu-
ments. Measurements also play a pivotal role in
summarizing large experiments, and provide a brief
idea of the results obtained. It is customary for sci-
entists to present their research in the form of scien-
tific papers. Nowadays, with thousands of papers
being published digitally every year, it is extremely
difficult to go through every single paper in order
to get the desired data. The most popular electronic
open-access repository of e-prints, arXiv, currently
has 1,867,929 articles1. The sheer vastness of this
number suggests just how important it is for us
to automate the task of extracting measurement-
related information from research papers (Singh
et al., 2016).

∗Equal contribution.
1as of 9th April, 2021

A thorough understanding of the measurements
not only requires the numerals, but also the con-
text in which the quantities occur. Moreover, the
entities and the properties measured along with the
qualifiers that condition the measurements are cru-
cial for understanding the measurement. MeasEval
(Harper et al., 2021) is a semantic relation extrac-
tion task focused on obtaining 9 different entities
pertaining to counts, measurements and qualify-
ing attributes of these quantities in a collection of
excerpts from research papers in English. Figure
1 shows an example of a quantity along with its
attributes and relations from this dataset.

We propose a three-stage pipeline to address this
task. The first stage uses a pre-trained BERT model
(Devlin et al., 2019) to detect quantity spans from
sentences. Receiving the detected spans as inputs,
the second stage obtains the units and modifiers us-
ing extracted units and modifier keywords. Finally,
the third stage receives the quantity spans from the
first stage and uses another pre-trained language
model over each quantity-span-conditioned sen-
tence to obtain quantity-span-aware contextualized
representations for each sub-token in the sentence.
These representations are then used to detect the
measured entity corresponding to each quantity (if
any). The predictions from the measured entity task
are then fused with the individual representations
for each sub-token. These representations are used
to detect the measured property and the qualifiers
in a multi-task learning setting (Ruder, 2017).

Our submission surpassed the baseline by a sig-
nificant margin and ranked 3rd for the Unit task.
Our current best model delivers 516.7%, 436.8%,
and 296.4% F1 (Overlap) (Mei and Radev, 1979)
gains for Measured Entity, Measured Property and
Qualifier tasks respectively, over the baseline.
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We showed that co-deposition of blended mixtures leads to 60% higher

photocurrents than in thickness-optimized Pth/C60 heterojunction counterparts [37].

                     Quantity

                     Qualifier
                     Measured Property

                     Measured Entity

HasProperty

HasQuantity
Qualifies

Figure 1: Visualization of Annotated Dataset

2 Related Works

Understanding and extracting information from
scientific documents has been receiving increas-
ing interest (Tsai et al., 2006; Nadeau and Sekine,
2007). Extracting units of measurement from scien-
tific documents was previously studied via regular
expressions and supervised classifiers (Berrahou
et al., 2013; Sevenster et al., 2015).

In the orthogonal directional, there has been
rapid progress in understanding natural language
using deep pre-trained language models (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2020;
Yang et al., 2019), which has lead to a general
improvement across multiple tasks. The sequence
labelling (Lample et al., 2016; Panchendrarajan and
Amaresan, 2018) and span prediction (Luo et al.,
2020; Pang et al., 2019) tasks for natural language
have also received great interest recently. We build
upon these systems.

3 Problem Statement

We are given a set of documents D = {(di)ni=1}.
Every document di ∈ D, consists of various Quan-
tity (Q) spans Qi = {(qji )mj=1}. Every qji ∈ Qi,
can have a Unit of measurement (e.g. cm, ml) as-
sociated with it. Also every qji ∈ Qi is associated
to some (or no) Modifiers (Mod) which provide
information about the type of Q (e.g. whether it is
a range of values, whether it denotes the Median
of a set of values, etc.)2. For every qji ∈ Qi, there
can exist a corresponding Measured Entity (ME)
eji . Some Qs do not have any ME, e.g. in ‘3413
women’, the measurement is 3413 and ‘women’
is the ‘unit’ of 3413 and not its ME (according
to “S0006322312001096-1177.tsv”). Similarly in
’three occasions’, the measurement is ’three’ and
’occasions’ is its ’unit’ and not its ME (according
to “S0165587612003680-1078.tsv”). If a qji has
a corresponding ME eji , it can also have an asso-
ciated Measured Property (MP) pji . Finally, the

2https://github.com/harperco/MeasEval/
tree/main/annotationGuidelines

Qs, MEs and MPs can have a number of Quali-
fiers (Qual) qualji providing additional information
about them.

The problem also introduces three relations,
namely Qualifies (QS), HasProperty (HP), and
HasQuantity (HQ). These relations are defined
between Qs, MEs, MPs and Quals as binary classi-
fication functions (f(x, y)→ (0, 1)):

• QS(x, a) = 1, ⇐⇒ the Qual, a, qualifies
the element x, where x is a Q, ME or MP.

• HP (p, e) = 1, ⇐⇒ the MP, p, is associated
with the ME, e.

• HQ(y, q) = 1, ⇐⇒ the Q, q, is related to
element y, where y is an ME or MP.

The problem statement consists of 5 sub-tasks.
We deal with identifying all Q spans in the doc-
uments in sub-task 1, followed by detecting the
Units and Mods for each identified Q in sub-task
2. In sub-tasks 3 and 4, we identify the ME, MP,
and Qual spans, corresponding to the extracted Qs.
Finally in sub-task 5, we identify the relationships
HQ, HP, and QS between the detected Q, ME, MP,
and Qual spans. Figure 1 shows the annotation
procedure to be followed (Stenetorp et al., 2012).

4 System Overview

We model all the previously described sub-tasks as
supervised learning problems. Firstly, we perform
a minimal pre-processing of sentence segmentation
and number normalization on the documents. Then,
Stage 1 handles sub-task 1 and the Stage 2 handles
sub-tasks 2 respectively, and the remaining ones
are handled by Stage 3 of our pipeline.

Before proceeding to describe our approach, we
describe the baseline model, provided by the task
organizers. The baseline treats the detection of Q,
ME, MP and Qual spans all as sequence labeling
problems. It uses the spaCy Entity Tagger model
(Honnibal et al., 2020) to extract all these four
spans. The Units for these Qs are obtained by
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Stage 2

Stage 1 Stage 3

Modifier: NoneUnit: nmTraining
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These observations were followed by Moutou et al. (2003) who measured the transit
depth in the He 1083 nm line that was predicted significant by Seager et al. (2000).
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Figure 2: Overview of our Pipeline

matching the largest Units in these predicted spans
with those from the train dataset.

4.1 Stage 1

Similar to the baseline, we treat the Q spans learn-
ing problem as a sequence labelling problem. This
is an intuitive step as it can detect multiple spans
within the same text segment while being signif-
icantly cheaper in terms of the computation cost.
Specifically, for a given sentence s, the input to our
model is [CLS] s [SEP ]. It is sub-word tokenized
(Wu et al., 2016) to get the one-hot sub-token se-
quence w0, w1 . . . wn. These sub-tokens are then
fed to BERT to obtain the contextualized represen-
tations x0, x1 . . . xn. as follows.

First the word vectors are obtained using the
Embedding E and Positional-Embedding Epos:

x
(0)
j = wjE + Epos

j (1)

Then these vectors are passed through L layers
of transformer encoder (Vaswani et al., 2017) to ob-
tain the contextualized representation. Each trans-
former encoder layer l receives the output vector se-
quence {(x(l−1)j )nj=0} = x

(l−1)
0 , x

(l−1)
1 . . . x

(l−1)
n

from the previous layer l − 1 and computes the

output representation {(x(l)j )nj=0} as follows:

{(z(l)j )nj=0} = LN(MSA({(x(l−1)j )nj=0}) +
{(x(l−1)j )nj=0}) (2)

{(x(l)j )nj=0} = LN( {(z(l)j )nj=0} +
{((W l

2)
T f((W l

1)
T z

(l)
j + bl1) + bl2)

n
j=0}) (3)

Here MSA is Multi-headed Self Attention and
LN denotes Layer Norm. W l

2,W
l
1, b

l
1, b

l
2 are train-

able parameters and f is the activation function.
The final contextualized representations
{(xj)nj=0} = {(x(L)j )nj=0} are the outputs of the
Lth transformer layer. Finally, these represen-
tations xj (excluding j = 0, j = n for [CLS],
[SEP ] tokens) are each classified to a binary label:

(yNQ
j , yQj ) = W T

c xj + bc (4)

Here Wc and bc are learnable parameters and
(yNQ

j , yQj ) are the logits. This formulation of our
problem can also be treated as the popular BIO
tagging scheme excluding the ‘B’ beginning tag.
This is then used to greedily match the largest con-
tiguous span of sub-tokens with positive labels.
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4.2 Stage 2

This stage receives the Q span predictions from
Stage 1 as input and uses a method similar to the
baseline, to obtain the Units. We extracted the set
of Units occurring in the annotated Qs, from the
documents in the dataset. However, in scientific
documents, often combinations of units are present
(e.g. Kgms−2 is a combination of ‘Kg’, ‘m’ and
‘s’). Our future work includes extending our ap-
proach to be exhaustive to handle such complex
combinations of units.

To obtain the keywords for modifiers, given a
Q span, we extracted the set of tokens occurring
inside the span as well as in the neighboring win-
dow of 10 characters, on either side of the actual
span. We discarded stopwords, punctuation marks
and numbers. Then, we calculated the rate of co-
occurrence between the remaining set of tokens
and the Mods in the train dataset. This helped
us to obtain keywords acting as significant cues
for the respective Mod classes. Examples include
”approximately” for IsApproximate, ”greater than”
for IsRange, etc. Another challenge with the sub-
task is the presence of similar sets of keywords
corresponding to multiple Mod types. For exam-
ple, the Mods ‘IsMean’ and ‘IsMeanHasTolerance’
are very similar with the slight difference that key-
words corresponding to the Mod ‘IsMeanHasTol-
erance’ contain the additional symbol, ‘±’. We
adopted a hierarchical approach in order to detect
such minute differences and correctly identify the
type of Mod for every Q span, e.g. IsMeanHas-
Tolerance is True when IsMean and HasTolerance
are both true. We started by detecting a general
Mod class, and gradually used extra cues to clas-
sify the span into more specific Mod classes such
as {IsMeanHasSD, IsMeanHasTolerance, IsRange-
HasTolerance, IsList}.

4.3 Stage 3

The input to this stage is the sentence-quantity tuple
〈s, q〉 and our objective is to detect the spans for
ME, MP and Qual. There could be multiple Qs
in a single sentence. We treat detecting ME, MP,
and Qual as three sequence labeling sub-tasks in a
multi-task learning setting.

We create a modified sentence s′ where the Q
span q inside the sentence is enclosed within a spe-
cial start marker 〈E〉, and a special end marker 〈/E〉
(Baldini Soares et al., 2019; Kaushal and Vaidhya,
2020; Zong et al., 2020). We additionally have

a special segment embedding for the Quantity (q)
portion of the quantity-context encoded sentence s′,
different from the remainder of the sentence. We
input s′ and corresponding segment embeddings
to BERT and obtain quantity-aware contextualized
vectors {v1, v2...vn} for each of the n sub-tokens
in s′. We then obtain the ME task logits ei, for each
sub-token vector vi:

ei = W T
e vi + be (5)

Here W T
e and be are learnable parameters. Now, as

per the annotation rules of the task, a Q will have
an associated MP only if an ME related to the given
Q exists. Hence, for predicting the MP, we extract
features from the ME task logits and concatenate
them with each sub-token vector vi as follows:

r = [maxni=1ei;meann
i=1ei] (6)

pi = W T
p [vi; r] + bp (7)

Here W T
p and bp are learnable parameters, max

and mean are element-wise operations and pi is the
logit of the ith sub-token for the MP sub-task. Here
; denotes concatenation. Similarly, we obtain the
logits qui corresponding to the Qual task, for every
sub-token vector vi of the sentence s, as follows:

qui = W T
qu[vi; r] + bqu (8)

Here W T
qu and bqu are learnable parameters. The

model is trained with the following combined multi-
task learning objective:

Loss(s, q, (yei )
n
i=1, (y

p
i )

n
i=1, (y

qu
i )ni=1) =

n∑

j=1

(L(ej , yej ) + L(pj , ypj ) + L(quj , y
qu
j ))

(9)

Here (yei )
n
i=1, (y

p
i )

n
i=1, (y

qu
i )ni=1 are ground truths

for each sub-token for the ME, MP and Qual sub-
tasks respectively; L is the softmax cross-entropy
loss (Dunne and Campbell, 1997).

Similar to Stage 1, we greedily match the longest
contiguous positive labeled spans for each of the
three sub-tasks and obtain the ME span e, MP span
p and Qual span qu corresponding to the input Q
span q for the sentence s. Here (q, e, p, qu) forms
an annotation set which is then post processed to
generate the relations HP, HQ and QS on this anno-
tation set as per their definitions in §3.
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Model Precision Recall F1
BERT-base 0.872 0.972 0.919
BERT-large 0.874 0.933 0.902

RoBERTa-BioMed 0.890 0.951 0.919
SciBERT 0.920 0.889 0.904
BioBERT 0.904 0.946 0.924

Table 1: Stage 1 Results

Model F1ME F1MP F1Qual

BERT Individual 0.499 0.386 0.137
BERT ME, MP 0.515 0.467 N/A
BERT MP, Qual N/A 0.433 0.166
BERT ME, Qual 0.420 N/A 0.191

BERT ME, MP, Qual 0.517 0.465 0.191
BERT X 0.459 0.330 0.125
BERT Y 0.510 0.428 0.143

Table 2: Multi-Task Results. F1ME , F1MP , and
FQual are the F1 measures on the ME, MP, and Qual
tasks respectively.

4.4 Domain Specific BERT

Domain specific language model weights lead to a
significant performance boost (Müller et al., 2020;
Nguyen et al., 2020; Lee et al., 2019; Vaidhya and
Kaushal, 2020; Beltagy et al., 2019). SciBERT
(Beltagy et al., 2019), BioBERT (Lee et al., 2019),
and RoBERTa-BioMed (Liu et al., 2020; Gururan-
gan et al., 2020) performed relatively well as they
are pre-trained on scientific documents in domains
relevant to our task.

5 Experiments and Discussion

All experiments were performed using PyTorch
(Paszke et al., 2019) and HuggingFace’s transform-
ers (Wolf et al., 2019). Optimization was done
using Adam (Kingma and Ba, 2014). We include
the complete set of experimental parameters in §D.

5.1 Development Phase

After dividing the 5 sub-tasks into 3 stages, we
worked on each stage individually. We trained the
models exclusively on the train dataset and used
the trial dataset for validation and hyperparame-
ter tuning. We used the F1, Precision and Recall
metrics for each token in the sequence labeling sub-

Model F1ME F1MP F1Qual

BERT-base 0.517 0.465 0.191
BERT-large 0.573 0.446 0.317

RoBERTa-BioMed 0.577 0.473 0.232
SciBERT 0.556 0.486 0.188
BioBERT 0.575 0.501 0.297

Table 3: Stage 3 Results

tasks, for evaluating individual components over
the validation set during the development phase.

Table 1 shows the performances of various
BERT models in Stage 1. We observe that
BioBERT delivers the best F1 score, followed by
BERT-base and RoBERTa-BioMed. Much to our
surprise, BERT-Large and SciBERT performed
worse than BERT-base despite their large size (Li
et al., 2020) and domain specificity.

In order to understand the role of each compo-
nent of our model in Stage 3, we perform various
ablation studies as shown in Table 2. First, we ex-
periment with various combinations of multi-task
learning with the three tasks - ME, MP and Qual.
We observe that multi-task learning can lead to sig-
nificant gains on all three tasks. Only the multi-task
combination of ME and Qual led to performance re-
duction. Multi-task training all three tasks together
nearly gives the best performance on all three met-
rics. We attribute this gain in performance to the
inter-related natures of the three sub-tasks.

Secondly, we study the importance of segmen-
tation and concatenation of features. We create
BERT X, which doesn’t add separate segment em-
beddings for the Q span, and BERT Y which does
not concatenate the ME logit features for predicting
MP and Qual spans. From Table 2, we observe that
BERT X has a significant reduction in performance
for all the three sub-tasks upon excluding the seg-
ment embeddings, as the model input doesn’t have
a clear demarcation between the Q span portion and
non-Q span portion of the sentences. We also ob-
serve a reduction in performance for MP and Qual
for BERT Y, showing the importance of fusing the
logits of ME for the former two sub-tasks.

Similar to Stage 1, we experiment with vari-
ous BERT models as shown in Table 3. Here
we observe that RoBERTa-BioMed, BioBERT and
BERT-large perform the best for ME, MP and Qual
respectively. BERT-Base performs the worst for all
of them. All the models except BioBERT have sig-
nificantly lower F1Qual than BERT-Large. Each
model produces an F1ME score greater than 0.5.

5.2 Post-Evaluation Phase

The evaluation was done using the official script3.
The classification and relation extraction sub-tasks
were both evaluated by a binary match score and
the span identification tasks by a SQuAD style (Ra-

3https://github.com/harperco/MeasEval/
blob/main/eval
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Model Q ME MP Qual Unit Mod HQ HP QS Overall
Evaluation Phase

Baseline 0.815 0.066 0.068 0.028 0.531 0.000 0.081 0.010 0.014 0.225
Submission 0.787 0.113 0.012 0.005 0.748 0.309 0.076 0.006 0.000 0.278

Post-Evaluation Phase
BERT-base 0.828 0.338 0.277 0.072 0.765 0.465 0.310 0.174 0.000 0.402
BERT-large 0.705 0.343 0.296 0.081 0.755 0.442 0.325 0.207 0.000 0.392

RoBERTa-BioMed 0.812 0.384 0.365 0.104 0.804 0.434 0.383 0.238 0.005 0.440
SciBERT 0.809 0.382 0.324 0.072 0.811 0.435 0.354 0.230 0.000 0.433
BioBERT 0.844 0.407 0.365 0.111 0.796 0.465 0.400 0.269 0.000 0.456

Table 4: Test Set Performance

jpurkar et al., 2016) overlap score. The leaderboard
ranking was based on a global F1 score averaged
across all sub-tasks.

For our official submission, we selected
BioBERT as it achieved the best F1 score in Stage
1 and near-best performance for the tasks in Stage
3. Minor discrepancies in the submission format in-
volving the annot-id reference, quotes, whitespace-
sensitivity and utf-8 encoding, not detected by the
evaluation script were fixed in the post-evaluation
phase. Table 4 shows the final performance of our
models. After proper conversion to the desired
format during the post-evaluation phase, we also
evaluated various other BERT models along with
our best model, BioBERT. BioBERT delivers the
best performance of 0.456 F1 (Overall) followed by
RoBERTa-BioMed and SciBERT. BioBERT also
performs best on 7 of the 9 individual tasks.

5.3 Future Work

Stage 3 of our pipeline operates at a sentence-level,
so for a given Q span, it does not capture the ME,
MP, and Qual spans occurring across sentences.
However, our approach can be easily extended to
consider the nearby sentences or even the entire
document (at the cost of computation speed).

The identification of exact word boundaries for
the span identification tasks is crucial. Treating
these tasks as sequence labeling problems and
greedily matching for spans can lead to a few prob-
lems. For example, if a sub-token occurring within
a long span is mislabeled, then the span is split
into two components. In the future, we can explore
leveraging contrastive learning (Chen et al., 2020)
to improve the predictions for exact word bound-
ary match. We can have transition based labeling
layers such as Conditional Random Fields (CRFs)
(Wallach, 2004) over the more popular BIO/BIOES
sequence tagging schemes (Yang et al., 2018).

Lastly, while the multi-staged approach is fairly
interpretable at the intermediate outputs of Q spans,

it also leads to a few issues. The predictions for
MP, ME and Qual spans in Stage 3 are heavily de-
pendent on the Q spans from Stage 1, and there
does not exist any mechanism to rectify errors in
Stage 1 later, in our approach. There is also an ex-
posure bias (Schmidt, 2019; Galloway et al., 2019)
as the model is trained on the ground truth, while
tested on the predicted Q spans. Moreover, we
believe that having common weights between the
BERT models of Stage 1 and Stage 3 will not only
make our approach faster and lighter, but also more
performant through multi-task learning.

6 Conclusion

In this paper, we present our system details for the
SemEval 2021 Task-8: MeasEval which is aimed at
extracting entity and semantic relations pertaining
to counts and measurements. We use a multi-staged
approach where we first identify the quantity spans
using BERT, then the units and modifiers for these
predicted quantity spans by intelligent templates
that leverage extracted units and modifier keywords.
Finally we input the quantity-aware sentences to
another BERT model to predict ME, MP, and Qual
in a multi-task learning settings with feature re-use.
Our submission achieved the second runner up po-
sition on the leaderboard for the Unit-identification
sub-task and it showed the highest improvement
in the post-evaluation phase, with an F1 (Over-
all) score only 0.063 lower than the highest score
across both the phases.
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Dataset Total Documents Q ME MP Qual Avg. Q Avg. ME Avg. MP Avg. Qual
Train 233 883 875 563 210 3.790 3.755 2.416 0.901
Trial 65 281 273 179 99 4.323 4.200 2.754 1.523
Eval 130 499 499 330 162 3.838 3.838 2.538 1.246

Table 5: Span Statistics. Here Avg. signifies the average number of spans present per document.

Dataset Total Documents HQ HP QS Avg. HQ Avg. HP Avg. QS
Train 233 878 560 210 3.768 2.403 0.901
Trial 65 275 177 99 4.231 2.723 1.523
Eval 130 499 330 162 3.838 2.538 1.246

Table 6: Relation Statistics. Here Avg. signifies the average number of relations present per document.

Dependency Version Usage
PyTorch 1.4 NN Layers & Autograd
Transformers 4.2 BERT Models
Scikit-learn 0.23 Metrics
SciPy 1.5 Metrics
NLTK 0.5 Sentence Tokenization
Pandas 1.2 Loading Files
Pandasql 0.7 Querying DataFrames
Vladiate 0.0.23 Validating Results
NumPy 1.18 Numerical computation

Table 7: Packages Used

Hyperparameter Value
Learning Rate 3e− 5
Stage 1 Epochs 5
Stage 3 Epochs 10

Batch Size 16
Dropout Final 0.1
BERT Dropout 0.1
Adam: (β, ε) ((0.9, 0.999), 1e− 8)
Weight Decay 0

BERT Configuration Default
BERT Embeddings Trainable

Table 8: Best Hyperparameters

A Appendices

Following is the overview of the appendix.

• §B – We provide implementation details:
codebases, trained models and detail depen-
dencies.

• §C – We provide details of the dataset in
shared task, its statistics and annotation set
for the task.

• §D – We detail the experimental settings and
hyperparameters.

B Code and Dependencies

We will make our code public 4 with instructions
to replicate our systems. We also release our pre-

4https://github.com/Ayushk4/SE-T8

trained model for our submissions 5.
All experiments were performed using PyTorch

(Paszke et al., 2019) and HuggingFace’s transform-
ers (Wolf et al., 2019) libraries. The optimization
was done using Adam optimize (Kingma and Ba,
2014). We used git for reproducibility setup. In
Table 7 we list all the dependencies used in our
codebase. We include a step-by-step guide to setup
and run the codebase in our README file present
within the code also with details to set up our envi-
ronment.

C Dataset Details

We experiment on the dataset provided by the task
organizers, consisting of gold annotations (Harper
et al., 2021) for the set of scientific documents in
English which are released here6. These scientific
documents are a subset of the Elsevier Labs OA-
STM-Corpus available publicly7.

Basic Annotation Set: The basic annotation set
consists of 4 types of spans and 3 types of rela-
tions between them. The span types are Quantity
(counts and measurements), Measured Entity (the
item whose measurement/count is provided by the
Quantity spans), Measured Property (the property
of the Measured Entity, whose measurement is pro-
vided by the Quantity spans) and Qualifier (special
circumstances which affect a particular measure-
ment). These spans are related using three types of
Relations - HasQuantity (relates a Measured Entity
or a Measured Property to a Quantity), HasProperty
(relates a Measured Entity to a Measured Property)
and Qualifies (relates a Qualifier to any Measured
Entity, Measured Property, or Quantity).

5https://github.com/Ayushk4/SE-T8/
releases

6https://github.com/harperco/MeasEval
7https://github.com/elsevierlabs/

OA-STM-Corpus
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Model Huggingface’s Model API
BERT-base bert-base-cased
BERT-large bert-large-cased

RoBERTa-BioMed allenai/biomed roberta base
SciBERT allenai/scibert scivocab cased
BioBERT dmis-lab/biobert-v1.1

Table 9: BERT Versions

Hyperparameter Set of Values
Learning Rate {3e− 4, 3e− 5, 3e− 6, 3e− 7}

Number of Epochs {5, 10, 15, 20}
Batch Size {4, 8, 16, 24}

Table 10: Sets of Hyperparameters

Statistics: The complete dataset is divided into
three parts: train, trial and eval. We train on the
train set. Trial is used for validating and Eval is the
held-out test dataset on which the final performance
of the models are evaluated. In Table 5, we list the
dataset statistics for the spans of each type. In Table
6, we list the dataset statistics related to the various
relations - (HP, HQ, QS).

D Experimental Settings

Preprocessing: We sentence tokenize every doc-
ument using the NLTK sentence tokenizer. we
observed that phrases such as “Fig. 1”, “Table. 2”
and “et al. ”, along with a few others, caused sen-
tences to be tokenized at wrong intervals (due to
the presence of “.”). We detected and re-joined the
instances for such phrases.

Normalization: We normalized the dataset by
replacing all numerals by the same digit - 0. The
helped our model identify the Q spans better. We
observed that without normalization, the F1 (Over-
lap) Score for Q spans decreased considerably
(from 0.844 to 0.790).

Training and Hyperparameters: The model
take ≈ 20 seconds per epoch on Tesla P100. The
number of parameters are same as BERT. Table 9
lists the HuggingFace model names corresponding
to the BERT models we used. We validated our
models using F1 metrics for Stage 1 and Stage 3
over the trial dataset. In Table 10 we share the sets
of hyperparameters that we explored whereas in Ta-
ble 8 we mention the best set of hyperparameters
that we obtained.
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Abstract

Scientific documents are replete with measure-
ments mentioned in various formats and styles.
As such, in a document with multiple quanti-
ties and measured entities, the task of associ-
ating each quantity to its corresponding mea-
sured entity is challenging. Thus, it is neces-
sary to have a method to efficiently extract all
measurements and attributes related to them.
To this end, in this paper, we propose a novel
model for the task of measurement relation ex-
traction (MRE) whose goal is to recognize the
relation between measured entities, quantities
and conditions mentioned in a document. Our
model employs a deep translation-based archi-
tecture to dynamically induce the important
words in the document to classify the relation
between a pair of entities. Furthermore, we in-
troduce a novel regularization technique based
on Information Bottleneck (IB) to filter out the
noisy information from the induced set of im-
portant words. Our experiments on the recent
SemEval 2021 Task 8 datasets reveal the effec-
tiveness of the proposed model.

1 Introduction

One of the key indicators of scientific writing is the
quantities description of various experiments and
results. While the mentions of all measurements
could provide a rigorous understanding of the topic,
it might make the reading and automatic process-
ing of the text more difficult. As such, designing
effective methods to recognize the mentions of mea-
surements and also the conditions in which they
are valid is necessary. According to the definition
of the SemEval 2021 Task 8 (Harper et al., 2021),
a measurement might consist of the following com-
ponents: (i) Measure Entity: A span referring to
an entity that one of its properties has been mea-
sured and its value is provided in the document; (ii)
Measured Property: A span referring to the charac-
teristics of an entity that has been measured; (iii)

[ME1] samples [/ME1] have been generated
with Coronin and Dystrophin proteins. In the
filtration experiments, some of them with a
[PR1] diameter[/PR1] [QT1] less than 2 mm
[/QT1] have been filtered out using [QT2]
200-degree [/QT2] filtering [ME2] radiation
[/ME2], resulting in [QT3] 20% [/QT3] [ME3]
utilization [/ME3]. These results are
obtained in a [QL1] dry climate [/QL1].

Figure 1: A document annotated with the measured en-
tities (i.e., [ME]), quantity (i.e., [QT]), measured prop-
erty (i.e., [PR]) and qualifier (i.e., [QL]) (best viewed
in color).

Quantity: A span in the document that refers to a
value and possibly it comes with a unit; and (iv)
Qualifier: A span referring to a condition in which
more information about the Quantity, Measured
Property or Measured Entity is provided. Figure
1 shows a sample document annotated with the
aforementioned entities. In this paper, we collec-
tively name all of these four types as measurement
component.

As it is shown in the provided example, docu-
ments might contain multiple entities, properties,
quantities and qualifiers that are scattered in differ-
ent parts of the document. As such, finding which
measurement components are associated with each
other is not straightforward. In this paper, this task
is called measurement relation extraction (MRE)
that aims to recognize what is the relationship be-
tween two given measurement components. More
specifically, the following relation types are con-
sidered: (i) Has-property: Indicates the selected
property is one of the characteristics of the selected
entity; (ii) Has-Quantity: Indicates the selected
quantity is provided for the selected entity or prop-
erty; (iii) Qualifies: Indicates the selected qualifier
provides more information about the selected entity
or quantity; (iv) None: Indicates that there is no
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relation between the selected measurement compo-
nents. For instance, in the given example document
in Figure 1, the following relations between differ-
ent measurement components exist: (1) ME1 has
property PR1; (2) PR1 has quantity QT1; (3) ME2

has quantity QT2; (4) ME3 has quantity QT3; and
(5) QL1 qualifies ME3;

Finding the relation between a pair of measure-
ment components is challenging and it requires con-
sideration about the position of the given entities
and the context in which they are used. Generally,
this task can be formulated as a typical Relation
Extraction (RE) task whose goal is to identify the
semantic relation between two given named entity
mentions. For RE, it has been shown that contex-
tual information such as dependency path between
the two given entities is important. As such, in this
paper, we also aim to exploit the contextual infor-
mation for a pair of measurement entities to predict
the relation between them. To this end, the main
question to answer is how we can extract the con-
textual information that is helpful for this task. One
simple solution is to use the dependency path be-
tween the two measurement components. However,
this might not be perfect due to various reasons
such as lack of high-quality dependency parser de-
signed especially for scientific domain and the fact
that the dependency tree is ignorant of the down-
stream task (i.e., MRE) thus might not be efficient
to extract important context from. Therefore, in this
paper, we aim to propose a novel method to dynam-
ically infer the important context for the MRE task.
More specifically, we introduce a deep architecture
to infer which words should be selected from the
given document to form the important context from
which the relation between the given measurement
components can be inferred. The proposed deep ar-
chitecture exploits a translation-based perspective
to achieve this goal.

In addition, in this paper, we propose a novel
method to efficiently regularize the representations
of the input words based on the inferred impor-
tant context. In particular, our method is based on
the Information Bottleneck (IB) theory in which
the inferred context is treated as information bot-
tleneck to exclude noisy information in the input
document representation. We conduct extensive
experiments on the SemEval 2021 Task 8 dataset.
Our experiments reveal the effectiveness of the pro-
posed model for the task of MRE.

2 Model

Task Definition: The input to the model is the
document D = [w1, w2, . . . , wn] consisting of
n words and also the positions of the two enti-
ties of interest, ws and wo where s and o are the
indices of the first (i.e., subject) and the second
(i.e., object) entities, respectively. The input doc-
ument is annotated with the label l from the set
L = {hasQuantity, hasProperty, qualifies,None}.
Our proposed model for this task consists of four
major components: (1) Input encoder to convert the
input text into high dimensional word vectors; (2)
Dependency Path Reasoning: This component em-
ploys the word vector representations and extract a
path between the two entity mentions in the given
document; (3) Regularization: This component em-
ploys the extracted dependency path as the infor-
mation bottleneck to filter out noisy information
from the input document; (4) Prediction: Finally
the regularized representations of the dependency
path will be used to make the final prediction. The
rest of this section provides details for the afore-
mentioned components.

2.1 Input Encoder

To represent each wordwi in the input documentD,
we use the concatenation of the following compo-
nents: Contextualized Embedding, We feed the
input document D, i.e., [CLS]w1w2 . . . wn[SEP ]
to the pre-trained BERTbase transformer and take
the hidden states of the last layer of the BERT
model, i.e., E = [e1, e2, . . . , en], as the contex-
tualized word embedding of the input document.
Note that for the words that have multiple word-
pieces, we take the average of their word-piece
embeddings obtained from the BERT model. Po-
sition Embedding For each word wi, we compute
its distance to the subject ws and the object wo, i.e.,
dis = ‖i− s‖ and dio = ‖i− o‖, respectively. The
distances are represented using high dimensional
vectors esi and eoj obtained from randomly initial-
ized embedding tables. During training, the embed-
ding tables are being updated. Entity Type Em-
bedding The type of the two entities (i.e., Quantity,
Measured-Entity, Measured-Property, and Quali-
fier) are represented using high dimensional vec-
tors obtained from randomly initialized embedding
tables. The embedding tables will be fine-tuned
during training.

The concatenation of the aforementioned embed-
ding vectors, i.e., X = [x1, x2, . . . , xn], are used
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to represent the words of the input document. It
is noteworthy that since the parameters of the pre-
trained BERTbase are fixed during training, in order
to tailor the contextualization of the word embed-
dings to this task, we feed the vectors X to a Bi-
directional Long Short-Term Memory (BiLSTM)
network and we use the hidden states of the BiL-
STM neurons, i.e., H = [h1, h2, . . . , hn], as the
final vector representations of the input document
D. The vectors H will be used by the subsequent
components.

2.2 Dependency Path Reasoning

To find the dependency path between the subject
and the object entities, we employ a translation-
based perspective. More specifically, given the
vector representations of the subject entity, i.e.,
hs, and the object entity, i.e., ho, the dependency
path should be represented using the vector P such
that using this vector, the subject representation
hs is transferred (i.e., translated) to the object rep-
resentation ho, under the operation Φ. Formally,
ho = Φ(hs, P ). Using this definition, we can de-
fine the path representation by P by exploiting
the inverse operation Φ−1, i.e., P = Φ−1(hs, ho).
After obtaining the path representation P , we com-
pare it with the representations of the other words
of the document D to assess their likelihood to
be included in the dependency path. Concretely,
the similarity between the vector hi and the vec-
tor P could be used to estimate the probability
of the word i to be used in the dependency path.
However, one limitation of this method is that the
likelihood of the word wi is computed regardless
of the other words wj where j /∈ {i, s, o}. To
address this issue, we propose to compute the like-
lihood of the word wi based on the interaction be-
tween the representation of the word wi, i.e., hi,
the representations of the other words, i.e., hj for
j /∈ {i, s, o}, and the path representation P . To
this end, we first compute a vector representation
for the words wj by applying MAX POOL op-
eration on all words wj for j /∈ {i, s, o}: h̄−i =
MAX POOL(h1, h2, . . . , hj). Afterwards, we
apply the function Φ−1 on the vectors P and h̄−i:
ĥi = Φ−1(h̄−i, P ). The vector ĥi represents the
path for transferring (i.e., translating) the vector
h̄−i to P . As such, the similarity between ĥi and
hi could reveal how important is the word wi to
convert the representation of the context wj for
j /∈ {i, s, o} to the representation of the depen-

dency path P . Therefore, we use this similarity,
i.e., Simi =

∥∥∥ĥi − hi
∥∥∥, as the score of the word

wi to be included in the dependency path. The
words that their score is above a pre-defined thresh-
old will be used as the inferred dependency path.

It is worth noting that to learn the function Φ−1,
in this work, we use a feed forward neural net-
work. In particular, the concatenation of the vec-
tors hs and ho are fed into a 2-layer feed forward
neural network with |P | neurons at the final layer:
P = FF ([hs : ho]), where [:] represents concate-
nation and FF represents the feed-forward neural
network. To train the FF network for the RE task,
we use the vector P to predict the probability dis-
tribution PΦ(·|D, t, a) using another feed-forward
network FF2 whose final layer dimension equals
the number of labels, i.e., |L|. We use negative
log-likelihood to train the FF and FF2 networks:
LΦ = −log(PΦ(l|D, t, a)) where l is the gold la-
bel.

Finally, to represent the induced path, we take
the max-pooled representation of the words in the
path: hP = MAX POOL
(h1, h2, . . . , hp) where p is the number of words in
the induced dependency path. The path representa-
tion hp will be used by the subsequent components.

2.3 Regularization

Although the induced dependency path from the
previous component is intended to contain the im-
portant information for the RE task, it might still
contain some noisy information due to the contex-
tualization in the input encoder. To overcome this
noisy information, in this work, we propose to ex-
ploit the induced path as the information bottleneck
(IB) (Tishby et al., 2000). IB’s goal is to reduce the
mutual information between the input and the bot-
tleneck, meanwhile, to increase the mutual informa-
tion between the bottleneck and the output. For the
second goal, the bottleneck (i.e., the dependency
path representation hp) will be used by the pre-
diction component, and the increase of its mutual
information with the output is enforced by reduc-
ing the training loss (e.g., negative log-likelihood).
To fulfill the first goal, i.e., decreasing the mutual
information between the input and the bottleneck,
we resort to a contrastive learning paradigm to es-
timate the mutual information between two high-
dimensional vectors using the classification loss
of a binary-discriminator. More specifically, the
path representation hp is concatenated with the
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max-pooled representation of the input document
D, i.e., hd = MAX POOL(h1, h2, . . . , hn),
and this concatenation, i.e., hpos = [hp : hd],
serves as the positive sample for the contrastive
learning. To construct the negative samples, we
first take the max-pooled representation of a ran-
domly chosen document D′ from the same mini-
batch, i.e., hd′ = MAX POOL(h′1, h

′
2, . . . , h

′
m)

where h′i is the representation of the i-th word in
the document D′ and m is the total number of
words in D′. Afterwards, the concatenation of
hp and hd′ is employed as the negative sample:
hneg = [hp : hd′ ]. Finally, a feed-forward dis-
criminator is employed and trained to distinguish
the positive samples from the negative ones, i.e.,
Ldisc = log(1+e(1−D(hpos)))+ log(1+eD(hneg)).
By adding the discriminator loss Ldisc to the final
loss function and decreasing it, the estimated mu-
tual information between the input and the bottle-
neck (i.e., the path representation hp) is decreased
too.

2.4 Prediction

To make the final prediction on the relation be-
tween the given subject and object entities, we
employ the representations of the induced depen-
dency path (i.e., hp), the subject entity (i.e., hs),
and the object entity (i.e., ho) to construct the fi-
nal vector V = [hp : hs : ho] where [:] repre-
sent concatenation. The vector V is finally con-
sumed by a feed-forward neural network to pre-
dict the distribution P (·|D, t, a). The loss func-
tion to train the main RE task is thus defined as:
Lpred = −log(P (l|D, t, a)) where l is the gold
label. The overall loss function to train the entire
model is: L = Lpred +αLΦ +βLdisc where α and
β are the trade-off parameters.

3 Experiments

3.1 Dataset, Hyper-Parameters & Baselines

In order to demonstrate the effectiveness of the pro-
posed model, i.e., Dynamic Path Reasoning (DPR),
we evaluate it on the recent SemEVal 2021 Task 8
dataset. This dataset provides measurement anno-
tation for 233 training documents, 65 development
documents, and 130 testing documents, all in En-
glish. Note that we do experiments only on the train
and trial set (as the gold entities are not available
for test set). Also, we evaluate the model only for
relation extraction, not the entire task (as such, we
did not make a submission during MeasEval evalu-

ation phase). More specifically, for each document,
the positions of the measured entities, measured
properties, quantities, and qualifiers are provided.
Furthermore, for each measurement component, its
relations with the other components or extra infor-
mation (e.g., unit of quantity) is available. Note that
in our experiments, we do not use the annotation
set information which indicates which components
belong to the same measurement.

We fine-tune the hyper-parameters of the pro-
posed model on the development set of the Se-
mEval 2021 Task 8 dataset. The model with the
best performance on the development set is evalu-
ated on the test set. Based on our experiments, the
following hyper-parameters are selected: 50 dimen-
sions for the position embedding and entity type
embedding; 200 dimensions for the hidden layer
of the BiLSTM and all feed-forward networks; 0.1
and 0.05 for the trade-off parameters α and β; 0.7
for the threshold in the dynamic path reasoning
component; Adam optimizer with learning rate 0.3;
batch-size 50; and early stopping with the patience
of 10.

To comprehensively evaluate the proposed
model, we compare its performance against the
following baselines: (i) Sequential Models, specifi-
cally we compare with BiLSTM which takes the
non-contextualized word embeddings of the input
document (i.e., GloVe) and encode the sequence of
the words. Moreover, we also compare with BERT
model fine-tuned during training for the MRE task.
(ii) Structure-aware models, these models employ
the structure of the input document (e.g., depen-
dency trees of the sentences). Specifically, we com-
pare with iDepNN (Gupta et al., 2019) which em-
ploys the dependency trees of the sentences of the
document. This baseline adds an edge between the
roots of the trees to create a connected graph, Fur-
thermore, it prunes the tree along the dependency
path between the two entities of interest. Finally,
we compare our model with LSR which dynami-
cally infer a graph structure for the input document
using the representations of the entities and other
words on the dependency path between the entities.

3.2 Results

The results on the test set are presented in Table 1.
There are several observations from this table. First,
the proposed model significantly (with p < 0.01)
outperforms the baselines. It indicates the impor-
tance of using dynamic path reasoning and also the
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Model Precision Recall F1
BiLSTM 65.3 71.1 68.1
BERT 70.4 71.8 71.1
iDepNN 69.4 75.0 72.4
LSR 72 75.9 73.9
DPR (Ours 70.1 83.4 76.2

Table 1: Performance on Test set

proposed regularization method. Second, Compar-
ing the structure-aware and sequence-based base-
lines, it is evident that the structure of the input
document is necessary for achieving better results.
However, between the iDepNN and the LSR base-
line, the latter has better performance due to its
capability of inferring the structure of the docu-
ment instead of relying on external parse trees as in
iDepNN. Finally, this experiment shows that using
the pre-trained language model BERT substantially
improves the performance compared to a sequence-
based model that utilizes GloVe embedding. This is
on par with the recent advancement on NLP using
contextualized word embeddings.

3.3 Ablation Study
In this section, we provide more insight into the
effectiveness of different components of the pro-
posed model. The major two components in our
model are dynamic path reasoning and regulariza-
tion. To study their importance, we evaluate the
performance of the following baselines on the de-
velopment set of the SemEVal 2021 Task 8 datasets:
(i) Full−DPR, this baseline completely removes
the dynamic path reasoning component. More
specifically, the vector hp is removed from the fi-
nal prediction vector V and the loss function LΦ

is also removed from the overall loss function L;
(ii) FullDPRS , this baseline employs the dynamic
path reasoning component. However, to compute
the similarity score Simi, instead of considering
the context if the word wi, it directly computes the
score by Simi = ‖P − hi‖; (iii) Full−Reg, this
model complete remove the regularization com-
ponent, i.e., by removing the loss function Ldisc
from the overall loss function L; (iv) Fulldot, this
ablated model preserves the regularization com-
ponent. However, instead of using Information
Bottleneck, it directly decreases the similarity be-
tween the path representation, i.e., hp, and the input
document representation, i.e., hd, by replacing the
Ldisc by Ldot = hp · hd.

The results are presented in Table 2. This table
shows that all components of the proposed model

Model Precision Recall F1
Full 73.2 86.7 79.4
Full−DPR 71.1 79.1 74.9
FullDPRS 70.2 82.3 75.8
Full−Reg 72.9 80.6 76.6
Fulldot 73.8 76.4 75.1

Table 2: Performance of the ablated models on the de-
velopment set

are necessary to achieve the highest performance.
More specifically, the dynamic path reasoning has
the highest impact on the performance as remov-
ing it will hurt the most. Also, it shows that the
consideration of the context to compute the score
for each word to be included in the induced path
is necessary. Finally, it shows that regularization
is helpful for exclude noisy information from the
input. More interestingly, replacing the IB with a
dot product to enforce the regularization hurts more
than removing the regularization itself. It indicates
the necessity of using IB for regularization.

4 Related Work

Measurement Relation Extraction (MRE) is one
specific formulation of the general Relation Ex-
traction (RE) task. In the literature, RE has been
tackled by feature-based methods (Zelenko et al.,
2003; Zhou et al., 2005; Sun et al., 2011; Nguyen
and Grishman, 2014; Nguyen et al., 2015c) and
advanced deep learning models (Zeng et al., 2014;
Wang et al., 2016; Lee et al., 2017; Zhang et al.,
2017; Nguyen et al., 2019; Jin et al., 2018; Vey-
seh et al., 2020b). Recently, structure-aware deep
models have shown significant improvement for
RE (Peng et al., 2017; Song et al., 2018; Xu et al.,
2015; Liu et al., 2015; Miwa and Bansal, 2016;
Nguyen and Grishman, 2018a; Zhang et al., 2018).
For a thorough review of the prior works, refer
to the recent work (Gupta et al., 2019; Nan et al.,
2020; Veyseh et al., 2020a)

5 Conclusion

We proposed a new model for the MRE task. The
introduced model employs a dynamic path reason-
ing component which induces important context
words to predict the relation between two measure-
ment components. Furthermore, we proposed a
novel regularization method based on Information
Bottleneck to exclude noisy information from the
input. Our experiments on the SemEval 2021 Task
8 reveal the effectiveness of the proposed model.
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Abstract

MeasEval aims at identifying quantities along
with the entities that are measured with addi-
tional properties within English scientific doc-
uments. The variety of styles used makes
measurements, a most crucial aspect of scien-
tific writing, challenging to extract. This pa-
per presents ablation studies making the case
for several preprocessing steps such as special-
ized tokenization rules. For linguistic struc-
ture, we encode dependency trees in a Deep
Graph Convolution Network (DGCNN) for
multi-task classification.

1 Introduction

Scientific articles contain many quantities which
have to be linked to their measured entities. Identi-
fying quantities may seem as simple as digit recog-
nition, but numbers alone are not informative. The
entities and properties being measured, while cru-
cial information, are difficult to extract. SemEval
2021 Task 8 (Harper et al., 2021) is a semantic rela-
tion extraction task consisting of 5 subtasks: iden-
tifying quantities and their modifying attributes,
identifying measured entities and their properties
as well as qualifying attributes, if specified.

Recent reports on the strong performance of
purely neural models for NLP tasks often under-
report the data preprocessing and postprocessing
steps that accompany them. Preprocessing signif-
icantly influences overall performance. Typical
NLP preprocessing steps include sentence splitting
and tokenization, sometimes followed by task rel-
evant gazetteer annotation, possibly named entity
recognition (NER), part-of-speech (POS) tagging
and dependency parsing. These preprocessing steps
are so common that many different packages per-
form them, such as Stanford CoreNLP (Manning
et al., 2014), spaCy1, and NLTK (Bird et al., 2009).

1https://spacy.io/models

Linguistically inspired features are, however, not
regularly exploited and we present here one attempt
at encoding dependency information for the struc-
tural task of linking quantities with their measured
entities, measured properties or qualifiers.

We approach the MeasEval task as a multi-class
classification task using a Deep Graph Convolution
Neural Network (DGCNN) (Zhang et al., 2018),
treating the dependency parse tree as a graph to
convolve over. We explore tokenization variants,
as well as encodings of the dependency relations
using node2vec(Grover and Leskovec, 2016) and
UMAP(McInnes et al., 2018) techniques.

2 Problem Statement

The MeasEval (Harper et al., 2021) task consists
of 5 (not independent) sub-tasks covering span de-
tection, classification and relation extraction across
multiple sentences2. Given a paragraph of scien-
tific content in English, a system should: 1) label
quantity spans (Q) where Q can be simple count or
a numerical value with a unit. 2) if there is a unit
it should labelled as Unit(U), and a Q should be
classified into one of the types (count, approximate,
range, list, mean, median, medianHasSD, mean-
HasTolerance, rangeHasTolerance, hasTolerance)
as Modifier(mod). 3) for each Q, systems should
identify the span of a measured entity (ME) if one
exists and also any measured properties (MP). 4)
Identify any spans of qualifiers (QL) that record
additional detail related to Q, ME or MP. 5) La-
bel the relationships between Q, ME, MP and QL
spans using HasQuantity(HQ), HasProperty(HP)
and Qualifies relation types.

3 System Overview

Motivation: Unlike named entity detection tasks,
MeasEval’s ME or MP detection depends on quan-

2https://competitions.codalab.org/
competitions/25770
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tities and their relation to other tokens within a
sentence. Since dependency parse trees are capable
of providing approximations of semantic relation-
ships between predicates and their arguments, we
opted to generalize over different dependency parse
trees to obtain latent path representations to distin-
guish between different semantic connections that
quantities have with MEs or MPs. To encode this
path representation we use a Graph Convolutional
Networks (GCN) (Kipf and Welling, 2017) in the
form of a DGCNN (Zhang et al., 2018), to operate
directly on the dependency graph to capture higher
order neighborhood information in the form of em-
beddings. This embedding is used for classifying
the relationship type between the tokens to detect
one of the 6 classes explained in Section 3.2.2

Our system has 3 main phases: preprocessing,
input creation and training a GCN model and post
processing respectively. Each phase communi-
cates with the next through CoNLL format (Tjong
Kim Sang and De Meulder, 2003) files.

3.1 Phase-I: Preprocessing

We preprocess data using the GATE (Cunningham
et al., 2013) modules: ANNIE Tokenizer, ANNIE
Sentence splitter, and Stanford Parser (POS tags
and dependency graphs (de Marneffe et al., 2006)).
Special tokenization rules added are:

mixed character protection prevents splitting to-
kens of differing character types into different
tokens, e.g. δ13CTOC 6→ δ, 13, CTOC

split mathematical symbols preserves the usual
ANNIE tokenization for 5 ≤ 2θ/◦ ≤ 80 into
seven tokens (5,≤, 2θ, /,◦ ,≤, 80)

number normalization decimal numbers are pre-
vented from being split into 3 tokens. Number
words are also identified as numbers

abbreviation period common abbreviations in
scientific journals are recognized as integral
tokens including the abbreviation period, e.g.
e.g., Fig., sp., spp. This improves sentence
splitting and tokenization

list and interval protection scientific articles fre-
quently report on intervals expressed in dif-
ferent ways and on lists of variable lengths.
Both do not usually receive proper parse as-
signments, because the group as a whole plays
a role in the text. To improve the dependency

relation assignments, we manually assign the
POS tag ‘CD’ to the groupings:

CD (: | - | to) CD
CD (, CD)* and CD

unit gazetteer composed from different sources3

listing 4280 units

3.2 Phase-II: Input creation and GCN
training

We train a DGCNN (Zhang et al., 2018) as a muli-
tilayer neural network that operates directly on a
graph to induce node embeddings with properties
of their neighborhood. DGCNN takes (A, I) as
input, where A ∈ Rn×n is an adjacency matrix
and n is equal to the number of nodes in the graph
G. I ∈ Rn×c is an information matrix, associating
c feature values with each of the n nodes. A single
layer of DGCNN captures information according
to:

Z = f(D̂−1AIW ) (1)

where D̂ is a diagonal degree matrix with D̂ii =∑
j Aij (capturing the branching factor of node i)

and W ∈ Rc×c′ is a trainable parameter matrix. f
is a nonlinear activation function and Z ∈ Rn×c′ .
Higher order neighborhood information is obtained
by stacking multiple DGCNN layers:

Zt+1 = f(D̂−1AZtW t) (2)

where Z0 = I, Zt ∈ Rn×ct is the output of the
tth graph convolution layer, ct is the size of the
output vector of layer t and W t ∈ Rct×ct+1 .

We model a dependency tree as graph G =
(V,E), where V are tokens and E are directed
dependency relations. We ensure (v, v) ∈ E for all
v ∈ V . To represent paths in the dependency graph
between any two nodes, we add explicit reverse
links (to nsubj from governor to dependant we add
rnsubj from dependant to governor).

3.2.1 Input creation
The DCNN classifier predicts six output classes, as
defined in Section 3.2.2 for token pairs (t1, t2), the
subgraph center points.

The following sections show how (i) candidate
token pairs are created, (ii) the smallest subgraph
containing t1 and t2 is extracted, (iii) each subgraph
SG is represented by (ASG, ISG)

3http://www.ibiblio.org/units/index.
html, https://en.wikipedia.org/wiki/
Metric_units
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Figure 1: System Architecture from phase-II to phase-III

Subgraph center point candidates: In all pairs
(t1, t2), t1 has to be a CD (a candidate for a quan-
tity).4

In principle, all nodes in the graph are candidates
for t2, but we empirically set a limit of five on the
connecting path length.

Subgraph extraction For each (t1, t2), we se-
lect a subgraph containing only the shortest path
recursively: SG1 contains all neighbors of t1.
SGk+1 contains SGk and all neighbors of SGk.
We select the first subgraph that contains t2.

Adjacency matrix representation The adja-
cency matrix A ∈ Rn×n is a binary matrix. De-
pendency relations from governor to dependent are
one-to-many and all rows in the matrix are inter-
preted as dependants, the columns as governors.

Information matrix The information matrix I
is a n× c matrix, where c is size of the the concate-
nated values for the five explicit or latent features
associated with each vertex in our system:

DISTANCE FEATURE We use the Double Radius
Node Label (DRNL) (Zhang and Chen, 2018) to
calculate a combined distance of a node vi to both
subgraph centre nodes within the information ma-
trix as one hot vector as follows:

Nodes t1 and t2 carry the label 1. For each v
in the subgraph we calculate labels representing
distance using the following hashing function:

f(v) = 1+min(dt1, dt2)+bd
2
c× (bd

2
c+[d%2]−1) (3)

where f(v) assigns labels to all nodes v, dt1 and
dt2 are distances of v with respect to t1 and t2
respectively. d = dt1 + dt2, bd/2c is the integer
quotient and [d%2] is the remainder of d divided
by 2.

4Note that the gold relations connect text spans, not nec-
essarily tokens. The classifier attempts to predict relations
between tokens and the postprocessing phase maps the results
to spans.

POS FEATURE encoded as a one hot vector

WORD EMBEDDING from the PubMed ELMo
model (Peters et al., 2018) of size 1024.

DEPENDENCY PATH EMBEDDING represents the
dependency path of each node within the subgraph
from t1 (base node) (p(v, t1)). We create depen-
dency embeddings of size 128 from dependency
sequences in the training data using node2vec
(Grover and Leskovec, 2016). Given a graph G,
node2vec5 uses a random walk procedure from
each node v ∈ G to produce s sequences of
length l, and uses these sequences for training
node2vec. We embed dependency sequences in-
stead of node sequences to produce embeddings
for each dependency relationship type (i.e. we use
node2vec to produce embeddings for edges instead
of nodes). To represent p(v, t1) we concatenate
dependency embeddings for each dependecy along
the dependency path. Given our empirical limit,
p(v, t1) ∈ R5×128 and for smaller subgraphs we
pad with 0’s.

UMAP EMBEDDING As either a complement,
or a replacement to dependency embeddings, we
experimented with the UMAP dimension reduc-
tion technique (McInnes et al., 2018). We trained
UMAP as a supervised learning approach feeding
dependency embeddings along with class labels
and reduced dependency path embeddings to 2 di-
mensions.

3.2.2 Training the DGCNN model
Input (A, I) was used to train an off the shelf im-
plementation of Deep Graph Convolution Neural
Networks (DGCNN)6 with CrossEntropyLoss7 as
its loss function and with class weights calculated

5https://github.com/aditya-grover/
node2vec

6https://github.com/muhanzhang/
pytorch_DGCNN

7https://pytorch.org/docs/stable/
generated/torch.nn.CrossEntropyLoss.html
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by 1/total num datapoints within class. We
trained the system for 6 epochs with a batch size of
100 in a cuda environment with 6 output classes to
predict.

Class labelling: Center points (t1, t2) are pre-
dicted to fall into one of six classes:

Class 0: t1 is not part of a gold Quantity (Q)
span8; Class 1: t1 is within a Q span but t2 is not
within any gold span; Class 2: t1 and t2 are in the
same Q span (e.g. 5 kg); Class 3: t1 is within a
Q span and t2 is any token within the ME span
belonging to the same annotation set as t1; Class
4: t1 is within a Q span and t2 is any token within
the MP span belonging to the same annotation set
as t1; Class 5: t1 is within a Q span and t2 is any
token within the QL span belonging to the same
annotation set as t1.

3.3 Phase-III: Postprocessing

The six classifier classes predict relations between
two tokens, while the gold standard annotates rela-
tions between text spans. The required mapping to
competition output requires several postprocessing
steps.

Prediction ranking When multiple t2 with the
same class are predicted for a particular t1 we
choose t2 with the highest probability.9

Span mapping For each prediction (t1, t2) ∈
ClassY we record the token offset for t2 as span
for ClassY in our system output unless the BERT
model from (Therien et al., 2021) finds a neighbour-
ing token with the same predicted class, in which
case they are merged into the same span.

Detecting units Once quantity spans are deter-
mined, any measurement gazetteer entry within it
was labelled as a unit.

Predicting quantity modifiers We used another
pretrained BERT model from (Therien et al., 2021)
to predict modifiers for each quantity span.

4 Results and Analysis

We split the combined training and trial datasets
randomly into 75% training and 25% validation set
resulting in 233 and 80 documents in our training
and validation set respectively.

8Not all CDs are part of a gold quantity (e.g. Fig. 5).
9We exclude predictions for (t1, t2) where t2 carries POS

tags among IN, DT, CD, PUNCT.

We experimented with different preprocessing
and feature representations using the official Meas-
Eval evaluation script. DGCNN training parame-
ters were fixed for all the experiments.

Table 1 shows development results, the first row
(in italics) shows the competition system. The first
column (T) indicates the influence of the list and
interval protection step: c indicates it is included,
n indicates it is not included. We observe that not
including it returns slightly better results, offset by
a high rate of duplicates10.

We experiment with different path length limits
(column 4: H). While a length limit of 8 showed
better results on the development data than our
competition limit of 5, the same is not true for the
test data (see Table 2), where there is no equivalent
recall gain.

T: S: H: P R F1 EM O
c s u 5 .586 .466 .520 .281 .328
c s u 8 .563 .503 .532 .288 .336
n s u 5 .567 .485 .522 .291 .334
n s u 6 .591 .487 .535 .301 .344
n s u 8 .654 .529 .585 .337 .387

Table 1: Development results. P:precision, R:recall,
F1:F1-score, EM:exact match, O:F1 (Overlap)

Table 2 shows competition and post-competition
results on test data. The initial competition system
is in italics, in bold are the revised results after the
organizers removed duplicates.

T: S: H: P R F1 EM O
c s u 5 .546 .323 .406 .217 .241
c s u 5 .554 .347 .427 .232 .258

Table 2: Competition results

Results on the test data are significantly lower,
indicating overfitting. Post-competition ablation in
Table 3 shows that UMAP, for instance, was not ef-
fective. Overlap determined competition rankings.

T: S: H: P R F1 EM O
c s u 5 .691 .313 .431 .241 .264
c s 5 .539 .446 .448 .275 .306
c s u 8 .614 .310 .412 .227 .249
c s 8 .480 .477 .478 .263 .296

Table 3: Post competition results

10Only in the first row of Table 2 are duplicates removed,
all other reported results have duplicates and thus overreport
slightly.
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Q ME MP U Mod HQ HP
csu5 .889 .057 .007 .495 .408 .028 0.
csu5 .773 .063 .007 .485 .432 .028 0.
csu5 .778 .006 0. .431 .449 .004 0.
cs 5 .830 .177 .177 .449 .484 .167 .053

Table 4: F1 overlap scores of annotation types on com-
petition test data. Q:Quantity, ME:Measured Entity,
MP: Measured Property, U:Unit, Mod:Modifier, HQ:
Has Quantity, HP: Has Property

Analysing performance for the different labels
in Table 4 shows that our system is not yet mature
and needs adjusting. The potential of the DCGNN
for the tasks is demonstrated by the high results for
quantity (Q) and acceptable results for units (U),
which are in line with stronger systems. The com-
paratively low performance for measured entities
(ME) and measured properties (MP) demonstrates
that the multi-class labelling approach needs better
support. We will consider approaches from the lit-
erature (Yao et al., 2018), (Sun et al., 2019), (Hong
et al., 2020), (Gupta et al., 2016).

HasQuantity and HasProperty received no atten-
tion during development and consistently scored 0
for runs with UMAP, see Table 4.

Combined tokens: When CD(,CD),* and CD is
followed by respectively, each list item corresponds
to a different entity/property (e.g. This compares
to signatures of accelerated electron precipitation
from peaked electrons and “inverted-V” electrons,
which occur on 9.8 and 3.4% of MEX orbits, re-
spectively.) As per gold annotation, 9.8 and 3.4%
are 2 different Qs both with ”MEX Orbits” as ME
and ”signatures of accelerated electron precipita-
tion” as MPs. We generate 9.8 and 3.4% as a single
Q and ”Signatures” as ME, leading to several false
negatives. Documents S0032063312003054-2458,
S0016236113008041-3257, S0378112713005288-
1916 caused this error.

Math equalities Our system does not protect
math environments such as ...tetragonal unit cell
with a=4.1816(4) Å and c=10.0322(6) Å... in doc-
ument S0022459611006116-1351. Consequently,
a is labelled as a determiner (DT). As determin-
ers are not part of gold labels, a is eliminated
in postprocessing when it should have been la-
belled as an MP in this case and also in document
S0022459611006116-1257.

Calculations with measurements Our custom
tokenizer does not handle calculations, as in ”...re-

vised average base reaction rate (from k1 = 2 ×
10−9 to k1 = 1×10−9 cm3 s-1)...” in document
S0019103512003533-3908. The gold annotation
for Q is (k1 = 2×10−9tok1 = 1×10−9cm3s−1)
and ME is average base reaction rate, where we re-
turn ”2×10” as a Q with ”average” as ME, ”1×10”
as Q with ”reaction” as ME and ”9” (split by sym-
bol ”−”) as seperate quantities with ME as ”reac-
tion”, incurring false positive errors.

Duplication of Quantities Lists of quantities in-
cluding units are not combined with our custom
tokenizer, thus for for 4.5 kg and 6 kg samples in
document S0016236113008041-3257, we stipulate
two different quantities. This results in duplication
of quantities in our submission.11

Units The gold standard annotates for instance
thin shale barriers (S1750583613004192-
1126), das (S037842901300244X-1654),
%∆E/E (S0301010413004096-767), and
KLoC (S016412121300188X-3207) as units.
These are not included in our gazetteer list of 4028
units, incurring false negative errors.

5 Conclusions

The MeasEval task is a challenging task that can
benefit from a variety of tools in a well integrated
system. The small data size limits a true apprecia-
tion of the challenges involved but ablation studies
suggest that tokenization variations influence preci-
sion and recall differently and should be carefully
considered in application systems. Also, a umap
reduction suggested a ca 1% performance boost on
validation data, but incurs a ca 5% loss on test data,
showing signs of overfitting. The subgraph clas-
sifier proved effective only for quantity and unit
prediction. Ablations show that larger subgraphs
and longer paths lead to performance degradation,
making a case for more task oriented locality fea-
tures. Duplicates have to be removed.

While the unusual complexity of the classifica-
tion task and the limited size of the dataset pro-
hibits very general conclusions, we showed that
DCGNNs offer an interesting way to encode depen-
dency information but that it has to be supported
by several domain inspired contributions to work
for all task components effectively.

11This duplication of labels was removed by the organizers
for the official ranking.
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Abstract
This paper explains the design of a heteroge-
neous system that ranked eighth in competi-
tion in SemEval2021 Task 8. We analyze abla-
tion experiments and demonstrate how the sys-
tem components, namely tokenizer, unit iden-
tifier, modifier classifier, and language model,
affect the overall score. We compare our re-
sults to similar experiments from the literature
and introduce a grouping algorithm developed
in the post-evaluation phase that increased our
system’s overall score, hypothetically elevat-
ing our competition rank from eight to six.

1 Introduction

The MeasEval 2021 shared task involves identi-
fying related groups of the four annotation types
seen in Table 1, identifying relations linking the an-
notations of each group, and providing additional
information (units and modifiers) for quantities (see
(Harper et al., 2021)). Our system learns to classify
tokens, groups tokens of the same class into spans
and further groups related spans using a distance-
based heuristic, providing a baseline for systems
that attempt to learn these groupings.

2 Data

The data comprises excerpts from scientific articles
of different disciplines: Astronomy, Engineering,
Medicine, Agriculture, Biology, Chemistry, Earth
Science, Computer Science, and Mathematics. The
limited data (see Table 1), the wide range of top-
ics involved, and the idiosyncrasies of each scien-
tific field’s vocabulary make the task difficult. In
fact, the task organizers report a high degree of
inter-annotator disagreement for certain annotation
types. Krippendorff’s alpha (Hayes and Krippen-
dorff, 2007) for each annotation type is also shown
in Table 1, underlining that annotating Measured
Properties, Measured Entities, and Qualifiers poses
a substantial degree of ambiguity, even to humans.

Annotation Frequency α
Quantity (QA) 1164 .94
Unit (U) .86
MeasuredEntity (ME) 1148 .54
MeasuredProperty (MP) 742 .64
Qualifier (QL) 276 .33

Table 1: Frequency of training data annotations and
their Krippendorff’s Alpha

The training data contains a total of 298 excerpts
containing 1164 different quantities. We refer to
groupings of annotations as complete data-points
(see Figure 1).

All complete data-points contain one quantity
and at most one annotation span of each other type.
A summary of complete data-point frequencies is
provided in Table 2.

Annotations present Frequency
QA 11
ME,QA 361
ME,MP,QA 512
ME,QL,QA 50
ME,MP,QL,QA 225
MP,QA 4
MP,QL,QA 1

Table 2: Frequency of different complete data-points in
the training data

3 System

Our system is a pipeline of different machine learn-
ing and rule-based modules. We use SpaCy1 for
sentence splitting and tokenization and we fine-
tune a SciBERT model2 to classify each token into
one of Quantity (QA), Measured Entity (ME), Mea-
sured Property (MP), Qualifier (QL), or Other (O).

1https://spacy.io/
2SciBERT uses the same model architecture and pretrain-

ing objective as BERT (Devlin et al., 2019), but it is pre-trained
on a large corpus of scientific text (Beltagy et al., 2019).

410



Model C1 assumes a constant photoelectron heating efficiency of 96%
ME MP QA

HasQuantityHasProperty

Figure 1: An example of a complete data point with corresponding annotations

During a first postprocessing phase, the token level
output of the classifier is merged into spans of ad-
jacent annotations of the same type. We feed the
spans annotated as QA to a second SciBERT clas-
sifier to determine their modifier class (see Sec-
tion 3.4). A distance-based heuristic goups the
classified spans into complete data-points.

All of the system’s deep learning components are
implemented using PyTorch (Paszke et al., 2017).
Our models use simple (linear + softmax) classifi-
cation on top of BERT’s implementation from the
HuggingFace library.3 Pre-trained weights are ob-
tained from HuggingFace’s Model Hub.4 Our com-
petition SciBERT models are optmized by Adam
(Kingma and Ba, 2015) using a constant learning
rate of 5e−6 (the rest of Adam’s parameters are set
to PyTorch’s defaults). The competition system’s
token classifier is fine-tuned on all the training data
for 5 epochs, while the modifier classifier is fine-
tuned on all the training data for 3 epochs.

3.1 Preprocessing
Tokenization We modify SpaCy’s tokenizer to
make several symbols individual tokens. As illus-
trated in Tables 3 and 4, our tokenizer separates
apart mathematical symbols as well as suffixes Rp,
Rs, mH, RRh.

Prefix = ∼ ± − ≤ > < ≥
Infix = ∼ ≈ • : % ( )→ + − ± , > <
Suffix Rp Rs mH RRh

Table 3: Tokenization rules added

The tokenization rules split apart tokens that con-
tain annotations of different types (see Table 4).

Gold span to token conversion The token-level
objective used to fine-tune SciBERT requires map-
ping the gold span annotations onto tokens. How-
ever, the gold standard annotations don’t always
coincide with our token spans. Some gold annota-
tion boundaries are in error (e.g. oss rate instead

3https://huggingface.co/transformers
4The SciBERT models we refer to are fine-tuned from

‘scibert scivocab cased’ and the BERT model we refer to is
fine-tuned from ‘bert-base-cased’.

SpaCy tokens Modified tokens
∼ 2–3, mA, /, cm2 ∼, 2, –, 3, mA, /, cm2
∼ 0.40–0.45, V ∼, 0.40, –, 0.45, V
∼-27% ∼,-, 27, %
(ratio, CaP=1.67) (,ratio, CaP, =, 1.67,)

Table 4: Tokenization examples

of loss rate) and some are deliberate (e.g. beach as
the annotated part of the token beaches).

Of the 3330 gold spans that we convert to token-
level training samples, only 48 are off by one char-
acter, and 2 are off by more than one character.
The remaining token level annotations perfectly
match the gold spans in character offset. We there-
fore convert gold annotations to token annotations
naively, projecting gold span annotation onto the
token span with the least character differences and
obtain mappings as illustrated in Figure 2a.

Sentence splitting Scientific text makes frequent
use of acronyms (e.g. fig.) which confuse SpaCy’s
default sentence splitter. We use exclusion rules
for frequent abbreviations and special tokens that
end in punctuation. We also exclude symbols from
starting a sentence, as well as tokens not preceded
by a period.

3.2 Token Classification

We fine-tune SciBERT to classify tokens into the
five output categories QA, QL, MP, ME, and O,
where O indicates no annotation for a token. This
module processes one document at a time, taking
a list of sentences as input, where each sentence
is a list of tokens. The output of the classifier is
the token annotations for each of the sentences it
receives.

Input The special token [CLS] is followed by
tokenized sentences separated by [SEP ].

Token classification We use a linear layer fol-
lowed by softmax for the token level multi-class
classification into the five label categories from
SciBERT output

Out of vocabulary tokens SciBERT’s Word-
Piece tokenizer (Wu et al., 2016) splits unknown
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tokens into subwords for which it has embeddings.
We distribute a token’s gold annotation over all
subwords within its span (see Figure 2b). To calcu-
late the loss between gold standard and predicted
tags, we use cross-entropy. Finally, to predict the
class of a token that SciBERT breaks, we take the
majority class of its subwords, breaking ties using
the class of the first subword, contrary to (Devlin
et al., 2019), who always use the class of the first
subword.

3.3 Token Span Creation
After token classification, we group any adjacent
tokens labelled with the same class into a single
span for that label. If the label for a token differs
from the label of its neighbors, it forms a span by
itself.

3.4 Modifiers
In addition to the five classes discussed so far,
MeasEval 2021 also annotates 10 modifier cate-
gories5 for quantity spans: IsApproximate, IsCount,
IsRange, IsList, IsMean, IsMedian, IsMeanHasSD,
IsMeanHasTolerance, IsRangeHasTolerance, Has-
Tolerance, or NOMOD.

For instance, the underlined quantity in Exam-
ple 1 has a modifier class of HasTolerance triggered
by ±.

(1) . . . constrain the CTB at 93.90±0.15 Ma

To determine a quantity’s modifier class, we fine-
tune a second SciBERT model. Using the [CLS]
token as a representation for a quantity’s span, the
model classifies the span into one of the 11 cate-
gories.

Our model predicts at most one modifier per
quantity span, which fails in certain examples with
more than one modifier. The training data con-
tains 552 quantities with modifiers and 37 of those
quantities have two modifiers assigned to them. In
competition, our system ranked third for the modi-
fier class.

3.5 Unit identification
We identify units in quantities using a simple rule-
based algorithm. No unit is predicted when a quan-
tity span ends in a number or when its predicted
modifier is IsCount. Otherwise, mark the unit as
the string of characters starting from the last occur-
ring numerical character in the quantity span to the

5We add an 11th NOMOD which indicates the absence of
a class.

end of that quantity span. Example1 highlights the
unit in a gray box.

3.6 Span Grouping

We present two approaches for grouping annota-
tion spans into datapoints. The first approach is our
original competition algorithm, the second is an im-
proved, post-competition version. Each approach
works from lists of token spans (as described above)
and outputs a list of groupings. Groupings approxi-
mate complete data points.

3.6.1 Original
Our competition system creates candidate group-
ings for each quantity in a first pass by adding at
most one measured entity, one measured property,
and one qualifier span to the group if they occur
within the same sentence as the group’s quantity. A
span cannot be assigned to multiple groups. Next,
we calculate the character distance between each
group’s quantity and any still unmatched annota-
tions that are at most one sentence away. The list
of distances is sorted and the closest missing anno-
tation within one sentence distance is added. While
this algorithm creates some correct complete data-
points, it has two major drawbacks: one measured
entity cannot be used for multiple groups and we do
not rank the matches to achieve the best fit for all
the quantities. When used in our competition sys-
tem, this algorithm generates 1626 True positives,
892 false positives, and 1504 false negatives.

3.6.2 Span++
In the post evaluation phase, we tested a new algo-
rithm that accounts for token distance during the
grouping process. First, the algorithm initializes
candidate groups for each quantity. Then, each
quantity span is paired with each measured entity
span and the shortest token distance between the
spans is calculated. The measured entity from the
closest pair is added to its quantity’s group and
the pair is removed from the list. This is repeated
for all measured entities that are within a 68 to-
ken distance from their quantity. Measured entities
farther away are discarded. Then, the same match-
ing process is used for measured properties and
qualifiers with cutoff distances of 26 and 25 tokens
respectively. Using identical settings to our origi-
nal submission, we evaluate the performance of our
new algorithm (called ‘span++’ in Table 5). We
obtain consistently better overlap f1-scores. While
this algorithm supersedes its predecessor, it still
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a) Tokens: Model C1 assumes a constant photoelectron heating efficiency of 96 %
Gold tags: ME ME O O MP MP MP MP O QA QA

b) SciBERT tokens: Model C1 assumes a constant photo ##electron heating efficiency of 96 %
Expanded tags: ME ME O O MP MP MP MP MP O QA QA

Figure 2: (a) Converting span annotations of Figure 1 to token annotations. (b) If SciBERT tokenizer breaks a
token, we assign its gold tag to all of its sub-tokens

fails to account for multiple quantities having the
same measured entity. When used in our compe-
tition system, this algorithm generates 1728 True
positives, 778 false positives, and 1402 false nega-
tives.

3.7 Relations

Our system uses predefined rules to determine
the relations between annotations in a data-point.
If there is a measured entity and no measured
property, then the measured entity HasQuantity,
otherwise, when both are present, the measured
entity is assigned HasProperty and the measured
property is assigned HasQuantity. Anytime a
qualifier is added to a span, we stipulate that it
qualifies the quantity.

4 Results

Our submission ranked eighth in competition
(listed as rank 7 on the CodaLab leaderboard). Our
system is robustly above average on all categories
(see Table 5) with strong performance in quantity
overlap score (tied for 2nd), qualifier overlap score
(2nd), modifier overlap score (3rd), and qualifies
overlap score (3rd).

Table 5 shows competition and post-competition
results. Our competition system is called CLaC-
BP and the competition winner is listed under top
ranked. The first six entries of Table 5 show results
for ablation experiments.

Our competition system had a non-zero dropout
probability, therefore, we cannot recreate its exact
performance for the benchmarking of our ablations.
The system labelled Full was run with zero dropout
probability and is otherwise identical to our com-
petition system. All ablated systems are compared
to this baseline.

Noticeable differences The first comparison in
row 2 substitutes our fine-tuned SciBERT model
for a fine-tuned BERT base model for token clas-
sification. SciBERT outperforms BERT for every

category except quantity and unit.
In row 3 we assess our modified tokenizer, by

substituting it with SpaCy’s default tokenizer. The
performance is near identical to our baseline system
in every category.

The third and fourth systems were trained with-
out modifiers and without units respectively. Over-
all, the system without units performed worse than
the system without modifiers. This is, however,
to be expected as there are 905 units and only 552
modifiers, i.e. units account for more overlap score.

Finally, the last comparison showcases the im-
provements when using span++.

5 Discussion

Our system’s modular pipeline allows us to assess
the components in ablation studies and the various
experiments we perform are informative about the
task.

Compared to BERT base, SciBERT pretraining
gives a solid advantage to all categories, except
quantities and units. Not surprisingly, Table 5
shows a greater increase in precision than recall
and the exact matches (EM) and F1 overlap (O)
scores rise significantly.

Comparing SciBERT’s and BERT’s performance
on the token level objective (Table 6) used during
fine-tuning, we see that SciBERT yields greater pre-
cision for all competition categories, while BERT
yields higher recall for all but other. In addition,
the token level evaluation is not fully commen-
surate with the task evaluation, as the significant
second task of grouping different spans is not fully
assessed.

Our system might benefit from a more precise to-
ken level classifier due to its grouping algorithm: it
is reasonable to assume that it performs better when
more of the detected spans are correct (high pre-
cision system) and performs worse with a greater
number of incorrect spans (high recall system).

Substituting SpaCy’s tokenizer into our system
does not make much difference because SciBERT’s
WordPiece tokenizer will break any unknown to-
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System LM EM P R F O QA ME MP QL Unit Mod HQA HP Quals
Full SciBERT .346 .641 .516 .572 .382 .848 .249 .308 .111 .667 .549 .296 .136 .061
Full BERTbase .311 .591 .496 .539 .349 .853 .239 .24 .063 .697 .537 .253 .107 .038
Full no M.T∗ SciBERT .341 .644 .513 .571 .381 .848 .258 .306 .103 .653 .522 .297 .148 .056
Full no Mod SciBERT .309 .63 .464 .534 .347 .848 .249 .308 .111 .667 .0 .296 .136 .061
Full no Unit SciBERT .277 .608 .422 .498 .314 .848 .249 .308 .111 .0 .567 .296 .136 .061
Full with span++ SciBERT .38 .687 .551 .612 .421 .848 .292 .367 .151 .667 .549 .371 .162 .081

CLaC-BP (rank 7) SciBERT – – – – .389 .855 .251 .318 .107 .677 .546 .308 .147 .058

top ranked – – – – – .519 .861 .437 .467 .163 .722 .642 .482 .318 .092
Compet. mean – – – – – .323 .741 .200 .196 .021 .602 .364 .205 .114 .012
Compet. median – – – – – .369 .818 .251 .245 .000 .661 .375 .308 .147 .000

∗M.T: Modified tokenizer EM: Exact match HQA: HasQuantity HP: HasProperty Quals: Qualifies

Table 5: Ablation and competition results

kens, however they are tokenized, into subwords
at inference time. Yet, because the classifier out-
put is projected onto input tokens, SpaCy’s failure
to separate certain tokens (see Table 4) might be
responsible for the very small degradation when
using the SpaCy tokenizer.

Addressing the modifier categories with a sepa-
rate SciBERT model is successful and allows our
system to benefit from several rule-based transition
phases. While the task is not well understood (see
the overall low performances and the high inter-
annotator disagreement), we believe this type of
architecture to be more beneficial than end-to-end
systems, as we can pinpoint weaknesses and ex-
periment more easily. This is demonstrated by the
sizeable improvement of results when implement-
ing a simple distance measure constraint for the
grouping step. Once such features have been iden-
tified as effective, their encoding in the classifier
becomes possible.

P R F1
Class S B S B S B support
ME .43 .33 .49 .55 .46 .41 457
MP .47 .46 .55 .61 .51 .53 300
QA .84 .81 .96 .98 .90 .88 950
QL .45 .34 .23 .32 .30 .33 240
o .98 .98 .97 .94 .97 .96 12885
Mavg .63 .59 .64 .68 .63 .62 14832

Table 6: Validation SciBERT (S) and BERT base (B)
validation set performance after 4 epochs of fine-tuning

6 Summary

Measurements are ubiquitous in scientific articles,
yet have so far not been addressed. The MeasEval
task is an opportunity to combine different subtasks
and experiment how best to combine them. Our
system approaches the MeasEval task in a modu-
lar fashion: preprocessing, two classifications, and
postprocessing. It breaks the task into two, first a

classification of the relations for measured entities,
measured properties, and qualifiers and second a
classification of modifiers. SciBERT, trained on
scientific articles, yields better performance than
BERT in our experiments, mainly due to improve-
ments in precision. The differences, however are
small. Before, between, and after the two classifi-
cation steps are a number of rule-based modules
that create the classifier input and piece together
the classifier output for submission. Several experi-
ments on variations in these rule-based accessories
suggest their usefulness and ways to improve our
results.
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Abstract

This paper describes our system for verifying
statements with tables at SemEval-2021 Task
9. We developed a two-stage verifying sys-
tem based on the latest table-based pre-trained
model GraPPa. Multiple networks are de-
vised to verify different types of statements in
the competition dataset and an adaptive model
ensembling technique is applied to ensemble
models in both stages. A statement-slot-based
symbolic operation module is also used in our
system to further improve the performance and
stability of the system. Our model achieves
second place in the 3-way classification and
fourth place in the 2-way classification evalu-
ation. Several ablation experiments show the
effectiveness of different modules proposed in
this paper.

1 Introduction

Verifying whether a statement is entailed, refuted,
or unknown with the given table is a challenging
task, which requires the system to understand the
statement and table jointly and reasons from the
two information resources. The studies on this task
could benefit several downstream applications, e.g.
fake news detection. Recently, with the release of a
large-scale dataset for table-based fact verification
named TABFACT (Chen et al., 2019), this task re-
ceived several studies. Verifying statements based
on tables is a challenging task since the researches
on understanding tables are not enough compared
with works on free-texts, and the methods to train
models understanding free-text and table jointly
need further studies as well.
While TABFACT contains a huge number of state-
ments and tables, the tables in the TABFACT
dataset are relatively simple since they do not have
hierarchical column heads as tables in scientific
papers do and the contents in the tables are easier
to understand compared to the tables in scientific

papers as well. In the SemEval task 9 (Wang et al.,
2021), the goal is to develop a system that can
verify statements (subtask A) and find evidence
(subtask B) based on the tables extracted from sci-
entific tables. Our team is more interested in the
verifying task and only participated in subtask A.
Different from data in TABFACT, in subtask A, we
are also required to classify a new type of state-
ment that cannot be entailed or refuted based on
the given table, named “unknown” type. Since no
statements of this type are given in the training data,
the classification of this type of statement becomes
a core difficulty of the subtask.
This paper describes our two-stage table-based ver-
ifying system based on the latest table-based pre-
trained language model GraPPa (Yu et al., 2020).
The system leverages the model ensembling tech-
nique to ensemble different verifying models which
are designed to solve different types of statements
in the dataset in both two stages of the system. The
statement-slot technique is also used to capture and
solve a small part of the data by symbol calculation,
which helps to increase the performance and stabil-
ity of our system. Our system achieves a two-way
score of 84.55 and a three-way score of 83.76 in
subtask A respectively.

2 Related Work

2.1 GraPPa

GraPPa is a pre-trained model for table-based se-
mantic parsing task, proposed by Yu et al. (2020).
It is pre-trained on the synthetic question-SQL
pairs with a novel text-schema linking objective,
where the SQL queries are generated by a syn-
chronous context-free grammar(SCFG). The text-
schema linking objective makes the model predict
the syntactic roles of the columns in the SQL to
encourage the model to notice the link between
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Figure 1: The flowchart of the system. Statements and tables are first sent into the symbolic-calculation module,
where statements with simple sentence structures are verified by symbol calculation. Statements that are not
processed by the calculator are then sent into the two-stage deep-learning-based verifying system, where the first
stage’s models verify whether the statement cannot be verified by the given table, and the second stage’s models
verify whether the statement can be entailed by the given table.

natural language phrases and the corresponding
logical form constituents.
The authors of GraPPa use 475k synthetic exam-
ples to pre-train GraPPa. On four popular semantic
parsing benchmarks, GraPPa consistently achieves
state-of-the-art results, which shows the powerful
table understanding ability of GraPPa. In this work,
we find that GraPPa’s ability of understanding ta-
bles can also be migrated to the table-based fact
verification task and achieves great performance on
this task.

2.2 Mixture-of-Experts layer

In Shazeer et al. (2017) the authors proposed a
sparsely mixture-of experts layer applied on the
stacked LSTM model which achieves new state-of-
the-art results on language modeling and machine
translation benchmarks with lower computational
cost and larger model capacity. In this work, we
applied this MoE layer on the top of the GraPPa
model as a part of our verifying system.

3 System Description

This section mainly describes the details of the
two-stage table-based verifying system. The first
stage classifies unknown type statements from the
other two types of statements, while the second
stage further classifies the entailed type statements
from refuted type statements. We find that the
proposed two-stage system works better than a
direct three-way classification system, because 1)
no unknown type statements are provided in the

train set, which brings difficulty to the training
process of the three-way classification system; 2)
the two-stage system is closer to the processing
procedure of human since you have to decide
whether the table knowledge is enough to entail or
refute the given statement before the further rea-
soning. Before the two-stage deep-learning-based
system, a symbolic-calculation module is added to
capture and process some statements with simple
sentence structures. The symbolic-calculation
module has the features of low recall and high
precision and is used to process some numerical
type statements (the verifying process involves
numerical operations) since we find that the
deep-learning-based system is unstable when
processing such type of statements. The flowchart
of the whole system is displayed in Figure 1.

3.1 Statement-table joint encoder

In both stages of our system, multiple binary clas-
sifiers are ensembled together to verify statements.
All of the binary classifiers used in the system are
constructed based on the table-based pre-trained
model GraPPa. In the system, the GraPPa model
works in two way: 1) encoding the statement
and the pruned table by following the table-BERT
method and the table pruning algorithm proposed
in Chen et al. (2019); 2) encoding the statement
and each row of the table separately by the same
method. While the first way is the standard encod-
ing method of NLI tasks, we found the second way
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also has its advantages and will explain later. After
encoding the table and statement by GraPPa, mul-
tiple networks are devised to do reasoning based
on the encoded representations. The following sec-
tions provide further details of these models, named
pruned-table-based models and whole-table-based
models separately.

Figure 2: The structure of verifying model is based on
the types of statements. An MLP manager activated by
the softmax function takes the joint representation as
input and outputs the probability distribution that the
statement belongs to different types of statements. Mul-
tiple MLP experts process the joint representation and
output the classification logits, which are further aver-
aged by the statement type probability from the man-
ager to achieve the final classification logits.

3.2 Pruned-table-based models
As introduced before, we simply substitute BERT
by GraPPa in the Table-BERT method to get the
joint representation of the statement and table. Mul-
tiple networks are devised to process the joint
representation: 1) a simple linear layer, same as
Table-BERT; 2) three MLP processing different
types of statements (statements that need to count
rows/columns, statements related with the superla-
tive operation, other statements) with a softmax
activated MLP manager outputs the probability
that the statement belongs to each type of state-
ments. The final output distribution is the weighted
average of different MLP experts’ output distribu-
tion; 3) same structure as 2), but the statements
are separated based on the language style (nat-
ural/artificial) and the MLP manager is trained
based on the natural statement ids provided in
the train set; 4) sparsely MoE layer introduced
in Shazeer et al. (2017) with applying the imple-
mentation on https://github.com/davidmrau/

mixture-of-experts. Figure 2 shows the basic
model structure of networks 2) and 3).

3.3 Whole-table-based models
As serialized tables obtained by language template
are usually too long to be encoded by transformer-

based model, the above methods use a table prun-
ing algorithm to choose statement-related columns
from the table, while the algorithm is not perfect
and it may discard some useful columns in tables.
Even if the pruning algorithm chooses all the re-
lated columns, the pruned serialized table may still
be too long. The whole-table-based models regard
the table as the set of rows and serialize each row
by the same method. Then each row is concate-
nated with the statement and sent in GraPPa to get
the representation of tokens in the statement and
each row. Two different reasoning networks are
applied after the encoding process. The first one is
a simple attention network across all tokens in the
statement and table, the final output distribution is
produced by the following:

Q = RRT , Q
′
= softmax(Q), F = Q

′
R (1)

att = RWa + b (2)

out = MLP (F T att) (3)

where R ∈ Rn×e is the representation matrix of
all the tokens in the table and statements, n is the
product of row numbers and the maximum token
numbers of the concatenation between the state-
ment and different rows, e is the embedding size.
Softmax is applied to the attention matrix, where
Q

′
ij represents the jth token’s contribution to the

ith token. F is the attended representation matrix,
and att is the importance score of tokens in state-
ment and table achieved by a linear layer where
Wa ∈ Re×1 and b ∈ Re×1 are trainable param-
eters. Follow the equation 3, the representations
are further aggregated by the importance score and
sent into an MLP classifier to get the output distri-
bution.
Another choice of reasoning network is the GAT
network proposed in Liu et al. (2019) to aggregate
evidence from different sources. GAT hierarchi-
cally aggregates information (first in token-level
and then in sentence-level) which is more reason-
able compared to the simple attention network men-
tioned before. For the convenience of presentation,
all the models mentioned in this section are named
and listed in Table 1.

3.4 Adaptive model ensembling
An adaptive model ensembling technique is ap-
plied to both stages of our verifying system, where
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Model Description
Table-GraPPa GraPPa with a linear layer

NumGuide
GraPPa with three MLP experts for verifying

different numerical type statements

StmtGuide
GraPPa with two MLP experts for verifying

statements with different language styles
MoE GraPPa with sparsely MoE layer (8 MLP experts)

RowAtt GraPPa with attention layer across all tokens
RowGAT GraPPa with GAT aggregation module

Table 1: Name and description of models used in the system

different weights of models are searched in differ-
ent subsets of the development set. Such ensem-
bling technique works well in our system since
models work differently on different types of data
(e.g. A model may perform better on shorter state-
ments while B model may perform better on longer
statements). In the first stage, the weight of each
model is searched on two subsets of development
set based on the length of the statement and seri-
alized table (we found that some models have a
better performance on longer input sequences than
others, and set 300 words as the threshold).
In the second stage, the type of each statement
is first recognized by some language features and
then the model weights are searched on each sub-
set of the development set. Three types of state-
ments are defined: 1) “count” type statements, in
which the model needs to count the specific rows
or columns in the table; 2) ”superlative” type state-
ments, in which the model need to find the maxi-
mum or the minimum value of one row/column; 3)
“same/different” type statements, which the model
need to decide whether some cells’ value are the
same or different. The first two types of statements
are recognized by statement slots, while the third
type is recognized by trigger words (“same”, “dif-
ferent”, “equal”). We apply the weights searched
from the development set on these three statement
types and simply do averaging ensemble to the
rest of the statements. The ensembling weights
are searched on the development set without the
participation of models trained with train and devel-
opment set, while we replaced some models with
the version that retrained on both train and develop-
ment set in the evaluation period and direct applied
the weights searched on the development set. More
details of the models involved in ensembling are
presented in the appendix.

Type Statement slot
Count there be () value(s) in the table
Count there be () different ()

Superlative () lowest () in the table be ()
Superlative () has highest value(s) of ()

Table 2: Examples of the statement slots used in the
system

3.5 Statement-slot based
symbolic-calculation module

To further increase the performance and the stabil-
ity of the system, a statement-slot-based symbolic-
calculation module is developed to solve some nu-
merical type statements which are relatively dif-
ficult to deep models. The symbolic-calculation
module is added before the two-stage system with
a low recall and high precision. Several state-
ment slots are devised to capture “count” and “su-
perlative” type statements. After the capture, the
symbolic-calculation module parses the table and
extracts the corresponding rows/columns based on
a designed entity linking algorithm, and then do the
related logical calculation based on the category of
the statement and the parsing result of the table. Ta-
ble 2 shows some examples of the statement slots
used in our system.

3.6 Training method

In the first stage, the unknown type training data
are created from three source:1) from other tables’
statements under the same XML file, 1685 state-
ments in total; 2) automatic generated statements
by language templates, 1378 statements in total; 3)
the statements from the related scientific papers (ex-
tracted from the related papers of training set tables,
near the references of the tables by programming),
1272 statements in total. All of the statements in
the train set are used as the known type data to train
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models. Training processes are stopped when mod-
els reach the highest accuracy on the development
set.
In the second stage, we first use the train set to
train models and stop the training process at the
maximum development set accuracy checkpoint
and the minimum development set loss checkpoint.
Then we add the development set into the train set
and retrain some of the models, stopping at a fixed
epoch to make the most use of data.
Almost all of the models are trained with the cross-
entropy loss function except the NumGuide, Stmt-
Guide, and MoE. For the NumGuide, we use trig-
ger words to recognize the “counting” and “su-
perlative” types statements in the train set and use
the recognization result as labels to calculate the
cross-entropy between the manager’s output and
labels. For StmtGuide, we used the provided nat-
ural statement ids in the train set to calculate the
cross-entropy between the manager’s output and la-
bels. For MoE, an extra loss mentioned in Shazeer
et al. (2017) is applied to avoid the local optimum.
The extra loss functions mentioned above are sim-
ply added on the origin cross-entropy loss with a
weight of 0.01. Models in the second stage are
pre-trained on the TABFACT dataset before further
trained on the competition dataset. More details
about model training can be found in the appendix.

4 Evaluation

To evaluate our proposed verifying system, we per-
form two ablation studies regarding the adaptive
ensembling method and the statement-slot-based
symbolic-calculation module used in our system
on both the development set and test set.
Table 3 shows the evaluation of our system on both
development set and test set, compared with differ-
ent ways of ensembling. We found that the adaptive
ensembling on both stages achieves the highest two-
way and three-way scores on the development set,
while it only improves the three-way classification
performance on the test set and slightly regresses
on the two-way classification. We assume that it
may because of the difference between the data
distributions of the development set and the test
set.
Besides the ablation experiment on ensembling,
we also perform an ablation experiment on the
statement-slot-based symbolic-calculation module.
Table 4 shows the result of the ablation experiment.
The result of the experiment shows that the pro-

posed symbolic-calculation module increases the
performance on both the development set and test
set by around 5 percent, which shows the benefit
of the symbolic-calculation module on verifying
numerical type statements.

Ensembling type
Dev set Test set

2-way 3-way 2-way 3-way
W+W 87.81 86.93 84.55 83.76
W+A 86.77 86.09 84.92 82.45
A+W 86.50 84.31 85.41 81.58
A+A 85.46 83.47 85.22 81.41

Table 3: Ablation experiment regarding the ensembling
in the two stages of the system, where W refers to the
adaptive ensembling and A refers to the simple averag-
ing ensembling. The sequence of the letter refers to the
ensembling setting of two stages, e.g. W+A means the
first stage applies adaptive ensembling and the second
stage applies average ensembling.

Ensembling type
Dev set Test set

2-way 3-way 2-way 3-way
w/ sym-cal 87.81 86.93 84.55 83.76
w/o sym-cal 82.31 82.36 78.94 77.79

Table 4: Ablation experiment regarding the symbolic-
calculation module (sym-cal). The result of the ex-
periment shows that the proposed symbolic-calculation
module consistently improves the performance on both
the development set and the test set.

5 Conclusion

This paper describes our two-stage verifying sys-
tem developed for SemEval-2021 Task 9, which
leverages the latest table-based pre-trained model
GraPPa. The two-stage verifying structure allows
us to develop more targeted models on both stages
of the system. Multiple reasoning networks are
applied behind the GraPPa model, and an adaptive
model ensembling technique is used in both stages
of the system. A statement-slot-based symbolic-
calculation module is also added at the top of the
whole system to further improves the performance
and stability of the system. Ablation experiments
show the effectiveness of the methods proposed in
the paper.

References
Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai

Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and

420



William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2019. Fine-grained fact verification
with kernel graph attention network. arXiv preprint
arXiv:1910.09796.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Nancy Xin Ru Wang, Diwakar Mahajan, Marina
Danilevsky, and Sara Rosenthal. 2021. SemEval-
2021 Task 9: A fact verification and evidence find-
ing dataset for tabular data in scientific documents
(SEM-TAB-FACTS). In Proceedings of SemEval.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. arXiv preprint arXiv:2009.13845.

421



A Weight searching in adaptive
ensembling

We use a grid search method to search the weight of
each model in adaptive ensembling. The searching
algorithm can be expressed as follows:

1. Initialize total weight T=15 (larger T may
cause overfitting on the dev set and larger
searching cost as well).

2. Generate all possible weight combinations L,
where every element W in L needs to satisfy
the constraint:

∑n
i=1Wi = T where n is the

number of models joining in the ensembling.

3. For each W in L, apply the normalized
weights W/T on models’ results on the dev
set to get the accuracy of ensembling. Save
the set of weights with the highest accuracy as
the best weights. If multiple sets of weights
achieve the same best accuracy, calculate the
variance of each set of weights and choose
the set with the lowest variance as the best
weights.

B Models involved in adaptive
ensembling

The following sections introduce the details of mod-
els involved in the two-stage ensembling. We re-
vised the entity linking algorithm proposed in Chen
et al. (2019) to get better-pruned tables. The new
algorithm works better on some models, while we
found some models with the origin entity linking
algorithm also perform well and we keep them as
a part of ensembling. In the following description,
the model applies the revised entity linking algo-
rithm if not mentioned specially.
For the simplicity of presentation, we define the
following usage of symbols: a “+” symbol added
behind the name of the model means the model is
trained on train set and stopped when reaching the
maximum accuracy on dev set; a “-” symbol added
behind the name of the model means the model
is trained on train set and stopped when reaching
the minimum loss on dev set; no symbol added
behind the name of the model means the model is
trained on both train and dev set and stopped at
fixed epochs.

B.1 Models involved in the first stage’s
ensembling

A total of 8 models participate in the first stage’s
ensembling, while some models are trained by bi-
ased CE loss (we adjusted the weight of different
classes with 1.5:1 for unknown and other classes)
to reach a more balance recall and precision. They
are: 1) Table-GraPPa+ ;2) RowGAT+; 3) RowAtt+;
4) MoE+; 5) StmiGuide+; 6) RowAtt+ trained
with weight added to the loss function; 7) Table-
GraPPa+ trained with weight added to the loss func-
tion; 8) RowGAT+ trained with weight added to
the loss function.

B.2 Models involved in the second stage’s
ensembling

A total of 9 models participate in the second stage’s
ensembling, they are: 1) Table-GraPPa; 2) Stmt-
Guide; 3) Table-GraPPa+ with origin entity linking
algorithm; 4) MoE; 5) RowGAT; 6) NumGuide;
7) RowAtt; 8) MoE-; 9) Table-GraPPa with origin
entity linking algorithm.
When searching the ensembling weights on the
dev set, we simply do the following replacements:
change Table-GraPPa with Table-GraPPa+; change
StmtGuide with StmtGuide+; change MoE with
MoE+; change RowGAT with RowGAT+; change
NumGuide with NumGuide+; change RowAtt with
RowAtt+; change Table-GraPPa with origin entity
linking algorithm with Table-GraPPa- with origin
entity linking algorithm. Ensembling weights are
searched on these models without training on the
dev set and directly apply to the corresponding
model trained on both train and dev sets.

C More details about model training

All models are trained with AdamW optimizer (im-
plemented by Huggingface) with a warmup ratio be
0.3 and learning rate be 2e-5, and all models in the
second stage are pre-trained first on the TABFACT
dataset.
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Abstract

We present the TAPAS contribution to the
Shared Task on Statement Verification and Ev-
idence Finding with Tables (SemEval 2021
Task 9, Wang et al. (2021)). SEMTABFACT
Task A is a classification task of recognising
if a statement is entailed, neutral or refuted by
the content of a given table. We adopt the bi-
nary TAPAS model of Eisenschlos et al. (2020)
to this task. We learn two binary classification
models: A first model to predict if a statement
is neutral or non-neutral and a second one to
predict if it is entailed or refuted. As the shared
task training set contains only entailed or re-
futed examples, we generate artificial neutral
examples to train the first model. Both models
are pre-trained using a MASKLM objective, in-
termediate counter-factual and synthetic data
(Eisenschlos et al., 2020) and TABFACT (Chen
et al., 2020), a large table entailment dataset.
We find that the artificial neutral examples are
somewhat effective at training the first model,
achieving 68.03 test F1 versus the 60.47 of a
majority baseline. For the second stage, we
find that the pre-training on the intermediate
data and TABFACT improves the results over
MASKLM pre-training (68.03 vs 57.01).

1 Introduction

Recently, the task of Textual Entailment (TE) (Da-
gan et al., 2005) or Natural Language Inference
(NLI) (Bowman et al., 2015) has been adapted to
a setup where the premise is a table (Chen et al.,
2020; Gupta et al., 2020). The Shared Task on
Statement Verification and Evidence Finding with
Tables (SemEval 2021 Task 9, Wang et al. (2021))
follows this line of work and provides a new dataset
consisting of tables extracted from scientific arti-
cles and natural language statements written by
crowd workers. In this paper, we discuss a system
for tackling task A, which is a multi-class classi-
fication task that requires finding if a statement is

Step 1: Pretrain with MLM

[CLS] Statement [SEP] Header 1 [MASK] [MASK] ...

Step 2: Intermediate Pretrain with
Counterfactual+Synthetic data

Sum of wins when Country is U.S  is 7  → Entailed
Greg Steve has the highest earnings       → Refuted

Step 4a: Fine-tune neutral detector

Real SemTabFact Instance           → Relevant 
Corrupted SemTabFact Instance  → Neutral 

Step 4b: Fine-tune binary entailment 

Real SemTabFact Instance → Entailed / Refuted

Step 3: Intermediate Pretrain on TabFact

Real TabFact Instance → Entailed / Refuted

Figure 1: Overview of the training pipeline use in our
system. We use intermediate pre-training on Counter-
factual+Synthetic data (Eisenschlos et al., 2020) and
then fine-tune on TABFACT (Chen et al., 2020).

entailed, neutral or refuted by the contents of a
table. The training set contains only entailed and
refuted examples and requires data augmentation
to learn the neutral class. Additionally, this data set
is composed of English language data and requires
sophisticated contextual and numerical reasoning
such as handling comparisons and aggregations.

A successful line of research on table entailment
(Chen et al., 2020; Eisenschlos et al., 2020; Gupta
et al., 2020) has been driven by BERT-based mod-
els (Devlin et al., 2019). These approaches reason
over tables without generating logical forms to di-
rectly predict the entailment decision. Such models
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are known to be efficient on representing textual
data as well reasoning over semi-structured data
such as tables. In particular, TAPAS-based models
(Herzig et al., 2020) that encode the table structure
using additional embeddings, have been success-
fully used to solve binary entailment tasks with
tables (Eisenschlos et al., 2020).

Entailed

Stage 2 Refuted

Statement + Table

NeutralStage 1

Figure 2: Overview of the complete system. Stage
1 classifies into neutral and non-neutral statements.
Stage 2 into entailed and refuted. Both stages are based
on binary TAPAS classifier models.

To address multi-class classification entailment
we decompose the main task into two sub-tasks and
use two TAPAS models as described in Figure 2. A
first model classifies the statement into neutral or
non-neutral, and a second into entailed or refuted.
The two models are learned separately: we created
artificial neutral statements to fine-tune the first
model. Examples are extracted by randomly pair-
ing statements and tables from the SEMTABFACT

training set. We also generate harder examples by
creating new tables from the original tables by re-
moving columns that contain evidence to refute or
entail the statement. This procedure is discussed in
Section 3.

We follow Eisenschlos et al. (2020) and pre-train
the two TAPAS models with a MASKLM objective
(Devlin et al., 2019) and then with counterfactual
and synthetic data as shown in Figure 1. We ad-
ditionally fine-tune both models on the TABFACT

dataset. Details are given in Section 4.

We find that our artificial neutral statement cre-
ations out-performs a majority baseline and that
pre-training help for both the first and the second
stage. Our best models achieve 68.03 average mi-
cro f1-score on the test set.

2 Related Work

Entailment on Tables Recognizing textual en-
tailment (Dagan et al., 2010) has expanded from a
text only task to incorporate more structured data,
such knowledge graphs (Vlachos and Riedel, 2015),
tables (Jo et al., 2019; Gupta et al., 2020) and im-
ages (Suhr et al., 2017, 2019).

The TABFACT dataset (Chen et al., 2020) for
example, uses tables as the premise, or source of
information to resolve whether a statement is en-
tailed or refuted. The TAPAS architecture intro-
duced by Herzig et al. (2020) can be used to obtain
transformer-based baselines, as shown in Eisen-
schlos et al. (2020), by using special embeddings
to encode the table structure. Zhang et al. (2020);
Chen et al. (2020) also use BERT like models but
obtain less accurate results due possibly to not us-
ing table-specific pre-training.

Intermediate Pre-training Our system relies on
intermediate pre-training, a technique that appears
in different forms in the literature. Language model
fine-tuning (Howard and Ruder, 2018), or domain
adaptive pre-training (Gururangan et al., 2020) are
useful applications for domain adaptation. In a
similar manner than Pruksachatkun et al. (2020),
we use the Counterfactual+Synthetic tasks from
Eisenschlos et al. (2020) to improve the discrete
and numeric reasoning capabilities of the model
for Table entailment.

Synthetic data The use of synthetic data to im-
prove learning in NLP is ubiquitous (Alberti et al.,
2019; Lewis et al., 2019; Wu et al., 2016; Leo-
nandya et al., 2019). Salvatore et al. (2019) focus
on textual entailment and probes models with syn-
thetic examples. In semantic parsing Wang et al.
(2015); Iyer et al. (2017); Weir et al. (2020) use tem-
plates to augment the training data for text-to-SQL
tasks and Geva et al. (2020) do so to improve nu-
merical reasoning, as do Eisenschlos et al. (2020)
on tabular data. They also create minimal con-
trastive examples (Kaushik et al., 2020; Gardner
et al., 2020) by automatically swapping entities in
the statements by plausible alternatives that exists
elsewhere in the table.

3 System

Our system is a two stage process that first decides
whether a statement is neutral, and then decides
if non-neutral statements are entailed or refuted.
Both stages are implement using a binary TAPAS
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Dataset Statements Tables Entailed Refuted Neutral

Crowdsourced Train 4,506 981 2,818 (62.54%) 1,688 (37.46%)
Auto-generated Train 179,345 1,980 92,136 (51.37%) 87,209 (48.63%)

Stage 1 train 9,012 1,915 4506 (50%) 4506 (50%)

Dev 556 52 250 (44.96%) 213 (38.31%) 93 (16.73%)
Test 653 52 274 (41.96%) 248 (37.98%) 131 (20.06%)

Table 1: SEMTABFACT (Wang et al., 2021) statistics. The training data for the first stage was created from
the crowdsourced training data using artificial neutral statements created by deleting columns with evidence or
swapping statements randomly. For the second stage we use the crowdsourced training data.

classifier. TAPAS (Herzig et al., 2020; Eisenschlos
et al., 2020) is a variation of BERT (Devlin et al.,
2019), extended with special token embeddings
that give the model a notion of the row and column
a token is located in and what is its numeric rank
with respect to the other cells in the same column.

3.1 Pre-training

The original TAPAS model (Herzig et al., 2020)
was pre-trained with a Mask-LM objective (Devlin
et al., 2019) on tables extracted from Wikipedia.
It was later found (Eisenschlos et al., 2020) that
its reasoning capabilities can be improved by fur-
ther training on artificial counter-factual entailment
data. This led to substantial improvements on the
TABFACT dataset (Chen et al., 2020), a binary ta-
ble entailment task similar to SEMTABFACT. On
that dataset the test set accuracy for a BERT-base-
sized model improved from 69.6 to 78.6. In this
work, we use models fine-tuned on TABFACT as the
foundation for both stages. We also experimented
with using models fine-tuned on INFOTABS (Gupta
et al., 2020) and SQA (Iyyer et al., 2017) as the
initial models but did not find that to achieve better
accuracy. The overall pre-training strategy is de-
scribed in Figure 1, where we also show how we
use these checkpoints to use the two classification
models described below.

3.2 Neutral Identification Stage

As discussed, the first stage of the system identi-
fies if a statement is neutral. Training a system for
this task is challenging as the SEMTABFACT train-
ing data does not contain neutral statements. We
therefore created artificial neutral statements from
two sources. Following the recommendation of
the shared-task organizers, we created neutral state-
ment by randomly pairing statements from the train-
ing set with new tables. Additionally, we created

neutral statements by identifying columns that con-
tained evidence for deciding whether a statement is
entailed and then randomly removing one of these
columns. Our assumption is that it should not be
possible to decide whether the statement is entailed
when an evidence column has been removed. We
do not remove the first column of a table since that
often contains the name of the row entries. In or-
der to detect the columns containing the evidence,
we trained an ensemble of 5 TAPAS QA models on
the automatically generated SEMTABFACT training
set. Note that the auto-generated data is generated
from templates and in contrast to the crowdsourced
training data does have evidence cell annotations.
The models are trained to predict the binary en-
tailment decision as well as the evidence cells at
the same time, and are initialized using a TAPAS

model fine-tuned on SQA. The model is trained
to predict the binary entailment decision as well
as the evidence cells at the same time. Our mod-
els take as input [CLS]s1...sn[SEP ]t1...tm where
s1, ..., sn represents the tokenized statement and
t1, ..., tm the tokenized table. For each token t of
the table the model outputs a score for the token to
be an evidence for the statement S, s(t ∈ S) ∈ R.
Additionally, it outputs the scores of the entailment
decision using the [CLS] tokens s([CLS]) ∈ R.

We use the same hyper-parameters as SQA (as
discussed in Herzig et al. (2020)). We then run
these models over the crowdsourced training data
and for all examples where the majority of the
models correctly predicts the entailment label, we
extract all columns for which a majority of the en-
semble predicted at least one evidence cell. Evalua-
tion on the SEMTABFACT development set showed
that the precision of this column selection process
is 0.87 (87% of the extracted columns contain a
reference cell). For each column, we then create
a new artificial neutral example by removing the
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Stage 1 Stage 2 Dev Test
f1 2-way f1 3-way f1 2-way f1 3-way

Median Ensemble Median Ensemble Median Ensemble Median Ensemble

Majority Majority 51.44 42.80 52.41 42.15
Majority TABFACT 78.33 ±0.45 80.25 66.40 ±0.66 68.29 75.33 ±0.79 75.21 60.64 ±0.65 60.47

MASKLM TABFACT 74.98 ±0.39 78.38 70.81 ±0.66 72.80 74.32 ±0.84 74.84 67.76 ±0.50 67.67
BERT TABFACT 75.54 ±0.75 77.01 70.33 ±0.59 72.04 72.73 ±0.86 73.18 66.15 ±0.38 67.70
Inter TABFACT 75.77 ±0.50 78.28 71.21 ±0.34 72.79 72.94 ±0.88 74.01 67.99 ±0.78 67.98

TABFACT (drop) TABFACT 78.02 ±0.45 80.06 67.88 ±0.87 69.47 74.92 ±0.76 75.02 62.41 ±0.51 61.67
TABFACT (random) TABFACT 75.97 ±0.73 78.50 69.62 ±0.93 71.81 74.77 ±0.97 74.67 66.64 ±0.16 67.11

TABFACT BERT 54.41 ±0.51 55.09 52.00 ±0.96 52.87 56.14 ±0.45 56.49 53.29 ±1.17 54.15
TABFACT MASKLM 61.76 ±1.06 65.09 58.95 ±0.64 61.62 58.49 ±0.15 60.04 55.89 ±0.40 57.01
TABFACT Inter 74.00 ±0.32 76.68 68.86 ±0.48 71.33 71.08 ±0.78 72.14 64.94 ±0.34 66.43

TABFACT TABFACT 75.74 ±0.18 78.33 70.76 ±0.55 72.95 73.74 ±0.95 74.01 67.67 ±0.96 68.03

Table 2: Stage 1 and 2 ablation at 20,000 steps. majority, TABFACT (drop) and TABFACT (random) use majority
voting (always predicting non-neutral), only the artificial data created by removing columns and only the random
neutral statements respectively. All other models use both kinds of artificial statements.

respective column from the table. This procedure
yields 651 unique new instances from the 4506
training examples. However, similarly to the first
approach of pairing random statements and tables,
the process is not perfect. It may happen that re-
futed statements continue to be refuted after remov-
ing some of the evidence, but in practice we find it
beneficial to generate examples in this fashion.

The final training data is then created by tak-
ing the original crowdsourced training examples
as positive examples and randomly sampling an
equally-sized set of negative examples, where half
of the negatives are random combinations of a state-
ment with a table and the other half are drawn with
replacement from the 651 artificial examples.

3.3 Entailment Stage

Training the entailment stage is rather straight-
forward, we train the model on the crowdsourced
training data using the same hyper-parameters as
Eisenschlos et al. (2020).

3.4 Calibration and Ensemble

As our training data for stage 1 is balanced but the
development data is skewed we find it to improve
accuracy if we trigger for examples with a logit
larger than 4.0 (rather than 0.0). Empirically we
also find the threshold of 4.0 to work better for
the second stage. This could be explained by the
fact that the development set has a different label
distribution than the training set.

We train 5 models per stage and use them as an
ensemble. The ensemble score is defined as the
median of all the model scores. Using the median

worked better than the mean and voting in prelimi-
nary experiments.

4 Experimental Setup

In this section we explain the SEMTABFACT task
and dataset and give additional details about the
experimental setup we used.

The SEMTABFACT dataset consists of state-
ments and tables from the scientific literature. It
is much smaller than similar datasets such as TAB-
FACT (Chen et al., 2020) and INFOTABS (Gupta
et al., 2020). It is note-worthy that the training set
only contains entailed and refuted statements while
the dev and test set also contain neutral (unknown)
statements. The statements were written by crowd
workers, which presented with 7 different types of
statements were instructed to write one statement
of each type. The types of statements were using
aggregation, superlatives, counting, comparatives,
unique counting and the usage of the caption or
common-sense knowledge.

The main metric of the task is the micro f1-score
computed over the statements belonging to a table.
The 3-way score takes all statements into account
while the 2-way score is restricted to refuted and
entailed statements.

5 Results

Table 2 compares our system to multiple baselines.
Unless stated otherwise all baselines have been
trained with the same neutral data generation as
discussed above and for 20,000 steps. All numbers
are based on 5 independent model runs. For all se-
tups we report the median of the individual runs as
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well as the results for a system based on the median
logit of the 5 models. We report error margins for
the medians as half the inter-quartile range.

Looking at the first stage of the system in Table
2, we see that the system based on TABFACT is the
best choice for the initialization, out-performing a
simple BERT model as well as models trained with
only the mask-lm and intermediate pre-training on
both dev and test ensemble accuracy. However, the
model trained on the intermediate data gives higher
median dev and test accuracy (e.g. 72.12 vs 70.76).

With respect to the data generation we ob-
serve that any kind of neutral data generation out-
performs the majority baseline. Combining the
column removal and random statements yields the
best results. The drop in the 2-way metrics go-
ing from the majority Stage 1 model to a learned
model is expected as that metric ignores all neutral
statements in the eval set.

On the second stage of our system (Table 2),
we see that a TAPAS model based on TABFACT

outperforms the other baselines by a bigger margin
than for Stage 1. For example, a model based on
only MASKLM pre-training achieves 57.01 test f1
score while the TABFACT-based modle achieves
68.03. We also found that for this stage there is
a more pronounced difference between BERT and
MASKLM (54.15 vs 57.01) and MASKLM and
intermediate pre-training (57.01 vs 66.43).

Table 5 in the appendix shows the results for
different number of steps and thresholds showing
that results can be slightly tweaked by tuning them.

6 Analysis

Table 3 shows that the recall and precision on the
neutral class are 37.6 and 71.4, respectively. In-
specting some instances of false positives, we find
that the system is quite easily fooled; for exam-
ple classifying the statement “The lowest Factor
8 is 0.027” as non-neutral for a table that has 5
columns labeled as Factor 1 to 5. False negatives
are sometimes caused by failing to map words with
typos (“paramters” vs “parameters”) or abbrevi-
ations (“measurement errors” vs “ME”). Adding
harder examples of neutral statements to the train-
ing set could potentially further improve the identi-
fication. We also see that the recall on the refuted
class (74.3) is lower than the recall of the entailed
class (85.2) while there precision values are similar.

In Table 4 we construct mutually excluded
groups of the validation set. Each set is identified

Reference
Prediction

Non-neutral Neutral Recall

Non-neutral 449 14 97.0
Neutral 58 35 37.6
Precision 88.6 71.4

Reference
Prediction

Refuted Entailed Recall

Refuted 153 53 74.3
Entailed 36 207 85.2
Precision 81.0 79.6

Table 3: Confusion matrix for Stage 1 and Stage 2 on
the development set.

Size Acc Baseline ER

Overall 100.0 71.0 45.0 29.0

Superlatives 15.8 73.9 50.0 4.1
Aggregations 13.8 61.0 46.8 5.4
Comparatives 12.2 58.8 47.1 5.0
Negations 3.1 82.4 41.2 0.5

Multiple of the above 5.9 72.7 63.6 1.6
Other 49.1 75.1 43.6 12.2

Table 4: Accuracy and total error rate (ER) for different
question groups derived from the same word heuristics
defined in Eisenschlos et al. (2020). The baseline is
simple class majority and the error rate in each group
is taken with respect to the full set. Comparatives show
the biggest margin for future improvements comparing
with the overall system accuracy.

by specific keywords appearing in the statement,
for example Comparatives must contain “higher”,
“better”, “than”, etc. The full list is defined in the
appendix of Eisenschlos et al. (2020). We observe
that comparatives and aggregations have the largest
total error rates, meaning that the biggest gains in
overall accuracy can be made by improving those
reasoning skills. Between these two, Comparatives
have the lowest in-group accuracy. Table 6 and
Table 7 in the appendix show the some anaylsis for
Stage 1 and Stage 2, respectively. The trend for
Stage 2 is similar to the overall trend whereas Stage
1 accuracy is relatively stable across the different
groups except for comparatives where the accuracy
drops from 87% overall to 81%.

Another class of examples with relatively low
accuracy are statements around unique counting.
We find that statements containing the word differ-
ent have an accuracy of 51.3 (vs. 71% overall) and
account for 3.4 percentage points of the total er-
ror rate. Examples include “There are six different
classes” and “They have ten different parameters”.
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7 Conclusion

We presented our contribution to the SEMTABFACT

task (Wang et al., 2021) on table entailment. Our
system consists of two stages that classify state-
ments into non-neutral or neutral and refuted or
entailed. Our model achieves 68.03 average mi-
cro f1-score on the test set. We showed that our
procedure for creating artificial neutral statements
improves the system over a majority baseline but re-
sults in a relatively low recall of 37.6. Other meth-
ods for creating harder neutral statements might
further improve this value. In line with Eisenschlos
et al. (2020), we find that pre-training on interme-
diate data improves the system accuracy over a
system purely pre-trained with a MASKLM objec-
tive. While these initial results look promising, we
find that the model struggles with statements that
involve complex operations such as comparisons
and unique counting.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the Association for Computational
Linguistics, Seattle, Washington. Association for
Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the Association for
Computational Linguistics, pages 4320–4333, On-
line. Association for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the Association for Computational
Linguistics, pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, , and Kornél Csernai.
2017. Quora question pairs.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 1821–
1831, Vancouver, Canada. Association for Computa-
tional Linguistics.

428



Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi
Wang, Cong Yu, Daniel Liu, and Niyati Mehta. 2019.
Aggchecker: A fact-checking system for text sum-
maries of relational data sets. International Confer-
ence on Very Large Databases, 12(12):1938–1941.

Divyansh Kaushik, Eduard H. Hovy, and
Zachary Chase Lipton. 2020. Learning the differ-
ence that makes A difference with counterfactually-
augmented data. In Proceedings of the International
Conference on Learning Representations, Addis
Ababa, Ethiopia.

Rezka Leonandya, Dieuwke Hupkes, Elia Bruni, and
Germán Kruszewski. 2019. The fast and the flexi-
ble: Training neural networks to learn to follow in-
structions from small data. In Proceedings of the
International Conference on Computational Seman-
tics, pages 223–234, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the Association for
Computational Linguistics, pages 4896–4910, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained models for natural language under-
standing: When and why does it work? In Proceed-
ings of the Association for Computational Linguis-
tics, Seattle, Washington. Association for Computa-
tional Linguistics.

Felipe Salvatore, Marcelo Finger, and Roberto Hi-
rata Jr. 2019. A logical-based corpus for cross-
lingual evaluation. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pages 22–30, Hong
Kong, China. Association for Computational Lin-
guistics.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi.
2017. A corpus of natural language for visual rea-
soning. In Proceedings of the Association for Com-
putational Linguistics, pages 217–223, Vancouver,
Canada. Association for Computational Linguistics.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the Association for
Computational Linguistics, pages 6418–6428, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Andreas Vlachos and Sebastian Riedel. 2015. Identifi-
cation and verification of simple claims about statis-
tical properties. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 2596–
2601, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Nancy Xin Ru Wang, Diwakar Mahajan, Marina
Danilevsky, and Sara Rosenthal. 2021. Semeval-
2021 task 9: Fact verification and evidence find-
ing for tabular data in scientific documents (sem-
tab-facts). In Proceedings of the 15th international
workshop on semantic evaluation (SemEval-2021).

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 1332–1342, Beijing, China. Association
for Computational Linguistics.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, An-
drew Crotty, Amir Ilkhechi, Shekar Ramaswamy,
Rohin Bhushan, Nadja Geisler, Benjamin Hättasch,
Steffen Eger, Ugur Cetintemel, and Carsten Binnig.
2020. Dbpal: A fully pluggable nl2sql training
pipeline. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIG-
MOD ’20, page 2347–2361, New York, NY, USA.
Association for Computing Machinery.

Changxing Wu, Xiaodong Shi, Yidong Chen, Yanzhou
Huang, and Jinsong Su. 2016. Bilingually-
constrained synthetic data for implicit discourse rela-
tion recognition. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 2306–
2312, Austin, Texas. Association for Computational
Linguistics.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of Empirical Methods in
Natural Language Processing, pages 1624–1629,
Online. Association for Computational Linguistics.

429



Appendix

The appendix contains additional results and analy-
sis tables.

A Results

Table 5 shows the results for different number of
steps and thresholds showing that results can be
slightly tweaked by tuning them.

Steps Thresh f1 2-way f1 3-way
Median Ensemble Median Ensemble

20K 0.0 74.97 ±0.35 76.41 69.96 ±1.05 71.03
10K 4.0 75.97 ±1.48 76.47 70.68 ±1.36 72.19
10K 0.0 75.84 ±1.33 76.55 70.63 ±1.21 72.27
20K 4.0 75.74 ±0.18 78.33 70.76 ±0.55 72.95

Table 5: Ablation of steps and threshold on the dev set.

B Analysis

Table 6 and Table 7 show the error rate contribu-
tions of different types of statements for Stage 1
and Stage 2, respectively. The trend for Stage 2 is
similar to the overall trend (Table 4) whereas Stage
1 accuracy is relatively stable across the different
groups except for comparatives where the accuracy
drops from 87% overall to 81%.

Size Acc Baseline ER

Overall 100.0 87.1 83.3 12.9

Superlatives 15.8 90.9 89.8 1.4
Aggregations 13.8 88.3 87.0 1.6
Comparatives 12.2 80.9 79.4 2.3
Negations 3.1 88.2 64.7 0.4

Multiple of the above 5.9 93.9 87.9 0.4
Other 49.1 86.1 81.7 6.8

Table 6: Accuracy and total error rate (ER) for different
question groups for Stage 1.

Size Acc Baseline ER

Overall 100.0 80.2 54.1 19.8

Superlatives 16.9 80.3 53.9 3.3
Aggregations 14.0 66.7 54.0 4.7
Comparatives 11.6 71.2 59.6 3.3
Negations 2.4 90.9 63.6 0.2

Multiple of the above 6.2 75.0 71.4 1.6
Other 48.8 86.3 53.0 6.7

Table 7: Accuracy and total error rate (ER) for different
question groups for Stage 2.
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Abstract

In this paper, we present our text augmenta-
tion based approach for the Table Statement
Support Subtask (Phase A) of SemEval-2021
Task 9. We experiment with different text
augmentation techniques such as back transla-
tion and synonym swapping using Word2Vec
and WordNet. We show that text augmenta-
tion techniques lead to 2.5% improvement in
F1 on the test set. Further, we investigate the
impact of domain adaptation and joint learn-
ing on fact verification in tabular data by uti-
lizing the SemTabFacts and TabFact datasets.
We observe that joint learning improves the F1
scores on the SemTabFacts and TabFact test
sets by 3.31% and 0.77%, respectively.

1 Introduction

Recognizing Textual Entailment (RTE) (Dagan
et al., 2005) is one of the core NLP problems for un-
derstanding the semantic relations between words
and sentences, which is useful for other tasks in-
cluding Question Answering (Abacha and Demner-
Fushman, 2019), Text Summarization (Lloret et al.,
2008), and Text Classification (Yin et al., 2019).
For the RTE task, datasets of various sizes (Da-
gan et al., 2005; Bowman et al., 2015) and from
different domains (Romanov and Shivade, 2018)
have been introduced. However, these works and
datasets are solely focused on textual data without
considering structured data such as tables.

Recently, question answering (Iyyer et al., 2017)
and textual entailment datasets (Wenhu Chen and
Wang, 2020; Wang et al., 2021) for tabular data
have been introduced. SemEval-2021 Task 9
addresses the problem of statement verification

1The grammatical error exists in the given dataset.

Distance statistics between buildings of ancient
buildings and modern buildings to the main water

channel (unit: meter).

Index Ancient
building

Modern
building

AVERAGE 174.095 273.917
STDEV.S 58.780 190.928
MIN 6.763 4.868
MAX 321.608 912.368
MEDIAN 173.010 243.885

Statement Label

There are 2 types of building
- Ancient building and Modern
building.

Entailed

All the values of Ancient build-
ing is less than Modern building
except MIN value.

Entailed

The value of Modern building is
is lesser than Ancient building in
AVERAGE. 1

Refuted

Figure 1: Sample table, description, and statements
from SemTabFacts.

(Phase A) and evidence finding (Phase B) using
tables from scientific articles (Wang et al., 2021).
The shared task also introduced a new dataset,
namely the SemTabFacts dataset, an example from
which is provided in Figure 1. The goal of Phase
A (Table Statement Verification) of the shared task
is to determine whether a statement is entailed, re-
futed, or unknown given a table and its description
(if available). For example, given the table and
its description in Figure 1, the first two statements
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are entailed, whereas the third statement is refuted.
This example demonstrates that there are various
challenges such as understanding numerical opera-
tions and comparisons as well as textual entailment.

Transformers architecture (Vaswani et al., 2017)
enabled the pretraining of large language models,
which achieve significant improvement in numer-
ous NLP tasks (Wang et al., 2018, 2019). Recent
works have also focused on pretraining language
models for tabular data by introducing new em-
bedding layers and objective functions, as well as
large-scale augmented data to better represent nu-
merical values and rankings (Herzig et al., 2020;
Eisenschlos et al., 2020).

Data augmentation is a way to enrich training
data to improve the supervised training scheme
and is widely used in computer vision (Perez and
Wang, 2017) and speech recognition (Park et al.,
2019). Different text augmentation techniques such
as back translation, synonym replacement, and text
editing have been investigated for various tasks
including text classification (Wei and Zou, 2019)
and natural language inference (Min et al., 2020).

In this study, we aim at investigating the impact
of text augmentation on the statement verification
task from tables. We implement various text aug-
mentation techniques based on WordNet (Miller,
1998), Word2Vec (Mikolov et al., 2013), and Back
Translation (Yu et al., 2018) to enrich the statement
variety in the SemTabFacts dataset. We finetune a
recently introduced pretrained transformer architec-
ture, the TAPAS model (Eisenschlos et al., 2020),
for our approach. In addition, we investigate the
domain adaptation and joint learning capabilities of
two tabular fact verification datasets: SemTabFacts
and TabFact. Promising results are achieved on the
SemTabFacts test dataset.

2 Datasets

We use two different table-based fact verification
datasets for the experiments: SemTabFacts (Wang
et al., 2021) and TabFact (Wenhu Chen and Wang,
2020). We compare SemTabFacts and TabFact in
terms of the average size of the tables, average
word length of the statements, and the number
of examples for each class in Table 1. We only
report the statistics for the training sets, since the
development and test sets have similar distributions
with the training sets in both datasets. There is
almost an order of magnitude difference between
the datasets in terms of the number of tables and

SemTabFacts TabFact

# Tables 981 13,182
# Statements 4,506 92,283
# Entailed 2,818 50,820
# Refuted 1,688 41,463
Avg. Row Size 9.0±8.0 13.5±8.6
Avg. Column Size 5.3±2.9 6.4±1.7
Avg. Statement
Length (Words) 11.5±7.1 13.2±4.5

Table 1: Comparative statistics of SemTabFacts and
TabFact.

statements. Furthermore, we observe that the
average table size and average statement length
in terms of words are greater in TabFact than
SemTabFacts.

SemTabFacts (Wang et al., 2021): This dataset
consists of tables from articles published in Else-
vier, which are available on ScienceDirect. Af-
ter filtering complicated examples, five entailed
and five refuted statements about these tables are
generated by high-quality crowd-sourcing. These
statements are further verified by additional crowd-
source workers, especially for filtering out ungram-
matical sentences. To increase the quality level,
Wang et al. (2021) further verified the statements
in the development and test sets. The SemTabFacts
dataset also contains automatically generated state-
ments and unknown classes in the development
and test sets for the fact verification and evidence
finding tasks. In this study, we target two-way
(Entailed / Refuted) classification without automat-
ically generated statements for the fact verification
task.

SemTabFacts releases tables and statements in
XML format. We convert these tables into CSV
format to properly use in our models. Due to
cells with multirow and multicolumn features in
XML, we could not accurately convert all tables
into CSV, which might affect our models’ overall
performance. We manually checked the XML to
CSV conversion of 50 tables. We identified three er-
rors related to multirow and multicolumn features,
and one error that causes a missing column.

TabFact (Wenhu Chen and Wang, 2020): This
dataset crawls tables from Wikipedia articles fol-
lowing previous works on table question answer-
ing (Pasupat and Liang, 2015; Zhong et al., 2017).
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Designed input parameters during experimental set-up.

Experimental bottle ID Material type Material amount, g

A Inoculum 200.2
B Inoculum 200.4
1A Inoculum + Olive cake 200.4
1B Inoculum + Olive cake 199.7

Augmentation Methods Sentence
Original 199.7 is the lowest Inoculum compare to all others.
WordNet 199.7 is the small Inoculum compare to all others.
Word2Vec 199.7 is the lowest Inoculum comparisons to all others.
Back Translation 199.7, compared to others is the most low inoculum.

Figure 2: Generated sentences by different text augmentation methods for the same statement. The table for the
original statement is given above with some modifications.

Complicated tables including multirows, multi-
columns, and latex symbols, and large tables with
more than 50 rows or 10 columns were filtered
out. Amazon Mechanical Turk was used to gen-
erate simple and complex statements about tables.
The Mechanical Turk workers also filtered out poor
statements that have grammatical errors or vague
claims. Finally, annotator agreement scores were
computed by having the same set of statements la-
beled by another set of Mechanical Turk workers.

3 Methods

3.1 TAPAS

Deep transformers models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
achieved significant improvement in different NLP
tasks as seen in the GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) benchmarks.
However, it is not straightforward to benefit from
these models for structured data formats such as
tables or graphs. TAPAS (Herzig et al., 2020) in-
troduces different objectives such as cell selection
and aggregation prediction, and new additional em-
beddings such as column/row id and rank id over
BERT’s architecture, which are more suitable for
complex numerical operations and comparisons in
tables. The TAPAS model has been designed by
focusing on the task of question answering over
tables (Herzig et al., 2020). However, TAPAS fails
to handle complex compositional structures like
multiple aggregations and large tables due to the
maximum length limit of the tokenizer.

To overcome the problems in (Herzig et al.,
2020), recently, Eisenschlos et al. (2020) intro-
duced new mechanisms such as table pruning to

make TAPAS work with large tables without mem-
ory errors. Furthermore, two augmentation meth-
ods for statements were presented (Eisenschlos
et al., 2020). The first one is based on creating coun-
terfactual statements by replacing entity mentions
with other entities on entailed examples to popu-
late negative samples. The second one is based
on a synthetic data generation method to populate
statements with complex numerical operations.

In this study, we use a TAPAS model from
HuggingFace’s Transformers library (Wolf et al.,
2019). This model is pretrained on Masked Lan-
guage Model and additional intermediate pretrain-
ing steps as discussed in (Eisenschlos et al., 2020).
In addition, it is finetuned on the TabFact dataset
(Wenhu Chen and Wang, 2020). We further fine-
tuned this model on SemTabFacts (Wang et al.,
2021) with additional augmentation steps by utiliz-
ing WordNet, Word2Vec, and back translation.

3.2 Text Augmentation
3.2.1 WordNet
WordNet (Miller, 1998) is a lexical database that
groups words into adverbs, adjectives, nouns, and
verbs, and shows the relations between them such
as hyponymy, antonymy, and synonymy. In this
work, we focus on swap-based WordNet augmen-
tation that changes words by their WordNet syn-
onyms. The implementation is done by the Tex-
tAttack (Morris et al., 2020) library. As shown in
Figure 2, the word lowest is changed to small by
synonym swapping.

3.2.2 Word2Vec
Word2Vec (Mikolov et al., 2013) is a technique to
find dense word embeddings by shallow networks.
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Training Set Dev Test

SemTabFacts 0.7661 0.7044
SemTabFacts+WN 0.7791 0.7294
SemTabFacts+W2V 0.7486 0.7201
SemTabFacts+BT 0.7725 0.6941
SemTabFacts+WN+W2V 0.7648 0.7147
SemTabFacts+WN+BT 0.7869 0.7217
SemTabFacts+W2V+BT 0.7614 0.7202
SemTabFacts+W2V+WN+BT 0.7484 0.7101

Table 2: F1 scores of different augmentation tech-
niques on SemTabFacts. WN, W2V, and BT repre-
sent WordNet, Word2Vec, and Back Translation, re-
spectively.

It helps to represent syntactic and semantic fea-
tures of words by a dense vector. Due to the low
dimensional space, similar words and synonyms
have closer word embeddings. We make use of this
feature of Word2Vec to replace words with their
Word2Vec synonyms by TextAttack library. For
example, this augmentation technique changes the
word compare to comparisons as shown in Figure
2. While WordNet augmentation preserves the part
of speech tags of the words, Word2Vec augmenta-
tion may distort the part of speech tags and may
produce ungrammatical sentences.

3.2.3 Back Translation

The back translation technique paraphrases a given
sentence from a source language by translating it
into another target language and then translates
it back into the source language. It was first in-
troduced as a data augmentation mechanism for
the reading comprehension task (Yu et al., 2018),
where significant improvement was observed by
back translation augmentation. Recent machine
translation systems (Sennrich et al., 2016) are ro-
bust to back translation mechanism and tend to
produce the same sentence. To overcome this issue,
we used two different versions of the same system.
First, we translated the statements in English to
Turkish by Google Translate 2. Then, we trans-
lated the Turkish statements into English by the
GOOGLETRANSLATE function in Google Sheets.
The back translation method paraphrases the sen-
tence and unlike the WordNet and Word2Vec ap-
proaches, it may change word order in addition to
the words, as illustrated in Figure 2.

2https://translate.google.com

Training Set SemTabFacts TabFact
Dev Test Dev Test

SemTabFacts 0.7661 0.7044 0.7435 0.7471
TabFact 0.7284 0.7019 0.8200 0.8178
SemTabFacts
+TabFact

0.7992 0.7335 0.8167 0.8255

Table 3: F1 scores of domain adaptation and joint
learning capabilities of SemTabFacts and TabFact.

4 Experimentation and Results

We conduct two different experimental setups to
compare our results. In both experiments, we fine-
tune all layers of a pretrained TAPAS model and
its classifier head. First, we finetune the TAPAS
model on the SemTabFacts dataset with all combi-
nations of different augmentation techniques. Sec-
ond, instead of using augmentation techniques, we
finetune the TAPAS model on TabFact only and
then on SemTabFacts and TabFact jointly and com-
pare the results on the test sets of TabFact and
SemTabFacts. In all these experiments, we use the
AdamW (Loshchilov and Hutter, 2018) optimizer
with a 5e− 5 learning rate and 0.01 weight decay.
We set batch size as 8 with 2 accumulation steps,
and the number of steps used for linear warm-up is
100 in SemTabFacts training and 2000 in TabFact
and joint training. We finetune this model over
10 epochs and decide the best model based on the
development set. We use the official evaluation
metric, which is the macro-average of F1 scores
over the tables.

In the augmentation steps, we include new aug-
mented statements for each statement and augmen-
tation method to the training data of SemTabFacts.
The original versions of the development and test
sets are used without any augmentation. We ob-
serve that different augmentation techniques in
SemTabFacts can improve F1 scores on the test
set as shown in Table 2. The best model for the
development set of SemTabFacts is the model with
WordNet and back translation augmentations. Be-
sides, all augmentation techniques, except back
translation, improve the test F1 score over the base
model without augmentation. Finally, we observe
that WordNet augmentation increases the test F1
score by 2.5% over the base model without aug-
mentation.

In Table 3, we investigate the domain adaptation
and joint learning capabilities of SemTabFacts and
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TabFact. We have finetuned three separate models,
with SemTabFacts training data, TabFact training
data, and SemTabFacts and TabFact training data.
We evaluate these finetuned models on the develop-
ment and test sets of the datasets. The original ver-
sions of the training, development, and test sets are
used in these experiments without any additional
augmentation. The model trained with TabFact and
SemTabFacts data achieved the highest F1 scores
on the test sets of both datasets. The joint model
improves the F1 score by 3.31% and 0.77% on the
SemTabFacts and TabFact test sets, respectively.
Further, we observe that we can achieve similar
scores on the SemTabFacts test set when the model
is trained on the SemTabFacts training data or on
the TabFact training data.

We further analyzed the errors in terms of ta-
ble sizes (number of rows x number of columns)
and length of the statements. However, our re-
sults indicate that there is no significant difference
in F1 scores for different table sizes and different
lengths of statements. Our models have similar
performance for small and large tables as well as
for short and long statements.

5 Conclusion

In this work, we described our models for the Table
Statement Support Subtask (Phase A) of SemEval-
2021 Task 9. Our base model relies on the recently
introduced pretrained transformer architecture for
tabular data, TAPAS. We proposed three different
augmentation techniques which are based on Word-
Net, Word2Vec, and Back Translation. We showed
that all combinations of these augmentation tech-
niques except Back Translation perform better on
the test set than methods without augmentation.
Furthermore, we investigated the domain adap-
tation and joint learning capabilities of SemTab-
Facts and TabFact. We showed that our best model
in terms of development and test F1 for SemTab-
Facts occurs when we trained TAPAS jointly on
the SemTabFacts and TabFact datasets. Addition-
ally, we illustrated that the joint model achieves
better results on the TabFact test set than the model
trained only on the TabFact training dataset. As fu-
ture work, we plan to focus on better preprocessing
the SemTabFacts dataset and more diverse augmen-
tation techniques by integrating perplexity scores
of augmented statements.
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Abstract
Recent progress in deep learning has primar-
ily been fueled by the availability of large
amounts of annotated data that is obtained
from highly expensive manual annotating pro-
cesses. To tackle this issue of availability
of annotated data, a lot of research has been
done on unsupervised domain adaptation that
tries to generate systems for an unlabelled
target domain data, given labelled source do-
main data. However, the availability of anno-
tated or labelled source domain dataset can’t
always be guaranteed because of data-privacy
issues. This is especially the case with med-
ical data, as it may contain sensitive informa-
tion of the patients. Source-free domain adap-
tation (SFDA) aims to resolve this issue by us-
ing models trained on the source data instead
of using the original annotated source data. In
this work, we try to build SFDA systems for se-
mantic processing by specifically focusing on
the negation detection subtask of the SemEval
2021 Task 10. We propose two approaches -
ProtoAUG and Adapt-ProtoAUG that use the
idea of self-entropy to choose reliable and high
confidence samples, which are then used for
data augmentation and subsequent training of
the models. Our methods report an improve-
ment of up to 7% in F1 score over the baseline
for the Negation Detection subtask.

1 Introduction

The availability of large scale datasets has been the
main driving factor behind the success of super-
vised deep learning in the recent times. However,
the process of data annotation is very expensive
and time consuming, being one of the major chal-
lenges in extending deep learning techniques for
new tasks.

One possible way to solve this problem is to
train a machine learning model using an annotated

∗ Authors contributed equally to the work. Names in
alphabetical order.

source dataset to assist the annotation process over
some unlabelled target dataset. However, there may
be differences in the source and target domain dis-
tributions, which may lead to inaccuracies. Thus
the challenge is to update the weights of the source
classifier to generalize it well on the target domain.
This aligns with the well studied problem of Un-
supervised Domain Adaptation (UDA) (Kouw and
Loog, 2019; Wang and Deng, 2018; Ramponi and
Plank, 2020)

A common denominator across many popular
UDA methods is their dependence on large amounts
of labelled source domain data (Ganin and Lem-
pitsky, 2015; Saito et al., 2018). However, many a
times it is not possible to release the source domain
dataset because of privacy concerns. This prob-
lem becomes particularly relevant when working
with clinical Natural Language Processing (NLP)
datasets because they contain highly sensitive in-
formation which cannot be freely distributed. To
tackle these data sharing constraints, the frame-
work of Source-Free Domain Adaptation (SFDA)
is gaining interest (Laparra et al., 2020). In SFDA,
instead of sharing the source domain data, only a
model that has been trained on the source domain
data is shared. This model is then used for solving
the original task for the unlabelled target domain.

SemEval 2021 Task 10 (Laparra et al., 2021)
asks participants to develop SFDA models for two
subtasks. The first subtask involves Negation
Detection, where we are required to determine
whether or not a clinical entity (diseases, symp-
toms, etc.) mentioned in a sentence is negated in
the given context. The second subtask is of Time
Expression Recognition, where the objective is to
detect and label all time expressions mentioned in
a given document. In this work we have focused on
the negation subtask. For solving this subtask our
strategy is to make use of high-confidence proto-
types from the target domain to reinforce the target-
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specific features of the source model. We propose
a simple augmentation technique that makes use
of these high-confidence prototypes to generate la-
belled artificial datapoints. These augmented sam-
ples are then used to perform supervised fine-tuning
of our source model. Using our methods, we were
able to obtain upto a 7% improvement in F1 score
over the baseline. The code for models and experi-
ments is made available via GitHub.1

2 Background

In source free domain adaptation (SFDA) problem
for semantic analysis, the goal is to create accurate
systems for un-annotated target domain data. For
these tasks, we are provided with un-annotated
target domain data, and a model trained on the
annotated source domain data for a similar task.

The shared task is further divided into 2 sub-
tasks – Negation detection and Time expression
recognition. In this work we focus only on the first
subtask.

Negation Detection: The task is to classify clin-
ical event mentions for whether they are negated
by their context. This is essentially a “span-in-
context” classification problem, where both the en-
tity to be classified and its surrounding context are
to considered. For example, the sentence - “Has no
<e>diarrhea <\e>and no new lumps or masses”
has the entity diarrhea which is negated by its con-
text, and the model’s task is to correctly identify
this entity as negated.

Pretrained Models: For negation detection, a
given pre-trained classification model has been fine-
tuned on the 10,259 instances in the SHARP Seed
dataset(Rea et al., 2012) of de-identified clinical
notes from Mayo Clinic of which 902 instances are
negated.

Practice Data: The development data for the nega-
tion task is a subset of the i2b2 2010 Challenge
(Uzuner et al., 2011) on concepts, assertions, and
relations in clinical text. The practice dataset is
further divided into train and dev splits. The train
split contains 2886 unlabeled sentences while the
dev split is composed of 5545 labeled sentences.

Test Data: A part of the MIMIC III corpus v1.4
(Johnson et al., 2016),is used as the test set for the
negation detection subtask. The processed test data
contains around 600K instances.

1https://github.com/purug2000/protoAug.git

2.1 Prior Work
The limitations in creating large scale annotated
datasets have led to a large amount of work on un-
supervised domain adaptation in the recent years
(Ganin and Lempitsky, 2015; Ganin et al., 2016;
Tzeng et al., 2017; Saito et al., 2018). However,
most of this work assumes free availability of
source domain data. In source free domain adapta-
tion (SFDA) problems, when no annotated source
data is available, and only a pretrained model is
provided, the domain adaptation problem becomes
rather difficult, and this remains a largely unex-
plored area in the NLP community. However, there
have been some recent works in the computer vi-
sion domain that attempt to solve this problem.
Hou and Zheng (2020) propose a model to trans-
fer the style of source images to that of the target
images by exploiting the information stored in the
batch normalization layers of the pre-trained model.
In another work, (Kim et al., 2020) observed that
the target domain data points with lower entropy
are generally classified correctly and are reliable
enough to generate pseudo labels for the entire tar-
get dataset.

The two sub-tracks for the current SemEval task
are well studied problems in the supervised setting
and a lot of work has been done on developing
models for both the negation detection in clinical
settings (Chapman et al., 2001; Cotik et al., 2016)
and the time expression recognition taak (Laparra
et al., 2018). However, in this work, we attempt
to approach the negation detection task from the
perspective of SFDA, and not on improving these
techniques in general.

3 System Overview

In this paper we offer a novel perspective on the
problem of domain adaptation for the negation
detection task in clinical NLP. The proposed ap-
proaches attempt to utilize some of the aspects of
both self-learning and semi-supervised learning, as
explained next.

Class Prototypes: If there was any access to the
labeled target data then the most intuitive approach
would have been the fine-tuning. But for unlabeled
case, in order to fine-tune the pre-trained network
S, it would become necessary to generate a labeled
set of data from the given unlabeled target domain
data. One way to approach this would be through a
concept from self-learning, i.e., by finding the most
reliable samples from the target data over which the
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model S is sufficiently confident and using these
predictions as the corresponding ground truth. In
order to find reliable target samples, self-entropy H
can be used to quantify the prediction uncertainty:

H(x) = −
K∑

k=1

pSk (x)log(p
S
k (x)) (1)

Here, S refers to the network (pre-trained classi-
fier), K are total number of classes, and pSk (x) is
the probability of the instance x belonging to the
class k.

Figure 1: For any point P on the x-axis, the y-axis
shows the performance scores on the data points hav-
ing their self-entropies in the lowest P percentile.

The samples with smaller self-entropy indicate
that the classifier is more confident over them, and
these are referred to as Prototypes. The relation-
ship between the self-entropy value and certainty
in the prediction can be clearly observed in fig-
ure 1. Due to very high confidence of the model
and accuracy over these prototypes, we can safely
consider their predicted labels as their actual true
labels. Here, one crucial hyperparameter to con-
sider is the self-entropy threshold below which the
residing target samples will be identified as pro-
totypes. The key issue faced while determining
the value of this hyperparameter is the disparities
and highly imbalanced data distribution between
the classes. Especially, in the negation task, the
presence of the negated sentences in the practice
data itself is in a very small proportion than that of
non-negated sentences making negated a minority
and non-negated a majority class. Analysis of the
practice data (figure 2) further showed that the low-
est self-entropy achieved by the negated class is
far higher than that of non-negated class. For now,
the self-entropy threshold value is defined by the
50th percentile (median) self-entropy value of the

minority class i.e. negated class. The rationale for
this is provided in the Analysis section (section 5).

Unfortunately, the fine-tuning of the pre-trained
network S with the prototypes identified from the
target samples, didn’t enable the trained network
to generalise its performance over unseen target
data as it made it highly likely to overfit on the
prototypes without any early intervention. With
this approach, we were able to get improvement
of about 1% in F1 score over the baseline but that
too with the highly unstable and unreproducible
training results. Only using the reliable samples
became a major issue as the trained model seemed
to be unaware of the samples over which the model
was less confident before.

Augmentation: To address the issue of lack of
generalisation of the model towards the unseen
and not-so-reliable target data, we propose the use
of augmentation, inspired by the Mean Teacher
model proposed by Tarvainen and Valpola (2018).
The basic idea is to regularize the network by in-
troducing noise to the prototypes in a way that can
keep the label same and thereby creating new data
points with the known labels. Mean Teacher model
uses similar strategy for the labeled data points,
instead here we apply that to the identified proto-
types from the target data. This way, the pre-trained
network can be subjected to a further constructive
training by introducing a set of new labelled sam-
ples, which could help with the generalisation for
the trained model.

Another use of the augmentation here is to ad-
dress the issue of highly skewed and imbalanced
distribution of data between the classes. Here, the
augmentation is utilized not just to generate new
samples to regularize the network but also to make
the data distribution balanced across the classes by
adding new samples in accordance with the pre-
ferred proportions.

Although there could be many possible ways to
augment the samples so that their labels can be
maintained, for this specific task, since we have a
highlighted concept term in each sentence, we have
used the augmentation by replacing that concept
term. The new sentences are generated from their
parent prototype sentences by replacing the con-
cept term with a concept term from any randomly
selected sentence of the same class in the data set.
Here we have assumed that most of the concept
terms will represent medical condition and thus
nouns. Even when the grammar and the sentence
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structure is preserved, the result of the augmenta-
tion might still not be perfect due to the possible
ambiguity in the concept term selection or incor-
rect grammar in the original sentence itself. For
example, consider the sentence “...<e> cortisol
</e> is currently pending.”. Here it is not clear
if the entity “cortisol” is negated or non-negated.
However, it should be noted that such ambiguities
are relatively less frequent which in turn implies
that the augmentation will suffice its purpose for
the majority of the time.

ProtoAUG and Adapt-ProtoAUG: Combining
the concepts discussed above, here we propose our
two approaches ProtoAUG and Adapt-ProtoAUG,
both of which share the same set of concepts of
class prototypes and augmentation as explained be-
fore. For both ProtoAUG and Adapt-ProtoAUG,
the common underlying procedure is as follows:
first the prototypes are identified from the target do-
main data and then the augmentation follows with
the intent of regularizing the network and to cre-
ate a more balanced distribution of samples across
the classes. Now both the prototypes and their
augmented samples with their respective labels are
used with cross entropy loss to update the weights
of the feature extractor module F of the pre-trained
network S, with classifier module C of the pre-
trained network being frozen.

The fundamental difference between ProtoAUG
and Adapt-ProtoAUG is about the adaptive nature
of Adapt-ProtoAUG in recognizing the prototypes
from the original target domain dataset after every
epoch, which ProtoAUG does only at the beginning
of the training. Adapt-ProtoAUG makes incremen-
tal changes to the percentile score (initially 50) for
the self-entropy threshold. The intuition behind
using this strategy is that as the training proceeds,
model will become more confident on the training
samples and the entropy values for all the samples
will significantly decrease. A possible drawback
of using a fixed percentile criteria for the threshold
at every epoch would likely exclude some reliable
samples even when they achieve objectively quite
lower values of self-entropy. To avoid such sce-
narios, apart from repeating the same process of
prototype identification followed by augmentation
after every epoch, we also propose to increase the
percentile score for determining the self-entropy
threshold in an uniform manner throughout the
training with some fixed upper bound (70). This is
also explained further in the Analysis (section 5).

4 Experimental Setup

Model: The pre-trained model used in subtask-1
is a RoBERTa (Liu et al., 2019) based sequence
classification model2 provided by organizers after
training on source domain data inaccessible to us.
It has two modules - a feature extractor and a classi-
fier that operates over the output [CLS] token from
the feature extractor.

Data: In the practice phase, train split of the prac-
tice dataset was used to further train the pre-trained
model whereas the dev split was used as a vali-
dation set for the hyper-parameter tuning. In the
evaluation phase, due to our computational con-
straints, we were only able to utilize a randomly
selected subset of 25k samples from around 600k
sentences of the test dataset, for retraining of the
pre-trained model. For evaluation the organisers
use an annotated subset of the test dataset. During
the evaluation phase this subset was kept hidden
from the participants.

Hyper-parameters setting: For ProtoAug, self-
entropy percentile threshold is set to 50% whereas
as for Adapt-ProtoAUG it is uniformly increased
after every epoch from being 50% at the first to
being 70% at the final epoch. Using augmentation,
the final number of samples per class is set to be
x times the number of prototypes belonging to the
majority (non-negated) class. In our experiments,
we choose x to be 4. For both the approaches, the
model training is performed for 10 epochs. Dur-
ing the test phase, we reuse the hyper-parameters
obtained from the practice phase. Further details
about hyper-parameter selection can be found in
Appendix A.

5 Results

Table 1 shows results on the development data
for the two approaches - ProtoAUG and Adapt-
ProtoAUG. For reference, results obtained from
the pre-trained model are shown as the baseline.

Model F1
score

Precision Recall

Baseline 0.834 0.850 0.818
ProtoAUG 0.877 0.948 0.816
Adapt-ProtoAUG 0.888 0.959 0.827

Table 1: Results obtained on dev data of practice phase

2Model is available on https://huggingface.co/
tmills/roberta_sfda_sharpseed
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Table 2 shows results of our two proposed ap-
proaches with the baseline model on the test set. In
evaluation phase, the observed improvement in F1-
score was of roughly 7% from the original baseline.

Model F1
score

Precision Recall

Baseline 0.66 0.917 0.516
ProtoAUG 0.706 0.939 0.566
Adapt-ProtoAUG 0.729 0.876 0.624

Table 2: Results obtained on test data of evaluation
phase

Analysis: To ascertain the relationship between
self-entropy and a prediction’s reliability, we anal-
yse the baseline performance scores for the data
points within the varying self-entropy percentile
threshold as shown in figure 1. For the baseline,
we observe a direct correlation between a lower
self-entropy and a higher prediction score on the
respective data points. This further supports the use
of low self-entropy data points as class prototypes
in our proposed approaches.

As shown in figure 2, the lowest self-entropy
achieved by minority (negated; label 1) class is far
higher than that of majority (non-negated; label
-1) class. This may be attributed to the skewed na-
ture of the target dataset and potentially the source
dataset as well.

Another interesting observation from figure 2
is that most of the majority class samples have
a self-entropy lower than the lowest self-entropy
achieved by the minority class. Thus, for selecting
the threshold for prototype selection, we apply the
percentile-based criteria only on the self-entropy
values of the minority class.

For prototype selection, instead of using an abso-
lute threshold value, we have chosen a percentile-
based entropy threshold as it adapts relatively well
across different domains. This follows from the
fact that confidence of the model may vary from
domain to domain due to which a threshold chosen
for one domain might not be a good criteria for
another domain.

For Adapt-ProtoAUG, as the upper bound for the
self-entropy threshold is increased beyond 70, we
observed a gradual decline in the model’s perfor-
mance for the dev set. This may be due to the 85%
precision of the baseline. Precision here refers
to the proportion of correctly classified negated

samples to the model’s total number of negated
predictions. So, it could be the case that as the
threshold reaches near or get past the precision
score, the probability of identifying a wrongly la-
belled sample as a prototype will rapidly increase.
Compared to ProtoAUG, as the percentile thresh-
old was increased from 50 to 70, we observed an
overall increment of recall for both the dev and test
dataset. Furthermore, introducing augmentation
in the framework drastically increased the stability
and reproducibility of the training process.

Figure 2: Cumulative number of sample vs entropy
threshold curve

Appendix B provides some insights from t-SNE
analysis, visually justifying the performance im-
provement. It analyses the predictions of the base-
line model and Adapt-ProtoAUG over a fixed two-
dimensional feature-space, comparing the similar-
ities of their respective predictions with the orig-
inal ground-truth labels. We observe that Adapt-
ProtoAUG can capture the label distribution better
than the baselines by performing well on various
non-trivial data-points.

6 Conclusion

In this work, we carefully explored the problem
of source-free domain adaptation for the Negation
Detection subtask. We studied the importance of
the confidence that a model places on its predic-
tion and analyzed its formulation in terms of the
samples’ self-entropy scores. Further, using those
insights, we proposed two simple and intuitive ap-
proaches, namely ProtoAUG and Adapt-ProtoAUG
for the Negation Detection Subtask and got an im-
provement of 7% on the test set with respect to the
baseline model.
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A Training Hyper-parameters

We train our models with a batch size of 32 us-
ing SGD optimizer with initial lr = 0.0005 which
decays after every iteration by multiplying it with
(1 + 10 ∗ itr/max iter)−0.75 (where itr is cur-
rent iteration and max iter is maximum itera-
tion of training), weight decay = 0.0005 and
momentum = 0.9.

B t-SNE Analysis

We performed low dimensional analysis of the mod-
els using tsne. In the following figures, we took
the 768 dimensional output of the baseline roberta
model for the test dataset, and projected it in two
dimensions using tsne.
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Figure 3: Ground truth labels. Blue points correspond
to negation = 1.

• Figure 3 shows the the 2-dimensional tsne plots
with the original ground truth labels.The blue
points are the true positives and reds are the true
negative points. We broadly observe two clusters
- a smaller one with majority of points being true
positives and a larger cluster with a majority of
points being negatives. We also observe some
blue points scattered in the red cluster and vice-
versa.

• Figure 4 shows the predictions of the baseline
model on the target domain. We see that the
baseline classifier segregates the test data into
almost perfect clusters, and thus misclassifies the
scattered points.

• Figure 5 shows the prediction results of adapt-
protoaug. In this case the F1 score improved
from the baseline score by around 7%. Looking
at the figure, we clearly see an improvement
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Figure 4: The predictions of the baseline model on the
test set of the target domain.
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Figure 5: Visualisation of the predictions of an im-
proved model

with respect to the baseline model, as we are
now able to correctly capture some of the points
that randomly fall within in the opposite cluster.
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Abstract

This paper describes PTST, a source-free un-
supervised domain adaptation technique for
sequence tagging, and its application to the
SemEval-2021 Task 10 on time expression
recognition. PTST is an extension of the cross-
lingual parsimonious parser transfer frame-
work (Kurniawan et al., 2021), which uses
high-probability predictions of the source
model as a supervision signal in self-training.
We extend the framework to a sequence pre-
diction setting, and demonstrate its applicabil-
ity to unsupervised domain adaptation. PTST
achieves F1 score of 79.6 % on the official test
set, with the precision of 90.1 %, the highest
out of 14 submissions.1

1 Introduction

SemEval-2021 Task 10 presents source-free unsu-
pervised domain adaptation (SFUDA) for semantic
processing.2 The goal of unsupervised domain
adaptation is to transfer a model from a source
domain to another, different domain — called tar-
get domain — using only unlabelled data in the
target domain. Source-free unsupervised domain
adaptation additionally assumes no access to source
domain data: only the source model pre-trained on
the source domain data is available. This situation
may occur when the source domain data contains
protected information that cannot be shared, or
even if it can, requires signing a complex data use
agreement. While there are numerous works on
SFUDA outside NLP (Hou and Zheng, 2020; Kim
et al., 2020; Liang et al., 2020; Yang et al., 2020),
SFUDA research for NLP is severely lacking in
spite of its importance in, for example, clinical

∗Work done outside Amazon.
1Our code is available at https://github.com/

kmkurn/ptst-semeval2021.
2https://competitions.codalab.org/

competitions/26152

NLP (Laparra et al., 2020). There are two tasks
involved in SemEval-2021 Task 10: negation de-
tection and time expression recognition. We partic-
ipate only in the latter.

Our approach is an extension of the parsimo-
nious parser transer framework (PPT; Kurniawan
et al. (2021)). PPT allows cross-lingual trans-
fer of dependency parsers in a source-free man-
ner, requiring only unlabelled data in the target
side. It leverages the output distribution of the
source model to build a chart containing high prob-
ability trees for each sentence in the target data.
We extend this work by (1) formulating PPT for
chain structures and evaluating it on a semantic
sequence tagging task; and (2) demonstrating its ef-
fectiveness in a domain adaptation setting. We call
our method Parsimonious Transfer for Sequence
Tagging (PTST).

We find PTST effective for improving the preci-
sion of the system in the target domain. It ranks 7th
out of 14 submissions in the official leaderboard
in terms of F1 score, but 1st in precision, with a
gap of 3 points from the second best. Drawing on
the model calibration literature, we provide a way
to combat the problem of model overconfidence
which is key to make PTST outperform a simple
transfer of a source model to the target domain.
However, we also find that PTST struggles in im-
proving recall. In conclusion, our results suggest
that PTST can be used for SFUDA, but further
work is required to improve the precision-recall
trade-off in the target domain.

2 Background

In the SemEval-2021 Task 10 time expression
recognition task, the input is a single sentence, and
the output is a sequence of tags indicating the time
entity type of a word (if any). There are 32 time
entities in total (e.g., Year, Hour-of-Day), and
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A woman was killed Thursday evening
B-Day-of-Week B-Part-of-DayOOOO

Figure 1: An example input sentence and its output se-
quence of tags for the time expression recognition task.

the tags are coded in BIO format. Fig. 1 shows an
example input sentence and its output. The task
organisers provided a pre-trained source model for
the task. This source model is RoBERTa-base (Liu
et al., 2019) that is pre-trained on more than 25K
time expressions in English clinical notes from
Mayo Clinic in SemEval-2018 Task 6. The model
is distributed online via HuggingFace Models,3

which can be obtained with HuggingFace Trans-
formers library.4 The organisers also released trial
data for the practice phase containing 99 annotated
English articles from the news domain. The official
test data released by the organisers in the evalua-
tion phase contains 47 articles that are in a different
domain from the source and development data.

The time expression recognition task is for-
malised as a sequence tagging task. The litera-
ture on sequence tagging in NLP is massive (Jiang
et al., 2020; He and Choi, 2020; Rahimi et al.,
2019; He et al., 2019; Xie et al., 2018; Clark
et al., 2018, inter alia). One closely related task
is named-entity recognition (NER) whose goal
is to detect mentions of named entities such as
a Person or Organisation in an input sen-
tence. Lample et al. (2016) introduced a now
widely adopted neural architecture for this task,
where input word embeddings are encoded with
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) before they are passed through per-word
softmax layers. In recent times, it is common to
replace the LSTM with a Transformer (Vaswani
et al., 2017). With the advancements of large pre-
trained language models, the standard is to use a
model such as BERT (Devlin et al., 2019) as the en-
coder and fine-tune the model on labelled data. The
source model of the time expression recognition
task provided by the organisers was also trained in
this manner.

In the context of unsupervised domain adapta-
tion, a popular approach is domain adversarial train-
ing. Introduced by Ganin et al. (2016), it leverages
multi-task learning in which the model is optimised

3https://huggingface.co/clulab/
roberta-timex-semeval

4https://github.com/huggingface/
transformers

not only on the main task objective but also a do-
main prediction objective. The learning signal for
the latter is passed through a gradient reversal layer,
ensuring that the learnt parameters are predictive
for the main task, but general across domains. With
pre-trained language models, Han and Eisenstein
(2019) proposed to continue pre-training on the
unlabelled target domain data, prior to finally fine-
tuning on the labelled source domain data. Un-
fortunately, these approaches require access to the
source domain data.

There is relatively little work on SFUDA in NLP,
however, some works on source-free cross-lingual
transfer exist. Wu et al. (2020) employ teacher-
student learning for source-free cross-lingual NER.
A teacher model trained on the source side pre-
dicts soft labels on the unlabelled target side data,
and a student model is trained on those soft labels.
Their method outperforms a simple direct transfer
method where the source model is directly applied
on the target side. More recently, a method for
source-free cross-lingual transfer of dependency
parsers was introduced by Kurniawan et al. (2021).
The key idea is to build a chart of high probability
trees based on arc marginal probabilities for each
unlabelled sentence on the target side, and treat all
those trees as a weak supervision signal for training.
Their method outperforms direct transfer as well as
a variety of recent cross-lingual transfer methods
that are not source-free. That said, the effective-
ness of their method on (a) semantic (sequence
labelling) tasks and (b) in a domain adaptation set-
ting is unexplored, which is what we aim to address
in this work.

3 System Description

We first describe our sequence tagging model (Sec-
tion 3.1), before we present parsimonious transfer
for sequence tagging (PTST) in Section 3.2.

3.1 Model
Our model is a linear-chain conditional random
field (CRF) over tag sequences. It assigns a score
s(x,y) to a pair of input sentence x and output tag
sequence y, which can be expressed as

s(x,y) =
∑

j

π(x, j, yj) + φ(yj , yj+1) (1)

where π(x, j, t) is the emission score of word xj
having tag t and φ(t, t′) is the transition score of
having tag t followed by tag t′. The probability of
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O O

was killed
O O

0.7 0.75 woman was
O O

0.8

killed Thursday
O B-Day-of-Week

0.8 Thursday
B-Day-of-Week

0.9evening
B-Part-of-Day

O O O O B-Day-of-Week

A woman was killed Thursday evening

B-Part-of-Day

A woman was killed Thursday evening

O O O O B-This B-Part-of-Day

Figure 2: Illustration of our method. Given an unlabelled sentence x from the target domain, we build the set of
high probability tag pairs Ã(x) using the source model, which may contain correct tag pairs that do not occur in
the predicted tag sequence (in orange). From these tag pairs, we build the chart Ỹ (x) containing tag sequences
that can be assembled from tag pairs in Ã(x). The single predicted tag sequence from the source model (bottom)
is also included in the chart, but it may contain an incorrect tag (in red) as it is noisy.

y given x is then

P (y | x) ∝ exp s(x,y). (2)

The emission score function π is parameterised by
a neural network whose parameters are initialised
with the source model. Specifically, the emission
score function is the RoBERTa model provided by
the task organisers. The transition score function
φ is a T × T parameter matrix that is learned dur-
ing training, where T is the number of tags. Note
that with dynamic programming, we can efficiently
compute quantities such as the marginal probabil-
ities of tag pairs P ((j, yj , yj+1) | x) or the parti-
tion function Z(x) =

∑
y∈Y(x) exp s(x,y) where

Y(x) is the set of all possible tag sequences for x.

3.2 Unsupervised Adaptation
To perform unsupervised adaptation on the unla-
belled target domain data, we extend PPT, our past
work for source-free cross-lingual parsing (Kurni-
awan et al., 2021), to chain structures. Given a
set of unlabelled sentences D in the target domain,
we build a chart of high probability tag sequences
Ỹ (x) by leveraging the output distribution in the
source model. The model then treats all sequences
with sufficiently high predicted probability as pos-
sible tag sequences for x for training. Concretely,
it minimises the loss:

`(θ) = −
∑

x∈D
log

∑

y∈Ỹ (x)

Pθ(y | x) (3)

where θ denotes the target model parameters. The
set Ỹ (x) is defined formally as

Ỹ (x) = {y|y ∈ Y(x) ∧A(y) ⊆ Ã(x)} (4)

where Y(x) is the set of all possible tag sequences
for x, A(y) = {(j, yj , yj+1)|1 ≤ j < |y|} is the
set of consecutive tag pairs in tag sequence y, and
Ã(x) =

⋃
j Ã(x, j) where Ã(x, j) is the set of

high probability consecutive tag pairs (j, tj , tj+1)
for words xj and xj+1 (see Fig. 2 for illustration).
Analogous to PPT, this set is constructed by adding
tag pairs (tj , tj+1) in order of decreasing marginal
probability until their cumulative probability ex-
ceeds a threshold σ. The predicted tag sequence
from the source model is also included in Ỹ (x) so
the chart is never empty.

Note that the method above is very similar to
self-training where the predictions from the source
model are used as supervision signal for training. In
contrast to self-training, however, we build a chart
of high probability predictions for each sample
instead of just a single best prediction. We expect
these predictions to be more useful than a single
best prediction because it is more likely for the
correct tag sequence to be in the chart than equal to
the single best prediction. Even when this is not the
case, we expect the partially correct tag sequences
occur frequently enough in the chart so the model
is still able to learn what the correct tag sequence
is.
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Team F1 P R

BCLUFIGHT-1 81.5 84.7 78.5
Self-Adapter-1 81.1 87.3 75.7
BLCUFIGHT-2 81.0 83.4 78.7
Baseline-2 80.4 82.7 78.2
YNU-HPCC-2 80.3 81.7 79.1
Self-Adapter-2 79.7 83.9 76.0
PTST-UoM-1 (ours) 79.6 90.1 71.3
Boom-1 79.5 86.9 73.2
UArizona-1 79.5 78.6 80.4
UArizona-2 79.5 78.3 80.7
Baseline-1 79.4 84.9 74.6
KISNLP-1 79.3 81.0 77.7
KISNLP-2 78.1 79.8 76.4
YNU-HPCC-1 74.8 87.2 65.5

Table 1: TIMEX leaderboard on the test data.

In our preliminary experiments, we find that it
is crucial to introduce temperature scaling to the
emission scoring function in order to achieve good
performance. Thus, for our main result, we define
a new emission scoring function π′ as

π′(x, j, yj) = π(x, j, yj)/τ (5)

where τ is the temperature scale hyperparameter.
We discuss and provide an analysis of this temper-
ature scaling in Section 5.

4 Experimental Setup

We use the pre-trained source model and data pro-
vided for SemEval-2021 Task 10. We only use the
model and data for the time expression recognition
task (TIMEX hereinafter) as we only participate
in that task. We use the practice data as the de-
velopment set to tune the hyperparameters of our
model with random search.5 We set the threshold
σ = 0.95 following the setup of Kurniawan et al.
(2021). We do not use any data sets other than
those provided by the task organisers for TIMEX.

We train PTST on the unlabelled test data for
5 epochs. As described in Section 3.1, we ini-
tialise the neural network for the emission scoring
with the source RoBERTa model provided by the
task organisers. We enforce the BIO constraints
by initialising the transition matrix φ with −∞
for entries corresponding to illegal transitions, and
zero otherwise.6 We use the linear CRF implemen-
tation provided in the Torch-Struct library (Rush,
2020). To avoid out-of-memory error, we discard

5Best learning rate and τ are 9 × 10−6 and 2.56 respec-
tively.

6The constraints require an inside tag be always preceded
by an inside or beginning tag of the same entity.

sentences longer than 30 tokens. Additionally, we
find that it is useful to freeze the embedding and
the first few layers of the RoBERTa encoder. Thus,
in our main result, we freeze the embedding layer
and the first 6 (out of 12) layers of the encoder. An
analysis is provided in Section 5.

5 Results and Discussion

Table 1 shows the TIMEX leaderboard on the offi-
cial test data in the evaluation phase.7 Our model
PTST is ranked 7th out of 14 submissions in terms
of F1 score, below the baseline model submission
by the task organisers which ranks 4th. This base-
line model is the pre-trained source model fine-
tuned on the labelled development data. Despite the
relatively low F1 score, PTST achieves 90.1 % pre-
cision, which is the highest among all submissions,
and markedly above the second highest precision
of 87.3 % achieved by the second best performing
model. Looking at recall, our model has the sec-
ond lowest score of 71.3 %, which is fairly below
the third lowest one of 73.2 %. This result sug-
gests that our model is sacrificing recall in favour
of precision, which may be a desirable property for
downstream tasks where making the right predic-
tion is more critical.

Model overconfidence As mentioned in Sec-
tion 3.2, in our preliminary experiments, we find
that the source model is extremely confident about
its predictions, making the marginal probability dis-
tribution of tag pairs at any position j very sharp.
This sharpness results in Ỹ (x) containing mostly
just a single tag sequence, which is the predicted se-
quence from the source model, rendering the whole
approach no different from simple self-training.
To remedy this problem, we introduce tempera-
ture scaling in the emission score, which has been
shown to be a simple but effective trick in model
calibration (Geman and Geman, 1984; Guo et al.,
2017). We define the new emission scoring func-
tion as shown in Eq. (5). Table 2 shows how the
performance of PTST changes when τ is varied.
We see that as τ increases, precision does too, but
recall decreases, although in a relatively slower
rate so the F1 score tends to increase as well. Also
reported in Table 2 is the median number of tag
sequences and the fraction of gold tag sequences

7Also available on https://
machine-learning-for-medical-language.
github.io/source-free-domain-adaptation/
leaderboard.
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τ F1 P R n p (%)

1.0 77.0 ± 0.4 76.5 ± 1.0 77.5 ± 0.3 1 54.1
1.5 77.4 ± 0.2 77.5 ± 0.1 77.4 ± 0.5 1 56.9
2.0 77.6 ± 0.1 79.1 ± 0.5 76.1 ± 0.4 1 64.0
2.5 77.8 ± 0.5 81.2 ± 0.2 74.7 ± 1.0 9.2 × 1013 79.7
3.0 26.7 ± 7.9 96.3 ± 2.9 15.7 ± 5.3 2.2 × 1017 86.9

SRC 77.1 77.5 76.8 — —

Table 2: Model performance on the development data as τ changes. SRC is the pre-trained source model directly
applied on the development data. F1, precision (P), and recall (R) scores are averages (± std) over 3 runs. n is
the median number of high probability tag sequences in the chart Ỹ (x). p is the fraction of gold tag sequences
contained in the chart.

F1 P R

SRC 77.1 77.5 76.8

No freezing 77.8 ± 0.5 81.2 ± 0.2 74.7 ± 1.0
Freeze emb 77.7 ± 0.2 81.0 ± 0.4 74.7 ± 0.6
Freeze emb + 6 layers 78.2 ± 0.2 80.3 ± 0.3 76.2 ± 0.0
Freeze emb + 12 (all) layers 77.2 ± 0.0 77.7 ± 0.0 76.7 ± 0.0

Table 3: Model performance on the development data when the RoBERTa embedding and encoder layers are
frozen during training. SRC is the pre-trained source model directly applied on the development data. Scores are
averages (± std) over 3 runs.

contained in the chart. The two quantities grow as
τ does, which indicates that increasing τ indeed
allows the chart to contain more tag sequences,
and thus increasing the coverage of correct tag se-
quences in the chart. However, when τ is too large
(τ = 3.0), the model breaks down, presumably be-
cause Ỹ (x) contains too many noisy tag sequences
to be useful.

The decline in recall might be explained by the
nature of the task, where in a single sentence most
of the words are not time entities. When τ grows,
the number of high probability tag sequences in
Ỹ (x) does too. In the majority of these tag se-
quences, a word in x is likely to be tagged as a
non-entity because time entities are naturally rare.
Since tag sequences are treated uniformly (i.e. no
tag sequence weighs more than the others), this pro-
vides a strong signal for the model that the word
is a non-entity. Therefore, the model’s capability
of recognising entities is reduced. Conversely, a
similar argument may explain the rise in precision.
When the model predicts a word as an entity, it is
likely that in the majority of tag sequences in Ỹ (x),
the word is tagged as the same entity, providing
a strong signal that the word is indeed that entity.
In other words, if the model predicts an entity, the
model is very confident about it. When confidence
is high, it is more likely that the prediction is cor-
rect, thus resulting in higher precision.

Freezing layers We also find that it is helpful to
freeze the embedding layer and the first few layers
of the RoBERTa model’s encoder during training,
presumably because they encode low-level linguis-
tic information that is invariant across domains. Ta-
ble 3 reports how the model performance changes
with varying numbers of layers frozen (τ is fixed to
2.5). We observe that freezing the embedding and
first several encoder layers gives a small boost to
performance, with best performance reached with
6 frozen layers (the setting adopted in the model
reported in the main results).

Error analysis To better understand the errors
of PTST, we present the confusion matrix of the
model on the test data in Fig. 3. We see that the
majority of the errors arise from the model not
recognising actual time entities, consistent with
the relatively low recall. The model has serious
difficulties in recognising Season-Of-Year,
for example, in fragments like:

The increase in food aid beneficiaries is
partly attributed to Meher harvest loss [...]

(1)

The increase, which follows a seasonal
trend, is seen in all regions except Tigray.

(2)

The model also seems to struggle with recog-
nising Between and This. Example sentence
fragments where the model wrongly predicts a
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Figure 3: Confusion matrix on the test data.

non-entity are:

In Gambella region, between 1 and 12 April,
3,346 South Sudanese refugees arrived [...]

(3)

where the model fails to recognise Between, and

[...] to prevent a potential national outbreak
of AWD during this rainy season

(4)

where the model fails to recognise This. Al-
though the model has good precision, we
still see that it misclassifies non-entities and
Calendar-Interval as Period relatively
often. For example, in the fragment

[...] the malnutrition situation is expected
to aggravate in the coming months (5)

the word months is a Calendar-Interval
but the model predicts it as Period. Another
example, the model predicts the word period in the
sentence fragment

During the reporting period, an estimated
1,000 south Sudanese arrived [...]

(6)

as Period, while the word is actually not a time
entity.

6 Conclusions

We present PTST, our submission to the time ex-
pression recognition task of SemEval-2021 Task 10.
We describe our sequence tagging model as a CRF
over chain structures, parameterised by a neural
network. Our domain adaptation approach lever-
ages the output distribution of the source model to
build a chart of high probability tag sequences for
every sentence in the unlabelled target domain data.

PTST ranks 7th in terms of F1 score in the official
leaderboard, but achieves the highest precision out
of 14 submissions. We provide analyses on the im-
portance of temperature scaling to mitigate model
overconfidence and the patterns of errors.
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Abstract

Source-free domain adaptation is an emerging
line of work in deep learning research since
it is closely related to the real-world environ-
ment. We study the domain adaption in the
sequence labeling problem where the model
trained on the source domain data is given. We
propose two methods: Self-Adapter and Selec-
tive Classifier Training. Self-Adapter is a train-
ing method that uses sentence-level pseudo-
labels filtered by the self-entropy threshold
to provide supervision to the whole model.
Selective Classifier Training uses token-level
pseudo-labels and supervises only the clas-
sification layer of the model. The pro-
posed methods are evaluated on data provided
by SemEval-2021 task 10 and Self-Adapter
achieves 2nd rank performance.

1 Introduction

Domain adaptation (DA) is the task of applying
an algorithm trained on a source domain data to a
different target domain data with limited/undefined
labels. DA has gotten significant attention as an al-
ternative of fine-tuning approach (Ganin and Lem-
pitsky, 2015; Saito et al., 2018; Tzeng et al., 2017),
especially in situations rich supervision is not possi-
ble (Morerio et al., 2018). DA is an important way
of overcoming the data shortage of deep learning
since it enables the utilization of knowledge from
other labeled data.

Source-free DA is then proposed to cope with
such data sharing in the general setting of DA, the
data distribution in the source domain and the tar-
get domain are related but different (Storkey and
Sugiyama, 2007), and annotated samples from the
source domain are available during the training pro-
cess. However, many of the data resources are not
allowed to be shared in real-life environments as
there are increasing concerns for privacy issues.
For example, Twitter has a regulation that prevents

sharing tweet text. The policy is even more rig-
orous in the financial/clinical domain under the
privacy protection issue.

Unlike conventional DA, one can not get ac-
cess to the source domain data in source-free DA
but is provided a model trained on the source do-
main data. About source-free DA in computer vi-
sion, several approaches have been proposed; (Sa-
hoo et al., 2020) assumes the target domain data
is a transformation from the source domain data
along natural axes such as brightness and contrast;
(Kundu et al., 2020) proposes universal DA that
is trained via two-stage learning of procurement
and deployment; (Kim et al., 2020) progressively
updates the target model with pseudo-labels which
are selected under self-entropy criterion.

As for natural language processing (NLP), the
application of source-free DA is slightly more com-
plicated since sentences are usually considered as
having discrete representations. In this context,
SemEval-2021 task 10 has proposed a challenge
that is related to source-free domain adaptation for
semantic processing.

In this paper, we propose Self-Adapter for the
time expression recognition sub-task in SemEval-
2021 task 10. Following (Kim et al., 2020), we
employ pseudo-labels from the target domain to
further supervise the model trained on the source
domain data, while the entropy-based evaluation of
reliable pseudo-labels is adopted in consideration
of the discrete text data. In addition, we adopt
Sloughing trick to prevent over-fitting.

To demonstrate the efficacy of the Self-Adapter,
we evaluate the proposed method on the dataset by
(Laparra et al., 2018). We also compare the pro-
posed method with several variations and another
method we come up with, named Selective Classi-
fier Training (SCT). In the end, the Self-Adapter
has achieved 2nd rank in the official evaluation
period getting 0.811 F1 which is 1.7 percentage
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points higher than the RoBERTa-based sequence
tagging model pre-trained only on source data.
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Figure 1: Training pipeline of Self-Adapter. At the be-
ginning of every stage of training, RSM is initialized
with ‘reliable’ samples generated by both fixed and
trainable models. A trainable model is supervised us-
ing samples - source-oriented pseudo-labels and target-
oriented pseudo-labels - stored in RSM.

2 Systems Description

Our proposed methods have three operations in
common: (1) generating pseudo-labels, (2) filter-
ing out pairs of reliable samples and pseudo-labels
based on models’ self-confidence, and (3) doing
supervised learning using the pseudo-labels. We
concentrate on sorting out ‘reliable’ pseudo-labels
since training with incorrect labels harms the per-
formance of the model.

Self-entropy is usually treated as an indicator
of self-confidence (Zou et al., 2018; Saporta et al.,
2020). We adopt normalized self-entropy as the
evaluation metric for pseudo-labels:

H(xt) = −
1

logNc

∑
l(xt)log(l(xt)) (1)

where xt denotes each token that makes up a sen-
tence X ∈ X. l(xt) denotes the predicted proba-
bility of the predicted label by the classifier, and
Nc refers to the total number of labels.

Specifically, we propose two adaptation meth-
ods to efficiently fit the model trained on a source
domain to a target domain: Self-Adapter and SCT.

2.1 Method 1: Self-Adapter
We propose Self-Adapter which is a self-learning
method under the supervision of reliable sample

memory (RSM). RSM is a set of data with pseudo-
labels that consists of two parts, source-oriented
pseudo-labels and target-oriented pseudo-labels,
and each of them represents the knowledge learned
from the source domain and new features to learn
from the target domain. We further apply a trick
called ‘Sloughing’ which helps prevent over-fitting.
The overall workflow of Self-Adapter is shown in
Figure 1.

2.1.1 Reliable Sample Memory
RSM is the pairs of input sentences and the corre-
sponding pseudo-labels obtained from a Siamese-
like network structure. Two RoBERTa-based (Liu
et al., 2019) classifiers are initialized with a
RoBERTa-based sequence tagging model fine-
tuned only on source train data, which is given
as a baseline model in the task. One of the branch
maintains fixed weight parameters while another is
fine-tuned during training.

Both branches of the network take a target do-
main sentence X as an input and output a set of
probabilities for labels each token should be as-
signed to. We utilize the self-entropy as the evalu-
ation metric for the self-confidence of each token.
If the self-confidence of each token is smaller than
the predefined threshold, the pair of input sentences
with the pseudo-labels generated by the model is
kept as a part of RSM.

The fixed part of the network consistently out-
puts the same pairs (X̂s, Ŷs) which are called
source-oriented pseudo-labels. The trainable part
of the network outputs different pairs (X̂t, Ŷt)
called target-oriented pseudo-labels after each up-
date and both are stored in the RSM. All sentence-
label pairs in RSM, both source-oriented pseudo-
labels and target-oriented pseudo-labels, are used
to train the trainable part of the network in a super-
vised manner. We call the cycle in which RSM are
updated as a stage and each stage is composed of
several epochs.

2.1.2 Sloughing trick
After sufficient update of RSM, we generate
pseudo-labels with RSM and do another self-
entropy filtering to gain new reliable samples. Sub-
sequently, we re-initialize the trainable part of the
network with the parameter of the baseline and
train it under the supervision of the new reliable
samples. We call this procedure Sloughing. Since
many of the reliable samples in each RSM update
overlaps, over-fitting tends to happen over time.
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The Sloughing then efficiently prevents over-fitting
by newly initializing a model which is not fitted to
test data yet.
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Figure 2: Training pipeline of Selective Classifier
Training. RTM is updated at the start of each step of
training. In multi-branch network whose two branches
Cs2t and Ct share a fixed RoBERTa-based feature ex-
tractor, loss of Cs2t branch is calculated by supervision
with source-oriented token-wise pseudo-labels and loss
of Ct branch is calculated by supervision with target-
oriented token-wise pseudo-labels.

2.2 Method 2: Selective Classifier Training

Selective Classifier Training is a training method
that consists of a RoBERTa-based feature extractor
and multi-branch classifiers. The feature extractor
and classifiers are initialized with the RoBERTa-
based sequence tagging model fine-tuned only on
source train data, given as baseline model in the
development phase. In SCT, only the classifiers are
updated under the supervision of Reliable Token
Memory (RTM).

2.2.1 Reliable Token Memory
RTM is the pairs of tokens and their pseudo-
labels obtained from a network with two separate
branches. Both the branches share the fixed feature
extractor which is the same with the feature extrac-
tor of the SCT training pipeline. Two classifiers,
a trainable classifier Ct and a fixed classifier Cs,
make predictions on contextual embedding passed
from the feature extractor.

To update RTM, we first get contextual embed-
dings for all tokens in target domain sentences
by putting in all sentences as input of shared fea-
ture extractor and we get prediction on each to-
ken embeddings. Token embeddings f̂i whose
normalized self-entropy predicted by Ct are lower

than the threshold θ are called reliable token-wise
samples. The pseudo-labels of reliable token-
wise samples predicted by Cs are called source-
oriented token-wise pseudo-labels. The pseudo-
labels of reliable token-wise samples predicted by
Ct are called target-oriented token-wise pseudo-
labels. The pairs of reliable token-wise samples
and their source-oriented token-wise pseudo-labels,
and the pairs of reliable token-wise samples and
their target-oriented token-wise pseudo-labels con-
sists RTM.

2.2.2 Multi-branch network

With RTM, we train a multi-branch network in
which each branch shares a fixed feature extrac-
tor. They divide into two classifiers Cs2t and Ct.
Loss of Cs2t branch is calculated by supervision
with source-oriented token-wise pseudo-labels and
loss of Ct branch is calculated by supervision with
target-oriented token-wise pseudo-labels. RTM
updates at the start of each step of training.

The loss function is formulated as

Ltotal = (1− α)Ls2t + αLt (2)

where Ls2t and Lt indicates loss function of Cs2t

branch and Ct respectively. α is a weight between
two branches. We gradually increase α from 0 to 1
to deal with high instability in the early stages of
learning, in the same way as (Kim et al., 2020). In
the test phase, we use the classification probability
of the Ct branch.

3 Experiments

We evaluate our two models: Self-Adapter, SCT
and their variations. The baseline on the devel-
opment data is a RoBERTa-based sequence tag-
ging model pre-trained on only the source data:
de-identified clinical notes from the Mayo Clinic,
called Source-Trained. Also, there is another base-
line Dev-Tuned on the test data which is the source
pre-trained model (i.e., Source-Trained) fine-tuned
on the labeled development data. The development
data is the annotated news portion of the SemEval-
2018 Task 6 data. Test data is a set of annotated
documents extracted from food security warning
systems. development data consists of 1580 sen-
tences and test data consists of 3911 sentences. The
total number of labels is 65, where label 0 indicates
non-time entity, and label 1-64 indicates different
types of time entities.
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Method F1 Precision Recall

SCT 0.784 0.814 0.756
SA 0.808 0.819 0.797

SA+Sloughing* 0.812 0.822 0.801
SA-filtering 0.771 0.774 0.768

Source-Trained 0.771 0.768 0.775

Table 1: F1, Precision, Recall on development data.
The model submitted to the competition is marked with
*. SA indicates Self-Adapter and SA+Sloughing is a
system where Sloughing is applied on a model trained
with Self-Adapter. SA-filtering is a system whose train-
ing pipeline is the same as Self-Adapter except that
confidence filtering is not done. Source-Trained is a
RoBERTa-based sequence tagging model pre-trained
on only the source data: de-identified clinical notes
from the Mayo Clinic, given as baseline model in the
development phase of the competition.

3.1 Experimental setup

For all of our models, we set normalized self-
entropy threshold θ = 0.1 except when applying
Sloughing trick, on which θ = 0.01. We train
Self-Adapter for 3 stages. Each iteration con-
sists of 4 epochs with batch size 1 (sentence-level)
and the learning rate is fixed as 5e-5. In Self-
Adapter, pseudo-labels are updated at every stage.
In Self-Adapter combined with Sloughing, we ap-
ply Sloughing for 3 times, 4 epochs training with
batch size 1 (sentence-level) is done every time.
The learning rate is fixed as 5e-5. In SCT, pseudo-
labels are updated every epoch. We train 2 epochs
with batch size 4 (token-level) and the learning rate
is scheduled with inverse decay scheduler same as
(Kim et al., 2020), with initial learning rate 5e-5.
We use Adam optimizer in all models.

3.2 Experimental results and analysis

Table 1 and Table 2 shows the performance of
the proposed methods on development and test
data respectively. Each method is evaluated with
Precision, Recall, and F1. Precision is the ra-
tio of correctly predicted positive observations to
the total predicted positive observations. Recall
is the ratio of correctly predicted positive observa-
tions to all observations in the actual class. F1 is
the weighted average of Precision and Recall. Our
major concern is F1, which is the most preferred
indicator of accuracy in text classification tasks.

On both data, Self-Adapter combined with
Sloughing performs the best in F1 and Self-Adapter
performs the second-best. SCT does not provide

Method F1 Precision Recall

SA 0.81 0.874 0.754
SA+Sloughing* 0.811 0.873 0.757
Source-Trained 0.794 0.849 0.746

Dev-Tuned 0.804 0.827 0.782

Table 2: F1, Precision, Recall on the test data. The
model submitted to the competition is marked with *.
SA indicates Self-Adapter and SA+Sloughing is a sys-
tem where Sloughing is applied on a model trained with
Self-Adapter. Source-Trained is a RoBERTa-based se-
quence tagging model pre-trained on only the source
data: de-identified clinical notes from the Mayo Clinic
and Dev-Tuned is a the source pre-trained model (i.e.,
Source-Trained) fine-tuned on the labeled development
data.

significant improvement of F1 compared to Self-
Adapter. Self-Adapter without confidence filtering
performs almost the same as Source-Trained on
every evaluation metric.

3.2.1 Impact of confidence filtering

Our confidence filtering proves to be effective in
dealing with the uncertainty of pseudo-labels. Self-
Adapter, whose core is confidence filtering, in-
creases 3.7, 1.6 percentage points of F1 on develop-
ment data and test data for each. The system whose
training pipeline is the same as Self-Adapter ex-
cept that confidence filtering is not done performs
almost the same as the Source-Trained.

3.2.2 Necessity of training feature extractor

Well-trained BERT embeddings contain both syn-
tactic (Hewitt and Manning, 2019) and semantic
(Coenen et al., 2019) information of words. How-
ever, this is only when the model is fine-tuned with
data from the domain same as the target domain.
It is well known that embedding models trained
on different domains poorly capture the domain-
specific vocabularies and word semantics due to
domain shift. (Sarma et al., 2018)

Since RoBERTa is a BERT-based language
model, the same issue arises on RoBERTa used
in this task. Thus if the feature extractor used for
embedding words is fixed during training, the em-
beddings obtained do not provide sufficient infor-
mation to the classifier, resulting in a limitation
to improving performance. This is also shown
through experimental results in which Self-Adapter
outperforms SCT.
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3.2.3 Inefficiency of Sloughing
In Self-Adapter, the model learns from almost all
sentences in development data and test data. Only
333 sentences out of 1580 and 917 sentences out
of 3911 were filtered in development data and test
data for each despite the high threshold we set (θ
= 0.1). It affects the magnitude of the effect of
the Sloughing in our method. Sloughing improves
performance on both development and test data,
but not enough to be taken as meaningful. 0.04
percentage points of F1 on development data and
0.1 percentage points of F1 on test data increase by
application of Sloughing.

Somewhat discouraging effect of Sloughing is
due to the setting of our task, in which training is
done with almost all samples in test data, despite
confidence filtering. We expect Sloughing to be
more effective in the setting where the bigger pro-
portion of samples are filtered and thus the ability
for generalization on unseen data is more important.
However, verification of these hypotheses will be
carried out as a follow-up study.

4 Conclusion

In this paper, we propose novel training methods
Self-Adapter and Selective Classifier Training that
improve model performance on the target domain
only by leveraging the RoBERTa-based model pre-
trained on source data. Both models rely on self-
learning with highly credible pseudo-labels that
are filtered based on self-entropy, differ only in
the range of trainable parts. Also, we propose
Sloughing trick to prevent over-confidence of the
model by softening the network output. Our work
is highly applicable in the real world since we have
achieved remarkable improvement in performance
using only a few test data which is not annotated at
all, without any manual supervision.
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Abstract

This paper describes our systems for negation
detection and time expression recognition in
SemEval 2021 Task 10, Source-Free Domain
Adaptation for Semantic Processing. We show
that self-training, active learning and data aug-
mentation techniques can improve the general-
ization ability of the model on the unlabeled
target domain data without accessing source
domain data. We also perform detailed ab-
lation studies and error analyses for our time
expression recognition systems to identify the
source of the performance improvement and
give constructive feedback on the temporal
normalization annotation guidelines.

1 Introduction

Unsupervised Domain Adaptation (UDA) is a task
that generalizes knowledge acquired from a model
trained on labeled data in one domain (source
domain) to unlabeled data in a different domain
(target domain). Conventional UDA algorithms
usually require access to both source-domain and
target-domain data (Ganin et al., 2016; Glorot et al.,
2011; Chen et al., 2012; Louizos et al., 2016). How-
ever, sharing source-domain data is often not prac-
tical for clinical texts due to their highly sensitive
personal information and complex data use agree-
ment procedures (Laparra et al., 2020). To over-
come this difficulty, Laparra et al. (2020) propose a
new task of source free domain adaptation (SFDA)
where only models trained on source-domain data
are shared, which allows the possibility of using
the information from the source-domain while re-
ducing private information leakage. The biggest
challenge of this task is to transfer task-related in-
formation embedded in the trained models.

Our team participated in both subtasks of Sem-
Eval 2021 Task 10 (Laparra et al., 2021), Source
Free Domain Adaptation for Semantic Processing:
negation detection and time expression recognition.

For both tasks, participants were given a RoBERTa
model (Liu et al., 2019) fine-tuned on the source-
domain, and asked to make predictions in the target-
domain.

The goal of the negation detection task is to pre-
dict whether an event in a sentence is negated by
its context. This is a binary sentence classification
task. For example, given the event diarrhea and
the sentence Has no diarrhea and no new lumps
or masses, the goal is to predict that diarrhea is
negated by its context.

The goal of time expression recognition sub-task
(Laparra et al., 2018) is to recognize time expres-
sions in the target domain. This is a named entity
recognition (NER) task. The number of entity types
(inside–outside–beginning format) is 65. Entity
types in this task are formally defined time entity
types from the Semantically Compositional Anno-
tation of Time Expressions (SCATE) (Bethard and
Parker, 2016) annotation schema. For example, in
2021-02-19, 2021 will be labeled as Year, 02 will
be labeled as Month-Of-Year and 19 will be labeled
as Day-Of-Month.

We investigate self-training, active learning, and
data augmentation techniques on negation detec-
tion and time expression recognition under the
SFDA setting. Our contributions are:

1. We demonstrate that simple self-training over
a small portion of the target domain data can
effectively improve the performance of the
negation detection model.

2. We demonstrate that active learning with data
augmentation can significantly improve time
expression recognition performance when se-
lected examples are accurately annotated.

3. We perform ablation studies for the time ex-
pression recognition systems to analyze where
the performance improvement comes from.

4. We analyze our annotation errors for the time
recognition task and give constructive feed-
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back on the annotation guideline and schema.

2 System Description

The source-domain models for both subtasks are
RoBERTa-base models with linear classification
output layers, implemented via the Huggingface
Transformers library (Wolf et al., 2020), using
RobertaForSequenceClassification for negation,
and RobertaForTokenClassification for time.

The input to the models is a sequence tokenized
by Byte-Pair Encoding (BPE). Following the con-
ventions of the RoBERTa model input format, two
special tokens <s> and </s> are inserted at the
beginning and end of the sequence, respectively.
In the negation detection task, targeted events are
denoted with two special tokens <e> and </e>
that are inserted before and after the event. For
example, the sentence Has no diarrhea and no new
lumps or masses with event diarrhea will be con-
verted to <s>Has no <e>diarrhea</e> and no
new lumps or masses.</s>. The model output for
negation detection is whether the target event is
negated and the model output for time expression
detection is the labels for each input tokens.

2.1 Negation Detection System

We employ a simple self-training (Yarowsky, 1995)
approach that fine-tunes the model with its own
predictions on the unlabeled dataset. We start with
the pre-trained source-domain model, M . Then,
for each self-training iteration:

1. We initialize an empty training set, L.
2. We use M to label the target domain data.
3. If an instance is labeled with a probability

above a threshold τ , we add it to L with the
predicted label as its pseudo label.

4. We fine-tune M on L.
When the source-domain model predictions are the
same for two consecutive iterations or the num-
ber of iterations of self-training is greater than the
predefined maximum number, self-training stops.
Note that the training set L is reinitialized at each
iteration, and the model is iteratively fine-tuned.

2.2 Time Expression Detection System

Our approach combines active-learning (Cohn
et al., 1996) and data-augmentation (Simard et al.,
2003). We start with the pre-trained source-domain
model, M0, a copy of the pre-trained source-
domain model, M , and initialize an empty training
set L. Then, for each iteration:

1. We select the k instances where M is most
uncertain, manually annotate them, and add
them to L. (Details in section 2.2.1.)

2. We augment each manually annotated in-
stance with n new examples and add them
to L. (Details in section 2.2.2.)

3. We re-initialize M to M0 and fine-tune on L.
We repeat this process i times. Note that the train-
ing set L is built cumulatively, and M is reinitial-
ized on each iteration.

2.2.1 Active Learning
We use active learning methods to manually label
the most uncertain examples of the model in the
target domain. We believe that it is not practical to
manually label the entire target domain dataset dur-
ing the test phase. This requires sufficient expertise
and time from annotators (we show later that it is
very difficult to understand annotation guidelines
in a short time). Otherwise, low-quality annota-
tions will hurt the performance of the model. In
each iteration, we select the top k target domain
sentences with the highest uncertainty scores to
manually annotate. We define the uncertainty score
of an example as the sum of the model’s predic-
tion’s entropy for each token within the sentence.
Manual annotation follows the SCATE annotation
guidelines released by the organizers.

The annotators were the first two authors of this
paper, a Linguistic PhD student and a Information
PhD student. During the annotation process, we
first individually annotated examples and then re-
solved annotation differences through discussion.
Our first exposure to the SCATE annotation schema
was approximately 10 days before the start of the
test phase, when we began reading the guidelines
and posting questions on the Google forum. We
used gold annotations from the development set (on
the news domain) to simulate the annotation pro-
cess during the practice phase. We believe this is
similar to most real-world SFDA situations, where
the person applying the model on the target domain
is unfamiliar with the annotation guidelines and
has limited time to learn them.

2.2.2 Data Augmentation
Inspired by Miao et al. (2020), we applied data aug-
mentation to increase the size of our training set
beyond what can be achieved by manual annotation,
and to improve the generalization of the model. For
each time entity that we manually annotated, we
automatically generated new training examples by
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Task Type Domain # # of labeled Open to participants

Negation Train - - all %

Negation Dev Clinical 8431 sentences 5545 sentences !

Negation Test Clinical 622703 sentences 9580 sentences !

Time Train - - all %

Time Dev news 99 documents all !

Time Test food security 48 documents 17 documents !

Table 1: Data summary for negation detection and time expression recognition tasks

substituting original time entities with entities of
the same type randomly sampled from a predefined
entity candidates pool. We generate up to n new se-
quences (the size of the pool may be less than n for
some entities). For example, if we manually anno-
tate the three time entities from 2021-02-19 (2021:
Year, 02: Month-Of-Year, 19: Day-Of-Month) in
a sentence, after data augmentation, it can gener-
ate up to n× 3 additional sequences with different
years, months and days (e.g., 2020-10-05). The
entity candidates pool is created based on the time
entities in the development set and the annotation
guideline. We filtered out entities that do not ap-
pear in the unlabeled test set data during the testing
phase. See appendix A.1 for the final pool.

3 Data

All data used is in English. Both subtasks had
training, development and test data, each repre-
senting different domains. As participants, we did
not have access to the training set. The training
sets are used by organizers to fine-tune the pre-
trained RoBERTa-base models to obtain the source-
domain models. We used the source-domain mod-
els and development sets to develop source-free do-
main adaptation systems during the practice phase,
and tested our systems during test phase. We sum-
marize the data in table 1.

4 Experiments

The organizers provided two baseline models for
each task: the source-domain model, and the
source-domain model fine-tuned on the develop-
ment set. The official evaluation metric is the F1
score. Precision and recall scores are also reported.

4.1 Negation Detection
In the testing phase, we first fine-tuned the source-
domain model on the labeled development set. Al-
though the domains of the development set and

Strategy F1 Precision Recall

Test Phase

SD 0.660 0.917 0.516
SD + FT 0.730 0.908 0.611
SD + FT + ST 0.767 0.880 0.680

Table 2: The performance of the negation detection sys-
tems during test phase. SD is the source-domain model.
FT is fine-tuning on the development set. ST is self-
training on test set.

the test set are different, they are both clinically
relevant data, so we believed that fine-tuning the
model on the development set could improve its
performance on the test set. Because of time and
hardware constraints, we randomly sampled 3000
instances from the 622,703 test set instances as un-
labeled data for self-training. We used the same
hyperparameters for fine-tuning the source-domain
model on the development set and self-training the
fine-tuned model on the randomly sampled test
data. All the hyperparameters are shown in table 4
in appendix A.2. Our submission ranked 2nd. Ta-
ble 2 shows that our system outperformed both
baseline models provided by the organizers.

4.2 Time Expression Recognition

We did not fine-tune the source-domain model on
the development set during the test phase. The de-
velopment set is from the newswire domain, while
the test set is from the food security domain. We
though that there might be a large difference be-
tween these two domains. Fine-tuning on a differ-
ent domain may hurt the performance of the model
on the test set. As with the code provided by the or-
ganizer, we used the sentencizer from Spacy (Hon-
nibal et al., 2020) to split the input documents into
sentences and used them as inputs to the model.
All the hyperparameters are shown in table 5 in

460



# Strategy F P R

Test Phase

1 SD (baseline) 0.794 0.849 0.746
2 SD + FT (baseline) 0.804 0.827 0.782
3 SD + AL (32*5) + DA (5) + Manual Annotations 0.795 0.783 0.807

Post-Evaluation

4 SD + AL (32*5) + DA (5) + Manual Annotations (fixed seasonal(ly)) 0.837 0.824 0.850
5 SD + AL (32*5) + DA (5) + Gold Annotations 0.955 0.945 0.965
6 SD + FT + AL (32*5) + DA (5) + Gold Annotations 0.959 0.949 0.969
7 SD + AL (32*5) + Gold Annotations 0.890 0.893 0.887
8 SD + AL (16*5) + DA + Gold Annotations 0.929 0.918 0.941
9 SD + AL (8*5) + DA + Gold Annotations 0.900 0.880 0.920
10 SD + AL (4*5) + DA + Gold Annotations 0.877 0.860 0.894
11 SD + AL (4*5) + Gold Annotations 0.851 0.846 0.855

Table 3: The performance of the time expression recognition systems during the test and post-evaluation phases.
SD is the source-domain model. FT is fine-tuning on the development set. AL (k*i) is active learning with k
samples and i iterations. DA (n) is data augmentation with n generated examples.

appendix A.2. Our submitted system ranked 6th.
Table 3 shows that our submitted system’s perfor-
mance (row 3) is no better than the best baseline
model (row 2) provided by the organizers.

To investigate the reasons for the lower-than-
expected test performance, we used the gold anno-
tations in the test set for our post-evaluation runs
(row 5-11 in table 3). Note that performance for
these rows will be artificially inflated, since up to
160 of the 926 test sentences were included in the
system’s training data. Nonetheless, we see that by
using the gold annotations instead of our manual
annotations (row 5 vs row 3 in table 3), the perfor-
mance of our system improved by 0.160 F1 score.
This seems to suggest that our system can improve
its generalization ability if we can accurately label
the target domain data.

We further analyze where the performance im-
provement comes from in section 5 and provide a
detailed analysis of our annotation errors and give
feedback on annotation guidelines in section 6.

5 Time Expressions Ablation Study

Effect of Fine-Tuning on Dev Data From the
baseline models’ performances (row 1 vs row 2 in
table 3), we can see that the test performance of the
model fine-tuned on the development set is slightly
better than the pure source-domain model (+.010
F1 score). To verify if this is also true for our active
learning system, we add the fine-tuning strategy to

our system (row 6 in table 3) and run the system on
the labeled portion of the test set. The results (row
5 vs row 6 in 3) indicate that fine-tuning on the
additional domain continues to help a bit (+.004 F1
score) even when followed by active learning.

Effect of Data Augmentation We also investi-
gate the contribution of our data augmentation strat-
egy, removing it from our system and running on
the labeled test set. The result shows that data aug-
mentation brings a +.065 F1 score improvement to
our system (row 7 vs row 5 in table 3). This indi-
cates that data augmentation was a major source of
performance improvements.

Effect of Size of Annotation Data In real-world
use cases, we often want to keep the size of anno-
tated data as small as possible, since annotation is
time consuming and error-prone. To understand
how our system performs with less manual anno-
tated examples, we reduce the number of sentences
to be annotated at each active learning iteration
to 16, 8 and 4 resulting in rows 8, 9 and 10 in
table 3. The results show that with only 20 cor-
rectly annotated sentences but incorporating data
augmentation (row 10), our system outperform the
best baseline model (row 2) by .073 F1. If we re-
move data augmentation from this model (row 11)
its performance declines, but still outperforms the
best baseline model by .047 F1.
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6 Time Expressions Annotation Analysis

Though gold annotations led to large performance
improvements, the annotation for this task is chal-
lenging for untrained people. Through reading the
SCATE annotation guidelines and posting ques-
tions on the share task google group, our team an-
notated 160 sentences of which 48 sentences were
in the labeled portion of the test set. We annotated
13008 tokens in total (including padding tokens)
and our overall accuracy on the gold 48 sentences
is 0.991 for all categories and 0.785 excluding the
category O. We report detailed performance for
each of the entity types in table 6 in appendix A.3.

We found several annotation patterns where our
team consistently disagreed with the gold annota-
tions. Our errors can be broadly attributed to two
reasons: misinterpretation/underspecification of an-
notation guidelines, and ambiguity of the phrases.

Errors from misinterpretations/underspecifica-
tion of annotation schema : We annotated the
token seasonal(ly) (e.g., seasonal progress, sea-
sonal rainfall) as Calendar-Interval instead of
Season-Of-Year as we thought Season-Of-Year is
applied to seasons that are explicitly specified (such
as summer). We considered seasonal similar to
weekly, both referring to an interval unspecified.
However, Season-Of-Year could be applied to very
broad categories such as dry seasons and rainfall
seasons including seasons that are not specified.
Also, seasonal unlike weekly/monthly/yearly only
refers to one season of a year instead of every sea-
son of a year. Due to the ubiquity of this token
in the dataset, this error affects our overall perfor-
mance. Correcting the annotation of this particular
token leads to +.042 F1 score improvement (row 4
vs row 3 in table 3). Another erroneous pattern is
that we double-annotated the phrase such as from
. . . to . . . and between . . . to . . . . Specifically,
we annotated both adpositions instead of choosing
the first adposition only. Finally, we also annotated
more modifiers than the gold annotations. For in-
stance, we annotated marketing in marketing year
and long in long dry Jiaal Season as ‘Modifier’
instead of the category ‘O’. It turns out that the
category of modifier in the gold annotation is a
closed category, and only a specific set of tokens
are considered modifiers.

Errors from ambiguity within phrases Some
phrases allow multiple interpretations that lead to
different ways of annotations. For instance, con-

fusion between ‘Period’ and ‘Calendar Interval’
occurred frequently (e.g., we annotated weeks in
recent weeks as ‘Period’ rather than ‘Calendar-
Interval’). Although “/” between seasons is com-
monly annotated as ‘I-Season-Of-Year’ in the gold
annotations, we found different roles it might play
in specific contexts. For example, if “/” is used be-
tween two terms that refer to the same season, then
it should be annotated as ‘I-Season-Of-Year’; if it is
used between two non-adjacent seasons, it should
be annotated as ‘Union’; and if it is used between
two adjacent seasons, then it could be annotated as
‘Between’ or ‘Union’. Thus, the correct annotation
requires a surprising amount of external knowledge
about Ethiopian season terms. In fact, there are
still cases that remained uncertain: For example,
Xaran refers to seasonal rains from April through
September and Xagaa refers to the second dry sea-
son (July to September) and when the two tokens
joined by “/” it is difficult to interpret the meaning
of “/”. We also found the conjunction and causes
ambiguity. For example, and in rains in May and
August could be considered as an operator over
months (i.e., rains in Union(May, August)) or an
operator over rains (i.e., Union(rains in May, rains
in August)). The former understanding requires
annotating and whereas the latter does not despite
the fact that the two interpretations are essentially
semantically equivalent. Lastly, we also found the
particle the is difficult to annotate. For instance,
the in the month depending on the context may be
annotated as this or last and sometimes the context
may not be clear enough to tell the differences.

Our annotation analysis leads to several sugges-
tions for the annotation schema and the documenta-
tion. Our errors in the first category indicate some
potential helpful updates can be made such as in-
cluding more examples in categories (e.g., ‘Season-
Of-Year’), explicit documentation of whether the
certain category is closed or open as well as the
specific manner to deal with multi-word phrases or
even circumpositions. The second category of er-
rors, however, might involve the refinement of the
annotation schema. For example, maybe ‘Between’
and ‘Union’ can be unified together, and ‘Period’
can be merged into ‘Calendar Interval’ or confined
to an explicit set of circumstances.

7 Conclusion

Our overall rank (by F1 score) for negation detec-
tion task was 2nd and for time expression recogni-

462



tion was 6th.
Our results suggest that simple self-training can

be used in sentence-level SFDA tasks to improve
a trained model’s performance on a new domain.
As for token-level tasks, our analysis shows that
both active learning and data augmentation can
bring significant performance improvements, but
the premise is that the data in active learning can
be correctly annotated. Our analysis and feedback
could also be used to improve the SCATE annota-
tion guidelines/schema in future work.
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A Appendix

A.1 Entity Candidates Pool

Second-Of-Minute: 00, 01, 02, 03, 04, 05, 06,
07, 08, 09, 10, 11, 12, 13, 14, 15,16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60.

Day-Of-Month: 00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9.

This: today, these, this, the, now, current, These,
This, The, Current.

Minute-Of-Hour: 00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60.

Year: 1970, 1971, 1973, 1974, 1975, 1980, 1981,
1982, 1984, 1990, 1992, 1995, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2020.

Month-Of-Year: January, February, March,
April, May, June, July, August, September, Oc-
tober, November, December, Jan, Feb, Mar, Apr,
Aug, Sept, Sep, Oct, Nov, Dec, 01, 02, 03, 04, 05,
06, 07, 08, 09, 10, 11, 12, may.

Next: later, future, following, next, coming, up-
coming, Following.

Hour-Of-Day: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 01,
02, 03, 04, 05, 06, 07, 08, 09.

Time-Zone: ART, CT, EGT, EST, MART, MMT,
NT, TOT, WIT.

Two-Digit-Year: 01, 02, 03, 04, 05, 06, 07, 08,
09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
tens, Tens.

Calendar-Interval: minute, minutes, day, days,
daily, today, eve, week, weekly, weeks, months,
month, monthly, quarter, quarterly, year, years, an-
nual, annually, Daily, Eve, Month, Monthly, Year,
Annual.

Modifier: more than, approx, less than, start,
mid, middle, end, over, early, around, late, older,
financial, fiscal, nearly, longer than, almost, at least,
or so, about, beginning, More than, Approx, Less
than, Mid, Middle, End, Over, Early, Around, Late,
Nearly, At least, About, Beginning.

Last: before, last, latest, previously, recent, re-
cently, the past, ever, previous, past, earlier, pre,
Before, Last, Recent, Ever, Previous, Past, Earlier,
Pre.

Between: from, since, until, between, From,
Since, Until, Between.

Day-Of-Week: Tuesday, Wednesday, Mon,
Tues, Tue, Wed, Sat, Sun.

Period: period, periods, week, months, minute,
year, term, day, time, years, second, moment,
minutes, long-term, decades, decade, short-term,
month, weeks, days, Year, Term, Time, Second,
Short-term, Month.

Part-Of-Day: night, Noon.

Before: previously, prior, before, ago, pre, by,
earlier, next, Prior, Before, Ago, Pre, By, Earlier.

NthFromStart: second, first, fourth, third, sev-
enth, Second, 3rd, 5th, 7th, 25th, 47th, 75th.

After: after, from, later, post, After, From, Post.

Season-Of-Year: winter, spring, summer, fall,
season, autumn, Summer, Fall, Season.

AMPM-Of-Day: pm, am, PM, AM.
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A.2 Hyperparameters

Hyperparameter Value

number of examples from the test set used for
self-training

3000

maximum number of self-training iterations 30
actual number of self-training iterations 2
self-training threshold (τ ) 0.95
maximum sequence length 128
batch size 32
epochs 10
learning rate 5e-5
learning rate schedule type linear
learning rate warm up steps 0
weight decay 0.0
maximum gradient norm 1.0

Table 4: Hyperparameters for negation detection sys-
tem

Hyperparameter Value

number of active learning iterations (i) 5
number of sentences to annotate at each active
learning iteration (k)

32

number of new sequence to augment for each
annotated time entity (n)

5

maximum sequence length 271
batch size 32
epochs 8
learning rate 3e-5
learning rate schedule type linear
learning rate warm up steps 0
weight decay 0.0
maximum gradient norm 1.0

Table 5: Hyperparameters for time expression recogni-
tion system.

A.3 Manual Annotation Performance
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Type F P R # in gold annotations # in our annotations

I-Calendar-Interval 0.000 0.000 0.000 0 5
I-Last 0.000 0.000 0.000 2 5
I-Between 0.000 0.000 0.000 1 0
I-Modifier 0.000 0.000 0.000 1 4
B-This 0.154 0.333 0.100 10 3
B-Before 0.222 0.250 0.200 5 4
B-Union 0.250 0.143 1.000 1 7
B-Period 0.400 0.308 0.571 7 13
B-After 0.500 1.000 0.333 9 3
I-Frequency 0.500 1.000 0.333 3 1
B-Modifier 0.519 0.389 0.778 9 18
I-Period 0.588 1.000 0.417 12 5
B-Last 0.615 0.800 0.500 8 5
B-Calendar-Interval 0.632 0.529 0.783 23 34
B-Intersection 0.667 1.000 0.500 2 1
B-Frequency 0.750 0.750 0.750 4 4
I-Number 0.769 1.000 0.625 8 5
B-Season-Of-Year 0.792 0.864 0.731 52 44
B-NthFromStart 0.800 0.667 1.000 2 3
B-Between 0.831 0.750 0.931 29 36
I-Season-Of-Year 0.896 0.972 0.831 83 71
B-Number 0.909 0.909 0.909 11 11
O 0.997 0.997 0.998 12627 12632
B-Year 1.000 1.000 1.000 36 36
B-Month-Of-Year 1.000 1.000 1.000 57 57
B-Part-Of-Day 1.000 1.000 1.000 1 1
B-Two-Digit-Year 1.000 1.000 1.000 4 4
B-Next 1.000 1.000 1.000 1 1

Table 6: Performance of each annotated entity types. Please note that when the number in gold annotation is 0, it
means that we annotate this entity type, but it does not appear in the gold annotations (test labels).
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Abstract

Research in Natural Language Processing is
making rapid advances, resulting in the pub-
lication of a large number of research papers.
Finding relevant research papers and their con-
tribution to the domain is a challenging prob-
lem. In this paper, we address this challenge
via the SemEval 2021 Task 11: NLPContri-
butionGraph, by developing a system for a re-
search paper contributions-focused knowledge
graph over Natural Language Processing liter-
ature. The task is divided into three sub-tasks:
extracting contribution sentences that show im-
portant contributions in the research article,
extracting phrases from the contribution sen-
tences, and predicting the information units in
the research article together with triplet for-
mation from the phrases. The proposed sys-
tem is agnostic to the subject domain and can
be applied for building a knowledge graph for
any area. We found that transformer-based lan-
guage models can significantly improve exist-
ing techniques and utilized the SciBERT-based
model. Our first sub-task uses Bidirectional
LSTM (BiLSTM) stacked on top of SciBERT
model layers, while the second sub-task uses
Conditional Random Field (CRF) on top of
SciBERT with BiLSTM. The third sub-task
uses a combined SciBERT based neural ap-
proach with heuristics for information unit pre-
diction and triplet formation from the phrases.
Our system achieved F1 score of 0.38, 0.63
and 0.76 in end-to-end pipeline testing, phrase
extraction testing and triplet extraction testing
respectively.

1 Introduction

Given the advancements in Natural Language Pro-
cessing (NLP), a large number of research papers
are published every year. However, given the field’s
dynamic nature, keeping track of all the papers is
a non-trivial task. This motivated the formulation

∗ Authors equally contributed to this work.

of an Open Research Knowledge Graph (Jaradeh
et al., 2019), a knowledge graph of research contri-
butions and the relation between them. Task 11 of
SemEval 2021 (D’Souza et al., 2021) formalizes
the building of a contributions-focused knowledge
graph of NLP literature. The task is divided into
three sub-tasks:

• Sub-task A Extracting sentences that posit
contributions in a research paper.

• Sub-task B Extracting relevant phrases that
include scientific terms and relational cues
from the extracted sentences of the sub-task
A.

• Sub-task C Triplet (subject phrase, predicate
phrase, object phrase) formation from the ex-
tracted phrases of the sub-task B and clas-
sification of the triplet in one of the infor-
mation units (IU). There are twelve informa-
tion units (Research problem, Approach, Re-
sults, Model, Code, Dataset, Experimental
setup, Hyperparameters, Baselines, Tasks, Ex-
periments, and Ablation analysis), each fo-
cusing on different sections in a research pa-
per. These information units can represent all
the findings given in a research paper. Out
of twelve, first three information units are
present in each article.

Recently, transformer-based approaches have
been popular for NLP applications (Liu and La-
pata, 2019; Yao et al., 2019). For the sub-task A,
we propose a sentence level classifier, leveraging
SciBERT (Beltagy et al., 2019) and Bidirectional
Long Short-Term Memory (BiLSTM) (Hochreiter
and Schmidhuber, 1997). SciBERT model has been
trained on 1.14M scientific papers from Semantic
Scholar corpus, which has 18% papers from the
computer science domain. Our system for sub-
task B also uses SciBERT based model using CRF
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Figure 1: Dataset Example

(Lafferty et al., 2001) on top of BiLSTM layers
using BILUO (B=start token of phrase, I=interior
tokens of phrase, L=last token of phrase, U=single
token phrase and O=Non-phrase tokens) labelling
scheme for tokens. For sub-task C, we build a com-
bination of neural and heuristic-based approach.
The IU prediction for sub-task C is at document
level where two information units use heuristic
approach while others use a multi-label classifier
based on BiLSTM stacked on top of SciBERT. For
triplet formation in sub-task C, we use a separate
SciBERT+BiLSTM classifier along with heuristics.
These triplets are classified into one of the already
predicted information units, i.e., the output unit
having the maximum score among the predicted IU.
However, some of the IU, such as Baselines, Abla-
tion analysis, Code and Research problem triplets,
perform well using heuristic, so we use heuristic
instead of a neural approach for these IU. Our pro-
posed system was ranked third in the overall end-
to-end pipeline (A+B+C) testing and achieved F1
score of 0.38. Our proposed model was ranked
fourth in phrase extraction (AGT+B+C) and triplet
extraction testing (AGT+BGT+C) with a F1 score
of 0.63 and 0.76 respectively where AGT and BGT
represent ground-truth for sub-task A and B respec-
tively. Phrase extraction testing uses ground-truth
labels for sub-task A, while triplet extraction test-
ing uses ground-truth for both sub-task A and B.
We found that the heuristic-based model for two
IU (Research problem and Code) in sub-task C can
achieve high performance and achieved F1 score
of 0.98 and 1.00, respectively. Our system imple-

mentation code is made available via GitHub1.

2 Background

2.1 Problem Definition
Consider a document D = {s1, s2, .., si, .., sN}
having N sentences si. Sub-task A finds
M contribution sentences denoted by
S = {s1, s2, ..., sM} from D. Sub-task B
selects phrases P = {p1, p2, .., pi, .., pL} where
pi is a phrase selected from a sentence s ∈ S
and L is total number of phrases in D. Sub-task
C is forming triplets of extracted phrases for IU
denoted by U = {u1, .., ui, .., uX} where ui is
one of the twelve IU and X is number of IU in
document D ranging between three to twelve. For
each ui ∈ U , there is a triplet set called T i =
{(sui1, pri1, obi1), (sui2, pri2, obi2), .., (suij , prij , obij)
, .., (suiO, pr

i
O, ob

i
O)} where (suij , pr

i
j , ob

i
j) is a

triplet representing subject, predicate(relation) and
object respectively andO is total number of triplets
in ui IU in document D. An example dataset is
given in Figure 1 for reference. Here, on moving
from left to right is research paper, contribution
sentences, phrases and IU along with triplets given
in a research paper respectively.

2.2 Related Work
Knowledge graphs (Rebele et al., 2016; Hertling
and Paulheim, 2018; Lehmann et al., 2015; Carlson
et al., 2010) have shown to be helpful in several
areas such as search, knowledge extraction, inter

1https://github.com/sshailabh/
SemEval-2021-Task-11
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alia. However, only a handful are based on re-
search articles (Xu et al., 2020). Typically, most
knowledge graphs are created with rule-based ap-
proaches, hence, limiting their performance and
generalization. However, some recent approach
such as Sang et al. (2018); Wang et al. (2020b)
uses neural approach in biomedical literature. To
the best of our knowledge, there is no available
contributions-focused knowledge graph over NLP
literature using the neural approach.

Sub-task A: The sub-task of extracting contribu-
tion sentences can also be posed as an extractive
summarization problem (Nallapati et al., 2016;
Narayan et al., 2018; Liu, 2019; Cheng and Lapata,
2016; Zhou et al., 2018; Dong et al., 2018; Wang
et al., 2020a). BERTSUM (Liu and Lapata, 2019)
and MATCHSUM (Zhong et al., 2020) are the re-
cent methods leveraging language models and uses
ROUGE-1, ROUGE-2 and ROUGE-L scores (Lin,
2004) on DailyMail data-set (Hermann et al., 2015).
However, this extractive summarization technique
may not be applicable in our case due to a num-
ber of reasons. Firstly, extractive summarization
alone will not give all the contribution sentences
because some sentences may not be relevant to the
summarization task. Secondly, extractive summa-
rization models are not tested on large documents
such as research articles due to the limitation of the
input token length for transformer-based language
models. Some long document transformer-based
methods are proposed (e.g., Beltagy et al., 2020),
and can consider documents up to a length of 4096
tokens, however, in our case, documents have on
an average ∼10,000 tokens. Some of the extrac-
tive summarization methods (Liu and Lapata, 2019;
Miller, 2019) take the number of contribution sen-
tences as a hyper-parameter, but in our case, this is
a trainable parameter in our model.

Sub-task B: Sub-task B closely resembles the
phrase extraction problem and several neural meth-
ods (Zhu et al. (2020); Wang et al. (2016); Zhang
et al. (2016), inter alia) and non-neural based meth-
ods (using n-grams and noun-phrases with certain
Part-of-speech (POS) patterns (Hulth, 2003)) have
been proposed. Gollapalli et al. (2017) have shown
that CRF has the potential to improve the exist-
ing phrase extraction model. Alzaidy et al. (2019)
jointly leverages CRF and BiLSTM to capture hid-
den semantics for phrase extraction. Zhu et al.
(2020) extended the work of Alzaidy et al. (2019)
with the idea of self-training and used word em-

beddings, POS embeddings, and dependency em-
beddings with a BILUO labelling scheme in the
output. Our proposed model took inspiration from
Zhu et al. (2020) and propose a SciBERT based
model using CRF on top of BiLSTM layers using
BILUO labelling scheme on tokens. Our model
captures better semantics than the word embed-
dings based approach in Zhu et al. (2020) because
of SciBERT, which is trained on the scientific cor-
pus. Moreover, our model uses the WordPiece
tokenizer and hence, robust to Out-of-Vocabulary
(OOV) tokens. Sahrawat et al. (2020) used contex-
tual embeddings to the BiLSTM and CRF model
using BIO (B=start token of phrase, I=continuation
tokens of phrase and O=Non-phrase tokens) la-
belling scheme. Ratinov and Roth (2009) discussed
that the BILUO scheme is superior to the BIO
scheme; hence we adopt the BILUO scheme for
sub-task B. Recently, Lai et al. (2020) combined se-
quence labelling with joint learning inspired from
self-distillation to boost model performance on un-
supervised datasets. However, their model used
BIO labelling scheme and gave a comparable or
marginal improvement in a supervised setting.
Sub-task C: The sub-task C can be divided into
two parts - information units (IU) prediction and
triplet formation. The information unit prediction
and triplet formation have been approached in the
literature mainly using rule-based methods. Rusu
et al. (2007) suggests using syntactic parsers for
generating parse trees, followed by triplet extrac-
tion using parser dependent techniques. Jivani
et al. (2011) proposed an algorithm that exhibits
the relationship between subject and object in a
sentence using Stanford parser. This rule-based
algorithm can form multiple triplets from a sen-
tence as compared to Rusu et al. (2007). Stanford
OpenIE Relation triplet formation (Angeli et al.,
2015) uses a classifier, which learns to extract self-
contained clauses from longer sentences to form
the final triplets using heuristics. Hamoudi (2016)
and Jaiswal and George (2015) are also rule-based
methods for triplet formation using Stanford depen-
dency parser and constituency parser, respectively.
KG-Bert (Yao et al., 2019) uses the BERT language
model and utilize entity and relation descriptions
of a triplet to compute its scoring function.

3 System Overview

The proposed system is shown in Figure 2 depicting
the entire pipeline and its respective model.
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Figure 2: Overall system architecture for end-to-end pipeline showing all the sub-tasks and their respective model.

3.1 Sub-Task A

Initial Experimentation: We experimented with
SciBERT, a language model trained on research
papers to build a binary classifier. The classifier
encodes the sentence using feature representation
corresponding to [‘CLS’] token from the last layer
of the pre-trained SciBERT model to predict a bi-
nary label. Since the fine-tuning dataset is small,
linear layers were not able to capture contextual
information well. We experimented by adding a
Convolution Neural Network (Zhang and Wallace,
2015) layer on the top of SciBERT. The CNN archi-
tecture use three kernels of size two, three and four.
The model boosted the performance; however, the
model cannot classify long sentences due to their
ambiguous nature and lack of CNN’s capacity to
capture long semantic dependency among tokens.

Proposed Approach: We propose the SciB-
ERT+BiLSTM model (a sentence-level binary clas-
sifier where BiLSTM is stacked on top of the SciB-
ERT model). This helps to encode hidden seman-
tics and long-distance dependency. Consider the
training dataset as Tr = {D1, D2, .., Di, .., DZ}
comprising of Z documents. Each Di can be repre-
sented as Di = {si1, si2, .., sij , .., siN} where N

is the number of sentences in the document and sij
is the jth sentence of document Di. Each sentence
is assigned a ground-truth label where label “1”
represents a contribution sentence and label “0” a
non-contribution sentence. The sentences are pro-
cessed using a SciBERT model followed by stacked
BiLSTM layers whose output is further processed
through linear layers with ReLU (Nair and Hin-
ton, 2010) non-linearity. We add dropout layers
to avoid overfitting. The last linear layer consists
of two units corresponding to label “0” and label
“1”. The final output label is the label whose corre-
sponding unit has a higher score in the last linear
layer. Our loss function is weighted binary cross-
entropy loss, where weights are in according to the
number of samples in each class.

3.2 Sub-Task B
Initial Experimentation: We built our initial
method, the BiLSTM+CRF model, on the lines of
Zhu et al. (2020). The model uses a BiLSTM layer
along with CRF for sequence to sequence (BILUO)
labelling in order to mark the phrases in a sentence.
We introduced SciBERT (by replacing BiLSTM
layers) to fine-tune and better generalise with an
increase in performance. We tested the significance

470



of CRF by replacing it with a softmax layer, which
gave poor performance since it is unable to learn
the constraints in the BILUO scheme.
Proposed Approach: We further improved the
SciBERT+CRF model to improve semantic infor-
mation. Our proposed model stack BiLSTM layers
on top of SciBERT, followed by CRF (see Figure
2). The word-level representation {x1, x2, ..., xN}
from the input sentence passes through the SciB-
ERT tokenizer. We used the representation of the
first sub-token for every word as the input to the
SciBERT. The tokenized input is passed into the
SciBERT layer, followed by the BiLSTM layer.
The final feature output is mapped to a hidden lin-
ear layer to get the score matrix Z, which is passed
into the CRF layer for label prediction y. The
CRF layer is the same as described in Lample et al.
(2016).

The output produced by the SciBERT + BiLSTM
+ Hidden Layer corresponds to a scoring matrix
Z(n×l) where n denotes the number of words in
the input sentence, and l is the number of labels
(l=5). The score of an output sequence y using
CRF is given by:

Scr(s, y) =
n∑

i=0

(Zi,yi + Tyi−1,yi) (1)

where Zi,j denotes the score of word wi with the
jth label, Tyi−1,yi is the transition score from the la-
bel yi−1 to yi, y = {y1, y2, ...., yn} is the sequence
of true labels and Scr(s, y) corresponds to output
score for sentence s and true labels y. A softmax
over all possible label sequences yields a probabil-
ity for true labels y:

P (y|s) =
exp(Scr(s, y))∑

y′∈Y (s) exp(Scr(s, y
′))

(2)

where Y(s) corresponds to all the possible label
sequences for sentence s. Now during training,
our task is to maximize the log-probability of the
correct label sequence y. Model loss is defined as
follows:

L(Θ) = −(1/M)
M∑

i=1

log(P (yi|si)) +
λ

2
‖Θ‖2

(3)
where si is the input sentence, yi is the correspond-
ing true label sequence, Θ denotes the model pa-
rameters, λ is the regularization hyperparameter
and M is the train set size. Output label prediction
is made by:

y∗ = argmaxy′∈Y (s)P (y′|s) (4)

Here y∗ represents the final output label sequence,
s is the input sentence, Y (s) is the set of possible
label sequences and P (y′|s) denotes the probability
of getting y′ label sequence from sentence s. The
phrases are extracted using BILUO scheme based
on the prediction outputs.

3.3 Sub-Task C

Initial Experimentation: We used a combination
of neural and rule-based approach for sub-task C.
An IU triplet has three phrases - subject, predicate
and object. Research problem and Code IU triplets
have fixed subject and predicate in triplets. We
employed a heuristic to scan the phrases of the
first thirty lines of each document and select only
those sentence’s phrases that have only a single
phrase extracted out. These phrases form object in
Research problem IU triplets. A regex expression
is used to extract all the sentences in the article
that contain any URLs for Code IU triplet’s object.
However, only those URL sentences are selected
which have token such as “our” or “code” or “our
code”.
Our initial approach was to form the triplets for
all other IU and classify them into one of the ten
remaining information units using SciBERT + BiL-
STM multi-class classifier (BiLSTM layers stacked
on top of SciBERT). The heuristic for triplet for-
mation is based on orthographic visualization of
the document - firstly, the phrases are arranged
in the exact order as they appear in the original
sentence. Then, every three consecutive pair of
phrases present within the same sentence are con-
sidered as one triple. This approach gave us decent
results since most of the research paper is written
in the active voice; hence the subject phrase should
occur first, then its corresponding predicate and
last should be the object phrase. The SciBERT +
BiLSTM multi-class classifier takes concatenated
triplets as the input and their corresponding infor-
mation unit as the ground truth. The loss is a cross-
entropy loss, with the final softmax layer having
ten classes corresponding to 10 information units.
One of the drawbacks of the model is that the IU
prediction depends on triplet formation’s correct-
ness. Further, a single triplet does not have enough
context to be correctly classified into the correct in-
formation unit. We visualized triplet formation for
feature extraction and found that some IU triplet’s,
such as Baselines and Ablation analysis, can be bet-
ter formed using heuristics. Our proposed approach
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is a better triplet formation model and eliminates
these limitations.

Proposed Approach: Our proposed approach has
some information unit such as Research problem
and Code, whose model for prediction and triplet
formation is entirely heuristic-based and the same
as initial experimentation. Our proposed method
for the rest of ten IU is divided into two parts -

IU Prediction - We propose a SciBERT+BiLSTM
multi-label classifier (BiLSTM layers stacked on
top of SciBERT) (refer to Figure 2) whose input
is the concatenated phrases and predicts the IU
of the document. The concatenation is in the or-
der of the occurrence of phrases in the document.
Moreover, these concatenated extracted phrases
represent the whole document since it includes all
relevant keywords of the research article necessary
for information unit prediction. Hence, our pro-
posed model encodes information at the document
level, which makes it superior to the initial experi-
mentation method.

Triplet Formation and Classification - In gen-
eral, a phrase is either a relational phrase or a sci-
entific term (Figure 1). A specific trend observed
in ground truth triplets is that a triplet’s predicate
is unique for a triplet. This contrasts with the sub-
ject and object phrase, which can be used multiple
times in other triplets. Hence, a one-to-one relation
between predicate phrase and triplet exists. We
identify all predicate phrases from the extracted
phrases of sub-task B; then, a corresponding triplet
will be formed for each predicate phrase. We train
a SciBERT+BiLSTM based binary classifier (BiL-
STM layers stacked on top of SciBERT model) to
identify the phrases which act as predicates (rela-
tional phrases). The model is fine-tuned on our
dataset and uses the weighted binary cross-entropy
loss. In labelling, “1” denote as predicate while “0”
denote as non-predicate. To form triplets, we use a
simple heuristic to arrange the phrases in the exact
order as they appear in the original sentence. For
every phrase predicted as a predicate, we take its
previous phrase as the subject and its next phrase
as the triplet object.

Now, a multi-class classifier for triplet classi-
fication for 8 IU (corresponding to all IU except
Research problem, Code, Baselines and Ablation
analysis) (refer to Figure 2) is built, which is similar
to the one described in the initial experimentation.
Since we have already predicted the information
units, during inference, the triplet can be assigned

only to one of the already predicted information
units, i.e., the output unit having the maximum
score among the predicted IU.

We used rule-based heuristics for triplet forma-
tion of Baselines and Ablation analysis IU. The
target sentences, whose phrases belong to baselines
IU, are identified by selecting all the headings (i.e.
lines having no punctuation) with words such as
“baseline”, “comp” using a regex expression. Then,
we took all the sentences between selected head-
ings and their consecutive headings as the target
sentences. The phrases associated with extracted
sentences are used for triplet formation via the rule
of three consecutive phrases present within the sen-
tence. The same method is followed for Ablation
analysis IU triplets with only change that the rele-
vant headings are found using the regex expression
that identifies if that heading contains the word
such as “ablation”, “analysis”.

4 Experimental Setup

4.1 Data

The dataset annotation scheme is as per D’Souza
and Auer (2020). The pre-processed dataset con-

Token Length % of sentences less than
token length

50 94.57
100 99.74
150 99.93
200 99.96

Table 1: Token length statistics on train set

sists of 287 annotated NLP research documents in
the English language with ground truth for each
sub-task. Train, dev and test set have 237, 50 and
155 documents, respectively. We have chosen 100
as the maximum token length in a sentence with
WordPiece tokenizer since 99.7% sentences in the
train set have less than or equal to 100 tokens. The
Table 1 shows token length and percentage(%) of
sentences less than that length. In the sub-task C,
if there is no suitable predicate available in the
extracted phrases, then the triplet’s predicate is cho-
sen from the predefined set of predicates, i.e. “has”,
“on”, “by”, “for”, “has value”,“has description”,
“based on”, “called”. Table 2 shows the dataset
statistics related to sub-task A and B. The dataset
statistics for sub-task C is given in Table 3. Tasks
information unit has no triplets in train set while
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Statistics Train Dev
# Documents 237 50
# Contribution sentences 5096 1032
# Non-contribution sen-
tences

50105 10451

# Avg. Sentences in doc. 232.915 229.7
# Avg. Tokens in sentence 20.622 21.06
# Avg. Contribution Sen-
tences in doc.

21.38 20.24

# Avg. Phrases in doc. 128.53 92.52
# Avg. IU in doc. 4.43 4.46
# Max Tokens in sentence 396 193

Table 2: Dataset Statistics

# Information Unit Triplets Train Dev
Research problem 635 164
Approach 529 233
Model 3548 570
Code 40 9
Dataset 240 8
Experimental setup 1928 302
Hyperparamters 2267 254
Baselines 1625 146
Results 4989 657
Tasks 0 277
Experiments 1472 149
Ablation analysis 1407 155

Table 3: Number of triplets in each Information Unit
on train and dev set.

Code and Dataset information units have very few
triplets in dev set.

4.2 Hyperparameters
We have used the dev set to tune our hyperparam-
eters. In every neural model, we are fine-tuning
SciBERT.2 We tried different batch sizes and learn-
ing rates for fine-tuning (Dodge et al., 2020). We
found the best results using the AdamW optimizer
in the neural models.
Sub-task A : We used batch size = 32, learning rate
= 1e-05, epoch = 2, two layers of BiLSTM with
hidden dimension of 400 and three linear layers
(size = 800, 400, 100) with dropout = 0.1. Over-
sampling of minority class (contribution sentences)
counters the skewness in data.
Sub-task B : We used batch size = 1, learning rate
= 2e-05, epoch = 4, single layer of BiLSTM with

2https://github.com/huggingface/
transformers

hidden dimension = 200 and linear layer with CRF.
Sub-task C : We used batch size = 4, max-tokens =
512, learning rate = 2e-05, epoch = 16, threshold on
sigmoid output = 0.5, two layers of BiLSTM with
hidden dimension of 400 and three linear layers
(size = 800,400,100) with dropout = 0.2 for multi-
label classification of information units (ten out of
twelve). We have used batch size = 32, max tokens
= 25, learning rate = 2e-05, epoch = 4, two BiL-
STM layers with hidden dimension = 400 and three
linear layers (size = 800, 400, 100) with dropout =
0.1 for relational phrase prediction model. We have
used batch size = 16, max tokens = 50, learning
rate = 2e-05, epoch = 2, two BiLSTM layers with
hidden dimension = 400 and three linear layers
(size = 800, 400, 100) with dropout = 0.2 for triplet
classification (eight out of twelve info-units).

4.3 Evaluation Metrics

In this task, organizers used Precision, Recall and
F1 score metrics. In sub-task A, the predicted and
ground-truth contribution sentences of the docu-
ment calculate the metrics score. The sub-task B
output has predicted phrase, contribution sentence
number, starting and ending character number of
the predicted phrase (Figure 1). These outputs are
the basis for sub-task B metric calculations. The
sub-task C has two groups of metrics. First is the
Information Units prediction of a document (re-
gardless of triplets). The second group calculates
using both Information Units and triplets (the pre-
dicted triplet is correct only if it exactly matches
the ground truth triplet and the ground-truth IU;
otherwise, it is incorrect). The final score is the av-
erage of all the four F1 scores on the dataset. The
participating team rankings are according to this
score.

5 Results

Table 4 shows all the participating teams average
F1 score. In end-to-end pipeline testing, the in-
put is the documents. In phrase extraction test-
ing (AGT+B+C), the input is the document and
ground-truth for sub-task A. Here, AGT represents
the true label of sub-task A, and the F1 score
for sub-task A is 1.00. In the triplet extraction
phase (AGT+BGT+C), the input is the document
and ground truth labels (F1 score = 1.00) for both
sub-tasks A and B to the system. Our team “Know-
Graph@IITK” achieved an F1 score of 0.3783
and ranked third in end-to-end pipeline testing.
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Team Name A+B+C AGT+B+C AGT+BGT+C
BioNLP@UIUC 0.3828 0.7612 0.8594

ecnuica 0.3335 0.7113 0.8145
ITNLP 0.4703 0.6863 0.7931

KnowGraph@IITK 0.3783 0.6318 0.7600
INNOVATORS 0.3205 0.5252 0.5971

DuluthGrad 0.2838 0.4921 0.7579
YNU-HPCC - 0.4562 0.6541
DFKI-SLT 0.2651 - 0.7137

NLP IITGN - 0.3522 -

Table 4: Average F1 score on test set of participating teams in end-to-end pipeline testing(A+B+C), phrase extrac-
tion testing(AGT+B+C) and triplet extraction testing(AGT+BGT+C).

In phrase extraction and triplet extraction testing
phases, our system ranked fourth with an F1 score
of 0.6318 and 0.76, respectively. Our heuristic-
based triplet extraction for Code and Research
problem information unit achieved excellent per-
formance with an F1 score of 1.00 and 0.9756,
respectively, on the test set.

5.1 Ablation and Error Analysis

Methods Dev F1 score
Sub-task A

SciBERT + CNN 0.440
SciBERT + BiLSTM 0.451

Sub-Task B
BiLSTM + CRF 0.361
SciBERT + CRF 0.444

SciBERT + BiLSTM + CRF 0.480

Table 5: F1 score of several methods of sub-task A and
sub-task B on development set.

We built several models using SciBERT, LSTM
and CNN for each sub-task to understand each
method’s significance (Table 5). We found that
language models are knowledge-rich and boost the
existing models. On top of language models, BiL-
STM based model performs better than the CNN-
based model due to long semantic dependency in
sequential models. In sub-task B, BiLSTM+CRF
based model performed inferior to the same model
built on top of SciBERT. In triplet formation in
sub-task C, our rule-based approach of Research
problem and Code information unit yield excel-
lent results (highest on the leaderboard). A signifi-
cant improvement in the F1 score for Baseline and
Ablation Analysis IU suggests that the rule-based
approach can boost neural models since specific

patterns are present for these information units’
triplets. In sub-task A, the dataset is highly skewed
between minority and majority classes (1:10), mak-
ing the training of a neural model difficult. On
visualization of sub-task B outputs, we found some
ambiguous phrases that our model fails to predict
correctly. Extracting both scientific and relation
cue phrases with high precision and recall in a sin-
gle model is difficult. Sometimes, our model pre-
dicts scientific phrases correctly but fails to predict
relation cue phrase in the same sentence.

In sub-task C, some IU triplet’s such as Model,
Hyperparameters, Results were present in large
number comparatively and while Tasks and Dataset
IU triplets are scarce in number. This skewness re-
sulted in biasing of our multi-label classification
model for IU prediction. In triplet formation, our
predicate approach fails when the predicate is not
present in the sentence and selected from the or-
ganizer’s closed set of predicates. The proposed
system also fails in the case of branching between
the triplets, i.e. multiple triplets share the same
subject phrase. Our triplet formation is unable to
predict Approach, Dataset and Tasks triple. On
visualizing, we found that Model triplets are pre-
dicted instead of Approach triplets. Further, the
triplets lack enough features to be classified into an
information unit using a neural-based method. Our
system performance on sub-task C is poor in the
end-to-end pipeline and phrase extraction testing
because we submitted our initial experimentation
model.

6 Conclusion

In this paper, we have presented our system for
NLPContributionGraph task of SemEval 2021. We
found that neural models combined with heuristics
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can build a knowledge graph by dividing it into
small tasks. The heuristic-based model can outper-
form the neural approach in the triplet formation
of some Information Units. In future work, neural
models can use sparse transformers to encode long
documents without increasing much memory. The
pre-defined predicate incorporation could also be a
future direction of work for our system.
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Jennifer D’Souza, Sören Auer, and Ted Pedersen.
2021. SemEval-2021 task 11: Nlpcontributiongraph
- structuring scholarly nlp contributions for a re-
search knowledge graph. In Proceedings of the Fif-
teenth Workshop on Semantic Evaluation, Bangkok
(online). Association for Computational Linguistics.

Jennifer D’Souza and S. Auer. 2020. Nlpcontributions:
An annotation scheme for machine reading of schol-
arly contributions in natural language processing lit-
erature. ArXiv, abs/2006.12870.

Sujatha Das Gollapalli, Xiao-Li Li, and Peng Yang.
2017. Incorporating expert knowledge into
keyphrase extraction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31.

Yassine Hamoudi. 2016. Extracting rdf triples using
the stanford parser.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems
28, pages 1693–1701. Curran Associates, Inc.

Sven Hertling and Heiko Paulheim. 2018. Dbkwik:
A consolidated knowledge graph from thousands of
wikis. In 2018 IEEE International Conference on
Big Knowledge (ICBK), pages 17–24. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 Conference on Empirical Meth-
ods in Natural Language Processing, pages 216–
223.

A. Jaiswal and V. George. 2015. A modified approach
for extraction and association of triplets. Interna-
tional Conference on Computing, Communication
and Automation.

Mohamad Yaser Jaradeh, Allard Oelen, Kheir Ed-
dine Farfar, Manuel Prinz, Jennifer D’Souza, Gábor
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Abstract

This paper describes the system we built as
the YNU-HPCC team in the SemEval-2021
Task 11: NLPContributionGraph. This task
involves first identifying sentences in the giv-
en natural language processing (NLP) schol-
arly articles that reflect research contribution-
s through binary classification; then identify-
ing the core scientific terms and their relation
phrases from these contribution sentences by
sequence labeling; and finally, these scientific
terms and relation phrases are categorized, i-
dentified, and organized into subject-predicate-
object triples to form a knowledge graph with
the help of multiclass classification and multi-
label classification. We developed a system for
this task using a pre-trained language represen-
tation model called BERT that stands for Bidi-
rectional Encoder Representations from Trans-
formers, and achieved good results. The av-
erage F1-score for Evaluation Phase 2, Part 1
was 0.4562 and ranked 7th, and the average
F1-score for Evaluation Phase 2, Part 2 was
0.6541, and also ranked 7th.

1 Introduction

As the number of research publications increases,
there is a growing need for digital libraries to equip
researchers with alternative knowledge represen-
tations. In addition, because scientific literature
is growing at a rapid rate and researchers today
are faced with a publication deluge, it is difficult
to keep up with the research progress even within
ones own narrow discipline. The open research
knowledge graph (ORKG) (Jaradeh et al., 2019)
is posited as a solution to the problem of keeping
track of research progress without the cognitive
overload imposed by reading dozens of full paper-
s. To this end, the aim of this task is to build a
comprehensive knowledge graph that represents
the research contributions of scholarly publications

per paper and also shows where the contribution-
s are interconnected across papers (D’Souza and
Auer, 2020).

The task was defined on a dataset containing nat-
ural language processing (NLP) scholarly articles
with their contributions structured to be integrable
within a knowledge graph infrastructure, such as
the ORKG. The structured contribution annotation-
s were provided as follows: (1) contribution sen-
tences: a set of sentences about the contribution
in the article; (2) scientific terms and relations:
a set of scientific terms and relational cue phras-
es extracted from the contribution sentences; and
(3) triples: semantic statements that pair scientific
terms with a relation, modeled toward the subject-
predicate-object statements for building knowledge
graph. The triples were organized under three
(mandatory) or more of the twelve total informa-
tion units (i.e., ResearchProblem, Approach, Mod-
el, Code, Dataset, ExperimentalSetup, Hyperpa-
rameters, Baselines, Results, Tasks, Experiments,
and AblationAnalysis). An illustration of this pro-
cess is shown in Figure 1.

The difficulty of this task lies in text classifi-
cation (Joulin et al., 2017) and sequence labeling
(Ma and Hovy, 2016). Text classification refers
to determining which of the two or more labels a
one-dimensional linear sequence belongs to. Simi-
larly, sequence labeling is used to tag each element
in a one-dimensional linear sequence with a label
from a set of labels. Before the popularity of deep
learning, the common solutions to the sequence-
labeling problem were all based on either the hid-
den Markov model (Zhou and Su, 2001) or con-
ditional random field (CRF) (Ye and Ling, 2018),
with CRF being the mainstream method. With
the development of deep learning, convolutional
neural networks (CNN) (Kim, 2014) and recurren-
t neural networks (RNN) (Cho et al., 2014) have
achieved great success in text classification and se-
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Figure 1: Example of contribution extraction of NLP scholarly articles

quence labeling. Since then, long short-term mem-
ory (LSTM) (Wang and Jiang, 2016), Bi-LSTM
(Bi-directional long short-term memory), and other
models (Yuan et al., 2020) have performed better
than CNN and RNN in text classification and se-
quence labeling . However, since the introduction
of bidirectional encoder representations from trans-
formers (BERT) (Devlin et al., 2018), the accuracy
and training efficiency in both text classification
and sequence labeling have reached new heights.

The SemEval-2021 shared Task 11 (D’Souza
et al., 2021) consists of three subtasks:

• Subtask 1: identifying contribution sentence-
s;

• Subtask 2: identifying scientific terms and p-
redicate phrases;

• Subtask 3: categorizing, identifying and orga-
nizing scientific terms and predicate phrases
into subject-predicate-object triples.

In this study, after analysis, we converted the
above three subtasks into four downstream tasks in
the field of NLP: binary classification for solving
Subtask 1, sequence labeling for solving Subtask
2, multiclass classification and multi-label classi-
fication for solving Subtask 3. Then, we used a
pre-trained language model, BERT, to generate
word embeddings and integrated them into the cor-
responding models for the different tasks. After

completion of the task, our results were satisfacto-
ry. Our submission ranked 7th in both Part 1 and
Part 2 of Evaluation Phase 2. The implementation
for our system is made available via Github1.

The remainder of this paper is organized as fol-
lows. Section 2 describes the details of the BERT
model used in our system. Section 3 presents the
experimental results. Finally, the conclusions are
presented in Section 4.

2 System Description

We used a pre-trained BERT model to accomplish
the task, which was defined in terms of three dataset
annotation elements, where the extraction of each
data element relied on the extraction of the previous
data element.

2.1 Subtask 1: Sentence Classification

The first part of this task was to extract sentences
that reflected the research contribution in the given
NLP scholarly articles. We termed this sentence
classification (Dao et al., 2020), where we predict-
ed whether a sentence in an article was a contri-
bution sentence. To this end, our approach was to
pass each sentence in an article through the pre-
trained BERT model to generate 768-dimensional
word embeddings for each word in the sentence.
The next thing we were going to do was to take the
word embeddings of the first token of each sentence

1https://github.com/maxinge8698/
SemEval2021-Task11
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(i.e. ‘[CLS]’) to do sentence classification because
it integrated the semantic information of the whole
sentence. Then this word embeddings acquired
from the previous step was connected with a fully
connected layer that converted the 768-dimensional
input into 2-dimensional numerical values. These
values were then input into softmax to calculate the
probability of a sentence being a contribution sen-
tence. Finally, the probability outcomes were input
into argmax, where, in our experimental setup, an
output of 1 indicated a contribution sentence and 0
indicated the contrary. The overall architecture of
the system is shown in Figure 2.

Figure 2: System of binary classification for sentence
classification task

2.2 Subtask 2: Span Identification

Span identification (Singh et al., 2020) was a bina-
ry sequence tagging task where we classified each
token in a contribution sentence to indicate whether
it was part of a scientific term or predicate phrase
fragment. We passed the contribution sentence i-
dentified from Subtask 1 into a pre-trained BERT
model and obtained embeddings for each token in
the sequence. Next, the word embeddings for each
token were passed through a fully connected layer,
and thereafter through softmax and argmax, where
they were mapped to a class label respectively ex-
cept the tokens of ‘[CLS]’ and ‘[SEP]’, indicating
whether the token was part of a scientific term or
predicate phrase fragment. The model architec-
ture is illustrated in Figure 3. Note that the fully
connected layer, softmax, and argmax were shared
across all tokens.

Figure 3: System of sequence labeling for span identi-
fication task

2.3 Subtask 3: Triple Extraction

This subtask was the most cardinal and complex
step in the entire task. This could be considered
a relation extraction task (Lin et al., 2016), which
was completed by dividing into parts information
units classification and triple formation. First, it
was necessary to classify all scientific term and
predicate phrases in a contribution sentence extract-
ed from Subtask 2 to determine which category
of the 12 information units the extracted phrases
belonged to. This was a multiclass-sequence clas-
sification problem, where we identified the unit
information belonging to the scientific term and
predicate phrase fragments in a given contribution
sentence by concatenating all phrases into a single
string to feed our model. The system architecture
of this part was similar to the sentence classifica-
tion system, except that there were 12 class labels
and 12 output dimensions instead of 2 each (re-
fer to Figure 4a). The next step was to identify
the subject, predicate, and object in the scientific
term and predicate phrases included in a contribu-
tion sentence obtained from Subtask 2 by using
multi-label classification. More specifically, each
scientific term and predicate phrase could be la-
beled with one or more of the three tags of subject,
predicate and object, which could be solved by
transforming the multi-label classification problem
into three binary classification problems similar
to the sentence classification system whereas us-
ing each phrase as input instead of each sentence.
First, a binary classification system was used to
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(a) Multiclass classification system for classifying informa-
tion unit

(b) Multi-label classification system for identifying subjects

(c) Multi-label classification system for identifying predicates (d) Multi-label classification system for identifying objects

Figure 4: System of multiclass classification and multi-label classification for triple extraction task
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identify the subject in each scientific term and pred-
icate phrase (refer to Figure 4b). Then, a second
binary classification system was used to identify
the predicate (refer to Figure 4c), and a third bi-
nary classification system was used to identify the
object (refer to Figure 4d). A brief overview of
this system is presented in Figure 4. At the end of
the classification, for all phrases in a contribution
sentence, that the corresponding label conformed
to the subject-predicate-object order was found as
triples iteratively from the beginning position.

3 Experimental Results

Datasets. The NLPContributionGraph shared
task comprises a dataset of NLP scholarly articles
with annotated contributions. The annotations were
provided in terms of three data elements: (1) con-
tribution sentences, (2) scientific term and predi-
cate phrases from the sentences, and (3) (subject,
predicate, object) triple statements. All the triples
together formed the contribution-centered knowl-
edge graph of the articles. The dataset released by
the organizers contained 237 annotated articles as
training data and 155 annotated articles as testing
data for the final evaluation phases. For the training
data, the annotations of each scholarly article were
provided in a directory. The directory contained the
full article in plain text, which was pre-processed
for tokenization and sentence splitting. The anno-
tations were provided in the following three files:
(1) sentence.txt, specifying the annotated contri-
bution sentence numbers from the plain text file;
(2) entities.txt, specifying the sentence number,
tab-separated from the start and end token num-
bers of the annotated phrase in the sentence; and
(3) a directory triples/ containing files with triples
of scientific term and phrase pairs and a relation
cue phrase, and the files were named to indicate
the information unit that the triple data represent-
ed. For the article under the directory “training-
data/natural language inference/0” as illustrated in
Table 1, the sentence.txt file gave the line index
of the articles contribution sentences (starting at
1). As illustrated in Table 2, the entities.txt file
presented the line index which was identical to sen-
tence.txt file, beginning position (starting at 0), end
position, and corresponding text content of the sci-
entific term and predicate phrases for each of the
contribution sentences of the article. As illustrated
in Table 3, the triples folder contained files named
as one of the 12 information units covered in the

article, and each information unit file provided (sub-
ject, predicate, object) triples that were comprised
of the scientific term and predicate phrases.

Evaluation Metrics. An NLPContributionGrap-
h submission would be considered complete with
predictions made for all three tasks (sentences,
phrases, triples). The evaluation metrics that were
applied are

• Sentences: precision, recall and F1-score;

• Phrases: precision, recall and F1-score;

• Triples: precision, recall and F1-score overall
and for each information unit.

The calculation of these three evaluation metrics
is as follows:

precision =
true positives

true positives+ false positives
(1)

recall =
true positives

true positives+ false negatives
(2)

F1 = 2 · precision · recall
precision+ recall

(3)

For the final evaluation stage of the task, the
evaluation metrics is as follows:

F1 = avg(F1(Sentences), F1(Phrases),
F1(InformationUnits),F1(Triples))

(4)

Implementation Details. The articles were split
into sentences to feed into the language model,
which resulted in 55,201 sentences in the training
data (44,160 sentences served as the training set
and 11,041 as the development set) with a maxi-
mum length of 398 words, and 33,800 sentences
in testing data that originated from the evaluation
phase, with a maximum length of 385 words. We
used the Tensorflow framework provided by the
Huggingface2 library for the pre-trained BERT
models and bert-base-uncased for binary
classification, sequence labeling, multiclass clas-
sification, and multi-label classification included
in this task. In addition, we fine-tuned the model
using the Adam optimizer (Loshchilov and Hutter,
2018), by using a loss function of categorical cross-
entropy with a learning rate of 2×10−5 and a batch
size of 8 for three epochs. The activation function
used by the fully connected layer was softmax.

2https://huggingface.co
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article directory sentences
training-data/natural 2
language inference/0 11

13

Table 1: Part of sentences.txt corresponded to an article

article directory sentences begin offset end offset text
training-data/natural 2 30 48 Text Comprehension
language inference/0 11 37 75 https://github.com/bdhingra/ga-

reader
13 43 58 machine reading

Table 2: Part of entities.txt corresponded to an article

article directory research-problem.txt code.txt
training-data/natural (Contribution||has research (Contribution||Code||https://
language inference/0 problem||Text Comprehension) github.com/bdhingra/ga-reader)

(Contribution||has research
problem||machine reading)

Table 3: Part of triples corresponded to an article

Result and Discussion. To allow a thorough e-
valuation of the systems, NLPContributionGraph
was be organized into three evaluation phases:

• Evaluation Phase 1: End-to-end pipeline
testing phase. The participant systems were
expected to output contribution sentences,
their corresponding scientific terms, and pred-
icate phrases as well as triples.

• Evaluation Phase 2, Part 1: Phrases ex-
traction testing. The participant systems
were given gold-annotated contribution sen-
tences and were expected to provide purely
scientific terms and predicate phrases as well
as triples as extraction output.

• Evaluation Phase 2, Part 2: Triples extrac-
tion testing. The participant systems were
given gold phrases and were expected to pro-
vide triples as the only output.

We used the Scikit-Learn3 library to divide the
training data into training and development sets in
a 8:2 ratio. We trained our models on the training
set and evaluated the prediction with the golden
scores of the good performance of our approaches.
For these three subtasks, the F1-score, Precision,
and Recall of our system on the development set
are shown in Table 4.

3https://scikit-learn.org

Our system achieved an average F1-score of
0.4562 in Evaluation Phase 2, Part 1 and ranked 7th
among the participating systems, and an average
F1-score of 0.6541 in Evaluation Phase 2, Part 2
and also ranked 7th among all participants. The
results showed that our proposed system was effec-
tive in extracting contributions from an NLP schol-
arly article. The main reason was that the BERT
model is a multi-layer bidirectional transformer en-
coder, which can be integrated into various NLP
downstream tasks and achieves the best results.

Subtask F1-score Precision Recall
Subtask1 0.6423 0.6554 0.6932
Subtask2 0.4768 0.5326 0.4356
Subtask3 0.4385 0.4109 0.6151

Table 4: Score of the pre-trained BERT model for the
three subtasks on the development set

4 Conclusions

In this paper, we presented the system we submit-
ted to the SemEval-2021 Task 11, which leveraged
a pre-trained BERT model to extract contributions
from an NLP scholarly article using binary classifi-
cation, sequence labeling, multiclass classification,
and multi-label classification. The experimental
results showed that the proposed models achieved
a good performance in the final evaluation phases.
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Furthermore, in the three subtasks, there appeared
to be significant room for improvement compared
to the top-ranked participant systems. Therefore, in
future research, we will attempt to generalize mod-
els with better capabilities to obtain better results.
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Jennifer D’Souza and Sören Auer. 2020. NLPContribu-
tions: An Annotation Scheme for Machine Reading
of Scholarly Contributions in Natural Language Pro-
cessing Literature. arXiv, pages 16–27.
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Abstract
This paper describes the winning system in
the End-to-end Pipeline phase for the NLP-
ContributionGraph task. The system is com-
posed of three BERT-based models and the
three models are used to extract sentences,
phrases and triples respectively. Experiments
show that sampling and adversarial training
can greatly boost the system. In End-to-end
Pipeline phase, our system got an average F1
of 0.4703, significantly higher than the second-
placed system which got an average F1 of
0.3828.

1 Introduction

The Knowledge Graph (KG) describes the con-
cepts, entities and their relationships in the objec-
tive world in a structured form, expresses Internet
information in a form closer to the human cogni-
tive world. Information extraction is the first step
of the KG construction. Information extraction
is a technology that extracts structured informa-
tion such as entities and relationships from semi-
structured or unstructured data automatically. Sim-
ilarly, as the rate of research publications increases,
it is critical to construct Knowledge Graphs to rep-
resent scholarly knowledge efficiently. The tar-
get of the NLPContributionGraph task (D’Souza
et al., 2021) is to find a systematic set of patterns
of subject-predicate-object statements for the se-
mantic structuring of scholarly contributions that
are generically applicable for NLP research arti-
cles, then apply the discovered patterns in the cre-
ation of a larger annotated dataset for ingesting the
dataset into the Open Research Knowledge Graph
infrastructure to assist users manually manage their
article contributions. Our task consists of three
sub-tasks: Sentences Extraction (SE), Phrases Ex-
traction (PE) and Triples Extraction (TE).

The dataset used in the NLPContributionGraph
task contains hundreds of Natural Language Pro-

cessing (NLP) scholarly articles annotated for their
contributions. Each article is written in English
and contains three types of annotation informa-
tion: 1) contribution sentences; 2) scientific term
and predicate phrases from the sentences; and 3)
subject-predicate-object triple statements from the
phrases toward KG building.

Our code is available at https://github.com/
itnlp606/nlpcb-graph.

2 Related Work

In recent years, pretrained language models (Pe-
ters et al., 2018; Devlin et al., 2019; Sun et al.,
2019; Lan et al., 2020) have achieved impressive
performance in various NLP tasks including infor-
mation extraction. BERT (Devlin et al., 2019) uses
Bidirectional Transformers (Vaswani et al., 2017)
to pretrain the model on the Masked Language
Model (MLM) task and the Next Sentence Predic-
tion (NSP) task and advances the state-of-the-art
for eleven NLP tasks. The system presented in this
paper is based on fine-tuning BERT. This section
will introduce two strategies to boost the BERT
model.

2.1 Sampling
In classification tasks, we often encounter uneven
distribution of positive and negative samples. Un-
der such distribution, the model may not be able
to make accurate predictions. The trained model
naturally tends to predict the majority set, and the
minority set may be considered as noise. Com-
pared with the majority set, the minority set is
more likely to be misclassified. Modifying loss
function (Lin et al., 2017; Li et al., 2019) and
sampling methods (Chawla et al., 2002; Liu et al.,
2009) are valid approaches to solve this problem,
and the later was adopted in our system. Over-
sampling achieves sample balance by increasing
the number of minority samples in classification.
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The most direct method is to simply copy the mi-
nority samples to form multiple records. The dis-
advantage of this method is that if the sample fea-
tures are few, the model is easy to overfit. SMOTE
(Chawla et al., 2002) interpolates between samples
of the minority class to generate additional sam-
ples. Under-sampling achieves sample balance by
reducing the number of samples of the majority
class in classification. The most direct method is
to randomly remove some samples of the majority
class. EasyEnsemble (Liu et al., 2009) divides the
majority samples into several parts randomly, so
the data of each part is equal to the number of mi-
nority samples. Then, multiple models are trained
on different parts of data, and the output of each
model will be integrated. BalanceCascade (Liu
et al., 2009) combines a subset of the majority class
with the minority class to train the model, then dis-
cards the samples that are correctly classified in the
next round, so that the subsequent base learner can
pay more attention to those samples that are incor-
rectly classified. Our model uses under-sampling
for sentences extraction and triples extraction. For
different tasks, diverse sampling strategies have
been adopted.

2.2 Adversarial training

As machine learning model is vulnerable to some
small worst-case perturbations, adversarial train-
ing (Goodfellow et al., 2014) aims to make the
AI systems safer by improving the robustness of
the model. In Computer Vision tasks, adversar-
ial training usually hurts the generalization of the
model. However, Miyato et al. (2017) adopted ad-
versarial training in text classifying by applying
perturbations to the word embeddings, which can
improve both generalization and robustness of the
NLP models.

Considerable efforts have been made to find bet-
ter adversarial perturbations. The Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2014)
generates adversarial examples by formulation:

x̂ = x+ radv

radv = ε sign (∇xJ(θ,x, y))

where x are the embeddings of the input text, radv
are the adversarial perturbations, θ are model pa-
rameters, x̂ are embeddings of adversarial exam-
ples that are used to update the model. The Fast
Gradient Method (FGM) (Miyato et al., 2017) is
another generation of FGSM in which the pertur-

bations are normalized by gradients:

radv = −ε g

‖g‖2

where g = ∇x log p(y | x; θ̂).
Madry et al. (2018) used a min-max formulation

as follows to cast both attacks and defenses into a
common theoretical framework,

min
θ

{
E(x,y)∼D

[
max
r∈S

L(θ, x+ r, y)

]}

in this formulation, the inner maximization prob-
lem describes attack which aims to find the most ad-
versarial data leading to a high loss, the outer min-
imization problem describes defense which aims
to find the most robust model. They also proposed
Projected Gradient Descent (PGD) that uses a it-
erative algorithm to generate the most adversarial
data.

The Friendly Adversarial Training (FAT)
(Jingfeng et al., 2020) adopted by our team is an
early-stopped version of PGD, its adversarial data
was generated by a min-min formulation as follow-
ing:

x̃i =arg min
x̃∈B(xi)

` (f(x̃), yi)

s.t. ` (f(x̃), yi)−min
y∈Y

` (f(x̃), yi) ≥ ρ

different from PGD, FAT generates friendly adver-
sarial data rather than the most adversarial data,
ρ > 0 is a margin that indicates the confidence of
adversarial data being misclassified. FAT is more
computationally effecient than PGD, and model
trained with FAT can reach higher accuracy.
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Figure 1: System Overview

3 System Description

For three sub-tasks in NLPContributionGraph, we
designed four modules to implement these tasks.
These modules use fine-tuning BERT with FAT as
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Figure 2: Both of the Sentences Extractor and the Triples Extractor are build by the BERT-based classification
model.

the base model and adopt different boosting meth-
ods to improve overall results. The full framework
of the system is shown in Figure 1. The three
extractors can extract contribution information by
classification. The Triples Generator can convert
discrete phrases into triples. These modules will
be explained further in following sections.

3.1 Sentences Extractor

The system uses the Sentence Extractor to solve
the SE task. The extractor can extract the sentences
that have the contribution information such as re-
search problem, code, etc. As shown in Figure
2a, the Sentences Extractor uses the sentence con-
text and paragraph heading as additional features
and uses BERT as a binary classifier to determine
whether the sentence contains the contribution in-
formation. In an annotated paper, most sentences
do not contain the contribution information. There-
fore, we adopted an under-sampling strategy. In
the training process, the ratio of positive samples
and negative samples is fixed to an integer for each
batch to ensure that the model will not overfit on
negative samples. The ratio is a hyperparameter
that needs to be tuned in the training process.

3.2 Phrases Extractor

The Phrases Extractor can extract contribution
phrases from the sentences to solve the PE task.
For this task, the BERT-based sequence labeling
model is effective. The phrases predicted by the
trained model will sometimes be incomplete, result-
ing in high recall and low precision. Fortunately,
ensembling learning can solve this problem well.
In the competition, we trained ten different mod-
els by ten-fold cross-validation. After training, the

trained models will make their own predictions,
and the module will count the number of votes for
each phrase. Only phrases with more than a certain
number of votes will be seen as a valid output.

3.3 Triples Generator

After the Phrases Extractor completes the predic-
tion, we can obtain discrete phrases. The role of
the Triples Generator is to convert these phrases
into triples through permutation and combination.
This section will introduce two methods to finish
this task.
Language Model Approach Language models
are usually used to evaluate the probability of a
sentence. The triples to be extracted are composed
of subject, predicate and object, which are compo-
nents of a sentence. This approach uses a language
model to evaluate the probability of triples. The
input of the module is all permutations of contri-
bution phrases, and the permutation that has the
highest probability will be the output of the mod-
ule, which are candidate triples.
Combination Approach Due to the lack of data,
the prediction made by language model is not ac-
curate. In the annotated data, the order of about
ninety percent of the triples is sequential. In order
to deal with the insufficient representation ability
of the language model, we directly use the com-
bination of all serial phrases as the output of this
module. In the competition, we adopted Combina-
tion Approach as the Triples Generator.

3.4 Triples Extractor

The Triples Extractor can classify all candidate
triples based on the BERT model. As shown in
Figure 2b, sentences and triples are separated by
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hash marks, and inputted into BERT for classifica-
tion. Unfortunately, the trained model will easily
overfit on negative samples due to the large number
of combinations. Therefore, we need to adopt the
under-sampling strategy to boost the base BERT.
For complex combinations, the module combines
two strategies to select negative samples:
Random Replacement (RR) For each of the
three phrases in the positive sample, we will ran-
domly select one and replace it with another phrase.
Random Selection (RS) Randomly select three
phrases that are not positive samples.

The module combines the two sampling methods
above to generate negative samples. For each batch,
it fixes the ratio of positive and negative samples to
generalize better.

4 Experimental Setup

In this section, we did some ablation analysis on the
validation set for the boosting methods proposed
in this paper, and gave some analysis through the
experimental results.

4.1 Adversarial Training

We tested the performance of different adversar-
ial training approaches. Table 1 shows that FAT
achieved the best results in all three tasks. Es-
pecially in the SE task, adversarial training can
greatly improve the model’s performance. During
the experiment, we also found that if adversarial
training is not applied, training will converge in
an average of five epochs. If the system uses ad-
versarial training, the training will last for about
twenty epochs and will continuously improve the
performance on the validation set. The perturba-
tions added by the adversarial training make the
model generalize better. In addition, ensembling
is not applied in the PE task, so the F1 score of
this task is low. This issue would not affect the
experimental results.

Task Natural FGM FAT
SE 0.4112 0.5527 0.5615
PE 0.2011 0.2128 0.2231
TE 0.4641 0.4740 0.5176

Table 1: F1 scores of Natural training (no adversarial
training), FGM and FAT.

4.2 Sentences Features

We randomly selected five domains of papers to test
the effect of different features on the SE task. These
domains are Question Answering (QA), Relation
Extraction (RE), Sentence Classification (SC1),
Sentence Compression (SC2) and Text Generation
(TG).

Table 2 shows that adding either context or title
can significantly improve the accuracy of classi-
fication and the best results can be achieved by
concatenating both of them.

Domain Natural Title Context T&C
QA 0.4068 0.5294 0.6471 0.6977
RE 0.4516 0.5128 0.5781 0.5827
SC1 0.3636 0.5417 0.7391 0.7826
SC2 0.5600 0.5714 0.5926 0.6667
TG 0.4681 0.5424 0.5385 0.5763

Table 2: F1 scores while adding different features.
T&C means adding both Title and Context.

4.3 Triples Extractor Sampler

In the TE task, RR and RS are applied as the sam-
pling methods. Without the under-sampling strat-
egy, the model is difficult to converge. Table 3
shows the performance of different sampling meth-
ods on papers in various domains. Among them,
the combination of RR and RS strategies achieved
the best results. The diversity of the sampling strate-
gies improves the generalization.

Domain RR RS RR&RS
QA 0.3621 0.3592 0.4267
RE 0.3782 0.4033 0.4163
SC1 0.3359 0.3505 0.3692
SC2 0.4585 0.4623 0.4777
TG 0.4900 0.5351 0.5748

Table 3: Macro-F1 scores with different triple sampling
methods

4.4 Evaluation Results

In End-to-end Pipeline phase, our system got F1
scores of 0.5619, 0.4522 and 0.1379 in tasks SE,
PE, TE, respectively. Our system has achieved
good results on tasks SE and PE, but task TE can
still be improved. Since our system only consid-
ers sequential triples, some triples will be missed,
which can be a defect of our system.

488



5 Conclusion

BERT is a powerful model that has considerable
applications in numerous fields of NLP. Using
BERT in the NLPContributionGraph task allows re-
searchers to read papers more efficiently. The meth-
ods of adversarial training and sampling proposed
in this paper can greatly boost the performance of
BERT on this task and can also offer some thoughts
for future work on knowledge extraction of papers.
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Appendix

This section will list the hyperparameters used in
the competition, which can help researchers repli-
cate the experiments conducted in this paper.

• Global

– Batch size: 16
– Learning rate (Adam): 5e-5
– Pretrained model: BERT-base
– Word embedding size: 512
– Hidden layer size: 768

• Task SE

– Number of senteces in the context: 2
– Positive and negative sample ratio: 1:3

• Task TE

– Positive and RS sample ratio: 1:3
– Positive and RR sample ratio: 1:3
– Positive and negative sample ratio: 1:6
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Abstract

This paper describes the Duluth system that
participated in SemEval-2021 Task 11, NLP
Contribution Graph. It details the extraction
of contribution sentences and scientific enti-
ties and their relations from scholarly articles
in the domain of Natural Language Process-
ing. Our solution uses deBERTa for multi-
class sentence classification to extract the con-
tributing sentences and their type, and depen-
dency parsing to extract phrases from each sen-
tence and format into subject-predicate-object
triples. Our system ranked fifth of seven for
Phase 1: end-to-end pipeline, sixth of eight for
Phase 2 Part 1: phrases and triples, and fifth of
eight for Phase 2 Part 2: triples extraction.

1 Introduction

The rapid rate at which scientific literature grows
makes it difficult to keep up with new research
even in one’s own field. Automated solutions are
challenging since text formatted and written for
human consumption does not lend itself to machine
processing.

(Jaradeh et al., 2019) have proposed a knowl-
edge graph based system for collecting and struc-
turing articles in a machine-readable format. This
requires the annotation of many scholarly articles,
a task that is time consuming to do by hand. The
purpose of this SemEval task (D’Souza et al., 2021)
is to enable the construction of a scholarly contribu-
tions graph over English language NLP articles by
automating the task of annotating scientific papers.

This annotation processes consists of:
1. selecting sentences that describe the contri-

bution of the article and outputting them to a
sentences.txt file,

2. extracting scientific entities and relations from
the selected sentences and outputting them to
an entities.txt file,

3. and structuring the entities and relations into
triples of the form subject-predicate-object.
These triples are sorted into one of twelve in-
formation units, which are labels that describe
the type of contribution being made by the
sentence outlined in the triples file.

Following is an example of the annotation pro-
cess using a sentence taken from the training data
with the human–labeled entities in braces:

We [apply] [dropout] of [0.4] [to layers],
[0.3] [to RNN layers], [0.4] [to input em-
bedding layers], [0.05] [to embedding
layers], and [weight dropout] of [0.5] [to
the RNN hidden-to-hidden matrix].

This task requires the 1) identification of this
sentence as a contribution sentence belonging to
the information unit HYPERPARAMETERS, 2) the
extraction of the entities in braces, and 3) the for-
matting of those entities into triples. This example
and various others will be used throughout this
paper to help contextualize our system description.

SemEval-2021 Task 11 was organized into three
phases, called Phase 1: end-to-end pipeline, Phase
2 Part 1: phrases and triples, and Phase 2 Part 2:
triples extraction. Phase 1 tested the entire system,
scoring for sentence extraction, phrases extraction,
and triples extraction. The gold sentences.txt files
were released for use in Phase 2 Part 1, in order
to test phrases and triples extraction given perfect
sentence selection. The gold entities.txt files were
released for use in Phase 2 Part 2, in order to test
triples extraction given perfect phrases selection.

There are four datasets mentioned in this paper.
Gold data refers to the sentences.txt, entities.txt,
and triples folders released by the organizers after
each phase of the task. Test data refers to the data
used to test the system during evaluation phases.
Training data refers to the entire training dataset
provided by the organizers. The trial dataset is the
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segment of the training dataset that we used to test
the Duluth system during validation, before the first
evaluation phase began. For more information on
how this dataset was created, see Appendix B.

Our approach1 employs a variety of techniques
to address each component of the task. The se-
lection of contribution sentences was done by fine-
tuning the base deBERTa model (He et al., 2021) on
the training data, as fine-tuned BERT (Devlin et al.,
2019) models have been found to perform well on
multi-class text classification tasks (Liu and Wang-
perawong, 2019). The fine-tuned model is used to
classify each sentence as either non-contributing,
or one of the twelve information units.

The selected contribution sentences were then
tagged to indicate likely scientific entities using a
Maximum Entropy Markov Model (MEMM) (Bird
et al., 2009) that was trained on the noun phrases
selected as entities in the training data.

A dependency parse (Manning et al., 2014) was
then found for each sentence. The dependency
parse and entity tags were then leveraged to select
contributing phrase spans and triples by using the
entity tags to determine whether a subject or object
noun phrase ought to be considered, and using the
dependencies to extract Subject–Predicate–Object
patterns from sentence.

2 Previous Work

Two previous SemEval tasks were also concerned
with the extraction of relations and key phrases
from scientific publications: SemEval 2017 Task
10: (ScienceIE - Extracting Keyphrases and Re-
lations from Scientific Publications) (Augenstein
et al., 2017), and SemEval 2018 Task 7: (Semantic
Relation Extraction and Classification in Scientific
Papers) (Gábor et al., 2018).

Many of the approaches in these tasks use neural
models to extract entities and their relations. The
AI2 system (Ammar et al., 2017) at SemEval-2017
Task 10, which ranked first and second for task
scenarios one and three respectively, approached
this by building separate entity and relation models,
each of which contain layers of LSTMs. The ETH-
DS3Lab system (Rotsztejn et al., 2018) at SemEval-
2018 Task 7, which ranked first in three of four
subtasks, built an entity and relation classifier using
a combination of RNNs and CNNs.

Other approaches used supervised machine

1Code is available at https://github.com/
anmartin94/DuluthSemEval2021Task11.

learning algorithms while leveraging grammatical
features. The LIPN system (Hernandez et al., 2017)
approached SemEval-2017 Task 10 by first filter-
ing possible keyphrases by labeling phrases with
their POS sequence. Candidate keyphrases are fil-
tered by comparing the POS tags of the phrase with
POS sequences developed from the training data.
They then trained a CRF model using the candidate
phrases labeled with IOB tags. They were able to
improve recall for keyphrase extraction by filtering
candidate sentences before using a CRF.

3 Selection of Contribution Sentences

We approached the selection of a contribution sen-
tence as a multi-class sentence classification prob-
lem with 13 classes, where each of the twelve in-
formation units is a class, and class 0 represents
non-contributing sentences. Although the subtask
of sentence extraction could be performed using
a binary classifier to label sentences as either con-
tributing or non-contributing, we decided to sort
the sentences further into their information units.
The alternative would require classifying phrases
or triples further down the pipeline; the benefit to
classifying the contributions during the sentence
extraction step is that the whole context of each
sentence is taken into account.

The main challenge with this approach was in
the unbalanced nature of the data; 90.11% of the
sentences used to train the classification model for
Phase 1: end-to-end pipeline were non-contributing
sentences, and the standard deviation of the fre-
quencies of contributing classes was 8.59%. These
frequencies can be seen in Appendix D.

Logistic regression and decision tree classifiers
(Pedregosa et al., 2011) were not able to iden-
tify the underrepresented classes such as TASKS

and DATASET, and were heavily skewed towards
the dominant class of non-contributing sentences.
During initial experiments using the trial dataset
described in Appendix B, decision tree classifier
earned a macro-F1 score of 0.1736 and the logis-
tic regression classifier earned a macro-F1 score
of 0.1738. The base deBERTa model performed
better than both decision tree and logistic regres-
sion classifiers on the trial dataset, resulting in a
macro-F1 score of 0.3079.
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3.1 Phase 1: Classifying Sentences using
DeBERTa

For Phase 1: end-to-end pipeline testing, we fine-
tuned the base deBERTa model on sentences from
the training dataset to create a thirteen-class sen-
tence classification model, using HuggingFace
transformers’ deBERTa for Sequence Classifica-
tion model (Wolf et al., 2020). Hyperparameter
settings can be found in Appendix E.

The provided training dataset includes sentences
files that contain a list of the indexes of contribut-
ing sentences for each scholarly article. It also
contains files for each information unit provided
in json format; each of these files include the full
sentences belonging to its specified information
unit. We labeled the contributing sentences with
their information units by looking up each sentence
in the information unit json files. Sentences from
the articles in the training dataset that were not in-
cluded in the sentences files were labeled as non
contributing.

3.2 Phase 2: Classifying Given Sentences

During evaluation Phase 2 the gold contribution
sentences for the test data were given to all par-
ticipants by the task organizers in sentences files
containing the indexes of contributing sentences.
Given this, we altered the sentence classification
step by fine tuning deBERTa only on contribution
sentences from the training data. This resulted in
a twelve-class classifier that labeled the test data
sentences according to their predicted information
unit. The reason why a classification step was still
required here is that the triples extraction task fur-
ther down the pipeline require the sentences to be
classified according to their information unit. With-
out the information unit json files, the information
unit labels must be predicted.

Observing that the sentence indexes in the given
sentences files appeared to be sorted by informa-
tion unit, we adjusted the output from the sentence
classifier so that chunks of consecutive sentence
indexes would all receive the same label. This was
performed by searching the classifier output for
spans of consecutive sentences where the classifier
vacillated between two commonly confused infor-
mation units, such as EXPERIMENTAL SETUP and
HYPERPARAMETERS. For each of these spans, the
information unit that was more frequent within the
span would be assigned to every sentence.

4 Entity and Relation Extraction

The Duluth system for Phase 1: end-to-end pipeline
combined statistical and rule-based approaches for
extracting scientific entities and their predicates
from the contribution sentences. We used a depen-
dency parser to extract noun phrases and their pred-
icates, and trained an maximum-entropy Markov
model (MEMM) on the training data entities files
to predict whether each noun phrase contains a
scientific entity.

4.1 MEMM Entity Extraction

For Phase 1, in order to tag likely scientific entities
in the test data, we trained a MEMM on the pro-
vided training data. The features we used include:

• current word type,

• current part-of-speech tag,

• current word shape,

• current IOB tag (I or B if present in the scien-
tific entities list, O if not), and

• the above features for the previous word.

We generated the scientific phrases list from the
training data entities files, by extracting the noun
phrases from the phrase spans and inputting them
into a file to be looked up by the MEMM entity
extractor.

For Phase 2 Part 1: phrases and triples, the
model was altered to only perform IO tagging. This
change was made to address the fact that sometimes
individual words appear in different positions in
different phrases. For example, the noun “loss”
appears in 41 different phrases in the scientific
phrases list, sometimes in the beginning of a phrase
as in “loss function”, and sometimes in the end of
a phrase as in “cross entropy loss”.

We used these features to train NLTK’s Maxent-
Classifier method (Bird et al., 2009) with maximum
iterations set to 40. The model achieved a testing
accuracy of 0.995. We used the Viterbi algorithm
to derive the most likely IO tags for every word in
each sentence.

The model was able to identify some scientific
entities in the test data that aren’t present in the
scientific entities list derived from the training data.
However, a complicating factor is that not all en-
tities that must be found can be considered to be
exclusively scientific entities. For example, terms
like ReLU, and SCIBERT are clearly specific to

492



Figure 1: This is a dependency parse of example sentence from corenlp.run/, which shows the information provided
to the phrase extraction system by the dependency parser. The dependencies are traced by the Duluth system in
order to extract subject-predicate-object phrases from each sentence.

natural language processing and machine learn-
ing, but words such as image, action, humans, and
other common nouns were also present in the en-
tities training data. Since there is a wide range of
specificity in the terms that must be extracted as
entities, filtering the sentences through the MEMM
entity tagger ultimately worsened the system’s per-
formance in Phase 2 Part 1: phrases and triples
from a total F1 score of .4634 to .4299. This is
because it filtered out sentences which were con-
tribution sentences but whose subject phrases did
not contain nouns tagged as scientific entities by
the classifier.

4.2 Dependency Parsing

We used Stanford Core NLP’s dependency parser
(Manning et al., 2014; Chen and Manning, 2014) to
generate a dependency parse for each contribution
sentence. We used the dependency parse of each
sentence to extract the root verb phrase from each
sentence, its noun subject phrase, and dependent
object phrases. In Phase 1, if neither the subject of
the sentence nor the words dependent on it within
its noun phrase were tagged as scientific entities,
then the sentence would be ignored. Any object
noun phrases not containing a scientific entity were
also ignored. The intention was to create an outline
of each contribution sentence that included only
the relevant noun phrases and the relation between
them.

Figure 1 illustrates the dependency parse of our
running example. The system would extract the
verb phrase “is employed” as the relation by finding
the ROOT of the sentence (“employed”), finding
the adjacent dependency (“is”), and concatenating
the two into the phrase “is employed”. Next, it
would extract the dependent nsubj “Dropout” as
the subject entity by searching for nsubj types de-
pendent on “employed”. Lastly, the system would
extract the noun phrase which is dependent on
the verb phrase “is employed” as the object entity.
This would be accomplished by finding the noun

dependent on “employed”, which is “layer”, and
building the noun phrase “word embedding layer”
from the words dependent on “layer”. The phrases
“Dropout” and “word embedding layer” would be
labeled as scientific phrases, which means that this
subject-predicate-object phrase would be kept.

In Phase 2, we altered our system so that it would
not throw away any sentences, since it was pro-
vided with the gold contribution sentences made
available by the task organizers. Rather, if the sub-
ject was a pronoun and the subject phrase did not
contain a scientific entity, then the subject phrase
would be removed. If there was a previously se-
lected noun phrase from the same information unit,
that phrase would replace the removed subject
phrase. Otherwise, the name of the information
unit would be used instead. The intention was to
handle cases where a pronoun referring to an entity
from the previous sentence was the subject of the
verb phrase.

5 Triples Extraction

During evaluation Phase 1: end-to-end pipeline, al-
most all of the task of extracting Subject–Predicate–
Object triples into information units files was al-
ready performed by previous steps. The entity ex-
tractor described in section 4 extracts phrase spans
three at a time, following the subject-predicate-
object format needed to organize phrase spans into
triples. The sentence extractor described in sec-
tion 3 classifies sentences into their information
units, so the class label for the sentence that the
triple is extracted from can be used to determine
the information unit that the triple belongs to.

For Phase 1: end-to-end pipeline and Phase 2
Part 1: phrases and triples, the system formed
triples based on the subject, predicate, and object
phrases determined by the entity selection process
described in section 4.

For example, if the sentence “Dropout, with a
rate of 0.5, is employed on the word embedding
layer” is classified by the sentence extractor as
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belonging to the information unit EXPERIMENTAL

SETUP, and the phrases “Dropout”, “is employed”,
and “word embedding layer” were selected as a
subject-predicate-object pattern, then triples would
be formatted in the experimental-setup.txt triples
file like so:

(Contribution||has||Experimental Setup)
(Experimental Setup||has||Dropout)

(Dropout||is employed ||word embedding layer)

5.1 Triples Formatting

While most of the information units’ triples were
formatted in the training data following the pat-
tern in section 5, the information units Code and
Research Problem were formatted following these
patterns, respectively:

(Contribution||Code||url)
(Contribution||has research problem||phrase)

The triples files for information units Code and
Research Problem were handled separately from
the others in order to reflect these differences.

5.2 Phase 2 Part 2: Adapting to the Released
Entities Files

The main problem with the method for building
triples described in section 5 is that it does not
address the fact that triples often build on each
other and overlap. Triples build on each other in
two ways: the first item of a triple may be the last
item in the previous triple; and the first item of a
triple may be the first item in a previous triple.

The Duluth system solution for Phase 2 Part 2:
triples extraction attempts to imitate these patterns
by following these rules: while items in the entities
file alternate between noun phrases and predicates,
then triples are formed where the middle item for
each triple is a predicate phrase and the phrases on
either side of it are the noun phrases in the entities
file on either side of the predicate in the entities file.
This creates the first pattern identified above. How-
ever, if two consecutive noun phrases are found
in the entities file, then the second noun phrase
is paired with the previous subject-predicate pair,
rather than the previous noun phrase. If there is
no previous subject-predicate pair, then the second

Information Unit F1
None .9494

Ablation Analysis .1516
Approach .0000
Baselines .2559

Code .7857
Dataset .0000

Experimental Setup .2466
Experiments .0000

Hyperparameters .2358
Model .1778

Research Problem .4192
Results .3165
Tasks N/A

Table 1: F1 scores for each information unit based
on evaluation on test data. Macro-F1 score = .2949.
Weighted-F1 score = .8866.

noun phrase is paired with the name of the infor-
mation unit and the predicate has. This creates the
second pattern identified above.

6 Sentence Selection Results

The official competition F1 score on the gold stan-
dard test data for selection of contribution sen-
tences in Phase 1: end-to-end pipeline was 0.38095.
This score evaluates the results as a binary classi-
fication problem, where sentences are either con-
tributing or non-contributing. Because our sen-
tence selector performs multi-class classification,
labeling each sentence as either non-contributing
or belonging to one of twelve information units, we
provide a confusion matrix in Table 2 that shows
the detailed results by information unit, as well as a
break down of individual F1 scores for each infor-
mation unit in Table 1. The official competition F1
score for information units in Phase 1 was 0.6441.

6.1 Confusion Matrix Analysis

The high frequency of false positives and false neg-
atives for the non-contribution class (None in Table
2) is likely due to its high frequency, as 90.11% of
the sentences from the training dataset belong to
this class. This shows that using a BERT model
without any filtering or sampling techniques is not
sufficient to accurately handle the unbalanced na-
ture of this dataset. We will focus our discussion
here on the most frequently confused information
units.

30.19% (109 of 361) of sentences describing
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Predicted Gold Class
Class N AA A B C D ES E H M RP R T
None 27,922 113 123 55 7 10 178 223 59 446 230 405 0

Ablation Analysis 72 21 0 0 0 0 0 8 0 0 0 14 0
Approach 0 0 0 0 0 0 0 0 0 0 0 0 0
Baselines 146 0 0 38 1 0 1 5 2 5 2 2 0

Code 10 0 0 0 33 0 0 0 0 0 0 0 0
Dataset 0 0 0 0 0 0 0 0 0 0 0 0 0

Experimental Setup 125 0 0 0 0 0 73 5 27 1 0 0 0
Experiments 0 0 0 0 0 0 0 0 0 0 0 0 0

Hyperparameters 136 0 0 0 0 0 109 4 52 0 0 0 0
Model 222 0 7 2 0 0 0 2 0 75 2 3 0

Research Problem 88 0 0 0 0 0 0 1 0 3 118 0 0
Results 327 28 0 0 0 0 0 87 0 1 1 201 0
Tasks 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Confusion matrix for thirteen-class sentence classification. The quantities in bold face correspond with
the boldfaced quantities in section 6.1.

EXPERIMENTAL SETUP were falsely labeled as
belonging to the information unit HYPERPARAM-
ETERS by our classifier, and 19.28% (27 of 140)
of sentences describing HYPERPARAMETERS were
falsely labeled as EXPERIMENTAL SETUP. This
makes sense, as sentences describing experimental
setup may include discussion of hyperparameters.

Sentences belonging to the information unit AB-
LATION ANALYSIS were incorrectly labeled as RE-
SULTS 17.28% (28 of 162) of the time (the clas-
sification of RESULTS was more successful, only
being incorrectly classified as ABLATION ANALY-
SIS 2.24% (14 of 625) of the time). This confusion
makes sense, as ablation analysis may often be dis-
cussed alongside analysis of results. Furthermore,
the information unit RESULTS appears almost 3.65
times as often as the information unit ABLATION

ANALYSIS, another example of how the uneven dis-
tribution of information units impacts the accuracy
of our classifier.

Similarly, sentences describing EXPERIMENTS

were incorrectly labeled as belonging to RESULTS

25.97% (87 of 335) of the time, and RESULTS ap-
pears in the training data 3.16 times as often as
EXPERIMENTS. This resulted in experiments sen-
tences never being positively identified by our sys-
tem in Phase 1. Lastly, our system was not able to
positively identify sentences belonging to the infor-
mation unit APPROACH, either classifying them as
non-contributing, or as belonging to the informa-
tion unit MODEL.

6.2 Implications for Future Work

Because the frequently confused sentences often
have many features in common, in future work
we will investigate a document-level classification
approach, to explore whether there is information
in the paper as a whole that can point towards one
information unit over another. For example, the
information units APPROACH and MODEL never
appear together in the same article in the training
data, because they describing the model used is
equivalent to describing the approach taken. One
might be able to determine whether a paper is likely
to discuss a model rather than a general approach
by looking at features of the whole document.

One type of feature that might be leveraged for
better results is section headers. For example, sen-
tence 5 in Table 3 is found in a section with the
header “Our Approach”, which indicates the gold
label of APPROACH. Often, the contribution sen-
tences describing results are under a section header
with the word “Results” in it, as is the case for sen-
tence 3 in Table 3. Similarly, sentence 2 in Table 3
is found in a section labeled “Experimental Setup”.
However, the correct information unit is not always
consistent with the section header. Sentence 1 in
Table 3 is labeled with the information unit HYPER-
PARAMETERS, though it is found in a subsection
called “Set-Up” under the section “Experiment Re-
sults”. Sentence 4 in Table 3 is found in a section
called Experimental Results, but has the gold label
ABLATION ANALYSIS.
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Predicted True Sentence
1 Experimental Setup Hyperparameters The initial learning rate is 0.0004 and the batch size is 32 .
2 Hyperparameters Experimental Setup Word2vec is used to produce the word embeddings .
3 Ablation Analysis Results Furthermore , using pseudo entity annotations boosted the

accuracy by 0.3 % .
4 Results Ablation Analysis The best performance is achieved by Faceness , with a recall

below 20 % .
5 Model Approach Crucially , the BiLSTM is trained with the rest of the parser

in order to learn a good feature representation for the parsing
problem .

Table 3: Examples of mislabeled sentences

Error Common Words Top POS
(frequency) (probabilty)

B-miss our (124), all (17), PRP$ (.2255)
to (14), each (14)

E-miss model (20), to (17), NN (.2411)
using (13), method (8)

B-extra best (3), use (2), NN (.4235)
set (2), the (2)

E-extra . (24), on (8) in (7), IN (.2784)
than (7), by (6)

Table 4: For each error type, this table shows the most
frequent words either missed by predicted phrase spans,
or added (extra) by predicted phrase spans. Column 3
contains the most frequent POS tag for each error type
(e.g. 22.55% of all words missed from the beginning of
a span were possessive pronouns).

7 Entity and Relation Extraction Results

The gold test data had 13,028 total phrase spans,
of which our system identified 4,277. 39.72% of
these predicted phrase spans were exact matches
with gold phrase spans. 29.97% of predicted phrase
spans were complete false positives, not overlap-
ping with any gold phrase spans. 30.30% of pre-
dicted phrase spans were not perfect matches, but
did overlap with gold phrase spans. The majority of
partial matches were missing a word, reflecting the
fact that the average span length for the gold data
was 12.37 characters but the average span length
for the predicted data was 10.49 characters. 42.44%
of partial matches were missing characters in the
beginning of the phrase span, 52.11% were missing
characters in the end of the phrase span, 6.56% had
extra characters in the beginning of the phrase span,
and 14.97% had extra characters in the end of the
phrase span.

7.1 Partial Phrase Matches
In this section we first look at the characteristics
of the partial matches to discover the cause of
these errors. Because the Duluth system selected
phrase spans using grammatical features, we look
at the parts of speech of the words that were either
missed by the Duluth system or erroneously added
to phrase spans. Then, we look at the grammatical
characteristics of the gold phrase spans that were
entirely missed by the Duluth system.

The most common errors and their frequencies
are shown in Table 4. The part-of-speech that was
most likely to be missing from the end of a span
(E-miss) in the Duluth system output was NN. Our
system misses these noun phrases because the Du-
luth system outlines sentences starting with the
verb labeled as ROOT by Stanford Core NLP’s de-
pendency parser, and identifying the nsubj of that
root and its dependencies as an entity 2.

However, there are some cases where the word
identified as the ROOT is not the verb that the sub-
ject of the sentence is directly dependent on. In
these cases, the sentence subject goes undetected
by our system. For sentence 1 in Table 5, if the verb
improves were properly identified as the ROOT, the
sentence might be outlined like so: Built on top of
the model in but excluding ELMo, base reinforced
model (ENTITY) improves (RELATION) the aver-
age F 1 score (ENTITY). However, Built is identi-
fied by the dependency parser as the ROOT, so the
Duluth system fails to extract the noun phrase our
base reinforced model, which is the nsubj phrase
dependent on improves. Notice also in this exam-
ple the omission of the possessive pronoun our in
the system outline; this illustrates the most com-
mon part-of-speech missing from the beginning of

2ROOT refers to the root of the dependency parse tree. The
nsubj of a parse is the nominal subject dependent on the root.
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1 Built on top of the model in but excluding ELMo, our base reinforced model improves the
average F1 score around 2 points [...]

1 System: base, built on, top Gold: our base reinforced model, improves,
the average F2 score, around, 2 points

2 Finally, the baseline model, EDA, is largely outperformed by all other examined methods.
2 System: baseline model, outperformed

by, other examined methods
Gold: EDA, largely outperformed, by, all other
examined methods

3 We also compare with Tagspace ( Weston et al. , 2014 ) , which is a tag prediction model
similar to ours [...]

3 System: We, compare with, Tagspace Gold: compare with, Tagspace (Weston et al.,
2014), tag prediction model

Table 5: Example sentences with phrase spans improperly extracted by the Duluth system. The phrase spans are
shown separated by commas.

a phrase span, as 24.11% of words missing from
the beginning of phrase spans have POS tag PRP$.

27.84% of words that were erroneously ap-
pended to the end of phrase spans by the Duluth
system were prepositions (IN). This is because
the Duluth system includes prepositions in verb
phrases, while the gold data contains some phrase
spans where the preposition is separated from the
verb, and others where the preposition is included
in the same phrase span as the verb. Sentence 2
in Table 5 shows the Duluth system incorrectly
including the preposition by with the verb outper-
formed, while sentence 3 in 5 shows our system
correctly including the preposition with with the
verb compare.

Phrase
(Frequency)

of (502), with (295), on (274),
for (260), in (190), to (129),
from (87), using (85), by (80),
as (66), than (60), at (52), is
(46), between (44), results (39),
over (36), achieves (36), based
on (32), outperforms (31), train-
ing (26)

Table 6: Most frequently missed phrases.

Phrase spans that improperly capture additional
words can have a ripple effect when the additional
word is supposed to belong to a different phrase
span, like the additional word by in the phrase
span outperformed by. Because by is included in
a phrase span already, it does not exist in its own
phrase span as it does in the gold data, which means
that the phrase span by is completely omitted by
the Duluth system.

This error is quite common; 97% of the phrase
spans in the gold data consisting of a single prepo-
sition were not identified by the Duluth system, due
to the fact that these words tend to get absorbed
by other phrases. This continues to have a detri-
mental effect further down the pipeline, as whether
the prepositions are alone or chunked with other
phrases affects the formation of triples.

7.2 Missed Phrases
To determine the possible causes of missing phrase
spans, we looked at the error rates by part-of-
speech. Since 77.31% of the total phrase spans
in the gold standard data were missed by our sys-
tem, we are only considering POS patterns that
were missed over 77.31% of the time. We are also
only looking at POS patterns that occurred at least
100 times in the gold data.

Phrase spans made up of a single preposition
were frequently not identified by the Duluth sys-
tem. This is apparent in Table 6; the top 5 phrases
most commonly ignored by the Duluth system are
all prepositions. Table 7 shows the phrase types
(phrases described by the POS tag for each word)
that are least likely to be captured in their entirety
by the Duluth System. In addition to prepositions,
infinitive verbs (TO VB) are also frequently omit-
ted by the Duluth system. This is because the Du-
luth system bases the outline of the sentence off
of the ROOT, which is almost always a finite verb.
For this reason, infinitives are frequently ignored.

Our grammar-based approach might be im-
proved on by changing the rule that outlines the
sentences based on the ROOT verb of the sentence,
in order to focus more on noun phrases that are
more likely to be scientific entities. This would
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POS Pattern Missed/Total Example
IN .9735 for
TO .9416 to
CD .9364 99.60

TO VB .9098 to compute
RB .9040 jointly

VBG .8837 using
NN NNS .8750 feature maps

Table 7: These are the POS patterns that are most likely
to be ignored by the Duluth system, and the conditional
probability that they will be omitted.

require developing a method for tagging likely sci-
entific entities that improves on our MEMM en-
tity tagger. However, entities extraction might be
better addressed with a neural approach since our
grammatical approach (without semantics) does
not capture the nuances in the training data.

8 Triples Extraction Results

The official F1 score on the gold standard test
data for triples extraction from Phase 2 Part 2 was
0.2762, and the F1 score for information units was
0.7556. The Duluth system scored the lowest at ex-
tracting triples for the information units DATASET,
TASKS, EXPERIMENTS, receiving F1 scores of 0.0,
0.0, and 0.0597 respectively. The extracted triples
are input into files named for the information unit
they belong to.

Triples extracted from a sentence classified as
RESEARCH PROBLEM are output into a file named
research-problem.txt. The gold data does not con-
tain any tasks.txt files, so all tasks.txt files gener-
ated by our system were false positives. The gold
data contained two dataset.txt files, both of which
were missed by our system. These scores are con-
sistent with the initial results from sentence clas-
sification, as seen in Table 1. Because our system
deals with information unit classification during
the sentences extraction step rather than the triples
extraction step, we focus our discussion here on
errors related to our triples extraction methodology.

Our triples extraction system relies heavily on
part-of-speech tagging to determine whether an en-
tity belongs to the edge of a triple or the middle (for
example, noun-phrases are more likely to be sub-
jects or objects, and verb-phrases are more likely
to be predicates). In order to determine the efficacy
of this approach, we look at the words that were
improperly positioned in our system triples.

One pattern that emerged is that many words
were wrongly positioned in the Duluth system data.
Some phrases and their POS tags that only exist
in the middle position in the gold data that are
found in the edges of triples in the system data
include “achieves” (VBZ), “propose” (VB), “per-
forms” (VBZ), and “uses” (VBZ). Other phrases
that only exist in the edges of triples in the gold
data that are found in the middle position in the sys-
tem data include “outperformed” (VBG), “worse”
(JJR), “outperforming” (VBG), and “randomly ini-
tialized” (RB VBN).

This observation is consistent with the POS dis-
tributions found for the gold triples not identified by
the system and the system triples that were wrongly
identified; 70 of the 792 phrases belonging to the
edge of the gold triples missed by the Duluth sys-
tem have the POS pattern RB VBN, while 46 of the
730 phrases that were wrongly positioned in the
middle of triples by the Duluth system also have
the pattern RB VBN. Similarly, 324 of the 1,656
phrases belonging to the middle of gold triples
missed by the Duluth system have the POS tag
VBZ, while 712 of the 4,242 phrases that were
wrongly positioned at the edge of triples by the Du-
luth system have the same POS tag of VBZ. This
shows that the Duluth system sometimes shifts the
phrases to the left or right of where they ought to
be in the triple pattern.

9 Future Work

One weakness of this system is that the selection
of contributing sentences only uses sentence-level
information; the classifier misses useful contextual
information such as headers and the predicted class
of preceding and following sentences. Future work
may be able to address this problem by fine-tuning
BERT to classify sequences of sentences rather
than isolated sentences (Cohan et al., 2019). Gener-
ally, a document-level approach could be beneficial
in terms of capturing important context.

Another issue is that the end of the system does
not have the ability to provide feedback to earlier
parts of the pipeline; the only agency it has in terms
of contributing sentence selection is the ability to
discard a sentence provided by the sentence classi-
fier. Future work could incorporate a neural entity
classification model into the entity and triple ex-
traction subsystem, which could be used to validate
or invalidate the classification made at the sentence
level (Rotsztejn et al., 2018).

498



References
Waleed Ammar, Matthew Peters, Chandra Bhagavat-

ula, and Russell Power. 2017. The AI2 system at
SemEval-2017 task 10 (ScienceIE): semi-supervised
end-to-end entity and relation extraction. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 592–596,
Vancouver, Canada. Association for Computational
Linguistics.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
SemEval 2017 task 10: ScienceIE - extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 546–555, Vancouver, Canada. Association for
Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. Association
for Computational Linguistics.

Arman Cohan, Iz Beltagy, Daniel King, Bhavana Dalvi,
and Dan Weld. 2019. Pretrained language models
for sequential sentence classification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3693–3699, Hong
Kong, China. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.
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A Ethical Considerations

The use of knowledge graphs to process, organize,
and display information comes with some ethical
implications, due to the fact that such a system
acts as an intermediary between human readers and
academic research. Overall such a system, if inte-
grated into academia, may benefit authors of schol-
arly work by making their articles easier to find. It
may also benefit readers, by making the process
of literature exploration more efficient. However,
unintentional harm may arise if there is bias in the
training used to annotate the articles. Since the
Open Research Knowledge Graph is structured so
that contributions are interconnected in the graph
across papers, there may be a risk that different
kinds of contributions are more easily found than
others.

Another concern is whether such an infrastruc-
ture could affect how people design and report their
research, and if that effect is harmful. If researchers
know that their work will be read by a machine and
then integrated into the knowledge graph accord-
ing to its most likely contributions, they could be
consciously or unconsciously motivated to favor
some methods and terms over others, in an attempt
to optimize the likelihood that their work is seen.
There is also the potential for bias to become em-
bedded in the machine reader, that could influence
what kinds of researchers have work that is easily
discoverable in the knowledge graph.

B Task Data

Prior to Phase 1, most of the data used to train the
models was extracted from the original training
dataset, and most of the provided trial dataset was
used for evaluation. Six of the eight articles in the
trial data that contained the information unit TASKS

were moved to the training dataset so that it would
contain enough examples to learn the patterns as-
sociated with this information unit. These folders
were folder 7 from machine-translation, folders 3,
4, and 8 from named-entity-recognition, folder 8
from question-answering, and folder 2 from text-
classification. For all evaluation phases, the models
were retrained on the combined training and trial
datasets.

C System Architecture

The system architecture is organized into three sec-
tions: preprocessing, training, and testing. The
preprocessing section is responsible for :

1. extracting noun and noun phrases from the
training data entities.txt files,

2. extracting each sentence from the training data
and labeling them with their information unit
(or 0 for non-contributing sentences), and

3. extracting sentences from the evaluation phase
data and labeling each one with its file path
and sentence index.

The training pipeline is responsible for fine-
tuning the deBERTa model using the sentences
extracted from the training data, and training the
MEMM using the extracted sentences and the list
of nouns extracted from the training entities files.

The testing pipeline is responsible for taking
the sentences extracted from the evaluation phase
data and labeling each sentence with their predicted
information unit, entity tags, and dependency parse.
The data is passed between each step of the pipeline
in a dictionary, which is added to at each step.

D Information Unit Class Distributions

Phase 1 Class Distributions
None .9011

Ablation Analysis .0062
Approach .0030
Baselines .0083

Code .0010
Dataset .0010

Experimental Setup .0091
Experiments .0072

Hyperparameters .0102
Model .0166

Research Problem .0123
Results .0228
Tasks .0012

Table 8: Distribution of classes in the 59,755 training
sentences provided by the training data.

E DeBERTa Hyperparameters

optimizer AdamW
learning rate 5e-5

max sequence length 128
epochs 8

batch size 32

Table 9: Hyperparameters used to fine-tune deBERTa
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Abstract

In this work, we describe our system sub-
mission to the SemEval 2021 Task 11: NLP
Contribution Graph Challenge. We attempt
all the three sub-tasks in the challenge and
report our results. Subtask 1 aims to identify
the contributing sentences in a given publi-
cation. Subtask 2 follows from Subtask 1
to extract the scientific term and predicate
phrases from the identified contributing sen-
tences. The final Subtask 3 entails extracting
triples (subject, predicate, object) from the
phrases and categorizing them under one
or more defined information units. With
the NLPContributionGraph Shared Task,
the organizers formalized the building of a
scholarly contributions-focused graph over
NLP scholarly articles as an automated
task. Our approaches include a BERT-based
classification model for identifying the con-
tributing sentences in a research publication,
a rule-based dependency parsing for phrase
extraction, followed by a CNN-based model
for information units classification and a set
of rules for triples extraction. The quantitative
results show that we obtain the 5th, 5th,
and 7th rank respectively in three evaluation
phases. We make our codes available at
https://github.com/HardikArora17/

SemEval-2021-INNOVATORS

1 Introduction

Thousands of papers are published by the scientific
community every day. It is now increasingly be-
coming difficult to browse the huge pool of papers
to identify relevant work and thereby keep up with
the latest research findings. Scientific literature
is growing at an exponential rate and researchers
today face the problem to identify the latest state-
of-the-art contributions. Keeping track of recent
advancements is becoming a tedious exercise, if
not practically impossible. The Open Research

Knowledge Graph (ORKG) (Jaradeh et al., 2019)
is posited as a solution to keeping track of research
progress minus the cognitive overload that reading
dozens of full papers imposes. It aims to build
a comprehensive knowledge graph that publishes
scholarly publications’ research contributions per
paper, where the contributions are interconnected
via the graph even across documents.

As described in D’Souza et al. (2021), with the
ORKG comparisons feature, researchers are no
longer faced with the daunting cognitive ingestion
obstacle from manually scouring through dozens of
papers of unstructured content in their field. This
process traditionally would take several days or
months; using the ORKG contributions compari-
son tabulated view, the task is reduced to just a few
minutes. Assuming the individual paper contribu-
tions are structured in the ORKG, they can then
deconstruct the graph, tap into the aspects they are
interested in, and can enhance it for their purposes.
Further, they can select multiple such paper graphs
and click a button to generate their tabulated com-
parison. This presents an opportunity to enhance
content ingestion enabled via their fine-grained ma-
chine interpretability by transforming scholarly ar-
ticles into knowledge-based information flows by
representing and expressing information through
semantically rich, interlinked knowledge graphs
(Auer et al., 2018).

In this paper, we present our approach for the
three sub-tasks in the NLP Contribution Graph
Challenge. Our contribution are as follows:

1. Fine tuning BERT for contributing sentences
(a set of sentences about the contribution in
the article).

2. A rule-based approach for extracting scien-
tific and phrases (a set of scientific terms and
relational cue phrases extracted from the con-
tributing sentences; for each paper ) using
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dependency parsing.

3. A CNN-based architecture for classifying
sentences to 12 information units followed
by rules to generate triples (semantic state-
ments that pair scientific terms with a relation,
modeled toward subject-predicate-object RDF
statements for KG building).

The rest of this paper is organized as follows: Sec-
tion 2 briefly summarizes some related works simi-
lar to this task followed by the problem statement
of this task. Section 4 describes the details of the
data provided by the organizers. Section 5 and 6
presents the details of our model for all three phases
of the task, including the structure and its imple-
mentations, along with results and experimental
details. The conclusions and the directions for the
future research are provided in Section 8.

2 Related Work

Although this is a relatively new challenge, we
found some related investigations in the literature.
Vogt et al. (2020) proposed a novel semantic data
model for modeling the contribution of scientific
investigations of three domains, viz. Medicine,
Computer Science, and Agriculture. The model in-
cludes a schema of relevant concepts highlighting
six core information units, viz. Objective, Method,
Activity, Agent, Material, and Result. They intro-
duced the idea of building blocks called Knowledge
Graph Cells for its knowledge graph application.

Gupta and Manning (2011) introduced a new
categorization of key aspects of scientific articles,
which is (1) FOCUS: main contribution, (2) TECH-
NIQUE: method or tool used, and (3) DOMAIN:
application domain. They extracted the aspects by
matching semantic patterns to dependency trees
and learn the patterns using bootstrapping. They
also present a case study on the computational
linguistics community using the three aspects ex-
tracted from its articles, verifying our system’s re-
sults and showing novel results for the dynamics
and the overall influence of computational linguis-
tics subfields.

Hayashi et al. (2020) introduced a new task of
disentangled paper summarization to generate sum-
maries for the paper contributions and the work
context to help identify the key findings shared in
articles.

Rusu et al. (2007) presented an approach to ex-
tracting subject-predicate-object triplets from En-

glish sentences. They used four different well-
known syntactic parsers for English to generate
parse trees from the sentences, followed by extrac-
tion of triplets from the parse trees using parser-
dependent techniques. A machine learning ap-
proach has been used by Dali and Fortuna (2008)
to extract subject-predicate-object triplets from En-
glish sentences. Support Vector Machine (SVM) is
used to train a model on human annotated triplets,
and the features are computed from three parser.

3 Problem Definition

The problems are defined by the shared task orga-
nizers.

1. For Phase-1 (End-to-end Pipeline), given a
scientific paper we have to output contribut-
ing sentence S1,S2,S3. . .S|n| (where n is the
number of contributing sentences present in
the document), scientific term and predicate
phrases from the contributing sentences and
finally triples information for particular infor-
mation units.

2. For Phase-2, Part 1 (Phrases and Triples), we
are provided with gold annotated contribut-
ing sentences and we have to output scien-
tific terms and predicate phrases from the con-
tributing sentences.

3. Lastly, for Phase 2, Part 2 (Triples Extrac-
tion), along with the gold annotated contribut-
ing terms, the gold-labeled scientific term and
predicate phrases are also provided. We have
to output the triplets information for particular
information units.

Table 2 shows the three sub-tasks with an example.

4 Dataset Description

D’Souza et al. (2021) released the data for this
task. We are provided with a training set of 55084
sentences, taken from 236 annotated papers from
across 24 various fields in the NLP domain (such as
natural language inference, question answering, sar-
casm detection, etc.). Out of these, 5084 comes un-
der the category of contributing sentences, and the
remaining are non-contributing sentences. Triples
are organized into three (minimum) up to 12 infor-
mation units (Research Problem, Approach, Model,
Code, Dataset, Experimental Setup, Hyperparam-
eters, Baselines, Results, Tasks, Experiments, and
Ablation Analysis). The detailed description of
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Information unit Description Example
Research Problem It determines the research challenge addressed by a contribu-

tion using the predicate has ResearchProblem.By definition,
it is the focus of the research investigation, in other words,
the issue for which the solution must be obtained.

A Question - Focused Multi- Factor Attention Network for
Question Answering

Approach or Model Essentially, this is the contribution of the paper as the solution
proposed for the research problem.

”More specifically , unlike existing models where the query
attention is applied either token - wise or sentence - wise to
allow weighted aggregation , the Gated - Attention ( GA )
module proposed in this work allows the query to directly
interact with each dimension of the token embeddings at the
semantic - level , and is applied layer - wise as information
filters during the multi-hop representation learning process .”
& First , it is embedding - agnostic , meaning that one of the
main ( and perhaps most important ) hyperparameters in NLP
pipelines is made obsolete .

Code It is the link to the software on an opensource hosting plat-
form such as Gitlab or Github or on the author’s website.

We compute a vector gate as a linear projection
of the token features followed 1 Code is available
at https://github.com/kimiyoung/fg-gating 1 ar Xiv:
1611.01724v2 [ cs.CL ] 11 Sep 2017

Dataset This is another aspect of the contribution solution in the form
of a dataset.

To address this , this paper introduces the Stanford Natural
Language Inference ( SNLI ) corpus , a collection of sentence
pairs labeled for entailment , contradiction , and semantic in-
dependence .

Experimental Setup
or Hyperparameters

Includes details about the platform including both hardware
(e.g., GPU) and software (e.g., Tensorflow library) for imple-
menting the machine learning solution; and of variables, that
determine the network structure (e.g., number of hidden units)
and how the network is trained (e.g., learning rate), for tuning
the software to the task objective. It is called Experimental
Setup when hardware details are provided, otherwise Hyper-
parameters.

We used pre-trained 300D Glove 840B vectors to initialize the
word embeddings . & This takes two days using Tensorflow
and a single NVIDIA K80 GPU . provide an official evalua-
tion script that allows us to measure F 1 score and EM score
by comparing the prediction and ground truth answers .

Baselines They are the listed systems that a proposed Approach or
Model is compared against.

( 5 ) BM25 : BM25 is a bag - of - words retrieval function that
ranks a set of reviews based on the question terms appearing
in each review .

Results The main findings or outcomes reported in the article text for
the ResearchProblem.

Overall , we observe a significant improvement with all three
configurations , effectively showing the benefit of training a
QA model in a semisupervised fashion with a large language
model .

Tasks The Approach or Model, particularly in multi-task settings,
are tested on more than one task, in which case, we list all
the experimental tasks. The experimental tasks are often syn-
onymous with the experimental datasets since it is common
in NLP for tasks to be defined over datasets. And where lists
of Tasks are concerned, the Tasks can include the Experimen-
talSetup as a sub information unit.

All the above subtasks have been modeled as binary classifi-
cation problems : kernel - based classifiers are trained and the
classification score is used to sort the instances and produce
the final ranking .

Experiments It is a container information unit that includes one or more
of the previous discussed units as sub information units. Can
be combination of lists of Tasks, ExperimentalSetup and Re-
sults, or a combination of Approach, ExperimentalSetup and
Results.

The temperature parameter ? of Gumbel - Softmax is set to
1.0 , and we did not find that temperature annealing improves
performance .

Ablation Analysis It is a form of Results that describes the performance of com-
ponents in an Approach or Model.

In , we removed dense connections over both co-attentive and
recurrent features , and the performance degraded to 88.5.

Table 1: Information units and their corresponding definitions 1

Figure 1: Bigram filtering to prune non-contributing sentences
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Sentence:
We used the BERTBASE model pre-trained on English Wikipedia and

BooksCorpus for 1M steps.
Scientific Term and Predicate Phrases:

used
BERTBASE model

pre-trained on
English Wikipedia

BooksCorpus
for

1M steps
Triples:

(C, has, ES)
(ES, used, BERTBASE model)

(BERTBASE model, pre-trained on, English Wikipedia)
(BERTBASE model, pre-trained on, BooksCorpus)

(BERTBASE model, for, 1M steps)

Table 2: Example of a Contributing Sentence, corre-
sponding Scientific Term and Predicate Phrase, and ex-
tracted Triples

these information units is shown in Table 1. Over-
all, the annotated corpus contains 2631 triples (avg.
of 52 triples per article). Its data elements comprise
1033 unique subjects, 843 unique predicates, and
2182 unique objects. Of all tasks, relation classi-
fication has the highest number of unique triples
(544) and named entity recognition the least (473).

5 Proposed Approach

We describe our approach for all three phases of
the competition as follows:-

5.1 Phase-I: Identifying Contributing
Sentences

5.1.1 Sentence Filtering
Initially, we use the Scholarcy API2 to do some pre-
liminary data analysis to understand some essential
information (key concepts, highlighted sentences)
in the challenge corpus.

To reduce the data-imbalance ratio of contribut-
ing and non-contributing sentences, we filter out
most non-contributing sentences. We employ a
simple bi-gram filtering to achieve this. We extract
all the bi-gram pairs from the entire training cor-
pus and assign each bi-gram pair a score(number
of times the bi-gram pairs occurs in the corpus di-
vided by 1000), based on which we set a threshold3

and filter out the sentences. After filtering, 37.4%
non contributing sentences are removed while only
7.07% of contributing sentences are filtered. The
example in Figure 1 explains our approach.

We have a state of the art model with an initial
learning rate of 0.05,

2https://www.scholarcy.com/
3see our Github link mentioned in the abstract for details

Bigram tuples Score
(’<s>’, ’We’) 0.361
(’<s>’, ’The’) 0.267
(’of’, ’the’) 0.262
(’on’, ’the’) 0.174
(’in’, ’the’) 0.148
(’<s>’, ’In’) 0.147
(’to’, ’the’) 0.11
(’with’, ’the’) 0.101
(’and’, ’the’) 0.098
(’state’, ’of’) 0.088
(’the’, ’art’) 0.088
(’with’, ’a’) 0.081
(’the’, ’model’) 0.08
(’our’, ’model’) 0.079
(’learning’, ’rate’) 0.073
(’<s>’, ’Our’) 0.071
(’for’, ’the’) 0.068
(’We’, ’use’) 0.068
(’set’, ’to’) 0.064
(’<s>’, ’For’) 0.063
(’In’, ’this’) 0.058
(’that’, ’the’) 0.058
(’of’, ’%’) 0.053
(’word’, ’embeddings’) 0.053
(’rate’, ’of’) 0.051
(’natural’, ’language’) 0.05
(’we’, ’propose’) 0.05
(’is’, ’a’) 0.0.049
(’from’, ’the’) 0.048
(’this’, ’paper’) 0.047
(’the’, ’performance’) 0.047
(’based’, ’on’) 0.0.046
(’<s>’, ’To’) 0.046
(’is’, ’set’) 0.046
(’question’, ’answering’) 0.044
(’which’, ’is’) 0.044
(’number’, ’of’) 0.044
(’and’, ’a’) 0.042
(’use’, ’the’) 0.042
(’<s>’, ’This’) 0.04
(’of’, ’< e >’) 0.04
(’batch’, ’size’) 0.04
(’the’, ’best’) 0.039

Table 3: The topmost Bigram scores in non-increasing
order; here(<s> denotes start token <e> denotes end
token

From our generated list of bi-gram scores:
(< s >, ’We’), has a score of 0.308, (’state’, ’of

’) has a score of 0.088 and so on. The total score is
then calculated by summing the score of individual
bi-grams.

5.1.2 Classification Model
Input is the sequence of filtered sentences S = S1,
..., Sn, where n<=10. We set a threshold of 10
sentences on the number of sentences per sequence
as released BERT pretrained weights support se-
quences of up to 512 word-pieces (Wu et al., 2016).
The standard [CLS] is inserted as the first token of
the sequence, and another delimiter token [SEP] is
used for separating the segments.

After processing each sentence, we feed it into
a SciBERT model (Beltagy et al., 2019) which
is a variant of BERT, trained on scientific papers,
as shown in Figure 2. The pre-training task of
BERT (Devlin et al., 2019a) depends on two un-
supervised sub-tasks: masked language modeling
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Figure 2: Classification of Contributing and Non-
Contributing using a pre-trained SciBERT model

(MLM) and next sentence prediction(NSP). These
two sub-tasks use the same model architecture but
with different input patterns and different output
layer. In MLM, a fixed amount of tokens of the in-
put sequences is masked, and the model is trained
for predicting the original tokens of the masked
tokens. In NSP, the model has to predict whether
two sequences of text are naturally following each
other or not. 50% data is generated automatically
by taking sentence pairs next to each other, and the
other 50% is generated by taking sentence pairs
randomly from the unlabeled corpus. The initial
input embedding(ETok) is calculated by summing
up the token, sentence and positional embedding.
In the case of MLM, the final hidden vector of
each of the masked tokens is passed to a softmax
classifier(output layer) to predict the original token.
On the other hand, during NSP, the final hidden
vector(C) of the [CLS] token is fed to a binary clas-
sifier(output layer) to predict whether the input pair
is following each other or not.

In the fine-tuning part for downstream tasks, we
use the encoding of the [SEP] tokens to classify
each sentence. The transformer layers (Devlin
et al., 2019a) allows the model to fine-tune the
weights of these special tokens according to the
task-specific training data. We use a multi-layer
feed forward network on top of the [SEP] repre-
sentations of each sentence to classify them to the
categories(is contributing or not?). During fine-
tuning, the model learns appropriate weights for

Model F1 (with filtering) F1 (w/o filtering)
CNN+Glove 0.3123 0.1347
Bertbase 0.3578 0.1681
Our model 0.3987 0.1872

Table 4: Result of classifiction to contributing sen-
tences, all are F1 scores

Figure 3: Architecture of classification of sentence into
corresponding information units

the [SEP] token to capture contextual information
and learn sentence structure and relations between
continuous sentences (through the next sentence
objective). Further, we use a softmax classifier on
top of the MLP to predict the label’s probability.

5.1.3 Experimental Setup

We perform all our experiments on a GPU
(GeForce RTX 2070) with 8 GB of memory. In
phase-1,for contribution and non-contributing sen-
tence classification task, we use the AllenNLP
(Gardner et al., 2018) toolkit for the model im-
plementation. As in prior work (Devlin et al.,
2019b),for training we use the dropout of 0.1, the
Adam optimizer for 2-5 epochs, and learning rates
of 5e-6, 1e-5, 2e-5, or 5e-5.

5.2 Phase-II, Part 1: Phrase and Triples
Extraction

Our system used an unsupervised rule-based sys-
tem for extracting scientific entities and their predi-
cates from the contributing sentences. As part of
our initial experiments, we tried existing keyword
extraction models such as RAKE, but they did not
produce good results (e.g. F1 of 0.1062), as they
are not tuned to this dataset. Given the paucity of
training data for this task, we built a rule-based
model for phrase extraction. We used the spacy
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Phase Avg F1 Sentences Phrases span only Information units Triples + all units
Phase-1 0.3205 0.3987 0.1563 0.7172 0.0097
Phase-2, Part-1 0.5252 1.00 0.3740 0.7172 0.0097
Phase-2, Part-2 0.5971 1.00 1.00 0.3472 0.0413
Top-performing System
Phase-1 0.4703 0.5941 0.4522 0.7293 0.1379
Phase-2, Part-1 0.7612 1.00 0.7857 0.8249 0.4344
Phase-2, Part-2 0.8594 1.00 1.00 0.8249 0.6129

Table 5: Our results for the three phases. Note: All scores in the table are F1 scores

Figure 4: Example showing dependency parsing tree of a sentence

Non-contributing sentences misclassified as contributing sentences. Reason
A model only achieved an F 1 score of 86.5 on our development set , that is over 2 points
lower than the 88.7 of a LSTM + A+D model.

Our model fails to differentiate between a general sentence
that gives essential information but has no relation to the pa-
per’s model

As a by-product of our investigation , a variant of the RNNG without ensembling achieved
the best reported supervised phrase - structure parsing ( 93.6 F 1 ; English PTB ) and ,
through conversion , dependency parsing ( 95.8 UAS , 94.6 LAS ; PTB SD ).

Our model misclassified those sentences as contributing sen-
tence which contains a large number of scientific terms

The elements of the stack that comprise the current constituent ( going back to the last 2
https://github.com/clab/rnng/tree/

It misclassified those sentences as contributing, which con-
tains links that are not explicitly related to the paper

Table 6: Error analysis of Phase-1 (contributing sentence)
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Figure 5: Illustration of addition of phrases to phrase
list following rules for the sentence in Figure 4

True phrases Predicted phrases
both models models
tuned tuned
dropout rate dropout rate
to maximize maximize
validation set likelihood validation set likelihood
obtaining
optimal rates optimal rates
of For
0.2 ( discriminative )
0.3 ( generative )

Table 7: Error analysis of Phase-2 (Phrase Extraction)

dependency parser4 to generate a dependency tree
for each contributing sentence. An example tree for
the sentence, ”For the sequential LSTM baseline
for the language model, we also found an optimal
dropout rate of 0.3,” is shown in Figure 4. The
rules specified are in such a format that consid-
ers some of the minute details, like if a word with
”nsubj” dependency tag is a pronoun occurring at
the start of the sentence, then the word should not
be included in the phrase. We observed that the
”ROOT” of the parsing tree(here: found) is primar-
ily a constituent of the phrase list for that sentence,
so we appended it. Next, we started exploring some
particular child nodes of the ”ROOT” node (mainly
with dependency tags ”dobj,” prep,” ”advmod”) as
we tried to extract and form a proper noun, verb
phrases, as shown in Figure 4. As soon as a child
node with ”NOUN” tag is found, complete noun
phrase, is appended to the phrase list. At any level,
if the child node(Cn) is a modifier( dependency tag’
prep’), then we will individually append it to the
phrase list, followed by the subsequent exploration
of the following hierarchy child nodes of Cn. This
procedure continues recursively until we reach the
leaf nodes for a branch. More details of various
rules created by us for our unsupervised algorithm
can be found in our shared source code.

5.3 Phase-II, Part 2: Triples Extraction

As there was little explicit section information in
the provided parsed corpus, we classified each sen-
tence into the 12 information units described above.
We used a simple CNN-based neural architecture,
and the model structure is shown in Fig 3. The
first layer is the data input layer, followed by the
embedded layer, which creates a numerical repre-
sentation of the textual data. Then there are three
parallel CNN models, each of which has a double
convolution means a combination of a convolution
layer and a pooling layer. To fully consider each
word’s information before and after, extract the
size of the local characteristics of different sizes of
2x100,3x100,4x100. After the processing of the
convolution layer, the characteristics of text classi-
fication are more advantageous. Based on this, the
pooling layer is further screened from the global
perspective where max pooling is used, followed
by the merged layer, dense layer, dropout layer
with a rate of 0.2. Finally, the text data is passed to
a softmax function for outputting the classification

4https://spacy.io/
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result.
For triples creation, we created some rules. For

research problems, triples are mainly in the form:
”Contribution” followed by ”has research problem”
followed by the statement’s scientific entity. For
example:

Contribution||has research problem||Text Com-
prehension, is formed from the sentence ”Gated
- Attention Readers for Text Comprehension” be-
longing to a research problem.

We generate the triples in this format with the
already extracted scientific phrases for the research
problem information unit. Code triples are mainly
in the form: ”Contribution” followed by ”code”
followed by the URL of the available source code.
For example:

Contribution||Code||https://github.com
/mandarjoshi90/coref

We extract the URL using regular expression
and generat the triples in the above format. We
identified subjects along with their directly linked
objects and predicates describing the relation be-
tween them for other triples. For example, if there
is a sentence,

ST Gumbel - Softmax estimator relaxes the dis-
crete sampling operation to be continuous in the
backward pass, thus our model can be trained via
the standard backpropagation

we form the triples as:
(Contribution||has||Model),

(Model||use||Straight-Through (ST) Gumbel-
Softmax estimator)

6 Evaluation

We report the evaluation results of all the three
phases on Table 5. Average F1 score was to rank
the participants in the competition. Precision, re-
call, and other details of the competition are avail-
able on leaderboard5 of the competition. We also
report the ablation analysis and the effect of fil-
tering sentences in the extraction of contributing
sentences of phase-1 in Figure 4. For phases-2
part-1, as were already provided by the gold label
contributing sentences, the average F1-score of the
contributing sentence is 1. Similarly, for phases-
2 part-2, as were already further offered the gold
label phrases, the average F1-score of the contribut-
ing sentence and the phases is 1. We reported a
0.32 average F1 for phase-1(end to end pipeline),

5https://competitions.codalab.org/
competitions/25680#results

0.52 for phase-2(phrases and triples extraction) and
0.59 for phase-3(triples extraction).

7 Error Analysis

As shown in Table 6 these sentences are non-
contributing but misclassified as contributing sen-
tences.

In phase 2, our model is based on rules, so it fails
to capture unique or very different tree structures.
For example as shown in Table 7, in sentence:-

”For both models, we tuned the dropout rate to max-
imize validation set likelihood , obtaining optimal
rates of 0.2 ( discriminative ) and 0.3 ( generative
).”.
The phrases such as ”0.3 ( generative )” and ”0.2
( discriminative )” was not captured. Our model
also captured the single word phrase ”maximize”
instead of the true phrase ”to maximize”.

8 Conclusion and Future Work

With the NLPContributionGraph Shared Task, we
have attempted to formalize the building of a schol-
arly contributions-focused graph over NLP schol-
arly articles as an automated task. Results and anal-
ysis on the gold test dataset show that our approach
performed reasonably well in identifying contribut-
ing sentences and phrase extraction. However, we
didn’t perform well in triples extraction. In the
future, we plan to improve the system, especially
the triples extraction phase.
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Abstract

In this work, we present our approach for
solving the SemEval 2021 Task 2: Multilin-
gual and Cross-lingual Word-in-Context Dis-
ambiguation (MCL-WiC). The task is a sen-
tence pair classification problem where the
goal is to detect whether a given word common
to both the sentences evokes the same mean-
ing. We submit systems for both the settings
- Multilingual (the pair’s sentences belong to
the same language) and Cross-Lingual (the
pair’s sentences belong to different languages).
The training data is provided only in English.
Consequently, we employ cross-lingual trans-
fer techniques. Our approach employs fine-
tuning pre-trained transformer-based language
models, like ELECTRA and ALBERT, for the
English task and XLM-R for all other tasks.
To improve these systems’ performance, we
propose adding a signal to the word to be dis-
ambiguated and augmenting our data by sen-
tence pair reversal. We further augment the
dataset provided to us with WiC, XL-WiC and
SemCor 3.0. Using ensembles, we achieve
strong performance in the Multilingual task,
placing first in the EN-EN and FR-FR sub-
tasks. For the Cross-Lingual setting, we em-
ployed translate-test methods and a zero-shot
method, using our multilingual models, with
the latter performing slightly better.

1 Introduction

A key challenge in lexical semantics is to identify
or to encode the different senses of an ambigu-
ous word. The Word Sense Disambiguation task
(WSD) (Navigli, 2009) is a framework used to eval-
uate systems in their ability to identify different
senses of the word. The task involves selecting the
correct sense (meaning) of a target word from a list
of senses listed in a sense inventory like WordNet
(Fellbaum, 2012). Pilehvar and Camacho-Collados

∗ Authors equally contributed to this work.

(2018) proposed a novel benchmark (WiC - Word
in Context Disambiguation) for the task casting the
problem as a binary classification task, wherein it
has to be identified whether a word common to a
sentence pair is used in the same sense or not. The
WiC task frees up the word sense disambiguation
task from being tied to any sense inventory.

The SemEval 2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation
(Martelli et al., 2021) extends the WiC frame-
work proposed by Pilehvar and Camacho-Collados
(2018) to more languages. The task is divided into
two subtasks - the Multilingual task and the Cross-
Lingual task. The sentence pair, with a word in
common, which is to be disambiguated, is drawn
from the same language in the MultiLingual task,
whereas the pair is drawn from two different lan-
guages in the Cross-Lingual Task. The task is
posed as binary classification task over a pair of
sentence wide contexts sent1 and sent2, contain-
ing word sequences w1 and w2 respectively. The
word sequences, w1 and w2, have a common word
in lemmatized form lemma. When w1 and w2

invoke the same sense of the lemma in their respec-
tive contexts, it is to be labeled as ‘T’ (True) class,
else it labeled ’F’ (False). As mentioned before,
for the Multilingual setting, sent1 and sent2 are
from the same language; for the Cross-lingual set-
ting, sent1 is from English, and sent2 is from a
non-English language. The languages considered
for the Task are Arabic (AR), English (EN), French
(FR), Russian (RU), and Chinese (ZH). Therefore
for the Multilingual evaluation, we have AR-AR,
EN-EN, FR-FR, RU-RU, and ZH-ZH settings, and
for the Cross-Lingual evaluation, we have EN-AR,
EN-FR, EN-RU, and EN-ZH settings. An example
of Cross-Lingual sentence pair is given in figure
1. This task provides an evaluation benchmark for
word sense disambiguation systems in languages
other than English, a direction that has been less
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explored.
For this task, the training data is only provided

for the EN-EN setting, and the development sets
are provided only for the Multilingual task. As we
are proposing supervised systems, it is essential to
consider if we have training data or not. Therefore,
splitting the Multilingual task, we propose systems
for three components - (i) EN-EN (train and dev
data available), (ii) Non-English Multilingual (only
dev data available), and (iii) Cross-Lingual (nei-
ther train nor dev data available). Our models and
implementations are available here1.

Figure 1: An demonstrative example for the English-
French Cross-lingual dataset. This pair will be classi-
fied as a ’False’ pair.

2 Related Work

Word Sense Disambiguation: The techniques
for the WSD task are broadly divided into
knowledge-based and supervised approaches. The
supervised approaches include fine-tuning BERT
for sequence classification (Wang et al., 2019),
EWISE (Kumar et al., 2019), and BiLSTM with
attention (Raganato et al., 2017b). The knowledge-
based methods use the information present in sense
inventories such as WordNet (Fellbaum, 2012), Ba-
belNet (Navigli and Ponzetto, 2012) and Wikipedia
to derive semantic knowledge, assisting in the task
of WSD. These include building sense embed-
dings for each sense of the word and disambiguate
the target word using the nearest neighbour sense
embedding: SensEmBERT (Scarlini et al., 2020),
(Loureiro and Jorge, 2019), or augmenting the pre-
training objecting of BERT to take into account
the sense information available in the WordNet:
SenseBERT (Levine et al., 2019).

There are two existing benchmarks to evaluate
the performance of WSD systems. One method
is linked to the sense inventories, and the task is
framed as a multi-class classification among the
senses of a word listed in the inventory (Raganato
et al., 2017a). The other is the WiC framework, not
tied to any sense inventory, and asks if a target word
has the same sense or not in the two given sentences.

1https://github.com/dipakamiitk/Crosslingual-WSD.git

Multilingual
(EN-EN)

Multilingual
(Others)

Cross-
Lingual

Train
Data

8000 7 7

Dev
Data

1000 1000 (each) 7

Table 1: Available data for this task. All datasets are
balanced, that is, equal number of ‘True’ and ‘False’
pairs.

Recently, transformer-based architectures(Vaswani
et al., 2017) (e.g., T5 (Raffel et al., 2019)) have
outperformed all existing approaches when fine-
tuned on the WiC task.
Cross-Lingual NLP: There are many NLP tasks
for which the data is present in only some high re-
source language (often English), but the task needs
to be solved for other languages. Some existing
methods involve - (i) using multi-lingual language
models (like mBERT (Devlin et al., 2018), XLM-R
(Conneau et al., 2019)) to train on the high resource
language and transfer the learning to other lan-
guages, or (ii) the translation approaches where we
can translate train or test data to a target language
and train a language-specific model. These meth-
ods have shown good performance on benchmarks
like XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020), which have been designed to test
this cross-lingual transfer performance of systems,
with train data being present majorly in English,
while the testing is to be done in other languages.

3 Corpus Description and Data
Augmentation

A brief summary of the available data is shown in
Table 1. This data is manually curated and covers
four parts of speech - Nouns, Verbs, Adjectives,
and Adverbs. In addition, we augmented the data
by utilizing WiC, XL-WiC, and SemCor.
WiC: We use the data provided by the WiC task
(Pilehvar and Camacho-Collados, 2018), which
proposes the same problem as this task but only
in English. They collected their data semi-
automatically from WordNet (Fellbaum, 2012), and
covered only Nouns and Verbs.
XL-WiC: It is a dataset that is an extension of
the WiC dataset to multiple languages (equiva-
lent to our multilingual setting) (Raganato et al.,
2020) . Again, the data was collected automati-
cally from WordNet and Wiktionaries of various
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languages. We are only interested in a few lan-
guages, from the WordNet development sets, the
ones with good human performance, because we
often note that this data does not accurately rep-
resent human distinguishable senses, which our
manually collected task data set does. Specifically,
we use Chinese(ZH), Danish(DA), Croatian(HR),
and Dutch(NL). Farsi(FA) also has good human
performance but we could not include it due to a
pre-processing error.
AuSemCor: We created our own augmented
dataset AuSemCor from the SemCor (Miller et al.,
1993) dataset, which is a sense annotated corpora
in English, with senses tagged using WordNet as
its sense inventory. To generate data points for the
same sense (T class), we pair up sentences contain-
ing a common lemma, whose WordNet senses are
identical. For the other class (F class), we pair up
sentences with a common lemma, but this lemma
has different WordNet sense across the sentence
pair. In addition, for the F class, we make sure
that the WordNet supersense is also different for
creating coarser sense distinctions as suggested by
Pilehvar and Camacho-Collados (2018). We ob-
tain 4986 datapoints with 2520 unique words. It
is approximately balanced (2495 ‘F’ and 2491 ‘T’
pairs). Like WiC, it covers only Nouns and Verbs.

4 Proposed Approach

We shall now describe our proposed approaches for
the two subtasks, multilingual and cross-lingual.
We deal with English separately because training
data is available in English and not in any other
language. Since the data across the two tasks dif-
fer only in the language pairs, some general ap-
proaches apply to both settings. We finally submit
an ensemble of models in all the tasks. The ensem-
bling was done by taking average of the probability
scores of the models (Probability Sum Ensemble).

4.1 Task Agnostic Proposals

Signals: We use a data preprocessing step of
applying a signal to indicate the word to be dis-
ambiguated. This can be done in two ways - (i)
Signal 1: encoding the target word (the word to
be disambiguated) in both the sentences of a pair
within double quotes (e.g., Click the right “ mouse

” button) as suggested by Huang et al. (2019), or
(ii) Signal 2: append the target word at the end of
the second sentence, similar to what was done by
Wang et al. (2019). Note, for the former method;

we need the character spans of the target word to
apply double quotes at the correct position.

Sentence Reversal Augmentation: For the mod-
els proposed in this task, the sentence pair is fed to
the model in a manner such that the results do de-
pend on which order the sentences are fed (i.e. the
network parameters are not symmetric with respect
to the two sentences). In such a case we propose
the following augmentation - for every data point
(sent1, sent2, lemma, label), add another data point
(sent2, sent1, lemma, label) to the set of data points.
A similar notion can be extended to making more
robust predictions - at inference, before threshold-
ing on the probability scores returned by the model,
take into account the reversed sentence order, and
average both the results. If such an averaging pol-
icy is followed for a particular model on the dev set,
we follow the same policy on the test set. The rev
subscript shall be used with dataset names to indi-
cate that the data has been doubled using sentence
reversal augmentation or with a model name to in-
dicate that the model performs the reverse sentence
averaging at inference for more robust predictions.

Transformers+Logistic Regression: Here we
use the transformer-based pre-trained language
model as an encoder network, feeding it with the
sentence pairs concatenated with a separator token
([CLS]E(xi

sent1[SEP ]xi
sent2[SEP ]) ). We then extract

the word level embeddings (last layer hidden state)
for each instance of the word (from both sentence
1 and sentence 2). If the word gets sub-tokenized,
we pick the embedding of the first sub-token. We
finally feed their concatenation to a logistic regres-
sion head, with binary cross-entropy as the loss
function. The architecture can be seen in Figure 2.
We used ELECTRA (Clark et al., 2020), ALBERT
(Lan et al., 2019), XLM-R (Conneau et al., 2019)
for English only data, and XLM-R for all other
language data. Unless otherwise mentioned, we
use the ‘large’ variant for ELECTRA and XLM-R,
and the ‘xxlarge’ variant for ALBERT.

Siamese Architecture: Here, we cast our prob-
lem as a similarity problem. Similarity being mea-
sured by the closeness of the senses of the target
word in each of the sentence. We, therefore, use
a Transformer-based Pretrained Language Model
to obtain the contextualized representations of the
target word across the two sentences (using same
model weights for both sentences), and optimize
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Cats follow mouse Connect the mouse

Cats follow “ mouse ” Connect the “ mouse ”

Cats follow “ mouse ” [SEP] Connect the “ mouse ”

Cats follow Connect[SEP]mouse the mouse

BERT

Logistic Regression Head (1 layer) 

T / F

[CLS] [SEP]“ “ “ “

Figure 2: The Transformers + Logistic Regression Ar-
chitecture (+ Signal 1). This is our proposed architec-
ture.

the contrastive loss (Hadsell et al., 2006) -

L =

|T |∑

i

D2
i +

|F |∑

j

max(0,m−Dj)
2

Where the set T is a set of same meaning sentence
pairs, and F has different meaning pairs. Di is
the distance metric between the contextualized rep-
resentations obtained for the target word by the
language model for the pair of sentences. A small
Di would mean that the senses of the common
word across the two sentences are the same. m
is the margin parameter of the loss. We experi-
ment with L2 and Cosine distances. We found this
method to be good but not competitive with the
Transformers+Logistic Regression method.

4.2 English (EN-EN) Task Proposal

For English language pair, we have dedicated train-
ing data (which we shall abbreviate as MCL-EN)
that is used to train models. We used the proposed
Transformers+Logistic Regression architecture and
the preprocessing method of including signals us-
ing double-quotes.

In addition to sentence reversal augmentation,
we augment the data using WiC and AuSemCor
(Section 3). Both the WiC and the AuSemCor
data have been automatically created using certain
heuristics (Section 3), which make the sense dis-
tinctions in both the dataset a little different than
what a human annotator would do. This is evi-
denced by the fact that human performance on the
WiC benchmark is only 80%, while it is 97% on the
Farsi dataset from the XL-WiC corpus, which was
manually annotated. As this task’s data is human
annotated, we do not use sentence reversal augmen-
tation with WiC and AuSemCor data to avoid an

over-representation of the automatically annotated
data in our training set.

4.3 Multilingual Task (except EN-EN)
Proposal

For this task as well, we use Transformers+Logistic
Regression architecture (the transformer being the
multilingual XLM-R (Conneau et al., 2019)), with
double-quote signal preprocessing and sentence
reversal augmentation.
Data: For the four languages under this task, we
have no training data. To address that, we split the
development set for each of the language pairs into
a 9:1 train-dev split. The split can be done in two
ways - a random split or an out-of-vocabulary split
(the 1 split will primarily have words not present
in the 9 split). The latter’s motivation is to simu-
late the test set because the test set’s words will be
unseen (not seen during training). The former may
be useful as well because the model can see and
learn more words during training. This distinction
is based on Raganato et al. (2020)’s observation
that models tend to perform better on seen words
than unseen words during evaluation. We experi-
ment using both split types. All languages’ data
is concatenated together, and we solve the task for
these four languages together by a single XLM-R
model. We also use the EN-EN data of our task
during this training. For development, we finally
have 100 × 4 data points, which we augment again
by sentence reversal augmentation, thereby finally
obtaining a dev set of 800 pairs. Since we perform
sentence reversal on dev set, at test inference, we
follow the reverse averaging policy as described
before. This is denoted by a subscript rev in the
model names. In our further discussion, we shall re-
fer to this multilingual train data as MCL-MNrand,
for the random split method, or MCL-MNoov for
the out-of-vocabulary split method.

We augment our data using XL-WiC (Section 3).
However, we do not use the XL-WiC data on all
models, and whenever we do, we do not perform
sentence reversal, to prevent higher representation
of lower quality data. Sentence reversal is also not
performed with English to have as much propor-
tion of non-English data as possible in the training
phase.

4.4 Cross-Lingual Task Proposal
For this task, we have no training or development
data. We propose two methods - (i) Translate-Test,
(ii) Multilingual Zero-Shot.
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Translate-Test: In this method, we use Microsoft
Translator2 to translate the second sentence (in ei-
ther AR, FR, RU, ZH) of the test set to English,
thereby reducing it to an EN-EN task. However,
this method is bound to introduce inaccuracies
from translation, and we lose positional informa-
tion about the target word in the translated sen-
tence. So we cannot use word-level embeddings ,
and therefore the Transformer+Logistic Regression
Model (Section 4.1) cannot be used. We, therefore
tweak the Transformers+Logistic Regression archi-
tecture a little - we use the [CLS] token embedding
instead of the word-level embeddings, keeping the
Logistic regression head intact. For development,
we use a back-translated EN-EN dev set (EN to FR
to EN) for the second sentence to simulate inac-
curacies of translation that will be induced in the
second sentence in the test set. For training as
well, we back translate 50% of the second sentence
(12.5% to each AR, FR, RU, and ZH and back to
en). Due to the loss of positional information about
the target word after translation, we experiment
with using Signal 2 - appending the target word at
the end of the second sentence. We use ELECTRA
(Clark et al., 2020) as the encoder for this sub-task.
Multilingual Zero-Shot: In this method, we di-
rectly use the models obtained from our Multilin-
gual task (section 4.3) on the Cross-Lingual test
data.

5 Experiments and Results

We ran various experiments to test out the efficacy
of the different approaches. All experiments have
been carried out with a learning rate set at 10−5,
using AdamW (Loshchilov and Hutter, 2017) op-
timizer, with batch sizes varying in {8, 16, 32}.
We noticed that using a batch size of 32 was ideal.
However, limited compute availability prevented
us from trying it out. We trained our models for 10
epochs. To choose our best model, we performed
validation multiple times during an epoch - 5 times
an epoch for the EN-EN sub-task and 4 times an
epoch for all other tasks. In all tables, we report ac-
curacy, which the task’s official evaluation metric.

The results and experimental set up of various
models on the English set are summarized in Ta-
ble 2. We obtain a total of 9 models for the EN-
EN sub-task, four of them being rev variants. We
submitted various ensembles, and the details are

2https://azure.microsoft.com/en-us/services/cognitive-
services/translator/

present in the lower half of the table. For the three
listed ensembles, we violated our averaging policy;
we do not average probability scores of the model
with reverse sentence pair, even if the model was
saved with such a policy on the dev set as these
were overall best performing models on the dev
set. At 93.3% on the test set, our model was the
best performing model in the EN-EN task. Also
noteworthy is an ensemble of models trained only
on the data provided by the task, scoring 92.6% on
the test set.

The results and experimental set up of various
models on the Non-English Multilingual set are
summarized in Table 5 for the development sets,
and Table 3 for test set performance (where we
show scores of various ensembles). As described
in section 4.3, the OOV models refer to the mod-
els that were created by training on the out-of-
vocabulary split method, while the RAND models
refer to the models obtained by training on data
created by the random split method. All models
are based on XLM-R+Logistic Regression, with
double quotes signal (indicated by + Signal 1). For
evaluation on the test set, we ensemble a combina-
tion of models determined by the best performance
on the joint dev set and language-wise dev set.

The performance of various translate-test models
is shown in Table 4. We formed an ensemble of
these models and submitted it to the leaderboard,
which can be seen in Table 6. Also, in Table 6, we
note that the best results are obtained by zero-shot
application of the models trained in the multilingual
sub-task to the cross-lingual sub-task.

6 Ablation Study

We perform an analysis of the various proposed
approaches (Table 7), specifically paying heed to
the EN-EN task, starting with a baseline of a BERT
base model with a logistic regression head over the
[CLS] token (the ‘cls’ models in the table). We see
an improvement in performance by switching to
target word embeddings (the last layer hidden state
corresponding to the first sub-word token). Adding
the signal in the form of double quotes (Signal
1) improves performance, probably by emphasiz-
ing the word to disambiguate, that, otherwise, the
model does not know. Signal 2 however, is not as
effective, but it still improves performance over the
non-signal model. Utilizing sentence reversal data
augmentation, we see an improvement in perfor-
mance. The model’s weights are not symmetric
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Model Trained On/Ensembled On Dev Test
XLM-R MCL-ENrev + WiC 89.1 89.5
XLM-Rrev MCL-ENrev + WiC 89.3 89.5
XLM-R MCL-MNoov

rev + MCL-EN 89.1 89.9
ELECTRA MCL-ENrev 91.1 90.3
ELECTRArev MCL-ENrev 90.8 91.7
ELECTRA MCL-ENrev + WiC + AuSemCor 89.7 91.6
ELECTRArev MCL-ENrev + WiC + AuSemCor 90.5 90.9
ALBERT MCL-ENrev 87.8 89.6
ALBERTrev MCL-ENrev 89.7 92.2
Probability sum ensemble All above models 92.8 93.3
Majority vote ensemble All above models 92.7 93.3
Probability sum ensemble Only MCL models 91.9 92.6

Table 2: Accuracies of the models on English (EN-EN) DataSet. All are + Signal 1 models.

Submission Ensemble Details Dev Multilingual Test
AR FR RU ZH

1 OOV 88 84.5 86.2 86.1 86.4
2 OOVrev 88 84.4 87.5 85.4 85.6
- OOV2

rev 88.88 85.5 87.8 85.4 85.5
- RANDrev 89.38 86.0 86.6 86.2 86.2
- RAND2

rev 90.5 85.7 86.7 86.9 86.0
- Prob Sum (RAND2

rev and OOV2
rev) NA 85.5 87.6 86.7 87.3

Table 3: Final Ensembles Non-English Multilingual. A “-” indicates model not submitted to the leaderboard.

Model Accuracy
ELECTRA+Signal 2 86.4

ELECTRA Back-T+Signal 2 86.1
ELECTRA Back-Trev 85.6

Table 4: Translate Test Models evaluated on Back Translated EN-EN dev set. Back-T Models refer to models
where 50% training data was also back translated.

Model Trained on Dev Language-Wise Dev
AR FR RU ZH

RAND XLM-R +Signal 1 MCL-EN+MCL-MNrand
rev 87.38 89 85 91 96

RAND XLM-R +Signal 1 MCL-EN+MCL-MNrand
rev +XL-

WiC(ZH, DA, HR, NL)
88.13 88 84.5 91 95.5

OOV XLM-R +Signal 1 MCL-EN+MCL-MNoov
rev 87 89 91.5 91 83.5

OOV XLM-R +Signal 1 MCL-EN+MCL-MNoov
rev+XL-

WiC(ZH, DA, HR, NL)
87 87.5 91 92.5 82

Note: The development sets for RAND and OOV models are different and hence are incomparable in performance.

Table 5: Non-English MultiLingual Development Set Accuracies. The Dev columns indicates the performance on
the joint dev set, while the Language-Wise column lists down score for that particular language’s dev.

with respect to sentence 1 and 2, and ideally, we should train the model to lose its sense of order
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Submission Ensemble Details Dev Cross-Lingual Test
AR FR RU ZH

- OOVrev - 86.9 87.5 87.6 87.6
- OOV2

rev - 85.6 86.8 87.1 87.5
- RANDrev - 83.9 85.4 86.0 86.1
- RAND2

rev - 85.4 86.7 86.9 84.5
- Prob Sum - 85.9 86.6 88.0 86.2
1 TT Ensemble 1 87.1 83.7 85.3 86.0 86.1
- TT Ensemble 2 87.3 83.9 84.8 85.1 86.5
- Adjusted Threshold RANDrev - 87.1 88.5 89 90.6

Table 6: Final Ensembles Non-English Cross-Lingual Test. Translate Test models have been abbreviated as TT.
The Dev column is only relevant to indicate the performance of TT models on the Back Translated EN-EN dev.
The adjusted threshold model is purely for the purpose of analysis (Section 7).

and probably make better internal representations
in the process. We do not observe a significant
change in model performance on using the aug-
mented data. In fact, for BERTbase, it decays a
little. Running models trained exclusively on WiC
and AuSemCor, we note that the AuSemCor model
performs better, but both models lag behind the
model trained on MCL-EN. We note strong im-
provements in performance by ensembling various
models (Table 2). The use of different transformers
give us a diversity in our ensemble, with different
models canceling each other’s mistakes. We also
observe that the ensemble of models trained using
only MCL data lag behind the ensemble of models
trained using the augmented data (Table 2). This
means that the augmented data is of benefit to our
models. This was not clear with just a single model,
BERTbase, as mentioned before, with performance
remaining around the same mark. As mentioned
before, the Siamese models (83.5%) trail the Lo-
gistic Regression models (86.8%). Note that for
Siamese models, the sentence order is irrelevant, so
we cannot perform sentence reversal augmentation,
and so 83.5% is their best with all our methods.

The analysis done on dev data is shown in Table
7. We finally took the models which were giving
dev accuracy greater than 89% for the ensembles.
That is XLM-R, ALBERT and ELECTRA. Another
interesting point is that an XLM-R model trained
for Non-English Multilingual subtask (using MCL-
MNrev + MCL-EN) could also slightly improve
itself (at the very least, it did not degrade) than
when it trained on MCL-ENrev data.

For the Multilingual setting, we note that there
is not much difference between the performance
of OOV and RAND models (Table 3). The OOV

Model Accuracy
cls BERTbase 83.9
BERTbase 84.6
cls BERTbase+Signal 1 85.3
cls BERTbase+Signal 2 84.3
BERTbase+Signal 1 86.1
BERTbase +Signal 1 (WiC) 72.6
BERTbase +Signal 1 (AuSemCor) 77.5
BERTbase +Signal 1 (MCL-EN + WiC
+ AuSemCor)

85.7

BERTbase+Signal 1(MCL-ENrev) 86.8
BERTLarge+Signal 1 (MCL-ENrev) 87.7
RoBERTa +Signal 1(MCL-ENrev) 87.7
XLM-R +Signal 1(MCL-ENrev +
WiC)

89.1

XLM-R +Signal 1 (MCL-EN + MCL-
MNrand

rev )
89.3

ALBERT +Signal 1 (MCL-ENrev) 89.8
ELECTRA +Signal 1 (MCL-ENrev) 91.1
Sia. BERTbase + Signal 1 , L2 dist. 81.8
Sia. BERTbase + Signal 1 , Cosine dist. 83.5

Table 7: An analysis of performance of models on EN-
EN Dev. The training data was MCL-EN unless other-
wise specified.

method works better for FR, while RAND works
better for AR, RU, and ZH. On average, RAND
scores are slightly better, but not by a large margin.

We note that some pre-trained language models
perform better for this task, especially ELECTRA
and ALBERT, which improve upon the scores of
RoBERTa (Liu et al., 2019), and BERT. We also
note that their ‘large’ variants are always better
performers than the ‘base’ variants.
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Actual
Predicted

True False

True 478 22
False 45 455

Table 8: Confusion Matrix of English (EN-EN) Sub-
Task

Actual
Predicted

True False

True 1773 227
False 344 1656

Table 9: Confusion Matrix of Multi-Lingual (Non-
English) Sub-Task (Model OOVrev).

7 Error Analysis

The confusion matrices for our best model are
shown in Tables 8, 9, 10 and 11. On the Multilin-
gual task, we found that number of false positives
is higher than the number of false negatives for all
languages.

In contrast, for the Cross-Lingual task, using
the multilingual models in the zero-shot setting
gives significantly lower false positives than false
negatives (Table 10). The Translate-Test method
offered a fairly balanced prediction, albeit with
lower overall accuracy. (Table 11).

We observed that the probability scores returned
by the multilingual models, when tested on the
cross-lingual dataset, fell. We also observe a much
lower number of false positives on this test data
than the multilingual test data. This suggests that
we need to tweak the prediction threshold value, in
particular, to bring it down to adjust for the lower
scores on this data set. Since we do not have a dev
set for the cross-lingual sub-task, we perform the
analysis on the test set itself. In Table 6, we can
see a model’s performance in a threshold tuning
experiment, where the threshold was brought down
to 0.17 from 0.5 for all language pairs (i.e. 0.17
was used commonly for all language pairs). A
significant spike in performance is observed (an
average rise of 3.45% across all the cross-lingual
language pairs). This suggests that models trained
on multilingual data can competitively distinguish
senses in the cross-lingual setting as well, provided
we take into account the fall in probability scores,
induced by the transfer, by threshold moving. As
a control, a similar threshold tuning experiment
for the same model on the multilingual test data

Actual
Predicted

True False

True 1627 373
False 131 1869

Table 10: Confusion Matrix of Zero-Shot model in
Cross-Lingual Sub-Task (Model RANDrev).

Actual
Predicted

True False

True 1700 300
False 289 1711

Table 11: Confusion Matrix of Translate-Test model in
Cross-Lingual Sub-Task (Model TT Ensemble 1).

POS Accuracy
Adverb 86.67

Adjective 91.6
Noun 93.37
Verb 94.63

Table 12: POS wise accuracy analysis.

yielded only an average of 0.075% improvement
for the four Non-English language pairs.

We also analyzed the Parts-Of-Speech (POS)
wise performance of our English Model in Table
12. We see a lag in performance for Adverbs and
Adjectives that have less number of training data
points.

8 Conclusion

In this work, we presented our approach to solving
the SemEval Task 2: Cross-Lingual and Multilin-
gual Word in Context Disambiguation. We pro-
posed different models based on transformers for
the English, Non-English Multilingual and Cross-
Lingual tasks. The application of signals and sen-
tence reversal augmentation helped us improve per-
formance across all tasks. Utilising the existing
SemCor dataset, we created AuSemCor for the EN-
EN sub-task. Due to the unavailability of training
data in the Non-English Multilingual and Cross-
Lingual task, we proposed methods to obtain the
training data from the dev sets or external resources.
We finally submitted ensembles for all tasks.
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Abstract

This paper presents the winning system that
participated in SemEval-2021 Task 5: Toxic
Spans Detection. This task aims to locate
those spans that attribute to the text’s toxic-
ity within a text, which is crucial for semi-
automated moderation in online discussions.
We formalize this task as the Sequence Label-
ing (SL) problem and the Span Boundary De-
tection (SBD) problem separately and employ
three state-of-the-art models. Next, we inte-
grate predictions of these models to produce
a more credible and complement result. Our
system achieves a char-level score of 70.83%,
ranking 1/91. In addition, we also explore the
lexicon-based method, which is strongly inter-
pretable and flexible in practice.

1 Introduction

41% of American adults in 2020 are reported ex-
periencing some form of harassment1. Increasing
incidents of online harassment and cyber violence
have spurred researchers to investigate the prob-
lem of identifying and filtering offensive speech
on the Internet. Most previously published insult
detection tasks (Davidson et al., 2017; Xu et al.,
2012) and methods (Aroyehun and Gelbukh, 2018;
Modha et al., 2018) classify an entire comment (or
document) to discern whether the comment is offen-
sive or not, but cannot identify specific pieces of the
toxic comment. Unlike previous studies, SemEval-
2021 Task5: Toxic Span Detection(Pavlopoulos
et al., 2021) requires the identification of the spe-
cific toxic spans, which is more innovative and
challenging, and a key step towards a successful
semi-automatic review of comments.

†Authors equally contributed to this work.
‡Corresponding Author: xuruifeng@hit.edu.cn

1https://www.pewresearch.org/internet/2021/01/13/the-
state-of-online-harassment/

More formally, toxic span detection is an extrac-
tion task, which is usually formalized as a Sequen-
tial Labeling (SL) problem, as shown in Figure
1(a), locating those spans by BIO tags. However,
SL methods suffer from a huge search space due
to the compositionality of labels (the power set of
all sentence words), which has been proven in (Lee
et al., 2016; Hu et al., 2019a). Therefore, in ad-
dition to SL formalization, we also formalize the
task as a Span Boundary Detection (SBD) problem,
as shown in Figure 1(b), locating those spans by
start and end positions. Notice that, when there
are multiple spans in a sentence, the matching of
start and end positions may be ambiguous during
decoding. This shows that theoretically, the SBD
formalization is not consistently superior to the
SL formalization. Hence, we choose to combine
predictions of these two kinds of formalization to
produce a more credible and complement result.
Our system achieves a char-level score of 70.83%,
ranking 1/91.

Besides, we also explore the lexicon-based meth-
ods, which usually have high precision but rather
low recall, and are strongly interpretable and flex-
ible in practice. First, we mine a toxic lexicon
from the training set by a simple statistical strat-
egy. Next, WordNet (Fellbaum, 2010) and GloVe
(Pennington et al., 2014) are utilized to extend this
lexicon further. With a toxic lexicon, we extract
toxic spans through word-level matching.

2 Related Work

In recent years, cyber violence has become a
widespread societal concern, and how to identify
and filter hate speech has become an important
topic in machine learning. TRAC proposes an
aggression recognition task (Kumar et al., 2018)
that provides a dataset of 15,000 annotated Face-
book posts and comments in English and Hindi for
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Figure 1: Comparison of SL and SBD, (a) denotes SL, (b) denotes SBD.

training and validation. The task aims to classify
comments into three categories: non-aggressive,
covertly aggressive, and overly aggressive. The
Toxic Comment Classification Challenge 5 2 is an
open competition in Kaggle that provides partici-
pants with comments from Wikipedia and defines
six toxic categories: toxic, severe toxic, obscene,
threat, insult, identity hate. In SemEval 2019 task
6 (Zampieri et al., 2019), in addition to whether the
comment is offensive, the type of the attack and
the target of the attack are also included. Based on
this, Semeval 2020 task 12 (Zampieri et al., 2020)
further extends the dataset to 5 languages: Arabic,
Danish, English, Greek, and Turkish.

3 Methods

In the section, we describe how toxic span detection
is formalized and corresponding solutions in detail.

3.1 Sequence Labeling

The BIO tag scheme is utilized to locating toxic
spans, where B (Begin) corresponds to the first
token in a toxic span, I (Inside) corresponds to
the inside and end tokens in a toxic span, and O
corresponds to those no-toxic tokens. Following
most existing work (Lample et al., 2016; Ma and
Hovy, 2016), we leverage Conditional Random
Fields (CRF) (Lafferty et al., 2001) for learning
and inference.

In addition to token-level classification, CRF
models the dependencies between tags in a tag se-
quence by the transition matrix A ∈ RK×K , where
K is the size of the tag space, i.e. K = 3. For the
contextual representation x ∈ Rn×h, the score of a
tag sequence y ∈ Rn in CRF is defined as:

S(x,y) =h1(y1;x)+ (1)
n−1∑

k=1

(
hk+1 (yk+1;x) +Ayk,yk+1

)
.

2https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

where hk(yk;x) is the score of the tag yk at the
k time step. Then, the conditional probability is
obtained by a normalization operation:

P (y|x) = exp(S(x,y))∑
ỹ∈Y exp(S(x, ỹ))

. (2)

where Y contains all possible paths of tag se-
quences. During inference, the predicted tag se-
quence ŷ is obtained by:

ŷ = argmax
y∈Y

P (y|x). (3)

We adopt BERT(Devlin et al., 2019) and
BERT+LSTM(Hochreiter et al., 1997) as the lan-
guage encoder respectively, resulting in two solu-
tions: BERT+CRF and BERT+LSTM+CRF. The
reason for adding LSTM is that we believe that the
contextual representation refined by LSTM could
be more sensitive to the position of tokens.

3.2 Span Boundary Detection

Different from SL formalization, SBD formaliza-
tion utilizes the start and end positions tagging
scheme to represent toxic spans. SBD formaliza-
tion was originally applied in the machine reading
comprehension task (Seo et al., 2016; Wang and
Jiang, 2016). In these works, two n-classifiers are
employed to predict the start position and end posi-
tion separately, where n denotes the length of the
input sentence. However, this strategy can only out-
put a single span for an input sentence. Later, Hu
et al. (2019b) extended the two n-classifiers strat-
egy by a heuristic multi-span decoding algorithm.
But this is not a concise and efficient solution for
multi-span scenario, as the decoding algorithm re-
lies on two hyper-parameters: (1) γ, the minimum
score threshold, (2) K, the maximum number of
spans. In addition to the two n-classifiers strategy,
a more recent and popular strategy is to employ
two binary classifiers to determine whether each
token is the start (end) position or not (Li et al.,
2020; Wei et al., 2020; Yu et al., 2019). In this
paper, we adopt the binary classifiers strategy for
SBD formalization and describe the details below.
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Split Train Dev Test
Num 6894 1723 2000

Table 1: Data statistics.

Given the contextual representation x =
{x1, x2, · · · , xn} ∈ Rn×h, for the location i, we
calculate the probability of whether it is a start posi-
tion by Equation (4) and the probability of whether
it is a end position by Equation (5).

pstart(i) = σ(W>1 xi + b1), (4)

pend(i) = σ(W>2 [xi; pstart(i)] + b2), (5)

where W1 ∈ Rh×1, W2 ∈ R(h+1)×1 and b1, b2 ∈
R are model parameters.

The predictions of start and end positions are
obtained by:

starts = {i|pstart(i) > 0.5, i = 1, · · · , n}, (6)

ends = {i|pend(i) > 0.5, i = 1, · · · , n}. (7)

Then we adopt the nearest start-end matching strat-
egy: for each predicted start position s ∈ starts,
the nearest predicted end position e to the right of
s is selected to formal a predicted span (s, e).

Similarly, we adopt BERT as the language en-
coder, and we call this model as BERT+Span.

3.3 Ensemble Strategy
Voting method is applied to integrate the results. In
detail, for k different models, if no less than k/2
models consider a character to be in the toxic span,
the character is retained.

4 Experimental Setup

4.1 Data
The given trial data and training data are merged
and the duplicates are removed. In addition, we
fix some annotation errors, such as the partially-
labeled words. 80% of the processed data is utilized
for training and the rest is the validation set. Table
1 shows the statistics of the data used.

4.2 Parameter Settings
We find that the parameter size of the pre-trained
model does not have a significant effect on perfor-
mance, and therefore we simple adopt BERT-base
as the our language encoder, which consists of 12
transformer blocks with 12 representation heads.
Three models are trained separately. The learning

P(%) R(%) F1(%)
BERT+LSTM+CRF 71.99 89.96 69.34
BERT+CRF 74.50 88.10 69.44
BERT+Span 76.29 86.77 69.34
Ensemble 75.01 89.66 70.83

Table 2: Performance of three benchmark models and
ensemble approach.

rate of BERT is set to 2e-5, the learning rate of
CRF is set to 5e-3, and the maximum encoding
length is 128. The weight decay is set to 0.01.

4.3 Evaluation Metrics
We use the official metric, i.e. char-level F1-score,
as the evaluation metric. In addition, for a more
detailed analysis, we also introduce character-level
Precision (P ) and Recall (R). Note that F1/P/R
is the average over the samples, so there is no F1 =
2PR/(P +R).

5 Results

5.1 Ensemble Approach
Table 2 shows the performance of three benchmark
models and the ensemble approach. The experi-
mental results show that all three models achieve
similar results on F1-score, and integrating them
results in an improvement of more than 1%, indi-
cating that the predictions of the three models have
good complementarity.

To further analyze the differences and respec-
tive advantages of SL and SBD formalization, we
list their performances in single-span scenario and
multi-span scenarios in Figure 2. It could be found
that SBD formalization is more advantageous in
single-span scenario, while SL formalization is
more advantageous in multi-span scenario, which
is consistent with our claim.

5.2 Lexicon-based Approach
We also explore a lexicon-based approach for pre-
dicting toxic spans. A toxic lexicon is mined from
training data by a simple statistical strategy. More
Specifically, the toxic score of a word w is defined
as below:

toxic score(w) =
#w in toxic span

#w in whole corpus
, (8)

where #w in toxic span is the count of ap-
pearances of word w in toxic spans, and
#w in whole corpus is the count of appearances

523



# of words P(%) R(%) F1(%)
Ensemble - 75.01 89.66 70.83
Lexicon1(Wiegand et al., 2018) 551 75.13 44.47 33.07
Lexicon2(Wiegand et al., 2018) 2989 66.22 72.01 50.98
Lexiconoriginal(Our) 119 76.71 82.22 64.98
Lexiconwordnet(Our) 231 72.56 84.05 64.09
Lexiconglove(Our) 186 73.98 83.34 64.19

Table 3: Results of Lexicon-based approaches and ensemble model on Precision, Recall and F1. Lexicon1 and
Lexicon2 are two external lexicons. Lexiconoriginal is collected by ourselves from training set. Lexiconwordnet

and Lexiconglove are expanded from Lexiconoriginal with WordNet and GloVe.
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Figure 2: Comparison of the performance of SL and
SBD method for data with different numbers of Spans.

of word w in the whole corpus. Then those words
with a toxic score greater than a given threshold θ
are selected from a lexicon.

When predicting, the words in the sentence that
appear in that toxic lexicon are extracted as the
predicted toxic spans. There are three lexicons
in our experiment, two of which were collected
by (Wiegand et al., 2018), another is collected by
ourselves from the training set.

Table 3 shows the results of the lexicon-based
approaches and the ensemble approach, and we can
observe that our lexicon-based approaches obtain
notable results in the F1-score. In addition, we
also calculate the average precision and average re-
call values of different methods on the test set, and
our original lexicon-based approach even outper-
forms ensemble approaches in average precision,
but there is still a significant gap in an average re-
call. Since the lexicon-based approaches can only
identify the toxic words in the lexicon, the recall
can be improved by expanding the toxic lexicon.

To improve the recall, we use WordNet (Miller,
1995) and GloVe (Pennington et al., 2014) to ex-
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Figure 3: Performances of Lexiconoriginal model with
different threshold.

pand the toxic lexicon. In detail, we collect synsets
of each toxic from WordNet, and collect the near-
est similar words by calculating cosine similarity
of GloVe vectors. The performances of the two
expanded approaches are shown in Table 3. Al-
though the recall of two approaches improves over
the original lexicon, the precision decreases signifi-
cantly, which indicating that there are a consider-
able number of non-toxic words in the synonyms
found through WordNet.

Besides, we explore the impact of threshold θ
when mining the original lexicon on performance.
The performances with different threshold is shown
on Figure 4. As the threshold θ increases, the size
of lexicon decreases, P decreases, R increases, F1
increases and then decreases, reaching a maximum
64.98 when θ = 0.5.

6 Conclusion

In this paper, we formalize the toxic span detection
as two problems separately and employ three state-
of-the-art models. The strengths of each model are
analyzed and a more credible and complement re-
sult is obtained through a voting approach. Our re-
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sults achieve a good score (ranking 1/91). Besides,
we explore a lexicon-based approach. The lexicon
is mined from the annotation of the training data
and then expanded by WordNet and Glove. Exper-
iments show that the lexicon-based approach has
not yet achieved the performance of the ensemble
approach. We believe that future work could move
towards combining deep learning-based methods
and lexicon-based methods.
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Abstract

This paper presents one of the top winning so-
lution systems for task 7 at SemEval2021, ”Ha-
Hackathon: Detecting and Rating Humor and
Offense”. The shared task 7 consists of two
parts, task-1 with three sub-tasks 1a,1b, and 1c,
and task-2. The goal of task-1 is to predict if
the text would be considered humorous or not,
then if it is yes, predict how humorous it is and
whether the humor rating would be perceived
as controversial. The goal of task-2 is to pre-
dict how the text is considered offensive for
users in general. The proposed solution, Sar-
casmDet, has been developed using RoBERTa
pre-trained model with ensemble techniques.
The paper describes the submitted system’s ar-
chitecture with the experiments and the hyper-
parameter fine-tuning that led to this robust
system. Our model ranked third and fourth
places out of 50 teams in tasks 1c and 1a with
F1-Score of 0.6270 and 0.9675, respectively.
At the same time, the model ranked one of
the top 10 models in task 1b and task 2 with
RMSE scores of 0.5446 and 0.4469, respec-
tively.

1 Introduction

In our daily life, the obstacles and difficulties in
dealing with sarcasm, bullying, or even abuse of all
kinds and ways are increasing day by day (Sheehan
et al., 1999; Cleary et al., 2009; Tucker and Maun-
der, 2015; van Verseveld et al., 2021). Technically,
sarcasm and bullying are among the most complex
and challenging topics that major companies and
institutes seek to address. Artificial intelligence
and text processing techniques are the most po-
tent current methods for detecting these problems
within texts and images. Sarcasm and abuse are
associated with attacking a specific person or group
of people either through an unintended joke or, in
many cases, by directly affecting the target’s psy-
che. Irony and offensiveness are characterized by

their vocabularies that are peppered with humor to
conceal the opposite (Lee and Katz, 1998).

Task 7 at SemEval-2021, ”HaHackathon: De-
tecting and Rating Humor and Offense”, provides
two main tasks: task-1 with three sub-tasks (1a,1b,
1c) and task-2. The goal of task-1 is to predict if the
text would be considered humorous or not, and if it
is yes, then expect how funny it is and whether the
humor rating would be perceived as controversial.
The goal of task 2 is to predict how the text is con-
sidered offensive for users in general. Our solution,
SarcasmDet, has been ranked among the top four
teams in two sub-tasks. The proposed approach
uses the provided dataset, which contains 10K of
row text data. We have experimented with several
pre-trained language models using the simple trans-
formers library. It is worth mentioning that using
the hard-voting ensemble technique has increased
our score remarkably.

The paper is constructed as follows: Section 2
provides the related works. Section 3 and 4 de-
scribe the shared task and the provided dataset,
respectively. Section 5 describes our system solu-
tion. Section 6 shows our experiments. Section 7
provides the results, and finally, the conclusion is
in Section 8.

2 Related Works

In recent years, social media’s development and
growth have motivated the NLP research commu-
nity to detect Humor and Offensiveness. In 2018,
SemEval provided different shared tasks to detect
emotions and irony in tweets (Mohammad et al.,
2018; Van Hee et al., 2018). The top teams’ pro-
posed models mostly used LSTM and word embed-
dings (Abdullah and Shaikh, 2018; Badaro et al.,
2018; Wu et al., 2018). In 2019, SemEval also intro-
duced a shared task to discover offensive language
in social media. Researchers in (Liu et al., 2019a)
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used the dataset of the Offensive Language Iden-
tification Dataset (OLID) provided by (Zampieri
et al., 2019). They ranked first in the task with
an F1 (Macro) score of 0.8286 by applying linear
model, LSTM, and BERT pre-trained model. In
2020, one of the shared tasks presented in SemEval
was about how to change a chunk of text to make
the text funnier. The authors(Mahurkar and Patil,
2020; Shatnawi et al., 2020) applied a pre-trained
BERT model with different preprocessing for the
presented dataset. This paper presents our solution
to task 7 in SemEval2021, to detect humor and
offensive simultaneously and explains it in detail.

3 Tasks Description

All subtasks of the SemEval2021 task 7 have differ-
ent requirements. In this section, we have detailed
the description for each task.

3.1 Task 1a Humor Detection
Task1a is a binary classification problem. The text
should be classified as humor or not based on the
answers of 20 participants to whether the partic-
ular text was intended to be funny or not. It is
considered funny based on the majority of the par-
ticipants’ responses. Table 1 shows an example of
the training dataset for task 1a.

# Example is
humor

348 A babyś laughter can be
the most beautiful sound
you will ever hear. Unless
itś 3 am. And youŕe home
alone. And you dont́ have
a baby.

1

6 Trabajo,’ the Spanish word
for work, comes from
the Latin term ’trepaliare,’
meaning torture.

0

Table 1: Example for task 1a from the train dataset

3.2 Task 1b Average Humor Score
Task 1b is a regression task; humor rating depends
on the classified task 1a arguments. If the text was
classified as funny (humor), then a question was
raised about the level of humorous in the text on a
scale of 1-5. Then, they took the average rating as
a label. If not humorous text, they used 0 as a label.
Table 2 shows an example of the training dataset
for task 1b.

# Example humor
rating

348 A babyś laughter can be
the most beautiful sound
you will ever hear. Unless
itś 3 am. And youŕe home
alone. And you dont́ have
a baby.

3.1

15 Balsamic vinegar helps
slowing the appearance
of ageing signs healthy
healthy food health.

0

Table 2: Example for task 1b from the train dataset

3.3 Task 1c Humor Controversy

Task 1c is a binary classification problem task;
humor controversy depends on the classified ar-
guments from task 1a. If the text was classified
as funny (humor), then the task should determine
whether the classification of the humor is contro-
versial (1) or not (0). Table 3 shows an example of
the training dataset for task 1c.

# Example humor
contro-
versy

348 A babyś laughter can be
the most beautiful sound
you will ever hear. Un-
less itś 3 am. And youŕe
home alone. And you
dont́ have a baby.

1

8000 Each ounce of sunflower
seeds gives you 37% of
your daily need for vita-
min E vitamin health.

0

Table 3: Example for task 1c from the train dataset

3.4 Task 2 Average Offensiveness Score

Task2 is a regression problem task. The question
was asked to determine whether the text is offen-
sive in general, and how much general offensive
is between 1-5. Table 4 shows an example of the
training dataset for task 2.

4 Dataset Description

The dataset provided by (Meaney et al., 2021) Se-
mEval 2021 organizers for task7 contains 10,000
rows of text data and four columns of labels. The
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# Example offense
rating

27 How do the Chinese select
their baby names? They
chuck a tin can down the
stairs Ping Wong ching
Pang

3.8

1498 Today, I overslept and
completely missed my 2nd
nap.

0

Table 4: Example for task 2 from the train dataset

dataset is divided into three phases: training, de-
velopment, and evaluation phase datasets. The
dataset was collected by surveying US English na-
tive speakers of various ages between 18-70 and
different genders, political situations, and income
levels. The training set contains 8,000 rows of texts
with four labels, every text in the data set have been
classified based on four questions that were asked
to the participants, and each question is related to a
specific task. Each of the development set and the
test set contain 1000 texts.

4.1 Data Preprocessing

There was no need to implement preprocessing
methods for the dataset of task1a and task2. How-
ever, the dataset for task1b and task1c contain null
values. Therefore, we attempted to convert all null
values into zeros, which lowered the data’s qual-
ity. Therefore, we used another technique, which
is dropping the records with null. The later tech-
nique increased the data quality and gave better
performances.

5 Systems Description

In our solution, we have used the pre-trained lan-
guage model, RoBERTa (Liu et al., 2019b), that
uses a robustly optimized NLP method to improve
the Bidirectional Encoder Representations from
Transformers. We have also used the BERT pre-
trained model (Devlin et al., 2018). RoBERTa is
built based on BERT’s language masking strategy,
which learns to predict knowingly hidden sections
of text within unannotated language examples. We
have chosen RoBERTa pre-trained model because
of the significant improvements in the performance
by tuning the BERT training procedure and the
architecture based on BERT-large. We have experi-
mented with several deep learning models. In our

Figure 1: The architecture of our model.

best-performed solution system, we implemented
ensemble technique (Chou et al., 2009) on the best-
scored models that include RoBERTa-large, BERT-
large trained on 24-layer, 1024 hidden, 16-heads,
355M parameters. We used RoBERTa model from
HuggingFace(Wolf et al., 2019) and simpletrans-
formers pre-trained models. More details about
each subtask are as follows.

5.1 Task 1a

We have applied RoBERTa (base/large) with differ-
ent hyperparameters. Then, we have utilized the
hard-voting ensemble technique to produce the best
model that predicts the label in the test dataset. Our
approach’s best result has scored 0.9513 F-score in
the development phase and 0.9675 F-score in the
test phase. The learning rate=1e-5, manual seed=
17, train batch size= 16, and num train epochs= 5.

5.2 Task 1b

In this sub-task, we have applied BERT(base/large)
cased with different hyperparameter. Then applied
the hard-voting ensemble technique for the best
model to predict the label in the test set (learning
rate=1e-5, manual seed= 17, train batch size= 16,
and num train epochs= 5).

5.3 Task 1c

In this sub-task, we have applied several pre-
trained NLP models, such as BERT(base-large),
XlNet(large), and RoBERTa(large), but the best
solution was obtained from the two previous sub-
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tasks (task 1a, task 1b). We used the best results of
task 1a and task 1b to predict task 1c. If the result
from task1a is 1, then that indicates it is humor. If
the value of the Humer Ratting is equal or more
than 3, then we consider that humor controversy to
be 1. Otherwise, we assume humor controversy is
0.

5.4 Task2

We have applied RoBERTa (large/base) with dif-
ferent hyperparameters. Then, we have used the
hard-voting ensemble technique for the best model
to predict the label in the test dataset (learning
rate=1e-5, manual seed= 17, train batch size= 16,
and num train epochs= 5).

6 Experiments

We have experimented with several pre-trained
NLP models to detect Humor and Offensive
through the development and evaluation phases.
The pre-trained models include BERT(base/large)
that is developed by Google researchers. Also,
AlBERT(base/large)(Lan et al., 2019), which is
a lite version of BERT to reduce parameters and
increase the model speed by reducing memory
consumption. Another pre-trained model is Xl-
Net(base/large)(Yang et al., 2019), which intro-
duced the automatic regressive pre-training method
and outperformed BERT model in several tasks
sentiment analysis, question answering and oth-
ers. Finally, RoBERTa model, which outperformed
most of the pre-trained models, if not all. We have
implemented our experiments on google Colab us-
ing CPU and GPU. Using collab GPU increased the
speed of the experiments by 100%. We used simple
transformers library with various hyperparameters,
learning rate=1e-5, manual seed= 17, train batch
size=8-16-32 and epochs= 2-3-5. Our best results
accomplished on all tasks was using hard-voting
ensemble technique on top of best-scored results by
RoBERTa-large and BERT-large-cased. The use of
hard-voting technique increased the performance,
and the accuracy, remarkably. In the development
phase, our model ranked first place in three task1a,
task1c, task2, and second place in task1c. How-
ever, for the evaluation phase, we have ranked 4th
place in task1a, and 3rd place in task1c 3rd. Table
5 shows details of all hyperparameters used on all
models for two phases.

Model Epoch Batch
Size

LR Manual
Seed

RoBERTa-
large

3,5 8,16,32 1e-5 17

RoBERTa-
base

3,5 8,16 1e-5 17

BERT-
base

2,3,5 8 1e-5 11,17

BERT-
large

3,5 8,16,32 1e-5 11,17

XLNet-
base

2,3 8,16 1e-5 17

XLNet-
large

3,5 16 1e-5 17

AlBERT-
base

2,3 8,16 1e-5 17

AlBERT-
large

3,5 16 1e-5 17

Table 5: Hyperparameter was used in all experi-
ments for two phases(development and evaluation) of
all tasks.

7 Results

Our solution system results are divided into two
phases development and evaluation phase. We
experienced several pre-trained language models
(RoBERTa, BERT, ALBERT, and XLNET) and
implemented them using a simple transformers li-
brary in the development phase. In the evaluation
phase(test phase), we improved our system solu-
tion’s capabilities by using different hyperparam-
eters with ensemble techniques. In the following
sub-sections, we provided in detail all the results
of the evaluation phase.

7.0.1 Task 1a
In task1a RoBERTa-large model outperformed all
models with 0.9669 F-score and 0.9590 accura-
cies. We used the hard-voting ensemble tech-
nique to improve our results using the top best five
achieved scores by RoBERTa-large and RoBERTa-
base model with different hyperparameters. We
have increased our solution performance and ac-
complished 4th place with a 0.9675 f-score and
0.9600 accuracies using this method. Table 6 shows
the ensemble results and the top best results for
RoBERTa model.

7.0.2 Task 1b
In task1b BERT-large-cased outperformed all mod-
els with 0.5468 RMSE. We improved the result
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# model LR Batch
Size

F-
Score

Accuracy

(1) RoBERTa-
base

1e-5 16 0.9654 0.9570

(2) RoBERTa-
base

1e-5 8 0.9660 0.9580

(3) RoBERTa-
large

1e-5 32 0.9661 0.9580

(4) RoBERTa-
large

1e-5 16 0.9663 0.9580

(5) RoBERTa-
large

1e-5 8 0.9669 0.9590

(6) * * * 0.9675 0.9600

Table 6: Top best experiments used for task 1a
in the evalution phase by RoBERTta(large/base)
model.*Ensemble for 1,2,3,4,5

with the same method of ensemble and hyperpa-
rameters used in the previous sub-task. We have
used the top best four achieved scores by BERT-
large-cased and BERT-base-cased model, and we
achieved 10th place with 0.5446 RMSE. Table 7
shows ensemble results and the top best results for
the BERT model.

# model LR Batch
Size

RMSE

(1) BERT-
base

1e-5 8 0.5492

(2) BERT-
base

1e-5 16 0.5475

(3) BERT-
large

1e-5 16 0.5468

(4) BERT-
large

1e-5 8 0.5498

(5) * * * 0.5446

Table 7: Top best experiments used for task 2 in the
evaluation phase by BERT(large/base). * Ensemble for
1,2,3,4

7.0.3 Task 1c
In task1c, we have implemented a method
consisting of top of the best task1a and task1b
results and using it. We accomplished third place
with a 0.6270 F-score and 0.4699 Accuracy.

7.0.4 Task 2
Task2 RoBERTa-large outperformed all other mod-
els with 0.4559 RMSE. We have used hard-voting

ensemble technique and various hyperparameters
with the top five best results by RoBERTa-large and
RoBERTa-base. Using this technique, we acheived
10th place with 0.4469 RMSE. Table 8 shows en-
semble results and top best results.

# model LR Batch
Size

RMSE

(1) RoBERTa-
base

1e-5 8 0.4828

(2) RoBERTa-
large

1e-5 32 0.4741

(3) RoBERTa-
large

1e-5 16 0.4609

(4) RoBERTa-
large

1e-5 8 0.4559

(5) * * * 0.4469

Table 8: Top best experiments used for task 2 in the
evaluation phase by RoBERTta(large/base) model. *
Ensemble for 1,2,3,4

7.1 Error Analysis

Our model was able to predict well in task 1a with
an F1-score of 0.9675, but in task 1c, the prediction
decreased with an F1-score of 0.52. Figures 2 and
3 show the confusion matrix for tasks 1a and 1c.
The reason for this is due to the distribution of the
datasets. In task 1a, the dataset was balanced, but in
task 1c, the dataset was imbalanced as it contained
null values.

Figure 2: confusion matrix for task 1a.

8 Conclusion

This paper presents and describes our solution sys-
tem for the SemEval2021 Task7: HaHackathon
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Figure 3: confusion matrix for task 1c.

detecting and rating humor and offense. We have
applied several pre-trained language models, such
as RoBERTa, BERT, ALBERT, and XLNET, with
hard-voting ensemble technique to detect humor
and offense mechanism. Our final solution was
based on BERT-large-cased model and RoBERTa-
large model, which showed remarkable improve-
ments and a high overall outperformance. Our
solution system ranked 4th place in task1a with a
0.9675 F-score, 10th place in task1b with a 0.5446
RMSE, 3rd place in task1c with a 0.6270 F-score,
and 10th place in task2 with a 0.4469 RMSE.
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towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin
Liu, Zhigang Yuan, and Yongfeng Huang. 2018.
Thu ngn at semeval-2018 task 3: Tweet irony de-
tection with densely connected lstm and multi-task
learning. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 51–56.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

533



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 534–540
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

UPB at SemEval-2021 Task 8: Extracting Semantic Information on
Measurements as Multi-Turn Question Answering

Andrei-Marius Avram1,2, George-Eduard Zaharia1,
Dumitru-Clementin Cercel1, Mihai Dascalu1

University Politehnica of Bucharest, Faculty of Automatic Control and Computers1

Research Institute for Artificial Intelligence, Romanian Academy2

{andrei marius.avram, george.zaharia0806}@stud.acs.upb.ro
{dumitru.cercel, mihai.dascalu}@upb.ro

Abstract

Extracting semantic information on measure-
ments and counts is an important topic in
terms of analyzing scientific discourses. The
8th task of SemEval-2021: Counts and Mea-
surements (MeasEval) aimed to boost research
in this direction by providing a new dataset
on which participants train their models to
extract meaningful information on measure-
ments from scientific texts. The competition
is composed of five subtasks that build on
top of each other: (1) quantity span identifi-
cation, (2) unit extraction from the identified
quantities and their value modifier classifica-
tion, (3) span identification for measured enti-
ties and measured properties, (4) qualifier span
identification, and (5) relation extraction be-
tween the identified quantities, measured en-
tities, measured properties, and qualifiers. We
approached these challenges by first identify-
ing the quantities, extracting their units of mea-
surement, classifying them with correspond-
ing modifiers, and afterwards using them to
jointly solve the last three subtasks in a multi-
turn question answering manner. Our best per-
forming model obtained an overlapping F1-
score of 36.91% on the test set.

1 Introduction

Our world revolves around quantities and units of
measurement present in all texts, ranging from sci-
entific texts to recipes. Nevertheless, the process of
automatically extracting measurements is not triv-
ial, considering that, in most situations, the quanti-
tative structures are ambiguous and are not present
in the same area within the text. Therefore, pars-
ing the semantic relations becomes a ubiquitous
task, since proper quantity identification leads to
transformations towards an easy to follow quan-
titative summary. Advantages of the previously
mentioned process can be found in medical pre-
scriptions (Adamo et al., 2015). As such, a system

that can robustly and confidently identify medi-
cation quantities, measurement units, as well as
the medication itself has the potential to become
a breakthrough for computer-based medicine and
consultations. Another use case resides in ERP sys-
tems where proper parsing of resource descriptions
facilitates the identification of similar or duplicate
items.

The MeasEval - Counts and Measurements com-
petition (Harper et al., 2021) organized by the 15th
International Workshop on Semantic Evaluation
(SemEval-2021) creates a new challenge in the
area of Natural Language Processing, proposing
five subtasks related to span identification, classi-
fication, as well as relation extraction, that aim to
improve the state of the art for the current field of
measurement information extraction. We created a
cascaded system to solve the stated problem that is
composed of: (1) a subsystem that identifies quan-
tities in the input text; (2) a subsystem that classi-
fies their value modifiers; (3) a subsystem that ex-
tracts their measurement unit; and (4) a subsystem
that then finds the appropriate measured entities,
measured properties, and qualifiers by asking ques-
tions related to entity-relations. Three pretrained
Transformer-based (Vaswani et al., 2017) language
models are experimented for subsystems (1) and
(4) of the cascaded system by fine-tuning them
on the specific task: Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2019), Robustly Optimized BERT Pretrain-
ing Approach (RoBERTa) (Liu et al., 2019), and
Science BERT (SciBERT) (Beltagy et al., 2019).
A character-level bidirectional Long Short-Term
Memory (BiLSTM) (Hochreiter and Schmidhuber,
1997) architecture was considered for subsystems
(2) and (3).

The rest of the paper is structured as follows.
The next section presents a series of solutions asso-
ciated with relation extraction, span identification,
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and measurement unit identification. The third sec-
tion outlines our approaches related to the subtasks
proposed by the competition. The fourth section
presents a performance evaluation of our systems
together with an error analysis, while the final sec-
tion concludes our work and outlines potential fu-
ture improvements.

2 Related Work

Span Identification. Papay et al. (2020) studied
the performance of various models designated for
different span identification tasks. Out of them,
we mention Conditional Random Fields (CRFs)
(Lafferty et al., 2001), LSTM cells with CRF,
BERT+CRF, LSTM+BERT+CRF, or handcrafted
features, usable with any of the previously men-
tioned models. At the same time, a language model
was specifically developed for the span identifica-
tion tasks, entitled SpanBERT (Joshi et al., 2020),
by masking an entire sequence instead of masking a
single word in its pretraining process. The authors
argued that SpanBERT obtained substantial gains
on span selection tasks, such as question answering
and coreference resolution.

Measurement Unit Identification. Berrahou
et al. (2013) proposed a two-step system for search
space size reduction, followed by unit extraction
from the previously obtained textual fragments.
Also, Hundman and Mattmann (2017) presented
a hybrid system composed of a CRF that identi-
fies quantities values and their units, followed by
a rule-based model to detect their corresponding
entities.

Relation Extraction. Zhang and Wang (2015)
adopted a model based on Recurrent Neural Net-
works (RNN) (Cho et al., 2014) composed of three
main elements: an embedding layer, a bidirectional
recurrent layer, followed by a max pooling layer
that produces the feature vector used for relation
classification. RNN-based models were also ap-
plied by Zhang et al. (2015) who adopted BiL-
STMs, or by Xiao and Liu (2016) who proposed
an architecture based on hierarchical RNNs along-
side an attention mechanism. Furthermore, several
convolutional neural network-based models with
various approaches were proposed, for example:
multi-level attention (Wang et al., 2016), attention-
based context vectors (Shen and Huang, 2016), or
multi-level features (word, lexical, sentence) (Zeng
et al., 2014). BiLSTMs are also present in the work
of Lee et al. (2019) who implemented a mechanism

based on entity-aware attention using latent entity
typing. Jin et al. (2020) approached the relation
extraction task by employing a Graph Neural Net-
work system that modeled each relation as a node
and learned the dependencies between the nodes.

3 Method

Our approach on MeasEval consisted of a cascade
system composed of individual subsystems for each
of the problems in the first two subtasks, and then
jointly solving the last three subtasks with a single
subsystem.

3.1 Quantity Identification

The subtask of identifying quantities in text was
formalized as a sequence labeling problem with In-
side–Outside–Beginning (IOB) tags (Ramshaw and
Marcus, 1999) that were predicted by a pretrained
language model with a CRF on top of predicted
logits, as proposed by Avram et al. (2020). The
architecture is depicted in Figure 1.

Figure 1: Quantity identification subsystem architec-
ture.

More formally, we project each output em-
bedding ei produced by the pretrained language
model into probability logits li by using a feed-
forward network with a ReLU activation as li =
ReLU(W T

l ei + bl), where Wl is the correspond-
ing weight matrix and bl is the corresponding bias.
Then, we model the output conditional probabil-
ities for each tag yi by using the CRF learning
algorithm, as depicted in Eq. 1:

p(y|l) = 1

Z
exp

{
n∑

i=1

W T
yi−1,yi li + byi−1,yi

}
(1)

where Wyi−1,yi and byi−1,yi are the weight matrix
and the bias of the CRF, and Z is a normalization
constant such that the probabilities sum up to one.
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Figure 2: Architectures used in unit extraction (left) and value modifiers classification (right) subsystems.

The entire subsystem is trained to maximizing
the log-likelihood of the data, while the Viterbi
algorithm (Forney, 1973) is used during inference
to find the most likely sequence of tags.

3.2 Unit Extraction and Value Modifier
Classification

For the second subtask, a character-level BiLSTM
extracts the units from quantities and classifies their
corresponding value modifiers. We approached the
unit extraction in a similar way as the quantity iden-
tification, by treating the problem as a sequence tag-
ging; however, the pretrained language model was
replaced with BiLSTM cells. Moreover, instead of
predicting a label for each character (token), we
instead averaged the BiLSTM hidden states and
projected their average in an eleven-dimensional
vector (i.e., number of possible value modifiers)
for the classification. Then, a sigmoid activation
function was applied to obtain a vector that con-
tains the probability of the quantity to belong to
a class at each index. The architectures used for
unit extraction and value modifiers classification
are depicted in Figure 2.

3.3 Joint Entity Identification and Relations
Extraction

Subtask Grouping. The last three subtasks were
grouped into a single subtask where a pretrained
language model was fine-tuned to jointly identify
three elements: the span of the measured entities,
the measured properties, and their corresponding
qualifiers. The model extracts the relations between
the three elements and the previously extracted
quantities using a multi-turn question answering
(QA) architecture, as proposed by Li et al. (2019).
The pretrained language models used for this task
were identical to the ones from the quantity identi-
fication subtask.

Question Templates. The input to the subsys-
tem is created by appending a question before the

text that denotes a possible relation between a given
and a target entity. There are a total of six question
templates that can be filled with the corresponding
entities that cover all the possible relations, as de-
picted in Table 1. Then, the questions are asked in a
specific order to correctly identify the relations and
the span of the entities. First, starting with a given
quantity, the model is asked to identify its mea-
sured properties. If a measured property is found,
the model marks its span and links it to the quan-
tity with the HasQuantity relation (question 1).
Second, the model is asked to identify the measured
entity with that corresponding measured property,
linking the two with the HasProperty relation
(question 2). Third, if no measured property is
found for a given quantity, the model is asked to di-
rectly identify the measured entity, marking the re-
lation between the measured entity and the quantity
directly with HasQuantity (question 3). Finally,
once all quantities, measured entities, and proper-
ties are identified, the model is asked to identify
corresponding qualifiers and marks the relations
accordingly (questions 4-6 in table).

Model Output. The architecture proposed in
(Devlin et al., 2019) for SQuAD 2.0 (Rajpurkar
et al., 2018) is employed to create the output of
the subtasks; as such, two vectors are used for fine-
tuning: a starting vector S and an ending vector
E. The probability of token i to be the start of
a span is computed as a dot-product between the
embedding Ti and the start vector S, followed by
a softmax applied over all the tokens of the input:
P = softmax(Ti · S). An analogous formula
computes the end probabilities of a span. Then, we
take the indices i and j are taken to compute the
most probable span for an entity, where i ≤ j max-
imizes the sum of log-likelihoods Ti · S + Tj · E.
We compare for each query the previously defined
maximum sum with the sum of the start and end
log-likelihoods of the [CLS] token snull because
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# Relation Type Question
1 HasQuantity What is the measured property of the quantity ?
2 HasProperty What is the measured entity that has the measured property of the quantity ?
3 HasQuantity What is the measured entity that has the quantity ?
4 Qualifies What is the qualifier corresponding to the quantity ?
5 Qualifies What is the qualifier corresponding to the measured entity ?
6 Qualifies What is the qualifier corresponding to the measured property ?

Table 1: Question templates for each relation type.

there can be questions without an answer1. If this
sum is higher, then there is no such type of relation-
ship for that entity. A threshold added to the snull
is considered in order to provide a higher granu-
larity between questions with or without answers,
which was tuned on the development set to maxi-
mize F1-score.

Figure 3 introduces our architecture for entity
recognition and relation extraction. The question
tokens marked with Qst and the paragraph tokens
marked with Tok are fed as input, while the start
S and the end E logits are present at output.

Figure 3: Joint entity recognition and relation extrac-
tion architecture as multi-turn question answering.

4 Performance Evaluation

4.1 Experimental Setup
Dataset Analysis and Processing. The provided
corpus for the competition was quite scarce, count-
ing 298 samples in both train and trial datasets.
The corpus contained texts from the scientific do-
main, counting a total of 7,979 unique words with
an average sentence length of approximately 160
words. For training our models, we merged the
train and trial subsets and randomly split them into
90% training and 10% development.

Pretrained Language Models. An Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate

1Only measured properties and qualifiers related questions
are allowed to not have an answer. Measured entity–related
questions must always have an answer.

of 2e-5 was used for training the subsystem of the
first and last three subtasks. We experimented with
the large versions of BERT and RoBERTa, and with
the base version of SciBERT because there are cur-
rently no implementations available online of its
large variant. Each subsystem was fine-tuned for
10 epochs; the subsystems that employed large lan-
guage model variants were trained with a batch size
of 2 due to the computational constraints, whereas
the subsystems that employed base language model
variants used a batch size of 8.

BiLSTM Networks. An Adam optimizer was
also employed for training the BiLSTM networks
of the second subtask, but with a learning rate of
1e-4. The models were trained for 25 epochs using
a batch size of 16. We stacked the LSTM cells
two times and used a hidden size of 64, with an
embedding of 32 dimensions for the characters.

4.2 Results

The results of each subsystem on the development
set are introduced in Table 3. SciBERT obtained
the highest F1-score on both quantity identification
and joint entity and relation extraction, although it
is smaller when compared with the other two mod-
els. On the second subtasks, the model achieved a
reasonable performance, 95.75% F1-score on unit
extraction and 88.94% F1-score on value modifier
classification.

The results of the cascaded system are presented
in Table 2 that introduces the global precision, re-
call, and F1-scores averaged across all subtasks,
as well as the exact match (EM) and overlap F1
scores2 between the gold annotations and our pre-
dictions. As opposed to the performance of each
subsystem on the development set where SciBERT
was the best performing model, RoBERTa obtained
the highest scores as a whole system, with an over-
lap F1-score of 39.05% on the development set and
36.91% on the test set, outperforming SciBERT

2The overlap F1-score was the metric by which the com-
petition systems were ranked.
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Avg. Precision Avg. Recall Avg. F1 EM Overlap F1
System Dev Test Dev Test Dev Test Dev Test Dev Test
BERT-related 61.10 58.69 52.28 48.05 56.63 52.84 31.61 25.58 36.72 32.69
RoBERTa-related 60.04 61.01 56.05 52.66 58.14 56.53 34.98 30.89 39.05 36.91
SciBERT-related 56.73 54.35 54.61 46.12 55.65 49.90 30.82 23.71 35.89 30.30

Table 2: Results averaged across all five subtasks on the development and test sets.

Subsystem Precision Recall F1
Quantity identification

RoBERTa-CRF 90.77 92.85 91.26
BERT-CRF 91.77 93.72 92.38
SciBERT-CRF 91.60 95.02 93.00
Unit extraction and value modifier classification
Unit Extraction 96.44 95.27 95.75
Value Modifiers 91.82 86.65 88.94
Joint relation extraction and entity identification
RoBERTa-QA 71.04 71.26 71.14
BERT-QA 72.18 71.09 71.63
SciBERT-QA 73.81 70.71 72.22

Table 3: Performance analysis on the development set.

with over 6% and over 3%, respectively. More
surprisingly, SciBERT also obtained a lower score
than BERT on both sets, having an overlap F1-
score lowered by 2% and 1%. We believe that
these differences between the scores of RoBERTa
and SciBERT were caused by the way the two mod-
els were evaluated as stand-alone subsystems or as
a whole system.

4.3 Error Analysis

Quantity Sensitivity. The main drawback in our
approach was that all other subtasks were highly
dependent on the quality of the extracted quantities
for the first subtask. To exemplify this, let us con-
sider the case where a modifier like ”approximate”
is missed before a quantity; afterwards, it would be
impossible to correctly classify its modifiers. An-
other use case is when the subsystem misses the
measuring unit, with the same effect on the unit
extractor. Moreover, we noticed that the joint en-
tity and relation extraction was especially sensible
to partially identified quantities, producing mostly
bad outputs in these cases.

Measured Unit Inference. Another limitation
of our approach emerges when the unit extractor
does not identify all units in a sequence tagging
style. This happened in cases when the unit was
split across several places in the quantity, or when it
had to be predicted from the context. For instance,

the correct unit would be ”m2” when encountering
a ”300 m x 400 m” quantity; however, our model
found only ”m” as unit.

Long Documents. Finally, several documents
had a longer sequence length than 512 tokens3

when tokenized, which surpasses the maximum
admitted length by the pretrained language models;
the workaround was to simply remove the tokens
after position 512. However, this solution has the
obvious effect of missing identifiable entities that
appear after this position.

5 Conclusions and Future Work

This paper introduces our approach that solves all
the five subtasks of the 8th task of SemEval-2021
competition in a cascaded manner. First, quantities
are identified as a sequence tagging task by using a
pretrained language model with a CRF layer. Then,
the measurement units are extracted and the mod-
ifiers are classified using BiLSTMs at character
level on the identified quantities. Finally, the mea-
sured entities, measured properties, and qualifiers
are jointly identified, together with their relations,
by using a multi-turn question answering approach
with hand-crafted questions specific to each rela-
tion type. Our best model obtained an F1-score
of 36.91% on the test set. We further emphasized
several limitations of our approach and showed that
the overall performance was highly sensitive to the
quality of the identified quantities.

A possible direction for future work is to test
the system using language models that can process
longer sequences, such as Longformer (Beltagy
et al., 2020) or BigBird (Zaheer et al., 2020), in
order to reduce the effect of missing entities simply
due to the sequence length. We also consider cre-
ating an ensemble model using several pretrained
language models to boost the overall performance,
as reported by Ionescu et al. (2020).

3Approximately 4% of the documents had more than 512
tokens for each pretrained language model.
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Abstract

This paper describes our contribution to Se-
mEval 2021 Task 1: Lexical Complexity Pre-
diction. In our approach, we leverage the
ELECTRA model and attempt to mirror the
data annotation scheme. Although the task is
a regression task, we show that we can treat it
as an aggregation of several classification and
regression models. This somewhat counter-
intuitive approach achieved an MAE score of
0.0654 for Sub-Task 1 and MAE of 0.0811 on
Sub-Task 2. Additionally, we used the concept
of weak supervision signals from Gloss-BERT
in our work, and it significantly improved the
MAE score in Sub-Task 1.

1 Introduction

With the rapid growth in digital pedagogy, English
has become an extremely popular language. Al-
though English is considered an easy language to
learn and grasp, a person’s choice of words often
affects texts’ readability. The use of difficult words
can potentially lead to a communication gap, thus
hampering language efficiency. Keeping these is-
sues in mind, many Natural Language Processing
tasks for text simplification have been recently pro-
posed (Paetzold and Specia, 2017; Sikka and Mago,
2020). Our task of lexical complexity prediction
is an important step in the process of simplifying
texts.
The SemEval 2021 Task 1 (Shardlow et al., 2021)
focuses on lexical complexity prediction in English.
Given a sentence and a token from it, we have to
predict the complexity score of the token. The task
has two Sub-Tasks-
Sub-Task 1: complexity prediction of single words
Sub-Task 2: complexity prediction of multi word
expressions (MWEs).
A word might seem complex because of 2 major

∗ Authors equally contributed to this work.

factors-
a) The word is less common or complex in itself.
b) The context in which the word is used makes it
hard to comprehend.
Observing the orthogonality of these two reasons,
we captured the context-dependent features and in-
dependent features separately, trained models on
them individually, and then combined the two us-
ing ensemble methods. We used the ELECTRA
(Clark et al., 2020) model for extracting context-
dependent features and GloVe embeddings (Pen-
nington et al., 2014) for representing the word-level
features.
Additionally, we propose a classification pipeline
that is trained on GloVe embeddings of the tokens.
This pipeline can be interpreted as a model for
capturing different annotators’ thought processes:
overconfidence, under-confidence and randomness.
We are making our code available for our models
and experiments via GitHub1.

2 Background

This task uses the CompLex dataset (Shardlow
et al., 2020), which is a lexical complexity predic-
tion dataset in English for single and multi word ex-
pressions (2-grams). Sentences in this task consists
of sentences taken from 3 corpora- Bible, Biomed
and Europarl. The train, validation and test split
of the data was 9179, 520, 1103 respectively. We
used the trial data as the validation set.
The aim of the task is to predict how complex a
given token in a given sentence is. More mathemat-
ically, given a tuple [s, t, c], where s = [t1, t2, ...tn]
and t = tj , we have to give an estimate of the func-
tion σ, such that σ(s, t) = c. (s is the sentence, t is
the token and c is the complexity score).
The earlier focus on this task has been through

1https://github.com/neilrs123/Lexical-Complexity-
Prediction
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the SemEval 2016 Task 11 (Paetzold and Specia
(2016a)). However, it was a binary classification
task. Most of the participating systems used Sup-
port Vector Machines such as Kuru (2016) and
Choubey and Pateria (2016), decision trees and ran-
dom forests (Choubey and Pateria (2016), Brooke
et al. (2016), Ronzano et al. (2016)), and even basic
threshold based approaches (Kauchak (2016), Mal-
masi et al. (2016)). Very few of them, including
Bingel et al. (2016) used neural networks. The sys-
tem by Wróbel (2016) achieved an F1 score very
close to the winning solution using only single fea-
ture - word frequency from Wikipedia. Most of
these systems use word embeddings, POS informa-
tion and word frequencies as features. The winning
system by Paetzold and Specia (2016b) however
uses 69 morphological, semantic and syntactic fea-
tures.
Another related shared task was presented at the
BEA workshop at 2018 (Yimam et al., 2018). It
had a probabilistic task as well as a binary classi-
fication task. Even there, the organizers conclude
that feature engineering has worked better than neu-
ral networks. The winning system by Gooding and
Kochmar (2018) uses feature engineering and later
random forest and linear regression models.

3 System Overview

Our proposed pipeline can be divided into the fol-
lowing 4 main components-
a) Feature Extraction
b) Regression Pipeline
c) Classification Pipeline
d) Ensemble
The pipeline is shown in Figure 3.

3.1 Feature Extraction

ELECTRA is a transformer based model, that is
trained like a discriminator and not like generator.
And in our case, this model performed exception-
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Figure 2: Convergence of losses for finetuning ELEC-
TRA with weak supervision

ally well on the validation data as compared to
BERT (Devlin et al., 2019).

We extracted context-dependent features using
embeddings generated from the ELECTRA model
and captured context-independent word-level fea-
tures using static 200-dimensional GloVe embed-
dings of the tokens.
In order to generate the embeddings of the tar-
get word through ELECTRA, we implemented
the KMP pattern matching algorithm (Wikipedia,
2021) to find the indices of the sub-tokens of the tar-
get token in the tokenized sentence. Subsequently,
we calculated an average across these sub-token
embeddings generated by ELECTRA.
While using GloVe embeddings, in the case of
multi-word expressions in Sub-Task 2, the average
of the embeddings of both token words was taken
as the feature vector. If a word was not present in
the GloVe dictionary, the GloVe embedding was
initialized to a 200-dimensional vector consisting
of zeros.

3.2 Regression Pipeline

The most natural way to look at the lexical complex-
ity prediction task is to treat it as a regression task.
The regression pipeline, a significant component of
our system, is based on this idea. For Sub-task 1,
in the regression pipeline, a pretrained ELECTRA
model was finetuned with a linear layer on top of
it. We leveraged the model directly available at
the Huggingface library (Wolf et al., 2020). Only
the last transformer layer of ELECTRA was kept
trainable. The remaining ones were kept frozen.
For Sub-task 2, a fixed ELECTRA model (non-
trainable weights) was used to generate token em-
beddings and a linear regression model was trained
with these extracted embeddings.
Weak Supervision: In order to have higher atten-
tion on the target word, the use of weak supervi-
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sion signals proved useful. Inspired by GlossBert
(Huang et al., 2019), the target word was wrapped
with single inverted commas (’ ’s) as a weak signal
to the transformer (Vaswani et al., 2017) model.
This technique significantly improved the results
obtained using the regression pipeline in subtask I.
However, the same technique applied to subtask II
made the scores worse.

Method Val MAE Test MAE

+ signal 0.06516 0.06800
- signal 0.06990 0.07118

Table 1: Variation of MAE scores with and without the
signalling technique for Sub-task 1: the single word
task. (’+ signal’ means weak supervision has been used
and ’- signal’ means otherwise.)

3.3 Classification Pipeline

Motivation from Annotation Procedure: An-
other way to look at the task is via a novel clas-
sification pipeline that is inspired from the data
annotation process that is explained in Shardlow
et al. (2020). Even though the task is a regres-
sion task, each data annotator performed a 5 class
classification-
Given a sentence and a token in the sentence, each
annotator had to select one class from among Very
Easy, Easy, Neutral, Difficult and Very Difficult.
Each of these classes was mapped to a discrete la-
bel between 0 and 1- namely 0, 0.25, 0.5, 0.75 and
1 respectively. The final complexity score was an
average of up to 20 such annotations.
The Classification Pipeline aims to model this data
annotation procedure. The main idea of this pro-
cess is to teach classification models how to anno-
tate data tuples. The three main components of this
scheme are-
a) Generating dummy annotations from complexity
scores b) Training classification models on dummy
annotations, and c) Aggregating all predicted anno-
tations to generate predicted complexity scores.
Generation of Dummy Annotations: A given
complexity score can be represented as a weighted
average of its lower and upper target classes and
the weights can be determined using the magnitude
of the complexity score. These weights then de-
termine the proportions of the two classes in the
set of dummy annotations for that data tuple. For
example, if the number of dummy annotators is
n = 5 and the complexity score of the training

example is c = 0.2, the lower and upper target
classes are low = 0 and high = 0.25, respec-
tively. Let α be the proportion of dummy annota-
tions with the lower target class. Correspondingly,
1 − α will be the proportion with the upper tar-
get class. The number of dummy annotations with
target class = low are given as floor(n∗α) and
that with target class = high as n−floor(n∗α).
α can be calculated using the equation-

c = α ∗ low + (1− α) ∗ high
We get α = 0.2. Hence, we have floor(n∗α) = 1
dummy annotations with target class = low(0)
and remaining 4 annotations with target class =
high(0.25). Hence, the dummy annotations set
for c = 0.2 is 0, 0.25, 0.25, 0.25, 0.25. Simi-
larly, the dummy annotations set for c = 0.8 is
0.75, 0.75, 0.75, 0.75, 1.
In this process, we also attempted to capture the
impact of intentional human errors made during
the data annotation procedure. Just like a weary or
uninterested annotator who would have randomly
selected for one of the five classes for a certain data
tuple, a small fraction of the dummy annotations
was assigned random values from the set contain-
ing 0, 0.25, 0.5, 0.75 and 1. This modification aims
to model the small-scale randomness in annotation
procedure.
Using this procedure, dummy annotation sets of
size n can be generated for any value of c, where
n can be treated as a hyperparameter. The value
n can also be interpreted as the number of classi-
fication models that are being trained in the next
step.
Classification Models: In a diverse set of annota-
tors, there will be over-confident annotators who
will select lower classes and there will be under-
confident annotators who will select upper classes.
Then there will be neutral annotators as well. By
ensuring that the dummy annotations are sorted,
we can say that the first classifier learns how to
annotate like the over-confident annotator, the last
classifier learns how to annotate like the under-
confident annotator and the classifiers in between
model the neutral annotators. We trained SVM clas-
sifiers with RBF kernels, using GloVe embeddings
of token words as features.
Aggregation of Predicted Annotations: The an-
notations were aggregated by simply taking the
average of all predicted class labels in order to ob-
tain the final predicted complexity scores. Each of
these models may have high individual variances,
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Complexity Score Dummy Annotations
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0.8 4 4 4 4 5

0.35 2 2 2 3 3
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Figure 3: A few worked out examples of generating
dummy annotations from complexity scores. For each
of these cases, the continuous labels 0,0.25,0.50,0.75
and 1 are mapped to categorical labels 1,2,3,4,5 and
then put into SVM. Clearly the labels of the 1st classi-
fier is less that that of the second one. i.e. on a scale of
confidence, the first classifier is at a lesser position. So
it models a less confident person.

but the ensemble tends to have lower variance and
bias. Also, any number of models can be inserted
in the ensemble without leading to over-fitting on
the train data.

3.4 Ensemble
In order to have a better bias variance trade off and
also to exploit the “expertise” of different pipelines,
the final approach incorporates both the regression
and classification pipelines to form an ensemble.
The final predicted complexity was obtained by
taking an ensemble of the predictions from the
regression and classification pipelines as described
above. The classification pipeline for both the Sub-
Tasks was based on GloVe embeddings as features
and SVM classifiers. The regression pipeline for
Sub-Task 1 was based on fine-tuning ELECTRA
with weak supervision and that for Sub-Task 2 was
based on features collected from ELECTRA model
(non-trainable) with a linear regression trained on
it.

4 Experimental Setup

The official evaluation metric for both the Sub-
Tasks was Pearson Correlation (standard for regres-
sion tasks). For both sub-tasks, the train/test/val
split as per the official release has been used. The
ELECTRA finetuning was done with an NVIDIA
GTX 1080 GPU with early stopping (93 epochs).
We used the MAE loss function to train the model
with an adam optimizer with lr = 1e−5, eps =
1e− 08 and weightdecay = 0 . Training set was
shuffled and the batch size was kept at 64. In the
ELECTRA model, the padding parameter was set

to True and maximum length was at 140. For the
SVM models the value of slack was chosen to be
1 and for SVM and Linear regresion the sklearn
(Pedregosa et al., 2011) library was used. All the
hyperparameters were tuned with a grid search
method.

5 Results

Results on Validation Data: The comparison of
the baseline results and our results obtained using
the regression pipeline, the classification pipeline
and the ensemble of the two models on the valida-
tion set (trial data) is given in Table 4.

Task Baseline Regre- Classi-
ssion fication
Pipeline Pipeline

Subtask
1

0.0853 0.0651 0.0641

Subtask
2

- 0.0840 0.0768

Table 2: Results on validation set (Mean Absolute Er-
rors)

Task MAE Pearson MSE
One 0.0623 0.8308 0.0065
Two 0.0727 0.8146 0.0087

Table 3: Results on Vaditation Set for final ensemble

Results on Test Data: Our results on the test data
along with the best results obtained for each task
are shown in Table 1.
The winning system’s pearson and MAE scores
on the test data are as follows: 0.7886 and 0.0609
for subtask I(single word expressions), 0.8612 and
0.0616 for subtask II(multi word expressions).

Task MAE Pearson MSE
One 0.0654 0.7511 0.0071
Two 0.0811 0.8277 0.0098

Table 4: Results on Test Set

6 Error Analysis

Analyzing all the experiments and the correspond-
ing results, the following can be concluded: a)
Word-level features as well as context-dependent
features need to be considered while determining
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complexity of a token. b) Approaches based on the
data annotation scheme are well suited to tackle the
lexical complexity prediction task. c) Ensemble
of a large number of simple models is an effective
way of tackling this task. d) Models with large
number of parameters like BERT () suffer heavily
due to overfitting, where as ELECTRA base prove
to be much better.
The model architectures that were tried out in ear-
lier stages showed similar trends. For example,
ELECTRA finetuning produced much better scores
than BERT finetuning. Also, simpler models like
a simple linear regression on GloVe embeddings
showed promise, proving that simpler models with
lesser parameters worked better. All these trends
across those models are visually shown in Figure
4. It was observed that the model was underper-
forming on the tuples from Biomed corpus. How-
ever the scores did not improve using BERT vari-
ants like BioBERT (Lee et al., 2019), BioMed-
BERT (Chakraborty et al., 2020) and a few other
transformer based models pretrained on biomedi-
cal texts. A variant of ELECTRA on biomedical
texts could have improve on this, however due to
its unavailability it could not be tried out.
In majority of the prior work on LCP, there is abun-
dance use of word frequency as a feature. However,
in this system the scores got worse when frequency
features were used along with others in ensemble.
And the feature in itself could not produce compet-
itive results. Previously, Gong et al. (2020) and Mu
et al. (2018) have shown that frequency informa-
tion causes significant distortion in the embedding
space. We also hypothesize that the frequency in-
formation in GloVe embeddings help us in this
regard.

7 Conclusion

In this paper we presented a system for lexical com-
plexity prediction in the form of a regression task.
The proposed system’s primary novelty is in treat-
ing it as a classification task and trying to model
the annotation scheme. An ensemble of these clas-
sification models and vanilla fine-tuning of ELEC-
TRA model proved to be very useful. Also the
weak supervision based approach gave the scores a
significant boost for the Sub-Task 1.
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Abstract

This paper describes team LCP-RIT’s sub-
mission to the SemEval-2021 Task 1: Lex-
ical Complexity Prediction (LCP). The task
organizers provided participants with an aug-
mented version of CompLex (Shardlow et al.,
2020), an English multi-domain dataset in
which words in context were annotated with
respect to their complexity using a five point
Likert scale. Our system uses logistic regres-
sion and a wide range of linguistic features
(e.g. psycholinguistic features, n-grams, word
frequency, POS tags) to predict the complexity
of single words in this dataset. We analyze the
impact of different linguistic features on the
classification performance and we evaluate the
results in terms of mean absolute error, mean
squared error, Pearson correlation, and Spear-
man correlation.

1 Introduction

Lexical complexity prediction (LCP) is the task of
predicting the complexity value of a target word
within a given text (Shardlow et al., 2020). Com-
plexity within LCP is used as a “synonym for diffi-
culty” (Malmasi and Zampieri, 2016)1. A complex
word is therefore a word that a target population
may find difficult to understand. Various LCP sys-
tems have been designed to identify words that
may be found to be complex for children (Kajiwara
et al., 2013), language learners (Malmasi et al.,
2016), or people suffering from a reading disability,
such as dyslexia (Rello et al., 2013). These sys-
tems have been utilized within assistive language
technologies, lexical simplification systems, and in
a variety of other applications.

LCP is related to complex word identification
(CWI) (Paetzold and Specia, 2016). CWI is mod-
eled as a binary classification task by assigning
each target word with a complex or non-complex

1The term “complex” within LCP is not necessarily related
to the terms simplex and complex used in morphology.

label. The shortcomings of modeling lexical com-
plexity using binary labels have been discussed in
previous work (Zampieri et al., 2017; Maddela and
Xu, 2018), motivating the organization of SemEval-
2021 Task 1: Lexical Complexity Prediction.2 LCP
models complexity in a continuum and the goal is
to predict a target word’s degree of complexity by
assigning it a value between 0 and 1. This value
may then correspond to one of the following la-
bels: very easy (0), easy (0-0.25), neutral (0.25-
0.5), difficult (0.5-0.75), or very difficult (0.75-1)
(Shardlow et al., 2020).

In this paper, we describe (in detail in Section 4)
the LCP-RIT entry to SemEval-2021 Task 1. We
approached LCP from a feature engineering per-
spective with a particular focus on the adoption
of psycholinguistic features, such as average age-
of-acquisition (AoA), familiarity, prevalence, con-
creteness, and arousal, alongside the use of prior
complexity labels. Our submitted system utilized
a combination of these linguistic features, which
we compared to a baseline model that only used
statistical features: word length, word frequency
and syllable count (Quijada and Medero, 2016;
Mukherjee et al., 2016). On our training dataset,
our submitted system achieved a mean absolute er-
ror (MAE) of 0.067, mean squared error (MSE) of
0.007, Person Correlation (R) score of 0.779, and
a Spearman Correlation (ρ) score of 0.724. This
surpassed our baseline model’s performance by a
MAE of 0.008, MSE of 0.003, as well as R and ρ
scores of 0.075 and 0.062 respectively.

2 Related Work

Before SemEval-2021 Task 1: LCP, two CWI
shared tasks were organized at one SemEval-2016
and the other at BEA-2018 (Paetzold and Specia,
2016; Yimam et al., 2018). While the first CWI
provided participants with an English dataset, the

2https://sites.google.com/view/
lcpsharedtask2021/home
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second provided a multilingual dataset. The sys-
tems submitted to the English track of the second
shared task (Yimam et al., 2018) performed better
overall than the previous task (Paetzold and Specia,
2016), probably due to the properties of the two
datasets (Zampieri et al., 2017). State-of-the-art
neural net models and word embedding models
performed worse than conventional models such
as decision trees (DTs) and random forests (RFs)
(Yimam et al., 2018). Among the conventional
models, the use of statistical, character n-gram, and
psycholinguistic features was found to be highly
effective in improving CWI performance (Malmasi
et al., 2016; Zampieri et al., 2016; Paetzold and
Specia, 2016; Yimam et al., 2018).

Among the best performing systems in CWI
2018, Gooding and Kochmar (2018) used an en-
semble of classifiers. They found that during their
system’s development, the boosting classifier Ad-
aBoost, a random forest classifier, or a combina-
tion of both classifiers achieved the highest per-
formance. These systems used multiple features
such as the word’s grammatical category, Google
character n-gram frequency as well as a range of
psycholinguistic features (Gooding and Kochmar,
2018).

Of the remaining systems, Aroyehun et al.
(2018) and Hartmann and Borges dos Santos (2018)
utilized statistical features, such as word length and
number of syllables, psycholinguistic features such
as familiarity, age of acquisition, concreteness, and
imagery scores, and word n-grams. Hartmann and
Borges dos Santos (2018) compared the perfor-
mance of tree ensembles to a convolutional neural
network (CNN). They found that their tree ensem-
bles performed better than their CNN, especially
when the target expression contained more than
three words (Aroyehun et al., 2018).

3 Task and Dataset

The LCP shared task organizers provided partici-
pants with the CompLex corpus, an English multi-
domain dataset with sentences from the Bible, the
European Parliament proceedings, and a collection
of biomedical texts. A pool of annotators, using a
five point Likert scale, labeled the complexity of
single words and multi-word expressions in Com-
pLex (Shardlow et al., 2020).

Taking advantage of the annotation of single
words and multi-word expressions, the LCP shared
task was divided into two sub-tasks as follows:

• Sub-task 1: predicting the complexity score
for single words;

• Sub-task 2: predicting the complexity score
for multi-word expressions.

We chose to participate in sub-task 1. Sub-Task
1’s training dataset contained 7,662 instances with
its test dataset having 917 instances. 20% of the
training dataset was used to test our system’s perfor-
mance during development. Sub-Task 1 received
54 system submissions.

4 System Overview

4.1 Model
Taking inspiration from the CWI systems discussed
in Section 2, we adopted a random forest regres-
sor (RFR) to predict the complexity values of each
word within the test dataset. To achieve this, we
tested the impact a variety of linguistic features
have on LCP performance during our system’s de-
velopment. The RFR was taken from scikit-learn’s
ensemble module (Pedregosa et al., 2011). The
RFR used a maximum of 120 trees and 750 fea-
tures.

4.2 Features
We constructed a baseline RFR using the follow-
ing statistical features and character trigrams. We
then used psycholinguistic and additional features
to see whether its baseline performance could be
improved.

Statistical Features include word length, word
frequency and syllable count. Zipf’s Law implies
that words that appear less frequently within a text
are likely to be longer and therefore may be con-
sidered more complex than words that are more
frequent and shorter (Quijada and Medero, 2016).
In addition, words with a high number of syllables
are difficult to pronounce and are subsequently hard
to read (Mukherjee et al., 2016). As such, word
length, word frequency and syllable count were
considered to be good baseline statistical indicators
of a word’s complexity value.

Character N-grams include the use of charac-
ter bigram and trigram frequencies. These frequen-
cies were calculated by counting each bigram’s
and trigram’s presence in the target words provided
in Sub-Task 1’s training dataset. Experimentation
with bigrams and trigrams, along with a combi-
nation of both, found that the use of trigrams on
their own was superior. This together with their use
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within prior CWI systems justified their inclusion
within our baseline model (Yimam et al., 2018).

Psycholinguistic Features include average age
of acquisition (AoA), concreteness, familiarity,
prevalence and arousal. AoA is the age at which
a word’s meaning is first learned. Concreteness
refers to “the degree to which the concept denoted
by a word refers to a perceptible entity” (Brysbaert
et al., 2013). Familiarity and prevalence are some-
what similar. Familiarity is how well known the
word is to an individual and was obtained through
self-report (Gilhooly and Logie, 1980). Prevalence
was calculated in accordance to the percentage of
people who knew the word (Brysbaert et al., 2019).
Lastly, arousal is a measure of how active or passive
a word’s meaning is interpreted as being3. For in-
stance, the word “nervous” indicates more arousal
than “lazy” (Mohammad, 2018). As such, gram-
matical categories such as adjectives, verbs, and
adverbs may incite higher levels of arousal than
nouns.

Average AoA was calculated by averaging
the AoAs provided in the Living Word Vocab-
ulary Dataset (Dale and O’Rourke, 1981) with
an updated version of this dataset (Brysbaert and
Biemiller, 2017). Both datasets consisted of AoA
values for 44,000 English word meanings. Con-
creteness, familiarity and arousal values were taken
from the MRC Psycholinguistic Database (Wilson,
1988) as well as three newer datasets each con-
taining 37,058, 61,858 and 20,000 English words
(Brysbaert et al., 2013, 2019; Mohammad, 2018).

Additional Features include part-of-speech
(POS) tags as well as prior complexity labels. POS
tags were generated by using the Python Natural
Language Toolkit (Bird et al., 2009). Prior com-
plexity labels were taken from the previous CWI
shared tasks (Paetzold and Specia, 2016; Yimam
et al., 2018) and the Word Complexity Lexicon
(Maddela and Xu, 2018). A combined dataset was
then created that contained a total of 26,088 En-
glish words each with a binary complexity value.

5 Evaluation

5.1 Features

To determine the effect each feature had on our
baseline model’s performance, we used the fol-

3The terms “active” and “passive” do not refer to the use
of active or passive voice but rather the emotional or physi-
cal intensity associated with a word’s meaning (Mohammad,
2018).

lowing scores: mean absolute error (MAE), mean
squared error (MSE), Pearson Correlation (R) and
Spearman Correlation (ρ). Table 1 depicts each fea-
ture’s performance on the training dataset. These
criteria have also been used in the SemEval LCP
test set evaluation.

Average AoA decreased the baseline model’s
MAE and MSE by 0.004 and 0.001 respectively.
It likewise increased its R and ρ scores by 0.039.
This generated the second highest R and ρ scores
of 0.743 and 0.701 respectively. Average AoA is
therefore a useful feature for LCP.

Brysbaert et al.’s prevalence and concreteness
(Brysbaert et al., 2013, 2019) were also seen to
improve the baseline model’s performance with
prevalence being the most notable. Prevalence de-
creased baseline MAE and MSE scores by 0.005
and 0.002 respectively. It also surpassed baseline
R by 0.054 and ρ by 0.047, yielding the highest
increases among all features. Concreteness (Brys-
baert et al., 2013) also caused a slight increase
in the baseline model’s scores, being greater than
that caused by MRC concreteness. Concreteness
values (Brysbaert et al., 2013) increased the base-
line model’s R and ρ scores by 0.032 and 0.024
respectively, whereas the MRC concreteness val-
ues resulted in a slightly less impressive increase
of 0.019 in both its R and ρ scores. However, there
was little-to-no difference in MAE and MSE pro-
duced by either set of concreteness values.

Performance
Features R ρ MAE MSE
Baseline Features 0.704 0.662 0.075 0.010
Average AoAs 0.743 0.701 0.071 0.009
Prevalence 0.758 0.709 0.070 0.008
MRC Familiarity 0.727 0.687 0.073 0.009
Concreteness 0.736 0.686 0.072 0.009
MRC Concreteness 0.723 0.681 0.073 0.009
Arousal 0.722 0.676 0.074 0.009
POS Tags 0.701 0.663 0.075 0.010
Complexity Labels 0.727 0.686 0.072 0.009

Table 1: Feature performance on training dataset. The
baseline model uses the statistical features and charac-
ter trigrams. Best results in bold.

Two possible conclusions can be drawn: 1). The
difference in the calculation of prevalence versus
that of familiarity likely causes prevalence to be a
greater indicator of word complexity4, and 2). The

4Prevalence being the percentage of people who. know the
word (Brysbaert et al., 2019). Familiarity being a self-reported
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superior coverage of Brysbeart et al.’s prevalence
(2018) and concreteness (2013) datasets (Brysbaert
et al., 2019, 2013): being 52.62% and 57.51% re-
spectively, compared to that of the MRC Psycholin-
guistic Database (Wilson, 1988): being 23.44%,
suggests that there now exists larger and more up-
to-date psycholinguistic datasets that are more use-
ful for LCP feature engineering.

Arousal has never before been used for LCP or
CWI. Due to its ability to differentiate grammatical
categories, such as nouns and verbs, along with its
ability to signify a word’s intensity, we had spec-
ulated that arousal would be able to help predict
a word’s complexity. Arousal was found to have
no significant effect on the baseline model’s perfor-
mance. Nevertheless, once added to our submitted
system, it slightly decreased its MSE by 0.001 and
increased its R and ρ scores by 0.002 and 0.001
respectively.

POS tags was the worst performing feature as
POS tags had little affect on improving our model’s
performance. It achieved the same MAE and MSE
values as our baseline model: 0.075 and 0.01 re-
spectively. Regarding R score, only a slight in-
crease of 0.001 was observed. POS tags was the
only feature that saw a decrease in our model’s ρ
score, worsening its performance by 0.003. This
suggests that a word’s grammatical category may
not impact its degree of complexity. This is also
supported by Arousal’s lack of improved perfor-
mance.

Given that prior complexity labels are directly
related to complexity prediction, it was believed
that they would be the most influential in improv-
ing overall performance. Instead, AoA, prevalence
and concreteness were all found to be more bene-
ficial with higher or identical MAE, MSE, ρ, and
R scores. Complexity labels only saw a slight de-
crease in MAE and MSE by 0.003 and 0.001 re-
spectively and a slight increase in ρ and R scores
by 0.023 and 0.024 respectively. The binary na-
ture of prior CWI datasets is likely responsible for
this phenomenon, as binary 0 or 1 complexity val-
ues are not well suited for a regression-based task,
such as LCP. This would have resulted in the same
problem faced by previous CWI systems: the mis-
classification of words on the decision boundary.

measure of an individual’s awareness of the word (Gilhooly
and Logie, 1980).

5.2 Models
The results for the three models on the training
dataset are presented in Table 2. This is then fol-
lowed by a short description of each model as well
as our performance on the test dataset.

Performance
Model R ρ MAE MSE
Model 1 0.772 0.717 0.068 0.008
Model 2 0.777 0.724 0.067 0.008
LCP-RIT 0.779 0.724 0.067 0.007

Table 2: Model performance on training dataset.

Model 1 - Top 3 Features: Adding the top 3 fea-
tures of average AoA, prevalence and concreteness
to our baseline model reduced its MAE and MSE
by 0.007 and 0.002 respectively and increased its
R score by 0.068 and its ρ score by 0.055. It at-
tained a new MAE of 0.068 which was noticeably
better than our baseline model’s previous MAE of
0.075. This goes to the show that inclusion of psy-
cholinguistic features has a positive impact on the
performance of an LCP system.

Model 2 - Top 5 Features: A small improve-
ment was seen after adding the fourth and fifth
best performing features to Model 1, namely, MRC
familiarity and prior complexity labels. Model 2
increased Model 1’s R and ρ scores by 0.005 and
0.007. However, it failed to improve Model 1’s
MAE or MSE. This small increase in performance
was due to the prior top 3 features of average AoA,
prevalence and concreteness already having cap-
tured those instances caught by MRC familiarity
and prior complexity labels. This further proves the
redundancy of the MRC Psycholinguistic Database
(Wilson, 1988) as well as binary complexity labels
for LCP feature engineering.

LCP-RIT: Our final model submitted to the offi-
cial evaluation used the psycholinguistic features of
average AoA, prevalence, concreteness and arousal
together with our baseline model’s features of word
length, syllable count, word frequency and char-
acter trigrams to predict the lexical complexity of
single words. On the training dataset of SemEval-
2021 Task 1: LCP, we achieved a MAE of 0.067,
MSE of 0.007, R score of 0.779, and ρ score 0.724.
We performed less well on the single word test
dataset with an MAE and MSE of 0.072 and 0.009
respectively and ρ and R scores of 0.709 and 0.653
respectively. This reduced performance may be
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indicative of our submitted system being overfit on
our training dataset.

6 Conclusion

We carried out multiple experiments evaluating
the impact of linguistics features in LCP using the
CompLex dataset for English. We have shown that
several psycholinguistic features help with LCP.
Average AoA, prevalence and concreteness were
all found to be beneficial, whereas MRC famil-
iarly, MRC concreteness and prior complexity la-
bels were proven to be redundant. We would like to
explore other features described in Shardlow et al.
(2021). In terms of performance, we believe that
the multiple features we tested allowed us to get
close to the maximum performance for this dataset
using regression. A possible alternative for better
performance is to test state-of-the-art transformer
models. Furthermore, we are interested in looking
at the performance of these features for LCP in
languages other than English and for multilingual
datasets.

Acknowledgments

We would like to thank the LCP shared task orga-
nizers for proposing this interesting shared task and
for making the data available.

References
Segun Taofeek Aroyehun, Jason Angel, Daniel Alejan-
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Abstract
This paper revisits feature engineering ap-
proaches for predicting the complexity level
of English words in a particular context using
regression techniques. Our best submission
to the Lexical Complexity Prediction (LCP)
shared task was ranked 3rd out of 48 systems
for sub-task 1 and achieved Pearson correlation
coefficients of 0.779 and 0.809 for single words
and multi-word expressions respectively. The
conclusion is that a combination of lexical, con-
textual and semantic features can still produce
strong baselines when compared against human
judgement.

1 Introduction

Lexical complexity is a factor usually linked to
poor reading comprehension (Dubay, 2004) and
the development of language barriers for target
reader groups such as second language learners
(Saquete et al., 2013) or native speakers with low
literacy levels, effectively making texts less acces-
sible (Rello et al., 2013). For this reason, complex
word identification (CWI) is often an important
sub-task in several human language technologies
such as text simplification (Siddharthan, 2004) or
readability assessment (Collins-Thompson, 2014).

The Lexical Complexity Prediction (LCP)
shared task of Semeval-2021 (Shardlow et al.,
2021) proposes the evaluation of CWI systems by
predicting the complexity value of English words
in context. LCP is divided into two sub-tasks: Sub-
task 1, predicting the complexity score for single
words; Sub-task 2: predicting the complexity score
for multi-word expressions. In our participation in
both sub-tasks, we treat the identification of com-
plex words as a regression problem, where each
word is given a score between 1 and 5, given the
sentence in which it occurs. In order to do this,
we have evaluated sub-sets of word and sentence
features against different machine learning models.

Our best submissions achieved Pearson correlation
coefficients of 0.779 and 0.809 for single words
and multi-word expressions respectively.

In Section 2 we review related work for this
task. Section 3 and 4 introduce the data and feature
engineering approaches respectively. In Section
5 the performance of different machine learning
models is analysed. In Section 6 we present the
obtained results. Finally, in Section 7 we draw our
conclusions and outline future work.

2 Related Work

Previous CWI studies applied to the English lan-
guage have relied mostly on word frequencies, psy-
cholinguistic information (Devlin and Tait, 1998),
lexicons and other word-based features such as
number of characters or syllable counts (Shardlow,
2013), which considered in most cases the target
word in isolation. In order to address the limita-
tions of word-level approaches more recent work
made use of contextual and sentence information
such as measuring the complexity of word n-grams
(Ligozat et al., 2012), applying language models
(Maddela and Xu, 2018) or treating the problem as
a sequence labelling task (Gooding and Kochmar,
2019).

In this paper, we not only evaluate many of the
traditional word-based features found in the lit-
erature but we also pay attention to the context
surrounding the target by generating additional bi-
gram and sentence features. In the end, we demon-
strate that a careful selection of simple features is
still competitive against more novel approaches for
this task.

3 Datasets

CompLex (Shardlow et al., 2020), which was the
official dataset provided by the organizers, contains
complexity annotations using a 5-point Likert scale
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for 7,662 words and 1,517 multi-word expressions
(MWE) from three domains: the Bible, Europarl,
and biomedical texts.

External datasets and models are historically al-
lowed and used in SemEval as a way of comple-
menting the original training set. Likewise, based
on previous experiences, external resources can
also correlate better with the evaluation labels than
the official task resources in certain scenarios (Mos-
quera, 2020). For this reason, related datasets from
previous CWI shared tasks such as CWI 2016 (Paet-
zold and Specia, 2016) and CWI 2018 (Štajner
et al., 2018) were considered and evaluated as both
extra training data and for deriving additional fea-
tures. However, the performance of our models
during the validation step not only didn’t improve
but worsened when attempting to use them.

4 Feature Engineering

The 51 features used in order to detect the complex-
ity of single words and each component of MWEs
are as follows:

Word length (word len): The length in charac-
ters of the target word.

Syllable count (syl count): Target word syllable
count.

Morpheme length (morpheme len): Number of
morphemes for the target word.

Google frequency (google freq): The frequency
of the target word based on a subset Google ngram
corpus 1.

Wikipedia word frequency (wiki freq1): The
frequency of the target word based on Wikipedia 2.

Wikipedia document frequency (wiki freq2):
The number of documents in Wikpedia where the
target word appears.

Complexity score (comp lex): Complexity
score for the target word from a complexity lex-
icon (Maddela and Xu, 2018).

Number of morphemes (morpheme len): Num-
ber of morphemes in the target word.

Zipf frequency (zip freq): The frequency of
the target word in Zipf-scale as provided by the
wordfreq (Speer et al., 2018) Python library.

Kucera-Francis word (kucera francis): Kucera-
Francis (Kucera et al., 1967) frequency of the target
word.

1https://github.com/hackerb9/gwordlist
2https://github.com/alex-pro-dev/english-words-by-

frequency/blob/master/wikipedia words.zip

Kucera-Francis lemma (st kucera francis):
Kucera-Francis (Kucera et al., 1967) frequency of
the target word lemma.

Is stopword (stop): True if the target word is an
stopword.

Is acronym (acro): Heuristic that is set to True
if the target word is a potential acronym based on
simple casing rules.

Average age of acquisition (age): At what age
the target word is most likely to enter someone’s
vocabulary (Kuperman et al., 2012).

Average concreteness (concrete): Concreted-
ness rating for the target word (Brysbaert et al.,
2014).

Lemma length (lemma len): Lemma length of
the target word.

Word frequency (COCA) (word freq): Fre-
quency of the target word based on the COCA
corpus (Davies, 2008).

Lemma frequency (COCA) (lemma freq): Fre-
quency of the lemmatized target word based on the
COCA corpus (Davies, 2008).

(consonant freq): Frequency of consonants in
the target word.

Number word senses (wn senses): Number of
senses of the target word extracted from WordNet
(Fellbaum, 2010).

Number of synonyms (synonyms): Number of
synonyms of the target word from WordNet.

Number of hypernyms (hypernyms): Number
of hypernyms of the target word from WordNet.

Number of hyponyms (hyponyms): Number of
hyponyms of the target word from WordNet.

WordNet min-depth (wn mindepth): Minimum
distance to the root hypernym in WordNet for the
target word.

WordNet max-depth (wn maxdepth): Maxi-
mum distance to the root hypernym in WordNet for
the target word.

Number of Greek or Latin affixes
(greek or latin affix): True if the target word
contains Greek or Latin affixes 3.

Bing frequency (bing counts): The frequency
of the target word based on the Bing n-gram corpus
(Wang et al., 2010).

Bi-gram frequency (ph mc2): Bi-gram fre-
quency for the target and its preceding word in
Google Books Ngram Dataset obtained via the
phrasefinder API 4.

3https://github.com/sheffieldnlp/cwi
4https://phrasefinder.io/api
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Volume count (ph vc2): The number of books
where the target and its preceding word appeared
in the Google Books Ngram Dataset obtained via
the phrasefinder API.

Year of appearance (ph fy2): The first year
where the target and its preceding word appeared
in the Google Books Ngram Dataset obtained via
the phrasefinder API.

SUBTLEX-US frequency (FREQcount): Tar-
get word frequency based on SUBTLEX-US cor-
pus (Brysbaert et al., 2012).

SUBTLEX-US number of films (CDcount):
Number of films in which the target word appears
in the SUBTLEX-US corpus.

SUBTLEX-US frequency lowercase (FRE-
Qlow): Number of times the target word appears
in the SUBTLEX-US corpus starting with a lower-
case letter

SUBTLEX-US number of films lowercase (Cd-
low): Number of films in which the target word
appears starting with a lower-case letter in the
SUBTLEX-US corpus.

SUBTLEX-US frequency per million (SUB-
TLWF): Target word frequency per million words
in the SUBTLEX-US corpus.

SUBTLEX-US log frequency (Lg10WF): The
base-10 logarithm of the absolute frequency of the
target word plus one in the SUBTLEX-US corpus.

SUBTLEX-US percentage of films (SUB-
TLCD): The percentage of the films where the
target word appears in the SUBTLEX-US corpus.

SUBTLEX-US log number of films (Lg10CD):
The base-10 logarithm of the number of films in
which the target word appears in the SUBTLEX-
US corpus.

SUBTLEX-UK frequency (LogFreqZipf): The
base-10 logarithm of the target word frequency
in Zipf-scale for the SUBTLEX-UK corpus
(Van Heuven et al., 2014).

SUBTLEX-UK Cbeebies frequency (LogFre-
qCbeebiesZipf): The base-10 logarithm of the tar-
get word frequency in Zipf-scale for the Cbeebies
subset of SUBTLEX-UK corpus

SUBTLEX-UK CBBC frequency (LogFreqCB-
BCZipf): The base-10 logarithm of the target word
frequency in Zipf-scale for the CBBC subset of
SUBTLEX-UK corpus

SUBTLEX-UK BNC frequency (LogFreqB-
NCZipf): The base-10 logarithm of the target word
frequency in Zipf-scale for the BNC subset of
SUBTLEX-UK corpus

ANC word frequency (anc): Frequency of the
target word based on the American National Cor-
pus (ANC) (Ide and Macleod, 2001).

Kincaid grade level (sentence Kincaid): Kin-
caid grade level of the whole sentence.

ARI score (sentence ARI): Automated readabil-
ity index (Senter and Smith, 1967) of the whole
sentence.

Coleman-Liau score (sentence Coleman-Liau):
Coleman-Liau readability score (Coleman and
Liau, 1975) of the whole sentence.

Flesch score (sentence FleschReadingEase):
Flesh reading ease score (Flesch, 1948) of the
whole sentence.

Gunning-Fog (sentence GunningFogIndex):
Gunning-Fog readability index (Gunning et al.,
1952) of the whole sentence.

LIX score (sentence LIX): LIX readability
score (Anderson, 1983) of the whole sentence.

SMOG index (sentence SMOGIndex): SMOG
readability index (Mc Laughlin, 1969) of the whole
sentence.

RIX score (sentence RIX): RIX readability
score (Anderson, 1983) of the whole sentence.

Dale-Chall index (sentence DaleChallIndex):
Dale-Chall readability index (Chall and Dale, 1995)
of the whole sentence.

All the readability features were calculated using
the readability Python library 5.

5 Machine Learning Approach

Since the labels in the training dataset were continu-
ous we have modelled both sub-tasks as regression
problems. For sub-task 1, we made use of Light-
GBM (LGB) (Ke et al., 2017) implementation of
gradient tree boosting. Minimal hyper-parameter
optimization was performed against our develop-
ment set, using a 0.01 learning rate and limiting
the number of leaves of each tree to 30 over 500
boosting iterations.

For sub-task 2, the complexity score of each
MWE component was obtained by using a linear
regression (LR) model and averaged with equal
weights.

By examining the feature importance for both the
LGB model in Figure 2 and the LR model in Fig-
ure 3 we can observe several sentence readability
features being identified as top contributors. While
some degree of correlation between the complex-
ity of the sentence and the target word was expect

5https://github.com/andreasvc/readability
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a priori, a machine learning model can also use
sentence-level complexity as a predictor of formal-
ity and genre (Mosquera and Moreda, 2011), thus
being able to differentiate between the different
sub-corpora present in the training data as seen in
Figure 1 .

Figure 1: Example of differences in readability across
the CompLex sub-corpora as measured by the Dale-
Chall index.

Figure 2: LGB feature importance as the number of
times the feature is used in the model.

Figure 3: Linear regression weights.

Model Dev Trial Test
Sub-task 1 LR 0.789 0.798 0.760
Sub-task 1 RF 0.792 0.824 0.766
Sub-task 1 LGB 0.801 0.841 0.779
Sub-task 2 LR 0.771 0.780 0.809
Sub-task 1 winner 0.788
Sub-task 2 winner 0.861

Table 1: Performance comparison of different models
for each sub-task and evaluation set using Pearson’s r.

6 Results

For sub-task 1, we have evaluated the performance
of both linear and tree ensembles using the pro-
vided trial set and a randomly selected holdout
with 30% of the training data as development set.
The best performing model was gradient boosting.
See Table 1.

7 Conclusion and Future Work

In this paper, we present the system developed for
the Lexical Complexity Prediction task of SemEval
2021. Even though most of the features we made
use of are relatively common in previous works, we
demonstrate that a careful selection of lexical, con-
textual and semantic features at both target word
and sentence level can still produce competitive
results for this task. In a future work we would
like to explore different neural network architec-
tures and automated machine learning (AutoML)
approaches.

References
Jonathan Anderson. 1983. Lix and rix: Variations on a

little-known readability index. Journal of Reading,
26(6):490–496.

Marc Brysbaert, Boris New, and Emmanuel Keuleers.
2012. Adding part-of-speech information to the
subtlex-us word frequencies. Behavior research
methods, 44(4):991–997.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2014. Concreteness ratings for 40 thousand
generally known english word lemmas. Behavior
research methods, 46(3):904–911.

Jeanne Sternlicht Chall and Edgar Dale. 1995. Readabil-
ity revisited: The new Dale-Chall readability formula.
Brookline Books.

Meri Coleman and Ta Lin Liau. 1975. A computer
readability formula designed for machine scoring.
Journal of Applied Psychology, 60(2):283.

557



Kevyn Collins-Thompson. 2014. Computational assess-
ment of text readability: A survey of current and
future research. ITL - International Journal of Ap-
plied Linguistics, 165:97–135.

Mark Davies. 2008. The corpus of contemporary ameri-
can english: 450 million words, 1990-present.

Siobhan Devlin and John Tait. 1998. The use of a psy-
cholinguistic database in the simplification of text for
aphasic readers. Linguistic Databases, pages 161–
173.

William H. Dubay. 2004. The principles of readability.
Costa Mesa, CA: Impact Information.

Christiane Fellbaum. 2010. Wordnet. In Theory and ap-
plications of ontology: computer applications, pages
231–243. Springer.

Rudolph Flesch. 1948. A new readability yardstick.
Journal of applied psychology, 32(3):221.

Sian Gooding and Ekaterina Kochmar. 2019. Complex
word identification as a sequence labelling task. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1148–
1153, Florence, Italy. Association for Computational
Linguistics.

Robert Gunning et al. 1952. Technique of clear writing.

Nancy Ide and Catherine Macleod. 2001. The american
national corpus: A standardized resource of amer-
ican english. In Proceedings of corpus linguistics,
volume 3, pages 1–7. Citeseer.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boosting
decision tree. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 3146–3154. Curran
Associates, Inc.
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Abstract

This paper describes the CompNa model that
has been submitted to the Lexical Complex-
ity Prediction (LCP) shared task hosted at Se-
mEval 2021 (Task 1). The solution is based on
combining features of different nature through
an ensembling method based on Decision
Trees and trained using Gradient Boosting. We
discuss the results of the model and highlight
the features with more predictive capabilities.

1 Introduction

Complex Word Identification (CWI) is a task fo-
cused on the detection of complex (not easy to
understand) words or expressions. One of the chal-
lenges of natural language-based systems is to pro-
vide informative content that is tailored to the needs
of users in terms of content and level of understand-
ing. For this aim, predicting Lexical Complexity
plays a crucial role in simplifying the text so that
it can be more easily understood by people with
low literacy levels (for example children) or non na-
tive speakers (Shardlow, 2013). The interest of the
Computational Linguistics community on this topic
has grown in recent years. Indeed, SemEval 2016
presented a challenge specifically on CWI (Paet-
zold and Specia, 2016a; Zampieri et al., 2017). The
task proposed to build models capable of predict-
ing whether a word was easy or not for non-native
English speakers. In this case, the proposed dataset
was annotated with a binary label.

In 2018 the CWI task was re-proposed at the
workshop for Building Educational Applications
(BEA) (Yimam et al., 2018). The data was again an-
notated with binary labels but samples from more
languages were considered, specifically English,
German and Spanish. In addition to the word clas-
sification task, a sub-task where the participants
had to predict the probability of a word being com-
plex was added.

The best performing models for both tasks were
based on ensembling techniques using features
that were carefully selected (Paetzold and Specia,
2016b; Gooding and Kochmar, 2018).

In this context, the Lexical Complexity Predic-
tion (LCP) shared task hosted at SemEval 2021
proposes a challenge where the data is annotated
according to the degree of complexity (Shardlow
et al., 2021). This type of annotation allows re-
gression models that predict a complexity index
rather than just a binary label. This task is split into
two sub-tasks, the first one is about the prediction
of the complexity of single words and the second
is about the prediction of the complexity of multi
word expressions.

In this work we present our submission to both
the sub-tasks with a model that aggregates a large
set of heterogeneous features that can capture a
wide variety of linguistics aspects (morphological,
semantic, distributional and lexicon-based) in a
regression model based on Gradient Boosting. We
also present an in-depth analysis of which features
are more important for the model.

In Section 2 we present a description of the task
and the data available. In Section 3 we introduce
the model. In Section 4 we show an analysis of the
most relevant features for the model. In Section
5 we present the results. Finally, in Section 6 we
draw some conclusions.

2 Task and data

The data released for sub-task 1 is made of 9000
sentences where the complexity of a single word
was annotated considering its context. The com-
plexity has been annotated using a 5-point Likert
scale (from 1 to 5 corresponding to Very Easy, Easy,
Neutral, Difficult and Very Difficult) with the val-
ues scaled in the range 0-1. Here is one example of
a sentence annotated in the dataset:
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“The structural Gh gene itself and Stat5b
are excellent candidates.”

In this sentence, the word “candidates” is anno-
tated with a complexity of 0.11 (the average in the
dataset is 0.30). The goal of sub-task 1 is to predict
the complexity of a single word given the sentence
and the word to evaluate. The data for sub-task 2 is
made of 1800 sentences where expressions of two
words are annotated as already described. Here is
one sample extracted from the dataset:

“I invite the President to ask all Members
who are in the pension fund to say so
orally, in plenary, immediately, because
they have a direct interest in what is to
be discussed.”

In this sentence, the expression “direct interest”
is annotated with a complexity of 0.40 (the average
in the dataset is 0.42). The goal of sub-task 2 is
to predict the complexity of an expression like the
one above given the sentence and the expression to
evaluate.

For both sub-tasks, the data was selected from
three different corpora:
• The World English Bible, translation from

Christodouloupoulos and Steedman (2015).
• A selected portion of the European Parilia-

ment proceedings in English.
• Selected articles from the biomedical domain.
Having data from sources so diverse is a unique

aspect of this task. This dataset was introduced in
(Shardlow et al., 2020).

3 CompNA model

The main idea behind our model is to aggregate
many diverse features that can capture a wide va-
riety of linguistics aspects in a regression model
that offers the ability to interpret which of them are
more influential.

3.1 Features

In this section we list the features used for the two
sub-tasks.

3.1.1 Features for sub-task 1
The following sets of features were used to capture
morphological aspects of the text:
• Part of speech tag and Syntactic dependency

of the word to evaluate and surrounding words
in. a window of three words. The library

Spacy with the model en core web sm (Hon-
nibal and Montani, 2017) has been used to
extract these features.
• Syllables in the word. Number of syllables in

the word. Minimum, maximum and average
number of syllables in the sentence.
• Length of the word. Minimum, maximum,

and average of the lengths of all the words in
the sentence.
• Desinence of the word, first and last letter of

the word.
• Number of unique characters.
• A Boolean value that is 1 only if all the char-

acters in the word are uppercase.
To take into account distributional characteristic

of the word to evaluate we used:
• GloVe embedding of the word, we used the

version pre-trained on Wikipedia 2014 and
Gigaword 5 with size 50 (Pennington et al.,
2014).
• Frequency of the word and of the part of the

sentence of three words that include the word
in the wordfreqs dataset (Speer et al., 2018).

Semantic aspects were encoded considering the
number of synsets and hyponyms of the word in
WordNet.

We also considered a set of binary features that
report if the word is in one of the following lexi-
cons: Obscure words (Chrisomalis, 1996), Medical
words, Simple English words (Ogden and Halász,
1935).

3.1.2 Features for sub-task 2

For sub-task 2 we have used the same features
considered for sub-task 1 computing them for each
word in the expression to evaluate. We have also
restricted the part of speech tags to the target words
and added the frequency of the entire expression.

3.2 Regressor

Our final regressor is composed of 120 Decision
Trees with a maximum depth of 5 layers. The
model was trained using Gradient Boosting (Fried-
man, 2001) with a learning rate of 0.047 and taking
a sub-sample of 75% of the original data at each
boosting iteration. The final prediction is computed
averaging the output of each tree. The library XG-
Boost (Chen and Guestrin, 2016) was used for our
experiments. The parameters were selected via
a grid search performed using the library Scikit-
Learn (Pedregosa et al., 2011).
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Figure 1: Frequency of the word in Zipf scale versus the complexity. The points in red represent words for which
the model has an error higher than a quarter of a point. The chart was made splitting the train data for sub-task 1
in half. The first half has been used to train the model and the second to evaluate the error.

Features group Importance N. features
Syllables 19.1% 2260
GloVe 17.8% 50
Desinences 10.2% 898
All frequencies 8.7% 6
Starting letters 5.8% 52

Table 1: Importance of the top 5 groups of features for
the model (on single words).

4 Features importance

In order to bring insights into how the model works,
we study the contribution of the features. Tables
1 and 2 report the importance of the features that
are influential for the prediction, respectively, per
group and single feature. The feature importance
reflects the number of times a feature is selected
for a split for one of the decision trees in the model,
weighted by the improvement as a result of the split,
and averaged over all the trees in the model (Elith
et al., 2008).

Looking at the importance of the features
grouped by type we find morphological and distri-
butional ones at the top. While the morphological

Feature Importance Type
All uppercase letters 9.47% binary
Word frequency 7.93% float
In medical lexicon 3.03% binary
POS PROPN 1.85% binary
Word length 1.47% integer
Syllable “ca” 1.19% binary
Ends with “s” 1.10% binary
Desinence “ess” 0.84% binary
Ends with “e” 0.75% binary
Desinence “ing” 0.71% binary
GloVe 32th position 0.68% float
Syllable “ver” 0.67% binary
Syllable “ro” 0.64% binary
Desinence “ium” 0.63% binary
GloVe 29th position 0.62% float

Table 2: Importance of the top 15 single features for
the model (on single words).

group (syllables, desinences and starting letters)
add up to almost 3000 features, the distributional
group, made of GloVe and word frequencies, only
presents 56 features.

Going into details and inspecting the importance
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Sub-task Team Pearson Spearman MAE MSE R2
1 JUST Blue 0.7886 0.7369 0.0609 0.0061 0.6172
1 CompNa 0.7552 0.7153 0.0641 0.0070 0.5701
1 baseline 0.6920 0.6533 0.0737 0.0091 0.4387
2 DeepBlueAI 0.8612 0.8526 0.0616 0.0063 0.7389
2 CompNa 0.7931 0.7800 0.0783 0.0093 0.6160
2 baseline 0.7503 0.7435 0.0848 0.0111 0.5386

Table 3: Results of the CompNA model compared a baseline and the best performing model in the competition.
The baseline is given by the values on the 20th percentile of the leaderboard.

of single features we note that two of them stand
out covering more than 15% of importance. The
first is the binary variable representing if the word
to evaluate is made of only capital letters and the
second is the frequency of the word. In Figure 1 we
see the frequency of the word in Zipf scale versus
the complexity annotated. The frequency of a word
in Zipf scale is the base-10 logarithm of the number
of times it appears per billion words (Van Heuven
et al., 2014). The Figure shows in red the words for
which the model achieves an error greater than 0.25.
It is easy to see that the relation between the two
features in the chart is well covered by the model
as significant errors happen mostly in samples that
can be considered outliers. Specifically, we see that
many acronyms tend to be outliers in this space. It
is interesting to note that acronyms highlighted in
the chart are annotated with a score much higher
than the average.

Looking again at the table of individual features
importance, we find the desinence “ess” which is
associated with simple words (such as “darkness”,
“kindness” and “business”) and the desinence “ium”
which is associated with words that have a complex-
ity more than the average (such as “epithelium”,
“cadmium”, “medium”).

Considering the most important syllables, we
notice the syllable “ca” which is associated with
words from a wide range of complexities (the
most complex “cause”, and the least complex
“catalepsy”). And the syllable “ver” which is asso-
ciated with low complexity words (the most com-
plex being “reversal”, and the least complex being
“river”).

This analysis further confirms the hypothesis out-
lined in (Zampieri et al., 2016) that distributional
and morphological aspects of the words have a tight
bond with the complexity.

The analysis also highlights one of the weak
points of the model, it overlooks features related to

the context of the word.

5 Results

In Table 3 we summarize the results comparing
our model with the best performing model in the
competition and a baseline given by the values
on the 20th percentile of the leaderboard. The
proposed model largely outperforms the baseline
in all the measures considered. Notice that the
baseline considered here is more challenging than
the one proposed in the description of the data
(Shardlow et al., 2020). Regarding sub-task 1, the
results of the proposed model are comparable to
the ones of the winner of the competition in all the
measures apart from the R2 where the two models
have a difference of almost 18%. While for sub-
task 2 the model beats the baseline but it is far
from the winning model. For sub-task 1 the model
ranked 26th achieving above average performances
and for sub-task 2 it ranked 24th achieving average
performances.

6 Conclusions

In this paper, we presented a solution to predict
the complexity of single and multi word expres-
sions combining a large number of features from a
diverse nature.

The model achieves average results and, more
importantly, offers the ability to quantify the rele-
vance of the features for the prediction. Thanks to
this ability we have shown that the frequency of oc-
currence and the morphology of the words are key
predictors of complexity for the data considered.

From our analysis, it is clear that our model
overlooks features related to the context of the word
and we would like to improve it under this point of
view in our future efforts.
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Abstract
In this contribution, we describe the system
presented by the PolyU CBS-Comp Team at
the Task 1 of SemEval 2021, where the goal
was the estimation of the complexity of words
in a given sentence context.

Our top system, based on a combination
of lexical, syntactic, word embeddings and
Transformers-derived features and on a Gradi-
ent Boosting Regressor, achieves a top corre-
lation score of 0.754 on the subtask 1 for sin-
gle words and 0.659 on the subtask 2 for mul-
tiword expressions.

1 Introduction

The notion of complexity has often been debated in
linguistics and, depending from the disciplines, it
might have different meanings.

In linguistic typology, for example, complexity
is generally studied as a property of the language
system as a whole, it is conceived as the number of
(morphological, syntactic, semantic etc.) distinc-
tions that a speaker has to master, and it is assessed
by comparing different languages (McWhorter,
2001; Parkvall, 2008). On the other hand, in the
perspective of psycholinguistics and cognitive sci-
ence, the notion of complexity can be described
as the difficulty encountered by language users
while processing concrete linguistic realizations
(sentences, utterances etc.) (Blache, 2011; Cher-
soni et al., 2016, 2017, 2021; Iavarone et al., 2021;
Sarti et al., 2021). Finally, in the Computational
Linguistics community, the assessment of complex-
ity at the lexical level is often related to readability

applications (Shardlow et al., 2020), with the goal
of determining if a word in a given text will be
difficult to understand for the language users. Such
applications are extremely useful for second lan-
guage learners, for speakers with relatively low
literacy and for people with reading disabilities,
helping to tailor the difficult level of the texts to the
needs of the target users.

Task 1 of SemEval 2021 (Shardlow et al., 2021)
aims at the development of systems for the estima-
tion of lexical complexity in context, both for single
words and for multiword expressions. The organiz-
ers provided two datasets with the target words in a
sentence context, with annotations consisting of a
mean of the complexity ratings assigned by humans.
In our paper, we present the system developed by
the PolyU CBS-Comp team for the competition.
Our top system achieves a Pearson correlation of,
respectively, 0.754 on the single words dataset and
0.659 on the multiword expressions one.

2 Related Work

In the earliest shared task on the lexical complexity
problem, organized in 2016 (Paetzold and Specia,
2016), complexity was defined as a binary variable:
given a word in context, the word will be judged as
complex or not. Of course, this was a simplifying
assumption, since there might be many situations
where the boundary is not a clear-cut one, and anno-
tators would rather indicate a value in a continuous
scale. Moreover, the ”complex” words in the data
only needed to be categorized as such by just one
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of the annotators. A further study by Zampieri et al.
(2017) analyzed the output of the participating sys-
tems, showing that modeling complexity as binary
actually hindered their performance.

A second iteration of the shared task was orga-
nized in 2018 (Yimam et al., 2018), this time fea-
tures two separate subtasks: the traditional binary
classification task, where systems had to predict
whether one word was complex or not, and a re-
gression task, where systems had to estimate the
probability that an annotator would have consid-
ered a given word as complex.

Recently, Shardlow et al. (2020) have introduced
CompLex, a new gold standard for the estimation
of lexical complexity in context for English: the
corpus, including sentences from different textual
genres, is annotated with the mean complexity rat-
ings for the target words. As a preliminary evalu-
ation, the authors presented the results of a linear
regression model trained on sets of features includ-
ing word and sentence embeddings and some hand-
crafted features that are traditionally associated to
complexity, such as frequency, word length and
syllable count. The best scores, in terms of mean
absolute error, were obtained when using only the
latter set of features, while models based on the di-
mensions of the embeddings were lagging behind.

3 Datasets

The datasets for the shared task are part of the
CompLex corpus, which has been published and
described by Shardlow et al. (2020). The annotated
sentences were collected using three different cor-
pora: the Europarl corpus (Koehn, 2005), which
includes the proceedings of the European Parlia-
ment; the CRAFT biomedical corpus (Bada et al.,
2012); and the Bible, in the modern version of the
World English Bible translation (Christodouloupou-
los and Steedman, 2015).

The organizers selected targets as either single
words (Sub-Task 1) or multiword expressions (Sub-
Task 2), and the datasets include also multiple ex-
amples with the same target, as different contexts
can determine different complexity values. As for
the multiword expressions, they were identified via
syntactic patterns, being either adjective-noun or
noun-noun phrases.

20 annotations per data instance were collected,
with annotators coming from different English-
speaking countries (US, UK and Australia): the
possible ratings ranged from 1→ Very Easy to 5

Dataset Instance Corpus Score
This was the length of Sarah’s life. Bible 0.125

... dissenters by definition excluded. Europarl 0.688
...due to reduction in adipose tissue... CRAFT 0.813

Table 1: Examples of the instances from the different
corpora, together with the mean complexity scores for
the target words in bold.

→ Very Difficult. Mean scores were then normal-
ized in the 0-1 range.

In a first phase, the organizers released a training
data of 7661 samples for the single words track and
1517 samples for the multiword expressions track,
together with a trial/validation dataset of 420 and
99 samples, respectively. Later, they released a test
set of 917 samples for the single words track and
184 samples for the multiword expressions track.

Examples of the instances are shown in Table 1.

4 Evaluation

For both the single words and the multiword ex-
pressions track, we used the same set of features
as input for a regression algorithm. In the multi-
word expressions track, we computed the value of
the features for each of the two words in the target
expression and then we took the average.

4.1 Features

As hand-crafted features, we adopted the same ones
used by Shardlow et al. (2020) in the original eval-
uation of their dataset: Logarithmic Frequency,
Word Length and Syllable Length. The latter two
have been extracted using the Python textstat
for each target word. As for the frequency feature,
we extracted a general, out-of-domain frequency
for each target word using the SUBTLEX database
(Brysbaert and New, 2009) and the wordfreq
Python package (Speer et al., 2018), and then we
extracted the frequency of the word in each one
of the three corpora composing CompLex. In to-
tal, we obtained 6 features (4 frequency + 2 length
features) for each instance. We also added two
Boolean features for Capitalization: the first was
equal to 1 if the first letter of the target word was
upper case and 0 otherwise; the second one was
equal to 1 if all the letters of the target word were
upper case and 0 otherwise. The latter feature was
added because we noticed that some of the target
words in the dataset are acronyms.

Apart from the lexical information, Syntactic
Features were explored for both single words and
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multiword expressions. The StanfordNLP tools
(Manning et al., 2014) were first used to acquire
both the part-of-speech (POS) tags and dependency
trees. POS tags of target words were manipulated
using one-hot encoding, for a total of 20 POS-based
features. On the other hand, directed and path from
the target word to the root were extracted as depen-
dency features. We concatenated all dependency
tags to the root, using one-hot encoding once again
to encode every distinct path as a single feature. In
total, we generated 267 dependency paths features
with this mechanism.

Another feature was based on Word Embed-
ding similarity: first, we computed the sum of the
embeddings for all the words preceding the target,
as a sort of general representation of the sentence
context 1, and then we measured the cosine simi-
larity with the embedding of the target word. If the
target was a multiword expression, we summed the
embeddings of the words composing it. As word
embeddings, we used the publicly available Fast-
Text vectors, pre-trained on the Wikipedia corpus
(Bojanowski et al., 2017). 2

We added one feature based on the BERT
Transformer Model (Devlin et al., 2019) 3 by
masking the target word in the original sentence
and taking the probability value provided in output
by the Softmax. For multiword expressions, we se-
quentially masked the words composing the target
and took the average value.

Similarly, we used the GPT-2 Transformer
Model (Radford et al., 2019) 4 to obtain a prob-
ability score for the full sentence, computed as the
product of the probabilities of the single tokens.

The total number of extracted features is 300. Fi-
nally, we decided to generate polynomial features
from our set, in order to exploit potential inter-
actions. We used the PolynomialFeatures
functionality of the scikit-learn Python pack-
age to generate interaction features of order 2, so
that the final number of features that was fed to the
regressors was 45151.

1The use of vector sum as a compositional function has
been used in Distributional Semantics since Mitchell and Lap-
ata (2010).

2https://fasttext.cc/docs/en/
pretrained-vectors.html.

3We used the BERT-large-cased model, in the implementa-
tion of the Happy Transformer library: https://github.
com/EricFillion/happy-transformer.

4We used the GPT2-xl model, in the implementation of
the lm-scorer package: https://pypi.org/project/
lm-scorer/.

4.2 Regressors
We tested several regression algorithms, using the
implementations in the scikit-learn Python
package. The adopted scikit-learn API and the
main hyper-parameters are listed below:

• RR Ridge: Ridge Regression solves a re-
gression model where the loss function is the
linear least squares function and regulariza-
tion is given by the l2-norm. alpha=1.0,
normalize=True.

• MLP MLPRegressor: Multi-layer Per-
ceptron regressor optimizes the squared-
loss using LBFGS or stochastic gradi-
ent descent. hidden layer size=5,
activation=identity, solver=adam.

• PLSR PLSRegression: PLS Regres-
sion implements the PLS2 blocks regres-
sion in case of one dimensional response.
components=5.

• BRR BayesianRidge: a Bayesian
Ridge model implements the optimization
of the regularization parameters lambda
and alpha. alpha 1,alpha 2==1.0e-6,
lambda 1,lambda 2=1.0e-6.

• LR LinearRegression: Linear Regres-
sion is trained based on ordinary least squares
function. normalize=True.

• RF RandomForestRegressor: a Ran-
dom Forest is a meta estimator that fits a num-
ber of classifying decision trees on various
sub-samples of the dataset and uses averaging
to improve the predictive accuracy and con-
trol over-fitting. min samples split=2,
min samples leaf=1.

• GBR GradientBoostingRegressor:
Gradient Boosting builds an additive model
in a forward stage-wise fashion which
allows for the optimization of arbitrary
differentiable loss functions. learning
rate=0.1,min samples split=2,
min samples leaf=1.

4.3 Metrics
The performance of the participating systems was
evaluated in terms of Pearson correlation (r) be-
tween the outputs and the human mean ratings.
In the Results section, we also report the scores
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for Spearman correlation (ρ), Mean Absolute Er-
ror (MAE), Mean Squared Error (MSE) and R-
Square (R2).

5 Results

We evaluated our system for two subtasks based on
given trial datasets. For each regressor, we tuned
hyper-parameters according to each subtask. Per-
formance evaluation has been carried out in two
aspects: the assessment of the overall correlation
with human ratings and the analysis of the contri-
bution of the features.

5.1 Complexity Prediction

Evaluation metrics are reported ranking by Pearson
correlation in Table 2 and 3 for single words and
multiword expressions, respectively.

Regressor r ρ MAE MSE R2
RR 0.34 0.36 0.100 0.017 0.097
MLP 0.39 0.46 0.099 0.017 0.083
PLSR 0.46 0.53 0.093 0.015 0.206
BRR 0.47 0.51 0.094 0.015 0.181
LR 0.48 0.54 0.092 0.015 0.208
RF 0.49 0.65 0.078 0.010 0.472
GBR 0.75 0.72 0.070 0.008 0.561

Table 2: Performance on single words prediction (Sub-
Task 1).

Regressor r ρ MAE MSE R2
RR 0.26 0.28 0.128 0.021 0.083
MLP 0.28 0.37 0.117 0.019 0.091
BRR 0.40 0.42 0.112 0.017 0.151
PLSR 0.40 0.42 0.109 0.017 0.178
LR 0.41 0.42 0.110 0.016 0.183
RF 0.44 0.51 0.105 0.015 0.424
GBR 0.66 0.66 0.090 0.013 0.427

Table 3: Performance of multiword expressions predic-
tion (Sub-Task 2).

Features r ρ MAE MSE R2
Hand-crafted 0.73 0.69 0.072 0.009 0.527
+Synt. 0.73 0.69 0.073 0.009 0.528
+Embs. 0.73 0.69 0.073 0.009 0.530
+Trans. 0.74 0.71 0.071 0.009 0.545
+ALL 0.75 0.72 0.070 0.008 0.561

Table 4: Ablation study of feature groups.

It can be observed that predicting the complexity
of single words is naturally less difficult than mul-
tiword expression. Concerning the regression al-
gorithm, gradient boosting regression outperforms
other investigated methods by a large gap, while
PLS regression, Bayesian ridge regression, linear

regression and random forest regression perform
very similarly. Though PLSR has a worse Pearson
correlation than BRR, its R2 and Spearman cor-
relation are slightly better. Further studies about
regressors brought some unexpected results for our
feature based approaches: based on the features we
selected, Ridge Regression performs worse than
linear regression, suggesting that some features are
not suitable for applying L2-norm.

5.2 Feature Study

As our proposed method heavily relies on feature
selection, the acquired features are investigated
in four groups: Hand-crafted (including Logarith-
mic Frequency, Word and Syllable Length and
Capitalization), Syntactic (including the POS- and
the Dependency-based features), Embedding and
Transformer features. We adopted the features of
the Hand-crafted group as baseline, and present a
comparison between the performance of systems
using the other features as add-on components. The
scores in Table 4 refer to the performance on the
single words dataset, by using GBR as a regressor.

According to Table 4, syntactic, embedding and
transformer based features can all contribute to
improve the prediction results. As expected, the
combination of all feature type groups can achieve
the best predicting capability.

Comparing with the baseline of hand-crafted fea-
tures, syntactic and embedding features have very
marginal contribution. Yet, it should not be ne-
glected supplementing only transformer based fea-
tures cannot achieve the maximum performance
gain. This indicates that the interaction of the indi-
vidual features can bring latent useful information
to model, further revealing the complexity values
of the target words.

6 Conclusion

In this paper, we presented the PolyU CBS-Comp
system for lexical complexity prediction, which
took part in the SemEval shared task 1. Our method,
based on a combination of lexical, syntactic, em-
beddings and Transformers features, achieved a
0.754 correlation on single words and 0.659 on mul-
tiword expressions, when using Gradient Boosting
as a regression algorithm.

Traditional hand-crafted features, followed by
Transformer-based ones, seem to give the strongest
contribution to the classification performance,
which is further improved by adding feature in-

568



teractions to the input for the regressor.
For future studies on lexical complexity, we plan

to further exploit the text genre information, for ex-
ample by adding domain-adapted language model
features (Van Schijndel and Linzen, 2018) to the
information available to our models.
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Abstract

This paper describes the system developed by
the Laboratoire d’analyse statistique des textes
(LAST) for the Lexical Complexity Prediction
shared task at SemEval-2021. The proposed
system is made up of a LightGBM model fed
with features obtained from many word fre-
quency lists, published lexical norms and psy-
chometric data. For tackling the specificity
of the multi-word task, it uses bigram associ-
ation measures. Despite that the only contex-
tual feature used was sentence length, the sys-
tem achieved an honorable performance in the
multi-word task, but poorer in the single word
task. The bigram association measures were
found useful, but to a limited extent.

1 Introduction

For more than half a century, many studies have
been carried out to collect norms about formal and
semantic properties of words, such as frequency of
use, spelling regularity, familiarity, age of acquisi-
tion, or emotional valence (Proctor and Vu, 1999).
Some of these properties can be easily harvested
through automatic counting procedures applied to
corpora. Other properties, such as familiarity or
emotional valence, are obtained by requiring par-
ticipants, often more than ten, to rate the words
on these dimensions. In psycholinguistics, these
norms have been mainly used for selecting experi-
mental materials (Wilson, 1988). In computational
linguistics, they are used in opinion mining, in the
evaluation of foreign language skills and in text
simplification for instance (Pang and Lee, 2008;
Kyle et al., 2018). Obtaining lexical norms that
require human evaluations is extremely costly in
time and resources, which greatly reduces their size.
However, huge norms are essential in applications
(Bestgen, 1994). This observation has led to the de-
velopment of automatic techniques to extend such

norms (Bestgen, 2002; Kamps et al., 2004; Esuli
and Sebastiani, 2006; Bestgen and Vincze, 2012).

The Lexical Complexity Prediction (LCP)
shared task at SemEval-2021 requires exactly the
development of such techniques (Shardlow et al.,
2021a). It is indeed a question of estimating the
lexical complexity, the degree of difficulty of the
words in a text. This dimension is important in NLP
applications for simplifying texts and assisting spe-
cific populations such as people with reading dis-
abilities or who are learning a foreign language. A
specificity of the LCP task is that it relates not only
to words but also to multi-word expressions which
are very rarely taken into account in norms and in
automatic extension techniques (Bestgen, 2014).
Another important feature of the task is that the
target tokens were presented to human judges in
context and that a significant number of them were
presented in several different contexts. Human an-
notations are therefore likely to reflect the impact
of the linguistic context on lexical complexity.

This paper describes the system proposed for
this task by the Laboratoire d’analyse statistique
des textes (LAST). It is based on a LightGBM
model fed with features obtained from many word
frequency lists, published lexical norms and psy-
chometric data. For tackling the specificity of the
multi-word task, it uses bigram association mea-
sures (such as Mutual Information) from research
in lexicography (Church and Hanks, 1990) and in
the automatic evaluation of texts written by En-
glish learners (Durrant and Schmitt, 2009; Bestgen
and Granger, 2014). Despite that the only contex-
tual feature used was sentence length, the system
achieved an honorable performance in the multi-
word task, ranking 9th out of 37 teams, but poorer
in the single word task, ranking 26th out of 54
teams.

In the next section, the main characteristics of
this challenge are summarized. The following sec-
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tion describes in detail the developed system. Fi-
nally, the results in the challenge are reported along
with several analyzes performed to get a better idea
of the factors that affect the system performance.

2 Task and Materials

The organizers of the challenge have made avail-
able an updated version of the CompLex dataset
(Shardlow et al., 2020) to the participating teams
for developing their systems (i.e., the learning set).
It consists of 8,083 single words and 1,616 bigrams,
all of them presented in a one-sentence context.
These sentences were taken from three English
sources in almost equal proportion: biblical text,
biomedical articles and proceedings of the Euro-
pean Parliament. The target words and bigrams
were evaluated by several judges on a 5-point Lik-
ert scale depending on whether it seemed more or
less easy to understand in this context. There were
on average 25.75 annotations per instance (Shard-
low et al., 2021b). The complexity score for each
target is the mean of these ratings. In this materials,
a non-negligible proportion of the targets were pre-
sented several times in different sentences in order
to assess the impact of this context on the complex-
ity assessment. The test set, collected in the same
way, consisted of 917 single words and 184 bi-
grams of which none of the targets were present in
the learning set. The challenge measure was Pear-
son’s linear correlation coefficient between human
ratings and system predictions.

3 System

The first part of this section presents the features
used to predict lexical complexity starting with
those common to both tasks and ending with those
specific to predicting the complexity of the multi-
word expressions. Next, the procedure used to
build the predictive models is described.

3.1 Features

Frequency Lists: I used the frequency of
spelling forms calculated from corpora, but also
a series of lists established by other researchers:

• The frequency in the Corpus of Contempo-
rary American English (COCA), a balanced,
425-million word corpus of American En-
glish collected from 1990 to 2011 (http:
//corpus.byu.edu/coca/).

• The frequency in the British National Cor-
pus (BNC), a 100-million word collection of
samples of written and spoken language de-
signed to represent a wide cross-section of
British English from the latter part of the
20th century (http://www.natcorp.ox.ac.
uk/corpus/).

• The Facebook frequency norms for American
English and British English of Herdagdelen
and Marelli (2017), based on approximately
1 billion tokens for each English variety, ob-
tained from publicly available English posts
collected between November 2014 and Jan-
uary 2015.

• The Rovereto Twitter Corpus frequency
norms based on 75 millions tweets, for more
than 1 billion tokens collected between De-
cember 2010 and July 2011 (Herdagdelen and
Marelli, 2017).

• The USENET Orthographic Frequencies de-
rived by Shaoul and Westbury (2006) from a
corpus of 7,781,959,860 words of USENET
postings collected between October 2005 and
August 2006.

• The Hyperspace Analogue to Language
(HAL) frequency norms provided by (Balota
et al., 2007) for more that 40,000 words.

• The frequency word list derived from the
Google’s ngram corpus available at https:
//github.com/hackerb9/gwordlist.

I also obtained the frequency of each target in each
of the three corpora provided by the organizers as
materials.

Lexical Norms and Psychometric Data: Lexi-
cal norms were mainly taken from the Glasgow
Norms (Scott et al., 2019). They contain the evalu-
ation by human raters of 5,553 English words on
the psycholinguistic dimensions of age of acquisi-
tion, arousal, concreteness, dominance, familiarity,
gender association, imageability, semantic size and
valence. I also used SemD, a measure of the seman-
tic ambiguity of a word based on variability in its
contextual usage (Hoffman et al., 2013). The psy-
chometric data were taken from the English Lex-
icon Project (Balota et al., 2007), a database that
contains, for more than 40,000 words, the reaction
time and average accuracy during lexical decision
and naming tasks performed by many participants.
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Other Features: Three binary features were
used to encode the corpus from which the sentence
is extracted, the initial analyzes having shown that
it was more efficient than building three models,
one per corpus. The only contextual feature taken
into account was the sentence length in tokens.

Bigram Association Measures: These features,
used only for the multi-word task, inform about the
degree of association between the two target words
according to a series of indices calculated on the
basis of the frequency in a reference corpus of the
bigram and that of the two words that compose it:
pointwise mutual information and t-score (Church
and Hanks, 1990), z-score (Berry-Rogghe, 1973),
log-likelihood Chi-square test (Dunning, 1993),
simple-ll (Evert, 2009), Dice coefficient (Kilgar-
riff et al., 2014) and the two delta-p (Kyle et al.,
2018). Bestgen and Granger (2014) refer to these
features as collgrams because they combine the
strengths of both collocations (by using association
scores) and n-grams (by using contiguous pairs of
words). The justification for their use in the LCP
task is given by works in foreign language learning
which has shown that these indices can be used to
assess the lexical richness of multi-word expres-
sions present in texts written by English learners
(Bestgen and Granger, 2014; Somasundaran et al.,
2015; Bestgen, 2018, 2019).

3.2 Supervised Learning Software

The regression models were built by the LightGBM
open software (Ke et al., 2017), a well-known im-
plementation of the gradient boosting decision tree
approach. Compared to the multiple linear regres-
sion used for this task by Shardlow et al. (2020),
this type of model has the advantages of not requir-
ing any feature preprocessing, such as a logarithmic
transformation, since it is insensitive to monotonic
transformations. It also allows a very effective
overfit control thanks to its many parameters.

3.3 Procedure

The sentences were first lemmatized by the Tree-
Tagger (Schmid, 1994). The scores on the different
lexical lists were attributed to the targets by a two-
step procedure: on the basis of the orthographic
form if it is found in the list or by using the lemma.
The handling of missing values, which occurs when
a word is not in a frequency list for example, has
been left to the LightGBM default procedure. A
large number of multi-word targets were given two

Test CV

r r
Full System 0.753 0.810

Diff. Diff.
Length -0.002 -0.001
Frequencies -0.013 -0.012
Normes -0.022 -0.027

Table 1: Difference in Pearson’s r from the full system
for the single word task when a set of features is re-
moved (ablation approach).

values for many features by this procedure, one
for each word. The corresponding features were
doubled: the first encoding the minimum value and
the second the maximum value.

The features used in the final models as well as
LightGBM parameters were optimized by a 9-fold
cross validation procedure. This led to the selection
of the following features:

• For task 1, the length of the sentence and
12 features from the frequency lists, 10 from
the lexical norms, and 8 from the psychomet-
ric data (i.e., average response latencies (raw
and standardized), standard deviations, and
accuracies for the lexical decision and naming
tasks).

• For task 2, the same features as in task 1 plus
3 features for the corpus of origin and 8 from
the bigram association measures.

The same LightGBM parameters were used for
both tasks. They were left at their default val-
ues except the followings: num iterations: 4800,
max bin: 64, min data in bin: 10, lambda l2:
0.0175, bagging freq: 5, bagging fraction: 0.66,
feature fraction: 0.09, learning rate: 0.0035,
max depth: 7, min data in leaf: 7, num leaves:
11.

4 Analyzes and Results

4.1 System Performance

The system built to predict the lexical complexity
of single words scored 0.7534 on the test material,
ranking it 26th out of 54 teams, down 0.0352 from
the best team. In the multi-word subtask, the sys-
tem finished 9th out of 37 teams with a score of
0.8417. The best team got 0.8612.
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Test CV

Line Id Sent. Length Corpus Id Norms Freq. Bigram r r

1 x x x x x 0.842 0.799

Diff. Diff.
2 x x x x -0.002 -0.001
3 x x x x -0.011 -0.003
4 x x x x -0.031 -0.015
5 x x x x -0.012 -0.004
6 x x x x -0.014 -0.014
7 x -0.096 -0.055
8 x -0.066 -0.054
9 x -0.176 -0.161

Table 2: Difference in Pearson’s r from the full system for the multi-word task using the ablation approach.

The comparison of the results obtained on the
test sets with those obtained by cross validation
shows an unexpected difference between the two
tasks. In the single word task, the correlation on
the test set was lower by 0.053 compared to that ob-
tained in CV (0.8064) while in the multi-word task
this same correlation is higher by 0.042 compared
to that obtained in CV (0.7996). It is also observed
that the best systems which participated in the two
tasks had superior performance on the multi-word
task. If the difference in performance between the
test sets and the CVs is not specific to the present
system, this would suggest that the performance
achieved in the multi-word task is rather overesti-
mated, the test set being for some unknown reason
relatively easy to predict. Although this is only
a hypothesis which requires additional analyzes,
it leads to not considering the multi-word task as
being almost solved.

4.2 Usefulness of the Different Types of
Features

In this section, the impact of the different types
of features on the system performance is assessed
using an ablation procedure. As the previous sec-
tion indicated important differences between per-
formance on the test set and by the CV approach,
results are presented for these two evaluation pro-
cedures.

Single Word Task: Table 1 shows that the sen-
tence length, the only contextual feature, is of little
use. Norms and psychometric data are more useful
than frequencies in corpora, but above all, these
two sets of features provide very similar informa-

tion since the removal of one as well as the other
harms very little the model performance. These
conclusions apply equally to the test set as to the
CV.

Multi-Word Task: The system for multi-word
expressions is based on five sets of features whose
roles in its effectiveness are shown in Table 2. The
absence of an ”x” in a column indicates that this set
of features has not been used in this version of the
model. The first line of the table gives the perfor-
mance of the system submitted for the challenge.

The length of the sentences [2] is much less use-
ful than the features which identify the corpus [3].
The comparison of the usefulness of the psychome-
tric norms and data and the frequencies in corpora
shows a contrast. When these sets are in turn ex-
cluded from the system, psychometric norms and
data [4] are more useful than frequencies in cor-
pora [5]. On the other hand, when used alone,
frequencies [8] are more effective than psychome-
tric norms and data [7]. It will be concluded that
a greater part of the contribution of the frequency
data is shared with other indices, most probably the
bigram association measures.

The specific contribution of the bigram associa-
tion measures [6] to the performance of the system
is slightly greater than that of the frequencies in
corpora. These features provide a gain of 0.014.
Without it, the system would have been ranked 15th
instead of 9th in this task. When used alone, how-
ever, bigram association measures [9] are much
less effective than norms or frequencies.

The effects of the different types of features are
almost always more important when estimated on
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Frequency Task
of the target Single Multi

1 49.2 87.4
2 19.9 7.8
3 10.2 2.2
4 6.2 0.8
5 13.5 1.8
6 or + 4.0 0.0
Total (%) 100.0 100.0
Total nbr. 3,850 1,479

Table 3: Percentage of the target frequency in the two
tasks.

Figure 1: Distribution of the range for the repeated tar-
gets in the single-word task.

the test set rather than by CV. This could result
from the initial difference in effectiveness between
the two approaches. However, this phenomenon
was not observed in the single-word task in which
a difference in effectiveness was also observed. It
is especially noted that the norms seem much more
useful for the test set than for the CV.

Potential Importance of the Context: The re-
sults presented above indicate that, in both tasks,
sentence length is of little use. Taking better ac-
count of the context is undoubtedly a way to im-
prove the system. This hypothesis is all the more
likely as the role of context could explain the differ-
ence in performance between the two tasks of this
system, but also of those of the other teams. Two
observations support this hypothesis. Firstly, an
analysis of the target frequencies in the two tasks,
presented in Table 3, shows that there are much
more repeated targets in the single-word task than
in the multi-word task, a statistically significant
difference for a Chi-square test (p < 0.0001).

Second, there are important differences between
the human evaluations for the same target shown
in different contexts. Figure 1 displays the distribu-

tion of the range (the difference between the maxi-
mum and the minimum values) of the complexity
score for the repeated targets in the single-word
task. The mean range is 0.125 and that 10% of the
repeated targets have a range greater than 0.224.
Being able to take these differences into account
in the single-word task could significantly improve
the system, provided that the differences in evalua-
tion for the same target are not just noise. Only an
analysis of the inter-rater reliability for the repeated
targets would make it possible to choose between
these two options.

5 Conclusion

The models proposed for the LCP task were built
by the LightGBM software mainly fed with norms
and frequency features. It obtained an acceptable
performance on the test set in the multi-word task
on the basis of little contextual information, but less
so in the single word task. The analyzes carried out
by a CV approach showed, on the other hand, that
the system is no better in the multi-word task. It is
therefore possible or even probable that the better
performance results from an overestimation of its
effectiveness. The bigram association measures
(aka CollGrams) have proven to be useful, but to a
limited extent.

Taking the context into account would probably
have improved the system, especially for the single
word task in which more than half of the targets
were repeated. This hypothesis, however, is based
on the assumption that differences between human
ratings for the same target in different contexts
are as reliable as their ratings for different targets.
More generally, it would be interesting to explain
the origin of the very important difference in per-
formance between the two tasks, but that does not
seem possible on the basis of the data I have access
to.
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Abstract

Lexical complexity plays an important role
in reading comprehension. lexical complex-
ity prediction (LCP) can not only be used as
a part of Lexical Simplification systems, but
also as a stand-alone application to help peo-
ple better reading. This paper presents the win-
ning system we submitted to the LCP Shared
Task of SemEval 2021 that capable of deal-
ing with both two subtasks. We first per-
form fine-tuning on numbers of pre-trained
language models (PLMs) with various hyper-
parameters and different training strategies
such as pseudo-labelling and data augmenta-
tion. Then an effective stacking mechanism is
applied on top of the fine-tuned PLMs to ob-
tain the final prediction. Experimental results
on the Complex dataset show the validity of
our method and we rank first and second for
subtask 2 and 1.

1 Introduction

Lexical complexity is one of the main reasons lead-
ing to overall text complexity and thus result in
poor reading comprehension for readers (DuBay,
2004). Different from the Complex Word Identifi-
cation (CWI) (Shardlow, 2014) task, which aims
to predict whether a given word is complex or not,
the goal of lexical complexity prediction (LCP)
is to predict the complexity value of the given parts
from contexts as shown in Figure 1. The under-
lined parts of the sentence are the words that need
to be predicted and the same words in different con-
texts may have different complexity scores. LCP
plays an important role in the usual Lexical Sim-
plification (LS) (Bott et al., 2012) pipeline since
it can help simplifiers find the challenging words
and replace them with appropriate alternatives that
easy to understand. Either LCP or CWI can not
only be used as a component of LS systems but
also as a stand-alone application within intelligent

Multi-words

Context1:

SEM confirmed many of the 

observations made by confocal 

microscopy.

Complexity score: 0.64473

Context2:

SJ and SVJ carried out confocal 

microscopy on whole-mounts 

of stria vascularis.

Complexity score: 0.7750

Single word

Context1:

They shall be to you for a refuge 

from the avenger of blood.

Complexity score: 0.3475

Context2:

There will be a pavilion for a 

shade in the daytime from the 

heat, and for a refuge and for a 

shelter from storm and from rain.

Complexity score: 0.075

Figure 1: Examples of LCP including single words and
multi-words. The complexity score is the score for the
underlined words.

tutoring systems for second language learners or in
reading devices for people with low literacy skills
(Gooding and Kochmar, 2018).

In this paper, we introduce our system for the
lexical complexity prediction task of the SemEval-
2021 (Matthew et al., 2021). We fulfill this task by
leveraging multiple pre-trained language models
(PLM) with different training strategies. There
are two main steps for our system: (i) fine-tuning
numbers of heterogeneous PLMs, including BERT
(Devlin et al., 2019), ALBERT (Lan et al., 2019),
RoBERTa (Liu et al., 2019) and ERNIE (Zhang
et al., 2019), with various hyperparameters and
training strategies, obtaining diverse models; (ii)
applying an effective stacking mechanism on top of
these PLMs to predict the final complexity scores.

Our experiments, merging PLMs in total, indi-
cate that our method successfully utilizes weaker
PLMs as well as high-performing PLMs. As a re-
sult, our system ranks second and first for Subtask
1 and 2 of LCP 2021, SemEval-2021.

2 Related Work

2.1 Lexical Complexity Prediction

There has been some work for the creation and
evaluation of automatically graded vocabulary lists
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Bible River There came up out of river seven ...[CLS] [SEP]

query context

[CLS] q0 .. . qn [SEP]qw .. . c0 .. . cmcw .. .c1 cm-1

Tokenize

x[CLS]_k

.. .

x[CLS]_0

PLM

Weight Dense
Multi-sample 

Dropout
Predicted 

Scores

Figure 2: The overall architecture for predicting complexity scores.

for analyzing lexical complexity. François et al.
(2014) present the first graded lexicon for French
as a foreign language that reports word frequen-
cies by difficulty level and Gala et al. (2014) train
two SVM classifiers with 49 features, one for L1
learners and one for learners of French as a foreign
language. Alfter and Volodina (2018) map the use
of previously created word lists to a single CEFR
scale (Common European Framework of Reference
for Languages) (De l’Europe, 2003), then they add
topics as additional features to predict the com-
plexity level for learners of Swedish as a second
language. Shardlow et al. (2020) point out the lim-
itation of treating lexical complexity as a binary
classification task. Therefore, they present the first
English dataset for continuous lexical complexity
prediction and develop a linear regression-based
method with various features.

2.2 Complex Word Identification

A related area of LCP is CWI. Early studies on
CWI either attempt to simplify all words (Thomas
and Anderson, 2012) or set a frequency-based
threshold (Biran et al., 2011). Shardlow (2013)
indicates that a classification-based method to CWI
is the most promising one. Most of the teams partic-
ipating in two CWI shared tasks also use classifica-
tion approaches with extensive feature engineering.
In CWI 2016 (Paetzold and Specia, 2016a), com-
plexity was defined as whether or not a word is dif-
ficult to understand for non-native English speakers
and the words in the dataset are tagged as complex
or non-complex by 400 non-native English speak-
ers. The results highlight the effectiveness of Deci-
sion Trees (Quijada and Medero, 2016; Mukherjee
et al., 2016) and Ensemble methods (Paetzold and
Specia, 2016b; Malmasi et al., 2016) for the task.

In CWI 2018 (Yimam et al., 2018), a multilingual
dataset was provided containing English, German,
Spanish and French and there were two subtasks:
binary classification and probabilistic classifica-
tion. The submitted systems mainly use traditional
machine learning classifiers(e.g. SVM, Random
Forests) with features (Butnaru and Ionescu, 2018;
Kajiwara and Komachi, 2018), deep learning meth-
ods (Hartmann and Dos Santos, 2018; De Hertog
and Tack, 2018) and ensemble methods (Gooding
and Kochmar, 2018; Aroyehun et al., 2018). More
recently, (Gooding and Kochmar, 2019) propose a
new perspective by treating CWI as a sequence la-
beling task that can detect both complex words and
phrases. All these methods are different from ours
which utilizes heterogeneous PLMs with various
training strategies.

3 Background

Task Definition There are two subtasks in the
LCP task. For subtask 1, the goal is to predict the
complexity score for a single word from the given
context. As an example shown in Figure 1, the
‘refuge’ is the word that needs to be predicted and
since the meaning of it is harder to get in the first
context, its complexity score in the first context is
much higher. For subtask 2, the goal is to predict
the complexity score for a multi-word expression
from the given context. An example is also shown
in the right part of Figure 1.

Dataset Shardlow et al. (2020) introduce a new
English corpus, Complex, as the dataset for the
LCP task of SemEval-2021. Instead of assign-
ing binary scores for lexical complexity, they use
crowdsourcing to annotate 8979 instances covering
three genres with lexical complexity scores using
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Parameters BERTLARGE ALBERTXXLARGE RoBERTLARGE ERNIELARGE

batch size 16 16 16 16
learning rate 5e-6 5e-6 5e-6 5e-6
hidden layer 3 3 1, 3, 5 3, 5
dropout 0.2, 0.3 0.2, 0.3 0.2, 0.1; 0.2, 0.5;0.2, 0.3 0.2, 0.3; 0.2, 0.5
loss function MSE MSE RMSE, MSE, MAE MSE, MAE

Table 1: Parameter settings for different base models

a 5-point Likert scale: one for very easy, two for
easy, three for neutral, four for difficult, and five
for very difficult. The numerical labels were trans-
formed to a 0-1 range as shown in Figure 1. To
add further variation to the data, three corpora were
selected including Bible, Europarl (Koehn, 2005)
and Biomedical (Bada et al., 2012). Each corpus
has its own unique language features and styles. In
addition to single words, multi-word expressions
were also selected for annotating. In the end, there
were 9476 annotated contexts with 5166 unique
words.

4 System

4.1 PLMs-based Method

PLMs such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) use the encoder
structure of the Transformer (Vaswani et al., 2017)
for deep self-supervised learning, which requires
task-specific fine-tuning. In this paper, the down-
stream task is to predict the complexity scores, a
real-value in the range of [0,1], of given words.
Our method is capable of dealing with both subtask
1 and 2. Figure 2 shows the main architecture of
our BERT-based model for predicting complexity
scores.

Since PLMs can process multiple input sen-
tences, we add a query sentence before the context
to emphasize the words (e.g. river) that need to be
predicted and the corpus (e.g. Bible) they come
from. We add special tokens [CLS] and [SEP]
to separate the query and the context as shown in
Figure 2. BERT first tokenizes the input contents
and then generates contextualized vector represen-
tations for each token in multiple hidden layers.
We focus on the output of only the first position
that we passed the special [CLS] token to. The
last k hidden layers are selected to get the final
representation of token [CLS] through a weighted
calculation function as below,

x[CLS] =
k∑

i=1

Wix[CLS]i

where Wi is the learning weight for each hidden
layer. The calculated representation is then fed into
a dense layer, and the technique of multi-sample
dropout (Inoue, 2019) is utilized to accelerate train-
ing and finally obtain the predicted complexity
scores. The loss function can be chosen among sev-
eral options including Mean Square Error (MSE),
Root Mean Square Error (RMSE), and Mean Ab-
solute Error (MAE).

4.2 Training strategies

In order to further improve the diversity of trained
models, we incorporate two training strategies as
depicted below.

Pseudo-Labelling Pseudo-labelling is the pro-
cess of using a labeled data model to predict la-
bels for unlabeled data. We predict the unlabeled
test dataset and mix these pseudo labels with the
training set together to train the new model.

Data augmentation Data augmentation is the
technique used to increase the amount of data by
adding slightly modified copies of already existing
data or newly created synthetic data from existing
data. It acts as a regularizer and helps reduce over-
fitting when training a machine learning model. In
this paper, data augmentation consists of two parts.
We first add the dataset released by CWI 2018 into
the training set. Besides, for subtask 2, since its
training dataset is small which only contains one
thousand samples, we add the dataset of subtask
1 to train the model for subtask 2. Then, for a
given sentence in the training set, we perform the
operations containing synonym replacement, ran-
dom insertion, random swap, and random deletion
introduced by Wei and Zou (2019).

4.3 Stacking Trained Models

Model stacking is an efficient ensemble method to
improve model accuracy. The main procedure of
stacking trained models in our method including
five steps. First, we use heterogeneous PLMs in-
cluding BERT, RoBERTa, ALBERT, and ERNIE
as base models. Second, we generate multiple
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Scheme Model R Rho MAE MSE R2
Baseline Complexity average - - 0.1049 0.0189 0.0007

Log Frequency and Length 0.5376 0.5251 0.0867 0.0135 0.2864
BERT ERNIELARGE 0.7838 0.7321 0.0647 0.0069 0.6120

ALBERTXXLARGE 0.7850 0.7332 0.0644 0.0069 0.6115
BERTLARGE 0.7862 0.7296 0.0672 0.0073 0.5849
RoBERTaLARGE+PL 0.7770 0.7279 0.0656 0.0070 0.6023
RoBERTaLARGE+DA 0.7870 0.7432 0.0670 0.0078 0.5598
RoBERTaLARGE 0.7903 0.7356 0.0648 0.0068 0.6170

Table 2: Comparison of different pre-trained language models with training strategies of subtask 1

Scheme Model R Rho MAE MSE R2
Baseline Complexity average - - 0.1164 0.0219 0.0000

Log Frequency and Length 0.6249 0.6162 0.0900 0.0136 0.3807
BERT RoBERTaLARGE 0.7900 0.8002 0.0753 0.0092 0.6178

ALBERTXXLARGE+sub1 0.7901 0.7952 0.0755 0.00929 0.6157
RoBERTaLARGE+sub1 0.8101 0.8236 0.0715 0.0085 0.6498

Ensemble mean 0.8252 0.8343 0.0690 0.0079 0.6739
LR 0.8330 0.8348 0.0678 0.0074 0.6892

Table 3: Comparison of different pre-trained language models of subtask 2

hyperparameter sets by setting different values of
dropout, selecting different numbers of last hidden
layers, and using different loss functions. Since
our purpose here is not only to find the best hyper-
parameter sets but also to collect diverse sets with
reasonable performances, we keep all the training
results from different sets. Third, we perform 7-
fold cross-validation during the whole training pro-
cess to avoid overfitting or selection bias. Fourth,
we adopt several training strategies including us-
ing pseudo-labelling (Iscen et al., 2019) and data
augmentation to further improve the diversity of
trained models.

Ultimately, we train a simple linear regression
model as the final estimator. Suppose that the com-
plexity score predicted by a based model with one
hyperparameter set is ŷj , then the final complexity
scores will be calculated as below,

ŷ =
N∑

j=1

Wj ŷj

where N is the total number of various fine-tuned
PLMs with different hyperparameters sets and Wj

is the weight for each predicted score from different
PLMs learned by a linear regression model.

5 Experiments

5.1 Evaluation Metrics
As mentioned in the official evaluation procedure
of LCP 2021, several evaluation metrics are chosen
including Pearson correlation (R), Spearman cor-
relation (Rho), Mean absolute error (MAE), Mean

squared error (MSE), and R-squared (R2). The
final results are ranked using Pearson correlation.

5.2 Parameter settings
All models are implemented based on the open-
source transformers library of hugging face (Wolf
et al., 2020), which provides thousands of pre-
trained models that can be quickly downloaded
and fine-tuned on specific tasks. Table 1 shows the
four employed PLMs and different parameters we
set for each PLM including different numbers of
hidden layers, different dropout pairs, and different
loss functions.

6 Results

6.1 Ablation Study
PLMs with Training Strategies For subtask 1,
we use different PLMs including ERNIELARGE, AL-
BERTXXLARGE, BERTLARGE, RoBERTaLARGE as shown
in Table 2. The results are the average scores of 7-
fold cross-validation on the training dataset. Since
RoBERTaLARGE performs best on this task, we fur-
ther incorporate the training strategies including
pseudo-labelling (PL) and data augmentation (DA)
with it. However, for the training dataset, we find
that by adding the training strategies, the results
decrease a little bit.

For subtask2, we use two types of PLMs which
are RoBERTaLARGE and ALBERTXXLARGE. The re-
sults shown in Table 3 are also obtained by av-
eraging the scores of 7-fold cross-validation on the
training dataset. Since we have added the dataset of
subtask 1 into subtask 2, we also show the results

581



0.813

0.8135

0.814

0.8145

0.815

0.8155

0.816

0.8165

0.817

0.8175

0.818

0.8185

BERT-based  +PL  +DA  +PL,DA

mean LR

Figure 3: Comparison of Pearson Correlation values
for stacking different models of subtask 1.

Subtask 1 Subtask 2
System R System R
qusaibanyismail 0.7886 DeepBlueAI 0.8612
DeepBlueAI 0.7882 rg pa 0.8575
amsqr 0.7790 xiang wen tian 0.8571
armand.rotaru 0.7782 andi gpu 0.8543
abdelkader 0.7779 ren wo xing 0.8541

Table 4: Leaderboard

of doing this in Table 3 and we can find that it is
very effective by increasing 0.02 from base models.

Stacking trained models We use a linear regres-
sion (LR) model to stack different pre-trained mod-
els. We train the weights of each model in LR on
the training set and then use the learning weights
to predict the final scores of the test set.

Figure 3 shows the comparison of Pearson Cor-
relation values for stacking different models of sub-
task 1. The columns in blue are the values com-
puted by averaging predicted scores of different
models while the columns in orange are the values
through the LR function. We can clearly observe
that the LR-based ensemble method outperforms
those with the mean-based method, which verifies
the validity of using the LR mechanism. Besides,
although we find that adding training strategies
to the base models would decrease performance
according to Table 2, the performance will be im-
proved when stacking them all. This indicates the
positive effect of increasing model diversity.

6.2 Official Ranking

For both subtask 1 and subtask 2, among all the
pre-submission experiments, we find that the scores
obtained from stacking all the models performed
best. The official ranking is presented in Table 4
and it demonstrates that our system is ranked first
in subtask 2 and ranked second in subtask 1.

7 Conclusion

In this paper, we propose a top-performing model
for the task of lexical complexity prediction. We
fine-tune several pre-trained language models in-
cluding BERT, ALBERT, RoBERTa, and ERNIE
with different training strategies such as pseudo-
labelling and data augmentation and stack them
with a simple linear regression model. Experimen-
tal results show the effectiveness of this ensemble
method and we win first place and second place for
subtask 2 and 1.
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cio Saggion. 2012. Can spanish be simpler? lexsis:
Lexical simplification for spanish. In Proceedings
of COLING 2012, pages 357–374.

Andrei Butnaru and Radu Tudor Ionescu. 2018.
Unibuckernel: A kernel-based learning method for
complex word identification. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 175–183.

Dirk De Hertog and Anaı̈s Tack. 2018. Deep learning
architecture for complexword identification. In Thir-
teenth Workshop of Innovative Use of NLP for Build-
ing Educational Applications, pages 328–334. Asso-
ciation for Computational Linguistics (ACL); New
Orleans, Louisiana.

Conseil De l’Europe. 2003. Cadre européen commun
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prédire la complexité lexicale et graduer les mots)[in
french]. In Proceedings of TALN 2014 (Volume 1:
Long Papers), pages 91–102.

Sian Gooding and Ekaterina Kochmar. 2018. Camb at
cwi shared task 2018: Complex word identification
with ensemble-based voting. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 184–194.

Sian Gooding and Ekaterina Kochmar. 2019. Complex
word identification as a sequence labelling task. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1148–
1153.

Nathan Hartmann and Leandro Borges Dos Santos.
2018. Nilc at cwi 2018: Exploring feature engi-
neering and feature learning. In Proceedings of the
Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 335–340.

Hiroshi Inoue. 2019. Multi-sample dropout for ac-
celerated training and better generalization. arXiv
preprint arXiv:1905.09788.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and
Ondrej Chum. 2019. Label propagation for deep
semi-supervised learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5070–5079.

Tomoyuki Kajiwara and Mamoru Komachi. 2018.
Complex word identification based on frequency in
a learner corpus. In Proceedings of the thirteenth
workshop on innovative use of NLP for building ed-
ucational applications, pages 195–199.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised

learning of language representations. In Interna-
tional Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Shervin Malmasi, Mark Dras, and Marcos Zampieri.
2016. Ltg at semeval-2016 task 11: Complex word
identification with classifier ensembles. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 996–1000.

Shardlow Matthew, Evans Richard, Paetzold Gustavo,
and Zampieri Marcos. 2021. Semeval2021 task 1 :
Lexical complexity prediction.

Niloy Mukherjee, Braja Gopal Patra, Dipankar Das,
and Sivaji Bandyopadhyay. 2016. Ju nlp at semeval-
2016 task 11: Identifying complex words in a sen-
tence. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 986–990.

Gustavo Paetzold and Lucia Specia. 2016a. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569.

Gustavo Paetzold and Lucia Specia. 2016b. Sv000gg at
semeval-2016 task 11: Heavy gauge complex word
identification with system voting. In Proceedings of
the 10th International Workshop on Semantic Evalu-
ation (SemEval-2016), pages 969–974.

Maury Quijada and Julie Medero. 2016. Hmc at
semeval-2016 task 11: Identifying complex words
using depth-limited decision trees. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 1034–1037.

Matthew Shardlow. 2013. A comparison of techniques
to automatically identify complex words. In 51st
Annual Meeting of the Association for Computa-
tional Linguistics Proceedings of the Student Re-
search Workshop, pages 103–109.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1583–1590.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. Complex: A new corpus for lexical
complexity predicition from likert scale data. In 1st
Workshop on Tools and Resources to Empower Peo-
ple with REAding DIfficulties (READI) PROCEED-
INGS Edited by Nuria Gala and Rodrigo Wilkens,
page 57.

S Rebecca Thomas and Sven Anderson. 2012.
Wordnet-based lexical simplification of a document.
In KONVENS, pages 80–88.

583



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6383–6389.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi,
Gustavo Paetzold, Lucia Specia, Anaı̈s Tack, and
Marcos Zampieri. 2018. A report on the complex
word identification shared task 2018. In Proceed-
ings of the 13th Workshop on Innovative Use of
NLP for Building Educational Applications (NAACL
2018 Workshops), pages 66–78. Association for
Computational Linguistics; Stroudsburg,.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451.

584



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 585–589
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

CS-UM6P at SemEval-2021 Task 1: A Deep Learning Model-based
Pre-trained Transformer Encoder for Lexical Complexity

Nabil El Mamoun1 Abdelkader El Mahdaouy2 Abdellah El Mekki2
Kabil Essefar2 Ismail Berrada2

1Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, Morocco
2School of Computer Sciences, Mohammed VI Polytechnic University, Morocco

{firstname.lastname}@um6p.ma

Abstract

Lexical Complexity Prediction (LCP) involves
assigning a difficulty score to a particular
word or expression, in a text intended for
a target audience. In this paper, we intro-
duce a new deep learning-based system for
this challenging task. The proposed system
consists of a deep learning model, based on
a pre-trained transformer encoder, for word
and Multi-Word Expression (MWE) complex-
ity prediction. First, on top of the encoder’s
contextualized word embedding, our model
employs an attention layer on the input context
and the complex word or MWE. Then, the at-
tention output is concatenated with the pooled
output of the encoder and passed to a regres-
sion module. We investigate both single-task
and joint training on both Sub-Tasks data us-
ing multiple pre-trained transformer-based en-
coders. The obtained results are very promis-
ing and show the effectiveness of fine-tuning
pre-trained transformers for LCP tasks.

1 Introduction

Text Simplification (TS) is a fundamental task for
improving text readability, and presents a wide
variety of use cases, including assisting children
with reading difficulties and native speakers with
low literacy levels (De Belder and Moens, 2010;
Aluı́sio and Gasperin, 2010), increasing accessibil-
ity for people with intellectual disabilities (Saggion,
2017), and facilitating certain aspects of language
for language learners (Paetzold and Specia, 2016).
TS may involve modifications to the syntactic struc-
ture of a sentence, its lexical units or both (Shard-
low, 2014).

Lexical Simplification (LS), as a sub-task of TS,
focuses on simplifying complex words of an in-
put sentence. It first identifies complex words in
a sentence, known as Complex Words Identifica-
tion (CWI) or Lexical Complexity Prediction (LCP)

task. Then, it replaces them with other alternatives
of equivalent meaning. Those substitutions should
be more simplistic while preserving the semantic
and the grammatical structure of the input sentence
(Paetzold and Specia, 2017; Qiang et al., 2020).

Most of the previous research has modeled LCP
as a binary classification task (Paetzold and Specia,
2017; Zampieri et al., 2016; Ronzano et al., 2016).
A recent research study has introduced a multi-
domain dataset, annotated using a 5-point Likert
scale scheme (Shardlow et al., 2020). The aim is
to label the complexity of a word or a Multi-Word
Expression (MWE), in a more fine-grained manner,
from very easy to very difficult. Hence, the lexical
complexity of words is expressed on a continuous
scale.

In this paper, we introduce our submitted sys-
tem to the SemEval-2021 LCP 1 and 2 Sub-Tasks
(Shardlow et al., 2021). The proposed system con-
sists of a deep learning model for word and MWE
complexity prediction. Our model employs a resid-
ual attention block and a regression module on top
of a pre-trained transformer encoder, as follows:

• The encoder is fed with the concatenation of
the context and the complex word or MWE,
using the SEP token of the encoder’s tok-
enizer.

• The residual attention block is a layer on top
of the encoder’s Contextualized Word Embed-
ding (CWE) of the input context (sentence)
and the complex word or MWE. The aim is
to leverage the encoder’s CWE to extract the
relevant features of the inputs.

• The attention layer output is concatenated
with the pooled output of the encoder and
passed to the regression module for complex-
ity prediction.
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(a) Distribution of sentences per do-
main

(b) Distribution of single words com-
plexity

(c) Distribution of MWEs complexity
.

Figure 1: Domains and complexity distributions of the datasets sentences

The proposed model is trained to minimize both
the Root Mean Square Error (RMSE) and the aux-
iliary loss associated to the negative Pearson Corre-
lation. The two losses are combined using the un-
certainty loss weighting (Kendall et al., 2017). We
investigate two pre-trained transformer networks,
namely BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). Moreover, we evaluate both
single-task and joint training of word and MWE
complexity prediction sub-tasks. The best perfor-
mances are achieved using RoBERTa-large encoder
while performing joint training on both Sub-Tasks
data. The obtained results are very promising and
show the effectiveness of our system, which was
ranked among the top 10 submitted systems to both
LCP 1 and 2 Sub-Tasks.

The rest of this paper is organized as follows.
Section 2 describes the dataset and the sub-tasks
of SemEval-2021 Task 1. In Section 3, we present
our system overview. Section 4 summarizes and
discusses the obtained results for both Sub-Task 1
and Sub-Task 2. Finally, Section 5 concludes the
paper.

2 Task Description

2.1 Dataset Descripion

The dataset of the Lexical Complexity Prediction
shared task (Shardlow et al., 2021) is an augmented
version of the Complex dataset (Shardlow et al.,
2020). In addition to complex word annotation, the
data also include MWEs along with their context
sentences and complexity scores. The dataset is
annotated using a 5-point (1-5) Likert scale scheme
and covers sentences from three domains: Bible,
EuroParl, and Biomedical texts. The dataset is
labeled by a group of annotators from English-
speaking countries. It is compiled from sentences
with at least four valid annotations. The aggre-
gation of annotations is performed ensuring that

the normalized complexity is in the interval [0, 1].
The complexity scores are on a 5-point Likert scale
and correspond to five levels of complexity rang-
ing from ”Very Easy” to ”Very difficult” (Shardlow
et al., 2020).

2.2 Sub-tasks Descripion
The LCP shared task consists of two sub-tasks
(Shardlow et al., 2021):

• Sub-Task 1: predicting the complexity score
of single words.

• Sub-Task 2: predicting the complexity score
of multi-word expressions.

The training set consists of 7,662 samples for
single word complexity prediction (Sub-Task 1),
while the training set of MWE sub-task contains
1,517 samples (Sub-Task 2). Figure 1a presents the
number of samples per domain. The dataset is al-
most balanced for all three domains in the two LCP
sub-tasks. Figure 1b and 1c show the complexity
distribution of single words and MWEs, respec-
tively. The Figures (1b and 1c) illustrate that most
single words have a complexity score less than 0.5,
whereas for MWEs, the complexity scores are be-
tween 0.25 and 0.75.

3 System Overview

The proposed system uses a residual attention block
and a regression module on top of the pre-trained
transformer encoder network. In the following, we
describe each component of our system.

3.1 Transformer Encoder
In order to encode the input context and the com-
plex word or MWE, we employ two state-of-the-art
pre-trained transformer encoder networks, namely
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). First, the context (sentence) and the
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complex word or MWE are concatenated using the
special token (SEP or /s) of the encoder’s tokenizer,
as follows:

• BERT case:

Input = [CLS] context [SEP ] word/MWE

• RoBERTa case:

Input = < s > context < /s > word/MWE

Then, the tokenizer of the encoder splits the input
into wordpieces [T1, T2, ..., Tn] and encodes them
using its vocabulary. The transformer encoder is
fed with these encoded inputs. As a result, it out-
puts:

• The pooled embedding hpooled ∈ R1×d (the
embedding of [CLS] and < s > tokens for
BERT and RoBERTa encoders, respectively).

• The contextualized word embedding (CWE)
H = [h1, h2, ..., hn] ∈ Rn×d (d is the embed-
ding dimension).

3.2 Attention block
Our model applies an attention layer on top of
the CWE, output by the encoder (Bahdanau et al.,
2015; Yang et al., 2016). The aim is to reward
CWEs according to their relevance to the complex-
ity prediction task. Using the CWE, the attention
layer extracts a features vector v, representing the
weighted sum of H vectors:

C = tanh(HWa)

α = softmax(CTWα)

v = α ·HT

where Wa ∈ Rd×1 and Wα ∈ Rn×n are the learn-
able parameters of the attention layer, C ∈ Rn×1 is
the context vector of the attention mechanism, and
α ∈ [0, 1]n weights the CWEs according to their
relevance to the task.

3.3 Regression Module
The regression module F consists of one hidden
layer and one output layer. F is fed with the con-
catenation of the encoder’s pooled output hpooled
and the output attention block v. F outputs the ŷ,
the predicted complexity:

ŷ = F ([hpooled, v])

The proposed system is trained to minimize both
the Root Mean Square Error (RMSE) and the aux-
iliary loss associated to the negative Pearson Cor-
relation:

• The RMSE loss:

Lrmse(ŷ, y) =

√√√√ 1

N

N∑

i=1

(yi − ŷj)2

• The auxiliary loss associated to the negative
Pearson Correlation:

Laux(ŷ, y) = 1−
∑N

i=1(yi−y)(ŷi−ŷ)√∑N
i=1(yi−y)2

√∑N
i=1(ŷi−ŷ)2

where N is the number of samples, y is the ground
truth complexity, ŷ is the predicted complexity, and
y (resp. ŷ) is the mean of y (resp. ŷ). In order to
combine both Lrmse and Laux, we use the uncer-
tainty loss weighting (Kendall et al., 2017). The
latter aims to combine multiple losses according
to their uncertainty and to avoid manual tuning of
the loss weights. Finally, our model is trained to
minimize the total loss, given by:

Ltotal =
1

2σ21
Lrmse +

1

2σ22
Laux + log(σ1σ2)

where σ1 and σ2 are two parameters for learning
the relative weight of Lrmse and Laux.

4 Results

This section describes the experiment settings and
the obtained results.

4.1 Experiment Setting
We investigate the performance of our system using
both the base and the large models of BERT and
RoBERTa encoders:

• BERT-base: 12 transformer blocks, d = 768,
12 attention heads, and 110M parameters.

• BERT-large: 24 transformer blocks, d =
1024, 16 attention heads, and 336M param-
eters.

• RoBERTa-base: 12 transformer blocks, d =
768, 12 attention heads, and 125M parame-
ters.

• RoBERTa-large: 24 transformer blocks, d =
1024, 16 attention heads, and 355M parame-
ters.

We implement a simple text preprocessing
pipeline that normalizes the contractions1. All mod-
els are trained using Adam optimizer (Kingma and

1We have employed the package contractions for
this purpose. https://github.com/kootenpv/
contractions
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Sub-Task 1 (Word complexity) Sub-Task 2 (MWE complexity)

Training Encoder Pearson Spearman MAE MSE R2 Pearson Spearman MAE MSE R2

BERT-base 0.7211 0.7005 0.0742 0.009 0.4455 0.8199 0.8157 0.0732 0.0086 0.6703
Single BERT-large 0.73 0.7023 0.0816 0.0105 0.3567 0.8214 0.8158 0.0723 0.0087 0.6668
Task RoBERTa-base 0.7402 0.7198 0.0871 0.012 0.2654 0.8274 0.8235 0.0752 0.0087 0.6669

RoBERTa-large 0.7613 0.7309 0.0728 0.0088 0.4629 0.8369 0.8349 0.0749 0.0088 0.6619

BERT-base 0.7236 0.7058 0.0827 0.0109 0.3288 0.8256 0.8125 0.0738 0.0088 0.6349
Joint BERT-large 0.7317 0.6936 0.077 0.0097 0.406 0.8371 0.8391 0.0703 0.0083 0.7191

Training RoBERTa-base‡ 0.7576 0.7318 0.0754 0.0091 0.4374 0.8424 0.8322 0.0696 0.0078 0.6767
RoBERTa-large‡ 0.7779 0.7366 0.0803 0.01 0.3813 0.8489 0.8406 0.076 0.0087 0.638

Table 1: The obtained results using single-task and joint training of both Sub-Tasks 1 and 2. The best performances
are highlighted with bold font. The attached superscript ‡ denotes the results of our two official submissions to
both Sub-Tasks 1 and 2 (TEST).

Sub-Task 1 (Word complexity) Sub-Task 2 (MWE complexity)

Pearson Spearman MAE MSE R2 Pearson Spearman MAE MSE R2
w/o attention 0.7584 0.7316 0.1089 0.0171 0.485 0.8323 0.8335 0.0941 0.094 0.6632
w/o auxiliary loss (Laux) 0.7597 0.7198 0.0695 0.0082 0.3176 0.8382 0.8352 0.0692 0.0074 0.6167
w/o uncertainty loss weighing 0.7694 0.7321 0.0728 0.0088 0.4623 0.8472 0.8401 0.0797 0.0103 0.6071
Model 0.7779 0.7366 0.0803 0.01 0.3813 0.8489 0.8406 0.076 0.0087 0.638

Table 2: Ablation study of our model’s component using joint training and RoBERTa-large as encoder (symbol
w/o denotes without the corresponding component). w/o uncertainty loss weighing corresponds to the simple
combination of model losses (Ltotal = Lrmse + Laux).

Ba, 2015) with a learning rate of 1 × 10−5. The
batch size and the number of epochs are fixed to 16
and 5, respectively. We investigate both single-task
training and joint training of both Sub-Task 1 and
Sub-Task 2 (training a single model on both sub-
tasks data). All models are trained on the full train
sets, validated on the trial sets, and evaluated on
the test set of each Sub-Task. For evaluation pur-
pose, we use the shared task’s evaluation metrics,
namely the Pearson correlation, the Spearman
correlation, the Mean Absolute Error MAE, the
Mean Squared Error MSE, and the coefficient of
determination R2.

4.2 Experiment Results
Table 1 presents the obtained results of our model
for both single-task and joint training, using the
four transformer-based encoders. The overall re-
sults show that training joint models for both Sub-
Tasks (1 and 2) outperform their single-task coun-
terparts. The Use of deep encoders (large encoders)
in our model yields better correlation performances.
The best results for the correlation metrics are ob-
tained using joint training and RoBERTa-large. For
Sub-Task 1, the best MAE, MSE and R2 perfor-
mances are achieved using single-task training and
RoBERTa-large encoder. For Sub-Task 2, the best
performances of all evaluation measures are ob-
tained using joint training. In accordance with

Sub-Task 1, the best correlation performances are
attained using RoBERTa-large encoder. Besides,
the best R2 is achieved using BERT-large, while
the top MAE and MSE performances are obtained
using RoBERTa-base.

To sum up, the best performances are obtained
by joint training of our model on top of a deep
encoder. These results can be explained by the fact
that deep encoders yield better input representation
for both Sub-Tasks. The joint training helps to
leverage signals from both Sub-Tasks.

4.3 Ablation Experiment

In order to assess the effectiveness of each compo-
nent of our model, we perform an ablation study
using joint training and RoBERTa-large encoder.
Table 2 illustrates the results of our model’s abla-
tion study. The results show that all components in
our model improve the system performance. The
auxiliary loss improves the performances of corre-
lation measures, while it degrades MAE, MSE, and
R2 performances. Combining RMSE and auxiliary
losses using uncertainty loss weighting slightly im-
proves the performance of correlation measures.

5 Conclusion

In this paper, we have presented our submitted
system to the SemEval-2021 Task 1. The pro-

588



posed system consists of a deep learning model
for word and MWE complexity prediction. Our
model employs a residual attention block and a re-
gression module on top of a pre-trained transformer
encoder. We have trained the model to minimize
the uncertainty weighted loss of the RMSE and the
auxiliary loss associated to the negative Pearson
correlation. Experiments are performed using the
base and the large variants of the pre-trained BERT
and RoBERTa encoders. The best performance
is obtained using RoBERTa-large encoder while
performing joint training on both Sub-Tasks data.
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Abstract
This paper describes our submission to the
SemEval-2021 shared task on Lexical Com-
plexity Prediction. We approached it as a
regression problem and present an ensemble
combining four systems, one feature-based
and three neural with fine-tuning, frequency
pre-training and multi-task learning, achieving
Pearson scores of 0.8264 and 0.7556 on the
trial and test sets respectively (sub-task 1). We
further present our analysis of the results and
discuss our findings.

1 Introduction

Predicting which words are considered hard to un-
derstand for a given target population has many ap-
plications. For example, it can be used to identify
texts appropriate for language learners or included
in a pipeline for automatic text simplification for
people with low literacy skills or reading disabil-
ities (Xia et al., 2016; Shardlow, 2014; Gooding
and Kochmar, 2019b). In this paper, we describe
our submission to the SemEval-2021 shared task
on Lexical Complexity Prediction (LCP) (sub-task
1), where participating teams are expected to pre-
dict the complexity score of single words in con-
text (Shardlow et al., 2021). Compared to previ-
ous shared tasks on Complex Word Identification
(CWI), which have primarily focused on binary
classification as systems were expected to iden-
tify words as complex or not (Paetzold and Specia,
2016a; Yimam et al., 2018); a new multi-domain
English dataset was used for the purpose, which
was annotated using a 5-point Likert scale (Shard-
low et al., 2020). We approached LCP as a regres-
sion problem and proposed a traditional feature-
based model, as well as three neural models explor-
ing fine-tuning, frequency pre-training and multi-
task learning (MTL).

The remainder of this paper is organised as fol-
lows. Section 2 presents related work in the area.

In Section 3, we describe our approach to the task
and detail the four models included in our final en-
semble system. In Section 4, we turn to the experi-
ments, describing the data and evaluation metrics
used, and presenting our results on the shared task
trial set. Section 5 presents our official results on
the shared task test set, and offers a discussion of
the results and the performance of our submitted
system. Finally, we conclude the paper and provide
an overview of our findings in Section 6.

2 Related work

The SemEval-2016 shared task on CWI (Paetzold
and Specia, 2016a) was framed as a binary clas-
sification problem, where complexity was defined
as whether or not a word is difficult to understand
for non-native English speakers. A set of 400 non-
native speakers annotated the data in a binary fash-
ion and a word was labelled as complex if it was
annotated as complex by at least one annotator. The
study performed by Zampieri et al. (2017) showed
that most systems performed poorly due to the way
the data was annotated. They also found out that
words that were annotated as complex by the ma-
jority of human annotators tend to be easier for
systems to identify, arguing that lexical complexity
should be seen as a continuum on a spectrum rather
than a binary value.

The second CWI shared task was organized as
part of the BEA-2018 workshop (Yimam et al.,
2018). It extended the previous one by intro-
ducing a new probabilistic classification sub-task
where participants were asked to assign the prob-
ability that an annotator would find a word com-
plex. The continuous complexity value for each
word was calculated as the proportion of annota-
tors that found a word complex. The results of the
shared task showed that traditional feature engi-
neering approaches (mostly based on length and
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Linguistic feature Pearson Importance
Train Trial Test

1. Number of syllables in target word 0.162 0.235 0.120 0.019
2. Number of characters in target word 0.099 0.159 0.094 0.103
3. Mean number of syllables per word in given text 0.057 0.224 0.073 0.132
4. Mean number of characters per word in given text 0.084 0.230 0.089 0.119
5. Deviation from mean number of syllables 0.079 -0.180 -0.096 0.151
6. Deviation from mean number of characters -0.138 -0.093 -0.062 0.180
7. Frequency of target word -0.240 -0.247 -0.183 0.369
8. Frequency of target lemma -0.125 -0.256 -0.209 0.714
9. Frequency of target dependency label -0.040 -0.091 -0.054 0.059
10. Frequency of target POS 0.051 0.136 -0.010 0.128
11. Frequency of target word and dependency label -0.195 -0.111 -0.200 0.089
12. Frequency of target word and POS -0.257 -0.201 -0.154 0.126
13. Number of compounds in surrounding phrase 0.001 0.092 0.079 0.021
14. Number of modifiers in surrounding phrase 0.073 0.085 0.068 0.006
15. Number of dependencies linked to target word -0.073 -0.044 -0.059 0.039

Table 1: Features used in the random forest regressor and the corresponding Pearson’s correlation with complexity
in the training (train), trial, and test data; as well as the corresponding mean permutation importance (n = 50).
Bold Pearson values are significant (p < 0.001).

frequency features) performed better than neural
network and word embedding approaches, includ-
ing the winning system Camb-2018 from Gooding
and Kochmar (2018). However, this system was
subsequently outperformed by a sequence labeller
approach to CWI that incorporated word context
(Gooding and Kochmar, 2019a). In both shared
tasks, the top-performing systems demonstrated
the strength of ensemble models (Paetzold and Spe-
cia, 2016b; Gooding and Kochmar, 2018).

3 Approach

3.1 Random forest regression

As a baseline, we began with training a simple ran-
dom forest regressor based on 15 manually selected
linguistic features. The regressor was trained with
100 trees, and we used mean absolute error (MAE)
to measure the quality of each split. Most of our
features were inspired by psycholinguistic studies
and readability metrics. The full list of features can
be found in Table 1.

Frequency Based on the psycholinguistic find-
ings that the frequency of a word is strongly cor-
related with the speed at which it is processed
(Preston, 1935; Monsell et al., 1989; Brysbaert
et al., 2011), we introduced six features which are
based on frequencies found in the Simple English

Wikipedia (SimpleWiki).1 We selected SimpleWiki
for its standardised form, relatively low frequency
of complex words, and coverage of a large num-
ber of topics. Two of our frequency-based features
were calculated based on the frequency of words
that match both the surface form and the syntac-
tic role - this was done as a coarse form of word
sense disambiguation, but also to capture syntactic
complexity.

Syntax Psycholinguistic studies have shown
that syntactic complexity is linked to processing
speed (Ferreira, 1991) and working memory lim-
itations (Norman et al., 1992), which may affect
participants’ perception of lexical complexity. In a
similar vein, we added three syntactic features: the
number of compounds and modifiers in the phrase
containing the target word, and the number of child
dependencies linked to the target word.

Readability We included syllable-based2 and
character-based metrics, which were inspired by
traditional readability metrics such as the Flesch-
Kincaid readability tests (Kincaid et al., 1975)

1The Simple English Wikipedia data can be accessed at
https://simple.wikipedia.org/. For this shared
task, we used a preprocessed version at https://github.
com/LGDoor/Dump-of-Simple-English-Wiki.

2The number of syllables were estimated using the Sylla-
bles library: https://github.com/prosegrinder/
python-syllables.
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and the Coleman-Liau index (Coleman and Liau,
1975).

3.2 Fine-tuning BERT
Fine-tuning pre-trained language models via su-
pervised learning has become the key to achiev-
ing state-of-the-art performance in various natural
language processing (NLP) tasks. Our approach
builds upon this, where we used BERT (Devlin
et al., 2019) as the underlying language model and
added a linear layer on top that allows for regres-
sion.

We treated it as a sequence regression problem
and constructed the input by concatenating the tar-
get word wt, the complexity of which was to be
determined, and its context sentence:

[CLS];wt; [SEP ];w1, ..., wt, ...; [SEP ] (1)

We then fed the [CLS] representation into the
output layer for regression.

We used the L1-loss, which measures the MAE
for the prediction, i.e.:

Loss = mean({l1, . . . , lN}); ln = |xn−yn| (2)

where x and y are respectively the output of the
model and the target value. N is the batch size.

During training, the whole model was optimised
in an end-to-end manner.

3.3 Frequency pre-training
We proposed an extension to the fine-tuning BERT
system by introducing a pre-training step. We con-
structed a new pre-training set with 20,000 sen-
tences extracted from SimpleWiki, filtering for
whole sentences by detecting the presence of verbs,
and removing sentences that are longer than 256
words, as this is the length of the longest sentence
in the training data.

Frequency of each word and part-of-speech
(POS) combination in SimpleWiki was counted
and converted into a value between 0 and 1:

1− ln(f)

ln(h)
(3)

where f is the original frequency value and h is the
highest frequency found (excluding stop words).
This conversion makes use of the Zipfian distri-
bution observed in natural language (Zipf, 1935),
allowing the model to be pre-trained on output val-
ues that match the range in the shared task dataset
(see Section 4.1 for more details).

Data Train Trial Test
Bible 2,574 143 283
Biomedical 2,576 135 289
Europarl 2,512 143 345
Total 7,662 421 917

Table 2: Number of single word instances in the train-
ing (train), trial and test subsets of the Bible, Biomedi-
cal and Europarl datasets.

We chose this particular frequency feature be-
cause it is the most strongly correlated one with
the complexity values in the training data among
the 15 features used in the random forest regressor
(see Table 1 #12).

3.4 Neural multi-task learning

MTL allows models to use information from re-
lated tasks and learn from multiple objectives,
which leads to performance improvement on indi-
vidual tasks (Rei and Yannakoudakis, 2017; Yuan
et al., 2019; Taslimipoor et al., 2020; Andersen
et al., 2021). Instead of only predicting the com-
plexity value of word in context, we extended the
model to incorporate auxiliary objectives. We used
a joint learning approach trained on in-domain data
only and experimented with three related tasks to
boost model performance:

• POS tagging

• Grammatical Relations (GR) prediction: We
included as an auxiliary objective the predic-
tion of the GR type of a dependent with its
head.

• Genre classification: A classification task was
introduced to predict the genre of the text.

Model weights were shared between the main
and auxiliary training objectives. We used pre-
trained DistilBERT (Sanh et al., 2020) for language
representation as the basis for our neural network
and added additional layers on top of the Trans-
former (Vaswani et al., 2017) architecture for fine-
tuning.

The final layer for the LCP objective is a fully
connected layer that performs regression. Different
from the first two neural systems, we treated it as
a token regression problem, where we only input
the context sentence, and fed the vector representa-
tion of the target word wt into the output layer for
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Hyper-parameter BERT BERTfreq. MTL
Language model bert-base-uncased bert-base-uncased distilbert-base-uncased
Max. length 190 160 304
Batch Size 40 8 1
Epochs 5 7 4
Decay rate 0.01 0.01 0.01
Learning rate 5e-06 2e-05 1e-05
Schedule linear linear linear
Warm up steps 80 90 7662

Table 3: Hyper-parameters used for experiments.

regression:

[CLS];w1, ..., wt, ..., wN ; [SEP ] (4)

For those cases where the target word was split
into multiple sub-tokens, we took the averaged rep-
resentation.

Additionally, a new output layer was introduced
to perform the auxiliary task. For the first two
token-level auxiliary tasks (POS and GR), the token
representations were fed into the output layer. The
model only predicted labels for auxiliary objectives
on the first token of a word, in an identical fashion
to Devlin et al. (2019). For genre classification,
we used the [CLS] representation. The overall
loss function is a weighted sum of the main LCP
loss (measured as MAE) and the auxiliary loss (as
cross-entropy):

Loss = λLossLCP + (1− λ)Lossaux (5)

4 Experiments

4.1 Dataset and evaluation

The data used in this shared task is an augmented
version of CompLex (Shardlow et al., 2020), a
multi-domain English dataset with sentences an-
notated using a 5-point Likert scale with 1 being
very easy and 5 being very difficult. The final com-
plexity labels were normalised in the range of [0, 1].
The dataset contains texts of three genres (Bible,
Biomedical and Europarl) and both single words
(sub-task 1) and multi-word expressions (sub-task
2). Since we focused on sub-task 1, we used only
single word instances in our experiments. Corpus
statistics are given in Table 2.

Systems were evaluated using Pearson correla-
tion. We also report scores for the following met-
rics: Spearman correlation, MAE, mean squared
error (MSE) and R-squared (R2).

4.2 Training details

We used spaCy3 to preprocess the data and auto-
matically generated lemma, POS and GR labels to
be used in our experiments.

For the feature-based system, we used the ran-
dom forest regressor in the scikit-learn library.4

For the neural systems, we used pre-trained lan-
guage models provided by huggingface (Wolf
et al., 2020).5 All neural systems were trained
using the AdamW variant (Loshchilov and Hutter,
2019) of the Adam stochastic optimisation algo-
rithm (Kingma and Ba, 2015). Detailed hyper-
parameters are listed in Table 3. Each neural model
was trained on one NVIDIA Tesla P100 GPU.

4.3 Individual system performance

Individual system performance on the trial set is
reported in Table 4, where RandomForest refers
to the feature-based random forest regression sys-
tem, BERT refers to the fine-tuned BERT system,
BERTfreq. refers to the fine-tuned BERT system
with frequency pre-training, and MTLX refers to
the MTL system with the subscript ‘X’ representing
the auxiliary task (POS, GR, or genre). We also re-
port results from the winning system Camb-2018
in the BEA-2018 CWI shared task, a feature-based,
context-independent linear regression model.

We can see that our feature-based RandomFor-
est system achieved comparable performance to the
heavily feature-engineered Camb-2018 system, de-
spite using only 15 features. This may be due to the
fact that linguistic features are often highly inter-
dependent and capture very similar information.

We also notice that all our neural systems outper-
formed both feature-based systems by large mar-
gins (+0.1 Pearson). This contradicts the findings

3https://spacy.io/
4https://scikit-learn.org/
5https://huggingface.co/transformers/
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System Pearson Spearman MAE MSE R2
RandomForest 0.7043 0.6746 0.0751 0.0096 0.4934
BERT 0.7907 0.7579 0.0647 0.0072 0.6191
BERTfreq. 0.8089 0.7546 0.0646 0.0068 0.6397
MTLPOS 0.8000 0.7528 0.0662 0.0075 0.6052
MTLGR 0.7936 0.7208 0.0654 0.0070 0.6290
MTLgenre 0.7982 0.7272 0.0656 0.0070 0.6300
Camb-2018 0.7079 0.6885 0.0746 0.0095 0.4957

Table 4: Performance of individual systems on the trial set (sub-task 1). The best results are marked in bold.
Camb-2018 is the winning system in the BEA-2018 CWI shared task.

Ensemble Pearson Spearman MAE MSE R2
MTLAll 0.8129 0.7471 0.0634 0.0065 0.6542
MTLAll + BERT + BERTfreq. 0.8228 0.7641 0.0621 0.0063 0.6684
MTLAll + BERT + BERTfreq. + RandomForest 0.8264 0.7676 0.0623 0.0063 0.6688

Table 5: Performance of ensemble systems on the trial set (sub-task 1). The best results are marked in bold.

from the BEA-2018 CWI shared task where tra-
ditional feature-based approaches performed bet-
ter than neural network and word embedding ap-
proaches. This could possibly be explained by
the use of pre-trained Transformer-based language
models in our neural systems, as well as a different
annotation scheme employed when constructing
the CompLex dataset used for this shared task. Nev-
ertheless, our findings appear to match the general
trend in NLP where neural systems are overtaking
feature-based models as the state of the art. All
our neural systems produced comparable results:
BERTfreq. yielded the best Pearson, MAE, MSE
and R2 scores; while BERT yielded the best Spear-
man score.

4.4 Ensemble performance
We further averaged the outputs from individual
systems to obtain an ensemble. Table 5 shows re-
sults for different system combinations. Overall,
the best system consists of all our individual sys-
tems proposed in Section 3, including the feature-
based RandomForest system; and achieved the
best Pearson score of 0.8264, Spearman of 0.7676,
MSE of 0.0063, and R2 of 0.6688. The ensem-
ble of all neural systems yielded the best MAE of
0.0621.

5 Official results and discussion

Our submission to the LCP shared task (sub-task
1) is the result of our best system (in terms of Pear-
son), an ensemble of three neural and one feature-
based systems MTLAll + BERT + BERTfreq. +

RandomForest. The official results are reported
in Table 6. Our final system achieved a Pearson
score of 0.7556.

5.1 Per-genre performance

Using the Pearson correlation metric, the highest
performance is obtained on the Biomedical data,
followed by the Bible and Europarl data. On the
MAE metric, however, the worst performance is
found for the Biomedical data (see Table 6). We
hypothesise that this might result from differences
in the distribution of the lexical complexity scores.
In particular, the scores for the Biomedical data
appear to have a slightly larger interquartile range
(see Appendix A, Figure A.1c).

5.2 Individual system contribution

To measure the contribution of each individual sys-
tem to the overall performance, a number of abla-
tion tests were performed, where one system was
removed at a time. Results in Table 6 suggest that
all neural systems have positive effects on the over-
all performance. Among them, MTLAll is the most
effective one, whose absence is responsible for a
0.02 decrease in Pearson, followed by BERTfreq.
and BERT. Interestingly, removing RandomFor-
est yielded a better Pearson score of 0.7560, indicat-
ing that it is detrimental and brought performance
down. This is inconsistent with our results on the
trial set (see Table 5), where all systems contributed
to the final system.
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Pearson Spearman MAE MSE R2
Official 0.7556 0.7105 0.0646 0.0070 0.5705

Bible 0.7475 0.7154 0.0662 0.0076 0.5493
Genre Biomedical 0.7763 0.7274 0.0745 0.0088 0.6025

Europarl 0.7195 0.6699 0.0551 0.0049 0.5169
RandomForest 0.7560 0.7126 0.0647 0.0070 0.5685

Ablated BERT 0.7523 0.7069 0.0650 0.0070 0.5655
system BERTfreq. 0.7515 0.7067 0.0652 0.0071 0.5633

MTLAll 0.7371 0.6920 0.0669 0.0076 0.5335

Table 6: Official results of our submitted system on the test set (sub-task 1). Per-genre performance and ablation
test results are included.

Analysis of RandomForest To understand why
the feature-based regressor performed worse on
the test data, we examined the correlation between
each feature and the complexity scores in the train-
ing (train), trial, and test sets. Results in Table 1
show that several linguistic features (particularly
#3, #4, and #10) are more strongly correlated with
scores in the trial data compared to the test data,
which may explain the discrepancy in our results.
Although most features appear to have a small but
significant correlation with complexity in the train-
ing data, many are not significant in the test data,
likely due to the smaller sample size. This suggests
that, while there may be some weak, overall corre-
lation between these features and complexity, there
is sufficient noise in the data that the relationship is
negligible and unreliable when used to predict the
complexity of a given word.

Additionally, we investigated the importance of
each feature in the random forest regressor, as
measured by the mean permutation importance
(Breiman, 2001) - see Table 1. Our analysis re-
veals that the frequency of the target lemma (#8) is
the most important one, followed by the frequency
of the target word itself (#7). Both of these fea-
tures are more strongly correlated with complex-
ity in the trial data than either the training or test
data, which also contributes to the inconsistency
described above.

6 Conclusion

This paper presents our contribution to the
SemEval-2021 shared task on LCP. We competed
in sub-task 1 (single words) with an ensemble sys-
tem combining three neural models and one feature-
based model. Our analysis reveals that even though
all three neural systems perform comparably, the
MTL system contributed the most to the ensemble

system. Adding the feature-based model improved
the performance on the trial data, but brought per-
formance down on the test data. In addition to
the mismatch between the trial and test data, the
noise in the data further contributed to this incon-
sistency. The comparatively lower performance
of the feature-based system is especially interest-
ing in light that such systems were competitive
for CWI until relatively recently (Gooding and
Kochmar, 2018). When looking at different genres,
our submitted system yielded the highest perfor-
mance in Pearson, but worst performance in MAE
in Biomedical domain, compared to the other gen-
res. We hypothesise that this is due to differences
in data distribution between genres.
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A Data distribution

Figure A.1 presents the box plots of complexity
scores in the training (train), trial and test subsets
of the Bible, Biomedical and Europarl datasets.
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Figure A.1: Box plots of complexity scores for data by
genre.
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Abstract

In this paper, we propose a method of fus-
ing sentence information and word frequency
information for the SemEval 2021 Task 1-
Lexical Complexity Prediction (LCP) shared
task. In our system, the sentence informa-
tion comes from the RoBERTa model, and the
word frequency information comes from the
Tf-Idf algorithm. Use Inception block as a
shared layer to learn sentence and word fre-
quency information. We described the imple-
mentation of our best system and discussed
our methods and experiments in the task. The
shared task is divided into two subtasks. The
goal of the two subtasks is to predict the com-
plexity of a predetermined word. The evalua-
tion index of the task is the Pearson correlation
coefficient. Our best performance system has
Pearson correlation coefficients of 0.7434 and
0.8000 in the single-token subtask test set and
the multi-token subtask test set, respectively.

1 Introduction and Background

Language and writing are the main ways we trans-
mit knowledge and information. An accurate and
efficient understanding of the meaning expressed in
the text is of great significance to our learning and
production. Vocabulary complexity and reading
comprehension are inextricably linked, and overly
complex terms may bring bad results (DuBay,
2004). The research of Leroy et al. showed that the
use of vocabulary simplification technology is one
of the ways to effectively improve readers’ reading
comprehension ability (Leroy et al., 2013). Accu-
rately predicting lexical complexity can make the
system better guide users to use appropriate text, or
customize text according to their needs. Especially
when some ordinary readers are reading technical
text content (Wei et al., 2009). Lexical complexity
detection and complex lexical simplification have
attracted the attention of the NLP community, and

systems have been developed to simplify the text of
second language learners (Shardlow, 2014), native
speakers with low literacy levels (Specia, 2010),
and people with dyslexia (Rello et al., 2013).

The topic of the shared task of SemEval 2021
Task 1 is “Lexical Complexity Prediction (LCP)”.
The task data set uses English text data in a sin-
gle language (Shardlow et al., 2020). There are
two subtasks in the task, which are the subtasks for
predicting the complexity of a single token and mul-
tiple tokens (Shardlow et al., 2021). In this article,
we give the method and task result of predicting
word complexity. Our system uses a method that
combines sentence, word frequency, and context
information. The acquisition of sentences and con-
text information uses the RoBERTa model (Liu
et al., 2019b). The word frequency information
comes from the Tf-Idf algorithm (Ramos et al.,
2003). The complexity is a continuous value, so
the whole task can be regarded as a regression task.
We provide the model code used in this task 1.

2 Related Work

Previously held similar to this shared task are Se-
mEval 2016 task 11: Complex Word Identification
(CWI2016) (Paetzold and Specia, 2016a), Complex
Word Identification Shared Task 2018 (CWI2018)
(Yimam et al., 2018).

In CWI2016, the system voting method used
by Paetzold et al. has achieved excellent results
in sharing tasks (Paetzold and Specia, 2016b). In
CWI2018, Butnaru uses a kernel-based learning
method for complex word identification (Butnaru
and Ionescu, 2018). Sian and other methods using
integrated voting have also achieved good scores
(Gooding and Kochmar, 2018). In addition to the
above methods, some common methods are applied
to these tasks. For example, SVM, random forest,

1https://github.com/Hub-Lucas/task1
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(a) The training set data of a single token (b) The training set data of two tokens

Figure 1: The word cloud diagrams of the text data of the training set of a single token and two tokens provided by
the task organizer team. The result shown in the figure is the data after removing the stop words.

artificial neural network system, naive Bayes, deci-
sion tree, etc. (Paetzold and Specia, 2016a; Yimam
et al., 2018).

3 Data and Methods

3.1 Data Description

We obtain data sets related to this task from the task
organizer team. The data set includes training data
set and test data set. We analyze the structure and
characteristics of the data set. The training data set
includes ID, Corpus, Sentence, Token, Complexity.
The texts in the data set come from different fields,
and Corpus represents which corpus the data set
belongs to. Token is the target word we need to
predict the complexity of the task. Complexity is
a continuous value between 0-1. It represents the
complexity score of the token in the sentence. Com-
pared with the training data set, the test set only
does not contain the aforementioned Complexity
part. We need to use our method to predict the
complexity of the Token specified in the test set in
Sentence. Table 1 shows the examples of the data
we used in the task.

In subtask 1, 7662 and 917 different sample data
constitute the training set and the validation set.
In subtask 2, 1517 and 184 different sample data
constitute the training set and the validation set. In
our system, we use Tf-Idf encoding information
as an externally introduced word embedding. We
use word cloud graphs to visualize the text data in
the two subtasks. The word cloud image clearly
shows us the characteristics of word frequency dis-
tribution in the text data set. We can easily see
those words that appear frequently. Figure 1 show
the word cloud diagrams of the text data of two
different subtasks.

Figure 2: The model structure and data flow we used in
the task.

3.2 Methods

The best result score we submitted is based on the
system developed by RoBERTa, Tf-Idf, and Incep-
tion. Besides, we also use a BERT-based system to
compare the result scores of different systems on
the same verification set. Both BERT (Devlin et al.,
2018) and RoBERTa’s models (Liu et al., 2019b)
are based on improvements in transformer archi-
tecture (Vaswani et al., 2017). RoBERTa has made
some improvements to BERT and achieved bet-
ter results than BERT. RoBERTa removed the task
of predicting the next sentence in the pre-training
phase and also used a new dynamic Masking mech-
anism. At the same time, RoBERTa has longer
training time, larger batches, and more training
data. Based on the working principle of LSTM
(Olah, 2015) and considering the issue of training
time, we chose Inception based on the CNN struc-
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ID corpus sentence token complexity
subtask1-01 bible He raises his hands against his friends. hands 0.0278
subtask1-02 europarl The first is Johann Wolfgang von Goethe. Goethe 0.5
subtask2-01 bible You shall tread on their high places.. high places 0.1625
subtask2-02 europarl The first is legislative efficacy. legislative efficacy 0.3833

Table 1: The training set sample data we use in the task. Subtask 1 has only one token, and subtask 2 has two
tokens.

ture. The structure of the Inception Block used in
our system is an improvement based on the solu-
tion implemented by Szegedy et al. (Szegedy et al.,
2015). In the Inception block, we use the Conv1d
convolution provided by Pytorch to adapt to our
needs in the task. Inception Block has convolution
kernels of different sizes, and can use windows of
different sizes to extract non-continuous semantic
features. At the same time, the parallel structure of
Inception Block can save training time. The struc-
ture of the transformer allows interaction between
the input sentence and the input token. We use
the output of RoBERTa and the output of Tf-Idf
weighted RoBERTa as different inputs of Inception
Block, so that Inception Block can capture differ-
ent information. Different classifiers are used to
process the output results from different inputs of
the Inception Block.

In step 1, we spliced the text data (Sentence) and
the target word (Token) in the data with (SEP).
Then the spliced result is used as the input of
RoBERTa and Tf-Idf. In step 2, we use the output
of Tf-Idf to weight the output of RoBERTa. In step
3, we use the weighted result of the previous step
and the output result of RoBERTa as the input of
the Inception Block. Here, the Inception Block is
used as a shared layer to learn the output results
of RoBERTa and the output results of RoBERTa
weighted by Tf-Idf. In step 4, two linear classifiers
are used to process the output from the Inception
Block. In step 5, the output results of the two linear
classifiers are averaged. In step 6, the average value
is output as the final prediction result of the system.

4 Experiment and Results

In this section, we will introduce the data prepro-
cessing methods and experimental settings we used
in the task and the final results.

4.1 Data Preprocessing

In the part of data processing, we deleted the stop
words in the text data. For the stop word list, we

use the stop word package provided by NLTK. To
use the Tf-Idf algorithm to obtain a weighted out-
put, and to ensure that the shape of the text code
processed by the Tf-Idf algorithm is consistent with
the shape of the RoBERTa output, we removed the
part of the text code that exceeded the maximum
sentence. For those text encodings that are less
than the maximum sentence length, we perform
zero padding. The encoding of Tf-Idf is obtained
using the toolkit provided by gsim (Řehůřek and
Sojka, 2010) 2. For the validation set, we randomly
select 20% from the pre-processed training set as
our validation set during the training process. The
remaining 80% of the training set is used as our
training set during the training process.

4.2 Experiment setting

During our training model, we designed 4 different
models and observed the result scores of differ-
ent models on the validation set. We adjust the
parameters as much as possible to obtain the best
results for each different model, so different sys-
tems may have different parameter combinations.
The overall design and data flow of the BERT+Tf-
Idf+Inception system is the same as the system we
introduced in Figure 2. The difference is that we
replace the RoBERTa model in Figure 2 with the
BERT model. In all experiments, we use Radam
(Liu et al., 2019a) as the optimizer and MSELoss
as the loss function.

• RoBERTa+Tf-Idf+CNN: The epoch, batch
size, maximum sequence length, and learn-
ing rate for the model are 4, 32, 60, and 4e-5,
respectively.

• BERT+Tf-Idf+CNN: The epoch, batch size,
maximum sequence length, and learning rate
for the model are 4, 32, 60, and 3e-5, respec-
tively.

• RoBERTa: The epoch, batch size, maximum
2https://github.com/RaRe-Technologies/gensim
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Team subtask Pearson Spearman MAE MSE R2
Top1 1 0.7886 0.7369 0.0609 0.0062 0.6172
Top2 1 0.7882 0.7425 0.0610 0.0061 0.6210
Top3 1 0.7790 0.7355 0.0619 0.0064 0.6062
Our 1 0.7434 0.6995 0.0658 0.0073 0.5486
Top1 2 0.8612 0.8526 0.0616 0.0063 0.7389
Top2 2 0.8575 0.8529 0.0672 0.0072 0.7035
Top3 2 0.8571 0.8548 0.0675 0.0072 0.7012
Our 2 0.8000 0.7797 0.0754 0.0089 0.6323

Table 2: The scores of the top three teams and our team on the test set announced by the task organizer. Mean
absolute error (MAE), Mean squared error (MSE), R-squared (R2). 61 and 38 different teams submitted results for
subtask 1 and subtask 2, respectively.

sequence length, and learning rate for the
model are 4, 32, 60, and 3e-5, respectively.

• BERT: The epoch, batch size, maximum se-
quence length, and learning rate for the model
are 4, 32, 60, and 3e-5, respectively.

5 Results and Analysis

According to the Pearson correlation coefficient,
the results submitted by the teams participating
in the two subtasks are ranked. In the published
results, the task organizer team also announced
some other evaluation indicators. These evaluation
indicators are Spearman correlation (Rho), Mean
absolute error (MAE), Mean squared error (MSE),
R-squared (R2). We compare the scores of Pearson
correlation coefficient results obtained by several
different methods proposed in the experimental
part. The results of these different methods can be
found in Table 3.

Compare our result scores on the validation
set of the two subtasks. First of all, our system
can predict the word complexity required in the
task. Secondly, under the same data and parame-
ters, the score obtained by the RoBERTa model is
higher than the score obtained by the BERT model.
Then, the scores we get on the RoBERTa+Tf-
ifd+Inception and BERT+Tf-ifd+Inception sys-
tems are higher than the single use of the RoBERTa
model and the use of the BERT model. Finally, the
above performance proves the feasibility of the im-
proved method we used.

After comparing the result scores of differ-
ent systems on the verification set, we used the
RoBERTa+Tfifd+Inception system to predict the
results of the test set and successfully submitted it
to the task organizer team. Our test set prediction
result scores are 38th and 22nd respectively in the

Method Pearson(1) Pearson(2)
RoBERTa+Tf-
ifd+Inception

0.7651 0.8072

BERT+Tf-
Ifd+Inception

0.7426 0.7850

RoBERTa 0.7327 0.7846
BERT 0.7255 0.7644

Table 3: The scores of the Pearson correlation coeffi-
cient results obtained by our different systems on the
validation set. The validation set comes from 20% of
the training set provided by the task organizer. Pear-
son(1) is the result score of the Pearson correlation co-
efficient of subtask 1. Pearson(2) is the result score of
the Pearson correlation coefficient of subtask 2.

ranking lists of the two subtasks. Table 2 shows the
test set result scores of the top three teams and our
team announced by the task organizer team.

6 Conclusion

In this article, we describe the system our team
has developed for shared tasks in SemEval 2021
task1 LCP. The system combines lexical, syntac-
tic, and contextual semantic features. We describe
and analyze the tasks, data, experiments, and re-
sults. We compared the results of the RoBERTa
model and the BERT model. In the final test set
prediction result score ranking, our results in the
competition ranked middle. In future work, we will
study how the complexity of the phrase is affected
by the context in the sentence. For our model and
method, we can also try to introduce other types
of word embedding, and use different models to
fuse the output of RoBERTa and the output of word
embedding.
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Abstract

We present two convolutional neural networks
for predicting the complexity of words and
phrases in context on a continuous scale. Both
models utilize word and character embeddings
alongside lexical features as inputs. Our sys-
tem displays reasonable results with a Pearson
correlation of 0.7754 on the task as a whole.
We highlight the limitations of this method
in properly assessing the context of the target
text, and explore the effectiveness of both sys-
tems across a range of genres. Both models
were submitted as part of LCP 2021, which fo-
cuses on the identification of complex words
and phrases as a context dependent, regression
based task.

1 Introduction

Complex Word Identification (CWI) involves iden-
tifying words that the reader may find difficult to
understand. A word’s complexity can depend on
many factors and differ according to context. Fur-
ther, assessment of the complexity of named enti-
ties can require some degree of general knowledge,
making CWI a challenging task (Shardlow, 2013).
Accurately identifying complex words is important
for many downstream simplification tasks, mak-
ing literature more accessible for people with con-
ditions such as dyslexia (Rello et al., 2013), and
the assessment of a text’s readability as a whole
(Dubay, 2004).

Our methodology plans to extend on previous
convolutional network based approaches to CWI
(Aroyehun et al., 2018; Sheang, 2019). With the
goal of producing a system that is able to better
model the complexities of phrases and unfamiliar
words, within the English language.

Previous shared tasks on CWI addressed the
problem as a binary and probabilistic classification
type task, although human judgements on word
complexity are not binary and exist on a continuous

scale. Lexical Complexity Prediction (LCP) 2021
tries to address this and uses an augmented version
of CompLex (Shardlow et al., 2020), a dataset an-
notated with a 5-point Likert scale. CompLex also
features context-specific annotation, with words
receiving different annotations depending on their
context. The dataset provides annotations from
three different domains: Bible, Biomed and Eu-
roparl (Shardlow et al., 2021).

The code for this task is available on GitHub1.

2 Related Work

Word frequency is a commonly used feature in
CWI (Gooding and Kochmar, 2018; Kajiwara and
Komachi, 2018); words that appear frequently in
language are more likely to be recognised and un-
derstood by the reader (Carroll et al., 1998). For
the purpose of identifying medical terminology that
may be unfamiliar to the lay reader, Elhadad (2006)
leveraged lexical frequencies while also explor-
ing the potential of other features such as word
familiarity ratings from the MRC Psycholinguistic
Database (Coltheart, 1981).

More recently lexical and psycholinguistic fea-
tures have been utilized by machine learning tools,
resulting in improved accuracy on these tasks.
Through the use of an enseble-based voting method
the CAMB system (Gooding and Kochmar, 2018)
achieved state-of-the-art results in the 2018 CWI
shared task (Yimam et al., 2018), employing a total
of 27 lexical, morphological and psycholinguistic
features. The CAMB system however does not con-
sider the target words context, opting for a “greedy”
approach towards phrase classification, marking all
phrases as complex.

Aroyehun et al. (2018) explored the use of convo-
lutional neural networks (CNN) for CWI using only

1https://github.com/robflynnyh/
CNN-LCP-Shared-Task-2021
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the word embeddings of the target words and the av-
eraged embeddings of the left and right contexts as
inputs. They contrasted the results against a feature
engineering approach using decision tree learning
finding that both methods achieved competitive re-
sults. However, their decision tree method was
marginally more accurate than their CNN for most
of the datasets. Integrating lexical features along-
side word embeddings can lead to further improve-
ments in accuracy making this a more competitive
approach, and outperforming many previous deep
learning methods for CWI (Sheang, 2019).

By framing CWI as a sequence labelling task,
Bi-directional long short-term memory (BiLSTM)
networks have produced state-of-the-art results on
the CWIG3G2 dataset (Yimam et al., 2017; Good-
ing and Kochmar, 2019). BiLSTM networks are
able to capture long-term word and character level
dependencies allowing these models to consider
a large amount of contextual information. Mod-
elling the complexity of phrases has proven to be
a more challenging and complex task compared to
individual words (Gooding and Kochmar, 2019).

3 Implementation

3.1 Features
Below a description of the features used by both
models is given:
Frequency: Word frequencies are taken from
the SUBTLEX-UK word frequency database (van
Heuven et al., 2014). Logarithmic Zipf frequency
values were chosen based on previous results from
this metric (Zampieri et al., 2016) and the Zip-
fian distribution that is displayed in language (Zipf,
1949).
Age of Acquisition: Age of Acquisition (AoA)
values, estimating the age at which a word is typi-
cally acquired. (Kuperman et al., 2012; Brysbaert,
2012).
Word-level Features: Target word length and
number of syllables are used as features (Brysbaert,
2012).
Corpus Type: As the dataset includes extracts
from three different sources of potentially vary-
ing complexity, the corpus type was included and
represented as a one-hot embedding.
Pre-trained Embeddings: 50d GloVe (Penning-
ton et al., 2014) word embeddings, and 50d
chars2vec2 embeddings representing a word’s char-

2https://github.com/
IntuitionEngineeringTeam/chars2vec

acter sequence are used. 50d GloVe embeddings
were chosen as embeddings with more dimensions
showed worse performance on the training data.
Which suggests that the 50d embeddings capture
sufficient information needed for this task. Char-
acter embeddings allow inferences to be made be-
tween words with similar morphologies.

3.2 Preprocessing

Firstly min-max normalization is applied to the
features taken from datasets, and word length is
divided by 10. Non-alphanumeric characters are
removed from the sentences before any features are
extracted.

Both models take as inputs the features for the
target word, and the averaged features for the left
and right contexts of the target text. If the target
word or words are positioned at the beginning or
end of the sentence a zero vector of size 107 is used
for the left or right context. For out-of-vocabulary
words a zero vector is used for the word embedding
and other features are imputed using mean values
from their respective datasets. Finally the vectors
for the target text and its context are stacked to
produce a 3x107 matrix (left context — token —
right context) for single words or a 4x107 matrix
for MWEs (left context — token 1 — token 2 —
right context).

3.3 Models

This section provides a description of the archi-
tecture and hyperparameters used for both models.
The models were produced using the Keras library
version 2.4.3. Each of the models were trained
with a batch size of 50, early stopping of 1000 and
model checkpointing based on the validation loss.

3.3.1 Single Word Model
For single words a 1D convolutional network fol-
lowed by three fully connected layers is used. The
model takes three inputs, an average of the features
for left and right contexts is used for the first and
third inputs respectively, and the features of the
target word is used as the second input. The con-
volutional layer pads the inputs and uses a kernel
size of 3 with 150 output filters and ReLu as the
activation function. Global Max Pooling and a flat-
ten layer followed by batch normalization is then
applied to the output of this layer. Three dense
layers with sizes of 150 (ReLu), 50 (ReLu) and 1
(Linear) are then used with a Dropout of 0.5 ap-
plied before each dense layer. Mean Squared Error
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Figure 1: Depiction of multi-word model architecture

(MSE) is used as the loss function and Stochastic
Gradient Descent as the optimizer, with a learning
rate of 0.01 and momentum of 0.6 with Nesterov
accelerated gradient enabled.

3.3.2 Multi-Word Model
For multi-words a second model is used to assess
the complexity of two word phrases. This model
acts as an adapter with the output being fed into a
pre-trained single word model, allowing the model
to take advantage of the data for single words and
MWEs. Figure 1 gives an overview of the model
architecture.

Features for the averaged left context, target
word one, target word two and the averaged right
context are used as input for the model. A convolu-
tional layer with a similar architecture to task one
is used for each of the target words. For the two
convolutional layers the other target word is aver-
aged with either the left or right context depending
on its positioning, weighting the other target word
higher than the rest of the context.

Each convolutional layer uses a filter size of 214
but is otherwise the same as in task one. Global
Max Pooling followed by Dropouts of 0.3 and
dense layers with 107 neurons and ReLu activa-
tion are applied to the outputs of the convolutions
which are then concatenated along the last axis.
Two dense layers with ReLu activation and sizes
of 214 and 107 are then applied with a Dropout of
0.5 before each layer. This final output of size 107
is then concatenated along the first axis with the
original left and right contexts to form the input

for a pre-trained single word model with training
enabled. This model uses the Adam optimizer with
default parameters and MSE as the loss function.

4 Results

Task Pearson MSE R2
Task 1 0.7389 0.0074 0.5398
Task 2 0.7754 0.0079 0.5989

Table 1: Results for both tasks

This section will discuss and evaluate the perfor-
mance of both models. Participants were ranked
according to the Pearson correlation coefficient of
their submissions. Table 1 presents the results for
each of the tasks with task 1 evaluating individual
words and task 2 covering both single and two word
Multi-Word Expressions (MWEs).

4.1 Single Word Model Results

Figure 2: MSE across different complexities
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As shown in Figure 2 the single word model
struggles to accurately predict values for words of
a high complexity, and also displays difficulties for
words of a complexity of less than 0.1. The train-
ing and evaluation data features less examples of
very simple or complex words. The complexity of
these extremities is often highly dependant on the
context, making them more challenging to assess.

Corpus Pearson MSE R2
All 0.7389 0.0074 0.5398
Bible 0.7085 0.0085 0.4948
Biomed 0.7828 0.0087 0.6050
Europarl 0.6807 0.0055 0.4562
JUST-BLUE 0.7886 0.0062 0.6172

Table 2: Results for individual words

Table 2 presents the results for this task on each of
the domains and the task as a whole. The prediction
accuracy varies significantly across the different
sources. Results from the best performing team are
given for comparison (Shardlow et al., 2021).

As the model only uses an average of the features
present in the left and right context of the target
word, it is unable to differentiate between tokens
that are influential to the target words complexity
and ones that are not. Because of this equal weight-
ing of words in the context, the models accuracy
can be negatively affected by an abundance or lack
of stop words in the sentence. Very complicated or
simple words in sentence that are not related to the
target word, and don’t share a similar complexity
can also cause the model to over- or under-predict
the target word’s complexity. The mechanism by
which the model assesses the context may partly
explain the variance in accuracy on each domain.

Interestingly, our sub-analysis showed that the
model shows a better correlation for those tokens
without a word embedding, yielding a Pearson cor-
relation of 0.7804 and a MSE of 0.0071. Generally
these out-of-vocabulary words are more complex
so the model is using the lack of a word embedding
as a feature when making predictions. Although
this shows a better correlation overall it could lead
to false positives in specific cases where the out-of-
vocabulary word is of a low complexity.

4.2 Multi-Word Model Results

As shown in Figure 2 the multi-word model is much
less accurate for very simple MWEs of a complex-
ity less than 0.1. However, for more complex words

the predictions remain fairly accurate. This model
is able to asses the way in which the words in a
phrase interact with each other and to some degree
the rest of the sentence. This additional contextual
information may increase the model’s capacity to
evaluate more complex words. Only 1.65 percent
of phrases in the training data were of a complexity
of less than or equal to 0.1 which could explain the
inaccuracy in this range.

Corpus Pearson MSE R2
All 0.7611 0.0102 0.5770
Bible 0.7173 0.0113 0.5106
Biomed 0.7980 0.0141 0.6317
Europarl 0.5799 0.0060 0.3089
DeepBlueAI 0.8612 0.0063 0.7389

Table 3: Results for MWEs

MWE Type Pearson MSE R2
A-N (115) 0.7654 0.0115 0.5801
N-N (56) 0.7414 0.0091 0.5293

Table 4: Results for the different MWE formations.
A-N: Adjective-Noun. N-N: Noun-Noun.

Table 3 presents the results across each of the differ-
ent domains present in the dataset. The model used
for MWEs makes use of a fine-tuned instance of
the single-word model; consequentially incorrect
associations from the single-word model may have
been carried over to this model. The results show a
similar variance across domains to task 1, although
it struggles more significantly on the Europarl sub-
corpus. Compared to the other domains, Europarl’s
complexity values show a much smaller standard
deviation than the other sub-corpora (0.093 com-
pared to 0.196 and 0.152, on biomed and bible).
The variation of complexities may play a role in
the models effectiveness at making accurate predic-
tions across the domains.

Table 4 presents the results across different
MWE formations. The number of occurrences of
each part-of-speech formation is denoted in brack-
ets, MWE types with less than 10 occurrences
were omitted from the table. The model performs
marginally better on Adjective-Noun MWE forma-
tions.
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5 Discussion

In this paper, we presented two convolutional
neural networks used as an approach to single-
word and multi-word complex word identification.
Both models achieved reasonable results, achiev-
ing scores in a comparable range to the majority of
other submissions.

Multi-Word CWI is a more challenging task com-
pared to the assessment of single words; the multi-
word model was able to utilize the datasets of both
tasks, and its predictions show a Pearson’s corre-
lation score of 0.7611. Our system is only able to
process two-word MWEs, which for this task is not
an issue. However, in other use cases the ability
to assess longer MWEs would be useful. Given
a dataset with annotations for longer MWEs the
model could potentially be adapted to work with
three or four word sequences.

Both models are able to assess the context of the
target text when making predictions; although, as
the left and right contexts are given as an average,
all words are weighted equally regardless of their
relevance to the target text. Because of this equal
weighting of words, the models are able to adjust
their predictions based on the general complex-
ity of the sentence but are unable to fully capture
the relevant context. Adding a mechanism that
could weight each word in the context based on
certain features may offer some improvements in
this area. Attention based models such as BERT
(Devlin et al., 2019) are able to attend to each to-
ken in a sequence to produce embeddings that cap-
ture large amounts of contextual information. Fine-
tuning such a model on CWI tasks could produce
embeddings that contain more useful and relevant
information.
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Abstract
Reading is a complex process which requires
proper understanding of texts in order to cre-
ate coherent mental representations. However,
comprehension problems may arise due to
hard-to-understand sections, which can prove
troublesome for readers, while accounting for
their specific language skills. As such, steps
towards simplifying these sections can be per-
formed, by accurately identifying and evalu-
ating difficult structures. In this paper, we
describe our approach for the SemEval-2021
Task 1: Lexical Complexity Prediction compe-
tition that consists of a mixture of advanced
NLP techniques, namely Transformer-based
language models, pre-trained word embed-
dings, Graph Convolutional Networks, Cap-
sule Networks, as well as a series of hand-
crafted textual complexity features. Our mod-
els are applicable on both subtasks and achieve
good performance results, with a MAE below
0.07 and a Person correlation of .73 for single
word identification, as well as a MAE below
0.08 and a Person correlation of .79 for mul-
tiple word targets. Our results are just 5.46%
and 6.5% lower than the top scores obtained
in the competition on the first and the second
subtasks, respectively.

1 Introduction

Reading is a complex process due to the mental
exercise readers are challenged to perform, since a
coherent representation of the text needs to be pro-
jected into their mind in order to grasp the underly-
ing content (Van den Broek, 2010). For non-native
speakers, the lack of text understanding hinders
knowledge assimilation, thus becoming the main
obstacle that readers need to overcome. Complex
words can impose serious difficulties, considering
that their meaning is often dependant on their con-
text and cannot be easily inferred. In order to facil-
itate text understanding or to perform text simpli-
fication, complex tokens first need to be detected.

This can be performed by developing systems ca-
pable of identifying them by individual analysis, as
well as contextual analysis.

There are two main approaches regarding the
complexity task. Tokens can be binary classified
as complex or non-complex, a procedure that helps
users separate problematic words from the others.
Words can be also labeled with a probabilistic com-
plexity value, which in return can be used to sim-
plify the text. Words with lower degrees of com-
plexity can be easily explained, whereas more com-
plex tokens can be replaced with simpler equivalent
concepts.

The Lexical Complexity Prediction (LCP)
shared task, organized as the SemEval-2021 Task
1 (Shardlow et al., 2021a), challenged the research
community to develop robust systems that identify
the complexity of a token, given its context. Sys-
tems were required to be easily adaptable, consider-
ing that the dataset entries originated from multiple
domains. At the same time, the target structure
evaluated in terms of complexity could contain a
single word or multiple words, depending on the
subtask.

The current work is structured as follows. The
next section presents the state-of-the-art Natural
Language Processing (NLP) approaches for LCP
(probabilistic) and complex word identification
(CWI). The third section outlines our approaches
for this challenge, while the fourth section presents
the results. Afterwards, the final section draws the
conclusions and includes potential solutions that
can be used to further improve performance.

2 Related Work

Probabilistic CWI. Kajiwara and Komachi (2018)
adopted for the CWI task a system based on Ran-
dom Forest regressors, alongside several features,
such as the presence of the target word in certain
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corpora. Moreover, they conducted experiments to
determine the best parameters for their regression
algorithms.

De Hertog and Tack (2018) introduced a deep
learning architecture for probabilistic CWI. Apart
from the features extracted by the first layers of the
network, the authors also included a series of hand-
crafted features, such as psychological measures
or frequency counts. Their architecture included
different Long Short-Term Memory (LSTM) mod-
ules (Hochreiter and Schmidhuber, 1997) for the
input levels (i.e., word, sentence), as well as the
previously mentioned psychological measures and
corpus counts.

Sequence labeling CWI. Gooding and
Kochmar (2019) introduced a technique based on
LSTMs for CWI, which obtained better results
on their sequence labeling task than previous
approaches based only on feature engineering. The
contexts detected by the LSTM offered valuable
information, useful for identifying complex tokens
placed in sequences.

Changing the focus towards text analysis, Finni-
more et al. (2019) extracted a series of relevant fea-
tures that supports the detection of complex words.
While considering their feature analysis process,
the greatest influence on the overall system perfor-
mance was achieved by the number of syllables and
the number of punctuation marks accompanying
the targeted tokens.

A different approach regarding CWI was
adopted by Zampieri et al. (2017), who employed
the usage of an ensemble created on the top sys-
tems from the SemEval CWI 2016 competition
(Paetzold and Specia, 2016). Other experiments
performed by the authors also included plurality
voting (Polikar, 2006), or a technique named Ora-
cle (Kuncheva et al., 2001), that forced label assig-
nation only when at least one classifier detected the
correct label.

Zaharia et al. (2020) tackled CWI through a
cross-lingual approach. Resource scarcity is sim-
ulated by training on a small number of examples
from a language and testing on different languages,
through zero-shot, one-shot, and few-shot scenar-
ios. Transformer-based models (Vaswani et al.,
2017) achieved good performance on the target lan-
guages, even though the number of training entries
was extremely reduced.

3 Method

3.1 Dataset

CompLex (Shardlow et al., 2020, 2021b) is the
dataset used for the LCP shared task that was ini-
tially annotated on a 5-point Likert scale. More-
over, the authors performed a mapping between
the annotations and values between 0 and 1 in or-
der to ensure normalization. The dataset has two
categories, one developed for single word complex-
ity score prediction, while the other is centered
on groups of words; each category has entries for
training, trial, and testing. The single word dataset
contains 7,662 entries for training, 421 trial entries,
and 917 test entries. The multi-word dataset con-
tains a considerably smaller number of entries for
each category, namely 1,517 for training, 99 trial
entries, and 184 for testing.

All entries from the LCP shared task are part of
one of three different English corpora (i.e., Bible -
biblical entries, Biomed - biomedical entries, and
Europarl - political entries), evenly distributed,
each one representing approximately 33% of its
corresponding set. As such, the task is even more
challenging when considering the vastly different
domains of these entries.

3.2 Architecture

During our experiments, we combined features ob-
tained from multiple modules described later on
in detail, and then applied three regression layers,
alongside a Dropout layer, to obtain the complexity
score of the input (see Figure 1 for our modular
architecture). The permanent components are rep-
resented by the target word embeddings and the
Transformer features, which are concatenated and
then fed into the final linear layers, designated for
regression. The other components (i.e., character-
level embeddings, GCN, and Capsule) are enabled
in particular setups; similarly, the adversarial train-
ing component can also be disabled. At the same
time, a series of hand-crafted features can be con-
catenated before the last layer with the aim to fur-
ther improve the overall performance.

3.3 Pre-trained Word Embeddings

Pre-trained word embeddings were used as features
for the final regression as an initial representation
of the input. Throughout our experiments, three
types of pre-trained word embeddings were consid-
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Figure 1: The overall model architecture used in our experiments.

ered, namely: GloVe1, FastText2, and skip-gram3.
Out of the three previous options, GloVe performed
best in our experiments. As such, the results sec-
tion exclusively reports the performance obtained
by our configurations alongside GloVe embeddings
for the target word.

3.4 Transformer-based Language Models
Considering that Transformers achieve state-of-the-
art performance for most NLP tasks (Wolf et al.,
2020), all our setups include a Transformer-based
component. However, they are pre-trained in differ-
ent manners; thus, we experimented with several
variants, as follows:

• BERT (Devlin et al., 2019) - Extensively pre-
trained on English, BERT-base represents the
baseline of Transformer-based models;

• BioBERT (Lee et al., 2020) - Considering
that some of the most difficult to understand
entries are part of the Biomed corpus, we
also experimented with a model pre-trained
on biomedical data;

• SciBERT (Beltagy et al., 2019) - Similarly to
BioBERT, SciBERT is pre-trained on scien-

1https://nlp.stanford.edu/projects/
glove/

2https://fasttext.cc/
3http://vectors.nlpl.eu/repository/

tific data and becomes a good candidate for
fine-tuning on the scientific entries from the
dataset;

• RoBERTa (Liu et al., 2019) - RoBERTa im-
proves upon BERT by modifying key hyper-
parameters, and by being trained with larger
mini-batches and learning rates; RoBERTa
usually has better performance on down-
stream tasks.

3.5 Adversarial Training

We also aimed to improve the robustness of the
main element of our architecture, the Transformer-
based component. Therefore, we adopted an ad-
versarial training technique, similar to Karimi et al.
(2020). The adversarial examples generated dur-
ing training work on the embeddings level, and are
based on a technique that uses the gradient of the
loss function.

3.6 Character-level Embeddings

Alongside the previously mentioned word embed-
dings for the target word, we also employ character-
level embeddings for the same word, such that its
internal structure, as well as its universal context,
can be properly captured as features in our archi-
tecture.
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3.7 Graph Convolutional Networks

Besides the previous Transformer-based models,
we also explored the relations between the dataset
entries, as well as the vocabulary words. Therefore,
Graph Convolutional Networks (GCN) (Kipf and
Welling, 2016) were also considered for determin-
ing node embedding vectors, by taking into account
the properties of the neighboring nodes. By stack-
ing multiple GCN layers, the information embed-
ded into a node can become broader, inasmuch as
it incorporates considerably larger neighborhoods.
Similar to Yao et al. (2019), we consider the graph
to have several nodes equal to the number of entries
(documents) in the corpus plus the vocabulary size
of the corpus.

3.8 Capsule Networks

Alongside the relational approach derived from
GCN and Transformer embeddings, we intended to
further analyze our inputs by passing them through
a Capsule Network (Sabour et al., 2017). This ap-
proach enables us to obtain features that reflect
aspects specific to different levels of the inputs, as
Capsule Networks increase the specificity of fea-
tures, while the capsule layers go deeper.

3.9 Hand-crafted Features

Similar to Gooding and Kochmar (2018), we
integrated a series of hand-crafted features for
the target word: Syllables, Synset length, Hy-
pernyms length, Hyponyms length, Number
of dependencies obtained using NLTK4 along-
side CoreNLP5, SubIMDB presence6, SimpWiki
presence (Coster and Kauchak, 2011), CEFR
level obtained from the Cambridge English dic-
tionary7, MRC features (Wilson, 1988) (Age of
acquisition, Concreteness rating, Imageability rat-
ing, Word familiarity rating , Number of phonemes),
Semantic Diversity (Hoffman et al., 2013), Sen-
sorimotor Norms (Lynott et al., 2019).

Character n-grams - The character n-gram ap-
proach consists of two steps: first, a vectorizer is
applied on the inputs to select a maximum num-
ber of 5,000 most frequent n-grams; second, Tf-Idf
scores for these elements are computed. The ob-
tained values are then normalized in the [0, 1] range

4https://www.nltk.org/
5https://stanfordnlp.github.io/

CoreNLP/
6http://ghpaetzold.github.io/subimdb/
7https://dictionary.cambridge.org/

dictionary/learner-english/

and used as features.
ReaderBench indices - The ReaderBench

framework (Dascalu et al., 2017) was used to ex-
tract additional textual complexity features reflec-
tive of writing style. Out of the 1311 features ob-
tained by running ReaderBench on our inputs, we
selected 278. The choice was made by considering
only the features with a high linguistic coverage
(i.e, were non-zero for at least 50% of the entries).

3.10 Traditional Machine Learning Baseline

Several machine learning algorithms, such as Logis-
tic regression, Random Forest Regressors, XGBoost
regression, or Ridge regression were experimented
using the aforementioned handcrafted features.

We then switched to a ridge regression approach
and trained it with a multitude of features, in-
cluding Transformer-based embeddings (BERT,
BioBERT, SciBERT, RoBERTa), pre-trained word
embeddings (GloVe, fastText, Skip-gram), and
handcrafted features.

3.11 Preprocessing and Experimental Setup

Text preprocessing is minimal and consists of re-
moving unnecessary punctuation, such as quotes.
The experimental hyperparameters for all modules
are presented in Table 1.

4 Results

Table 2 introduces the results obtained using our
deep learning architecture, while Table 3 focuses
on the traditional machine learning baseline. The
best results for the deep learning approaches ap-
plied on the single target word dataset are ob-
tained using RoBERTa as Transformer model. The
setup which maximizes performance considers
RoBERTa, GCN, and Capsule features, obtaining
a Pearson score of 0.7702 and a mean absolute
error (MAE) of 0.0671 on the trial dataset. More-
over, the high performance is maintained on the
test dataset, with a Pearson correlation coefficient
of 0.7237 and a MAE of 0.0677. BERT, SciBERT,
and BioBERT have similar results with marginal
differences; GCN, Capsule, and adversarial train-
ing improve performance for all models, while
character-level embeddings do not provide a boost
in performance.

Table 3 presents the results obtained using
the features described in Section 3, namely
Transformer-based contextualized embeddings
(BERT, RoBERTa, BioBERT, SciBERT), pre-
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Transformers GCN Capsule BiLSTM Embedding Full Model

Size: 768 GCN Size 1: 512
GCN Size 2: 256

Routings: 5
Number of
capsules: 10
Capsule
dimension: 16

Dimension: 128 Dimension: 300
Optimizer: AdamW
Loss Function: MSELoss
Learning Rate: 2e-5

Table 1: Experimental hyperparameters for the probabilistic CWI.

Configuration
Single-Word Target Multi-Word Target

Trial Test Trial Test
Pearson MAE Pearson MAE Pearson MAE Pearson MAE

BERT 0.7575 0.0689 0.7170 0.0682 0.7019 0.0969 0.7853 0.0781
BERT + Capsule 0.7641 0.0685 0.7113 0.0689 0.7170 0.0958 0.7774 0.0791
BERT + GCN + Capsule 0.7548 0.0693 0.7178 0.0682 0.6978 0.0905 0.7773 0.0812
BERT + GCN + Capsule
+ Adversarial Training 0.7608 0.0695 0.7171 0.0684 0.7077 0.0933 0.8008 0.0779

BERT + Char Embeddings 0.7505 0.0701 0.6925 0.0717 0.7091 0.0904 0.7800 0.0821
RoBERTa 0.7676 0.0685 0.7222 0.0681 0.7177 0.0925 0.7921 0.0764
RoBERTa + GCN + Capsule* 0.7702 0.0671 0.7237 0.0677 0.7160 0.0910 0.7962 0.0788
RoBERTa + GCN + Capsule
+ Adversarial Training* 0.7699 0.0682 0.7324 0.0703 0.7227 0.0893 0.7851 0.0808

RoBERTa +
Hand-crafted Features 0.7476 0.0704 0.7028 0.0735 0.7165 0.0974 0.7932 0.0754

RoBERTa + Char Embeddings
+ Capsule + GCN + Adversarial 0.7663 0.0696 0.7264 0.0692 0.7221 0.0954 0.7958 0.0791

RoBERTa + Char Embeddings 0.7658 0.0695 0.7259 0.0682 0.7167 0.0958 0.7916 0.0772
SciBERT + GCN 0.7626 0.0714 0.7145 0.0715 0.6829 0.0876 0.7888 0.0762
SciBERT + GCN + Capsule
+ Adversarial Training 0.7617 0.0721 0.7086 0.0724 0.7164 0.0863 0.7882 0.0785

SciBERT + Char Embeddings 0.7512 0.0710 0.7079 0.0691 0.6855 0.1046 0.7729 0.0809
BioBERT 0.7658 0.0694 0.7151 0.0698 0.7014 0.0906 0.7814 0.0827
BioBERT + GCN + Capsule
+ Adversarial Training 0.7683 0.0677 0.7144 0.0690 0.7098 0.0968 0.7919 0.0795

BioBERT + Char Embeddings 0.7619 0.0689 0.7073 0.0697 0.7069 0.0995 0.7849 0.0810
* The models marked with * are the ones used in our submissions.

Table 2: Results for the Deep Learning approaches.

trained word embeddings (GloVe, fastText, skip-
gram), and hand-crafted features, all combined us-
ing various regression algorithms. Logistic regres-
sion, Random Forrest and XGBosst yield lower
performance when compared to the previous deep
learning approaches. However, we managed to in-
crease the scores on the single target word dataset,
with Pearson coefficients of 0.7738 and 0.7340 on
the trial and test datasets, by combining the re-
sults obtained from training several instances of
ridge regression. Nevertheless, the best results for
the multiple target word task are still obtained by
the deep learning approaches (RoBERTa, GCN,
Capsule, adversarial training), which surpass the
Ridge Regression + pre-trained word embeddings
+ Transformer embeddings + handcrafted features
approach by a low margin of 0.0074 Pearson on
the trial dataset and 0.0033 on the test dataset.

5 Discussion

The entries with the largest difference when com-
pared to the gold standard are represented by the
ones that are part of the Biomed category. This
discrepancy is valid for both subtasks (i.e, sin-
gle target word and multiple target words). The
Biomed entries employ the usage of more complex
terminology, quantities, or specific scientific names.
Therefore, it becomes more difficult for standard
pre-trained Transformer systems, such as BERT or
RoBERTa, to adapt to the Biomed entries. In con-
trast, corpora with easier to understand language
(i.e., Bible and Europarl) are not properly repre-
sented when using BioBERT or SciBERT, consid-
ering that the Transformers are mainly pre-trained
for scientific or biomedical texts.

Moreover, a considerable part of the Biomed
entries contains large amounts of abbreviations,
while other entries from the same domain have
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Method
Single-Word Target Multi-Word Target

Trial Test Trial Test
Pearson MAE Pearson MAE Pearson MAE Pearson MAE

Logistic Regression 0.7158 0.0748 0.6868 0.0718 0.6533 0.0954 0.7558 0.0791
Random Forest Regressor 0.7390 0.0708 0.7011 0.0691 0.6714 0.0929 0.7651 0.0785
XGBoost Regressor 0.7488 0.0700 0.7033 0.0695 0.6503 0.0975 0.7544 0.0804
Ridge Regression* 0.7738 0.0686 0.7340 0.0699 0.7153 0.0873 0.7929 0.0787
* The solution marked with * is the one used in our submissions.

Table 3: Results for the Traditional Machine Learning solutions.

Entry Target Predicted complexity True complexity
Genetic analyses of sitosterolemia pedigrees allowed the
mapping of the STSL locus to human chromosome 2p21,
between D2S2294 and D2S2298 [12,13].

pedigrees 0.4516 0.3125

Normally cells accumulate H3-2meK9 and H3-3meK9
marks and HP1B protein on the sex chromatin as they
progress to diplonema, but we observed mutant diplotene
cells lacking these features.

marks 0.2686 0.3409

p150CAF-1 knockdown in ES cells was quantified by
Western blot analysis and IF. ES 0.5587 0.6944

Table 4: Difficult Biomed entries.

specific terms or links, as seen in Table 4. The
difference between our predictions and the correct
labels are up to 0.14 for the complexity probability.

6 Conclusions and Future Work

This work proposes a modular architecture, as well
as different training techniques for the Lexical
Complexity Prediction shared task. We experi-
mented with different variations of the previously
mentioned architecture, as well as textual features
alongside machine learning algorithms. First, we
used different word embeddings and Transformer-
based models as the main feature extractors and,
at the same time, we examined a different train-
ing technique based on adversarial examples. Sec-
ond, other different models were added, such as
character-level embeddings, Graph Convolutional
Networks, and Capsule Networks. Third, several
hand-crafted features were also considered to cre-
ate a solid baseline covering both deep learning and
traditional machine learning regressors.

For future work, we intend to experiment with
altering the modular architecture such that the mod-
els are trained similar to a Generative Adversarial
Network (Croce et al., 2020), thus further improv-
ing robustness and achieving higher scores in terms
of both Pearson correlation coefficients and MAE.
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Abstract

We describe the UTFPR systems submitted to
the Lexical Complexity Prediction shared task
of SemEval 2021. They perform complexity
prediction by combining classic features, such
as word frequency, n-gram frequency, word
length, and number of senses, with BERT vec-
tors. We test numerous feature combinations
and machine learning models in our experi-
ments and find that BERT vectors, even if not
optimized for the task at hand, are a great
complement to classic features. We also find
that employing the principle of compositional-
ity can potentially help in phrase complexity
prediction. Our systems place 45th out of 55
for single words and 29th out of 38 for phrases.

1 Introduction

Accurately measuring the complexity of words can
be useful in many ways. It facilitates the creation
of text simplification technologies that could, for
example, help in identifying and adapting challeng-
ing excerpts of literary pieces targeting specific
groups, such as children (De Belder and Moens,
2010) and second language learners (Paetzold and
Specia, 2016e), and make news articles and official
documents more accessible to the general popula-
tion (Paetzold and Specia, 2016a).

This task has received a considerable amount of
attention in the past few years, especially due to
the popularity of the Complex Word Identification
(CWI) shared tasks of 2016 (Paetzold and Spe-
cia, 2016c) and 2018 (Yimam et al., 2018), where
dozens of teams were challenged to judge the com-
plexity of words in context. While the CWI 2016
task used a simple binary complex/not complex
classification setup for English only, the CWI 2018
task explored both a binary classification and a
regression setup and multiple languages.

The majority of the most successful systems sub-
mitted to these shared tasks combined ensemble

methods, such as Random Forests (Ho, 1995) and
AdaBoost (Freund and Schapire, 1997) with numer-
ous linguistic features, including word frequencies,
n-gram frequencies, word length, number of senses,
number of syllables, psycholinguistic metrics, and
word embeddings (Konkol, 2016; Malmasi et al.,
2016; Paetzold and Specia, 2016d; Gooding and
Kochmar, 2018; Hartmann and Dos Santos, 2018).
However, because these tasks were held prior to the
ascension of transformer-based masked language
models, such as BERT (Devlin et al., 2019) and
ROBERTA (Liu et al., 2019), we could not find any
systems that exploited the power of the features
produced by them.

In this paper, we describe the UTFPR systems
for the Lexical Complexity Prediction shared task
of SemEval 2021 (LCP 2021), which combine clas-
sic complexity prediction features with contextual
word and phrase representations extracted from
transformer-based models. In our experiments, we
explore the efficacy of a number of different ma-
chine learning models, feature combinations, and
corpora sources for our features. In what follows,
we present the task being addressed (Section 2),
our approach (Section 3), some preliminary exper-
iments (Section 4), our final shared task results
(Section 5), and our conclusions (Section 6).

2 Task Description

We address the LCP 2021 shared task (Shardlow
et al., 2021), held at SemEval 2021. The shared
task is split into two sub-tasks: predicting the in-
context lexical complexity of single words and
phrases for the English language. Participants
could choose to submit systems to either or both
sub-tasks.

The organizers provided training, trial and test
sets for both sub-tasks. Each instance of these
datasets is composed of an ID, a source identifier,
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a sentence, a target word or phrase within the sen-
tence, and a complexity score calculated based on
judgments made by 20 English speakers from the
USA, UK and Australia. The source identifier de-
scribes from where the sentence came from, the
possibilities being the Bible, biomedical documents
and the Europarl corpus. The task’s dataset is an ex-
tended version of the CompLex dataset (Shardlow
et al., 2020).

The training, trial, and test sets for single words
have 7662, 421, and 917 instances, respectively.
The training, trial and test sets for phrases have
1517, 99, and 184 instances, respectively. Partic-
ipants were allowed and encouraged to use any
external resources they saw fit.

3 Approach

Our approach consists of using modern ensem-
ble models to learn from a combination of com-
monly used complexity estimation features, such
as word frequencies, word length, and number of
senses, with contextual representations extracted
from large pre-trained BERT-like models, which
have been widely used to create state-of-the-art
solutions to numerous tasks. While it has been
observed that word frequencies (especially those
extracted from spoken text) tend to drive the perfor-
mance of effective complexity prediction systems
(Paetzold and Specia, 2016c), we hypothesize that
the wealth of knowledge present in transformer-
based models such as BERT can help in extracting
complementary contextual complexity clues.

3.1 Features

We explore a set of 779 total features in our ap-
proach. They are:

• Frequency: We use not only word/phrase fre-
quency, but also n-gram frequencies as well.
We consider a total of 9 configurations (i, j),
where i represents the number of tokens to the
left of the target word/phrase to be considered
and j the number of tokens to the right. The
configurations we consider are (0, 0), (0, 1),
(1, 0), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2).

• Length: We use the number of characters
that compose the word/phrase. For phrases,
instead of using its overall length, we use the
average number of characters of all individ-
ual words. We motivate this decision in the
experiments of Section 4.2.

• Number of senses: We use the word/phrase’s
number of senses catalogued in the WordNet
database (Miller et al., 1990). In line with
our setup for word length, for phrases, we use
the average number of senses of all individual
words.

• BERT vector: We use the numerical repre-
sentation of 768 dimensions produced by the
pre-trained BERT model (Devlin et al., 2019).
For phrases and out-of-vocabulary words that
were fragmented during tokenization, we aver-
age the representations produced for all frag-
ments. More specifically, we used the bert-
base-uncased model from the Hugging Face’s
transformers library (Wolf et al., 2020).

In the experiments of Section 4.3, we conduct an
ablation study that reveals the performance impact
of adding/removing some of these features from
our models.

3.2 Models
We explore 5 different machine learning models in
our experiments:

• Ridge Regression (Ridge) (Tikhonov, 1943)

• Support Vector Machines (SVM) (Boser et al.,
1992)

• AdaBoost Regression (AdaBoost) (Freund
and Schapire, 1997)

• Gradient Boosting (GBoost) (Friedman, 2001)

• Random Forests (Forests) (Ho, 1995)

The final configuration we chose to submit to
LCP 2021 is described in Section 5. In the follow-
ing section, we explain how we got to that configu-
ration.

4 Preliminary Experiments

In this section, we describe the preliminary ex-
periments we conducted in an effort to engineer
our final systems for the LCP 2021 shared task.
In these experiments, all machine learning mod-
els were trained and optimized on the training set
and tested on the trial set provided by the orga-
nizers. All models were implemented using the
Scikit-Learn library (Pedregosa et al., 2011) and
optimized using grid search and 5-fold cross vali-
dation.
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Split Size (0, 0) (0, 1) (1, 0) (1, 1) (0, 2) (2, 0) (1, 2) (2, 1) (2, 2)
Chi-M 1.5M 0.569 0.302 0.288 0.229 0.254 0.211 0.205 0.183 0.171
Chi-S 1.5M 0.547 0.297 0.287 0.225 0.246 0.215 0.200 0.183 0.170

Chi-MS 3M 0.578 0.316 0.312 0.245 0.261 0.233 0.217 0.200 0.184
Fam-M 2.9M 0.609 0.334 0.318 0.255 0.284 0.232 0.232 0.201 0.191
Fam-S 3.1M 0.578 0.338 0.305 0.253 0.277 0.226 0.225 0.202 0.187

Fam-MS 6M 0.607 0.346 0.327 0.263 0.291 0.241 0.239 0.211 0.198
Com-M 19.3M 0.591 0.333 0.323 0.258 0.280 0.241 0.233 0.210 0.196
Com-S 15.7M 0.578 0.351 0.319 0.268 0.279 0.234 0.229 0.211 0.189

Com-MS 35M 0.571 0.339 0.323 0.264 0.277 0.243 0.233 0.216 0.197
Movies 21M 0.592 0.335 0.327 0.262 0.281 0.244 0.236 0.213 0.198
Series 17M 0.576 0.352 0.321 0.269 0.281 0.238 0.233 0.214 0.193

All 38M 0.570 0.341 0.326 0.267 0.279 0.247 0.236 0.219 0.201

Table 1: Trial set Pearson correlations between complexity scores and frequencies for all SubIMDB splits and
n-gram configurations on the single words sub-track.

4.1 Corpora Analysis

Arguably the most important features we use are
frequencies. These must be calculated based on a
language model trained on a specific corpus, so, as
a first step in our engineering process, we decided
to conduct an experiment to choose a corpus for
the shared task in question.

As evidenced and discussed by Brysbaert et al.
(2012) and Paetzold and Specia (2016b), frequen-
cies extracted from spoken text corpora tend to
correlate better with word complexity, so we de-
cided to choose the SubIMDB corpora (Paetzold
and Specia, 2016b) for our experiment. SubIMDB
is a structured corpus extracted from 38,102 sub-
titles of children, family and comedy movies and
series. We created 12 SubIMDB splits for this
experiment: Children movies (Chi-M), children
series (Chi-S), children movies and series (Chi-
MS), family movies (Fam-M), family series (Fam-
S), family movies and series (Fam-MS), comedy
movies (Com-M), comedy series (Com-S), comedy
movies and series (Com-MS), all movies (Movies),
all series (Series), and the entire corpus (All). We
calculate the Pearson correlation between the trial
set complexity scores and n-gram frequencies for
all n-gram configurations described in Section 3.1.
To do so, we trained 5-gram language models over
these splits using KenLM (Heafield, 2011).

The results illustrated in Table 1 are absolute cor-
relation scores for the trial set of the single words
sub-track (original values were negative, given
that complexity inversely correlates with word fre-
quency). We chose absolute scores to make the
table more compact. It can be observed that the (0,

0) configuration (no context) yields the best corre-
lations in every scenario. It can also be noted that,
while the family movies split (Fam-M) is best for
(0, 0), the remaining configurations tend to benefit
from larger splits. Based on that observation, in
the experiments that follow, we use family movies
to calculate frequencies for single words/phrases
and the whole SubIMDB corpus for the remaining
n-grams.

4.2 Phrase Compositionality

The next step in our engineering process was to
optimize the performance of our submission for
the phrases sub-track. For that, we tested the hy-
pothesis that the complexity of a phrase can be
more reliably modelled if addressed as a product
of the complexity of its words. To do so, we first
calculated 3 features from our feature set using 4
different composition functions, then calculated the
Pearson correlation between them and the reference
complexity scores from the trial set.

The features calculated are: Phrase/word fre-
quency, length, and number of senses. The compo-
sition functions are: None (addressing the phrase
as a single word), averaging, maximum, and mini-
mum. Frequencies were calculated using a 5-gram
language model trained over the entire SubIMDB
corpus.

The results in Table 2 show that, overall, em-
ploying the principle of compositionality in feature
calculation for phrases increases the correlation
between classic complexity features and human
complexity scores. This is especially true for word
senses, given that Wordnet has very few phrases
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None Avg. Max. Min.
Frequency −0.617 −0.641 −0.650 −0.547

Length 0.482 0.482 0.370 0.461
Senses −0.125 −0.460 −0.430 −0.420

Table 2: Trial set Pearson correlations for different compositionality settings on the phrases sub-track.

catalogued.
In the subsequent experiments, we employ aver-

aging as the compositionality function in feature
calculation for phrases.

4.3 Feature Selection

The last step in engineering our submissions was
to select a set of features and a machine learning
model from the ones described in Section 3. To do
so, we conducted a thorough ablation analysis with
all models and multiple feature subsets.

Each feature subset is identified by a set of IDs.
Each ID describes a feature or group of features.
The identifiers are:

• Word/phrase frequency (F)

• N-gram frequencies (N)

• Word/phrase length (L)

• Number of senses (S)

• BERT vector (V)

The F identifier represents the (0, 0) configura-
tion described in Section 3.1, while the N identi-
fier represents all others. For example, the subset
FNLSV contains all features, while the subset FNS
does not contain length or the BERT vector.

The results in Table 3 show the results for the
feature configurations that we feel were the most
relevant for our engineering process. It can be
seen that the best performing variant for both sin-
gle words and phrases is an SVM trained over all
features except n-gram frequencies. Models tend
to benefit from the inclusion of word length, num-
ber of senses, and especially the BERT vector to
the feature set. Interestingly, discarding n-gram
frequencies tends to improve the models’ perfor-
mance, especially for single words. This was ob-
served not only in the results of Table 3, but also in
many other comparisons we tested, such as FNLSV
versus FLSV and FNLS versus FLS.

5 Task Results

We based the creation of the final UTFPR systems
on the experiments of the previous section. Our
final systems are SVMs trained with word/phrase
frequencies, word/phrase length, number of senses,
and BERT vector (no n-gram frequencies). Com-
positionality in phrases was handled through aver-
aging. Frequencies were calculated using a 5-gram
language model trained over family movies from
SubIMDB. Due to a limitation in time availability,
the BERT model was used in its original pre-trained
form and not optimized for the task at hand.

Table 4 showcases our shared task performance
in comparison to the top 3 and bottom 3 systems
with respect to Pearson correlation. Our systems
for single words and phrases placed 45th out of
55 and 29th out of 38, respectively. Inspecting the
instances that featured most discrepancy between
gold labels and predictions, we found that our sys-
tems had a tendency of both underestimating the
complexity of some of the most complex words
and phrases (above 0.7 complexity) and overesti-
mating the complexity of the simplest ones (below
0.2). The conservative nature of their predictions
seems to be the main reason why our systems did
not place higher.

6 Conclusions

We presented the UTFPR systems submitted to the
Lexical Complexity Prediction shared task of Se-
mEval 2021. Although the placing of our systems
were not impressive, we do showcase through our
preliminary experiments that employing composi-
tionality can potentially improve the predictions for
phrases. We also show that including word length,
number of senses, and non-optimized BERT vec-
tors to complexity prediction models can notice-
ably improve their predictions for both words and
phrases. In the future, we intend to test the efficacy
of adding BERT vectors optimized for the task at
hand to the pool of features of our models.
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FN F FL FLS FLSV
Word Phrase Word Phrase Word Phrase Word Phrase Word Phrase

Ridge 0.605 0.585 0.608 0.577 0.602 0.600 0.622 0.603 0.731 0.580
SVM 0.540 0.542 0.597 0.594 0.623 0.525 0.675 0.568 0.755 0.720

AdaBoost 0.606 0.591 0.603 0.604 0.625 0.591 0.691 0.654 0.710 0.664
GBoost 0.645 0.547 0.597 0.591 0.626 0.532 0.703 0.586 0.732 0.679
Forests 0.579 0.564 0.599 0.469 0.573 0.440 0.684 0.493 0.693 0.673

Table 3: Trial set Pearson correlations for different machine learning models and feature subsets.

System Words Phrases
Top 1 0.7886 0.8612
Top 2 0.7882 0.8575
Top 3 0.7790 0.8571

UTFPR 0.6875 0.7601
Bottom 3 0.1807 0.3197
Bottom 2 0.0971 0.2821
Bottom 1 -0.0272 0.1860

Table 4: Pearson correlation obtained by the UTFPR
systems on the shared task compared to the top 3 and
bottom 3 systems of each sub-task.
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Abstract

In this paper we propose a contextual attention-
based model with two-stage fine-tune training
using RoBERTa. First, we perform the first-
stage fine-tune on corpus with RoBERTa, so
that the model can learn some prior domain
knowledge. Then we get the contextual em-
bedding of context words based on the token-
level embedding with the fine-tuned model.
And we use Kfold cross-validation to get K
models and ensemble them to get the final re-
sult. Finally, we attain the 2nd place in the
final evaluation phase of sub-task 2 with pear-
son correlation of 0.8575.

1 Introduction

LCP is an augmented version of Complex Word
Identification(CWI) (Shardlow et al., 2020), pre-
dict complexity score for each target word in a
sentence. The dataset is a multi-domain English
dataset annotated with a 5-point Likert scale (1-5).
The annotation model in CompLex addresses com-
plexity as a continuum instead of a binary feature.
Previous studies of CWI treat the task as a binary
classification, predict a complexity label (complex
vs. non-complex) for a set of target words in a
sentence.

In this paper, we exploratory data analysis(EDA)
for the dataset, and found that the distribution of
the single task and multi task dataset are very in-
conformity, so should bulid two models for every
dataset great than one model for merge two task
dataset.

Several key technologies as follows:

• Train a RoBERTa based fine-tune corpus clas-
sifier. It use the data of all single and multi

∗These authors contributed equally to this work This work
is licensed under a Creative Commons Attribution 4.0 In-
ternational License. License details: http:// creativecom-
mons.org/licenses/by/4.0/

with train, trial and test dataset as train data,
no dev and test, and only train 1 epoch, which
enable the RoBERTa model ahead of time
learning the domain knowledge.

• At each layer, calculate target vector and con-
text tokens embedding attention, the layer con-
text vector is average the context tokens em-
bedding with soft alignment.

• Weighted the RoBERTa last 12 layers context
vector and target vector. They use the same
weights, and it’s sum equals to 1.

• The degeneration of gradual unfreezing
(Howard and Ruder, 2018). At first epoch
freeze the pretrained model parameter only
learning the head layers parameter, then un-
freeze all model parameter.

• Multi-Sample Dropout at last layer (Inoue,
2019)

2 Background

Previous approaches to CWI typically refer to bi-
nary identification of complex words, two shared
tasks on CWI topic have been organized so far.
SemEval-2016 Task 11 (Paetzold and Specia, 2016)
and BEA workshop 2018 (Yimam et al., 2018). The
two tasks approache a number of different model
to classification, ranging from traditional machine
learning classifiers such as support vector machines
(SVM), decision trees, random forest, and maxi-
mum entropy classifiers to deep learning classifiers,
such as recurrent neural networks. A wide range of
features were used such as word embeddings, word
and character n-grams, word frequency, Zipfian fre-
quency distribution, word length, morphological,
syntactic, semantic, and psycholinguistic.
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Figure 1: Attention Based Context Representation for LCP

BERT is a new language representation model,
and stands for Bidirectional Encoder Represen-
tations from Transformers (Devlin et al., 2018).
Since BERT appear, fine-tuned pre-trained model
with just one additional output layer to create state-
of-the-art models for a wide range of tasks. A num-
ber of Transformers series models are proposed,
such as GPT-2, RoBERTa (Liu et al., 2019), XLM,
DistilBert, XLNet. In this papaer we focus on use
RoBERTa to slove the tasks.

3 System overview

We propose a RoBERTa with attention based model
to solve the LCP task, Figure 1 outlines our pro-
posed model framework. First, use Byte-Pair En-
coding (BPE) to tokenize the input sentent, which
is an effective subword technique to relieve the
Out-of-Vocabulary (OOV) problem. For every
RoBERTa hidden layer, we apply token pooling
that is average the target words tokens embedding
as the target vector. Then we calculate the atten-
tion between target vector and context tokens vec-
tor which are sentence tokens masked the target
tokens, After that, context tokens embedding mul-
tiply attention weight as the context vector, then
concatenate the context vector and target vector.
Second, pooling the RoBERTa last 12 layers con-
text vector and target vector, Finally, connect the
MLP layer to predict the LCP Score.

3.1 Pooling

The input sentenct is tokenized to n tokens ti, i =
1, 2, ..., n, and the target tokens index are lt =
{k, k + 1, ...,m}, the context tokens index are
lc = {1, ..., k − 1,m + 1, ..., n}, which exclude

the target tokens. Ej
i denotes the ith token embed-

ding of hidden layer j, T j denotes the target vector
of the hidden layer j.

T j =
1

m− k + 1

∑

i∈lt
Ej

i (1)

The attention weight between context tokens em-
bdding and target vector of layer j is compute by.

αj
i = softmax(s(Ej

i , T
j)) =

exp(sji )∑
i exp(s

j
i )
, i ∈ lc

(2)
where

sji = s(Ej
i , T

j) = (Ej
i )

TT j (3)

After that, we compute the weighted summation
for cj

cj =
∑

i∈lc
αj
iE

j
i (4)

Finally, calculate the pooling target vetor t, and
context vector c, they are weighted last N layers
target vector and context vector of RoBERTa, the
weight w1, w2, ..., wN is the model parameters and
equals to 1.

t =
N∑

j

wjt
j (5)

c =
N∑

j

wjc
j (6)

N∑

j=1

wj = 1 (7)
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Quantile
Single Multi

train trial train trial
Q1 0.2115 0.2143 0.3026 0.3090
Q2 0.2794 0.2667 0.4091 0.4219
Q3 0.3750 0.3594 0.5294 0.5140

Table 1: Single and Multi DataSet Quantile

4 Experiments

4.1 Data
Table 1 shows the single and multi dataset quantile.
From the table we found that the single and multi
words Complexit Score distribution are very differ-
ent. Single is easy to understand but multi words
are difficult. So we build different model to adjust
the dataset.

We use 5-fold cross validation, first generate a
new feature score bin which is binning the LCP
score by quantile. Because the dev dataset com-
monly used to search the optimal hyper parame-
ters, in this experiment we only use dev dataset
to found the best epoch, in order to prevent over-
fitting by early stop, but we found that pretrained
model only train 5-6 epochs could be convergence
on the task dataset, so not need deliberately gener-
ate the dev dataset, only let dev dataset as same as
test dataset. Train and test dataset are splited use
stratified KFold by the features domain corpus and
score bin.

4.2 Corpus information
The dataset give the sentences domain corpus, but
how to use this information? At first, we build the
multi-task learning. The auxiliary task is the corpus
classification which use the last 12 layers average
CLS token embedding. But the auxiliary task not
improve the LCP task, and the accuracy of corpus
classifier is quite low. It’s not conform to the actual,
because of the sentences corpus come from Bible
Europarl and Biomedical, and they are very easy to
distinguish.

Since that, we build a corpus classification model
separately which is a RoBERTa fine-tune model
(Sun et al., 2019). Benefit from the dataset are easy
to classify, the model only need to train 1 epoch,
and could get 0.99 accuracy. We merge the single
and multi trial, train and test dataset as new train
dataset, this can let the model see all data include
test dataset. After train, the RoBERTa learning the
domain knowledge, and in advance learning part
of the test dataset.

Then, export the RoBERTa model as the pre-
trained model of LCP task.

4.3 Single LCP Task
First merge the single train and trial dataset, then
process stratified 5-fold, compare the origin pre-
trained model(RoBERTa-large) and fine-tune by
the corpus classification(pre-RoBERTa-large).

For train, we use the Mean squared error(MSE)
loss function and adam optimizer (Kingma and
Ba, 2014). At first epoch we freeze the RoBERTa
parameters, only traininge the head layers. Apply
learning rate linear schedule with warmup, lr =
2e− 5, warmup steps = 200, and use early stop.

Table 2 shows the single task result, the metric is
Pearson correlation (R). The fold-x column is the
metric of CV model evaluate on the fold-x dataset.
The mean column is the average of the fold-* col-
umn. Pre-trained corpus classification with fine-
tune RoBERTa-large is a little outperformance than
origin RoBERTa-large. The single model result is
the average of all 5-fold models’s predict result for
single task test data, and model result column is
the metric of the the model result. The task final
result is the average of all models result, and final
result column is the metric of the the final result.
The two model can achieve 0.7586 and 0.7618, but
use simple average ensemble could get 0.7629. It’s
quite effective.

4.4 Multi LCP Task
The merged dataset of multi train and trial only
have 1616 examples, In single task, the pre-
RoBERTa-large is outperformance than origin
RoBERTa-large. In order to augment the multi
task examples, Fisrt use the data which merge
all sigle and multi train trial dataset, use 5-fold
cross validation, splited data use stratified KFold as
same as single task. Then use pre-RoBERTa-large
train the LCP task. After that, inference the vector
h = [c, t] for all merge data, the final h is average
of all 5-fold models. Finally, use the vector to cal-
culate cosine similarity of the multi dataset with
single dataset, then recall single examples add to
the multi train example with threshold. Here we
use sim threshold = 0.75, and recall 2707 single
examples.

Then split dataset and train strategy are as same
as singe task. The results are in Table 3. gen-
RoBERTa-large is the origin RoBERTa model with
Data Augmentation, pre-gen-RoBERTa-large is the
RoBERTa model fine-tune by the corpus with Data
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model
the result of 5-fold cross validateion LCP single task

fold-1 fold-2 fold-3 fold-4 fold-5 mean model result final result
RoBERTa-large 0.7528 0.7723 0.7777 0.7854 0.7696 0.7716 0.7586 0.7629

pre-RoBERTa-large 0.7636 0.7725 0.7707 0.7849 0.7719 0.7727 0.7618

Table 2: Single Task Result

model
the result of 5-fold cross validateion LCP multi task

fold-1 fold-2 fold-3 fold-4 fold-5 mean model result final result
RoBERTa-large 0.7531 0.7681 0.7829 0.7692 0.7492 0.7645 0.8310

0.8575pre-RoBERTa-large 0.7862 0.7952 0.7624 0.7352 0.7656 0.7689 0.8332
gen-RoBERTa-large 0.7713 0.7517 0.7845 0.7550 0.7793 0.7684 0.8325

pre-gen-RoBERTa-large 0.7614 0.7646 0.7616 0.7920 0.7791 0.7717 0.8355

Table 3: Multi Task Result

Augmentation. Results shows model fine-tune by
the corpus classification are outperformance than
origin model, The final result 0.8575 is fusioned by
average of the four models cv results, and rank the
2nd in test phrase.

5 Conclusion

This paper presents a method to predicting lexi-
cal complexity, which apply RoBERTa-large as the
backbone language model. First fine-tune back-
bone model for corpus classification. Then bulid
model with attention based context representation.
make vector recall for multi task data augmentation.
Finally, we carry out a multi-model average ensem-
ble strategy to enhance the model performance. In
the future, we will exploit better model for text
representation, and utilizing data augmentation for
all task.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Hiroshi Inoue. 2019. Multi-sample dropout for ac-
celerated training and better generalization. arXiv
preprint arXiv:1905.09788.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Gustavo Paetzold and Lucia Specia. 2016. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. Complex: A new corpus for lexical
complexity predicition from likert scale data. arXiv
preprint arXiv:2003.07008.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

Seid Muhie Yimam, Chris Biemann, Shervin Malmasi,
Gustavo H Paetzold, Lucia Specia, Sanja Štajner,
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Abstract

Lexical complexity prediction (LCP) conveys
the anticipation of the complexity level of a to-
ken or a set of tokens in a sentence. It plays a
vital role in the improvement of various NLP
tasks including lexical simplification, transla-
tions, and text generation. However, multiple-
meaning of a word in multiple circumstances,
grammatical complex structure, and the mu-
tual dependency of words in a sentence make
it difficult to estimate the lexical complex-
ity. To address these challenges, SemEval-
2021 Task 1 introduced a shared task focusing
on LCP and this paper presents our participa-
tion in this task. We proposed a transformer-
based approach with sentence pair regression.
We employed two fine-tuned transformer mod-
els including BERT and RoBERTa to train
our model and fuse their predicted score to
the complexity estimation. Experimental re-
sults demonstrate that our proposed method
achieved competitive performance compared
to the participants’ systems.

1 Introduction

Lexical complexity prediction (LCP) has become
an important task in this globalization age, espe-
cially for second language learners (Przybyła and
Shardlow, 2020). LCP is a little bit expansion
of complex word identification (CWI) task (Paet-
zold and Specia, 2016; Štajner et al., 2018), where
CWI is a binary classification of a word that is
complex or not and LCP is finding the complex-
ity level of a word in continuous labelling in a
sentence (Shardlow et al., 2020). LCP plays a
vital role in many NLP applications such as lex-
ical simplification (Paetzold, 2016; Paetzold and
Specia, 2017; Qiang et al., 2020), text generation,
and machine translation (Wang et al., 2016). Be-
sides, it helps those people who are suffering from

**The first two authors have equal contributions.

Dyslexia (Rello et al., 2013a), Aphasia (Rello et al.,
2013b), and those with low literacy levels (Aluisio
and Gasperin, 2010).

LCP is a very challenging task (Zampieri et al.,
2017), especially because the non-identical target
audiences will have distinct needs. For example,
speakers of one language usually less familiar with
different subsets of the vocabulary of a second
language. Besides, the grammatical shape of a
sentence and the ambiguous meaning of a word
in different places make this task more challeng-
ing and important to explore. A single word may
portray different lexical complexity because of its
non-identical usage, position, tense form, and re-
dundancy in different sentences or in the same sen-
tence. To estimate multi-word complexity, we need
to consider the dependency between tokens.

Sentence Token Complexity

Sub-task 1

His head is like
the purest gold.

gold 0.210

Sub-task 2

They shall eat it
with bitter herbs.

bitter herbs 0.25

Table 1: Example of sub-task 1 and sub-task 2.

To address the challenges of lexical complexity
prediction of words in sentences, (Shardlow et al.,
2021a) proposed a shared task at SemEval-2021
Task 1. The task is divided into two subtasks. In
sub-task 1, a system needs to determine the com-
plexity level of a word in the sentence, whereas in
sub-task 2, a system needs to determine the overall
complexity level of multiple words in the sentence.
To explain the definition of both sub-tasks, we ar-
ticulate a few examples in Table 1.
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Taking part in the LCP shared task of SemEval-
2021, we exploit the pairwise contextual informa-
tion of sentence and token. In this regard, we pro-
posed a combined transformer based framework
with sentence pair regression. We make a pairwise
learning framework with the sentence-token pair
to train the two state-of-the-art transformers model
including BERT and RoBERTa.

We organize the rest of the paper as follows: Sec-
tion 2 presents the details of our proposed frame-
work. Whereas in Section 3, we present our experi-
mental settings and analyze the performance of our
model against the various settings and related meth-
ods. Finally, we conclude our paper in Section 4
with some future directions.

2 Proposed Lexical Complexity
Prediction Framework

In this section, we describe our proposed lexical
complexity prediction framework. Our goal is to
predict the complexity score of a token or a set
of tokens in the given sentence. We depict the
overview of our framework in Figure 1.

Single/Multi-Token and Sentence

Complexity Score

Regression Score

BERT RoBERTa

Fusion of 

Regression Scores

Text-pair Data 

Formats

Figure 1: Overview of our proposed framework.

In our framework, we use a sentence pair re-
gression concept in transformer models to perform
lexical complexity prediction where input sentence
and target word pairs are packed together into a sin-
gle sequence. After performing sentence-token pair
regression through BERT and RoBERTa models,
we estimate each model’s regression score. Sub-
sequently, we fuse these models’ predictions by
taking the mean of these scores to determine the
final complexity score.
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[SEP]
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[SEP]C T
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Figure 2: Pairwise learning using BERT model.

2.1 Fine-tuned Transformer Models

We fine-tune the transformer models to perform
sentence pair regression for LCP through BERT
and RoBERTa. We describe the details in the sub-
sequent sections.

2.1.1 Input Representation

We train with the sentence-word pair for better un-
derstanding their contextual relation which in turn
helps to estimate the complexity of the target word
in the sentence. It is important for an LCP system
to predict both single and multi-words complexity.
We exploit Huggingface transformers library (Wolf
et al., 2020) with pairwise training where input
target words and sentence make pair as a single
sequence and detached with the [SEP] token. We
utilize two pre-trained transformer models includ-
ing RoBERTa and BERT. For LCP tasks training,
each model’s first token is the special [CLS] to-
ken at the beginning of every sequence which is
also responsible for the final layer regression score
of each model. For each sequence, we separate
every pair with [SEP] token (as presented in Fig-
ure 2) where the target words belong to text a and
sentence belongs to text b. We fine-tune the archi-
tecture with the pre-trained BERT and RoBERTa
models to estimate the complexity score.

2.1.2 BERT

BERT (Devlin et al., 2019) stands for bidirectional
encoder representations from transformers, is a new
method of pre-training sentence representations
which achieves state-of-the-art results on many
NLP tasks including question-answering, text clas-
sification, and sentence-pair regression. We take
advantage of the bert fast tokenizer and bert-base-
uncased model for sentence-pair regression where
target words and sentence make pair as a single
sequence.
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2.1.3 RoBERTa
RoBERTa (Liu et al., 2019) is an extension to the
original BERT model which is named as a robustly
optimized BERT pre-training approach. It focuses
on the key hyper-parameters choices and removing
the next sentence prediction (NSP) objective. Be-
sides, it is training with much larger mini-batches
and learning rates. We exploit the roberta fast to-
kenizer and roberta-base model for sentence-pair
regression to get the complexity score where target
word and sentence are trained as pairwise training.

2.2 Fusion of Transformer Models

To ameliorate the performance of individual mod-
els, we fuse the predicted complexity score of two
models to generate a unified score. We use the
arithmetic mean to average both model’s regres-
sion scores to determine the final complexity score.
The estimation is computed as follows:

Ci =
xi + yi

2

where xi and yi correspond to the BERT and
RoBERTa regression score, respectively.

3 Experiment and Evaluation

3.1 Dataset Description

The organizers of the lexical complexity prediction
(LCP) task 1 at SemEval-2021 (Shardlow et al.,
2021a) provided a multi-domain English bench-
mark dataset (Shardlow et al., 2020, 2021b) to eval-
uate the performance of the participants’ systems.
The dataset was collected from three different cor-
puses including the Bible, europarl, and biomedical.
The proposed task is divided into two subtasks, sub-
task 1 focused on single word instances whereas
sub-task 2 focused on multi-word instances. The
training set for sub-task 1 contains 7662 instances
where 2574 instances from Bible, 2576 instances
from biomed, and 2512 instances from europarl.
The training set of sub-task 2 comprises 1517 in-
stances (505 Bible, 514 biomed, and 498 europarl).
The validation set consists of 99 multi-word expres-
sions (29 Bible, 33 biomed and 37 europarl) and
421 single word instances (143 Bible, 135 biomed
and 143 europarl). The organizer provided 917 sin-
gle word instances (283 Bible, 289 biomed, and
345 europarl) for sub-task 1 and 184 multi-word
instances (66 Bible, 53 biomed, and 65 europarl)
for sub-task 2 as a test set.

3.2 Experimental Settings

We now describe the set of parameters that we have
used to design our proposed lexical complexity pre-
diction model. In our CSECU-DSG system, we uti-
lize two state-of-the-art Huggingface transformer
models with fine-tuning, including BERT and
RoBERTa. We use simpletransformers API (Ra-
japakse, 2019) to implement our system. We train
our system with the provided training data. We
trained BERT and RoBERTa model using 5 epochs
and set the learning rate of 2.99e-5, save steps =
767, and evaluate during training steps = 40. We
used the CUDA-enabled GPU and set the man-
ual seed = 4 to generate the reproducible results.
Default settings were used for the other parameters.

3.3 Evaluation Measures

To evaluate the performance of participants’ lexi-
cal complexity prediction systems, SemEval-2021
task 1 organizers used different strategies and met-
rics for sub-task 1 and sub-task 2 (Shardlow et al.,
2020). For both sub-task, standard evaluation met-
rics including Pearson correlation (R), Spearman
correlation (Rho), mean absolute error (MAE),
mean squared error (MSE), and R-squared (R2)
were applied to estimate the performance of a sys-
tem. However, Pearson correlation (R) is consid-
ered as the primary evaluation measure for both
subtasks of this task.

3.4 Results and Analysis

The comparative results of our proposed CSECU-
DSG system along with top-5 performing sys-
tems (Shardlow et al., 2021a) in sub-task 1 and
sub-task 2 are presented in Table 2 and Table 3, re-
spectively. Following the benchmark of SemEval-
2021 task 1, participants’ systems are ranked based
on the primary evaluation metric Pearson correla-
tion (R) score.

At first, we presented the performance of our
proposed method. We also presented the perfor-
mance of top-5 ranked participating systems and
LCP baselines. Here, we see that our proposed
method obtained competitive performance against
the other top-performing systems. In comparison
to the other participants’ methods, we have seen
that our system demonstrated a similar kind of per-
formance on both sub-task. This deduces the ap-
plicability and generalizability of our system for
the complexity estimation of both the single and
multi-words.
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Team (Rank) Pearson Spearmen MAE MSE R2

CSECU-DSG (9th) 0.7716 0.7326 0.0632 0.0066 0.5909

Top performing team based on Pearson correlation score

JUST BLUE (1st) 0.7886 0.7369 0.0609 0.0062 0.6172
DeepBlueAI (2nd) 0.7882 0.7425 0.0610 0.0061 0.6210
Alejandro Mosquera (3rd) 0.7790 0.7355 0.0619 0.0064 0.6062
Andi (4th) 0.7782 0.7287 0.0637 0.0064 0.6036
CS-UM6P (5th) 0.7779 0.7366 0.0803 0.0100 0.3813

Table 2: Comparative results with other selected participants (Sub-task 1).

Team (Rank) Pearson Spearmen MAE MSE R2

CSECU-DSG (12th) 0.8311 0.8153 0.0678 0.0077 0.6825

Top performing team based on Pearson correlation score

DeepBlueAI (1st) 0.8612 0.8526 0.0616 0.0063 0.7389
rg pa (2nd) 0.8575 0.8529 0.0672 0.0072 0.7035
xiang wen tian (3rd) 0.8571 0.8548 0.0675 0.0072 0.7012
andi gpu (4th) 0.8543 0.8448 0.0664 0.0071 0.7055
ren wo xing (5th) 0.8541 0.8473 0.0677 0.0073 0.6967

Table 3: Comparative results with other selected participants (Sub-task 2).

3.5 Discussion

In order to estimate the effect of each component of
our CSECU-DSG model, we estimated the perfor-
mance of the individual model. The summarized
experimental results for sub-task 1 and sub-task 2
are presented in Table 4.

From the results, it can be observed that
RoBERTa based model performed better compared
to the BERT model when considering individual
model’s performances. However, combining two
models regression scores by using mean increased
Pearson correlation score by more than 1% on
both subtasks. This deduced the importance of
our model fusion.

All three models performed better for multi-
words complexity estimation compared to the sin-
gle word complexity. We have seen a similar kind
of trend in other models’ performances reported
in Table 2, and Table 3. This demonstrated that
estimating the single word complexity is more chal-
lenging compared to the multi-words expression.
This is because a multi-word expression contains
more words, therefore, contains more contextual
information that helps the model for complexity
estimation compared to the single word.

Method
Single Word Multi Word

Pearson Pearson

CSECU-DSG 0.7716 0.8311

Performance of Individual Model

−BERT 0.7514 0.8077
−RoBERTa 0.7634 0.8211

Table 4: Performance analysis of individual model.

4 Conclusion and Future Directions

In this paper, we presented our approach to the
lexical complexity prediction task. We tackled the
problem by performing sentence pair regression us-
ing two SOTA transformer models including BERT
and RoBERTa in a unified architecture. By using
pairwise learning, we exploited the contextual re-
lation between sentence-word pairs to estimate the
complexity score. Our method achieved competi-
tive scores compared to other participants.

In the future, we have a plan to incorporate vari-
ous handcrafted features with state-of-the-art neu-
ral methods to distill the relationship of sentence-
word pairs for complexity estimation.

630



References
Sandra Aluisio and Caroline Gasperin. 2010. Foster-

ing digital inclusion and accessibility: the PorSim-
ples project for simplification of Portuguese texts. In
Proceedings of the NAACL HLT 2010 Young Investi-
gators Workshop on Computational Approaches to
Languages of the Americas, pages 46–53.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL:HLT), pages 4171–4186.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv e-prints, pages arXiv–1907.

Gustavo Paetzold and Lucia Specia. 2016. SemEval
2016 Task 11: Complex Word Identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016).

Gustavo H Paetzold and Lucia Specia. 2017. A survey
on lexical simplification. Journal of Artificial Intel-
ligence Research, 60:549–593.

Gustavo Henrique Paetzold. 2016. Lexical Simplifica-
tion for Non-Native English Speakers. Ph.D. thesis,
University of Sheffield.

Piotr Przybyła and Matthew Shardlow. 2020. Multi-
Word Lexical Simplification. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 1435–1446.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, and
Xindong Wu. 2020. Lexical simplification with
pretrained encoders. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,05,
pages 8649–8656.

T. C. Rajapakse. 2019. Simple Transformers.
https://github.com/ThilinaRajapakse/
simpletransformers.

Luz Rello, Ricardo Baeza-Yates, Laura Dempere-
Marco, and Horacio Saggion. 2013a. Frequent
words improve readability and short words improve
understandability for people with dyslexia. In IFIP
Conference on Human-Computer Interaction, pages
203–219. Springer.

Luz Rello, Susana Bautista, Ricardo Baeza-Yates,
Pablo Gervás, Raquel Hervás, and Horacio Saggion.
2013b. One half or 50%? An eye-tracking study of
number representation readability. In IFIP Confer-
ence on Human-Computer Interaction, pages 229–
245. Springer.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. CompLex: A New Corpus for Lex-
ical Complexity Predicition from Likert Scale Data.
In Proceedings of the 1st Workshop on Tools and Re-
sources to Empower People with REAding DIfficul-
ties (READI).

Matthew Shardlow, Richard Evans, Gustavo Paetzold,
and Marcos Zampieri. 2021a. SemEval-2021 Task
1: Lexical Complexity Prediction. In Proceedings of
the 14th International Workshop on Semantic Evalu-
ation (SemEval-2021).

Matthew Shardlow, Richard Evans, and Marcos
Zampieri. 2021b. Predicting Lexical Complexity in
English Texts. arXiv preprint arXiv:2102.08773.

Sanja Štajner, Chris Biemann, Shervin Malmasi, Gus-
tavo Paetzold, Lucia Specia, Anaı̈s Tack, Seid Muhie
Yimam, and Marcos Zampieri. 2018. A Report on
the Complex Word Identification Shared Task 2018.
In Proceedings of the 13th Workshop on Innovative
Use of NLP for Building Educational Applications.

Tong Wang, Ping Chen, John Rochford, and Jipeng
Qiang. 2016. Text simplification using neural ma-
chine translation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 30,1.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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Abstract
This paper presents the system we submit-
ted to the first Lexical Complexity Prediction
(LCP) Shared Task 2021. The Shared Task pro-
vides participants with a new English dataset
that includes context of the target word. We
participate in the single-word complexity pre-
diction sub-task and focus on feature engineer-
ing. Our best system is trained on linguis-
tic features and word embeddings (Pearson’s
score of 0.7942). We demonstrate, however,
that a simpler feature set achieves comparable
results and submit a model trained on 36 lin-
guistic features (Pearson’s score of 0.7925).

1 Introduction

Lexical complexity relates to complexity of words.
Its assessment can be beneficial in a number of
fields, ranging from education to communication.
For instance, lexical complexity studies can assist
in providing language learners with learning ma-
terials suitable for their proficiency level or aid
in text simplification (Siddharthan, 2014). These
studies are also a central part of reading compre-
hension, as lexical complexity can predict which
words might be difficult to understand and could
hinder the readability of the text. Lexical complex-
ity studies typically make use of Natural Language
Processing and Machine Learning methods (Paet-
zold and Specia, 2016).

Previous similar studies focus on Complex Word
Identification (CWI), which is a process of identi-
fying complex words in a text (Shardlow, 2013).
In this case, lexical complexity is assumed to be
binary - words are either complex or not. LCP
Shared Task 2021 addresses this limitation by in-
troducing a new dataset designed for continuous
rather than binary complexity prediction (Shardlow
et al., 2021).

In this paper, we describe a single-word lexi-
cal complexity prediction system. Our goal is to

demonstrate that a simple system can achieve re-
sults comparable to more complex ones. Therefore,
we focus on feature engineering rather than model
tuning.

2 Related Work

2.1 Lexical Complexity
Over the years, studies on lexical complexity have
ranged from research on the overall readability
enhancement and text simplification to studies fo-
cusing specifically on lexical complexity.

Some of the earlier work on lexical complexity
targeted communication enhancement of medical
documents by assessing the familiarity of medical
terminology (Zeng et al., 2005). Paetzold and Spe-
cia (2013) showed that the absence of lexical sim-
plification in Automatic Text Simplification (ATS)
systems yielded texts that readers might still find
too complex to understand.

CWI has then gained more interest, and two
Shared Tasks have been organised with the goal
of establishing state-of-the-art performance in the
field. SemEval-2016 Task 11 approached CWI as
a binary classification task and collected a dataset
for English which was annotated by non-native
speakers (Paetzold and Specia, 2016). Zampieri
et al. (2017) showed that such data annotation ap-
proach was not optimal. The second Shared Task
addressed the limitations by introducing a multi-
lingual dataset for Spanish, German, English and
French and approaching the problem as both, a bi-
nary and a probabilistic complexity prediction task
(Štajner et al., 2018).

2.2 Feature and Model Selection
In lexical complexity prediction tasks, linguistic
features and word frequency measures have been
proven to be among the most effective features.
The winning systems developed for the CWI 2018
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Shared Task (Yimam et al., 2018) use various lexi-
cal features, such as word N-gram, POS tags, and
syntactic dependency parse relations. Moreover,
they also include different variants of word fre-
quency features, CEFR levels, and a few more.

As for the choice of algorithms, Gooding and
Kochmar (2018) has achieved the best perform-
ing systems in English monolingual tasks us-
ing classifiers with ensemble techniques, such as
AdaBoost with 5000 estimators and the aggrega-
tion classifier of Random Forest. The winning
systems for multilingual tracks (Kajiwara and Ko-
machi, 2018) also employ random forest models.

3 LCP Shared Task 2021 Setup

The LCP Shared Task 2021 aims to predict the
complexity value of words in their context. It is di-
vided into two sub-tasks: predicting the complexity
score of 1) single words and 2) multi-word expres-
sions. In this paper, we present a system for the
first sub-task.

The Shared Task uses the CompLex corpus
(Shardlow et al., 2020). In addition to the target
word, it includes contextual information which is
represented by a sentence where the word appears
and its source or domain: Bible (Christodouloupou-
los and Steedman, 2015), Europarl (Koehn, 2005)
or biomedical texts (Bada et al., 2012). Each word
in the dataset is evaluated by around 7 annotators
from English speaking countries. The complexity
labels are based on a 5-point Likert scale scheme
(very easy to very difficult). The final dataset con-
sists of 7,662 training and 917 testing instances.

The Shared Task baseline system uses a
linear regression model. It is trained on
log relative frequency and word length features, re-
sulting in a Mean Absolute Error (MAE) of 0.0867.

4 Methodology

In this section, we describe the methodology that
we follow in the design of our system, including
the used data, feature engineering and the training
steps. The study relies on an in-depth experimen-
tation with features. We aim to find out which lin-
guistic information is the best predictor of lexical
complexity.

4.1 Data Collection
For the computation of some features, we use ad-
ditional data sources. We extract word frequen-
cies from nine corpora that cover different do-

mains and complexity levels: BNC corpus1, Sim-
ple Wikipedia and English Wikipedia2, SubIMDB3

and English monolingual corpora from the OPUS
project4: bible-uedin5, EMEA6, Europarl7, News-
Commentary8 and OpenSubtitles 20189. We addi-
tionally use two word lists with annotated CEFR
levels (Common European Framework of Refer-
ence for Languages, which organises language pro-
ficiency in six levels, A1 to C2)10 and the Age of
Acquisition dataset11.

4.2 Features
We consider a) word and sentence-level features
(or linguistic features), b) frequency features and c)
word embeddings.

On a word level, we compute the linguistic in-
formation, i.e. character, syllable and phoneme
counts, universal part-of-speech tag and named
entity tag (extracted with Stanza NLP toolkit) (Qi
et al., 2020). We also compute scores that pertain
to language learning such as age of acquisition,
percentage of population that knows the word and
word prevalence (Kuperman et al., 2012). Finally,
we use two CEFR word lists and split them into
five subsets each (one per CEFR level). Each word
is assigned a boolean value depending whether it
appears in one of the subsets.

On a sentence level, lexical complexity is rep-
resented by lexical diversity rate (unique words
divided by all words). Syntactic complexity and
readability are represented by the average sentence
length and the Linsear Write score, which is a read-
ability measure used to assess the difficulty of U.S.
military manuals (Klare, 1974). We also make
special use of the OpenSubtitles frequencies: vo-
cabulary percentage per CEFR level is computed
by splitting the corpus into five subsets and rep-
resents the distribution of words among the five
frequency ranges; difficult word percentage relates
to words containing two and more syllables that
do not appear in top 200 most common words in
the corpus; unknown word percentage represents

1BNC
2Wikipedia Monolingual Corpora
3SubIMDB
4OPUS resources
5bible-uedin
6EMEA
7Europarl
8News-Commentary
9OpenSubtitles 2018

10The Oxford 5000 and Kelly list for English
11AoA
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the percentage of words that do not appear in the
corpus at all. The final text complexity score is a
normalised sum of all sentence-level scores.

Additionally, we calculate different types of fre-
quencies, i.e. log relative, absolute (raw), fre-
quency rank (word rank in a frequency list) and
ZIPF frequency (Zipf, 1949), from the nine cor-
pora.

Finally, we experiment with pre-trained word
embeddings, including fastText for English and
BERT’s embeddings (Mikolov et al., 2018; Devlin
et al., 2018). However, we ablate fastText word em-
beddings from the final feature set as they slightly
degrade the overall performance.

4.3 Training, Tuning & Testing
The focus of our study is to achieve the best results
through feature engineering rather than model hy-
perparameter tuning. During all experiments, we
utilise the open source Machine Learning software
WEKA (Frank et al., 2016) with the default algo-
rithm hyperparameter settings and apply 10-fold
cross-validation.

4.3.1 Models
First, we select several Machine Learning algo-
rithms for further experiments with the features.
During this step, we use word and sentence-level
features with a subset of frequency features.

Due to the nature of the dataset target values,
we employ classifiers suitable for regression tasks.
Specifically, we use linear regression and
Multi-Layer Perceptron, meta classifiers,
such as Bagging, Stacking and Random
Subspace, and decision trees, such as M5P and
Random Forest. We obtain the best result
and benchmark our approach with M5P - a model
tree algorithm used for numeric prediction (Table
1). We reach MAE of 0.0638 (Pearson’s score of
0.7811), outperforming the baseline model of the
Shared Task (Section 3).

Next, we experiment with different feature
groups and combinations with the goal to select
the optimal feature subset. We train with the five
best performing algorithms in each step but report
only the results of the best model.

4.3.2 Ablation Studies
We narrow down the selection for the best perform-
ing features based on the three feature groups: fre-
quency features, linguistic features and word em-
beddings.

Classifier Pearson MAE
M5P 0.7811 0.0638
Random SubSpace 0.77 0.0657
Bagging 0.7693 0.0657
Random Forest 0.7655 0.0661
Decision Table 0.7601 0.0665

Table 1: 10-fold cross-validation results on the training
set for the top 5 classifiers

We pay special attention to frequency features
since the previous work shows that word frequen-
cies are usually among the most informative fea-
tures (Yimam et al., 2018). First, to figure out the
best way to represent frequencies of lower cased
word forms, we train the M5P model on different
frequency representations: log relative, raw, ZIPF
and frequency rank. We use only the best frequency
representation, log relative frequency, in the follow-
ing steps. We then test the models with frequencies
from various sources.

We also conduct experiments to understand the
impact of word embeddings using 300-dimension
pre-trained word vectors12, and BERT13 embed-
dings, where we concatenate layers 7 and 11 (Chro-
nis and Erk, 2020) which gives better results than
concatenating or summing the last four hidden lay-
ers.

We then conduct the final ablation study. Given
the complete set of features, we employ WEKA’s
feature selection algorithms and remove the least
informative features, one feature at a time. In case
it does not result in an improvement, the feature is
added back and we continue with the next available
feature.

5 Results

In this section, we present our results and discuss
the key findings. All discussed systems are trained
with the Random Forest classifier.

5.1 Frequency Features
We find that a combination of frequency features
from different sources alone can result in high per-
formance (Table 2). In this case, daily spoken lan-
guage sources, such as film subtitles, seem to be
the most informative. However, adding more fre-
quency features does not necessarily improve the
results (Tables 2 and 3).

12fastText for English
13We use bert-base-uncased from Hugging Face

(Wolf et al., 2020)
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Frequency Sources Pearson
All - EMEA 0.713
All 0.7128
All - EMEA - Bible 0.7041
OpenSubs + BNC
+ EnWiki + SimpleWiki 0.6882

OpenSubs 0.6536
SubIMDB 0.6479

Table 2: Frequency Sources

Features Pearson
9 frequencies + corpus + POS +
syllCount + charCount (13 features) 0.764

Above + BERT 7-11 (1550 features) 0.6953
9 frequencies + corpus + POS
+ sentence features - depRel - distToHead
- NER (44 features)

0.7907

Above - imdbFreq 0.7909
Above - CEFR vocabulary percentages 0.7921
Above - freqPm 0.7924
Above - harmonicMeanDiff (36 features) 0.7925
Above + best BERT 7-11 (76 features) 0.7942

Table 3: Feature Ablation Experiments

5.2 Linguistic Features
During the experiments with the linguistic features,
we obtain the best results using a reduced 36 feature
combination (Table 4). We find out that syntactic
features such as target word distance to the syntac-
tic head of the sentence and its syntactic relation
to the head of the sentence seem to worsen the per-
formance (Table 3). The full list of ablation steps
can be found in Appendix A.

Furthermore, removing the sentence-level fea-
tures results in a slight decrease of the overall
performance (from Pearson’s score of 0.7925 to
0.7791). It indicates that either word-level informa-
tion remains the most informative for this task or
that a single sentence does not provide sufficient
contextual information.

5.3 Word Embedding Features
Table 4 shows results for the best systems that are
trained on linguistic features only, word embedding
features only and the combined set of features.

The system trained on the word embeddings per-
forms significantly worse than the other two sys-
tems. BERT embeddings only improve the result if
we select a subset of 76 out of the 1536 embedding
features with WEKA’s CfsSubsetEval (Hall,
1999). The model trained on the combined set
of features performs the best, reaching Pearson’s
score of 0.7942. However, the difference between
this system and the one trained on linguistic fea-

Feature Combination #Features Pearson
36 Linguistic +
76 Embedding 112 0.7942

Linguistic 36 0.7925
BERT Embeddings 1536 0.6999

Table 4: Best systems trained on linguistic, word em-
bedding and the combined features

tures is statistically insignificant. These results
indicate that word embeddings are less informative
than the linguistic information. Additionally, word
embedding computation can be costly in terms of
the added complexity and the computational re-
sources. We, therefore, argue that a simpler feature
combination is sufficient and submit our second
best model to the Shared Task.

5.4 Test Set
The submitted system that is trained on 36 linguis-
tic features (Appendix B) is evaluated on the of-
ficial Shared Task test set and reaches Pearson’s
score of 0.7588, ranking in the upper half of the
submitted systems.

6 Conclusion

In this paper, we have described the design of our
system submitted to the LCP Shared Task 2021 and
discussed the key findings of our feature engineer-
ing approach. We aimed to design a simple system
that would not require much classifier tuning or
complex feature computations. Our two best mod-
els are trained on the Random Forest classifier
with the default hyperparameters. The best system
is trained on a 112 feature set which includes word
embeddings. The second best system is trained
on a simple 36 linguistic feature set. We submit
the simple system since the performance difference
between the two systems is not significant. The
model is placed in the upper half of the Shared
Task rankings for the single-word prediction sub-
task (Pearson’s score of 0.7588), demonstrating
how a simple approach can achieve high perfor-
mance results.

Further analysis of the feature ablation studies
confirms that word frequencies seem to be the most
informative among all features. We also observe
that even though including contextual information
does improve the overall result, the performance
differences are small. Future research might there-
fore look into including more contextual informa-
tion than one sentence. In addition, the perception
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of word complexity differs from reader to reader.
Future work could target specific reader groups,
such as people with dyslexia or second language
learners. In this case, the relevant background in-
formation of the readers should be included in the
annotation and experimentation processes.
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Appendices

A Feature Ablation Experiments

Features #Features Pearson Features
perma-
nently
removed

9 frequencies + corpus
+ POS + syllCount +
charCount

13 0.764

Above + BERT 7-11 1550 0.6953
9 frequencies + cor-
pus + POS + sentence-
level features (- deprel
- distToHead - NER)

44 0.7907 yes

above + 300 fastText
word embeddings

344 0.766

44 - imdbFreq 43 0.7909 yes
43 - Oxford lists -
Kelly lists

32 0.7902

43 - AoA 42 0.7891
43 - CEFR vocabulary
percentages

38 0.7921 yes

38 - avgSentence-
Length

37 0.792

38 - linsearWrite 37 0.7917
38 - unknownWord-
Percentage

37 0.7906

38 - difficultWordPer-
centage

37 0.7914

38 - lexicalDiversi-
tyRate

37 0.792

38 - textComplexi-
tyScore

37 0.7919

38 - countPhones 37 0.7918
38 - percKnown 37 0.7908
38 - freqPm 37 0.7924 yes
37 - prevalence 36 0.79
37 - freqZipfUS 36 0.7923
37 - avgDiffRating 36 0.7923
37 - harmonicMean-
DiffRating

36 0.7925 yes

36 + best BERT 7-11
(76)

112 0.7942 yes
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B Final Feature Set

Feature Description
corpus One of {bible, biomed, eu-

roparl}
POS Part-of-speech tag
linsearWrite readability measure used in U.S.

military
avgSentenceLength number of words in the sentence
unknownWordPercentage unknown word percentage
difficultWordPercentage difficult word percentage
lexicalDiversityRate type token ratio (unique

words/all words)
textComplexityScore normalised sum of all sentence-

level scores
countPhones count of phones in word
AoA age of acquisition
percKnown Percentage of population that

knows the word.
prevalence word prevalence
freqZipfUS ZIPF frequency calculated from

the AoA dataset
avgDiffRating Average of difficulty ratings

from SVL 12000 dataset
kelly a1
oxford a1 boolean:
kelly a2 for
oxford a2 word
kelly b1 that
oxford b1 occurs
kelly b2 in
oxford b2 the
kelly c1 CEFR
oxford c1 wordlist
kelly c2
syllCount number of syllables in the word
charCount number of characters in the

word
Europarl log rel freq log
BNC log rel freq relative
OpenSubs log rel freq frequency
SimpleWiki log rel freq of
EnWiki log rel freq word
SubIMDB log rel freq in
News Comm log rel freq the
bible log rel freq corpus
complexityTargetClass numeric
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Abstract

We present the technical report of the system
called RS GV at SemEval-2021 Task 1 on com-
plexity prediction of English words. RS GV
is a neural network using hand-crafted linguis-
tic features in combination with character and
word embeddings to predict the target words’
complexity. For the generation of the hand-
crafted features, we set the target words in
relation to their senses. RS GV predicts the
complexity well of biomedical terms but it has
problems with the complexity prediction of
very complex and very simple target words.

1 Introduction

Text simplification is the process of modifying a
text so that it becomes easy for the reader to un-
derstand the meaning of the text without any loss
of information. A main part of text simplification
is lexical simplification. In lexical simplification,
complex words are replaced with easier or more fre-
quent synonyms. Following Shardlow (2014), the
process of lexical simplification can be split as fol-
lows: I.) identification of complex words in a given
text, II.) substitution generation, III.) word sense
disambiguation, IV.) synonym ranking, V.) substi-
tution of complex word with the best synonym in
correct morphological form.

Following Shardlow (2014), the most common
errors in lexical simplification are that the words are
not identified as complex or that words are incor-
rectly identified as complex. One reason might be
the approach to predict complex words. So far, in
the task called complex word identification (CWI),
a word in a sentence was labeled as either complex
or simple without any range in between. Shard-
low et al. (2020) criticize this approach because
there is no clear threshold when a word starts to be
complex. Hence, they propose a new task called
lexical complexity prediction (LCP). The aim of

LCP is to predict the complexity of a single word
or a multi-word expression on a scale of 0 to 1.

This paper proposes RS GV , a model for LCP in
the context of the SemEval-2021 task 1 (Shardlow
et al., 2021a). RS GV uses hand-crafted features
relative to their WordNet senses, Flair embeddings
and a neural regressor in a cross-domain and within-
domain setting.

2 Related Work

Lexical complexity prediction is a new sub-task of
lexical text simplification. The aim is to predict the
complexity of a single word or a multiword expres-
sion on a scale of 0 to 1. The most similar task is
CWI. In contrast to LCP, CWI aims at binary classi-
fication that determines whether a word is complex
or not. As LCP has been mentioned for the first
time in the context of this shared task (Shardlow
et al., 2020, 2021a,b), no other related work exists
yet. Hence, we outline the state of the art in CWI.

SemEval-2016 Task 11: CWI Paetzold and
Specia (2016) collated 9200 sentences from the
CW Corpus (Shardlow, 2013), the LexMTurk Cor-
pus (Horn et al., 2014), and the Simple Wikipedia
corpus (Kauchak, 2013). All these corpora were
based on the Simple English Wikipedia (SEW).
CWI was treated as a binary classification task,
wherein 400 non-native speakers annotated con-
tent words in English text. It was observed from
the annotations that complex words were shorter,
less ambiguous and had a low occurrence in SEW.
F-score and G-score were used as the evaluation
metrics. The features incorporated by the submit-
ted systems can be seen in Figure 1.

It is shown that the word frequency, lexical, se-
mantic and morphological features play a dominant
role in CWI. Besides these, n-gram features were
also experimented with by a few systems. Word
embeddings were not used extensively.
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CWI Shared Task 2018 Another shared task
on complex word identification was organized in
2018 (Yimam et al., 2018). Yimam et al. (2018)
collected data from three sources, i.e., profession-
ally written news, WikiNews and Wikipedia, and
in four languages, i.e., English, German, French,
and Spanish. The shared task was composed of
two sub-tasks. Sub-task 1 approached the problem
as a binary classification problem and sub-task 2
treated it as a probabilistic classification problem,
wherein the score between 0 and 1 indicated the
proportion of annotators who considered a word
as complex. Native as well as non-native read-
ers annotated the dataset created by Yimam et al.
(2017). A word was deemed to be complex if at
least one out of twenty annotators labeled it as
complex. Based on annotations, it was observed
that the systems might perform better when trained
on domain-specific data. It was also found that
traditional feature engineering-based approaches
performed better than neural network and word
embedding based approaches. The features incor-
porated by the submitted systems of 11 teams can
be seen in Figure 1.

Figure 1: Features incorporated by the systems sub-
mitted to CWI Shared Task 2016 (Paetzold and Specia,
2016) and 2018 (Yimam et al., 2018).

The graph reinstates the fact that frequencies,
lexical, semantic and morphological features play
a key role in CWI. However, it was observed that
as compared to 2016, in 2018, word embeddings
were more commonly used.

3 Experimental Setup

3.1 Data

The corpus (Shardlow et al., 2020, 2021b) contains
9,476 annotated instances in three new CWI/LCP
domains, i.e., bible, political and biomedical texts.
For every instance, one target word, its target com-
plexity value and its containing sentence are given.

The complexity value is based on crowd-sourced
human ratings of at least 4 and at most 20 persons
with residence in the UK, USA, or Australia. Each
instance was rated on a 5-point Likert scale from
1 (very easy) to 5 (very difficult). Afterwards, the
ratings were averaged and normalized on a contin-
uous scale between 0 and 1, where 0 is easy and 1
is complex.

Each target word occurs in multiple instances
and may capture different senses so that each word
can be assigned to different complexity values in
different instances. For example, vision occurs in
all sub-domains with different meaning, e.g., ability
to see, supernatural experience, and foresight.

Following the corpus description (Shardlow
et al., 2020), a target word should only occur in
a different sentence but not in the same sentence
twice. Unfortunately, in our corpus analysis, we
found a few doubled instances but with varying
complexity values. For example, body is rated
within in the same sentence in the biomedical part
of the set with complexity values of 0.05 and 0.32
(see Appendix C, Table 9). This variation under-
lines that LCP is a subjective task, and, hence, a
difficult NLP task (see section 5.3).

More details regarding the data, including the
data split in training, trial, and test can be found in
the shared task paper (Shardlow et al., 2021a).

As a preprocessing step we tokenized the sen-
tences and annotated the tokens with their lemma,
part-of-speech, and morphological information us-
ing spaCy (Honnibal and Montani, 2017). This
linguistic information is the basis of our features.

3.2 Evaluation

The lexical complexity prediction is evaluated, fol-
lowing the shared task instructions (Shardlow et al.,
2021a), with e.g., Pearson’s correlation (r, mainly
reported here) and Mean Absolute Error (MAE).

3.3 Baselines

We use the baseline results reported by the or-
ganizers1 as comparative results. They use lin-
ear regression models with the following features,
complexity-average, word length, log word fre-
quency from SUBTLEX and log word frequency
combined with word length.

1https://competitions.codalab.
org/competitions/27420#learn_the_
details-evaluation
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4 System Description

Our system’s main characteristics are a combina-
tion of hand-crafted features, contextualized char-
acter embeddings (see subsection 4.1), a sense rel-
ative normalization (see subsection 4.2), and a neu-
ral network for regression (see subsection 4.4).

4.1 Features

Based on the survey of features previously used
for complexity estimation of words (see section 2),
we decided to combine hand-crafted features and
contextualized embeddings. A list of all language
resources used for feature generation is provided
in Appendix B (see Table 7).

4.1.1 Word and Character Embeddings
Similar as proposed in Gooding and Kochmar
(2019); Hartmann and dos Santos (2018), and
De Hertog and Tack (2018) we use word
and character embeddings. We compare pre-
trained non-contextualized word embeddings, i.e.,
GloVe (Pennington et al., 2014), pre-trained con-
textualized word embeddings, i.e., ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019),
with pre-trained contextualized character embed-
dings, i.e., stacked Flair (Akbik et al., 2018,
2019a) –a combination of GloVe and Flair– and
PooledFlair (Akbik et al., 2019b).

We suggest that the contextualized embeddings
perform better on LCP as the context of the target
word and the meaning of the sentence are important
for words’ complexity. To the best of our knowl-
edge contextualized character embeddings have not
been used for CWI or LCP before.

The embedddings are extracted using
FLAIR (Akbik et al., 2019a). Details regarding the
settings of the word and character embeddings are
provided in Appendix B (see Table 8).

4.1.2 Hand-crafted Features
An overview of all hand-crafted features used is
visualized in Table 1.

Readability Assessment Features. We use the
sentence’s readability as a feature because we as-
sume that a token would be perceived as more com-
plex if the entire sentence is complex. We im-
plemented the readability using readability scores
which are mainly applicable on texts such as Kin-
caid et al. (1975), Gunning (1952), Coleman and
Liau (1975), Dale and Chall (1948) and Senter and
Smith (1967) using textstat (Bansal and Aggarwal,

category feature
flesch kincaid grade
gunning fog
coleman liau index
dale chall readability score
automated readability index

Readability
Assessment

difficult words
*frequency
*word length
*number consonants
*number vowels

Lexical

*number syllables

WordNet
*number hypernyms
*number hyponyms
*number senses

Lexicon in wordlists
named entityOther
word position

category feature
proper noun
singular
plural
famsize
HAL frequency
number morphems
number prefixes
number roots
number suffixes
suffix length

Morphological

prefix length

Psycholinguistic

*familiarity
*concreteness
*imagery
*m.fullness colerado
*m.fullness pavio
*age of acquisition

Table 1: List of all used features sorted by category. An
asterisk (*) indicates whether the feature is normalized
relative to its senses or not.

2014). We do not consider readability scores that
are applicable on sentences as we could not repro-
duce certain sentence-level readability methods.

Lexical Features. Word length, word frequency
and number of syllables are included in the set
of lexical features following the methodology ex-
plained in Shardlow et al. (2020). The word fre-
quency values are obtained from Sharoff (2006)
and the GoogleWeb1T resource (Brants, Thorsten
and Franz, Alex, 2006). Besides these, the number
of consonants and vowels are also calculated.

WordNet Features. Paetzold and Specia (2016)
use the number of senses, synonyms, hypernyms
and hyponyms among other features to identify
complex words. In our study, the number of hyper-
nyms, hyponyms and senses are retrieved from the
English WordNet (Fellbaum, 1998).

Psycholinguistic Features. Similarly as pro-
posed in Davoodi and Kosseim (2016), we gen-
erate psycholinguistic features, e.g., word familiar-
ity and age of acquisition, using the Medical Re-
search Council (MRC) Psycholinguistic Database
version 2.0 (Wilson, 1988).

Morphological Features. As seen in the survey
of CWI shared task, morphological features are
often used for this task. Hence, we also use a few
morphological features derived by the morphologi-
cal database MorphoLex-EN (Sánchez-Gutiérrez
et al., 2018), e.g., number of prefixes, morphemes,
and suffixes. We assume the more morphological
rich, the more complicated the word.

Lexicon-based Features. As, for example, pro-
posed in AbuRa’ed and Saggion (2018), and Wani
et al. (2018), we check if the target word is con-
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tained in the Oxford 3000 word list (Dictionaries,
2021) with commonly used words. We assume the
more common a word is, the simpler it would be.

Other Features. Since it is expected that the cor-
pus contains a lot of named entities, such as person
names in the bible subcorpus, we check if a target
word is a named entity, as also suggested in Good-
ing and Kochmar (2018).
The last feature is the position of the target word
in the sentence. If a target word occurs more than
once in a sentence, we consider the word’s last
occurrence. In contrast to AbuRa’ed and Saggion
(2018), who normalize the word position by the
sentence length, we use the absolute word position
because we normalize all features afterwards.

4.2 Normalization

The hand-crafted features described above all range
on different scales, hence, normalizing is required.
The normalization is performed as follows: I.) the
synsets of the target word are identified, II.) the
values of features for every word in the synset are
calculated, III.) the values are normalized using
min-max normalization. This is being done to com-
pare words that are related to each other, rather
than comparing, for instance, frequencies of unre-
lated words (glee and joyous as opposed to glee and
table). In this manner, we are normalizing all the
values within a range of 0-1, but by comparing each
word with a related word in the synset in which it is
present. For words that appear in multiple synsets,
we take an average of the normalized values.

As not all features could be normalized relative
to their sense (see Table 1), e.g., readability fea-
tures, we normalized them using scikit-learn’s Min-
MaxScaler (Pedregosa et al., 2011).

4.3 Feature Sets

We create different feature sets considering the nor-
malizing strategies in combination with all charac-
ter and word embeddings. For the hand-crafted fea-
tures, we either used the 14 sense relative
features, all 34 minmax normalized features, or
the 14 sense relative features combined with the
missing 20 features minmax normalized (both).
All feature sets are listed in Table 2.

4.4 Model

RS GV’s structure is a more simple version of the
structure proposed in De Hertog and Tack (2018),
containing linear layers instead of convolutional

layers. Our model is a simple feed-forward neural
network with two input layers –one for the hand-
crafted features and one for the embedding features–
, both followed by a linear hidden layer. Both
feature layers are concatenated in another hidden
linear layer. It is finally followed by a linear output
layer which is activated using the rectified linear
unit function (ReLU). We also use stochastic gradi-
ent descent (SGD) optimization function. L1Loss
as implemented in scikit-learn (Pedregosa et al.,
2011) or another mean absolute error loss function
seems best for our purpose of predicting contin-
uous labels in a regression task. Following easy
stopping, we chose 250 epochs for our model. All
hyperparameters with which our model performs
best are listed in Appendix A (see Table 5).

RS GV can be trained either across all domains at
once (cross-domain) or on each domain separately
(within-domain).

4.5 Implementation

The system is implemented in Python 3.8 and Py-
Torch 1.6 (Paszke et al., 2019) using the packages
listed in Appendix B (see Table 6). The code
of the system is available in our GitHub reposi-
tory: https://github.com/gayatrivenugopal/

SharedTask-LPC2021.

5 Results

5.1 Ablation Tests / Error Analysis

In this section, we report on different approaches
made during developing RS GV . We compare the
results on the trial data using the different feature
sets, and a within and a cross domain approach.
In the following, we report the average of Pearson
correlation on 10 system runs.

5.1.1 Feature Sets
The system’s performance considering all different
feature sets is summarized in Table 2.

Embed. HCF r SD
GloVe sense rel. 0.7654 0.0123
GloVe minmax 0.7721 0.0114
GloVe both 0.7689 0.0073
ELMo sense rel. 0.7648 0.0103
ELMo minmax 0.7667 0.0119
ELMo both 0.7752 0.0118
BERT sense rel. 0.7204 0.0085
BERT minmax 0.7260 0.0088
BERT both 0.7178 0.0134

Embed. HCF r SD
Flair sense rel. 0.8002 0.0056
Flair minmax 0.8007 0.0039
Flair both 0.8027 0.0051
PooledFlair sense rel. 0.7331 0.0050
PooledFlair minmax 0.7685 0.0068
PooledFlair both 0.7537 0.0051

Table 2: Results of all feature sets reporting Pearson
correlation r (average of 10 runs) on the trial data set.
The standard deviation is provided in the last column.
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Hand-crafted Feature Sets. Considering all em-
bedding feature sets (see Table 2), RS GV performs
often best and with a comparative low standard
deviation (see Table 2) with the hand-crafted fea-
ture set both (e.g., rflair=0.8027, ±0.0051) com-
pared to sense relative (e.g., rflair=0.8002,
±0.0056) and minmax (e.g., rflair=0.8007,
±0.0039). Hence, in the following, we report the
results only on the hand-crafted feature set both.

Embedding Feature Sets. A comparison be-
tween the character embeddings and the word em-
beddings (see Table 2) shows that PooledFlair
(r=0.7537, ±0.0051) could outperform BERT
(r=0.7178, ±0.0134) but ELMo could also out-
perform PooledFlair (r=0.7752, ±0.0118).
Flair (r=0.8027, ±0.0051) could outperform all
other embedding feature sets.

Surprisingly, RS GV with the non-contextualized
embeddings feature set (GloVe, r=0.7689,
±0.0073) could outperform all systems with con-
textualized embeddings except Flair (r=0.8027,
±0.0051) and ELMo (r=0.7752, ±0.0118). It
seems that the impact of the contextualization of
the embeddings is not as high as expected.

As a compromise of contextualized vs non-
contextualized and character vs word embeddings,
we use stacked Flair embeddings. They com-
bine the forward and backward versions of Flair
contextualized character embeddings with GloVe
non-contextualized word embeddings.

5.1.2 Cross-domain vs. within-domain
In contrast to the insight of Yimam et al. (2018),
RS GV performs on average better using the cross-
domain approach (r=0.8027, ±0.0051) than the
within-domain approach (r=0.7823, ±0.0235).
The standard deviation of the within-domain ap-
proach implies that the model is not as robust as the
cross-domain approach. Roughly 3000 instances
per domain might be too less to train a robust LCP
model with a neural network.

5.1.3 Deep Learning vs. Machine Learning
We compare the results of our deep learning ap-
proach of RS GV with a machine learning regres-
sion, i.e., linear regression of scikit-learn. As a
result, the neural network and Flair (r=0.8027,
±0.0051) significantly improve LCP compared to
the machine learning regression (r=0.6945) using
only hand-crafted features. Hence, we can confirm
the results of the CWI shared task 2018, character
embeddings and neural networks do improve LCP.

5.2 Submitted Results

Following the previously described ablation tests,
we chose to submit the results of the cross-domain
approach and the within-domain approach. Both
use a deep learning regressor and stacked Flair
embeddings in combination with the hand-crafted
feature set both.This section presents the official
results of our system RS GV on the test set at Se-
mEval 2021 Task 1 sub-task 1 (see also Table 3).

With a Pearson correlation coefficient of
r=0.7478 our system with the within-domain out-
performs the cross-domain approach on the test
data (r=0.7316). Officially, RS GV ranks on place
34 of 54. The best system proposed by the team
JUST BLUE achieved r=0.7886.

Comparing our submitted results with the re-
sults on an average of 10 runs (see Table 3), the
cross-domain approach can outperform the within-
domain approach on the test and trial data.

Overall, both approaches achieve better results
than each of the baselines.

Setting or Team Version trial r test r
within-domain submission 0.8156 0.7478
cross-domain submission 0.7978 0.7316
within-domain average 0.7823 0.7287
cross-domain average 0.8027 0.7408
Complexity-average baseline -
Length baseline 0.1589
Log Frequency baseline 0.5287
Log Frequency
& Length

baseline 0.5376

JUST BLUE () best team 0.8340 0.7886

Table 3: Results using the trial (3rd) and test dataset
(4th column) using Pearson correlation r for evaluation.
The first block contains our submitted and averaged re-
sults of 10 runs using Flair and both. The second
block reports the results of the baselines and the third
block the results of the best performing system.

5.3 Error Analysis

The submitted results reveal that RS GV cannot
stick with the shared task’s best performing sys-
tems. This section presents insights regarding the
problems and strengths of RS GV on the test data.

Domain-specific Results. The subcorpora differ
regarding their lexical complexity: The biomed
subcorpus has the highest average of lexical com-
plexity in the single word dataset (0.325) and the eu-
roparl subset the lowest average (0.286). When we
train and predict the lexical complexity per domain,
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we can observe the same ranking of the complexity
prediction per domain as in Shardlow et al. (2020):
The lexical complexity of the europarl domain is
most difficult to predict for RS GV , whereas the
biomedical subcorpus is most easy (see Table 4).

Domain Feature set r (n=10) SD
all Flair + both 0.7823 0.0235
bible Flair + both 0.7177 0.0182
biomed Flair + both 0.8585 0.0042
europarl Flair + both 0.7444 0.0089

Table 4: Results of within-domain approach and results
per domain using the trial dataset for evaluation. The
Pearson correlation r is an average of 10 system runs.
The standard deviation is provided in the last column.

High vs. Low Complexity. It seems that our sys-
tem can predict complex words better than easy
words. However, when splitting the test dataset by
complexity value and not by domain, RS GV per-
forms poorly on very complex words (complexity
value > 0.666, r=0.0125, ±=0.0542, n=12), which
might be again due to too less training samples
(n=105) for the neural network.

Furthermore, the system performs poorly for
very easy words (complexity value <0.2, r=0.0873,
±=0.0272, n=188) although roughly 20% of the
training samples (n=1600) are in this complexity
area. We have not found a reason for it yet.

Homonym-specific Results. This SemEval task
aims at predicting word complexity of tokens in dif-
ferent context including different meanings. Look-
ing more closely on homonyms, on the one hand,
different complexity values are assigned to differ-
ent meanings of a homonym, e.g., vision, but on the
other hand, similar complexity values are assigned
to a homonym, e.g., resolution. Hence, there is no
clear interpretation of how to predict their complex-
ity. This problem is reflected in RS GV , our system
predicts only slightly different complexity values
per homonyms. It seems, that RS GV can somehow
differentiate the different meaning of the words but
overall it differentiate not good enough to perform
well in their lexical complexity prediction.

The examples also show the importance of the
multi-word LCP task, hence ”account” is part of
light verb constructions as ”to give account” and
”to take into account”.

Context-specific Results. A few samples con-
tain the same token in the (nearly) same sentence,
but the complexity values of them are varying (see
Appendix C, Table 9). Removing these 6 out of
overall 917 samples of the test data, the system out-
put already improve from 0.7316 to 0.7334. This
underlines that LCP is a subjective task and, hence,
difficult to predict for machines.

Linearity. We tested the data for linearity in or-
der to justify the usage of linear regression. We
could not find any linearity between the individual
features and the complexity value. The missing
linearity might be a reason why RS GV could not
keep with other systems of the shared task.

6 Discussion and Conclusion

We described our model named RS GV which was
submitted to SemEval Task 2021: Task 1 regarding
lexical complexity prediction. We propose a neural
network with a combination of hand-crafted and
word/character embeddings to approach the task.
Our analysis shows that normalization of hand-
crafted features using WordNet senses achieves
better results than using only a minmax normal-
ization. Furthermore, we figured out that RS GV

predicts lexical complexity best using a combina-
tion of non-contextualized word embeddings and
contextualized character embeddings.

In contrast to other shared tasks results, our
cross-domain approach achieves better results than
the domain-specific approach. A domain-specific
approach may need more data to perform reliably.

Furthermore, our neural regressor seems prob-
lematic, since it shows some variance in the results
on average and the current dataset might be too
small for regression with neural networks.

7 Future Work

In future works, we plan to improve the charac-
ter and word embeddings. We could fine-tune the
embeddings on our data or use domain-specific
pre-trained embeddings, which fits the datasets’
domains, e.g., BioFlair (Sharma and Jr, 2019).

Furthermore, we could calculate more hand-
crafted features or edit the current ones. For ex-
ample, the implementation of sentence readability
formulas seems more promising than the misuse of
text readability formulas on sentences.

The current neural network contains only a few
linear layers, an extension using, e.g., convolu-
tional layers for feature selection seems promising.
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A Hyperparameter

Hyperparameter Final
Value

Fine-tuning Values

classifier Neural Lin.
Regession

sklearn LinearSVR,
sklearn LinearRegression,
Neural Lin. Regression

learning rate 0.075 0.01, 0.05, 0.075, 0.1, 0.2
epochs 250 100, 250, 500
# input layer 2 1, 2
# hidden layer 3 1, 2, 3
hidden size (HCF) 128 128, 256, 512
hidden size (EM) 256 256, 512, 1024
hidden size (concat) 128 128, 256, 512

criterion L1Loss
L1Loss, MSELoss,
SmoothL1Loss

optimizer SGD SGD, ADAM
dropout - 0.1, 0.05, 0.01

Table 5: Hyperparameter during fine tuning and the fi-
nal chosen hyperparameter of the proposed system.

B Resources

B.1 Python Packages

Package Usage
pandas Data Import
xlrd Data Import
spacy Preprocessing
stanza Preprocessing
nltk WordNet Feature
syllables Syllable Feature
textstat Readability Feature
Flair Embedding Feature
torch Model
scikit-learn Evaluation

Package Usage
torch Regression
scikit-learn Regression
interpret Regression

numpy
Ablation Study &
Error Analysis

seaborn Data Visualization
yellowbrick Data Visualization
visdom Data Visualization

Table 6: Python packages used for the implementation
of the proposed system.
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B.2 Language Resources
name usage type access reference
CompLex data corpus https://github.com/MMU-TDMLab/CompLex Shardlow et al. (2020, 2021b)
Textstat readability features python package https://pypi.org/project/textstat/ Bansal and Aggarwal (2014)
internet-en-forms frequency feature word list http://corpus.leeds.ac.uk/list.html#frqc Sharoff (2006)
GoogleWeb1T,
unigram freq.csv frequency feature word list https://www.kaggle.com/rtatman/

english-word-frequency

Tatman (2017)

GoogleWeb1T,
count 1w.txt

frequency feature word list https://norvig.com/ngrams/ Segaran and Hammerbacher (2009)

NLTK lexical feature NLP library https://www.nltk.org/ Bird et al. (2009)
spaCy lexical feature NLP library https://github.com/explosion/spaCy Honnibal and Montani (2017)
stanza lexical feature NLP library https://stanfordnlp.github.io/stanza/ Qi et al. (2020)
syllapy lexical feature python package https://github.com/mholtzscher/syllapy

syllable lexical feature python package https://github.com/prosegrinder/

python-syllables

WordNet WordNet feature database https://www.nltk.org/api/nltk.corpus.reader.

html?highlight=wordnet#module-nltk.corpus.

reader.wordnet

Fellbaum (1998)

Oxford 3000 lexicon feature word list https://github.com/gokhanyavas/

Oxford-3000-Word-List/blob/master/Oxford%

203000%20Word%20List%20No%20Spaces.txt

Dictionaries (2021)

MorphoLex-EN morphological feature database https://github.com/hugomailhot/MorphoLex-en Sánchez-Gutiérrez et al. (2018)
MRC Psycholing.
Database

psycholinguistic feature database https://github.com/samzhang111/

mrc-psycholinguistics/raw/master/mrc2.dct

Wilson (1988)

FLAIR embedding feature NLP framework https://github.com/flairNLP/flair Akbik et al. (2019a)
GloVe word embedding feature pretrained embeddings http://nlp.stanford.edu/data/glove.6B.zip Pennington et al. (2014)
FLAIR character embedding feature pretrained embeddings https://github.com/flairNLP/flair Akbik et al. (2018, 2019a)
PooledFlair character embedding feature pretrained embeddings https://github.com/flairNLP/flair Akbik et al. (2019b)
BERT word embedding feature pretrained embeddings https://github.com/google-research/bert Devlin et al. (2019)
ELMo word embedding feature pretrained embeddings https://allennlp.org/elmo Peters et al. (2018)

Table 7: All used language resources listed with usage, access and reference.

B.3 Word and Character Embeddings
embedding name type context specification domain corpora dimensions
Flair character x Mix-forward, mix-

backward, glove
web, wikipedia,
subtitles

1 Billion Word Benchmark 4196

PooledFlair character x Mix-forward web, wikipedia,
subtitles

- 4096

BERT word x bert-base-uncased Fiction, news,
wikipedia

BooksCorpus, Wikipedia, 1
Billion Word Benchmark

3072

ELMO word x original news 1 Billion Word Benchmark 3072
GloVe word glove.6B.300d wikipedia, news Wikipedia 2014, Gigaword 5 300

Table 8: Settings of the word and character embeddings.

C Detailed Results
C.1 Context-specific Results.

ID Sentence Token Complexity Predicted
39HYCOOPKOL434K1UCPA8CBZRO4DMM Arguably, since the body pools and plasma sitosterol

levels in the knockout mice are so considerably elevated,
perhaps the biliary sitosterol levels could be considered
to be inappropriately low.

body 0.0499 0.2049

3ZZAYRN1I6RZKW1ATI425KIQPA7TO0 Arguably, since the body pools and plasma sitosterol
levels in the knockout mice are so considerably elevated,
perhaps the biliary sitosterol levels could be considered
to be inappropriately low.

body 0.3173 0.2049

3KWGG5KP6J2UYCENUGUZO6TH6QDCMA Fishing opportunities and financial contribution pro-
vided for by the EU-Seychelles Fisheries Partnership
Agreement (

Fisheries 0.3088 0.3387

341H3G5YF0EA3RIQXPR917NPC4EZ0Z Fishing opportunities and financial contribution pro-
vided for in the EU-São Tomé and Prı́ncipe Fisheries
Partnership Agreement (

Fisheries 0.1875 0.3405

3LCXHSGDLT6CT5B6A4WGQ3SQJNDSES Therefore thus says Yahweh of Armies concerning the
prophets: Behold, I will feed them with wormwood, and
make them drink the water of gall; for from the prophets
of Jerusalem is ungodliness gone forth into all the land.

wormwood 0.7321 0.4117

3DWNFENNE3V120VNY4BPPGPCAHX4JD therefore thus says Yahweh of Armies, the God of Is-
rael, Behold, I will feed them, even this people, with
wormwood, and give them water of gall to drink.

wormwood 0.4843 0.4170

Table 9: Samples of the test set with the same token in the same sentence but different complexity values. The last
column contains the predicted values of RS GV .
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Abstract

In this paper, we present three supervised sys-
tems for English lexical complexity predic-
tion of single and multiword expressions for
SemEval-2021 Task 1. We explore the use of
statistical baseline features, masked language
models, and character-level encoders to pre-
dict the complexity of a target token in con-
text. Our best system combines information
from these three sources. The results indicate
that information from masked language mod-
els and character-level encoders can be com-
bined to improve lexical complexity predic-
tion.

1 Introduction

SemEval 2021 Task 1 (Shardlow et al., 2021) fo-
cuses on predicting the complexity of a target token
in an English sentence on a scale from 0 (not very
complex) to 1 (very complex). For example, the
token land in the example below is judged to have
a low complexity of 0.19.

1. Our land will yield its increase.

On the other hand, the token doxycycline in the
following example is judged to have a relatively
higher complexity of 0.75.1

2. The reason these two lines were unresponsive
to doxycycline is unknown.

The dataset for this task was originally proposed in
Shardlow et al. (2020), and includes sentences from
three sources: a translated bible, European Parlia-
ment proceedings, and a biomedical corpus. This
shared task contains two sub-tasks with the first
focusing on lexical complexity for single words,

1These example sentences and complexity scores are taken
from the dataset provided for the shared task.

which will be referred to as SINGLE, and the sec-
ond focusing on complexity of multiword expres-
sions, which will be referred to as MULTI.

In this paper, we explore the use of statistical
baseline features, masked language models, and
character-level encoders to predict the complexity
of a target token in context. We first consider these
approaches individually and then consider super-
vised methods for combining them. We evaluate
our models with Pearson correlation (R), Spear-
man correlation (Rho), mean absolute error (MAE),
mean square error (MSE), and R-squared (R2). We
apply all our models to both sub-tasks and find that
we achieve our best results with a model that com-
bines all three sources of information — baseline
features, masked language modeling, and character-
level encoding. Specifically, we achieve our best
results with respect to Pearson correlation — the
evaluation measure used for the official shared task
system ranking — using a model that combines
complexity predictions from two approaches, one
based on a character-level encoder, and the other
based on a masked language model, which further
incorporates the baseline features, using support
vector regression. Although we achieve our best
results using this approach on both SINGLE and
MULTI with respect to Pearson correlation, we note
substantial variation in performance with respect
to the other evaluation metrics on SINGLE. This
suggests that future work could further explore the
variation in performance of this model on single
and multiword expressions

2 Model components

In this section, we describe three approaches to
lexical complexity prediction. In Section 3 we then
describe how these approaches are combined into
systems that we submitted as official runs to the
shared task.
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2.1 Baseline features

We extract a set of seven statistical baseline fea-
tures. These features include the length of the tar-
get token, the frequency of the token in SubtlexUS
(Brysbaert and New, 2009), the frequency of the
token in SubtlexUK (van Heuven et al., 2014), a
binary feature indicating whether the token is an
MWE, and a binary feature for each text type the
instances were taken from (i.e., biomedical text,
European Parliament proceedings, and the bible)
indicating whether the instance is from that corpus.
For MWEs, the frequency features are calculated
as the average of the frequencies of the component
words in the MWE. In the case that frequency in-
formation is not available for a word in SubtlexUS
or SubtlexUK, the frequency of that word is set to
the average frequency for words in the dataset for
which frequency information is available. These
features are combined with the approach described
in Section 2.3, and the systems presented in Section
3.

2.2 Character-level encoder

This approach is based on a character-level encoder,
which has three parts. The first part is a pre-trained
character-level language model which gets a sen-
tence containing a target expression as its input and
its last hidden state is used as an embedding repre-
senting the input sentence. This language model
uses a bi-directional GRU with a hidden layer size
of 256. It is trained on the sentences in the trial and
training data provided for the shared task.

The second part is a similar pre-trained GRU bi-
directional character-level language model, which
receives the target word as its input and the first
hidden state is initialized with the embedding of
the input sentence. The last hidden state is then
passed to the systems described in Section 3 for
complexity prediction.

In this approach, our hypothesis is that the hid-
den state of the first language model provides a
representation for the input sentence, and the lan-
guage model can encode the complexity of the tar-
get word by having access to a representation of the
sentence in which the target word appears. Figure
1 shows a diagram of this model.

2.3 Masked language model

In this approach, we recruit BERT (Devlin et al.,
2019) as a masked language model to estimate the
probability for the target token in context. Collins-

Thompson and Callan (2004) show that language
modeling can be used to predict reading difficulty,
and therefore we hypothesize that language mod-
eling can also be useful for predicting lexical com-
plexity.

We use the large uncased pretrained BERT
model, which consists of 16 heads and 24 layers
of 1024 hidden units each. Given a sentence, we
replace the target token with the special [MASK]
token and use the modified sentence as input to
BERT to obtain the probability of the target token.
BERT’s tokenizer can split tokens into multiple
pieces. The probability of a target token (single
word or multiword expression) is therefore calcu-
lated by averaging the probabilities of its parts.

The probability of the target is then used as a fea-
ture, alongside the baseline features from Section
2.1, in a support vector regressor (SVR) to predict
complexity. The SVR uses an rbf kernel, with a
kernel coefficient of 0.1, epsilon of 0.1, and a regu-
larization of 1/100 The output of the SVR is used
as a feature in the systems described in Section 3.
Figure 2 shows a diagram of this model.

3 Submitted Systems

In this section, we describe how we combine the
approaches discussed in Section 2 to form sys-
tems that were submitted as official runs to the
shared task. We selected these systems because
they achieved the best performance in a ten-fold
cross-validation experiment on the combined trial
and training data, in terms of Pearson correlation
(R), the evaluation metric used to rank systems in
the shared task. The performance of each submitted
system, a baseline in which we train logistic regres-
sion on the baseline features from Section 2.1, and
the masked language model approach described in
Section 2.3 (our best-performing model that was
not submitted to the shared task), are shown in Ta-
bles 1 and 2 for SINGLE and MULTI, respectively.

3.1 System 1

In this system, we concatenate the output of the
character-level encoder approach discussed in Sec-
tion 2.2 with the baseline features from Section
2.1. This representation is then used as input to
a feed-forward network to predict the complexity.
The feed-forward network has two fully connected
hidden layers with sizes 128 and 64, and ReLU
activation functions. We train this network using
Adam optimizer (Kingma and Ba, 2015) with a
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Figure 1: The character-level encoder model.

Figure 2: A diagram of the masked language model.

652



Model R Rho MAE MSE R2
Baseline 0.618 0.633 0.080 0.011 0.378
MLM 0.622 0.635 0.080 0.011 0.383
System1 0.698 0.673 0.074 0.009 0.476
System2 0.712 0.680 0.072 0.009 0.499
System3 0.705 0.678 0.073 0.009 0.482

Table 1: Results for each model for each evaluation
metric on single word expressions in the validation set.
MLM is the masked language model described in Sec-
tion 2.3. (For R, Rho, and R2 bigger numbers indi-
cate better performance, whereas for MSE and MAE,
smaller numbers are better.)

Model R Rho MAE MSE R2
Baseline 0.665 0.683 0.094 0.015 0.412
MLM 0.665 0.684 0.094 0.015 0.411
System1 0.675 0.686 0.092 0.014 0.440
System2 0.684 0.693 0.091 0.014 0.442
System3 0.673 0.684 0.091 0.014 0.432

Table 2: Results for each model for each evaluation
metric on multiword expressions in the validation set.

learning rate of 0.001 for 100 epochs. This system
is referred to as System1 from heron.

3.2 System 2
In this system, we concatenate the feature from
the masked language model approach described
in Section 2.3 with the output from the system
described in Section 3.1 to create a 2-dimensional
vector. This vector is then used as input to an SVR
to predict complexity.

We perform a grid search to tune the hyperpa-
rameters of the SVR via evaluating its performance
on the validation set. We achieve our best results
with an SVR using a polynomial kernel with a de-
gree of 3, a kernel coefficient of 1, a regularization
parameter of 100, a stopping tolerance of 1, and
a gamma value of 1/number of training instances.
We use these parameters for all further experiments
with this system, which we refer to System2.

3.3 System 3
In this system, similar to System1, we concatenate
the output of several approaches from Section 2,
and then pass this representation to a fully con-
nected network to predict the complexity. Here we
concatenate the baseline features with the output
of both the character-level encoder approach (Sec-
tion 2.2) and the masked language model approach
(Section 2.3). We use the same fully-connected net-

Model R Rho MAE MSE R2
Baseline 0.584 0.597 0.080 0.108 0.334
System 1 0.691 0.656 0.073 0.0094 0.418
System 2 0.695 0.654 0.072 0.0089 0.450
System 3 0.689 0.653 0.069 0.0086 0.471

Table 3: Results on SINGLE for each system and each
evaluation metric. The best result for each evaluation
metric is shown in boldface.

Model R Rho MAE MSE R2
Baseline 0.731 0.704 0.092 0.013 0.470
System1 0.741 0.735 0.0843 0.0116 0.519
System2 0.752 0.742 0.0802 0.0106 0.562
System3 0.736 0.730 0.0851 0.0116 0.521

Table 4: Results on MULTI for each system and each
evaluation metric. The best result for each evaluation
metric is shown in boldface.

work structure, and training settings, as for System1.
We refer to this approach as System3.

4 Results

In this section we present our results with respect
to the five evaluation metrics. We evaluate our
models on the single word sub-task (SINGLE) first
and then on the multiword expressions sub-task
(MULTI). Each system is trained on all training
instances from both SINGLE and MULTI.2 We in-
clude the performance of our baseline to show that
all submitted systems continue to outperform this
baseline model on the test data.

In Table 3, we show the performance of our sys-
tems on SINGLE. System2 achieves the best re-
sults with respect to R, which is the metric used to
rank submissions in the shared task. Interestingly,
however, this is the only metric for which System2

outperforms the other systems. System3 — which
like System2 incorporates information from both
the character-level encoder and masked language
model approaches — performs worst of these three
systems with respect to R, but achieves the best per-
formance amongst these systems for MSE, MAE,
and R2.

In Table 4, we show the performance of our mod-
els on MULTI. In contrast to the results on SINGLE,
these results show System2 consistently performs

2The training data for the approach described in Section
2.3 also includes instances from the provided trial data from
both SINGLE and MULTI.
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best for all evaluation metrics. The improvement
of System2 — which uses information from both
the character-level encoder and masked language
model approaches — over System1 in particular —
which does not incorporate information from the
masked language model — suggests that these two
sources of information can be combined to improve
lexical complexity prediction.

5 Conclusions

We evaluated three systems for lexical complex-
ity prediction of single and multiword expressions
for SemEval 2021 Task 1. These systems incorpo-
rated information from statistical baseline features,
a character-level encoder approach, and a masked
language model approach. We found that a system
that combined the complexity predictions of the
character-level encoder approach and the masked
language model approach, which further incorpo-
rates the statistical baseline features, using support
vector regression performed best amongst our sub-
mitted systems with respect to Pearson correlation
on both the single word and multiword expressions
sub-tasks. This approach further performed best of
our submitted systems with respect to all evalua-
tion metrics on the multiword expression sub-task,
although this was not the case for the single word
sub-task.

In future work, the relationship between the sub-
tasks, models, and evaluation metrics warrants fur-
ther exploration, including studying the effect that
the type of the target expression, i.e., single word
or multiword expression — has on the performance
of the models with respect to the various evaluation
metrics.
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Abstract 

In this paper we describe our participation 

in the Lexical Complexity Prediction 

(LCP) shared task of SemEval 2021, which 

involved predicting subjective ratings of 

complexity for English single words and 

multi-word expressions, presented in 

context. Our approach relies on a 

combination of distributional models, both 

context-dependent and context-

independent, together with behavioural 

norms and lexical resources. 

1 Introduction 

In our day-to-day life, outside the laboratory, we 

almost never come across single words or pairs of 

words, in isolation. Instead, such verbal stimuli are 

typically embedded within sentences or phrases, 

and our understanding of individual words and 

word pairs is influenced by their linguistic contexts 

(e.g., by disambiguating their intended meaning). 

Hoewever, almost all behavioural norms collected 

so far focus only on single words or word pairs 

(Johns, Jamieson, & Jones, 2020). 

Therefore, the Lexical Complexity Prediction 

(LCP) shared task (Shardlow, Evans, Paetzold, & 

Zampieri, 2021), hosted at SemEval 2021, 

constitutes a timely and valuable contribution to 

the study of context-dependent semantics. The task 

requires competitors to predict subjective ratings of 

complexity for words or pairs of words, presented 

within sentences. As mentioned by the organisers, 

being able to automatically estimate contextualised 

complexity ratings would have several practical 

applications, such as detecting and simplifying 

portions of text that might be particularly difficult 

                                                           
1 https://github.com/armandrotaru/TeamAndi-LCP  

to understand for second language learners, and 

people with low literacy levels (e.g., as a result of 

suffering from a reading impairment). 

The dataset for the competition is CompLex 2.0 

(Shardlow, Cooper, & Zampieri, 2020; Shardlow, 

Evans, & Zampieri, 2021), consisting of passages 

from the Bible, the proceedings of the European 

Parliament, and biomedical journal articles. The 

training data covers 7,662 single words (2,574 

bible, 2,512 europarl, and 2,576 biomed), and 

1,517 multi-word expressions (505 bible, 498 

europarl, and 514 biomed). The test data covers 

917 single words (283 bible, 345 europarl, and 289 

biomed), and 184 multi-word expressions (66 

bible, 65 europarl, and 53 biomed).   

In this paper we describe our submission to the 

competition, based on distributional models, both 

context-dependent and context-independent, as 

well as behavioural norms/lexical resources1. The 

best results are obtained by combining the three 

classes of predictors. However, the improvement in 

performance over using just context-independent 

models is small, and, in practice, might be 

compensated by their impressive vocabulary size 

and ease of use.  

2 General Description 

In order to predict word complexity in context, we 

combined information from three type of sources, 

namely behavioural norms/lexical resources, and 

distributional models. With respect to the latter, we 

included two distinct classes of models: 

• context-independent models, which 

output the same vector representation for a 

given word, regardless of the context in 

which the word is encountered; 
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• context-dependent models, which output a 

potentially different representations for a 

given word, as a function of the context in 

which the word is presented.  

Our approach was very similar to that employed 

in (Rotaru, 2020), for predicting ratings of 

concreteness in context.  

Firstly, we used behavioural norms collected for 

a wide variety of psycholinguistic factors, as well 

as lexical resources. More specifically, we focused 

on norms for concreteness (Brysbaert, Warriner, & 

Kuperman, 2014; Paetzold & Specia, 2016), 

imageability (Paetzold & Specia, 2016), semantic 

diversity (Hoffman, Lambon Ralph, & Rogers, 

2013), age of acquisition (Kuperman, Stadthagen-

Gonzalez, & Brysbaert, 2012; Paetzold & Specia, 

2016), familiarity (Paetzold & Specia, 2016), 

emotional dimensions (i.e., valence, arousal, and 

dominance; Mohammad, 2018), and sensorimotor 

dimensions (i.e., modality strengths for the tactile, 

auditory, olfactory, gustatory, visual, and 

interoceptive modalities; interaction strengths for 

the mouth/throat, hand/arm, foot/leg, head 

excluding mouth/throat, and torso effectors; 

Lynott, Connell, Brysbaert, Brand, & Carney, 

2019). We also included complexity ratings 

(Maddela & Xu, 2018), lexical decision response 

times and accuracies (Keuleers, Lacey, & 

Brysbaert, 2012), contextual diversity counts (Van 

Heuven, Mandera, Keuleers, & Brysbaert, 2014), 

frequency counts (Van Heuven et al., 2014; Lin et 

al. 2012), prevalence counts (Brysbaert, Mandera, 

McCormick, & Keuleers, 2019), and CEFR word 

lists (Council of Europe, 2001). Nearly all these 

measures are correlated with word complexity. 

Secondly, we employed context-independent 

distributional models, namely Skip-gram 

(Mikolov, Chen, Corrado, & Dean, 2013), GloVe 

(Pennington, Socher, & Manning, 2014), and 

ConceptNet NumberBatch (Speer, Chin, & Havasi, 

2017). Such models have been used in order to 

accurately predict a range of psycholinguistic 

variables (e.g., Hollis, Westbury, & Lefsrud, 2017; 

Utsumi, 2020), which suggests that they could be 

useful in accounting for complexity ratings. 

Thirdly, we employ context-dependent 

distributional models, namely BERT (Devlin, 

Chang, Lee, & Toutanova, 2019), RoBERTa (Liu 

et al., 2019), ELECTRA (Clark, Luong, Le, & 

Manning, 2020), ALBERT (Lan et al., 2020), and 

DeBERTa (He, Liu, Gao, & Chen, 2020). Given 

that such models achieve human-level 

performance in various linguistic tasks (e.g., those 

in the GLUE benchmark; Wang et al., 2018), and 

that they were designed to process rich contextual 

information, they could be a valuable tool for 

predicting ratings of complexity in context. 

3 System Description 

We tested three groups of predictors, both in 

isolation and combined. The first group was 

obtained from comprehensive datasets of 

subjective ratings (concreteness, age of 

acquisition, etc.), task performance measures (i.e., 

response times and accuracies in the lexical 

decision tasks), as well as frequency, contextual 

diversity, and prevalence counts, plus CEFR word 

lists (see the references from the beginning of the 

previous section). In order to extend the coverage 

of the subjective ratings, we did not use the original 

data, but instead relied on extrapolated ratings for 

more than 70,000 words. The extrapolation was 

based on the Skip-gram, GloVe, and ConceptNet 

NumberBatch models, using linear regression over 

the concatenated vector dimensions. For the 

(already extrapolated) ratings from (Paetzold & 

Specia, 2016), as well as for the frequency, 

contextual diversity, and prevalence counts, we 

employed only the normed values, as they already 

have very good coverage. We also used only the 

original lexical decision data, given that response 

times and accuracies are difficult to extrapolate, 

and did not try to extend the CEFR word lists, due 

to methodological difficulties. For the single word 

datasets, we employed all the previously 

mentioned factors, whereas for the multi-word 

expression datasets, we only employed our own 

extrapolated factors. 

The second group was generated from Skip-

gram, GloVe, and ConceptNet NumberBatch 

embeddings. The vocabulary of the models was 

that described in the discussion above. 

For the first two sources of information, and for 

each selected variable V (e.g., semantic diversity), 

we generated either four predictors, in the case of 

the single word datasets, or nine predictors, in the 

case of the multi-word expression datasets. The 

single word predictors consisted of V(w), V(c), 

V(w) * V(c), and abs(V(w) - V(c)), while the multi-

word expression predictors consisted of V(w1), 

V(w2), V(c), abs(V(w1) - V(c)), abs(V(w2) - V(c)), 

abs(V(w1) - V(w2)),  V(w1) * V(c), V(w2) * V(c), 

V(w1) * V(w2), where: 
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• V(w) denotes the value of V corresponding 

to the single word w (e.g., w = “sons”). If 

w is not present in our norms/models, we 

set V(w) to the average value of V, 

computed over the entire vocabulary; 

• V(w1) and V(w2) denote the values of V 

corresponding to the words w1 and w2 

(e.g., w1 = “skillful”, w2 = “workman”), 

that make up the multi-word expression w1 

w2 (i.e., w1 w2 = “skillful workman”). As 

before, if w1 and/or w2 are not present in 

our norms/models, we set V(w1) and/or 

V(w2) to the average value of V, computed 

over the entire vocabulary; 

• V(c) denotes the value of V corresponding 

to the context c in which the single word 

w, or multi-word expression w1 w2, are 

encountered (e.g., w = “sons”, c = “The 

____ of Perez: Hezron, and Hamul.“; or w1 

w2 = “skillful workman”, c = “He made it 

the work of a ____.”). Computing this 

value involves calculating the average 

V(c) = 
∑ 𝑉(𝑐𝑖)
𝑁
𝑖=1

𝑁
, where V(ci) is the value of 

V corresponding to the i-th context word, 

calculated as described previously, and N 

is the number of context words.  

These predictors allowed us to include both the 

individual contributions of the single word w, or 

the multi-word expression w1 w2, and the context c, 

as well as certain interactions between the former 

and the latter. 

The third group was derived from the BERT, 

RoBERTa, ELECTRA, ALBERT, and DeBERTa 

models. We used the standard (base) versions of 

each model (i.e., without task-specific fine-tuning), 

as described in the original papers, with the 

exception of ELECTRA, where we employed the 

small, base, and large versions of the model. The 

implementations of the models were all obtained 

from the Hugging Face repository (Wolf et al., 

2020). The predictors consisted only of the 

activations for the single word w, or the multi-word 

expression w1 w2, averaged over the last four 

hidden layers.  

To predict ratings of complexity in context, we 

employed ridge regression (lambda = 3000), for 

the single word dataset, and a combination of ridge 

regression (lambda = 1250) and gradient-boosted 

decision trees, for the multi-word expression 

dataset, after zero centering all the aforementioned 

predictors. 

4 Results and Discussion 

The results for English are shown Figure 1, for 

various sets of predictors and regularization 

strengths. For reasons of space, we only present the 

results for ridge regression, but note that similar 

patterns of performance are obtained for gradient-

boosted decision trees and other types of models, 

such as shallow neural networks. Results are 

averaged over 10 rounds of 10-fold cross-

validation, using only the training dataset.  

The results indicate that context-independent 

models (Fig. 1b) outperform behavioural norms 

(Fig. 1a), and context-dependent models (Fig. 1c-

f). A likely reason for the superiority of context-

independent models over context-dependent 

models is the fact that the former were trained on 

huge corpora (i.e., 100-840 billion tokens), while 

the latter were trained on considerably smaller 

corpora (i.e., 3-33 billion tokens). However, in 

spite of this significant training disadvantage, 

context-dependent models produce competitive 

levels of performance, a finding which can likely 

be attributed to several factors, such as the highly 

non-linear integration of contextual information, 

the use of self-attention mechanisms, and that of 

more sophisticated learning objectives.  

Combining the three classes of predictors 

produces a relatively small improvement in 

predictive performance, as compared to relying on 

any single class. This reflects a very high degree of 

redundancy between the complexity-related 

information present in the three types of predictors.  

Interestingly, even for the largest set of 

predictors, consisting of 13,400 variables per 1,517 

data points, the degree of regularization does not 

appear to matter much, indicating little overfitting. 

Finally, there is a small, but systematic 

difference in performance between single words 

and multi-word expressions, in favour of the latter, 

even though the training set for single word stimuli 

is roughly five times larger than that for multi-word 

stimuli. A potential explanation for this finding 

might be that the individual variability in meaning 

for multi-word expressions is smaller than that for 

single words, given that expressions should be 

more informative than single words, in virtue of 

their length (i.e., two words vs one word). 

Within the competition, our models ranked 4th  

(r = .78, ρ = .73, MAE = .064), in the single word 

sub-task, and 6th (r = .85, ρ = .84, MAE = .067), in 

the multi-word expression sub-task.  
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Figure 1. Pearson correlations between predicted and actual complexity ratings, for various groups of predictors 

and regularization strengths (i.e., values of lambda). For single words, in subfigures (a)-(e), min(lambda) = 100, 

while in subfigure (f), min(lambda) = 400. For multi-word expressions, in subfigures (a)-(e), min(lambda) = 50, 

while in subfigure (f), min(lambda) = 200. 
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5 Conclusions 

Our results suggest that several approaches can be 

quite successfully employed in order to predict 

ratings of complexity in context, for both single 

words and multi-word expressions. In terms of 

performance, the best predictors are those derived 

from context-independent models (e.g., Skip-

gram), but relatively good results can be obtained 

also by using context-dependent models (e.g., 

BERT) and behavioural norms (e.g., subjective 

ratings of familiarity). Moreover, given that their 

vocabulary covers a remarkable number of words 

(i.e., more than 500 thousand, for each of the Skip-

gram, GloVe, and ConceptNet NumberBatch 

models), and that they are very easy to use off-the- 

shelf, context-independent models represent a 

particularly promising approach to predicting 

ratings of complexity in context. 
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Abstract

Predicting the complexity level of a word or
a phrase is considered a challenging task. It
is even recognized as a crucial step in numer-
ous NLP applications, such as text rearrange-
ments and text simplification. Early research
treated the task as a binary classification task,
where the systems anticipated the existence of
a word’s complexity (complex versus uncom-
plicated). Other studies had been designed
to assess the level of word complexity using
regression models or multi-labeling classifica-
tion models. Deep learning models show a
significant improvement over machine learn-
ing models with the rise of transfer learning
and pre-trained language models. This paper
presents our approach that won the first rank
in the SemEval-task1 (sub stask1). We have
calculated the degree of word complexity from
0-1 within a text. We have been ranked first
place in the competition using the pre-trained
language models BERT and RoBERTa, with a
Pearson correlation score of 0.788.

keywords: Neuro-linguistic programming
(NLP), Lexical Complexity Prediction(LCP),
Deep Learning, RoBERTa, BERT.

1 Introduction

Lexical complexity plays a significant role in the
readability level and comprehension. The precise
anticipation of lexical complexity can help systems
direct the user to an acceptable simple text accu-
rately or modify the text to be more fluid (Broth-
ers and Traxler, 2016). Predicting the complexity
of words is a subjective and challenging problem,
while it is conjectural, too. Yet, mapping words
into their complexity is an essential task to under-
stand natural language. Numerous components can
influence the prediction of lexical complexity. Sev-
eral approaches were proposed to solve or mitigate
this type of study using Machine and Deep learn-

ing methods (Sengupta et al., 2020; Gooding and
Kochmar, 2019; Bahja, 2020).

This paper describes the JUST-BLUE team’s
model that participated in the SemEval 2021-task1,
Lexical Complexity Prediction (LCP) (Shardlow
et al., 2021). The task provides participants with an
augmented version of CompLex, a multi-domain
English dataset with sentences annotated using
a 5-point Likert scale (1-5) (from very easy to
very difficult) (Shardlow et al., 2020). The task
is to predict the complexity value of words in con-
text. It is worth mentioning that our model, JUST-
BLUE, has been ranked first in this task. We have
used the pre-trained language models, BERT and
RoBERTa Which have proven their effectiveness
in this area (Liu et al., 2019), along with the ensem-
bling method (weighted averaging) to achieve the
highest Pearson correlation score of 0.788.

The rest of this paper is organized as follows:
Section 2 sheds light on related work. Section 3 de-
scribes the methodology proposed in this research.
Section 4 discusses the experimentation setup and
evaluation results. Whereas Section 5 concludes
this research.

2 Related work

One of the most prominent challenges in the current
era is the prediction of lexical complexity. Predic-
tion of the word complexity in machine learning
can be binary; the word is complex or not com-
plex. It also can be a non-binary prediction, as
a probabilistic prediction with the measurement
of complexity within a particular scale (0.6 the
probability that the word is complex). SemEval
2016 introduced the first shared task of predict-
ing word complexity with a mission limited to the
word orders being complex or non-complex (binary
prediction) (Paetzold and Specia, 2016). Decision
Tree classifiers achieved the best results (Zampieri
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et al., 2017). It has been noted that word length is
a good indication of word complexity (De Hertog
and Tack, 2018).

The authors in (Shardlow, 2013) discussed the
importance of frequency and length of words. They
used the Keras deep learning library to predict
whether an English or Spanish word is complex or
not. They used character embedding, word length,
frequency count, word embedding, and psycho-
logical measures as features to predict complex
words and achieved 0.872 as F1-score. The au-
thors in (Yimam et al., 2018) worked on various
languages, such as English, Spanish, French and
German. They worked on two different methods
for predicting complex words. The first method
is to find if the word orders are either complex or
simple. The second is to find the probability that
the word is complex. The complex levels depended
on the average of the annotators’ answers. For ex-
ample, if the number of annotators who expected
the word to be complex is 6 out of 10, then the
probability is 0.6. A claim stated that this anno-
tating method is considered impractical since the
probability of 0.5 cannot be considered complex
or not complex. So the authors in (Shardlow et al.,
2020) suggested a Likert scale with 5-point. The
authors asserted that this method is more accurate
scale instead of calling the word complex and non-
complex. We can divide the word into being very
easy, easy, neutral, difficult, and very difficult. This
scale is beneficial to our work.

The deep learning pre-trained language models,
BERT and RoBERTa, are considered state-of-the-
art for NLP. Teams in the previous shared tasks
of SemEval 2020 had used these models to obtain
the best results for different NLP tasks (Al-Khdour
et al., 2020; Shatnawi et al., 2020; Jurkiewicz et al.,
2020). Our approach experimented with these mod-
els using different hyperparameters and weighted
averaging methods that lead to the best result in the
competition for predicting lexical complexity.

3 Methodology

This section describes our approach methodology
and goes as follows: First, we describe the task’s
dataset. Then, the preprocessing step. Finally, we
describe the JUST-BLUE approach to predict the
word’s complexity.

3.1 Data

The SemEval-task 1 competition has provided the
contestants with three files (trial, train, and test
data). The files contain several columns as follows:

• id: the identification number for each entry.

• corpus: the sources from which the words
were being collected. It was extracted from
three sources: the bible, biomedical, and The
European Parliament.

• sentence: the set of words for which complex-
ity needed to be measured.

• token: the single word in which complexity
needed to be measured.

• complexity: the degree of complexity of the
word, ranging from 0 to 1.

3.2 Pre-Processing Step

First, we cleaned the data and removed all single
and double quotations manually. This step helped
to separate some of the merged rows. Next, we
deleted any row where columns contain the NaN
value because it will not be effective in the training
process.

3.3 JUST-BLUE Architecture

We have used the pre-trained language models,
BERT and RoBERTa models. We have imported
the BERT model using BERT-sklearn library as it
includes SciBERT and BioBERT models for the
scientific and biomedical fields. We also have used
simple transformers; classification libraries to im-
port the RoBERTa model. As we mentioned earlier,
the goal of the task is to determine the complexity
of the word. Knowing that the word’s complex-
ity changes slightly based on the complexity of
the sentence, we have used both the token (word)
and the sentence to predict the word’s complexity.
We have fed BERT and RoBERTa models with the
’token,’ and the ’complexity’ label to be trained.
We have also inserted ’sentence’ and ’complexity’
columns to both models for training as a second
strategy. The results have been combined using
an ensembling voting method, Weighted Averag-
ing. Our experiments show that the 80:20 ratio for
weights can achieve the best results. The highest
voting rate is for the ”token” model (model 1) since
we need to calculate the degree of complexity for a
single word. On the other hand, the complexity of a
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Figure 1: JUST-BLUE workflow

word is affected by the complexity of the sentence
in which it is included. So, we gave a 20

The Simple Averaging method has been used
as the ensembling technique to merge BERT and
RoBERTa’s models’ results. Figure 1 illustrates the
methodology used.

For more clarification, suppose we have the word
’sea’ for which we want to calculate the complex-
ity. The ’sea’ word exists in this sentence ”and
they entered into the boat, and were going over the
sea to Capernaum.” First, we feed the word sea to
model1 using RoBERTa. We also feed the sentence
that contains the word sea to RoBERTa model2.
Then, we combine the two results obtained using
Weighted Averaging. Suppose that the RoBERTa
model1 result is 0.01 (the word sea has a 0.01 com-
plexity degree) and RoBERTa model2 is 0.13 ( the
sentence has a 0.13 complexity degree). The re-
sulted RoBERTa models is 0.01x80% + 0.13x20%,
which is equal to 0.034. We repeat these steps for
BERT’s models. If the BERT model has a result of
0.052, then the final step is to calculate the average
of the RoBERTa and BERT model. The complexity
is (0.034 + 0.052)/2, equal to 0.043, as shown in
Figure 2.

4 Results and Discussion

We used Python version 3.6 on the Colab environ-
ment to execute our codes. We have experimented

Figure 2: Example Description

with several models to determine which models
are suitable for this task. We have experimented
with BERT and RoBERTa pre-trained models. We
also examined SVM and Random Forest machine
learning models. Table 1 shows the results we have
obtained throughout our experiments.

The challenging step was to find the best weights
for the models that used tokens (single words) and
sentences to get the best result (Table2). As we
mentioned earlier, some words have a different
complexity degree, depending on their location in
the sentences. Therefore, it was necessary to insert
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Table 1: Results of different models

Models score
SVM 0.3472
Random Forest 0.4503
BERT 0.8199
RoBERTa 0.8268
BERT and RoBERTa 0.8190

Table 2: Different weights (tokens and sentences)

model score
Token % Sentence %
90 10 0.8258
80 20 0.8268
70 30 0.8252

each of the words and sentences for the training
to verify the best weight. Table 2 shows the best
weight, which is 80% for words and 20% for sen-
tences.

The next step was to explore BERT and
RoBERTa’s best hyperparameters, such as learning
rate, batch size, epochs, and max sequence length.
Table 3 shows the description of these hyperpa-
rameters, and Table 4 shows example results of
fine-tuning JUST-BLUE hyperparameters.

Finally, we thought of determining the effects
of the base size and large size models of BERT
and RoBERTa on the accuracy. It is shown by
our experiments that the large sizes decreased the
accuracy.

In the testing phase, we noticed that the words
(tokens) in the file were new. Therefore, we de-
cided to limit the number of arguments to avoid
overfitting. We just changed ”num-train-epochs
”=3 in BERT and RoBERTa’s model, but the other
arguments had the default values. We have used
three different models. The first was the BERT
model, the second was the RoBERTa model, and
the third was BERT and RoBERTa together as de-
scribed in the Methodology Section. Table 5 shows
the results we received from the different models
we used.

JUST-BLUE approach achieved the best result
using RoBERTa and BERT’s models with a Pear-
son correlation of 0.788 scores. We have also
achieved the least Mean Absolute Error(MAE) with
0.0609. Our model is ranked first the LCP-sub
task1 of a single word. The Spearman’s Rho (Rho)
and R-squared (R2) scores are 0.7369 and 0.6172,
respectively. The number of teams in the shared

task Lexical Complexity Prediction (LCP) was 54
teams. This shared task is considered a high level
of CWI 2016 and CWI 2018 with a larger number
of words from various sources.

5 Conclusion

Predicting the complexity of words is one of the
most prominent tasks that the NLP research com-
munity strives to solve. It is worth noting that in
2016 and 2018, two tasks were issued to deter-
mine whether the word was complex or not. Se-
mEval 2021 introduced task 1, Lexical Complexity
Prediction (LCP) that aims to predict the word’s
complexity from 0 to 1. This paper described the
top-ranked team’s model, JUST-BLUE. The JUST-
BLUE model obtained the highest Pearson Correla-
tion score of 0.788 using the pre-trained language
models BERT and RoBERTa. Our strategy depends
on the ensembling methods, Simple and Weighted
Averaging.
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Anaı̈s Tack, and Marcos Zampieri. 2018. A report
on the complex word identification shared task 2018.
arXiv preprint arXiv:1804.09132.

Marcos Zampieri, Shervin Malmasi, Gustavo Paetzold,
and Lucia Specia. 2017. Complex word identifica-
tion: Challenges in data annotation and system per-
formance. arXiv preprint arXiv:1710.04989.

666



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 667–677
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

BigGreen at SemEval-2021 Task 1:
Lexical Complexity Prediction with Assembly Models

Aadil Islam, Weicheng Ma, Soroush Vosoughi
Department of Computer Science

Dartmouth College
{aadil.islam.21,weicheng.ma.gr,soroush.vosoughi}@dartmouth.edu

Abstract

This paper describes a system submitted by
team BigGreen to LCP 2021 for predict-
ing the lexical complexity of English words
in a given context. We assemble a feature
engineering-based model with a deep neu-
ral network model founded on BERT. While
BERT itself performs competitively, our fea-
ture engineering-based model helps in extreme
cases, eg. separating instances of easy and
neutral difficulty. Our handcrafted features
comprise a breadth of lexical, semantic, syn-
tactic, and novel phonological measures. Vi-
sualizations of BERT attention maps offer in-
sight into potential features that Transformers
models may learn when fine-tuned for lexical
complexity prediction. Our ensembled predic-
tions score reasonably well for the single word
subtask, and we demonstrate how they can be
harnessed to perform well on the multi word
expression subtask too.

1 Introduction

Lexical simplification (LS) is the task of replacing
difficult words in text with simpler alternatives. It
is relevant in reading comprehension, where early
studies have shown infrequent words lead to more
time spent by a reader fixated on it, and that ambi-
guity in a word’s meaning adds to comprehension
time (Rayner and Duffy, 1986). Complex word
identification (CWI) is believed to be a fundamen-
tal step in the automation of lexical simplification
(Shardlow, 2014). Early techniques for conducting
CWI suffer from a lack of robustness, from simpli-
fying all words to then study its efficacy (Devlin,
1998), to applying thresholds on features like word
frequency (Zeng et al., 2005).

This year’s Lexical Complexity Prediction (LCP)
shared task (Shardlow et al., 2021) forgoes the treat-
ment of word difficulty as a binary classification
task (Paetzold and Specia, 2016a; Yimam et al.,

2018) and instead measures degree of complexity
on a continuous scale. This choice is intriguing as
it mitigates a dilemma with previous approaches
of having to treat words extremely close to a deci-
sion boundary (suppose a threshold deems a word’s
difficulty) identically to those that are far away, ie.
extremely easy or extremely difficult.

Teams are asked to submit predictions on un-
labeled test sets for two subtasks: predicting on
English single word and multi word expressions
(MWEs). For each subtask, BigGreen presents a
machine learning-based approach that fuses the pre-
dictions of a feature engineering-based regressor
with those of a feature learning-based deep neural
network model founded on BERT (Devlin et al.,
2018). Our code is made available on GitHub.1

2 Related Work

Previous studies have looked at estimating the
readability of a given text at the sentence-level.
Mc Laughlin (1969) regresses the number of poly-
syllabic words in a given lesson against the mean
score for students quizzed on said lesson, yielding
the SMOG Readability Formula. Dale and Chall
(1948) offer a list of 768 (later updated to 3,000)
words familiar to grade-school students in reading,
which they find correlates with passage difficulty.
An issue with traditional readability metrics seems
to be the loss of generality at the word-level.

Shardlow (2013) tries a brute force approach
where a simplification algorithm is applied to each
word of a given text, deeming a word complex only
if it is simplified. However, this suffers from the as-
sumption that a non-complex word does not require
further simplification. They also try assigning a fa-
miliarity score to a word, and determining whether
the word is complex or not by applying a threshold.

1https://github.com/Aadil101/
BigGreen-at-LCP-2021
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Corpus Subtask Train Trial Test
Bible Single Word 2574 143 283

Multi Word 505 29 66
Biomed Single Word 2576 135 289

Multi Word 514 33 53
Europarl Single Word 2512 143 345

Multi Word 498 37 65

Table 1: LCP train, trial, and test sets.

We avoid thresholding our features in this study as
we find it unnecessary, since raw familiarity scores
can be used as features in regression-based tasks.

Results from CWI at SemEval-2016 (Zampieri
et al., 2017) suggest vote ensembling predictions of
the best performing models as an effective strategy,
while several top-performing models (Paetzold and
Specia, 2016b; Ronzano et al., 2016; Mukherjee
et al., 2016) appear to use linguistic information be-
yond just word frequency. This inspires our use of
ensemble techniques, and a foray into phonological
features as a new point of research. Results from
CWI at SemEval-2018 show feature engineering-
based models outperforming deep learning-based
counterparts, despite the latter having generally
better performances since SemEval-2016.

3 Data

3.1 CompLex Dataset
Shardlow et al. (2020) present CompLex, a novel
dataset in which each target expression (a single
word or two-token MWE) is assigned a continuous
label denoting its lexical complexity. Each label
lies in range 0-1, and represents the (normalized)
average score given by employed crowd workers
who record an expression’s difficulty on a 5-point
Likert scale. We define a sample’s class as the
bin to which its complexity label belongs, where
bins are formed using the following mapping of
complexity ranges: [0, 0.2) → 1, [0.2, 0.4) → 2,
[0.4, 0.6) → 3, [0.6, 0.8) → 4, [0.8, 1] → 5. Tar-
get expressions in CompLex have 0.395 average
complexity and 0.115 standard deviation, reflecting
an imbalance in favor of class 2 and 3 samples.

Each target expression is accompanied by the
sentence it was extracted from, drawn from one of
three corpora (Bible, Biomed, and Europarl). A
summary of the train, trial,2 and test set samples is

2In our study we avoid the trial set as we find it to be less
representative of the training data, opting instead for training
set cross-validation (stratified by corpus and complexity label).

provided in Table 1.

3.2 External Datasets
We use four additional corpora to extract term
frequency-based features from:

• English Gigaword Fifth Edition (Gigaword):
this comprises articles from seven English
newswires (Parker et al., 2011).

• Google Books Ngrams, version 2 (GBND):
this is used to count occurences of phrases
across a corpus of books, accessed via the
PhraseFinder API (Trenkmann).

• British National Corpus, version 3 (BNC):
this is a collection of written and spoken En-
glish text (Consortium et al., 2007).

• SUBTLEXus: this consists of American En-
glish subtitles, offering a multitude of word
frequency lists (Brysbaert and New, 2009).

4 BigGreen System & Approaches

In this section, we overview features fed to our fea-
ture engineering-based model, as well as training
techniques for the feature learning-based model.
We describe our features in detail in Appendix A.
Note that fitted models for the single word subtask
are then harnessed for the MWE subtask.

4.1 Feature Engineering-based Approach
4.1.1 Feature Extraction
We aim to capture a breadth of information pertain-
ing to the target word and its context. Most features
follow heavily right-skewed distributions, prompt-
ing us to also consider the log-transformed version
of each feature. For the MWE subtask, features are
extracted independently for head and tail words.

4.1.1.1 Lexical Features

These are features based on lexical information
about the target word:

• Word length: length of the target word.

• Number of syllables: number of syllables in
the target word, via the Syllables library.3

• Is acronym: whether the target word is a se-
quence of capital letters.

3https://github.com/prosegrinder/
python-syllables
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4.1.1.2 Semantic Features

These features capture the target word’s meaning:

• WordNet features: the number of hyponyms
and hypernyms associated with the target
word in WordNet (Fellbaum, 2010).

• GloVe word embeddings: we extract
300-dimension embeddings pre-trained on
Wikipedia-2014 and Gigaword (Pennington
et al., 2014) for each (lowercased) target word.

• ELMo word embeddings: we extract for
each target word a 1024-dimension contex-
tualized embedding pre-trained on the One
Billion Word Benchmark (Peters et al., 2018).

• GloVe context embeddings: we obtain the
average 300-dimension GloVe word embed-
ding over each token in the given sentence.

• InferSent context embeddings: we obtain
4096-dimension InferSent embeddings (Con-
neau et al., 2017) for each sentence.

4.1.1.3 Phonetic Features

These features compute the likelihood that sound-
able portions of the target word would arise in En-
glish language. We estimate ground truth transition
probabilities between any two units (phonemes or
characters) using Gigaword:

• Phoneme transition probability: we con-
sider the min/max/mean/standard deviation
over the set of transition probabilities for the
target word’s phoneme bigrams.

• Character transition probability: analogous
to that above, over character bigrams.

4.1.1.4 Word Frequency & N-gram Features

These features are expressly included due to their
expected importance as features (Zampieri et al.,
2017). Gigaword is the main corpus from which
we extract word frequency measures (for both lem-
matized and unlemmatized versions of the target
word), summed frequency of the target word’s byte
pair encodings (BPEs), as well as summed frequen-
cies of bigrams and trigrams. We complement these
features with their IDF-based analogues. Lastly, we
use the GBND, BNC, and SUBTLEXus corpora
to extract secondary word frequency, bigram, and
trigram measures.

4.1.1.5 Syntactic Features

These are features that assess the syntactic struc-
ture of the target word’s context. We construct the
constituency parse tree for each sentence using a
Stanford CoreNLP pipeline (Manning et al., 2014).

• Part of speech (POS): tag is assigned using
NLTK’s pos tag method (Bird et al., 2009).

• Depth of parse tree: the parse tree’s height.

• Depth of target word: distance (in edges) be-
tween target word and parse tree’s root node.

• Is proper: whether the target word is a proper
noun/adjective, detected using capitalization.

4.1.2 Training
Prior to training, we Z-score standardize all fea-
tures. For the single word subtask, we fit Lin-
ear, Lasso (Tibshirani, 1996), Elastic Net (Zou and
Hastie, 2005), Support Vector Machine (Platt et al.,
1999), K-Nearest Neighbors (Wikipedia, 2021),
and XGBoost (Chen and Guestrin, 2016) regres-
sion models.

After identifying the best performing model by
Pearson correlation, we seek to mitigate the imbal-
anced nature of the target variable, ie. multitude of
class 1,2,3 and lack of class 4,5 samples: we devise
a sister version of our top-performing model, fit
upon a reduced training set. For the reduced set,
we tune percentages removed from classes 1-3 by
performing cross-validation on the full training set.

4.2 Approach based on Feature Learning

Our handcrafted feature set relies heavily on target
word-specific features. Beyond N-gram and syntac-
tic features, it is a cursory analysis of the context
surrounding the target word. We seek an alterna-
tive, automated approach using feature learning.

4.2.1 Architecture
LSTM-based approaches have been used to model
the contexts of target words in past works (Hart-
mann and Dos Santos, 2018; De Hertog and Tack,
2018). An issue with a single LSTM is its ability to
read tokens of an input sentence sequentially only
in a single direction (eg. left-to-right). It inspires
us to try a Transformer-based approach (Vaswani
et al., 2017), architectures that process sentences as
a whole (instead of word-by-word) by applying at-
tention mechanisms upon them. Attention weights
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are useful as they can be interpreted as learned re-
lationships between words. BERT (Devlin et al.,
2018) is one such model used for a variety of natu-
ral language understanding (NLU) tasks.

Multi-Task Deep Neural Network (MT-DNN)
proposed by Liu et al. (2019) offers state-of-the-
art results for multiple NLU tasks by incorporat-
ing benefits of both multi-task learning and lan-
guage model pre-training. We are able to initialize
MT-DNN’s shared text encoding layers with a pre-
trained BERT base model (cased), and fine-tune
its later layers for 5 epochs, using a mean squared
error loss function and default hyperparameters.
Such hyperparameter settings are provided in Ap-
pendix B. Note that the model is fine-tuned on only
the CompLex corpus.

4.2.2 Input Layer
Data is fed to the model’s input layer in Premise-
AndOneHypothesis format, premise and hypothesis
being sentence and target word/MWE, respectively.
The data is preprocessed by a BERT tokenizer,
backed by Hugging Face (Wolf et al., 2020).

4.2.3 Output Layer
Our model’s output layer produces the predicted
lexical complexity for a given target word/MWE.
Additionally, we extract attention maps across each
of the model’s attention heads, for each test set
sample. These will be assessed in Section 6.3.

4.3 Ensembling
Our best performing feature engineering-based re-
gression model yields two sets of predictions (from
fitting on full and reduced training sets, respec-
tively). We default to using the full predictions,
then tune a threshold, where predictions higher than
the threshold (likely of class 4,5 samples) are over-
written with the reduced predictions. We compute
a weighted average ensemble of these predictions
with those of our MT-DNN model to obtain a final
set of predictions for the single word subtask.

For the MWE subtask, the fitted models from the
previous subtask are harnessed to predict lexical
complexities for the head and tail words. We then
compute a weighted average ensemble of these
predicted complexities and the predictions of an
MT-DNN model trained on MWEs.

5 Results

We present the performances of BigGreen’s sys-
tem on each subtask in Tables 2 and 3.

Model Pearson Rank
XGBoostfull 0.7589 -
XGBoostreduced 0.7456 -
XGBoostfull+reduced 0.7576 -
MT-DNN 0.7484 -
Ensemble (submission) 0.7749 8/54
Best competition results 0.7886

Table 2: Test set results for single word subtask.

Model Pearson Rank
XGBoostfull+red.(head) 0.7164 -
XGBoostfull+red.(tail) 0.7188 -
MT-DNN 0.7890 -
Ensemble (submission) 0.7898 25/37
Ensemble (improved) 0.8290 *14/37
Best competition results 0.8612

Table 3: MWE subtask test set results. (*projection)

6 Analysis

6.1 Performance

For feature selection, we find success in selecting
the top-300 features by mutual information and
removing quasi-constant features. The pruned fea-
ture set is passed to wrapper/embedded methods
and a variety of regressors for model comparison.
We find an XGBoost regressor (with hyperparame-
ters tuned via grid search) to excel consistently for
the single word subtask. As shown in Table 2, we
rank in the top 15% by Pearson correlation.

For the MWE subtask, performances are re-
ported in Table 3. Note that our submitted pre-
dictions differ from post-competition predictions.
We previously used a training procedure resem-
bling that for the single word subtask: (1) filter
methods for feature selection, (2) XGBoost for re-
gression, (3) ensembling with MT-DNN. We had
passed the entire MWE as input to our XGBoost
and MT-DNN models. We hypothesize that the
fewer number of training samples available for this
subtask contributed to the prior procedure’s lack-
luster performance. This inspired us to incorporate
the predictive capabilities of our fitted single word
subtask models by applying them independently on
the MWE’s constituent head and tail words. This
gives us predicted complexities for the head and tail
words each, which when ensembled with the pre-
dictions of our MT-DNN model (that, mind you, is
trained on the entire MWE) yields superior results
to those submitted to competition.
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Figure 1: Feature importances for XGBoostfull.
Definitions of the features are shown in Appendix A.

Figure 2: Attention head correlation between word
frequency and total attention received by word,
averaged across 100 random test set samples.

6.2 Feature Contribution

In total we consider 110 features, in addition to
our multidimensional embedding-based features
and log-transformed features. We inspect the esti-
mated feature importance scores produced by the
XGBoostfull model to find that term frequency-
based features (eg. unigrams, bigrams, trigrams)
are of overwhelming importance (see Figure 1).
This raises concern for whether the MT-DNN
model too relies on term frequencies to make its
predictions, and if not, the linguistic features it may
have learned upon fine-tuning. Of the remaining
features having non-zero feature importances, most
appear to be dimensions of target word-based se-
mantic features (ie. GloVe or ELMo embeddings).

Figure 3: Head 3-9 attention map for a random sample.

6.3 BERT Attention

Attention maps have in previous works been
assessed to demonstrate linguistic phenomena
learned by a Transformer’s specialized attention
heads (Voita et al., 2019; Clark et al., 2019). We
extract attention maps from MT-DNN’s underlying
fine-tuned BERT architecture. For each sample in
the single word test set, we obtain an attention map
from each of the BERT base model’s 144 attention
heads (ie. 12 heads per 12 layers).

Based on the precedence given to term frequency
features by the XGBoostfull model, we hypothe-
size that for certain attention heads, the degree to
which BPEs attend to one another varies relative to
their word’s rarity in lexicon. This follows the find-
ings of Voita et al. (2019), who identify heads in
which lesser frequent tokens are attended to semi-
uniformly by a majority of sentence tokens.

To test our hypothesis, we estimate for each at-
tention head the Pearson correlation between word
frequency and average attention given to each word
in the context.4 As illustrated in Figure 2, we find
multiple attention heads appearing to specialize at
directing attention towards the most or least fre-
quent words (depending on sign of the correlation).
Vertical stripe patterns like that in Figure 3 emerge
as a result of attention originating from a spectrum
of tokens. The findings seem to affirm the fun-
damental relevancy of word frequency to lexical
complexity prediction, corroborating our intuition.

4We compute attention given to a word as the sum of
attention given to its constituent BPEs. We use the GBND
corpus to extract word frequencies, though any large corpora
would suffice.
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7 Conclusion

In this paper, we report inspirations for a system
submitted by BigGreen to LCP SharedTask 2021,
performing reasonably well for the single word sub-
task by adapting ensemble methods upon feature
engineering and feature learning-based models. We
see potential in future deep learning approaches,
acknowledging the need for complementary word
frequency-based handcrafted features for the time
being. We surpass our submitted results for the
MWE subtask, by utilizing the predictive capabili-
ties of our single word subtask models.

Avenues for improvement include better data ag-
gregation, as a relative lack of class 4,5 samples
seems to hurt Pearson correlation across extremely
complex samples. An approach may involve syn-
thetic data generation using SMOGN (Branco et al.,
2017). Shardlow et al. (2020) acknowledge a
reader’s familiarity with a genre may affect per-
ceived word complexity. However, the CompLex
dataset lacks information on each annotator’s ex-
pertise or background, which may offer valuable
new insights.
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A Feature Descriptions

Here, we describe in greater detail the various fea-
tures that were experimented with for our feature
engineering-based model. Note that while this dis-
cussion regards the single word subtask, for the
MWE subtask we compute the same features but
for each of the head and tail words, respectively.

A.1 Lexical Features
word len

• Character length of the target word.

num syllables

• Number of syllables in the target word, via
the Syllables library.

is acronym

• Boolean for whether the target word is all
capital letters.

A.2 Semantic Features
num hyperyms

• Number of hyperyms associated with the tar-
get word. The target word is initially dis-
ambiguated using NLTK’s implementation of
the Lesk algorithm for Word Sense Disam-
biguation (WSD) (Lesk, 1986), which finds
the WordNet Synset with the highest number
of overlapping words between the context and
different definitions of each Synset.

num hyponyms

• Number of hyponyms associated with the tar-
get word. Procedure for finding this is analo-
gous to that for num hyperyms.

glove word

• 300-dimension embedding for each target
word, pre-trained on Wikipedia-2014 and Gi-
gaword. Target word is lowercased for ease.

elmo word

• 1024-dimension embedding for each target
word, pre-trained on the One Billion Word
Benchmark corpus.

glove context

• 300-dimension average of GloVe word em-
beddings (see glove word above) for each
word in the given context. Each word is low-
ercased for simplicity.

infersent embeddings

• 4096-dimension embedding for the context.

A.3 Phonetic Features
char transition min

• Minimum of the set of character transition
probabilities for each character bigram in the
target word. Ground truth character transition
probabilities between any two English charac-
ters are estimated over Gigaword.

char transition max

• Maximum of the set described above.

char transition mean

• Mean of the set described above.

char transition std

• Standard deviation of the set described above.

phoneme transition min

• Minimum of the set of phoneme transition
probabilities for each character bigram in the
target word. Ground truth phoneme transi-
tion probabilities between any two phonemes
are estimated over the Gigaword corpus. The
phoneme set considered is that of the CMU
Pronouncing Dictionary.5

phoneme transition max

• Maximum of the set described above.

phoneme transition mean

• Mean of the set described above.

phoneme transition std

• Standard deviation of the set described above.

A.4 Word Frequency & N-gram Features
A.4.1 Gigaword-based
tf

• Target word term frequency. Note that all term
frequency-based features are computed using
Scikit-learn library’s CountVectorizer
(Pedregosa et al., 2011).

tf lemma

• Term frequency of the lemmatized target word.
Lemmatization is performed using NLTK’s
WordNet Lemmatizer.

5http://speech.cs.cmu.edu/cgi-bin/
cmudict

674



tf summed bpe

• Sum of term frequencies of each BPE in the
target word. BPE tokenization is performed
using Hugging Face’s BERT Tokenizer.

tf ngram 2

• Sum of the term frequencies of each bigram
in the context containing the target word.

tf ngram 3

• Sum of the term frequencies of each trigram
in the context containing the target word.

tfidf

• Term frequency-inverse document frequency.

tfidf ngram 2

• Sum of the term frequency-inverse document
frequencies of each bigram in the context con-
taining the target word.

tfidf ngram 3

• Sum of the term frequency-inverse document
frequencies of each trigram in the context con-
taining the target word.

A.4.2 Google N-gram-based
google ngram 1

• Term frequency of the target word.

google ngram 2 head

• Term frequency of leading bigram in the con-
text containing the target word.

google ngram 2 tail

• Term frequency of trailing bigram in the con-
text containing the target word.

google ngram 2 min

• Minimum of the set of term frequencies of
bigrams in context containing the target word.

google ngram 2 max

• Maximum of the set described above.

google ngram 2 mean

• Average of the set described above.

google ngram 2 std

• Standard deviation of the set described above.

google ngram 3 head

• Term frequency of leading trigram in the con-
text containing the target word.

google ngram 3 mid

• Term frequency of middle trigram in the con-
text containing the target word.

google ngram 3 tail

• Term frequency of trailing trigram in the con-
text containing the target word.

google ngram 3 min

• Minimum of set of term frequencies of tri-
grams in the context containing target word.

google ngram 3 max

• Maximum of the set described above.

google ngram 3 mean

• Average of the set described above.

google ngrams 3 std

• Standard deviation of the set described above.

A.4.3 SUBTLEXus-based
FREQcount

• Number of times target word appears in cor-
pus.

CDcount

• Number of films in which target word appears.

FREQlow

• Number of times the lowercased target word
appears in corpus.

CDlow

• Number of films in which the lowercased tar-
get word appears.

SUBTLWF

• Number of times the target word appears per
million words.

SUBTLCD

• Percent of films in which target word appears.

675



A.4.4 BNC-based
bnc frequency: Target word term frequency.

A.5 Syntactic Features
parse tree depth

• Height of context’s constituency parse tree.
Parse trees are obtained using a Stanford
CoreNLP pipeline.

token depth

• Depth of the target word with respect to root
node of the context’s constituency parse tree.

num words at depth

• Number of words at the depth of the target
word (see token depth above) in the con-
text’s constituency parse tree.

is proper

• Boolean for whether target word is a proper
noun/adjective, based on capitalization.

POS {CC, CD, DT, EX, FW, IN, JJ,
JJR, JJS, LS, MD, NN, NNP, NNPS,
NNS, PDT, POS, PRP, PRP$, RB,
RBR, RBS, RP, SYM, TO, UH, VB,
VBD, VBG, VBN, VBP, VBZ, WDT, WP,
WP$, WRB}

• Booleans indicating the target word’s part-of-
speech tag. Tags considered are those used
in the Penn Treebank Project.6 Tags are esti-
mated using NLTK’s pos tag method.

A.6 Readability Features
automated readability index,
avg character per word,
avg letter per word,
avg syllables per word,
char count, coleman liau index,
crawford, fernandez huerta,
flesch kincaid grade,
flesch reading ease,
gutierrez polini,
letter count, lexicon count,
linsear write formula, lix,
polysyllabcount, reading time,
rix, syllable count,
szigriszt pazos, SMOGIndex,
DaleChallIndex

• Algorithms applied using Textstat library im-
plementations, most being readability metrics.

6https://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html

A.7 Other Features

ppl

• Perplexity metric, as defined by the Hugging
Face library.7 For each token in the context,
we use a pre-trained GPT-2 model to estimate
the log-likelihood of the token occurring given
its preceding tokens. A sliding-window ap-
proach is used to handle the large number of
tokens in a context. The log-likelihoods are
averaged, and then exponentiated.

ppl aspect only

• Similar approach to that described above,
where only log-likelihoods of tokens compris-
ing the target word are averaged.

num OOV

• Number of words in the context that do not
exist in the vocabulary of Gigaword.

corpus bible, corpus biomed,
corpus europarl

• Booleans indicating the sample’s domain.

B Model Hyperparameters

Here we provide optimized hyperparameter set-
tings that may help future developers with repro-
ducing results, namely with training our models.

B.1 XGBoost

Below are tuned parameters used for all of our
XGBoost models. Parameters not listed are given
default values as specified in documentation:8

colsample bytree: 0.7
learning rate: 0.03
max depth: 5
min child weight: 4
n estimators: 225
nthread: 4
objective: ‘reg:linear’
silent: 1
subsample: 0.7

7https://huggingface.co/transformers/
perplexity.html

8https://xgboost.readthedocs.io/en/
latest/
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B.2 MT-DNN
MT-DNN uses yaml as its config file format. Be-
low are the contents of our task config file:
data format: PremiseAndOneHypothesis
enable san: false
metric meta:
- Pearson
- Spearman
n class: 1
loss: MseCriterion
kd loss: MseCriterion
adv loss: MseCriterion
task type: Regression

B.3 Ensemble
Threshold above which a sample is assigned its
reduced prediction (ie. XGBoostreduced prediction)
instead of its full prediction (ie. XGBoostfull
prediction): 0.59. Note that this threshold is used
to compute our XGBoostfull+reduced prediction.

Weighted average ensemble (single word subtask):
- Weight for XGBoostfull+reduced prediction: 0.5
- Weight for MT-DNN prediction: 0.5

Weighted average ensemble (MWE subtask):
- Weight for XGBoostfull+reduced(head): 0.28
- Weight for XGBoostfull+reduced(tail): 0.17
- Weight for MT-DNN prediction: 0.55
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Abstract

This paper describes the performance of the
team cs60075 team2 at SemEval 2021 Task
1 - Lexical Complexity Prediction. The
main contribution of this paper is to fine-
tune transformer-based language models pre-
trained on several text corpora, some being
general (E.g., Wikipedia, BooksCorpus), some
being the corpora from which the CompLex
Dataset was extracted, and others being from
other specific domains such as Finance, Law,
etc. We perform ablation studies on select-
ing the transformer models and how their indi-
vidual complexity scores are aggregated to get
the resulting complexity scores. Our method1

achieves a best Pearson Correlation of 0.784 in
sub-task 1 (single word) and 0.836 in sub-task
2 (multiple word expressions).

1 Introduction

Complex words hinder the readability of a text, as
discussed in (William, 2004). To mitigate this
problem, there is a necessity of lexical simplifica-
tion (Leroy et al., 2013), and predicting the com-
plexity of words is an integral part of this process.

Language Models learn the probability of co-
occurrence of words in a corpus. They have
been used for various sentence completion and
text-based classification tasks. The first language
models were n-gram Markov Models (Rabiner
and Juang, 1986), which performed well for tasks
that did not require very long-range dependen-
cies. Then came RNNs (Cho et al., 2014a),
LSTMs (Hochreiter and Schmidhuber, 1997) and
GRUs (Cho et al., 2014b), which were able to un-
derstand longer contexts, but struggled with long
paragraphs due to the vanishing gradient prob-
lem. Transformers (Vaswani et al., 2017) were
a task-agnostic solution that performed better due

1The code is available at https://github.com/
abhi1nandy2/CS60075-Team-2-Task-1

to the presence of Attention Layers between hid-
den layers of the neural network, which helped
the layers of the neural network to look at the en-
tire input at once. Transformers can perform very
well on a broad suite of tasks by fine-tuning on
a small number of task-specific samples. The in-
tuition behind using such transformer-based lan-
guage models for Lexical Complexity Prediction
(LCP) was - transformer models pre-trained on
different corpora would mimic annotators (of the
CompLex Dataset (com)) having different back-
grounds. Since the final score is an aggregation of
the annotation scores given by annotators, we ag-
gregate the various scores that are given as outputs
by the transformer-based models fine-tuned on the
CompLex Dataset.

The rest of the paper is organized as follows.
Section 2 gives an overview of our solution ap-
proach, Section 3 talks about the corpora used for
pre-training and the dataset used for fine-tuning
for the LCP task, Section 4 discusses the experi-
mental settings, baselines used, and a comparison
and analysis of the results and Section 5 gives a
conclusion.

2 Solution Overview

2.1 Model Architecture

We use several transformer models. The general
block diagram of such a model is shown in Fig. 1.
The input to a model is the tokenized form of a
sentence, and the tokenized form of the word/multi-
word expression whose complexity score is to be
predicted (separated by special tokens), and the
target output is the complexity score. Each model
consists of a transformer encoder, having the ar-
chitecture of either BERT (Devlin et al., 2018) or
RoBERTa (Liu et al., 2019), followed by a linear
layer and a sigmoid activation layer so that the
output is squashed in the range (0, 1). Sigmoid Ac-
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Figure 1: General Block Diagram of the Transformer

tivation Function is applied, as the target complex-
ity score is a value between 0 and 1. To compute
loss for backpropagation, the mean squared error
loss function is used, as the problem is, as such, a
regression problem.

2.2 Pre-training the transformer on text
corpora

In order to initialize the weights and the embed-
dings of the transformer encoder, it is pre-trained
on large text corpora so that it has syntactic, lexical
and semantic knowledge before fine-tuning on the
task-specific data. This is done for two reasons -
(1) To increase the rate of convergence towards the
lexical complexity prediction task (2) To mimic an
annotator from a particular background.

In order to pre-train a transformer, specific pre-
training tasks are performed. If the transformer
being used is RoBERTa, Masked Language Mod-
elling (MLM) is performed, where 15% of all the
tokens are randomly replaced by a < MASK >
token. Such a masked sentence is provided as input
to the transformer language model, and a Softmax
Layer activation Function is applied for the output
corresponding to the masked token to find out the
probabilities of various tokens in the vocabulary be-
ing in the place of the < MASK > in the original,
unmasked sentence. The target is the actual token
that was masked. A cross-entropy loss function is
used to calculate the loss that is backpropagated. In
the case of the BERT Transformer, in addition to
the MLM pre-training task, Next Sentence Predic-
tion (NSP) Task is also performed. Two sentences
are taken from the corpus, where either one sen-

tence follows the other, or the two sentences are far
apart. The output is either 1 corresponding to the
sentences being adjacent to each other, and 0 being
the case when they are far apart. Both the cases
have the same number of samples while training.
The output corresponding to the START (here,
< CLS >) token is passed through a linear layer
to get a 2x1 shaped vector, which is then followed
by a Softmax Layer, thus giving probabilities of
whether the second sentence comes after the first
one or not.

3 Data

3.1 Data used for pre-training

Since we require several transformer language
models pre-trained on a wide variety of cor-
pora, we make it a point that we have trans-
formers pre-trained on text corpora from which
the CompLex Dataset has been extracted. These
corpora are - (1) World English Bible Transla-
tion (Christodouloupoulos and Steedman, 2015)
(We used the data found in this link 2) (2) English
part of the Europian Parliament Proceedings from
europarl (Koehn, 2005) (3) CRAFT corpus (Bada
et al., 2012) of bio-medical domain. We pre-train
three RoBERTa language models on these three
corpora (initialized by weights from (Liu et al.,
2019)) using the MLM pre-training task.

3.2 Data used for fine-tuning

For fine-tuning, we do not use any external data
other than the datasets that have been provided for
both the sub-tasks 3.

4 Experiments and Results

4.1 Transformer Language Models used

We use the predictions from 9 transformer-based
language models, 4 of which have a RoBERTa en-
coder, and the other 5 have a BERT-based encoder.
2 models are pre-trained on general domain cor-
pora like Wikipedia and BooksCorpus, 2 models
on biomedical and clinical data, 2 models on Eu-
roparl data, 1 on Bible, 1 on Financial data, and
1 on scientific papers. Also, 6 of the pre-trained
transformer models were publicly available in the
HuggingFace Models Catalog 4, while the other 3
were pre-trained by us on the three datasets from

2https://www.kaggle.com/oswinrh/bible
3https://github.com/MMU-TDMLab/CompLex
4https://huggingface.co/models
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Single word MWE
APPROACH PC MSE PC MSE

xgb-A 0.718 0.0078 0.762 0.0103
xgb-B 0.741 0.0073 0.815 0.0083
xgb-C 0.744 0.0072 0.817 0.0082∗

BERT-BASE-UNCASED 0.765 0.007∗ 0.791 0.009
BIBLE+EUROPARL+BIOMED (AVG.) 0.753 0.0075 0.798 0.0096
BIBLE+EUROPARL+BIOMED (MAX.) 0.751 0.0076 0.788 0.0092
BEST COMBINATION (AVG.) 0.784 0.0066 0.836 0.0078
BEST COMBINATION (MAX.) 0.774∗ 0.0071 0.819∗ 0.0091

Table 1: Comparing the Pearson Correlation (PC) and Mean Squared Error (MSE) of our methods and the baselines
(The entries in bold are the best performing according to the respective column’s metrics, while the ones with a ∗

are the next best ones.)

which CompLex Dataset is extracted, as mentioned
in Section 3.1.

4.2 Training, validation and Test Sets

For each sub-task, the training and the test sets
are the same as those provided for the competition.
The trial data given for each sub-task is taken to be
the validation data.

4.3 Hyperparameters

For pre-training, the RoBERTa transformer lan-
guage model, a batch size of 16 is used and is
trained up to 1 epoch. The rest of the parameters
are the same as in (Liu et al., 2019).

When fine-tuning, irrespective of whether the
model has a RoBERTa or a BERT Transformer en-
coder, the input sequence length is set to 256, with
padding or truncation, as is the case. A learning
rate of 2×10−5 is used with a batch size of 32, and
a Weighted Adam Optimizer is used. The network
is fine-tuned for 4 epochs. The Pearson Correlation
on the validation data is calculated for every epoch,
and the checkpoint giving the best Pearson Cor-
relation is regarded as the best checkpoint, which
would later be used for predicting outputs on the
test data.

4.4 Methods of Aggregation used

In order to aggregate the complexity scores of a
particular combination of models, we use the fol-
lowing two strategies - sample-wise average and
sample-wise maximum across all transformer mod-
els. We then do the same across all permutations,

see which combination gives the best test results
and report it as the final result.

4.5 Baselines
We use XGBoost (Chen and Guestrin, 2016) to per-
form a boosting-based regression model, with an
objective of squared error and other default param-
eters and hyperparameters over a set of features.
The different baselines use different feature sets,
which are as follows -

1. xgb-A - word length (sum of word lengths
in the case of MWE), number of sylla-
bles and word frequency (from various text
sources) (Speer et al., 2018) (average of word
frequencies in the case of MWE) of the
word/expression whose complexity is to be
found, and the type of corpus of the sentence
(either Bible, Europarl, or Biomedical).

2. xgb-B - Concatenation of features of xgb-A
and the 50 and 100-dimensional GloVe (Pen-
nington et al., 2014) word vectors of the
word/expression whose complexity is to be
found. For the expression, the sum of the
GloVe Vectors of the individual words would
be taken.

3. xgb-C - Concatenation of features of xgb-B
and the probabilities of the word/expression
whose complexity is to be found given the
sentence with that word/expression that is
masked, where the probabilities are predicted
by different transformer-based masked lan-
guage models pre-trained on different corpora.
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Note: The probability of the word/token
given the masked sentence is approximated as
the product of the probabilities of predicting
each token, given other tokens of the sentence
are masked. E.g., Given a sentence S - ”I just
love mowing the lawn with a lawn mower.”
Let’s say one is required to find out the com-
plexity of the expression - “lawn mower”.
First, ‘lawn’ is masked in S, and the prob-
ability to predict ‘lawn’ using the transformer
model M is found, denoted by P1. Similarly,
‘mower’ is masked in S, and the probability
to predict ‘mower’ using M is found, denoted
by P2. Resultant feature value = P1 ∗ P2

4.6 Results and Discussion

Table 1 compares the Pearson Correlations (higher
the better) and mean squared errors (lower the bet-
ter) of our best (according to Pearson Correlation)
aggregate results (for both average as well as max-
imum aggregation), some ablations, and the base-
lines for both the sub-tasks.

Based on the results, we can infer the following
-

1. xgb-B performs better than xgb-A, suggest-
ing that, GloVe Word Vector features perform
a vital role in complexity prediction, as they
contain some contextual information regard-
ing the word.

2. xgb-C performs the best among the baselines,
as it also considers the probabilities of predict-
ing the masked tokens whose complexity is
found, adding to the contextual information.

3. Fine-tuning BERT-BASE-UNCASED trans-
former model for the LCP task performs better
than the best baseline in case of sub-task 1,
which could be attributed to the reason that,
fine-tuning attention-based transformer mod-
els captures even more contextual information
than the baselines.

4. Fine-tuning and aggregating RoBERTa Trans-
former models pre-trained on the three cor-
pora from which the CompLex Dataset was ex-
tracted (BIBLE+EUROPARL+BIOMED),
still gives better results than the baselines
(except for xgb-B and xgb-C in case of sub-
task 2), but performs inferior as compared to
BERT-BASE-UNCASED model for single

word sub-task, while performing almost sim-
ilar in case of Multi-Word Expressions sub-
task. Also, the average aggregation performs
better than the maximum aggregation.

5. The combination of transformer models that
gives the best results upon aggregation (BEST
COMBINATION), consists of 3-4 differ-
ent transformer models fine-tuned on the
dataset, suggesting that, transformer mod-
els pre-trained on domains related as well
as unrelated to the dataset (such as Fi-
nancial Data, Legal Data), are able to
best mimic annotators coming from vari-
ous backgrounds. Even in this case, average
aggregation performs better than maximum
aggregation.

6. If we consider the evaluation metrics of Pear-
son Correlation (PC) and Mean Squared Er-
ror (MSE), it can be seen (especially in the
single-word sub-task) that they are negatively
correlated, as is expected.

5 Conclusion

We show that aggregating the results of various
fine-tuned transformer models pre-trained on var-
ious corpora from different domains gives high
Pearson Correlation and low mean squared errors
compared to individual transformers and regres-
sion models using attributes such as hand-crafted
features, word embeddings, transformer-based lan-
guage model prediction probabilities, etc. This
shows that transformer-based language models,
each pre-trained on a different text corpus, can
better imitate annotators of the dataset, who come
from diverse backgrounds and prior knowledge.
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Abstract
We present our approach to predicting lexi-
cal complexity of words in specific contexts,
as entered LCP Shared Task 1 at SemEval
2021. The approach consists of separating sen-
tences into smaller chunks, embedding them
with Sent2Vec, and reducing the embeddings
into a simpler vector used as input to a neural
network, the latter for predicting the complex-
ity of words and expressions. Results show
that the pre-trained sentence embeddings are
not able to capture lexical complexity from the
language when applied in cross-domain appli-
cations.

1 Introduction

Lexical complexity plays a crucial role in reading
comprehension. Predicting lexical complexity of
words within sentences in specific textual context
can enable systems to better perform certain NLP
tasks, such as simplifying texts, and favoring less
fortunate readers in a giving target language. The
SemEval 2021 proposes a Lexical Complexity Pre-
diction (LCP) shared task (Task 1) (Shardlow et al.,
2021) based on a new annotated English dataset
with a Likert scale (Shardlow et al., 2020).

Word embeddings (Mikolov et al., 2013; Devlin
et al., 2019) are very important resources that sup-
port several NLP tasks by providing a semantic
latent representation that heuristically captures re-
lationships in language that are very difficult to ob-
serve otherwise. Furthermore, such semantic repre-
sentation can be used to embed language structures
other than just words.

Sent2Vec (Pagliardini et al., 2018) is an unsuper-
vised model designed to compose sentence embed-
dings using word vectors along with n-gram em-
beddings, simultaneously training composition and
the embedding vectors themselves. Sent2Vec has
been used in several NLP tasks, such as analysing
semantic properties of sentences (Zhu et al., 2018),

classification of sentences in the biomedical do-
main (Agibetov et al., 2018), automatic detection
of incoherent speech (Iter et al., 2018), and measur-
ing sentence similarity (Quan et al., 2019),

In this work, we aim to test the ability of
Sent2Vec to detect the complexity of English words
and expressions in specific contexts. We evaluate
in what extent the semantic information captured
when learning the embeding representation is able
to incorporate word complexity.

Our approach uses pretrained Sent2Vec models
and aims to validate in what extent such models
are able to predict complexity of words. Results
show strong evidence that pretrained sentence em-
beddings do not capture complexity features from
language, specially when applied in cross-domain
applications.

2 Method

The proposed shared task consists of determin-
ing the complexity of token words in the con-
text of given input sentences (Lexical Complexity
Prediction-LCP). Training input sentences anno-
tated with a Likert scale corresponding to the com-
plexity score of target words are given. Sub-task 1
focus on predicting the complexity score of single
words. Meanwhile, Sub-task 2 targets multi-word
expressions.

Our overall strategy consists on generating
chunks of the sentence, embed those chunks with
Sent2Vec and then reduce those embeddings into
a simpler vector, which would then finally be used
as the neural network’s input.

Our approach uses pretrained Sent2Vec mod-
els to obtain embedding representation of multiple
parts of the input sentence split by the target token
words. For a given input sentence S, we obtain
embeddings for: a) S: the full sentence; b) S0: the
amount of text from the beginning of the sentence
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up to the target token(s) (except the latter); c) T :
the target word token(s), and d) S1: the amount of
text from the target token(s) up to the end of the
sentence (except the former). When target tokens
are in the beginning or in the end of a sentence, S0

or S1 are represented by a zero-value vector.
We reduce the vector representation of each sen-

tence constituent into distance-based arrays that
are fed into a neural network estimator. The re-
duction itself consisted of simplifying the text (us-
ing Spacy) and then feeding different chunks into
Sent2Vec. Finally, an array of the distances be-
tween the chunks’ embeddings to the token word’s
embeddings was used as input to a neural network
coming from the Scikit-Learn package.

We use the context given by the two splits of the
input sentence (S0 or S1) to measure the complex-
ity of the token word(s) (T ). Thus, our pipeline
consists of four major steps: text preprocessing,
chunking, context embedding and estimator train-
ing. The chosen estimator was a Multi-Layer Per-
ceptron (MLP).

Figure 1 illustrates this pipeline for an example
sentence and token word.

2.1 Text Preprocessing

We use a simple preprocessing step based on off-
the-shelf components from Spacy Python package
(Honnibal et al., 2020)1 that apply the following
filters in the raw input sentence:

• Turning it into only lowercase characters;

• Removing all punctuation;

• Removing all words recognized by Spacy as
stop words (unless the stop word was part of
the target token T ).

The reformatted sentences are then split into
parts S, S0, S1 and T to be fed into the next step
of the pipeline.

2.2 Context Embedding

We embed the four elements of a sentence
resulted from the previous preprocessing
step using a pretrained Sent2Vec model
(torontobooks unigrams model has
been chosen).2 As a setback, the token word was
often embedded as a null vector (consisting only

1https://spacy.io
2https://github.com/epfml/sent2vec#

downloading-sent2vec-pre-trained-models

of zeroes), as expected that such target words
from specific domains would be off the pretrained
vocabulary.

Instead of concatenating the four resulting em-
beddings into a single vector to be used as input by
our estimator, we perform a reduction that aims to
represent how close (distance) to its context a token
word is. Thus, our estimator input comprises: a)
three norm distances (NumPy’s linalg.norm
method (Harris et al., 2020)) between each sen-
tence embedding (S, S0, and S1) and the token
word’s embedding (T ), and b) a boolean value in
the set {0, 1} indicating whether the token word’s
embedding was a null vector.

2.3 Estimator Training

Finally, we use the obtained embedding re-
ductions from the previous step to train a
MLP from the Scikit-Learn Python package
(neural network.MLPRegressor) (Pe-
dregosa et al., 2011). The MLP was instantiated
with the max iter and random state argu-
ments set to 500 and 1, respectively. The estimator
was fitted to the input with its fit method, with
the X and y parameters being vectors of the
reduced embeddings (X) and corresponding given
token word complexities (y).

Our estimator is designed to predict the com-
plexity value for a given token word in context.
However, token words can be a misuse of given
information, since the complexity of a word varies
with context. Our goal with reducing embeddings
from fractions of the original sentence into a small
vector that served as input to the estimator was
similar to the Input Hypothesis, an approach to
language learning that grows in popularity.

The Input Hypothesis, also referred to as “i+1
method” and surveyed in Wang (2017), discusses a
process for acquiring languages by being exposed
to content that is slightly above the learner’s current
level. This is argued to work because the learner
is then able to understand the whole sentence (i)
and consequently annex a new word or construc-
tion (+1) to their vocabulary because of intelligible
context.

Reducing embeddings from chunks of the orig-
inal sentence into a vector of distances from the
token word can be expressed as an attempt to sym-
bolize the size (complexity) of this “+1” (the token
word) - that is, the neural network input is an obser-
vation of how obtainable from its context a given
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Figure 1: Illustrated pipeline for our approach

token word is.
We then validate the trained model us-

ing model selection.train test split
method (Scikit-Learn), setting random state
parameter set to 1. This method divides the dataset
into training and testing subsets. With the MLP
fitted with the training subset, the efficiency with
which it would handle foreign inputs is measured
with a call to its score function (using the test-
ing sets as arguments). This function returns the
coefficient of determination R2 of a prediction.

2.4 Development Environment
Our solution is made available in a Google Colab
file3. In order to execute the code, it’s necessary to
duplicate the file and change the environment vari-
ables related to file access (the Sent2Vec models
and input files). More information on this process
can be found on the file itself.

Since the Google Colab platform permits by de-
fault the use of up to a little over 12.5GB RAM, the
options of Sent2Vec pretrained models to use are
limited: the model we used for this task has only
2GB.

3 Results

The task is divided between two subtasks: single-
and multi-word tokens. Both have the same format:
each line of the input has an ID, a sentence, a cor-
pus to which it belongs, and a token. For training
data, each line also includes a complexity value.
The difference between the first and second sub-
tasks is that the first limits a token to one single

3https://colab.research.google.com/
drive/1MCNfDzM-BW9Zopxs9qFFT8sDLb6FrAM_
?usp=sharing

word, while the second doesn’t.
Tables 1 and 2 present the final results of the

competition for the two subtasks, respectively. Par-
ticipant’s performance is ranked in each subtask
separately. For the submissions without a team
name - that is, the submissions made by users not
linked to teams -, the user name is available inside
brackets. The tables also show each participant’s
scores for individual corpora. Our approach is iden-
tified as C3SL.

We believe the flaws in our approach can be
explained in two-fold: a) pretrained embeddings
are sensitive to the domain or context used during
trained, and the way semantic information is cap-
tured in a latent representation is not reflected the in
the same way in cross-domain applications; and b)
even if a latent representation of text would able to
capture semantic complexity of certain expression
in context, the same is not reflected by the norm or
cosine distances between multiple chunks and the
target expressions.

4 Related Work

Some of the previous work show that Sent2Vec is
not the best alternative to consistently achieve high
accuracy in subsequent NLP and NLU tasks based
on embedding representation of sentences, except
when training Sent2Vec with domain-specific cor-
pora.

Miftahutdinov et al. (2019) attempt to use the
Twitter unigram pretrained model from Sent2Vec in
order to improve their approach when performing
extraction of adverse drug reactions from Tweets.
However, results show that utilizing Sent2Vec as
tweet representations did not improve classification
quality.
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Table 1: Results for Subtask 1.

# Team Name Pearson Spearman MAE MSE R2
1 JUST BLUE 0.7886 (1) 0.7369 (2) 0.0609 (61) 0.0062 (60) 0.6172 (2)
2 DeepBlueAI 0.7882 (2) 0.7425 (1) 0.0610 (60) 0.0061 (61) 0.6210 (1)
3 Alejandro Mosquera 0.7790 (3) 0.7355 (5) 0.0619 (57) 0.0064 (59) 0.6062 (3)

57 C3SL 0.4598 (57) 0.3983 (58) 0.0866 (6) 0.0130 (6) 0.1989 (56)
61 RACAI -0.0272 (61) -0.0268 (61) 0.2777 (1) 0.1270 (1) -6.8449 (61)

Table 2: Results for Subtask 2.

# Team Name Pearson Spearman MAE MSE R2
1 DeepBlueAI 0.8612 (1) 0.8526 (3) 0.0616 (38) 0.0063 (38) 0.7389 (1)
2 [rg pa] 0.8575 (2) 0.8529 (2) 0.0672 (34) 0.0072 (34) 0.7035 (5)
3 [xiang wen tian] 0.8571 (3) 0.8548 (1) 0.0675 (33) 0.0072 (32) 0.7012 (7)

35 C3SL 0.3941 (35) 0.3675 (35) 0.1145 (4) 0.0206 (4) 0.1470 (35)
38 [glitterosu] 0.1860 (38) 0.1316 (38) 0.1332 (1) 0.0255 (1) -0.0564 (38)

Cho et al. (2019) use SentVec embeddings to
propose a language scheme that generates candi-
date utterances using paraphrasing and methods
from semi-supervised learning.

An empirical study of sentence embed-
dings (Krasnowska-Kieraś and Wróblewska, 2019)
aims to analyse in what extent linguistic informa-
tion is retained in vector representations of sen-
tences by comparing ten embeddings approaches.
Results show that Sent2Vec was only able to out-
perform other approaches in only 1 out of 11 tasks
(word classification task).

Lo et al. (2018) use Sent2Vec trained on the
WMT18 news translation task parallel training
data (Koehn et al., 2018) to calculate distance of
sentence vectors aiming to improve their semantic
textual similarity approach when filtering a noisy
web crawled parallel corpus.

Iter et al. (2018) aim to automatically ex-
tract linguistic features for detecting symptoms of
schizophrenia. They compare a number of sentence
embeddings and show that, although Sent2Vec
outperforms the mean vector sentence embedding
(used as a baseline model within the experiments),
all other models perfom better when measuring
coherence using concept overlap and ambiguous
pronoun usage.

Zhu et al. (2018) evaluate semantic properties of
sentence embeddings models in five tasks: negation
detection, negation variants, clause relatedness, ar-
gument sensitivity, and fixed point reorder. Results
show that Sent2Vec is only able to outperform other
embedding models in the clause relatedness task,

which explores whether the similarity between a
sentence and its embedded clause is higher than
between a sentence and its negation. The resulting
accuracy is in the 30-35% range.

5 Conclusions

We presented an approach for the LCP Shared Task
1 at SemEval 2021 for predicting the lexical com-
plexities of words in context. We used pretrained
Sent2Vec models using a vector formed from em-
bedded chunks of sentences as input for a neural
network to perform as the final complexity esti-
mator. Implemented and executed on the Google
Colab platform, our approach used little resources.

The results show that pretrained Sent2Vec mod-
els alone cannot capture a semantic representation
that reflects a word’s or expression’s complexity
within cross-domain contexts. As a way of extend-
ing our experiments, we plan to perform further
analysis in subsequent classification tasks in the
biomedical domain using reinforcement strategies
to enrich the semantic information captured by em-
bedding representation of sentences.
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Abstract

This paper presents our system for the single-
and multi-word lexical complexity prediction
tasks of SemEval Task 1: Lexical Complex-
ity Prediction. Text comprehension depends
on the reader’s ability to understand the words
present in it; evaluating the lexical complex-
ity of such texts can enable readers to find
an appropriate text and systems to tailor a
text to an audience’s needs. We present our
model pipeline, which applies a combination
of embedding-based and manual features to
predict lexical complexity on the CompLex
English dataset using various tree-based and
linear models. Our method is ranked 27 / 54
on single-word prediction and 14 / 37 on multi-
word prediction.

1 Introduction

The rapid expansion of social media and other on-
line channels has made readable information avail-
able at an astounding rate. However, the accessi-
bility of this information is often limited by the
complexity of this information, especially among
readers with low literacy levels in the language of
the text and those with reading disabilities. Fur-
thermore, even to the average reader, specialized
jargon found in governmental documents and sci-
entific fields is often difficult to decipher.

Systems to guide these users may redirect read-
ers to more easily comprehensible sources, convert
the text to simpler wording, or provide additional
information about what difficult words mean. The
development of such systems is benefited by the
ability to evaluate the complexity of sections of the
text. While there is currently a large amount of
available text data, very little of it is labeled with
word complexity; automating the labelling process
would make much more data available to aid the

∗Co-first authors.
†Co-senior authors.

development of NLP systems in tasks such as text
simplification.

Multiple features of a word can affect lexical
complexity. In addition to a word’s frequency,
length and syllable count, the context in which
a word is found is likely to affect its understand-
ability. The additional factor of the reader’s profi-
ciency in a language makes this task complex as
many words have a highly variable complexity.

In this paper, we describe our model that predicts
single- and multi-word lexical complexity scores.

2 Background

2.1 Task Overview

All data was provided through SemEval Task 1
(Shardlow et al., 2021). Our dataset consists of an
augmented version of the CompLex Corpus (Shard-
low et al., 2020), which contains English sentences
from three genres of corpora: the Bible, Europarl,
and biomedical writing. From each sentence, both
single- and multi-word tokens were selected and
annotated by approximately 7 annotators. Each
token was annotated on complexity from a scale of
1-5, though for this competition, complexity was
normalized to a continuous scale between 0 and 1.

Token complexity can differ based on the com-
plexity of the token both with and without context.
For example, for one instance, the token river was
rated to have a complexity of 0.0, while jurispru-
dence had a complexity of around 0.672 for another
instance. However, token complexities can also
change based on the context from which it came
from. For example, the token wisdom was given a
complexity of 0.125 when it was associated in the
sentence “The rod of correction gives wisdom, but
a child left to himself causes shame to his mother.”
However, the same token was given a significantly
higher complexity score of 0.368 when associated
with the sentence “For in much wisdom is much
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grief; and he who increases knowledge increases
sorrow.”

Given that GloVe embeddings (Pennington et al.,
2014) store semantic meaning of single words, we
chose to use GloVe embeddings to represent both
tokens and sentences. With this approach, we de-
termine that despite contextual variation, inherent
properties of the token itself are sufficient to ex-
plain much of the variance in lexical complexity.

2.2 Traditional Text Complexity Metrics

Many traditional metrics for calculating the com-
plexity of text predict with syllable to word count
ratios. For example, the Flesch-Kincaid Grade
Level Formula 1 (Kincaid et al., 1975) calculates
the complexity of a text with the formula

GL = 0.39
words

sentence
+ 11.8

syllables
word

− 15.59.

Other models based on the grade level of a text,
such as the Automated Readability Index and the
SMOG Index (Kincaid et al., 1975), also exist.
Our original hypothesis inferred that these indexes
would be good indicators to predict the complexity
of a token. However, through empirical analysis,
we found that these indicators provided no marginal
benefit compared to GloVe sentence embeddings
and simpler handcrafted features. As seen in Table
1, we found that the correlation coefficients of tra-
ditional complexity metrics to dataset complexity
values were low. To test this, we initially included
these traditional metrics in our feature space for the
following models. Our model reported an R score
of 0.63 with the Flesch-Kincaid Grade and SMOG
Index as additional features. We removed these
features after observing little benefit or worse loss
scores (in comparison to Table 2). This suggests
that word complexity in context may be embedded
in a deeper semantic level than simple word and
syllable lengths.

Model Pearson
Flesch-Kincaid Grade 0.07
Automated Readability Index 0.07
SMOG Index 0.03

Table 1: Pearson correlation between complexity met-
rics and true complexity values (single-word)

1https://github.com/shivam5992/textstat

3 System Overview

3.1 Single Word Complexity Score
3.1.1 Data Representation and Features
This system uses a combination of GloVe (Penning-
ton et al., 2014) word embeddings and hand-crafted
features as final features to predict complexity on.
Pre-trained GloVe embeddings with a dimension of
300 for both the single-word token and each word
in the context sentence were used. For the single-
word embeddings, PCA with a final dimension of
100 was applied. Since the context sentences con-
tained a variable number of words, we calculated
the component-wise mean of all the word-vector
representations in the context sentence. We found
that sentence features had low mutual information,
hence we decided to use a limited number of 10
PCA features to calculate the mean of the sentence
features. This mean representation is concatenated
with the GloVe embedding of the single-word to-
ken.

In other words, let t be the GloVe embedding
of the single-word token, and wi be the GloVe
embedding for word i in the context sentence, with
n words. We calculate the sentence representation
s to be

s =
∑n

i wi

n
,

leading to features r = [t, s] with a dimensionality
of 110 features.

On top of this representation, we include hand-
crafted features. Through manual tuning, we cre-
ated a set of manual features:

• NUMLETTERS: the number of letters in the
token

• NUMCAPITALS: the number of capital let-
ters in the token

• NUMSYLLABLES: the number of syllables
in the token

• NUMDIGITS: the number of digits in the to-
ken

• ISFIRSTCAPITAL: whether or not the first
letter is capitalized (implying it is a subject or
technical term)

• NUMSENTWORDS: the number of words in
the context sentence

• CORPUSTYPE: the type of corpus the sen-
tence is taken from
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• POS: the part of speech of the token

• ISINNER: whether or not the token is in a
named entity

The ”POS” and ”IsInNER” features are obtained
from the Stanza NLP package (Qi et al., 2020).

Instead of relying on the frequencies of words in
the text we were analyzing, we found that a more
representative frequency metric could be obtained
by counting word occurrences in all Wikipedia arti-
cles. Hence we decided to use frequencies of word
as they appear in the English Wikipedia articles as
of February 2019.2 This feature was concatenated
with all of the other handcrafted features and GloVe
embeddings, leading to a final feature dimensional-
ity of 126.

3.1.2 Learning Models3

Because the system primarily treats the input dat-
apoints as sets of vectors and other numerical fea-
tures, most of the models used were regressors
made for data. As the baseline, we used linear re-
gression with the GloVe embeddings for only the
single-word token and obtained a baseline R of
0.7888 on the train set.

We explored the following machine learning
models:

• Ridge regression is a linear least squares
model with L2 regularization to reduce over-
fitting and variance. We use α = 0.00001 as
the regularization coefficient to prevent over-
fitting.

• Support Vector Regression is a Support Vec-
tor Machine for a regression task that toler-
ates errors within a certain degree ε. We use
ε = 0.02 as the distance within which no
penalty is associated, and C = 0.2 as a regu-
larization parameter to reduce overfitting.

• Decision Tree Regression creates a model as
a series of decision rules. As a baseline, we
created a decision tree with max depth = 6,
though other models use varying depths.

• AdaBoost Regression (Freund and Schapire,
1996) sequentially applies decision trees, with
each tree placing more weight on data that

2https://github.com/IlyaSemenov/
wikipedia-word-frequency

3All models were implemented using SKLearn (Pedregosa
et al., 2012) unless otherwise mentioned.

previous trees did not fit well to. We use De-
cisionTreeRegressors with max depth= 10 as
the base estimator, with a total of nestimators =
20 decision trees.

• XGBoost Regressor overcomes the ineffi-
ciency in gradient boosting of creating a sin-
gle decision tree at a time by parallelizing
tree building. We used max depth= 4 and
λ = 2000 as a regularization parameter. As λ
is responsible for L2 regularization of weights,
using a higher value would make the model
more conservative by encouraging smaller
weights.

• LightGBM Regressor 4 (Ke et al., 2017) is a
framework that uses tree based learning algo-
rithms for gradient boosting. Our model uses
gain-based feature importance, with λ = 50
and nleaves = 40 and a minimum of 100 dat-
apoints per leaf. To avoid overfitting, we
regularize with path smoothing of 1, set a
maximum tree depth of 15, and trained using
DART boosting.

• Stacking We also tested a stack of estima-
tors with a final Ridge regressor to get an en-
semble of predictions and reduce overfitting.
We stacked five AdaBoost Regressors with
nestimators = 50, 100 estimators respectively,
each with a base estimator of a Decision Tree
Regressor with max depth varying between 5,
7, and 9. On top of this, we stacked two Sup-
port Vector Regressors with ε = 0.01, 0.001
and C = 0.1, 0.01 respectively. Finally, we
stacked three LightGBM Regressors, each
with 100, 50, and 10 leaves respectively. This
method was used with the theory that com-
bining multiple models would result in better
predictive power than one model alone.

• Bagging is an ensemble method involving
training copies of a base model on inde-
pendent random samples of the full dataset.
We used an LGBM with nleaves = 40,
reg lambda = 100, path smooth = 1,
max depth = 12, and feature fraction =
0.75 as our base model. We set nestimators =
10, max samples = 0.8, and max features =
0.75 in order to reduce variance of the deci-
sion tree.

4https://github.com/microsoft/LightGBM
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• BERT We also explore context-dependent
deep learning architectures: in particular, we
fine-tune the pre-trained BERT model (De-
vlin et al., 2019). We leverage the pre-trained
BERT neural network5 by tokenizing each
sentence, and providing the target word to
the model as a second sentence. With 2-3
fully connected layers added on top of the
pre-trained model, we fine-tuned this model
to generate a numerical complexity predic-
tion, by optimizing on the L2 Loss. All ex-
periments were implemented using SKLearn
(Pedregosa et al., 2012) and HuggingFace 6.

3.2 Multi-word Complexity Score

3.2.1 Data Representation and Features

Our multi-word data representation closely mir-
rored our single-word token representation. All
hand-crafted features were crafted in the same way
as the single word counterparts, except for the POS
and NER features which were not included. For ex-
ample, the feature NumLetters includes the num-
ber of letters from both words. The context sen-
tence embeddings were calculated with the same
methodology of applying PCA with dimension of
10 to the mean of the GloVe embeddings.

The key difference between the two models lies
in the representation of the multi-word tokens them-
selves. The data provided was consistent in that
each multi-word token consisted of two words.
Therefore, to represent these tokens, we concate-
nated the GloVe representation of each word in
the token, as well as the difference between both
GloVe vectors. From there, we applied PCA of
dimension 150 to this embedding, which was deter-
mined through experimentation, and concatenated
this with the other hand-crafted and context sen-
tence features mentioned previously.

More concretely, let t1, t2 be the GloVe embed-
dings of each word in the multi-word token. We
found the new representation of a multi-word token
m to be

m = [t1, t2, t1 − t2].

This was concatenated with sentence representation
s and handcrafted features for a final dimensionality
of 174 features.

5We use tokenizers and pre-trained models from the Hug-
gingFace transformers library: https://huggingface.co/
transformers/model doc/bert.html

6https://huggingface.com

3.2.2 Learning Models
Given the similarity of the multi-word representa-
tions versus the single-word representations (the
only difference being the addition of a second to-
ken’s GloVe embedding), we used the LightGBM
Regressor outlined in section 3.1.2, as this model
performed the best in the single word token set-
ting. This proved to be an effective way to predict
multi-word complexity.

4 Experimental Setup

The train and validation dataset splits provided
were used in our experimental setup. In addition,
we used K-fold validation to reduce overfitting. Us-
ing K-fold, we split the training set into k smaller
sets arbitrarily, train using k − 1 folds, and cross-
validate with the remaining fold in the train set.
This reduces leakage from the validation set into
the model so that we can accurately validate our
methods.

Task predictions were evaluated using Pearson
correlation, though Spearman correlation, mean
absolute error, mean squared error, and R-squared
were also reported. We compared the performance
of our own models using Pearson correlation to
keep one consistent evaluation metric.

5 Results

5.1 Single Word Results

From Table 2, LGBMRegressor performs the best
in terms of the Pearson metric. Therefore, we chose
this model as our final model for submission.

We found that transforming the word frequencies
to a logarithmic scale did not improve results across
the models we tested. This is expected because
tree-based regressors (Adaboost, LGBM, XGB)
are invariant to monotonic scaling. Our results on
the task evaluation metrics are shown in Table ??.

We suspect Ensemble Stacking overgeneralized
and did not perform effectively as a result, though
other stacking methods could perform better. Sur-
prisingly, the contextual deep learning approach
of BERT did not perform well on the task, only
approaching similar performance to the baseline
linear regression on GloVe embeddings.

Though we scored 27th place out of 54 teams
overall in the Pearson metric for single-words, the
top score was only 0.03 points higher than our own
evaluation score. We suspect that different methods
of stacking regressors and using complex decision
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Model Pearson
Linear Regression 0.7888
BERT 0.7892
Ridge 0.7829
SVR 0.7945
DecisionTreeRegressor 0.7083
AdaBoost Regressor 0.7976
Ensemble Stacking 0.7578
XGBRegressor 0.7884
BaggingRegressor 0.8018
LGBMRegressor 0.8056

Table 2: Experimental results (single-word)

Metric Score Ranking
Pearson 0.7533 (27)
Spearman 0.7044 (34)
MAE 0.0653 (25)
MSE 0.0071 (29)
R2 0.5615 (26)

Table 3: Evaluation results (single-word)

trees would have created a model that predicts well
with the CompLex dataset. However, whether this
type of model will generalize to future datasets is a
subject of investigation.

5.2 Multi-word Expressions Results

We note that our multi-word expression Pearson
metric, as shown in Table ??, performs better than
our single word Pearson, and ranks 14th out of 37
teams. This is most likely because averaging the
GloVe representations of the two tokens allows for
more data points to be represented in the decision
tree model.

6 Conclusion

In this paper we describe tree-based modelling of
words in context to predict lexical complexity. We
find that lexical complexity is already embedded in

Metric Score Ranking
Pearson 0.8280 (14)
Spearman 0.8124 (18)
MAE 0.0711 (24)
MSE 0.0080 (24)
R2 0.6671 (14)

Table 4: Evaluation results (multi-word)

GloVe representations of words and that complex
architectures provide some increase in predictive
performance.

For future work, we suggest taking additional
contextual features into account, such as the prox-
imity of each neighboring word. We also suggest
looking into newer transformer models to represent
contextual embeddings.

As larger bodies of text become widely available
to wide audiences for public consumption, we are
hopeful that such systems will help readers identify
suitable texts for their reading level and help build
systems that can tailor text to varied reading levels,
allowing for greater accessibility.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2012.
Scikit-learn: Machine learning in python. CoRR,
abs/1201.0490.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Matthew Shardlow, Michael Cooper, and Marcos
Zampieri. 2020. CompLex — a new corpus for lexi-
cal complexity prediction from Likert Scale data. In
Proceedings of the 1st Workshop on Tools and Re-
sources to Empower People with REAding DIfficul-
ties (READI), pages 57–62, Marseille, France. Euro-
pean Language Resources Association.

Matthew Shardlow, Richard Evans, Gustavo Paetzold,
and Marcos Zampieri. 2021. Semeval-2021 task 1:
Lexical complexity prediction. In Proceedings of
the 14th International Workshop on Semantic Evalu-
ation (SemEval-2021).

693



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 694–699
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

archer at SemEval-2021 Task 1: Contextualising Lexical Complexity

Irene Russo
ILC-CNR, Pisa, Italy

irene.russo@ilc.cnr.it

Abstract

Evaluating the complexity of a target word in
a sentential context is the aim of the Lexical
Complexity Prediction task at SemEval-2021.
This paper presents the system created to as-
sess single words lexical complexity, combin-
ing linguistic and psycholinguistic variables in
a set of experiments involving random forest
and XGboost regressors.
Beyond encoding out-of-context information
about the lemma, we implemented features
based on pre-trained language models to
model the target word’s in-context complexity.

1 Introduction

Lexical complexity prediction is the task aiming
at evaluating the complexity of a word in context,
modeling a crucial aspect of reading comprehen-
sion. Complex words can slow down the read-
ing process; there is a well-known correlation be-
tween a word’s difficulty and the time spent looking
at it, as emerging from eye-tracking experiments
(Mousikou et al., 2021).

Assessing the complexity of a specific word in
context is a crucial prerequisite for NLP systems
aiming to evaluate a text’s readability and produce
a simplified version of it. It is a prerequisite for
text simplification systems based on lexical sub-
stitutions and can be the starting point to tailor a
text to the user’s needs. It is a topic worthy of
investigation from multiple points of view. In the
past, datasets containing crowdsourced evaluations
of lexical items’ complexity (Paetzold and Specia,
2016b; Štajner et al., 2018) have been used in eval-
uation campaigns.

In this paper, we introduce the system used to
assess single English words lexical complexity at
SemEval-2021 Lexical Complexity Prediction task
(Shardlow et al., 2021). Based on previous ap-
proaches to this issue, we combine linguistic and

psycholinguistic variables, using a random forest
regressor and an XGboost regressor. The major-
ity of the variables encode information about the
word out-of-context (e.g., frequency, number of
letters, age of acquisition) without considering the
sentential context and how it can affect an item’s
complexity.

To approximate in-context complexity, we con-
sider the cloze probability of a word as its proba-
bility to complete a particular sentence frame. We
experiment with different language models in a
masked word prediction framework, taking into ac-
count the first ten most probable words occurring
in that context.

2 Related works

A wide range of approaches has been used for lexi-
cal complexity prediction in past evaluation cam-
paigns. However, previous tasks focused on classi-
fication since the proposed datasets labeled words
in context as easy or difficult.

Including more classes makes the task more dif-
ficult. (Garı́ Soler et al., 2018) investigate the role
of word embeddings in lexical complexity predic-
tion for French words, using as training sets two
French lexical resources that encode the distribu-
tion of words across different levels of difficulty.
According to the authors, the task is influenced by
the context of use of the words. Word embeddings,
encoding contextual information, can be helpful to
determine the lexical complexity of target words.
The authors experimented with different neural net-
work settings (with and without hidden layers), us-
ing as features the number of characters, the num-
ber of phonemes, and the log frequency in a corpus
of film subtitles plus word embeddings trained on
Wikipedia with fastText. However, the combina-
tion of word embeddings with such features does
not improve the results compared with other sets
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of features that always contain frequency, a crucial
indicator of lexical complexity.

In past evaluation campaigns, there have been
occasional attempts at incorporating word embed-
dings models in the automatic evaluation process,
with the assumption that lexical complexity should
be evaluated as a contextual variable. However,
better results have been obtained considering just
static, out-of-context properties of lemmas.

More recently, the trend to use embeddings from
language models to predict psycholinguistic vari-
ables can provide insights about how to incorporate
them in experiments aiming at understanding the
complexity of human comprehension (Hao et al.,
2020).

However, if we frame lexical complexity as a
measure strongly dependent on words’ psycholin-
guistic properties, we should recognize that past
computational efforts for predicting word norms
did not take into account the role of context (Russo,
2020; Charbonnier and Wartena, 2019). Static
word embeddings such as word2vec have been
used to predict values of psycholinguist norms usu-
ally assessed in experimental settings (Ljubešić
et al., 2018; Rothe and Schütze, 2016). More recent
Transformed-based language models that consis-
tently incorporate contextual knowledge have not
yet been considered for this task.

3 The Dataset

The Lexical Complexity Prediction shared task at
SemEval-2021 (LCP-2021) (Shardlow et al., 2021)
is based on an English dataset with a 5-point Likert
scale annotation. The complexity score is similar
to that included in another dataset (Shardlow et al.,
2020). It ranges from very easy for very famil-
iar words to very difficult (unclear words that an
annotator had never seen before). Annotators are
explicitly invited to evaluate the role of the sen-
tence in inferring the meaning of the word. The
task is structured into two sub-tasks:

• Sub-task 1: predicting the complexity score
of single words;

• Sub-task 2: predicting the complexity score
of multi-word expressions.

The task is inspired by two previous competi-
tions (CWI 2016 and CWI 2018) about boolean
complex word identification, aiming at identifying
which words are likely to be considered complex or

domain mean std dev
bible 0.296 0.132
europarl 0.287 0.109
biomed 0.325 0.152

Table 1: Mean complexity and standard deviation for
each domain in the LCP-2021 training dataset.

not by a given target population. However, in LCP-
2021 lexical complexity is a continuous property,
and the task consists of predicting the complexity
score for each target word in context.

7,662 sentences and 3,298 unique tokens com-
pose the LCP-2021 training dataset for single
words evaluation: each token appears in more than
one sentence, making the impact of context crucial
especially for subsets of sentences with highly vari-
able values. For example, the word livers occurs
2 times in the dataset, with different complexity
scores:

• The activity of BCKDH in livers of homozy-
gous knockout mouse pups was undetectable,
accounting for the accumulation of unmetab-
olized BCAA. (complexity score = 0.0499)

• The comparison of gene expression in livers
of mock- or cadmium-treated Mtf1Mx-cre and
Mtf1loxP mice revealed several MTF-1 target
gene candidates. (complexity score = 0.323)

Sentences are extracted from three domains: the
Bible, the English part of the European Parliament
proceedings, and a biomedical corpus composed
of scientific papers. Table 1 reports the mean com-
plexity and the standard deviation for each domain.
Target words extracted from the biomedical corpus
are the most complex. Due to the variability in
complexity for the same target word, the biomedi-
cal corpus is also the domain that poses significant
challenges.

We propose a system for sub-task 1, encoding
for each target word numerical values concerning a
set of variables described in Section 4. We do not
propose a system for sub-task 2.

4 Out-of-Context and In-Context Lexical
Complexity

The lexical complexity of a word can be repre-
sented as an out-of-context property of a lemma or
an in-context property of a word.

Following the first approach, the same lemma

695



has a fixed lexical complexity value, depending on
features such as the number of characters or senses
in WordNet (see the list of out-of-context features
below).

When considering the word in context, its disam-
biguation could affect its complexity rating because
a sense could be more complex than the others (for
example, when a word is used in its specialized
sense). However, because of the lack of method-
ologies for assessing senses’ complexity and the
unsatisfactory performance of word sense disam-
biguation systems, the role of senses’ complexity
for lexical complexity prediction can not be inves-
tigated. Several systems participating at CWI2018
took into account the role of context, focusing on
the whole sentence where target items occur. How-
ever, quite interestingly, one of the best models
(Gooding and Kochmar, 2018) does not consider
the influence of the textual context for determining
the target word’s complexity. We provide the list
of out-of-context features used in our system:

• Length: length of each target word (number
of characters);

• Syllables: number of syllables of each target
word1;

• length sentence: length of each sentence (num-
ber of tokens);

• Word freq: frequency of the target word in the
Exquisite Corpus2;

• AoA Kup: age of acquisition (AoA) of the
target word in (Kuperman et al., 2012) dataset.
The age of acquisition of a word is a psycholin-
guistic variable concerning the age at which
a word is typically learned. We assume that
easy words are learned at a younger age;

• Children freq: the natural logarithm of the fre-
quency of lemmas in children movies subtitles
included in a corpus of subtitles(Paetzold and
Specia, 2016a). We expect that difficult words
will be less frequent in this corpus;

• Visual Genome (VG) freq: the natural log-
arithm of the lemmas’ frequency in the Vi-
sual Genome descriptions corpus. The Vi-
sual Genome dataset (Krishna et al., 2017)

1The values are obtained using syllables 0.1.0
https://pypi.org/project/syllables/

2The values are obtained using wordfreq 2.3.2
https://pypi.org/project/wordfreq/

is the largest dataset of image descriptions
for English. It is composed of dense annota-
tions of objects, attributes, and relationships
between objects for 108K images. As a pre-
processing step, the descriptions have been
annotated with TreeTagger (Schmid, 1994)
and the list of lemmas has been ordered by
frequency;

• ImageNet: the presence of the target word in
ImageNet (boolean feature). Only concrete
nouns can be included as pictures in this re-
source. We assume that easy words tend to be
more frequently concrete (Russakovsky et al.,
2015);

• Uppercase: this variable takes into account
the relative number of uppercase letters in the
target words, and it is used to detect acronyms.
We notice that acronyms are generally rated
as difficult word;

• Scrabble: for each target word, its value ac-
cording to Scrabble’s rules. In this word game,
each letter’s number of points is based on the
letter’s frequency in standard English. We
expect that complex words will have higher
ratings;

• Senses: number of senses of the target word
in WordNet (Fellbaum, 1998);

• Bible/europarl/biomed: boolean feature en-
coding if the sentence belongs to one of these
domains.

A word x is difficult in a sentential context if the
reader has never encountered it. The relative fre-
quency should be sufficient to explain the perceived
complexity of x). A word can also be difficult if
its meaning in that specific context is not the most
common one, i.e when a specialized sense is ac-
cessed or a metaphorical meaning is created. If
we know a word by the company it keeps, we do
not know a word when its company is somewhat
eccentric.

Lexical complexity as an in-context property can
be modeled considering the influence of the sur-
rounding text. There are two ways to model the
textual context’s influence on the lexical complex-
ity of a target word: local context (a window span
surrounding the target word) and global context
(the whole sentence). In the first case, words sur-
rounding the target word can increase the overall
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complexity in that text span. In the second case,
the probability of a word in a masked word predic-
tion task that concerns the whole sentence can be
a good approximation of the intuition that words
semantically difficult to generate are more com-
plex than the simpler ones. We implemented two
types of variables as in-context features to address
in-context lexical complexity:

• Position [Language Model]: The target word’s
position among the first ten most probable
words completing the sentence in a masked
context for five language models. The lan-
guage models tested are BERT, XLNet large,
BART, ELECTRA, and RoBERTa. We used
pre-trained models made available by Hug-
gingFace;

• Out-of-context complexity of the previous
tokens: the value is obtained by selecting
the five content words (nouns, adjectives, or
verbs) preceding the target word and averag-
ing their complexity values resulting from a
random forest regressor that includes just out-
of-context variables.

The Pearson correlations among each feature and
target word’s lexical complexity reveal that word
frequencies are the most relevant features, espe-
cially frequencies extracted from children movies’
subtitles (see Figure 1). The age of acquisition of
words is another variable strongly correlated with
the complexity of the target words (r=0.55).

Figure 1: Pearson correlations between lexical com-
plexity and word frequencies from different corpora, re-
ported for each LCP-2021 domain.

5 Experiments

The set of features described in Section 4 has been
implemented for the training set, tested on trial set,

Domain MAE R
bible 0.075 0.69
europarl 0.054 0.76
biomed 0.066 0.86
all out of context 0.063 0.817
all in context 0.095 0.415
all 0.065 0.80

Table 2: Random forest regression results on trial set.

features MAE R
all out of context 0.063 0.793
all 0.062 0.799

Table 3: Average random forest regression results on
five training-trial splits.

and - to avoid overfitting - on multiple training-test
splits with test sets mimicking the trial set’s com-
position. We experimented with a system based
on a random forest regressor (RF), and a system
based on an XGboost regressor (Chen and Guestrin,
2016), both implemented in sklearn. For the RF
regressor, we choose to measure the quality of a
split with mean absolute error. We also normalized
the features with the standard scaler function (scal-
ing each feature between 0 and 1). We obtained
comparable results, with random forest regressor
performing slightly better for several training-trail
splits. For this reason, Table 2 summarises RF re-
sults. We report the mean absolute error (MAE)
and Pearson correlation (R), used to rank the sys-
tems at LCP-2021 task.

In-context features emerge as useless from these
results; however, testing with different trial sets, we
infer that this set of features could improve the per-
formance (see Table 3) and, as a consequence, we
included all the features for the processing of the
test set released by LCP-2021 organisers. Concern-
ing the role of word frequencies, that are negatively
correlated with lexical complexity (see Section 4),
frequencies from a general corpus used together
with frequencies from children movies subtitles
guarantee a good performance of the RF regres-
sor in terms of MAE and Pearson correlation (see
Table 4). Our system ranked 22 out of 54 for the
single word complexity prediction task. The best
result on the test set was obtained using all the fea-
tures and the random forest regressor (see Table 5).
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features MAE R
Word freq + children freq 0.069 0.74
Word freq + VG freq 0.068 0.752

Table 4: Average random forest regression results on
five training-trial splits for frequency features.

all features
Pearson 0.7561
MAE 0.0641
Spearman 0.7067
MSE 0.0069
R2 0.5707

Table 5: Best random forest regression results on test
set (official results).

6 Conclusions

This paper briefly reports the system created to
predict single words’ complexity score for the Lex-
ical Complexity Prediction shared task at SemEval-
2021 (LCP-2021).

Our system ranked 22 out of 54 for this sub-task,
with slightly inferior results to the ones obtained
on trial sets. The significative role of frequencies
extracted from different corpora paves the way to
further investigations in this direction.

Encoding in-context complexity as a variable re-
lated to pre-trained language models’ predictions
had no significant impact on the results. However,
in-context complexity could be modeled in differ-
ent ways. Experimenting with how in-context tar-
get word’s complexity changes depending on the
frequencies of the surrounding words is a future
analysis topic.

References
Jean Charbonnier and Christian Wartena. 2019. Pre-

dicting word concreteness and imagery. In Pro-
ceedings of the 13th International Conference on
Computational Semantics - Long Papers, pages 176–
187, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost:
A scalable tree boosting system. KDD ’16, page
785–794, New York, NY, USA. Association for
Computing Machinery.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Aina Garı́ Soler, Marianna Apidianaki, and Alexan-
dre Allauzen. 2018. A comparative study of word

embeddings and other features for lexical complex-
ity detection in French. In Actes de la Conférence
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Abstract

This paper describes systems submitted to Se-
mEval 2021 Task 1: Lexical Complexity Pre-
diction (LCP). We compare a linear and a non-
linear regression models trained to work for
both tracks of the task. We show that both
systems are able to generalize better when
supplied with information about complexities
of single word and multi-word expression
(MWE) targets simultaneously. This approach
proved to be the most beneficial for multi-
word expression targets. We also demonstrate
that some hand-crafted features differ in their
importance for the target types.

1 Introduction

SemEval-2021 Task 1 is the task of Lexical Com-
plexity Prediction (LCP) (Shardlow et al., 2021).
The goal of the task is to assign a target in a con-
text a continuous value ranging between 0 and 1,
where 1 indicates complete unintelligibility and 0
signals perfect familiarity as perceived by a native
speaker. The task has two tracks: predicting the
complexity score of single words and predicting
the complexity score of multi-word expressions
(MWE). Such a task can be useful in applications
like text simplification or automatic language profi-
ciency evaluation.

The CompLex dataset (Shardlow et al., 2020)
used in this task is the first English dataset for the
task of LCP. The dataset contains single words
and MWEs annotated with their lexical complexity
score in a specific context. The annotations were
provided by native speakers of English. The tar-
gets and their contexts were obtained from texts of
different domains: the Bible, Europarl, and biomed-
ical texts. The dataset opens several avenues for
research. For instance, how does the perceived
complexity of single words and MWEs differ? How
does context affect the lexical difficulty of a target?

How does text genre affect comprehensibility of
words?

We were interested if there is a difference in
performance when using the same representation
methods for single words and MWEs. It was de-
cided to approach both tracks as the same problem.
We did not distinguish between MWEs and single
words and they both were treated as one lexical
unit. The same array of features was extracted to
represent the targets and linear and non-linear re-
gressors were trained using both subcorpora. This
strategy showed performance gains for both single
targets and MWEs.1

In addition, we wanted to investigate how much
the classic hand-crafted features like frequency and
length together with subword information and con-
textualized embeddings (not employed previously
for LCP) contribute to complexity estimation of
both single words and MWEs. We present the anal-
ysis of feature imortance rankings in Section 6.

2 Related Work

Complex Word Identification (CWI) is the task of
determining how difficult a lexical unit is to a target
audience (Shardlow, 2013). The knowledge about
the lexical unit complexity can benefit several NLP
tasks such as text simplification (TS) or applica-
tions related to second-language (L2) acquisition.

The goal of TS is to adapt a text to make informa-
tion, for example, news, more accessible for read-
ers. The TS target group can be language learners
(Petersen and Ostendorf, 2007), people with cog-
nitive disabilities (Yaneva et al., 2016) or people
with low literacy skills (Aluisio et al., 2010). One
of the strategies of TS is lexical simplification (LS).
LS is the task of substituting complex words with
simpler ones without changing the original mean-

1The code and notes are available at https://github.
com/katildakat/COMPLEX
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ing. To perform the LS one should first identify the
units that might pose a difficulty (Shardlow, 2013).

In the area of L2 acquisition, lexical complexity
information can be used both for generating study
materials appropriate for a learner’s level (Alfter
and Volodina, 2018) and for evaluating how profi-
cient a student is (del Rı́o, 2019).

To understand what makes a word complex for
a target audience, one needs to obtain data with
complexity annotated. The first manually labelled
resource for CWI (CWI 2016) was introduced
in SemEval-2016 Task 11 (Paetzold and Specia,
2016). It contained sentences with words marked
by non-native speakers of English as either diffi-
cult or easy to understand. A word was labelled as
complex if at least one annotator marked it as such.
Thus, words were classified in a binary fashion
without addressing the proficiency levels or native
languages of the annotators.

Another CWI dataset (CWI 2018) was presented
for BEA workshop 2018 (Yimam et al., 2018). It
contains CWIG3G2 datasets (Yimam et al., 2017)
expanded further with the French subcorpus. This
is a multilingual dataset with words and MWEs
marked as complex or simple within a given con-
text. There is no standard form for MWEs. The an-
notators were free to label any sequence of words
as a difficult MWE. The complexity judgments
were collected from native and non-native speakers.
In addition to the binary labels, the words were
also assigned an aggregated complexity score. The
score was computed as the proportion of annotators
that found a word complex.

In summary, in both CWI 2016 and CWI 2018
the annotators were not asked to provide a degree
of difficulty. The MWEs in CWI 2018 were not
clearly defined making the nature of their complex-
ity hard to investigate. The CompLex dataset used
in SemEval-2021 Task 1 was constructed to amend
the aforementioned faults of CWI 2016 and CWI
2018. First, it treats complexity as a continuous
value. Second, it bounds MWEs to only pairs of
adjective-noun or noun-noun phrases allowing for
more targeted research. We believe that models
trained using CompLex have more flexibility in
their application. For example, one could set a
threshold of complexity to account for different
language proficiency levels for both TS and L2
acquisition-related applications.

One of the goals of CWI is to establish what
makes a word complex. The reports for CWI 2016

(Paetzold and Specia, 2016) and CWI 2018 (Yi-
mam et al., 2018) as well as the investigation of
CWI 2016 results (Paetzold and Specia, 2016) show
that such features as frequency and length are the
most predictive for establishing word complexity.
Moreover, according to the baselines provided by
SemEval-2016 Task 11 organizers (Paetzold and
Specia, 2016), the degree of polysemy of a word
was also quite successful. In addition to hand-
crafted features, the teams in both competitions
made use of different static word embeddings but
they didn’t outperform the frequency-based fea-
tures.

3 System overview

A linear and a non-linear models were compared.
We have trained a linear regression and a multilayer
perceptron using the same array of features. The
features can be divided into two categories: embed-
dings and hand-crafted features for both target and
context.

3.1 BERT Embeddings

For embeddings, it was decided to represent targets
and their context using BERT model (Devlin et al.,
2018). First, BERT is able to provide a target with
a representation dependent on the context. Second,
because of its next sentence prediction objective
during training, it is also able to produce a separate
representation for the whole sentence in the same
vector space as a target. We were interested to see
if target representation would benefit from combi-
nation with this additional context information.

When a single word target is present in the
BERT’s token vocabulary, it is represented sim-
ply as a vector assigned to it by the model. In the
case when a target is absent from the BERT’s vo-
cabulary, it is represented as an average vector of its
subword embeddings. MWE targets were always
represented as an average representation for their
BERT tokens. Contexts were assigned with [CLS]
token embeddings. Finally, target and context em-
beddings were combined into a mean vector of 768
dimensions. When used as features to represent
the training dataset in the linear regression model,
mean embeddings demonstrated a slightly better
performance on the trial data than concatenated
vectors. For this reason, we have opted for the av-
erage embeddings of targets and contexts instead
of the concatenation.
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3.2 Hand-crafted features
In addition to contextualized embeddings, we were
also interested to explore other features. We were
especially interested to study how the target’s sub-
word information can be used to explain its com-
plexity value. The final set of features was as fol-
lows:

1. The number of BERT vocabulary tokens (an
average number for MWE) in a target. This
feature was chosen because it implicitly con-
tains frequency information about a target.
BERT uses WordPiece tokenizer (Wu et al.,
2016). WordPiece is a frequency-based word
segmentation algorithm. It learns to unite
substrings into new vocabulary items to in-
crease the likelihood of its training data. This
means the targets that were tokenized into sev-
eral BERT tokens were infrequent in the tok-
enizer’s training data.

2. A BERT score for a masked target. This fea-
ture was intended to convey information about
how easy it is to predict a target in a given con-
text. This approach however has a downside
for our specific BERT implementation: BERT
base model was trained to predict a randomly
masked WordPiece token not a whole word
token. It was decided that all single word tar-
gets are to be replaced with one MASK token.
An average log probability to appear in place
of a mask for every target subtoken was col-
lected. MWE targets were substituted with
two MASK tokens. An average log probabil-
ity for subtokens of both words is collected,
summed and divided by two.

3. A number of subwords a target is divided into
(an average number for MWE) by a Morfes-
sor segmentation model (Virpioja, 2013). This
feature was expected to be a better complex-
ity predictor than a target length in characters
since it might be able to indicate a number of
word parts connected to semantic or grammat-
ical meaning.

4. An average frequency of subwords a target
contains. This feature was expected to reflect
how easy it would be to derive a meaning
from word subparts. The frequencies were
estimated using the segmentation model. In
CWI 2018 the character n-gram frequency
information employed by (Alfter and Pilán,

2018) achieved high results. The success of
this approach might be supported by the ev-
idence that morphological awareness affects
how both native and non-native speakers pro-
cess words (Kimppa et al., 2019) (Deacon
et al., 2014). This feature was chosen to in-
vestigate if frequency of morpheme-like sub-
words is a also a good lexical complexity pre-
dictor.

5. A number of WordNet synsets (Fellbaum,
1998) that a target is present in. This feature
was used to provide the information on the tar-
get’s degree of polysemy. For the MWEs, we
counted both synsets for the whole expression
as well as synsets where either of the parts is
present.

6. The length of a target in characters (an average
length for MWEs).

7. Finally, we have chosen to include word fre-
quency (an average frequency for MWEs).
Frequency information is known to be a good
predictor for complexity, so it was reasonable
to use it as a baseline to compare other fea-
tures to.

For the submitted system, the embedding fea-
tures were concatenated with hand-crafted features
into 775 dimensional vector. This vector was used
as an input to both regressor types.

We have also investigated if the described setup
would benefit from feature selection. We decided
to half the original feature vector’s size in half by
leaving only 400 most informative dimensions. For
the linear model, the dimensions were ranked by
their F-score. The mutual information was used to
chose the dimensions for the neural model.

4 Experimental setup

4.1 Data

During the system development phase, models
were trained only with the train subsets of the data,
and then their performance was evaluated on trial
subsets. For the final submission, both linear and
non-linear models were trained with all the data
available (single target train and trial, MWE target
train and trial).
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LR all NN all LR 400 NN 400
Singles 0.666 0.712 0.688 0.707
MWEs 0.783 0.785 0.796 0.774

Table 1: Joint System Results

4.2 Parameters and Tools

Both linear regression and neural network models
were trained with scikit-learn 0.24.0 2. It was also
used for the feature selection process. The neural
network model is a simple Multilayer Perceptron
regressor with one ReLu layer of 20 neurons and
alpha parameter set to 0.9. Using 8-fold cross val-
idation procedure on all labelled data, we noticed
that smaller layer sizes and larger alpha parameters
produced better results. However, we feel it is im-
portant to note that the hyperparameters were not
tuned with proper care, and we believe that better
configurations might be possible.

We used BERT base model (cased) to get contex-
tualized embeddings. The cased model was chosen
because in CompLex dataset case plays an impor-
tant role when distinguishing a target from other
words in context. The model was used through the
4.0.0 version of transformers library (Wolf et al.,
2020).

The Morfessor segmentation model was trained
with Morfessor 2.03 using logarithmic frequency
dampening for words in the data, and with the cor-
pus weight parameter α = 0.1. The text used for
the segmentation model comes from samples of all
subcorpora in The Corpus of Contemporary Amer-
ican English (COCA) but for the Academic texts4.

The WordNet was used via NLTK 3.45. The
word frequencies were obtained using the Zipf fre-
quency estimates in the ’best’ wordlist of wordfreq
library6 (Speer et al., 2018).

5 Results

The results of the systems trained jointly with sin-
gle and MWE targets are presented in Table 1. The
results for the systems trained with each subcorpus
separately are reported in Table 2. The results in
both tables are given using Pearson correlation co-

2scikit-learn https:
//scikit-learn.org/stable/index.html

3Morfessor 2.0 morfessor.readthedocs.io
4COCA samples www.corpusdata.org/formats.

asp
5NLTK https://www.nltk.org/
6wordfreq

https://pypi.org/project/wordfreq/

LR NN
Singles 0.669 0.706
MWEs 0.678 0.752

Table 2: Separate Systems Results

S+MWE S MWE
FEATURE m f m f m f
len tok 1 1 1 1 1 1
bert prob 2 2 2 2 3 2
morf len 3 3 4 3 2 3
morf freq 9 89 8 53 109 338
n senses 5 13 3 4 5 5
len char 4 110 5 197 8 11
word freq 0 0 0 0 0 0

Table 3: Importance Ranks for Hand-crafted Features

efficients for the test data indicated by row names.
LR stands for the linear regression model, and NN
stands for the neural regressor. Captions ’all’ and
’400’ distinguish between models trained using all
775 dimensions or 400 with the best scores.

For the single word track, the CodaLab system
for some reason accepted only the linear scores,
and for the MWE track CodaLab, conversely, ac-
cepted only non-linear model predictions. More-
over, the top score for the linear model in the single
word track was reported without using Morfessor
features.

6 Discussion

As can be seen from the results tables, two trends
are obvious: MWE targets always benefit from
being trained together with single word targets, and
the non-linear model tends to slightly outperform
the linear one. This can be contributed both to the
nature of MWE and to the smaller size of the MWE
subcorpus. Although the linear system trained with
only single word targets showed better results than
the joint one, the non-linear model has also gained
from the information about both types of targets
when predicting single word complexity. Finally,
the feature selection procedure was able to improve
the performance of the linear model.

We were interested to find what features for
MWEs and single words signal lexical complexity
in a similar manner and what features differ in their
usefulness. For this purpose, we collected F-scores
and mutual information values for the hand-crafted
features evaluated for the joint dataset as well as
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for the target type subcorpora.
The ranks of hand-crafted features according to

their F-scores and mutual information values can
be found in Table 3. The features are listed in the
same order as they were presented in Section 3.2.
The names of the columns reflect the content of the
dataset divisions that were explored: S stands for
the single targets part of the data, MWE stands for
the examples with only MWE targets, and S+MWE
marks the results for the joint dataset. The mutual
information ranks can be found in ’m’ columns and
F-scores are given in ’f’ columns. The ranks are
reported for the features evaluated with the train
and the trial parts of the corpus simultaneously.

The information collected in Table 3 shows some
differences in feature importance for predicting
single word targets and MWE targets, as well as,
differences in how suitable some features are for
linear and non-linear models. Moreover, the consis-
tency of how high most of the hand-crafted features
rank indicates that they remain relevant for LCP
and CWI tasks even in presence of such modern
approaches as contextualized embeddings.

All hand-crafted features were present in the top
20 highest scored dimensions with mutual informa-
tion for the joint data and for the single target data.
For the MWE targets, information about morph
frequency played a less important role placed at
only 110 place. Moreover, with the F-score rank-
ings, morph frequency was absent in the top 20
dimensions from all the data configurations.

Target length in characters has not appeared in
the top 20 most correlated features for the joint
dataset and for the single targets, but it was still rel-
evant for MWEs. Word frequency was rated as the
highest correlated feature in all setups, it was fol-
lowed by the BERT token number feature. These
two features were followed by morph number and
by the probability of a masked target. Surprisingly,
the subword frequency feature was not as success-
ful. The reason for this can be the small amount of
data it was estimated on.

7 Conclusion

This paper presents the results of two systems sub-
mitted to SemEval 2021 Task 1: Lexical Complex-
ity Prediction (LCP). We show that training a sys-
tem jointly with single word targets and MWE tar-
gets benefits the predictability of both target types,
especially the MWEs. We also show that the fre-
quency of subwords feature is more predictive for

single targets, while length of a target in characters
is more useful for MWE complexity estimation. Fi-
nally, we show that classic frequency feature is still
the most predictive one, even when used together
with new contextualized embeddings.

For the future work, we would like to explore
if the underwhelming results of the subword fre-
quency feature can be amended by collecting statis-
tics from a larger resource. Another thing we would
like to research is what makes the joint training
with single and MWE targets successful. Is it the
smaller amount of data available for MWEs? Or
is it the nature of noun-noun and adjective-noun
MWE expressions? Does the second word of the
pair contribute more to the MWE complexity and
thus compares better to single word targets?
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Abstract

This paper presents the GX system for the Mul-
tilingual and Cross-lingual Word-in-Context
Disambiguation (MCL-WiC) task. The pur-
pose of the MCL-WiC task is to tackle the
challenge of capturing the polysemous nature
of words without relying on a fixed sense in-
ventory in a multilingual and cross-lingual set-
ting. To solve the problems, we use context-
specific word embeddings from BERT to elim-
inate the ambiguity between words in different
contexts. For languages without an available
training corpus, such as Chinese, we use neu-
ral machine translation model to translate the
English data released by the organizers to ob-
tain available pseudo-data. In this paper, we
apply our system to the English and Chinese
multilingual setting and the experimental re-
sults show that our method has certain advan-
tages.1

1 Introduction

In recent years, contextual embeddings have drawn
much attention. The approaches of calculating
contextual embeddings include multi-prototype
embeddings, sense-based and contextualized em-
beddings (Camacho-Collados and Pilehvar, 2018).
However, it is not easy to evaluate such multiple
embedding methods in one framework. Pilehvar
and Camacho-Collados (2019) present a large-scale
word in context dataset to focus on the dynamic se-
mantics of words. Following and expanding them,
the MCL-WiC task (Martelli et al., 2021) performs
a binary classification task that indicates whether
the target word is used with the same or different
meanings in the same language (multilingual data
set) or across different languages (cross-lingual
data set). Besides, it is the first SemEval task for
Word-in-Context disambiguation (Martelli et al.,
2021).

1Reproducible code: https://github.com/yingwaner/bert4wic

A typical solution to the problems is obtain-
ing context-specific word embeddings, such as
Context2vec (Melamud et al., 2016) and Bidirec-
tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019). BERT is designed to
pre-train deep bidirectional representation in unla-
beled texts by jointly conditioning in the left and
right contexts of all layers. Due to its powerful
capabilities and easy deployment, we use BERT as
our major system and fine-tune on the training data
released by the organizer to get the context-specific
word embeddings.

In this paper, we participate in the sub-task of
multilingual settings in English and Chinese. The
organizer only provides English training data, and
we fine-tune the pre-trained English BERT model
based on this data. For Chinese tasks where no
training set is available, we train a satisfactory
neural machine translation (NMT) model to trans-
late the English training set into Chinese and then
fine-tune the Chinese BERT model based on the
pseudo-data. The experimental results show that
our method achieves 82.7% in English multilingual
setting and 76.7% in Chinese multilingual setting.

2 Background

In this section, we will briefly introduce the word-
in-context task and the structure of BERT for the
sentence pair classification task.

2.1 Word-in-Context

The MCL-WiC task (Martelli et al., 2021) ex-
pands the Word-in-Context (WiC) (Pilehvar and
Camacho-Collados, 2019) task to be multilingual
and cross-lingual settings. For WiC, each instance
has a target word lemma, which provides it with
two contexts. Each context triggers the specific
meaning of the word lemma. The task is to iden-
tify whether lemma in two contexts corresponds to
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Figure 1: Overall fine-tuning procedures for our system. The token Lemma is the target word that require the
system to judge whether it has the same meaning in two sentences.

the same meaning, which has been widely inves-
tigated in recent years. Wiedemann et al. (2019)
perform word sense disambiguation models with
contextualised representations. Hu et al. (2019)
prove that the supervised derivation of time-specific
sense representation is useful. Giulianelli et al.
(2020) present an unsupervised approach to lexical-
semantic change that makes use of contextualized
word representations. Loureiro and Jorge (2019)
compute sense embeddings and the relations in
a lexical knowledge base. Scarlini et al. (2020)
drop the need for sense-annotated corpora so as
to collect contextual information for the senses in
WordNet.

2.2 BERT

Neural contextualized lexical representation has
been widely used in natural language processing,
which benefits from deep learning model in opti-
mizing tasks while learning usage dependent repre-
sentations, such as ULMFiT (Howard and Ruder,
2018), ELMo (Peters et al., 2018), GPT (Radford
et al., 2018, 2019), and BERT (Devlin et al., 2019).
BERT is pre-trained by two unsupervised tasks:
masked LM task, which is simply masking some
percentage of the input tokens at random, and then
predicting those masked tokens; and next sentence
prediction task, which is whether the next sentence
in the sentence pair is the true next sentence. In the
fine-tuning phase, task-specific inputs and outputs
are plugged into the BERT and all parameters are
fine-tuned end-to-end.

The architecture of BERT is a multi-layer bidi-
rectional Transformer encoder based on the orig-
inal implementation described in Vaswani et al.

(2017). There are several encoder layers in the
BERT model. For a single layer in Transformer
encoder, it consists of a multi-head self-attention
and a position-wise feed-forward network. Specifi-
cally, there are specialized input and output formats
for different downstream tasks. For language pair
classification task, the input format is [CLS] + Sen-
tence 1 + [SEP] + Sentence 2 + [SEP]. At output
layer, the [CLS] representation is fed into an output
layer for the classification task, such as entailment,
sentiment analysis, and the word-in-context disam-
biguation task.

3 System Overview

Systems proposed for both English and Chi-
nese multilingual settings were based on BERT
model (Devlin et al., 2019) with task-specific input
modifications. We participate in the multilingual
setting and divide the system into two parts accord-
ing to the language: English setting and Chinese
setting.

3.1 English Setting

Following Devlin et al. (2019), we initialize our
model with the well pre-trained model, which has
been trained on the large-scale data set and obtained
the general knowledge. Then we fine-tune the
model on the English parallel sentences released
by the organizers.

Model Architecture The model architecture in
the fine-tuning stage is shown in Figure 1. On
the basis of the original BERT input, lemma token
is added, which is the target word that needs the
system to judge whether it has the same meaning
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Figure 2: Our system input representation. The input embeddings are the sum of the token embeddings, the
segment embeddings, the position embeddings, and the lemma embeddings. It is only at the position of the lemma
tokens that the lemma embedding is ET. In this example, we assume that Tok N in sentence 1 and Tok 1 in sentence
2 are also lemma tokens.

in the sentence pair. For instance, given the sen-
tence pairs ’They opposite to the policies designed
to tackle inflation.’ and ’I tackled him about his
heresies.’, the standard input format is:

[CLS] They opposite to the policies designed
to tackle inflation . [SEP] I tackled him about his
heresies . [SEP] tackle [SEP]
where tackle is the lemma token, which is also
the word that needs to be judged by the system
whether it has the same meaning in two sentences.
In this way, we emphasize the target word so that
the output T[CLS] of the output layer can express
whether the lemma token is synonymous in the two
sentences.

Input Representation In addition, we also made
some modifications for the input representation,
which is made up of the sum of the corresponding
token, segment, and position embeddings accord-
ing to Devlin et al. (2019). The input representation
of our system is shown in Figure 2. We adjust the
segment embeddings of the lemma token to further
emphasize the importance of the target word in
the whole sentence pair, which is represented as
EC. Moreover, we introduce lemma embeddings
in the input representation. Lemma embeddings
are similar to segment embeddings, but segment
embeddings are to distinguish between sentence
1 and sentence 2, while lemma embeddings are
to distinguish between the position of lemma to-
kens and the position of other tokens. Only the
lemmas in sentence 1 and sentence 2 and the final
lemma Tok L will be marked ET, and the other
positions will be marked EF, that is, for a training
example, there will be three lemma markers ET

in lemma embeddings. In this way, we enhance
the relationship of lemma tokens to make them

more closely connected, and at the same time high-
light and emphasize the position and importance of
lemma tokens, so that the final output can obtain
enough lemma token information.

3.2 Chinese Setting

The multilingual setting in Chinese is more dif-
ficult because there is no available training data
in Chinese, so it is not possible to fine-tune the
pre-trained BERT model. In order to solve this
problem, we introduce neural machine translation
method.

Neural Machine Translation Due to the supe-
rior performance of Transformer, we use it as our
neural machine translation model. We first train an
English-to-Chinese translation model on an open-
source dataset and evaluate its performance to en-
sure that it has sufficient translation quality. Then,
we use this translation model to translate sentence
1 and sentence 2 from the English training set re-
leased by the organizer into Chinese, respectively,
and regard the generated sentences as the training
data of Chinese MCL-WiC task. Finally, we use
the pre-trained Chinese BERT model to fine-tune
this generated data set to get our final model.

Model Architecture The system in Chinese set-
ting is somewhat different from the system in En-
glish setting in that there is no lemma token. We
use machine translation to translate English train-
ing data into Chinese, because every token in a
sentence has a context, so sentence to sentence
translation does not change the meaning of the
whole sentence much. However, a lemma token
has no context, so it is difficult for translation model
to choose which token to translate into the target
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English Chinese
Valid ∆ Test ∆ Valid ∆ Test ∆

Fine-tuning 81.2 - 81.6 - 67.9 - 76.7 -
+Lemma Token 81.8 0.6 82.1 0.5 67.1 -0.8 76.0 -0.7
+Segment EC 82.2 0.4 82.4 0.3 67.3 0.2 76.3 0.3
+Lemma Embeddings 82.5 0.3 82.7 0.3 - - - -

Table 1: Main results on English and Chinese tasks. The measure is accuracy (%). The ’+’ in systems represent an
increase in modules of the system in the previous row. ∆ represents the difference between the result of the current
system and that of the previous row.

language, because it may correspond to multiple
meanings. Therefore, the final submitted system to
the task has no lemma token, no segment embed-
ding EC and no lemma embeddings. However, in
order to analyze the role of lemma tokens in this
multilingual setting, we will report the results with
lemma token and segment embedding in Table 1
and Section 5.1. In this case, the lemma token will
be translated to the most common Chinese word.

4 Experimental Setup

In this section, we will describe the experimental
settings for English and Chinese in detail.

4.1 English Setting

Take one pre-trained English cased BERT base
model2 with 12 layer, 768 hidden, 12 heads, and
110M parameters, and fine-tune on the English
training data in 5 epochs with batch size is 16 and
max sequence length is 128. The dropout rate is 0.2
and other settings are followed Devlin et al. (2019).

4.2 Chinese Setting

The fine-tuning setups are the same as the English
ones, except that the pre-training model is a Chi-
nese BERT base3 with a layer of 12, hidden size
of 768, heads of 12, and parameters of 110M.

For machine translation model, we implement
Transformer base model (Vaswani et al., 2017) us-
ing the open-source toolkit Fairseq-py (Ott et al.,
2019). The training data of English-Chinese is
from UNPC v1.0 and MultiUN v1 in WMT174,
which are total 30.4M sentences. We trained the
model with dropout = 0.1 and using Adam op-
timizer (Kingma and Ba, 2015) with β1 = 0.9,

2https://storage.googleapis.com/bert models/2018 10 18/
cased L-12 H-768 A-12.zip

3https://storage.googleapis.com/bert models/2018 11 03/
chinese L-12 H-768 A-12.zip

4http://www.statmt.org/wmt17/translation-task.html

β2 = 0.98, and ε = 10−9. The translation is detok-
enized and then the quality is 35.0, which is evalu-
ated using the 4-gram case-sensitive BLEU (Pap-
ineni et al., 2002) with the SacreBLEU tool (Post,
2018).5. This translation model achieves satisfac-
tory results, which shows that the method of trans-
lating English training set into Chinese has theoret-
ical basis and feasibility.

5 Results

In this section, we will first report the main results
of English and Chinese multilingual setting and
analyze the importance of all the factors in the
system. Then, we explore the probability of error
for each part of speech.

5.1 Main Results

We conduct our experiments based on BERT
frame6. The specific meanings of each system in
the main experiment are as follows:

Fine-tuning Following the standard fine-tuning
format of Devlin et al. (2019), sentences 1 and 2
are connected by [SEP].

+Lemma Token Lemma token is added on the
basis of the previous system, and the training in-
put at this time is ’[CLS] + Sentence 1 + [SEP] +
Sentence 2 + [SEP] + Lemma + [SEP]’.

+Segment EC Based on the previous system,
the segment embedding of the final lemma token is
set to EC.

+Lemma Embeddings Lemma embedding will
be added on the basis of the previous system, and
the input representation at this time consists of
four parts: token, segment, position, and lemma
embeddings.

The main results are shown in Table 1, and the
specific analysis is as follows:

5BBLEU+case.mixed+lang.en-zh+numrefs.1+smooth.
exp+test.wmt17+tok.zh+version.1.4.4

6https://github.com/google-research/bert
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English Chinese
Num Acc Num Acc

NOUN 528 83.14 554 78.70
VERB 298 83.22 364 75.82
ADJ 144 81.94 62 69.35
ADV 30 73.33 20 60.00
Overall 1000 82.70 1000 76.70

Table 2: Error analysis on the test set. Num represents
the number of examples of this part of speech in the test
set, and Acc represents the accuracy (%) of the current
part of speech.

English Fine-tuning alone can obtain relatively
good performance, and the performance has been
further improved with the introduction of the three
new modules. Here we conduct experiments to
check their influence on our method by adding
them one by one. With the addition of +Lemma
Token, our system has a significant improvement,
while the improvement brought by the other two
modules is slightly lower, indicating that the pres-
ence or absence of lemma token has a greater im-
pact.

Chinese Fine-tuning achieves the best perfor-
mance in this task. After the introduction of
+Lemma Token, the result shows that the effect
is greatly reduced, which may be because the trans-
lated lemma token is not necessarily the appropriate
translation result. Because fine-grained translations
of individual tokens have no context, they often fail
to translate properly, as mentioned in Section 3.2.
However, after the introduction of +Segment EC,
the effect has been slightly improved, which proves
that our idea is effective. Because it is difficult to
get the exact position of the lemma word after trans-
lation, there is no result of +Lemma Embeddings.
Based on the above results, we use Fine-tuning
as the final system for the Chinese task. In other
words, our final model has no lemma token, no seg-
ment embedding EC and no lemma embeddings.

5.2 Error Analysis

Lemma tokens have different parts of speech, so
we think about the relationship between the accu-
racy of system prediction and the parts of speech
of lemma tokens. Based on this, we reported the
accuracy of each part of speech in the test set, as
shown in Figure 2.

There are similar findings of error analysis for
English and Chinese tasks. The order of the data

Figure 3: The performance of different dropouts on test
set in English and Chinese tasks.

volume on the test set is NOUN, VERB, ADJ, and
ADV. The distribution of these data types is consis-
tent with the training set, and each part of speech
in the training set is 4123, 2269, 1429, and 175,
which is also in descending order and occupies
roughly the same proportion of each part of speech.
Therefore, the parts of speech with more data in
the training set often get better performance on the
test set, which indicates the importance of data size.
More data can enable the model to learn more clas-
sification knowledge and behavior, which affects
the prediction results.

5.3 Impact of Dropout

To analyze the importance of dropout, we con-
ducted experiments by using different dropouts
on both English and Chinese test sets, and the re-
sults are shown in Figure 3. As we can see, the
performance of the two tasks increases with the
increment of dropout rate and reach the best perfor-
mance when dropout rate equals 0.2. As dropout
rate continues to increase, the performance deterio-
rates, which indicates that too many lost parameters
may make the model difficult to converge.

Besides, Dropout performs differently in terms
of data quality. In general, real corpus (English)
should be of better quality than pseudo corpus (Chi-
nese). On this basis, the performance of different
dropout models on high-quality real corpus is rela-
tively stable, with a gap of less than 1%, while the
performance of pseudo corpus fluctuates greatly,
with a gap of 3%.

6 Conclusion

In this paper, we describe the GX system partici-
pating in the MCL-WiC task. In order to obtain the
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general basic knowledge, we use the pre-trained
BERT model and then fine-tune it on the data re-
leased by the organizer. In order to further empha-
size the relationship between sentence pairs and
the importance of lemma, we introduce three new
factors: lemma token, lemma segment embedding,
and lemma embedding, and finally get better results.
Our system reaches 82.7% in English multilingual
setting and 76.7% in Chinese multilingual setting.
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Abstract

This paper presents the PALI team’s winning
system for SemEval-2021 Task 2: Multilin-
gual and Cross-lingual Word-in-Context Dis-
ambiguation. We fine-tune XLM-RoBERTa
model to solve the task of word in context dis-
ambiguation, i.e., to determine whether the tar-
get word in the two contexts contains the same
meaning or not. In implementation, we first
specifically design an input tag to emphasize
the target word in the contexts. Second, we
construct a new vector on the fine-tuned em-
beddings from XLM-RoBERTa and feed it to
a fully-connected network to output the prob-
ability of whether the target word in the con-
text has the same meaning or not. The new
vector is attained by concatenating the embed-
ding of the [CLS] token and the embeddings
of the target word in the contexts. In training,
we explore several tricks, such as the Ranger
optimizer, data augmentation, and adversar-
ial training, to improve the model prediction.
Consequently, we attain the first place in all
four cross-lingual tasks.

1 Introduction

This year, the SemEval-2021 task 2, multilingual
and cross-lingual word-in-context (WiC) disam-
biguation (Martelli et al., 2021), defines the task of
identifying the polysemous nature of words with-
out relying on a fixed sense inventory in a multi-
lingual and cross-lingual setting. The task aims to
perform a binary classification task to determine
whether the target word contains the same meaning
or not in two given contexts under both the same
language (multilingual) setting and the different
languages (cross-lingual) setting. In the multilin-
gual setting, the tasks consist of English-English
(En-En), Arabic-Arabic (Ar-Ar), French-French
(Fr-Fr), Chinese-Chinese (Zh-Zh) and Russian-
Russian (Ru-Ru) while in the cross-lingual set-
ting, the tasks consist of English-Chinese (En-Zh),

English-French (En-Fr), English-Russian (En-Ru),
and English-Arabic (En-Ar).

The tasks contain the following challenges:
• The same word may deliver different mean-

ings in different context (Lei et al., 2021).
• The training data is scarce. For example, in

the multilingual tasks, there is only training
data in En-En, while in the cross-lingual tasks,
there is no training data.

To overcome these challenges, we explore the
uniqueness of the tasks and implement several key
technologies:

• First, we follow (Botha et al., 2020) to spe-
cially design an input tag for the multilingual
pre-training XLM-RoBERTa model to empha-
size the target word in the contexts. That is,
the target word is encompassed by the special
symbols of <t> and </t>. Meanwhile, the
given two contexts are concatenated by the
<SEP> token.

• Second, we apply data augmentation and add
external data from WordNet to enrich the train-
ing data. It is noted that we only expand the
data in the task of En-En and do not consider
other techniques, e.g., back-translation, for
the cross-lingual tasks. Adversarial training is
also applied to learn more robust embeddings
for target words. The Ranger optimizer with
the look-ahead mechanism in the AdamW op-
timizer is adopted to speed up the convergence
of training.

• Finally, we construct a new vector on the fune-
tuned embeddings, i.e., concatenating the em-
beding of the [CLS] token and the learned
embeddings of the target words’ in both con-
texts. The new vector is then fed into a fully-
connected network to produce the binary clas-
sification prediction. Cross-validation and
model ensemble are also applied to attain a
robust output.
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The rest of this paper is organized as follows: In
Sec. 2, we briefly introduce related work. In Sec. 3,
we detail our proposed system. In Sec. 4, we
present the experimental setup, procedure, and the
results. Finally, we conclude our work in Sec. 5.

2 Related Work

The SemEval-2021 task 2 aims to handling the
tasks of multilingual and cross-lingual word-in-
context disambiguation (Martelli et al., 2021), i.e.,
to determine whether the target word contains the
same meaning in both given contexts. In the fol-
lowing, we will elaborate several related work.

Some recent effort, e.g., (Pilehvar and Camacho-
Collados, 2018), has been conducted to curate and
release datasets to solve the task of WiC disam-
biguation. Though it can be narrowed down to
binary classification, some techniques have to be
implemented to enhance the model performance.
For example, the trick of input highlighting mech-
anism (Botha et al., 2020) can be facilitated to
promote the importance of the target word. The
idea of unifying entity linking and word sense dis-
ambiguation (Moro et al., 2014) can be borrowed
to solve the task. The idea of freezing the trained
model for other languages (Artetxe et al., 2020)
can be explored to relieve the issue of no training
data in the cross-lingual tasks.

Recently, due to the superior performance in
tackling NLP tasks (Yang et al., 2021; Yang and
Shen, 2021; Wang et al., 2021), pre-trained lan-
guage models, such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), start to dominate
the way of word representations than static word
embedding methods, e.g., Word2Vec (Mikolov
et al., 2013) and FastText (Joulin et al., 2017). Espe-
cially, the XLM-RoBERTa (Conneau et al., 2020)
model is a newly released large cross-lingual lan-
guage model based on RoBERTa and is trained
on 2.5TB filtered CommonCrawl data in 100 lan-
guages. Different from other XLM models, XLM-
RoBERTa does not require the language token to
understand which language is used and can deter-
mine the correct language from the input ids. It
is a powerful tool for understanding multilingual
languages and is very helpful for solving the WiC
disambiguation task under the cross-lingual setting.
Hence, we choose XLM-RoBERTa in our system.

A critical issue of the task is lack of training
data. Though existing methods, e.g., lexical substi-
tution (Zhang et al., 2015), back translation (Xie

et al., 2020), and data augmentation (Fadaee et al.,
2017), can be applied to enrich the data, we mainly
explore the usage of WordNet (Fellbaum, 1998)
and the technique of pseudo labelling (Wu and
Prasad, 2018) because WordNet contains rich syn-
onyms while pseudo labelling is effective to utilize
the abundant unlabeled data via their pseudo labels.

Adversarial training (Tramèr et al., 2018) is an
effective method to regularize parameters by in-
troducing noise and to improve model robustness
and generalization. We also explore its possibil-
ity in fine-tuning XLM-RoBERTa to increase the
robustness of the learned the word embeddings.

3 Overview

In the following, we present the task definition, data
preprocessing, and our proposed system design.

3.1 Task Defintion
The task of WiC disambiguation is framed by a
binary classification task. Each instance in WiC
has a target word w, whose part-of-speech is in
{NOUN, VERB, ADJ, ADV}, with two given con-
texts, c1 and c2. Each of these contexts triggers a
specific meaning of w. The task is to identify if
the occurrences of w in c1 and c2 correspond to
the same meaning or not. Figure 1 illustrates an
example from the dataset.

{
"target word": "play",
"sentence1": "In that

context of coordination
and integration, Bolivia
holds a key play in any
process of infrastructure
development.",

"sentence2": "In schools,
when water is needed, it
is girls who are sent to
fetch it, taking time away
from their studies and
play."

}

Figure 1: An example from the WiC disamguation task.

3.2 Data Preprocessing
The training dataset consists of two files in the
JSON format: the .data file and the .gold file.
The .data file contains the following information:
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Figure 2: Fine-tuned XLM-RoBERTa model architecture.

Training Test
No. of target words 3,726 491
No. of pairs 8,000 1,000
Min. tokens 6 5
Avg. tokens (original) 24 26
Max. tokens (original) 88 116
Max. tokens (post-proc.) 81 81

Table 1: Statistics of the data

unique id of the pair, target lemma, part-of-speech
in {NOUN, VERB, ADJ, ADV}, the first sentence,
the second sentence, the start and the end indices
(zero-based numbering) of the target word in the
first and the second context, respectively. The .gold
file contains unique id of the pair and the label,
which is represented by T or F.

For the training dataset, we clean up the text
by completing word abbreviation, removing spe-
cial punctuation, and segmenting the sentences into
subword lists by Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2015). Since it is difficult to capture the
meaning of the target word in the context for long
sentences (Pan et al., 2019; Zhu et al., 2021), we
limit the length of each sentence with maximum
40 words before and after the target word.

We include additional resource, WordNet, to aug-
ment our training data because WordNet is a large
lexical database of English. Nouns, verbs, adjec-
tives and adverbs are grouped into sets of cognitive

synonyms (synsets), each expressing a distinct con-
cepts. Here, we randomly select example sentences
of target word in WordNet to expand our training
corpus, which increases around 30% of training
data. By such preprocessing, we obtain the dataset
and report the statistics in Table 1.

3.3 Model Design

Figure 2 outlines our model architecture, which
consists of four modules, i.e., input design, model
learning, final feature construction, and the classi-
fier. The whole framework is based on fine-tuning
the pre-trained XLM-RoBERTa model to conduct
binary classification on two given contexts. Differ-
ent from the inputs for XLM-RoBERTa, the input
of our system contains of the following modifica-
tions: first, in order to highlight the target word in
the contexts, we borrow the setting in (Lei et al.,
2017; Botha et al., 2020) by adding special sym-
bols <t> and </t> to embrace the target word in
the contexts. Given the example presented in Fig. 1,
the target word of “play” is then embraced by the
additional symbols, <t> and </t> in the contexts.
Second, we concatenate the given two contexts by
<SEP>. Figure 2 illustrates the result in the input
module. Moreover, in the experiment, we exchange
the order of the contexts to get more training data.

After learning the tokens’ representations by
XLM-RoBERTa, we construct a new vector by con-
catenating the [CLS] token’s representation in the
last layer of XLM-RoBERTa and the representa-
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tions of the target word in both sentences. As BPE
tokenization may separate a target word into sev-
eral subwords, we compute its representation by
averaging the corresponding representations. Next,
the newly constructed feature is fed into a fully-
connected network to compute the final binary pre-
diction probability.

During training, we conduct the following tech-
niques to increase the model convergence and ro-
bustness:

• Optimizer. We adopt the Ranger (Yong et al.,
2020) optimizer to replace the AdamW be-
cause it is a more synergistic optimizer com-
bining rectified Adam and the look-ahead
mechanism with gradient centralization in one
optimizer.

• Adversarial training. We apply the fast gra-
dient method (Miyato et al., 2017) in the train-
ing to obtain more stable word representa-
tions.

• Cross validation. We also apply stratified K-
fold cross validation on the training set and the
development set. For each fold, we hold the
group as a local test set and set the remaining
groups as the training set. We then average
the model prediction on each fold as the final
prediction to obtain more robust results.

• Pseudo labelling. Pseudo labelling (Wu and
Prasad, 2018) is an effective semi-supervised
learning method to utilize the abundant un-
labeled data via their pseudo labels. In this
work, we first train our model on the train-
ing set. Next, we apply the trained model
to predict the En-En multi-lingual test set
and use the predicted labels as our pseudo
labels. Finally, both the training set and the
En-En pseudo labels are included to train a
final model. Especially, we observe that by
this trick, this final model can improve the
prediction performance on cross-lingual tasks
slightly.

It is noted that in the cross-lingual tasks, we do not
back-translate the subwords to English but apply
the same model trained from the En-En dataset
because it allows us to maintain the target word in
the corresponding languages seamlessly. This is
similar to the procedure in (Artetxe et al., 2020).

4 Experiments

In the following, we detail our experimental setup
and present the results with analysis.

4.1 Setup

Our code is written in Pytorch based on the Hug-
gingface Transformer library 1 for XLM-RoBERTa.
Other hyperparameters are set based on our hand-
on experience. For example, the seed for the ran-
dom generator is set to 3,999. The batch size is set
to 10 and the hidden feature size is 1,024. The max-
imum length limit of a context is 240 though it is
unreachable because we have conducted trimming
in the data preprocessing procedure. The dropout
rate is tested from {0.2, 0.3, 0.25, 0.28} and finally
fixed to 0.28. K in the stratified cross validation
is set to 5. The two special tokens, <t> and </t>,
are included into the word dictionary for learning.

The training data consists of the official En-En
multilingual training corpus and the contexts from
WordNet. At the beginning, we choose XLM-
RoBERTaBase as the backbone of our system to ex-
plore the possibility of our implementation tricks.
After identifying the effectiveness of the designed
input in Sec. 3.2, we apply XLM-RoBERTaLarge

to tune the corresponding hyperparameters, such
as changing the learning rate, the batch size, the
dropout rate, and the early stop mechanism. Fur-
thermore, we observe that long contexts may ignore
the importance of the target word in the contexts.
Hence, we center on the target words to cut off the
contexts at both ends with a certain length. To fur-
ther strengthen the influence of the target word in
a context, we concatenate the embedding of the
[CLS] token with the embeddings of the target
word in the contexts as the final input for the logit
fully-connected network. From our experiment,
this strategy can significantly boost the model per-
formance while improving the convergence.

4.2 Results

Table 2 reports the results of different implemen-
tation strategies on the tasks. From the results, we
observe that

• By replacing XLM-RoBERTaBase with XLM-
RoBERTaLarge, we can gain at least 3% im-
provement on all tasks.

• By applying Ranger optimizer, we attain the
results in Large+RO, which gain an average in-
crease of 0.2% per task. We conjecture the im-
provement comes from the fact that the model
converges to a more optimal solution.

• In Large+RO+LRA, we vary the learning rate

1https://github.com/huggingface/
transformers
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Strategy Avg En-En Fr-Fr Ru-Ru Zh-Zh Ar-Ar En-Ru En-Zh En-Fr En-Ar
Base 80.8 85.5 80.7 78.7 80.9 79.1 81.0 81.9 79.1 80.4
Large 85.1 88.2 84.2 84.3 87.0 82.6 84.6 85.7 85.6 83.9
Large + RO 85.4 88.7 85.3 85.1 86.9 83.3 84.7 85.9 84.7 83.6
Large + RO + LRA 85.4 89.2 84.9 85.1 86.8 83.2 84.8 85.6 85.2 84.1
Large + RO + LRA + ES 85.5 89.0 84.8 85.5 86.9 83.1 85.2 85.2 85.4 84.1
Large + RO + CTWE 86.3 90.0 85.8 85.9 87.1 83.9 86.0 86.1 85.4 86.2
Large + RO + CTWE + HC 86.3 89.9 85.7 85.9 87.2 84.2 85.6 86.7 85.0 86.3
Large + RO + CTWE + HC

86.5 91.6 85.8 85.7 87.1 84.0 85.3 87.1 85.6 86.0
+ WordNet
Large + RO + CTWE + HC

87.0 91.1 86.3 85.9 87.9 85.1 86.3 87.2 86.3 86.9
+ WordNet + AT
Large + RO + CTWE + HC 88.1 91.7 86.9 86.5 89.2 86.5 88.0 87.9 88.6 87.2
+ WordNet + AT + PL

Table 2: Results of fine-tuning XLM-RoBERTa under different strategies. The abbreviation is defined as follows:
Base: XML-RoBERTaBase; Large: XML-RoBERTaLarge; RO: Ranger Optimizer; LRA: learning rate adjustment;
ES: early stop; CTWE: concatenating target words’ embeddings; HC: the best parameters for LRA and ES; AT:
adversarial training; PL: pseudo labels.

from 1.5e-5, 1.3e-5, 1.2e-5, to 1.21e-5 pro-
gressively and finally find that when the learn-
ing rate is 1.2e-5, we attain the best perfor-
mance. We then search the optimal epoch for
the early stop by setting the maximum num-
ber of epoch to 10. In Large+RO+LRA+ES,
we observe the optimal epoch for early stop
(the patience value) is 3. These parameters are
then fixed for HC. From the results, we notice
that tuning the learning rate and adopting the
early stop mechanism can improve the model
performance accordingly.

• By concatenating target the word embedding,
we obtain the results in Large+RO+CTWE,
and actually, our model can be trained with
fewer epochs and attain around 1.1% improve-
ment on average.

• By adding more training data from WordNet,
we get another 0.2% average improvement in
Large+RO+CTWE+HC+WordNet. We con-
jecture the improvement mainly comes from
the increase of the training data.

• By adding the Pseudo label data, we can
gain another 0.8% average improvement. The
score of EN-EN test dataset is generally
higher than other test dataset. We discover
that the first 462 pieces of English test dataset
have the same target word as test dataset in
other tasks. Therefore, adding EN-EN pseudo
label helps predict other tasks.

In sum, we conclude that by applying XLM-

RoBERTaLarge on the Ranger optimizer, the target
word embedding concatenation mechanism, more
external training data, and pseudo labels, we can
improve the model performance accordingly.

Finally, our system attains the champion on the
En-Ar, En-Fr, En-Ru, and En-Zh cross-lingual
tasks. In multilingual tasks, we also sit at eighth
place, seventh place, sixth place, seventh place,
and fifth place for the En-En, Ar-Ar, Fr-Fr, Ru-Ru,
Zh-Zh tasks, respectively.

5 Conclusion

In this paper, we present our system to tackle the
word-in-context disambiguation task. We fine-tune
the XLM-RoBERTa model to solve both multilin-
gual and cross-lingual word-in-context disambigua-
tion tasks. We specifically design the input format
to emphasize the target word in two contexts and
promote the importance of the target word by con-
catenating the embeddings in the corresponding
context with the [CLS] token to output the classifi-
cation probability. We apply several training tricks
to improve the robustness of model and attain im-
provement during this procedure. The competition
results demonstrate the effectiveness of our imple-
mentation. In the future, we plan to explore more
model architecture to boost the performance for
multilingual tasks.
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Abstract

This paper introduces the system description
of the hub team, which explains the related
work and experimental results of our team’s
participation in SemEval 2021 Task 2: Mul-
tilingual and Cross-lingual Word-in-Context
Disambiguation (MCL-WiC). The data of this
shared task is mainly some cross-language or
multi-language sentence pair corpus. The lan-
guages covered in the corpus include English,
Chinese, French, Russian, and Arabic. The
task goal is to judge whether the same words
in these sentence pairs have the same meaning
in the sentence. This can be seen as a task of
binary classification of sentence pairs. What
we need to do is to use our method to deter-
mine as accurately as possible the meaning of
the words in a sentence pair are the same or dif-
ferent. The model used by our team is mainly
composed of RoBERTa and Tf-Idf algorithms.
The result evaluation index of task submission
is the F1 score. We only participated in the En-
glish language task. The final score of the test
set prediction results submitted by our team
was 84.60.

1 Introduction and Background

With the continuous development of science and
technology, we are now in an era of massive data.
We cannot use manual methods in the processing
and retrieval of text data. Especially in the work
of comparing and calculating the semantic differ-
ence at the word level in the text. In this type of
work, automatic processing of text data with ma-
chines has become a new choice. The research on
the detection method (Resnik, 1995; Miller and
Charles, 1991) and evaluation method (Sánchez
et al., 2012) of semantic similarity has become a
subject of wide discussion. Specific application
scenarios have been produced in some fields of
natural language processing and information re-
trieval. Such as sentiment analysis (Araque et al.,

Figure 1: A word cloud diagram of the training set text
data provided by the task organizer team. The result
shown in the figure is the data after removing the stop
words.

2019), medical disease similarity query (Mathur
and Dinakarpandian, 2012), text question and an-
swer(Mohler and Mihalcea, 2009) etc.

Similar to humans’ strategies for detecting the
meaning of words in different sentences, machines
and algorithms also need to predict the results
based on the context. Therefore, the method of gen-
erating vectors based on each word is not suitable
for such tasks. For example Word2Vec (Mikolov
et al., 2013). Based on the characteristics of text se-
rialization, extracting contextual information in the
text as the input of the model will provide the model
with richer and more accurate information. For ex-
ample, in dealing with the problem of polysemous
and synonymous words. The ELMo (Peters et al.,
2018) method based on LSTM (Shi et al., 2015)
overcomes the difficulty that the model cannot learn
the context. ELMO can dynamically adjust word
embedding according to the context, so it can solve
the problem of ambiguity. However, the use of a
bidirectional LSTM as a feature extractor makes
its training time and feature extraction effect unsat-
isfactory. In the follow-up work, the appearance of
Transformer (Vaswani et al., 2017) introduces new
and better feature extractors for the model. The
BERT (Devlin et al., 2019) model based on Trans-
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(a) The validation set data (b) The test set data

Figure 2: The word cloud diagram of the validation set and test set data provided by the task organizer team. The
result shown in the figure is the data after removing the stop words.

former Encoder (Vaswani et al., 2017) achieved the
best results in many NLP tasks.

We participated in SemEval-2021 Task 2: Multi-
lingual and Cross-lingual Word-in-Context Disam-
biguation (MCL-WiC) English task. This task is to
predict whether a word with the same part of speech
has the same meaning in a sentence pair (Martelli
et al., 2021). We are inspired by the work of Chen,
Weilong and others on the task of predicting the
influence of context on word similarity (Chen et al.,
2020), and use methods based on RoBERTa (Liu
et al., 2019) and Tf-Idf (Ramos et al., 2003) to com-
plete the task. At the same time, we also tried to
combine ALBERT (Lan et al., 2020) with BERT
(Devlin et al., 2019) and Tf-Idf to observe their
performance on the English data set. We introduce
our methods and experiments in detail in Sections
2 and 3. Our model code can provide reference 1.

2 Data and Methods

In this section, we will introduce the data we use
in the task and the models and methods we use.

2.1 Data Description
The task organizer team provides each team with
training data sets, validation data sets, and test data
sets related to the ”Multilingual and Cross-lingual
Word-in-Context Disambiguation” task. Because
we only successfully submitted the test set predic-
tion results of the English task, we only discuss the
English data set here. The training data set and the
validation data set are composed of two parts. The
first part contains the ID, the lemma of the target
word, the part of speech of the target word, the
sentence pair data, and the position index of the
target word in the sentence pair. The target word is
usually only one word, and they have the same part

1https://github.com/Hub-Lucas/hub-at-task2

Figure 3: The model structure and data flow we used in
the task.

of speech in the sentence pair. The second part is
whether the target words appearing in the sentence
pair are tags with the same meaning.

If two words have the same meaning, it is ”True”,
otherwise it is ”False”. The sentence lengths in the
sentence pairs are not the same. Compared with
the training data set and the validation data set, the
test set only contains the first part mentioned above.
We need to use our method to predict whether the
same words appearing in sentence pairs in the test
set have the same meaning. Table 1 shows a sample
of sentence pair data we used in the task.

There are 8000 and 1000 data in the training set
and validation set respectively. The proportions
of the “True” label and the “False” label in the
training set and the validation set are the same, both
are 50% and 50%. There are 1000 pieces of data
in the test set. Information about word frequency
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ID Lemma Part of Speech Sentence Start End
151 excess NOUN We want to rebuild our country, which

was dismantled by the excesses of
Mobutu

60 68

151 excess NOUN More often than not, words per page are
well in excess of that standard.

48 54

Table 1: The sample data of a pair of sentence pairs we use in the task.

[Tf − Idf Output]i × [RoBERTa Outpt]i = [Weighted]i (1)

[Tf − Idf Output]Ti × [Weighted]i = [RoBERTa Weighted Output]i (2)

0 ≤ i < batch size (3)

will be involved in our method. We use word cloud
graphs to visualize the text data in the training set
and the text data in the test set. The word cloud
image clearly shows us the characteristics of word
frequency distribution in the text data set. Figure 1
and Figure 2 show the word frequency information
in the training set, validation set, and test set.

2.2 Methods

Combined with the analysis and understanding of
task description and task data set, we chose to de-
velop a system based on RoBERTa and Tf-Idf. Be-
sides, we also tried to use the combination of AL-
BERT (Lan et al., 2020), BERT (Devlin et al., 2019)
and Tf-Idf to verify their effect on the verification
set. Due to the addition of the attention mechanism,
Transformer has achieved good results in multi-
tasking in the field of natural language. The three
models of BERT, ALBERT, and RoBERTa are all
based on the improvement of the transformer archi-
tecture. Compared with BERT, ALBERT not only
has fewer parameters, but also has the characteris-
tics of parameter sharing between different layers
(Lan et al., 2020; Devlin et al., 2019). Therefore,
ALBERT is better than BERT in terms of memory
space and training time. Compared with ALBERT
(Lan et al., 2020), RoBERTa (Liu et al., 2019) does
not perform the task of predicting the next sentence
during the pre-training process, and also uses a
new dynamic masking mechanism. At the same
time, the pre-training time of the RoBERTa model
is longer, using a larger batch size, and the corpus
data used for pre-training is also larger (Liu et al.,
2019).

In our system, the first step is to use the pre-

processed data as the input data of RoBERTa and
Tf-Idf. In the second step, we get the output result
of the last layer of RoBERTa (RoBERTa Output)
and the output result of Tf-Idf (Tf-Idf Output). In
the third step, we use the output result of Tf-Idf to
weight the output result of RoBERTa. We can get a
weighted result, we call it RoBERTa weighted out-
put. In the fourth step, we connect the RoBERTa
output result and the RoBERTa weighted output
result together. In the fifth step, we use the result of
the previous step as the input of the classifier. Use
the classifier to output the prediction results of the
model. In the final step, the results of the model
prediction are processed into the format required
by the task organizer team.

Among them, the shape of RoBERTa out-
put [batch size, max sequence length, hidden
size]. The shape of Tf-Idf output is [batch size,

max sequence length]. Equation 1-3 is the process
of weighting operation.

In equation 1, [Tf − Idf Output]i is the
result of the i − th batch of Tf-Idf output.
[RoBERTa Output]i is the result of the i − th
batch of RoBERTa output. The result of multiply-
ing these two matrices is [Weighted]i.

In equation 2, [Tf − Idf Output]Ti is the trans-
pose of [Tf − Idf Output]i matrix. The result of
multiplying [Tf−Idf Output]Ti and [Weighted]i
is [RoBERTa Weighted Output]i.

In equation 3, The value range of i is an inte-
ger between 0 and batch size. Calculate the value
of each [RoBERTa Weighted Output]i to get
[RoBERTa Weighted Output]. Its shape is the
same as RoBERTa output.

Figure 3 shows the model structure and data flow
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Method F1 Score
ALBERT+Tf-Idf 82.53
BERT+Tf-Idf 82.04
RoBERTa 83.41
RoBERTa+Tf-Idf 84.81

Table 2: F1 result scores obtained on the validation set
using different models. The validation set is provided
by the task organizer team.

of RoBERTa combined with Tf-Idf.

3 Experiment and Results

In this section, we will introduce the data prepro-
cessing methods and experimental settings we used
in the task and the final results.

3.1 Data Preprocessing

Combined with our analysis in the data descrip-
tion section, we remove the stop words of sentence
pairs in the data. For the stop word list, we use the
stopwords package provided by NLTK. To use the
Tf-Idf algorithm to obtain the weighted output, and
to ensure that the shape of the text encoding pro-
cessed by the Tf-Idf algorithm is consistent with
the output shape of RoBERTa, we have deleted the
part of the text encoding that exceeds the maximum
sentence length. For those less than the maximum
sentence length for text encoding, we perform zero-
padding operations. The encoding of Tf-Idf is ob-
tained using the toolkit provided by gsim (Řehůřek
and Sojka, 2010) 2.

In the data input, we use the [SEP] symbol to
separate the sentence pairs together. Then use the
[SEP] symbol to concatenate Lemma that appears
in each sentence in the sentence pair. It should
be noted that the three models we used in the ex-
periment, BERT, ALBERT, and RoBERTa, are dif-
ferent in the division of symbols. Here, we use
[CLS] and [SEP] uniformly for the convenience of
description.

3.2 Experiment setting

As we introduced in the previous section, on the
data set for this task, we use 4 different models to
experiment with the result scores on the validation
set. We adjust the parameters as much as possi-
ble to achieve the optimal results of each different
model, so different models use different parameter
combination settings.

2https://github.com/RaRe-Technologies/gensim

Team F1 Score Rank
jaymundra 93.30 1
rohangpt 93.30 1
oyx 93.30 1
rohangpt 93.20 2
dipakam 92.80 3
LucasHub(our team ‘hub’) 84.60 49

Table 3: In the result list released by the task orga-
nizer team, the top 3 submitted test set prediction re-
sults scores and our submitted test set prediction results
scores. There are a total of 175 results on the leader-
board of the English task. There are a total of 87 places
from the first to the last.

• ALBERT+Tf-Idf: The epoch, batch size, max-
imum sequence length, and learning rate for
the model are 6, 32, 150, and 3e-5, respec-
tively.

• BERT+Tf-Idf: The epoch, batch size, maxi-
mum sequence length, and learning rate for
the model are 4, 32, 150, and 4e-5, respec-
tively.

• RoBERTa+Tf-Idf: The epoch, batch size,
maximum sequence length, and learning rate
for the model are 5, 32, 150, and 3e-5, respec-
tively.

• RoBERTa: The epoch, batch size, maximum
sequence length, and learning rate for the
model are 5, 32, 150, and 3e-5, respectively.

4 Results

The final result score evaluation index uses the F1
score. Therefore, the effects of the different models
we used in the experimental phase are all using F1
scores to determine which model is better.

We use the same validation set data to evaluate
the performance of different models. Comparing
the result score obtained by the combination of
ALBERT, BERT and Tf-Idf with the score obtained
by the combination of RoBERTa and Tf-Idf, it can
be seen that the combination strategy of RoBERTa
can get a better F1 score. Compared with the F1
score obtained by using RoBERTa alone, the F1
score obtained by RoBERTa+Tf-Idf is better. This
also verifies the feasibility and effectiveness of our
method. We sort the results according to Table 2.

The prediction result of the English test set we
finally submitted is predicted by RoBERTa+Tf-Idf.
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Compared with the F1 scores obtained by the top
three teams in the English data, there is still a cer-
tain gap. Our F1 score ranks middle among all
result scores. Our final ranking is 49th. We sort the
results according to Table 3.

5 Conclusion

This paper proposes a model that combines
RoBERTa and Tf-Idf to calculate whether the tar-
get words in English sentence pairs are similar. We
introduced our analysis of the data, the methods
used in the experiment, and the results of the exper-
iment in Sections 3 and 4. We compared the effects
of different models of ALBERT, BERT, RoBERTa
and the combination of Tf-Idf. The experimental
results also prove that RoBERTa+Tf-Idf can get bet-
ter results in our method. In future work, we will
improve our methods to get better results. For ex-
ample, other types of word embedding vectors can
be introduced into our model, and the method of
weighting and vector fusion can also be improved.
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Abstract
In this paper, we describe our proposed meth-
ods for the multilingual word-in-Context dis-
ambiguation task in SemEval-2021. In this
task, systems should determine whether a
word that occurs in two different sentences
is used with the same meaning or not. We
proposed several methods using a pre-trained
BERT model. In two of them, we paraphrased
sentences and add them as input to the BERT,
and in one of them, we used WordNet to add
some extra lexical information. We evaluated
our proposed methods on test data in SemEval-
2021 task 2.

1 Introduction

Measuring semantic similarity is a task that is im-
portant in many applications such as summariza-
tion, plagiarism detection, etc. To measure the se-
mantic similarity between two words or sentences,
the words’ meaning in their contexts should be
understood. In “Task 2: Multilingual and Cross-
lingual Word-in-Context Disambiguation” of Se-
mEval 2021 (Martelli et al., 2021), systems should
determine whether a word that occurs in two differ-
ent sentences is used with the same meaning or not.
The considered languages in the Word-in-Context
Disambiguation task of the evaluation are Arabic,
Chinese, English, French, and Russian (Martelli
et al., 2021). Due to our internal limitation, we
only evaluated the proposed methods on the En-
glish dataset.

In most cases, humans can understand the cor-
rect meaning of each word by paying attention to
the context of that word. This was the main reason
for proposing the attention mechanism for machine
translation (Vaswani et al., 2017). Because atten-
tion plays an important role in BERT topology (De-
vlin et al., 2019), we believe it should work for
the WSD task. However, in some cases, the two
sentences may be about the same subject, while

the target word has a different meaning. In these
cases, find out that whether the target word has the
same meaning in both sentences or not is difficult.
To overcome this challenge, we need to add some
extra information about the contexts to the input of
the BERT.

We proposed four main methods for this task.
In the first method, we use the BERT model as a
language representation model in which the inputs
are the two sentences that come in a row and are
separated by a “[SEP]” token. Furthermore, the
target word is surrounded by a “[TGT]” token in
both sentences. Then, the first output of the last
layer is used as a classifier to determine whether the
word has the same meaning in the two sentences or
not. In the second one, we added some information
about the target word from the WordNet1 to the end
of each input and used the same strategy as the first
method. In the third and fourth methods, we used
the paraphrases of sentences as additional inputs to
the BERT.

The remainder of the paper is organized as fol-
lows: In section 2, we provide a short literature
review of the WSD task and mention some related
works that used BERT for this task. After that, in
section 3, we introduce our methods in consequent
sections: the first method that only uses the BERT
model is explained in Section 3.1. The second
method that uses the BERT model and some addi-
tional information from WordNet is explained in
Section 3.2. The third and fourth methods that use
the BERT model and add paraphrased sentences as
an additional input to the model are explained in
Section 3.3. Then in Section 4, the used datasets in
our experiments are specified. Finally, the results
and discussion are presented in Section 5.

1https://wordnet.princeton.edu/
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2 Background

2.1 Task Setup
The dataset provided by MCL-WiC2 addresses both
multilingual and cross-lingual aspects, covers all
part-of-speeches, and also a high number of do-
mains and genres. The task of the challenge is a
binary classification where systems should specify
whether the target word has the same meaning in
both sentences (T for true) or different meaning
(F for false). The sentences can be from the same
language (multilingual dataset) or across different
languages (cross-lingual dataset) (Martelli et al.,
2021).

In the following you can find an example of sen-
tence pair in English from the multilingual dataset3:

• In that context of coordination and integration,
Bolivia holds a key play in any process of
infrastructure development.

• A musical play on the same subject was also
staged in Kathmandu for three days.

In this example, the target word “play” should be
tagged as F (False) since it is used in two distinct
meanings.

We evaluated our methods on the English part
of the multilingual dataset. We used the MCL-
WiC training set, containing 8000 sentence pairs
in English as the training data, and the MCL-WiC
development set containing 1000 sentence pairs in
English as the validation set for our system.

2.2 Related works
There are several published works that used BERT
for WSD task (Wiedemann et al., 2019; Du et al.,
2019; Yap et al., 2020; Guo et al., 2020) and also
some other papers that combined BERT and Word-
Net for this task (Levine et al., 2020; Peters et al.,
2019).

For example, (Levine et al., 2020) proposed a
method named SenseBERT in which the model is
pre-trained to predict the masked words and their
WordNet super-senses. They proposed a mech-
anism in which they pay attention to the words
at the sense level. Therefore, they achieved a
lexical-semantic level language model. Sense-
BERT achieved 72.1 % accuracy on the “Word in

2Multilingual and Cross-lingual Word-in-Context Disam-
biguation task

3https://github.com/SapienzaNLP/
mcl-wic/blob/master/SemEval-2021_
MCL-WiC_all-datasets.zip

Context” task which is a state-of-the-art result on
this task.

(Peters et al., 2019) proposed a general method
in which multiple knowledge bases are embedded
into large-scale models. By doing that and using
structured knowledge, they enhanced their repre-
sentations. First, they use an entity linker to re-
trieve relevant entity embeddings for each knowl-
edge base (KB). After that, they use word-to-entity
attention to update contextual word representations.
They trained entity linkers and self-supervised lan-
guage modeling together in an end-to-end multi-
task setting in which a large amount of raw text
is combined with a small amount of entity linking
supervision. By merging WordNet and a subset of
Wikipedia into BERT, KnowBert shows improve-
ment in several tasks such as word sense disam-
biguation. This method achieved a good result on
the “Word in Context” task with 70.9 % accuracy.

“GlossBERT” is another work that was proposed
in (Huang et al., 2019). The contexts and glosses of
the target words were put together and considered
as inputs to the BERT. Three BERT-based models
were proposed for WSD. The SemCor3.0 training
corpus was used to fine-tune the pre-trained BERT
model and finally, the models were evaluated on
several English WSD benchmark datasets. The ex-
perimental results show that the proposed method
achieved new state-of-the-art results on the WSD
task.

3 System Overview

In this section, we explain our proposed meth-
ods. The first method that relies only on the BERT
model is explained in Section 3.1. This method is
further improved in 3.2 by adding some extra infor-
mation extracted from the WordNet to the BERT’s
input. Finally, in section 3.3 we explain an aug-
mentation method by generating the paraphrases
of both sentences and add them as an extra input to
the BERT.

3.1 BERT Method

In this method, we fine-tune a BERT model using
the TensorFlow-models PIP package as explained
in fine-tuning-BERT Tutorial. To do this, we
use the pre-trained BERT encoder (large-uncased-
BERT) from TensorFlow Hub. As mentioned in
the tutorial, to fine-tune a pre-trained model, ex-
actly the same tokenization, vocabulary, and index
mapping with the model should be used. So we
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rebuild and use the tokenizer that was used by the
base model.

Next, we preprocess the provided data and pre-
pare it as the input of the BERT model. For every
pair of sentences first, we add a “[TGT]” token
before and after the target word in both sentences.
After that, we add a “[SEP]” (Separator) token at
the end of both sentences. Then we encode them
separately by the tokenizer. The tokenizer itself
changes all words to lowercase and separates the
unknown words. We also encode and add a “[CLS]”
token at the first position of each example to be
able to do a classification task. Examples are con-
structed by concatenation of two sentences. Note
that we had to add “[TGT]” as a token into the
tokenizer vocabulary. Here is an example of a pair
of sentences:

[CLS] In that context of coordination and
integration, Bolivia holds a key [TGT]
play [TGT] in any process of infras-
tructure development. [SEP] A musical
[TGT] play [TGT] on the same subject
was also staged in Kathmandu for three
days.[SEP]

The output of the tokenization process is named
input word ids. For the above example, we will
have:

[ 101 1999 2008 6123 1997 12016 1998
8346 1010 11645 4324 1037 3145 1
2377 1 1999 2151 2832 1997 6502 2458
1012 102 1037 3315 1 2377 1 2006 1996
2168 3395 2001 2036 9813 1999 28045
2005 2093 2420 1012 102 ]

Note that input word ids vectors should be
padded with zero token ids to make them equal
length.

We also add two vectors as extra inputs to the
BERT model. One of them is called input mask,
in which, for every non-padding token, we put “1”,
and for every padding token, we put “0”. Another
one is called input type ids in which, for each token
of the first sentence, second sentence, and padding
tokens, we put “1”, “2”, and “0” respectively. Thus,
the input vectors equivalent to the above sentence
pairs (without padding tokens) are as follows:

input word ids: [101 1999 2008 6123
1997 12016 1998 8346 1010 11645 4324
1037 3145 1 2377 1 1999 2151 2832

1997 6502 2458 1012 102 1037 3315 1
2377 1 2006 1996 2168 3395 2001 2036
9813 1999 28045 2005 2093 2420 1012
102 ]

input mask: [1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1]

input type ids: [0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2]

After preparing the input, we define the BERT
classifier with the following configuration:

’attention probs dropout prob’: 0.1,
’hidden act’: ’gelu’,
’hidden dropout prob’: 0.1,
’hidden size’: 768,
’initializer range’: 0.02,
’intermediate size’: 3072,
’max position embeddings’: 512,
’num attention heads’: 12,
’num hidden layers’: 12,
’type vocab size’: 2,
’vocab size’: 30522

As mentioned in fine-tuning-BERT Tutorial :
“BERT adopts the Adam optimizer with weight decay.
It uses a learning rate that firstly warms up from
0 and then decreases to 0.” We choose the batch
size= 32 and train the BERT classifier with max-
imum epochs=10. We also use an early stopping
call back, which is based on the validation set loss,
and make the training process stopped, when the
validation loss increase in two steps.

3.2 BERT plus WordNet method
As mentioned before, in some WSD cases using
just the target word context can not be helpful, so
we proposed a new method in which some informa-
tion from the WordNet is added to the end of each
sentence.

In this method, for every synset of the target
word, we define a score that indicates how much
that synset is related to the target word in this con-
text. To calculate this score, we used the following
equation:

(1)

path dist

=
∑

w∈context

1

position dist(w, target w)

×minsyn2∈syns(w)(spd(syn1, syn2)))
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where position dist indicates how much the target
word is far from the word “w” in the context. So,
the farther the word is, the effect of that to calculate
the path dist is less. “syns(w)” are all synsets of
the word “w” in the context. “syn1” is the synset
of the target word that we want to calculate its
path distance. Note that, before calculating the
score, we remove all stop words, punctuations, and
numbers from the context of the target word. spd
is a function that is already implemented in NLTK
package4. It returns the distance of the shortest path
linking the two synsets (if one exists). For each
synset, all the ancestor nodes and their distances
are recorded and compared. The ancestor node
common to both synsets that can be reached with
the minimum number of traversals is used. If no
ancestor nodes are common, -1 is returned. If a
node is compared with itself, 0 is returned5.

As can be seen, if the path dist increases, the
synset is less related to the target word in this con-
text. Therefore, we sort the synsets based on how
relevant they are to the target word and use their
Lexname6 (which is called supersense in (Levine
et al., 2020) to represent them. After that, we add
all the sorted Lexnames at the end of each sentence
separated by a “[LX]” token.

Here is an example for a pair of sentences:

sentence1: in that context of coordina-
tion and integration , bolivia holds a
key [TGT] play [TGT] in any process
of infrastructure development .[LX] time
[LX] state [LX] act [LX] communication
[LX] event [LX] attribute [SEP]

sentence2: a musical [TGT] play [TGT]
on the same subject was also staged in
kathmandu for three days .[LX] time
[LX] communication [LX] act [LX] state
[LX] attribute [SEP]

Finally, we define input word ids,
input mask, and input type ids same as
in Section 3.1 and train the model defined in that
section.

4https://www.nltk.org/_modules/nltk/
corpus/reader/wordnet.html

5https://docs.huihoo.com/nltk/0.9.5/
api/nltk.wordnet.synset.Synset-class.
html

6More information about Lexname can be
found at https://wordnet.princeton.edu/
documentation/lexnames5wn

3.3 BERT plus Paraphrase Method
As paraphrasing changes the structure and some
words of a sentence while the meaning remains
the same, it can be helpful to add some extra infor-
mation as input to the BERT encoder. By adding
this information, we help the model to see other
meanings of the context words.

We used Machine Translation to generate para-
phrases of the sentences. To do that, we use Mi-
crosoft Translator Text API 7 to translate all of the
sentences from English to Spanish and then trans-
late them back from Spanish to English. As this
API has reliable results on translating from and to
the Spanish language, we choose it as the interme-
diate language. However, other languages such as
French and Germany can be used as well.

Based on this idea, two methods are proposed in
this section:

3.3.1 Using generated paraphrases
In the first method, we add the paraphrased sen-
tences word ids, mask, and type ids as additional
inputs to the BERT encoder. Thus, the input to the
BERT encoder is constructed from 6 parts instead
of 3 parts defined in Section 3.1. Normally, three
input vectors are used for the BERT. In this case,
we add three additional input vectors which are
made with the paraphrase of sentences instead of
sentences themselves. In our opinion, the best way
of combining this new data is to concatenate para-
phrases to the main sentences, but in this work, due
to our internal limitations, we could not do this, and
instead, we extended the three inputs to six. In prac-
tice, the input is the sum of the embedded vectors
of the six vectors. We do not use the “[TGT]” token
before and after the target word in the generated
paraphrase because it may be changed.

3.3.2 Using just the different words
As the generated paraphrases are not very different
from the original sentences most of the time, we
propose another method in which we just find the
words that are changed in the generated paraphrase
and then concatenate them with the original words
in the original sentence with a “[S]” token. To do
that, we should find the original word of each newly
generated word by finding the most similar word
from the main sentence to the generated word. We
used the fastText 8 pre-trained model in English to

7https://www.microsoft.com/en-us/
translator/business/translator-api/

8https://fasttext.cc
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Methods run1 run2 run3 run4 run5 Average Std

BERT Method (3.1) 84.4 84.9 84.2 85.8 83.8 84.62 0.688
BERT + WordNet (3.2) 84.5 84.7 84.3 85.2 85.2 84.78 0.366
BERT + Paraphrase Sents (3.3.1) 85.3 85.6 85.6 86.9 85.5 85.78 0.571
BERT + Paraphrase Words (3.3.2) 84.1 86.3 85.6 85.4 82.4 84.76 1.378

Table 1: Results of the proposed methods in 5 different runs. Std in the last column indicate Standard Deviation.

find the most similar word, and then consider it as
the paraphrased word.

4 Experimental Setup

As mentioned before, we used the MCL-WiC train-
ing set, containing 8000 pair sentences in English
as the training data, and the MCL-WiC develop-
ment set containing 1000 pair sentences in English
as the validation data for our system. Similarly,
the MCL-WiC test set containing 1000 pair sen-
tences in English was used as the test data. The
results displayed in Table 1 are based on the test
set. We use the validation set only for finding the
best number of fine-tuning iterations. It is worth
mentioning that in test phase of the third method,
we first paraphrase the sentences of the test set and
make them ready for the model input as we did for
the training and validation sets. All reported results
are based on accuracy that is the main criteria for
the challenge.

5 Results

Due to the random initialization of classifier layer
weights, different results were achieved from differ-
ent runs. So, we decided to run each experiment 5
times and report the average and standard deviation
of model accuracy.

Table 1 shows the obtained results from different
methods based on the accuracy percentage. It is
obvious that adding generated sentence level para-
phrases proposed in Section 3.3.1 improves the
average accuracy compared to the BERT method.
However, we got only a marginal improvement
by adding paraphrased words proposed in Section
3.3.2. We guess the reason for this has two folds:
first, we had some difficulties in finding the origi-
nal word of the changed word, and using only the
fastText may not be helpful. For example, the word
“play” changed to “work” in the generated para-
phrase, while using the fastText, the system found
another word instead of “work”. The second reason
can be eliminating not-changed words that cause a

discontinuity in the word context.
On the other hand, adding more information

from WordNet proposed in Section 3.2 is not very
helpful, and the accuracy is not changed compared
to the base method proposed in Section 3.1. This
has happened because of the used way for adding
this information to the input and the shape of in-
formation. For example, adding only the two first
synsets or adding lemmas or glosses of synsets
instead of their lexnames may cause better results.

It is clear that there is a variation in the results
of each method for different runs. The last column
of the table shows the standard deviation of the
five obtained results for each method. The second
and third methods have smaller STD that means
these methods are robust to random initialization
classifier’s weights, and we can trust more to the
results.

In summary, adding generated paraphrases from
sentences increase the performance of the model.
However, using a better method for generating para-
phrases can lead to better results.

5.1 Conclusion
In this work, we proposed four BERT-based meth-
ods for the WSD task. To handle some issues such
as the same contexts for different word meanings,
we proposed to add some extra information from
WordNet or generate paraphrases of sentences. We
trained and evaluated our proposed methods on the
MCL-WiC training and testing sets, respectively.
The results show that adding generated paraphrases
as an additional input to the BERT can be helpful.
Although, the performance of the paraphrase gener-
ation method plays an important role. So, for future
works, using different methods of generating para-
phrases can be considered. Besides, as mentioned
before, adding only the two first synsets or adding
lemmas or glosses of synsets instead of their lex-
names from WordNet can be investigated. Due to
lack of time, we could not spend too much effort
on this challenge, and we leave it for the future.
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Abstract

This paper describes the system of the Cam-
bridge team submitted to the SemEval-2021
shared task on Multilingual and Cross-lingual
Word-in-Context Disambiguation. Building
on top of a pre-trained masked language
model, our system is first pre-trained on out-of-
domain data, and then fine-tuned on in-domain
data. We demonstrate the effectiveness of the
proposed two-step training strategy and the
benefits of data augmentation from both ex-
isting examples and new resources. We fur-
ther investigate different representations and
show that the addition of distance-based fea-
tures is helpful in the word-in-context disam-
biguation task. Our system yields highly com-
petitive results in the cross-lingual track with-
out training on any cross-lingual data; and
achieves state-of-the-art results in the multilin-
gual track, ranking first in two languages (Ara-
bic and Russian) and second in French out of
171 submitted systems.

1 Introduction

Polysemy still poses a great challenge to natural
language processing (NLP) applications. Depend-
ing on its context, an ambiguous word can refer
to multiple, potentially unrelated, meanings. Re-
cently, as an application of Word Sense Disam-
biguation (WSD) (Navigli, 2009, 2012), Word-in-
Context (WiC) disambiguation has been framed as
a binary classification task to identify if the occur-
rences of a target word in two contexts correspond
to the same meaning or not. The release of the WiC
dataset (Pilehvar and Camacho-Collados, 2019),
followed by the Multilingual Word-in-Context (XL-
WiC) dataset (Raganato et al., 2020), has helped
provide a common ground for evaluating and com-
paring systems while encouraging research in WSD
and context-sensitive word embeddings.

In this paper, we describe our submission to
the SemEval-2021 shared task on Multilingual and
Cross-lingual Word-in-Context (MCL-WiC) Dis-
ambiguation (Martelli et al., 2021), which involves
determining whether a word shared by two sen-
tences in the same language (multilingual track)
or across different languages (cross-lingual track)
has the same meaning in both contexts. Compared
to previous WiC and XL-WiC benchmarks, two
new languages are introduced as well as a cross-
lingual track where systems are evaluated under a
‘zero-shot’ setting.

The MCL-WiC task directly classifies pairs of
sentences with regard to the meaning of the shared
word. By turning WSD into a binary compari-
son task, MCL-WiC avoids the need for sense
tags of previous WSD shared tasks (Manandhar
et al., 2010; Navigli et al., 2013; Moro and Navigli,
2015). It also resembles the Word Sense Alignment
(WSA) task (Ahmadi et al., 2020) more closely, in
which definitions from different dictionaries have
to be aligned. Contextualised word embeddings
and pre-trained Transformer-based (Vaswani et al.,
2017) language models have been increasingly ap-
plied to these tasks and state-of-the-art results have
been reported (Hadiwinoto et al., 2019; Vial et al.,
2019; Levine et al., 2020; Raganato et al., 2020;
Pais et al., 2020; Manna et al., 2020; Lenka and
Seung-Bin, 2020).

In line with previous research, we develop a
neural system based on pre-trained multilingual
masked language model XLM-R (Conneau et al.,
2020). Additionally, we introduce three distance-
based features to be used together with the widely
used sequence and token representations for MCL-
WiC disambiguation. To further improve system
performance, we apply automatic data augmenta-
tion and extract examples from multiple external
resources. A two-step training strategy is then em-
ployed to make use of both in-domain and out-of-
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Split Multilingual Cross-lingual
EN-EN AR-AR FR-FR RU-RU ZH-ZH EN-AR EN-FR EN-RU EN-ZH

Train 8,000 - - - - - - - -
Dev 1,000 1,000 1,000 1,000 1,000 - - - -
Test 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table 1: Number of instances in the official MCL-WiC dataset in each multilingual and cross-lingual sub-track.

Example Instance Sentence #1 Sentence #2 Label

(a)

Existing
There is never any point in trying to make
oneself heard over noise.

We have formulated a programme to address
the traffic noise impact of existing roads.

T

Existing
There is never any point in trying to make
oneself heard over noise.

He went to bed but could not fall asleep be-
cause of the noise.

T

New
We have formulated a programme to address
the traffic noise impact of existing roads.

He went to bed but could not fall asleep be-
cause of the noise.

T

(b)

Existing
Wages have declined sharply as a proportion
of the subsistence minimum.

Agriculture, largely of a subsistence nature,
is the main economic activity.

T

Existing
Wages have declined sharply as a proportion
of the subsistence minimum.

The third member of the Committee is paid
a daily fee for each working day plus subsis-
tence allowance.

F

New
Agriculture, largely of a subsistence nature,
is the main economic activity.

The third member of the Committee is paid
a daily fee for each working day plus subsis-
tence allowance.

F

Table 2: Sample sentence-pair instances selected for data augmentation. The target words are marked in bold.
Examples are extracted from the MCL-WiC dataset.

domain1 data.
In the remainder of the paper, we present the

MCL-WiC disambiguation shared task in Section 2
and our approach in Section 3. In Section 4, we
describe the experiments and present results on
the development set. Section 5 summarises the
official evaluation results. Finally, we provide an
analysis of our system in Section 6 and conclude
in Section 7.

2 Task Description

The MCL-WiC dataset used in the shared task con-
sists of sentence pairs sharing the same target word
in the same language or across different languages.
The task considers five languages: Arabic (AR),
Chinese (ZH), English (EN), French (FR) and Rus-
sian (RU); and contains five multilingual (EN-EN,
AR-AR, FR-FR, RU-RU, ZH-ZH)2 and four cross-
lingual (EN-AR, EN-FR, EN-RU, EN-ZH) sub-
tracks. Training data is available for the multi-
lingual EN-EN sub-track only, and development
data is available for all five multilingual sub-tracks.
No cross-lingual training or development data is
provided. Statistics of the MCL-WiC dataset are

1In this paper, we use the term ‘out-of-domain’ to refer to
data from additional resources (i.e. not provided by the shared
task organisers) - see Section 4.1 for more details.

2[language of sentence #1]-[language of sentence #2]

presented in Table 1.
Results are computed using the accuracy mea-

sure, i.e. the ratio of correctly predicted instances
(true positives or true negatives) to the total number
of instances.

3 Approach

3.1 Data augmentation

Each instance in the (*)WiC datasets (i.e. WiC,
XL-WiC and MCL-WiC) is composed of a target
word and two sentences in which the target word
occurs. We notice that there are cases where the
same sentence appears in multiple instances. As
shown in Table 2, two existing instances, which
share the same target word, contain the same first
sentence, but different second sentences. Therefore,
we construct new instances by pairing the second
sentences from these existing instances and assign
labels based on the original labels:

• If both existing instances are positive (‘T’, i.e.
the target word is used in the same meaning),
the resulting instance should be positive (‘T’)
as well - see Example (a) in Table 2:

M(ws1) = M(ws2),M(ws1) = M(ws3)
⇒M(ws2) = M(ws3)
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where M(wsn) indicates the meaning of the
target word (w) used in sentence n (sn).

• If one of them is positive (‘T’) and the other
is negative (‘F’, i.e. the target word is used in
a different meaning), the new instance should
then be negative (‘F’) - see Example (b) in Ta-
ble 2:
M(ws1) = M(ws2),M(ws1) 6= M(ws3)

⇒M(ws2) 6= M(ws3)

3.2 Model
Following Raganato et al. (2020), we use pre-
trained XLM-R as the underlying language model,
which is a Transformer-based multilingual masked
language model that has been trained on one hun-
dred languages (Conneau et al., 2020). Unlike
previous WiC and XL-WiC models employing a
logistic regression classifier (Wang et al., 2019; Ra-
ganato et al., 2020), we add two additional layers
on top of the Transformer-based model to perform
classification: a linear layer with tanh activation,
followed by another linear layer with sigmoid ac-
tivation.

The model takes as input the two sentences in
each instance. For the representation to be fed into
the linear layers, we concatenate the representa-
tion corresponding to the first special token ([s]) of
the input sequence,3 the vector representations of
the target word in the first ([ws1 ]) and second sen-
tences ([ws2 ]), as well as the element-wise absolute
difference, cosine similarity (cos) and Euclidean
distance (dist) between these two vectors:

[s;ws1 ;ws2 ; |ws1 − ws2 |; cos; dist] (1)

For those cases where the target word is split into
multiple sub-tokens, we take the averaged represen-
tation rather than the representation of its first sub-
token, which has been used in previous work (Wang
et al., 2019; Raganato et al., 2020).4

3.3 Training strategy
Inspired by the success of multi-stage training
for tasks like grammatical error correction (Kiy-
ono et al., 2019; Omelianchuk et al., 2020; Yuan
and Bryant, 2021) and machine translation (Zhang
et al., 2018), we employ a two-step training strat-
egy: 1) pre-training on out-of-domain data; and 2)
fine-tuning with in-domain MCL-WiC data.

3The [s] token in XLM-R is equivalent to the [CLS] token
in BERT (Devlin et al., 2019).

4Our preliminary experiments show that using the averaged
representation is more effective than that of the first sub-token.

Sentence #1 I went outside to get some fresh air. (A2)
Sentence #2 He has an air of authority. (C2)
Label F

Table 3: A sentence-pair example extracted from
CALD. The target words are marked in bold. A2: el-
ementary English, C2: proficiency English.

4 Experiments

4.1 Data

In addition to the MCL-WiC dataset provided by
the shared task organisers, we introduce two types
of out-of-domain data: 1) (*)WiC datasets: WiC
and XL-WiC; and 2) sentence pairs constructed
with examples extracted from datasets that have
been annotated with both complexity and sense in-
formation: the Cambridge Advanced Learner’s Dic-
tionary (CALD)5 and SeCoDa (Strohmaier et al.,
2020).

WiC The English WiC dataset was created us-
ing example sentences from WordNet (Fellbaum,
1998), VerbNet (Kipper-Schuler, 2005), and Wik-
tionary. We extract 6,066 labelled instances (by
removing those without gold labels) and use them
for the shared task.

XL-WiC The XL-WiC dataset extends the WiC
dataset to 12 more languages from two resources:
multilingual WordNet for ZH, Bulgarian (BG),
Croatian (HR), Danish (DA), Dutch (NL), Esto-
nian (ET), Farsi (FA), Japanese (JA) and Korean
(KO); and multilingual Wiktionary for FR, German
(DE), Italian (IT). In total, the XL-WiC dataset con-
tains 112,430 labelled non-English sentence pairs,
including 3,046 ZH-ZH instances and 48,106 FR-
FR ones.6 In contrast to the MCL-WiC task, the
XL-WiC dataset does not include any cross-lingual
sentence pairs.

CALD The CALD contains information about
which words and which meanings of those words
are known and used by learners at each Common
European Framework of Reference (CEFR) level
from A1 (beginner) to C2 (proficiency English).
Only example sentences sharing the same target
word, that is used in a different meaning as well
as at a different CEFR level, are paired. In this

5https://www.englishprofile.org/
wordlists/evp

6In the XL-WiC dataset, the number of instances varies
considerably by language - see Raganato et al. (2020) for more
details.
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Dataset Language #instances #instances Training stage
(w/o aug.) (with aug.)

WiC EN-EN 6,066 8,276 pre-training
XL-WiC(FR) FR-FR 48,016 54,771 pre-training
XL-WiC(ZH) ZH-ZH 3,046 3,370 pre-training
XL-WiC All* 112,430 127,765 pre-training
CALD EN-EN 34,205 - pre-training
SeCoDa EN-EN 10,712 - pre-training
MCL-WiC-train EN-EN 8,000 10,798 fine-tuning
MCL-WiC-dev(EN) EN-EN 1,000 - development

Table 4: Summary of datasets used in our experiments. All*: FR-FR, ZH-ZH, BG-BG, HR-HR, DA-DA, NL-NL,
ET-ET, FA-FA, JA-JA, KO-KO, DE-DE, and IT-IT; w/o aug.: without data augmentation; with aug.: with data
augmentation.

# Pre-training data EN-EN AR-AR FR-FR RU-RU ZH-ZH Avg.
1 WiCaug. + XL-WiC(FR&ZH)aug. 89.90 78.10 80.10 83.60 78.20 81.98
2 WiCaug. + XL-WiCaug. 89.60 79.20 82.90 85.40 79.30 83.28
3 WiCaug. + XL-WiCaug. + CALD + SeCoDa 90.30 80.20 83.30 86.30 76.90 83.40
4 Ensemble (MV) 90.80 79.70 83.00 85.40 79.30 83.64

Table 5: Performance of individual systems and the ensemble on MCL-WiC-dev (multilingual track). The best
results in each sub-track are marked in bold. Avg.: averaged accuracy.

way, sentence pairs are encoded with additional
word complexity information. In total, we generate
34,205 negative EN-EN instances.7 An example is
given in Table 3.

SeCoDa is an English language corpus of words
annotated with both complexity and word senses.
The original data comes from three sources: pro-
fessional News, WikiNews and Wikipedia articles.
The senses are drawn from the CALD and come
at two levels of granularity. To use this dataset for
the MCL-WiC task, sentences sharing an annotated
word are paired: if the word shares a sense, the
pair of sentences is labelled as ‘T’; otherwise, it is
labelled as ‘F’. We use the finer level of granularity
for this assignment. Overall, we extract 10,712
labelled pairs (9,015 positive and 1,697 negative).

All the data introduced in this section is regarded
as out-of-domain data and therefore used in the
pre-training stage, and the in-domain MCL-WiC
training data is used in the fine-tuning stage. For
development, we use only the EN-EN MCL-WiC
development set (MCL-WiC-dev(EN) - see Ta-
ble 4). A single model is developed to target all
multilingual and cross-lingual tracks. It is worth
noting that neither the multilingual AR-AR and
RU-RU data nor the cross-lingual data is used for

7Due to time limitations, we have not used any positive
instances from CALD and leave it for future work.

training, i.e. zero-shot.
The data augmentation method proposed in Sec-

tion 3.1 is applied to the (*)WiC datasets, but not
to CALD or SeCoDa. Detailed statistics of the cor-
pora used in our experiments are presented in Ta-
ble 4.

4.2 Training details

In our experiments, models are trained by min-
imising the binary cross-entropy loss between their
prediction and the gold label. We use the AdamW
optimiser (Loshchilov and Hutter, 2019) with a
fixed learning rate of 1e-5 for all models.8 We use
a dropout layer with a dropout probability of 0.2.
The input texts are processed in batches of 8 and
are padded or truncated to a length of 182.9 We
select the model with the best validation accuracy
on MCL-WiC-dev(EN). Each model is trained on
one NVIDIA Tesla P100 GPU.

4.3 Results

We construct three pre-training sets using differ-
ent combinations of the out-of-domain data and

8We use the pre-trained xlm-roberta-large model
provided by Hugging Face (https://huggingface.
co/) transformers library (Wolf et al., 2020).

9We use a maximum sequence length of 182, which is the
length of the longest input sequence in the MCL-WiC training
set.
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System EN-EN AR-AR FR-FR RU-RU ZH-ZH
Acc. Rank Acc. Rank Acc. Rank Acc. Rank Acc. Rank

#4 92.50 6 84.80 1 86.50 2 87.40 1 85.80 13

Table 6: Official results of our best submitted system on the MCL-WiC test set (multilingual track). Acc.: accuracy.

System EN-AR EN-FR EN-RU EN-ZH
Acc. Rank Acc. Rank Acc. Rank Acc. Rank

#1 86.50 6 85.70 10 86.80 9 88.80 5

Table 7: Official results of our best submitted system on the MCL-WiC test set (cross-lingual track).

train three systems. All these systems are fine-
tuned with the augmented version of the MCL-
WiC training set (MCL-WiC-trainaug. - see Ta-
ble 4). Results on the MCL-WiC multilingual
development set are presented in Table 5, where
WiCaug. is the augmented version of the WiC
dataset, XL-WiCaug. is the augmented version of
the full XL-WiC dataset for all 12 languages, and
XL-WiC(FR&ZH)aug. is a subset of XL-WiCaug.,
containing only examples in FR and ZH (i.e. the
only two languages shared by MCL-WiC and XL-
WiC).

We can see that adding pre-training examples
in other languages from the XL-WiC dataset im-
proves the results for all languages except for EN-
EN, where the accuracy slightly drops from 89.90
to 89.60 (Table 5 #2). Interestingly, Raganato et al.
(2020) also reported performance gains in all lan-
guages after adding multilingual data. Examples
from different languages can still help models bet-
ter generalise across languages. The addition of
English data from CALD and SeCoDa is also ben-
eficial, yielding further improvements in all lan-
guages except for ZH-ZH (#3). Finally, the predic-
tions from all three systems are used in an ensem-
ble model. For each final prediction, the majority
vote (MV) of these predictions is taken, i.e. the
prediction with the most votes is chosen as final
prediction. The ensemble model yields the highest
averaged score, as well as in EN-EN and ZH-ZH
sub-tracks (#4), suggesting that all three systems
(#1, #2 and #3) are complementary.

5 Official evaluation results

We submit our systems to all multilingual and
cross-lingual tracks. The official results of our best
submission for each track are reported in Table 6
and Table 7. Our ensemble system (System #4)
achieves state of the art in the multilingual track,

ranking first in both AR-AR and RU-RU sub-tracks
without any AR or RU training data, and second
in FR-FR out of 171 submitted systems. For the
cross-lingual track, our ‘zero-shot’ system (System
#1) is consistently within the top ten ranks out of
171 total submissions.10

6 Analysis

6.1 Effect of two-step training

We propose a two-step training strategy to make
use of both in-domain and out-of-domain data.
To investigate the effectiveness of both training
steps, we undertake an ablation study, in which
we remove one training step at a time. Table 8
presents the ablation test results of the system pre-
trained on WiCaug. + XL-WiC(FR&ZH)aug., and
fine-tuned on MCL-WiC-trainaug. (i.e. System #1
in Table 5).

The results of the ablation study demonstrate
the effectiveness of the two-step training strategy,
and show that it is crucial to have both pre-training
and fine-tuning stages. Performance drops in all
multilingual sub-tracks when removing either step,
except for removing the pre-training step in FR-FR
(+0.70). This is interesting as the model is pre-
trained on data for only three sub-tracks, where
FR-FR is one of them. For the other two languages,
we observe the biggest performance decrease: ZH-
ZH (−2.80) and EN-EN (−2.30). Overall, the
fine-tuning stage seems more effective than the
pre-training stage, though more data is used in the
latter (10,798 for fine-tuning vs. 66,417 for pre-
training), demonstrating the importance of having
high-quality in-domain data.

10It is to be noted that the calculation of the rank counts
every submission, even if they were made by the same team.

734



Ablated stage EN-EN AR-AR FR-FR RU-RU ZH-ZH Avg.
Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

System #1 89.90 - 78.10 - 80.10 - 83.60 - 78.20 - 81.98 -
no pre-training 87.60 -2.30 77.10 -1.00 80.80 +0.70 82.70 -0.90 75.40 -2.80 80.72 -1.26
no fine-tuning 87.10 -2.80 75.80 -2.30 74.80 -5.30 79.60 -4.00 75.90 -2.30 78.64 -3.34

Table 8: Ablation test results of System #1 on MCL-WiC-dev (multilingual track). ∆ denotes the difference in
accuracy (Acc.) score with respect to System #1.

Representation EN-EN AR-AR FR-FR RU-RU ZH-ZH Avg.
[s;ws1 ;ws2 ] 84.70 77.30 80.10 83.80 67.30 78.64
[s;ws1 ;ws2 ; |ws1 − ws2 |] 85.40 77.00 80.60 81.50 70.30 78.96
[s;ws1 ;ws2 ; |ws1 − ws2 |; cos; dist] 87.60 77.10 80.80 82.70 75.40 80.72

Table 9: Results of models using different representations. Systems are trained on MCL-WiC-trainaug. and eval-
uated on MCL-WiC-dev (multilingual track). The best results in each sub-track are marked in bold. cos: cosine
similarity, dist: Euclidean distance.

6.2 Comparison of representations

In our system, the representation pooled out from
the underlying pre-trained language model is a com-
bination of three vector representations (of the first
token and target word in both sentences), and three
distance-based features: the element-wise absolute
difference, cosine similarity and Euclidean distance
between the target word in both sentences (see Sec-
tion 3.2). We further experiment with different
representations and present our results in Table 9.
We can see that our proposed representation yields
the overall best performance across different lan-
guages, suggesting that the addition of all three
distance-based features is indeed helpful.

7 Conclusion

In this paper, we presented the contribution of the
Cambridge University team to the SemEval 2021
shared task on MCL-WiC Disambiguation. Using
XLM-R, a pre-trained multilingual Transformer-
based language model, as a starting point, we in-
vestigated automatic data augmentation, the use
of multiple external datasets, multi-stage training
strategies, and the representation of tokens and their
distance. Our detailed analysis demonstrated the
effectiveness of the two-step training strategy for
making use of both in-domain and out-of-domain
data, as well as the benefits of adding distance-
based features to the representation for WiC disam-
biguation. Our best system yields highly competi-
tive results in the cross-lingual track and achieves
state-of-the-art results in the multilingual track,
ranking first in two languages (AR and RU) and
second in FR out of 171 total submissions.
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Bajčetı́c Lenka and Yim Seung-Bin. 2020. Implemen-
tation of supervised training approaches for mono-
lingual word sense alignment: Acdh-ch system de-
scription for the mwsa shared task at globalex 2020.
In LREC 2020 Workshop Language Resources and
Evaluation Conference 11–16 May 2020, pages 84–
91.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT:
Driving some sense into BERT. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4656–4667, On-
line. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the

International Conference on Learning Representa-
tions (ICLR 2019).

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach,
and Sameer Pradhan. 2010. SemEval-2010 task 14:
Word sense induction &disambiguation. In Proceed-
ings of the 5th International Workshop on Semantic
Evaluation, pages 63–68, Uppsala, Sweden. Associ-
ation for Computational Linguistics.

Raffaele Manna, Giulia Speranza, Maria Pia di Buono,
and Johanna Monti. 2020. Unior nlp at mwsa task -
globalex 2020:siamese lstm with attention for word
sense alignment. In LREC 2020 Workshop Lan-
guage Resources and Evaluation Conference 11–16
May 2020, pages 76–83.

Federico Martelli, Najla Kalach, Gabriele Tola, and
Roberto Navigli. 2021. SemEval-2021 Task 2: Mul-
tilingual and Cross-lingual Word-in-Context Disam-
biguation (MCL-WiC). In Proceedings of the Fif-
teenth International Workshop on Semantic Evalua-
tion (SemEval-2021).

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 task 13: Multilingual all-words sense disam-
biguation and entity linking. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 288–297, Denver, Colorado.
Association for Computational Linguistics.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Comput. Surv., 41(2).

Roberto Navigli. 2012. A quick tour of word sense dis-
ambiguation, induction and related approaches. In
SOFSEM 2012: Theory and Practice of Computer
Science, Lecture Notes in Computer Science, page
115–129. Springer.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 task 12: Multilingual word
sense disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 222–231, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA →
Online. Association for Computational Linguistics.

Vasile Pais, Dan Tufis, , and Radu Ion. 2020. MWSA
task at GlobaLex 2020: RACAI’s word sense align-
ment system using a similarity measurement of dic-
tionary definitions. In Proceedings of the 2020
Globalex Workshop on Linked Lexicography, pages
69–75, Marseille, France. European Language Re-
sources Association.

736



Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. WiC: the word-in-context dataset
for evaluating context-sensitive meaning represen-
tations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1267–1273, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alessandro Raganato, Tommaso Pasini, Jose Camacho-
Collados, and Mohammad Taher Pilehvar. 2020.
XL-WiC: A multilingual benchmark for evaluating
semantic contextualization. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7193–7206,
Online. Association for Computational Linguistics.

David Strohmaier, Sian Gooding, Shiva Taslimipoor,
and Ekaterina Kochmar. 2020. SeCoDa: Sense com-
plexity dataset. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5962–5967, Marseille, France. European Language
Resources Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Loic Vial, Benjamin Lecouteux, and Didier Schwab.
2019. Sense vocabulary compression through the se-
mantic knowledge of wordnet for neural word sense
disambiguation. ArXiv.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 3266–
3280. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Zheng Yuan and Christopher Bryant. 2021. Document-
level grammatical error correction. In Proceedings
of the Sixteenth Workshop on Innovative Use of NLP
for Building Educational Applications. Association
for Computational Linguistics.

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei
Zhai, Jingfang Xu, Min Zhang, and Yang Liu. 2018.
Improving the transformer translation model with
document-level context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 533–542, Brussels, Bel-
gium. Association for Computational Linguistics.

737



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 738–742
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

UoB UK at SemEval 2021 Task 2: Zero-Shot and Few-Shot Learning for
Multi-lingual and Cross-lingual Word Sense Disambiguation.

Wei Li, Harish Tayyar Madabushi and Mark Lee

School of Computer Science
University of Birmingham

United Kingdom

WXL885@student.bham.ac.uk

Harish@HarishTayyarMadabushi.com, M.G.Lee@bham.ac.uk

Abstract

This paper describes our submission to Se-
mEval 2021 Task 2. We compare XLM-
RoBERTa Base and Large in the few-shot
and zero-shot settings and additionally test the
effectiveness of using a k-nearest neighbors
classifier in the few-shot setting instead of
the more traditional multi-layered perceptron.
Our experiments on both the multi-lingual and
cross-lingual data show that XLM-RoBERTa
Large, unlike the Base version, seems to be
able to more effectively transfer learning in a
few-shot setting and that the k-nearest neigh-
bors classifier is indeed a more powerful classi-
fier than a multi-layered perceptron when used
in few-shot learning.

1 Introduction and Motivation

Word Sense Disambiguation (WSD) is the task of
disambiguating semantic meaning at the word level
and is an important part of Natural Language Pro-
cessing (NLP) with applications in several down-
stream tasks (Wang et al., 2020b). In recent years,
Few Shot Learning (FSL) has been successful in
several domains (Wang et al., 2020a) including in
NLP (Yan et al., 2018). Modern deep neural net-
works require a significant amount of training data
that might not always be available. FSL is a solu-
tion to this problem, wherein training data from a
related domain or language can be used to augment
training on the target domain/language with signifi-
cantly less data. FSL can be characterised as n-way
k-shot classification.

We participate in SemEval Task 2 Multilingual
and Cross-lingual Word in Context Disambigua-
tion (Martelli et al., 2021), which provides 8,000
training examples in English but only 32 in the
other target languages. In addition the tasks re-
quires disambiguation of word pairs in the cross
lingual setting between EN-AR, EN-FR, EN-RU,

and EN-ZH, where only 8 examples each are avail-
able. This sparsity in training data led us to explore
the use of FSL for this task.

We hypothesise that:

1. “Large” models, which have been shown to
have a lot more linguistic information and
high-level generalisability, are more likely to
be able to generalise their learning in the few-
shot setting, and

2. that the use of a k-nearest neighbors (KNN)
classifier is likely to be more effective in the
few-shot setting. This hypothesis is based on
our exploration of related work (Section 2).

Our experiments on both the multi-lingual and
cross-lingual data show that these hypotheses are in
fact correct. We show that XLM-RoBERTa Large,
unlike the Base version, seems to be able to more
effectively transfer knowledge in a few-shot set-
ting, and that the KNN classifier is indeed a more
powerful classifier than a multi-layered perceptron
(MLP) when used in few-shot learning. To ensure
reproducibility and so other researchers can build
on this work, we release the program code, hyper-
parameters and experiments associated with this
work1.

2 Related work

The first effective method that implemented Few
Shot Learning in NLP was that by Koch et al.
(2015), who introduced the application of the
siamese network in one-shot learning. The siamese
network is typically used to calculate semantic sim-
ilarity between sentences and was shown to be pow-
erful in the FSL setting.

A recent use of zero-shot learning in WSD was
work by Kumar et al. (2019), who proposed the

1https://github.com/weilk/
SemEval-2021-Task-2
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extension of WSD systems by incorporating Sense
embeddings (EWISE). These sense embeddings
are derived from a knowledge graph, namely Word-
Net (Miller, 1998), and graph embeddings. EWISE
predicts over an embedding space instead of the dis-
crete label space and allow generalized zero-shot
learning capability. Instead of using annotated data,
it uses definitions from WordNet.

Pelevina et al. (2017) proposed a simple and
effective method which uses clustering in ego-
networks. Egocentric networks are local networks
with one central node, known as the “ego”. This
method allows labeling of words in the context
with learned sense vectors thus providing a new
approach to unsupervised WSD.

Our use of the K Nearest Neighbours (KNN)
classifier is motivated by the work by Snell et al.
(2017), who proposed a very straightforward
network, similar to the nearest class mean ap-
proach (Mensink et al., 2013), that makes use of the
classes of “prototypical” examples to classify new
examples based on their distances. We extend this
method by use of pre-trained models and a KNN
classifier (Section 3).

3 Methodology

In this section, we describe the different models
used for the task. Our models are built on top of
XLM-RoBERTa, but because cross-lingual data is
limited, we used FSL during training. We also per-
form data preprocessing, especially in the case of
Chinese and Arabic where tokenisation is inexact.

3.1 Data Preprocessing

We only use data available from the official data set
provided2 for all our experiments. We performed
additional preprocessing in the case of Chinese and
Arabic as it is often difficult to locate the target
word in these cases. This is because Conneau et al.
(2020) use the SentencePiece algorithm as the basis
of XLMRobertaTokenizer, which tends to output
the largest granularity words by meaning in both
Chinese and Arabic. Due to this, it is possible
that the target word may either be included in the
hypernym’s word-piece or be cut and included in a
different hypernym’s word-piece.

For example, XLM-RoBERTa tokeniser was
used to tokenise a Chinese sentence, and the output
is shown in Figure 1. The target word is “事情”.

2https://github.com/SapienzaNLP/
mcl-wic

However, the tokeniser includes the target word
in the larger word “这件事情”. To get around
this and to ensure correct word tokenisation, we
add a comma (“,”) around the target word in both
Chinese and Arabic sentences as in: “中国报告
这件,事情,”.

Figure 1: Tokenise Chinense sentence

3.2 System Architecture

In order to find the most effective model architec-
ture, we experiment with different variations: The
cosine similarity between contextual word repre-
sentations obtained from XLM-RoBERTa (Con-
neau et al., 2020) using multiple thresholds, classi-
fication of pre-generated XLM-RoBERTa embed-
dings using a multi-layer perceptron, and finally an
end to end model with a softmax layer for classi-
fication. Our experiments showed the end to end
model to be most effective, which we use for all
downstream experimentation.

3.2.1 The Base End-to-end Model

Models used in this work are variations of the base
end-to-end model detailed in Figure 2. The model
takes as input the two sentences and the positions
of the target words. Each of the input sentences
are transformed into the contextual word embed-
dings using XML-RoBERTa and from the resul-
tant embeddings the contextual embeddings asso-
ciated with the target word are selected. These
vectors, v1 and v2 are further augmented with their
difference and concatenated into a single vector
v1, v2, v1 − v2, v2 − v1. We note that although
adding the vectors v1 − v2 and v2 − v1 does not
provide the model with any additional information,
our initial experiments showed that this boosted
performance.

This combined vector is then passed through a
transformer layer and a mean pool layer splits the
output of the transformer layer into two different
vectors which are compared using cosine similarity.
The cosine similarity of these vectors is used to
build a vector (cos, 1− cos) which is then passed
through either an MLP or a KNN classifier. This
output is finally passed through a softmax layer to
classify the word in the two sentences as belonging
to the same meaning or not.
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Figure 2: The architecture of the model used for sense disambiguation.

3.2.2 Zero-Shot Models

The zero-shot methods we use are variations of
the base model, one which uses the Base version
of XLM-RoBERTa, and the other which uses the
Large version of XLM-RoBERTa. In this setting
we use an MLP classifier instead of the KNN clas-
sifier. These models are trained on the English
training data and tested on the multi-lingual and
cross-lingual settings.

3.2.3 Few-Shot Models

The models that we use in the few-shot setting are
modifications of the zero-shot model and we use
the zero-shot model as a baseline. In all cases we
start with the model trained on the English training
data. The first variation replaces the multi-layered
perceptron with a KNN classifier (with k = 2), and
the second variation replaces XLM-RoBERTa Base
with XLM-RoBERTa Large. These variations are
further detailed in Section 4 and are trained on the
minimal data available in the target language pairs.

4 Experiments Design

We design several experiments to find the best per-
forming model. All the experiments are performed

on the same platform3. We also use warmup in all
the experiments and further hyperparameters are
detailed in the documentation associated with the
program code released with this work. For each
experiment, five different random seed are tested
and we choose the best performing model.

We use the English training data to train our
baseline and zero-shot models. The development
data provided consisted of 1000 examples for each
language in the multi-lingual setting (en-en, ar-ar,
zh-zh, fr-fr, and ru-ru). We divide this into a Dev-
Train subset consisting of 600 examples, a Dev-
Validation and Dev-Test subsets consisting of 200
examples each. In the cross-lingual setting, where
we have only 8 examples from each language pair,
we use the trial data for few shot training and do not
use a validation or test set due to data sparsity. Fi-
nally, due to data sparsity in the target languages we
freeze the transformer layers of XLM-RoBERTa
during the few shot training phase.

Based on the results of these experiments, we
select the best five models to submit to the official
websites. These models were:

3System: Ubuntu 16.04.6 LTS. CPU:Intel(R) Xeon(R)
CPU E5-2680 v3 @ 2.50GHz. 4 cores,8 threads.
GPU:GeForce RTX 3090 24GB. Pytorch+cuda:1.7.1+cu110.
Python 3.7.4
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EN-AR EN-FR EN-RU EN-ZH
XLM-RoBERTa Base + MLP, Zero-Shot 74.30 (46) 80.00 (39) 81.60 (35) 76.30 (43)
XLM-RoBERTa Large + MLP, Zero-Shot 76.70 (41) 84.00 (19) 82.90 (28) 81.00 (37)
XLM-RoBERTa Base + MLP, Few-shot 73.00 (49) 76.50 (50) 80.10 (40) 75.50 (44)
XLM-RoBERTa Large + MLP, Few-shot 80.40 (34) 81.40 (34) 80.70 (38) 81.80 (33)
XLM-RoBERTa Large + KNN, Few-shot 81.90 (30) 83.90 (20) 83.30 (24) 83.60 (29)

Table 1: Accuracy on the final cross-lingual test set with the rank achieved by that submission in brackets. The
highest score for each language pair is highlighted in bold. Rows 1, 3 and 2, 4 are comparable results between
zero-shot and few-shot settings.

EN-EN AR-AR FR-FR RU-RU ZH-ZH
XLM-RoBERTa Base + MLP, Zero-Shot 84.50 (50) 78.20 (40) 78.60 (44) 78.10 (34) 81.40 (32)
XLM-RoBERTa Large + MLP, Zero-Shot 87.30 (37) 77.30 (43) 84.20 (18) 82.30 (23) 80.80 (35)
XLM-RoBERTa Base + MLP, Few-shot 84.40 (51) 78.90 (36) 79.20 (41) 78.10 (34) 80.60 (36)
XLM-RoBERTa Large + MLP, Few-shot 87.10 (38) 81.00 (27) 83.40 (22) 82.00 (24) 82.00 (28)
XLM-RoBERTa Large + KNN, Few-shot 88.50 (33) 78.40 (38) 83.60 (21) 81.90 (25) 82.10 (27)

Table 2: Accuracy on the final multi-lingual test set with the rank achieved by that submission in brackets. The
highest score for each language pair is highlighted in bold. Rows 1, 3 and 2, 4 are comparable results between
Zero-Shot and few shot settings. The variation in en-en is a result of random initialisation.

1. XLM-RoBERTa Base with a multi-layered
perceptron as the baseline zero-shot model.

2. XLM-RoBERTa Large with a multi-layered
perceptron as a second zero-shot model.

3. XLM-RoBERTa Base with a multi-layered
perceptron, additionally trained on available
target language data as a few-shot model.

4. XLM-RoBERTa Large with a multi-layered
perceptron, additionally trained on available
target language data as a second few-shot
model.

5. XLM-RoBERTa Large with a K-Nearest
Neighbour classifier, additionally trained on
available target language data as a third few-
shot model.

5 Results and Analysis

The final results in the cross-lingual and multi-
lingual settings are displayed in Tables 1 and 2
respectively. Each table displays the accuracy on
the corresponding test set with the rank achieved
by that submission in brackets (out of a total of 87
teams).

In each of the two tables, rows 1, 3 and 2, 4
provide a comparison between the zero-shot and
few shot settings. It is interesting to note that few
shot learning is not effective when using the base

version of XLM-RoBERTa. Across both the cross-
lingual and multi-lingual settings, the minimal ad-
ditional data does little to boost performance and
in some cases actually reduces performance.

XLM-RoBERTa Large on the other hand, seems
to be able to transfer knowledge extracted from
training in English to the other languages and gains
the most when those languages are significantly
different from English, the language in which the
majority of the training data is available in. The
impact of few shot learning is the largest when the
difference between the original training data (in this
case English) and the target languages is largest.
As can be seen from Table 1, the increase on the
English-Arabic test set between the zero-shot and
few shot settings is nearly 5 percentage points de-
spite the few-shot model having been trained on
only 8 examples. This same trend can be observed
on the English-Chinese dataset albeit to a smaller
extent.

The use of a KNN classifier, in place of an MLP,
improves performance across the board providing
the best results in a lot of the cases and comparable
results in the rest. These results seem to validate the
results obtained by Snell et al. (2017), who show
that the use of a KNN to classify examples related
to prototypical examples is an effective method in
few-shot learning (Section 2).
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6 Conclusions and Future work

This paper described our submission to SemEval
2021 Task2, multi-lingual and cross-lingual word
in context disambiguation. Given the nature of the
task, wherein we are provided with training data in
English and very limited training data in the other
target languages, we use zero-shot and few-shot
learning.

We hypothesised (Section 1) that two methods
will significantly boost performance in the few-
shot learning setting: a) The use of “Large” pre-
trained models which have been shown to have
access to a lot more linguistic information and so
generalisability, and b) the use of a KNN classifier
instead of a multi-layered perceptron.

Our experiments, described in Section 5, con-
firm that this is indeed the case. We find that
XML-RoBERTa Large is able to significantly in-
crease performance in the few-shot setting, espe-
cially when the target languages are dissimilar to
English, which is the language the majority of the
training data is available in. We additionally find
that the use of a KNN classifier boosts performance
in the few-shot setting.

We additionally show that when using pre-
trained models, tokenisers might split words in
ways that are not conducive to the task at hand, es-
pecially in languages such as Chinese, where word
delimitation is inexact. We handle this limitation
by using a comma to delimit words in ways that
are specific to the problem, which is both effective
and easy to implement.

In future, we intend to explore the use of these
methods on other datasets and problems beyond
word sense disambiguation.
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Abstract

We experiment with XLM RoBERTa for Word
in Context Disambiguation in the Multi Lin-
gual and Cross Lingual setting so as to de-
velop a single model having knowledge about
both settings. We solve the problem as a bi-
nary classification problem and also experi-
ment with data augmentation and adversarial
training techniques. In addition, we also exper-
iment with a 2-stage training technique. Our
approaches prove to be beneficial for better
performance and robustness.

1 Introduction

Language is complex even for human beings, let
alone for computers. The same word serves differ-
ent purposes in different scenarios, thus increasing
the complexity of the Word Sense Disambiguation
(WSD). For example in English, the word “bank”
can refer to a financial institution or the land along-
side a river. Many works revolving around WSD
have been done with the help of explicit word sense
inventories like WordNet 1 and BabelNet 2. With
the advent of advanced deep learning models, it is
desirous to develop systems that have a good under-
standing of languages without such gold standards
of word sense. This unsupervised learning can
help the model learn better latent representations
of words in different contexts.

In this paper, we aim to develop a single sys-
tem that has knowledge of both multilingual and
cross-lingual word sense disambiguation by train-
ing models with the combined data for both set-
tings. We present our approaches for WSD in the
multilingual and cross-lingual domain. The task is
treated as a binary-classification problem: whether
words have the same sense in the two given pairs
of sentences. We experiment with XLM-RoBERTa

1https://wordnet.princeton.edu/
2https://babelnet.org/

(Conneau et al., 2019), which is based on the Trans-
former architecture (Vaswani et al., 2017), as the
backbone of our architectures in both the settings.
In addition, we also leverage external data and dif-
ferent training techniques and data augmentation.

The rest of the paper is organized as follows :
various related works have been discussed in sec-
tion 2, followed by a brief description of the shared
task dataset in section 3. The system overview and
experimental settings are covered in sections 4 and
5. Sections 6 contain the results. Section 7 con-
cludes the paper and also includes scope of future
work.

2 Related Work

Silberer and Ponzetto (2010) make use of graph
algorithms for the word sense disambiguation
task. They build a multilingual co-occurence graph
in which the multilingual nodes are connected
with translation edges and labelled with the tar-
get word’s translations as obtained from the corre-
sponding contexts.

Authors in Banea and Mihalcea (2011), use mul-
tilingual vector space which is obtained by expand-
ing monolingual features engineered from more
than one language, in order to generate a more ef-
fective, robust and utilitarian vector representation.
These engineered features are then used for WSD.

Languages like Arabic do not have as many re-
sources in the available dataset as compared to
more common languages like English. To tackle
this issue for the Persian language, Lefever and
Hoste (2011) follow a two phase approach - in the
first phase, they utilize an English Word sense dis-
ambiguation system to assign “sense tags” to words
appearing in English sentences and then in the fol-
lowing phase, they transfer the senses obtained in
the previous phase to corresponding Persian words.

In the Semeval-2013 WSD task (Navigli et al.,
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2013), Rudnick et al. (2013) take a classification-
based approach to the Cross-Lingual WSD task.
They build the HLTDI system in which they per-
form word alignment on the Europarl corpus. This
helps them find samples in the training data which
have ambiguous focus words. The paper describes
three variants of the classifier - one is trained over
local features, the second is trained over the data
with translation of the focus word in the four tar-
get languages added to the feature vector and the
final variant builds a Markov network of the first
classifier in order to find the best translation.

A few works have also been submitted as a part
of SemDeep-5 workshop (Espinosa-Anke et al.,
2019). Ansell et al. (2019) make use of contextu-
alised ELMo word embeddings. A Bidirectional
Long Short Term Memory(LSTM) cell is used to
extract better representation of the given sentences.
To disambiguate the words, they optimise the co-
sine distance between the concatenated hidden rep-
resentations of words, preceding and following the
target word. Soler et al. (2019) augment the dataset
by automatically substituting target words using
contextual similarity. They then experiment with
different contextual word embeddings and train a
logistic regression classifier on top of that.

3 Dataset

The dataset (Martelli et al., 2021) 3 provided by
the shared task organizers consists of both mul-
tilingual and cross-lingual data in English (EN),
Arabic (AR), French (FR), Russian (RU) and Chi-
nese (ZH). The dataset consists of two sentences
and the words in corresponding sentences (which
need disambiguation) and the corresponding label.

4 System Overview

Our experiments revolve around Facebook’s XLM
RoBERTa model, which was an update to their
XLM-100 Language Model. XLM RoBERTa is
based on the transformer architecture consisting of
multi-attention heads which apply a sequence-to-
sequence transformation on the input text sequence.
The training procedure is inspired from RoBERTa
(Liu et al., 2019) i.e. only the Masked Language
Model objective is used. XLM RoBERTa is scaled
up to 100 languages, thus becoming a good choice
for multi-lingual datasets.

Another motivation to experiment with XLM
RoBERTa comes from the facility of “Cross Lin-

3https://github.com/SapienzaNLP/mcl-wic

gual Transfer”, which can help with unbalanced
data of different languages. Knowledge is trans-
ferred for all languages if the model is trained for
a particular task using data of only one language.
Thus, this feature saves effort of gathering more
data to make the data distribution balanced.

4.1 Problem Formulation

We perform experiments keeping the model ar-
chitecture constant across all experiments. The
model accepts both the sentences concatenated
together. The input to the model is formulated
as : word1+ < /s > +sentence1+ < /s >
+word2+ < /s > +sentence2, where < /s > is
the separator token in XLM RoBERTa vocabulary.

Dropout is applied on the pooled encoding out-
put from the model. The dropout probability is set
to 0.3. The dropout applied output is then passed
through a linear layer which provides us with the
logits corresponding to the 2 classes.

4.2 Data Augmentation

Data augmentations are considered an important
technique to avoid overfitting of neural networks
thus making them more generalised. Since our
model architecture accepts both the sentences to-
gether, there is room to apply a simple data aug-
mentation during training. Consider t1 and t2 are
the 2 sentences for a particular data instance. The
training data is augmented as t1

⊕
t2 and t2

⊕

t1, where
⊕

represents concatenation. We apply
the augmentation taking care that no data leakage
takes place in the validation data.

4.3 Two Stage Training

To leverage the property of Cross Lingual Transfer,
we first train the model on the WiC dataset (Pile-
hvar and Camacho-Collados, 2018), which consists
only of English data. Then we train the same model
(trained on WiC) on the MCL WiC dataset. This
technique instills some knowledge via cross lin-
gual transfer, about WSD in the first stage and
then builds on the knowledge using the shared task
dataset.

4.4 Adversarial Training (AT)

Adversarial training is another technique that is
used to increase the robustness of models, which
also helps in better generalisation. Adversarial
training in Computer Vision is done by directly
perturbing the input images. However, text data
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Model EN-AR EN-FR EN-RU EN-ZH
2 stage + Train Aug 75.3 78.2 78.7 75.2
2 stage + Train Aug + TTA 74.6 78.0 78.9 75.3
2 stage + Train Aug + AT 76.8 78.1 76.9 74.6
2 stage + Train Aug + AT +
TTA

76.9 79.5 78.0 74.6

Best performance 89.1 89.1 89.4 91.2

Table 2: Test Scores for Cross Lingual Setting

being discrete is nature, the perturbations are added
to the word embeddings.

Many approaches for adversarial training in NLP
have been developed. We experiment using Miyato
et al. (2016) approach with little modification. In
their approach, the word embeddings are normal-
ized first. Required perturbations are created using
the gradients obtained via backpropagation. Let the
sequence of (normalized) word embedding vectors
of a text be t. The model parameters are repre-
sented by θ. The probability of the text belonging
to class y is given by p(y|t;θ). The adversarial
perturbations zadv are computed as follows:

g = ∇t log p(y|t;θ)

zadv = −εg/‖ g‖2

where ε is a hyper-parameter controlling the size
of the perturbations. The adversarial loss is defined
as :

Ladv(θ) = −
1

N

N∑

n=1

log p(yn|tn + zadv,n;θ)

By using the gradients calculated from the above
loss, the weights of the model are updated (the
non-perturbed word embeddings of the model are
updated). Our experiments deviate from the above
method in the part that we do not normalize our pre-
trained word embedding of the model, since doing
so might change the semantic meaning of the pre-
trained word embeddings. We perform adversarial
training XLM RoBERTa model using ε = 1.

Model CV
W/O extra techniques 73.68
Train Aug 74.68
2 stage + Train Aug 75.64
2 stage + Train Aug + AT 77.07

Table 1: Cross Validation Scores

4.5 Test Time Augmentation (TTA)

The usage of the training data augmentation can be
extended to test time as well. For a given data in-
stance t1 and t2, the model predictions for t1

⊕
t2

and t2
⊕
t1 are combined using simple averaging

of probabilities. Thus, this simple augmentation
can help boost the performance of the model.

5 Experimental Setup

We make use of combined training and validation
data provided by the shared task organizers. We
perform a stratified 5 fold cross validation using
the combined data. In all our experiments, we fine
tune the entire model. Each fold is trained for 20
epochs using early stopping with patience of 6 and
tolerance of 1e-3. The models are optimised us-
ing AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 5e-6 and a batch size of 16 4. Inputs
of maximum sequence length 172 are used in the
model. The models have been implemented using
Pytorch (Paszke et al., 2019) and Huggingface’s
Transformers (Wolf et al., 2019) library.

6 Results

Accuracy score is the official evaluation metric for
the shared task. The test predictions are obtained
by combining the predictions of all the 5 fold mod-
els (by averaging the predictions from all models).
Table 1 lists down the cross validation accuracy
scores of all the experiments. The test scores are
categorised as cross-lingual and multilingual and
are presented in tables and 2 and 3 respectively .
For bench marking purpose, we also mention the
best performances achieved by participants of the
shared task.

A few observations can be made by looking at
the results:

4It is important to note that XLM RoBERTa requires a
much smaller learning rate as compared to BERT and other
models, for training; XLM RoBERTa is incapable of learning
if trained using high learning rates like 2e-5
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Model EN-EN AR-AR FR-FR RU-RU ZH-ZH
2 stage + Train Aug 84.5 79.7 78.8 77.4 79.6
2 stage + Train Aug + TTA 85.4 80.2 79.0 77.7 80.4
2 stage + Train Aug + AT 85.2 79.0 80.2 76.9 79.2
2 stage + Train Aug + AT +
TTA

85.1 80.0 80.5 77.6 79.7

Best performance 93.3 84.8 87.5 87.4 91.0

Table 3: Test Scores for Multilingual Setting

1. Test Time Augmentation helps in boosting the
scores.

2. In the cross lingual setting, models trained
with and without adversarial training are com-
petent to the same extent. On the other hand,
in the multilingual setting, models trained
without adversarial training seem to have the
upper hand.

7 Conclusion and Future Work

We explore the performance of XLM RoBERTa
at Word In Context Disambiguation both in the
multilingual and cross lingual setting. We also
explore different training techniques such as two-
stage training and adversarial training along with
some simple augmentations to make our models
robust and more generalized. Test Time Augmen-
tations, based on training augmentation turn out
to useful. For future work, we can explore the
performance of ensembling different kinds of mod-
els trained with and without adversarial training
together, so as to produce more robust results. It
will also be interesting to experiment with larger
backbone models in the current architecture.
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Abstract

This paper presents a set of experiments
to evaluate and compare between the per-
formance of using CBOW Word2Vec and
Lemma2Vec models for Arabic Word-in-
Context (WiC) disambiguation without using
sense inventories or sense embeddings. As
part of the SemEval-2021 Shared Task 2 on
WiC disambiguation, we used the dev.ar-ar
dataset (2k sentence pairs) to decide whether
two words in a given sentence pair carry the
same meaning. We used two Word2Vec mod-
els: Wiki-CBOW, a pre-trained model on Ara-
bic Wikipedia, and another model we trained
on large Arabic corpora of about 3 billion to-
kens. Two Lemma2Vec models was also con-
structed based on the two Word2Vec models.
Each of the four models was then used in the
WiC disambiguation task, and then evaluated
on the SemEval-2021 test.ar-ar dataset.
At the end, we reported the performance of
different models and compared between using
lemma-based and word-based models.

1 Introduction

As a word may denote multiple meanings (i.e.,
senses) in different contexts, disambiguating them
is important for many NLP applications, such as
information retrieval, machine translation, summa-
rization, among others. For example, the word “ta-
ble” in sentences like “I am cleaning the table”, “I
am serving the table”, “I am emailing the table”, re-
fer to “furniture”, “people”, and “data” respectively.
Disambiguating the sense that a word denotes in a
given sentence is important for understanding the
semantics of this sentence.

To automatically disambiguate word senses in
a given context, many approaches have been pro-
posed based on supervised, semi-supervised, or
unsupervised learning models. Supervised and
semi-supervised methods rely on full, or partial,
labeling of the word senses in the training corpus

to construct a model (Lee and Ng, 2002; Klein
et al., 2002). On the other hand, unsupervised
approaches induce senses from unannotated raw
corpora and do not use lexical resources. The prob-
lem in such approaches, is that unsupervised learn-
ing of word embeddings produces a single vector
for each word in all contexts, and thus ignoring
its polysemy. Such approaches are called static
Word Embeddings. To overcome the problem, two
types of approaches are suggested (Pilehvar and
Camacho-Collados, 2018): multi-prototype embed-
dings, and contextualized word embeddings. The
latter suggests to model context embeddings as a
dynamic contextualized word representation in or-
der to represent complex characteristics of word
use. Proposed architectures such as ELMo (Peters
et al., 2018), ULMFiT (Howard and Ruder, 2018),
GPT (Radford et al., 2018), T5 (Raffel et al., 2019),
and BERT (Devlin et al., 2018), achieved break-
through performance on a wide range of natural
language processing tasks. In multi-prototype em-
beddings, a set of embedding vectors are computed
for each word, representing its senses. In (Pelevina
et al., 2017), multi-prototype embeddings are pro-
duced based on the embeddings of a word. As such,
a graph of similar words is constructed, then simi-
lar words are grouped into multiple clusters, each
cluster representing a sense. As for Mancini et al.
(2016), multi-prototype embeddings are produced
by learning word and sense embeddings jointly
from both, a corpus and a semantic network. In
this paper we aim at using static word embeddings
for WiC disambiguation.

Works on Arabic Word Sense Disambiguation
(WSD) are limited, and the proposed approaches
are lacking a decent or common evaluation frame-
work. Additionally, there are some specificities of
the Arabic language that might not be known in
other languages. Although polysemy and disam-
biguating are challenging issues in all languages,
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they might be more challenging in the case of Ara-
bic (Jarrar et al., 2018; Jarrar, 2021) and this for
many reasons. For example, the word šāhd (YëA ��)
could be šāhid (Yë� A ��) which means a witness, or
šāhada ( �Y �ëA ��) which means watch. As such, dis-
ambiguating words senses in Arabic, is similar to
disambiguating senses of English words written
without vowels. Second, Arabic is a highly in-
flected and derivational language. As such, thou-
sands of different word forms could be inflected
and derived from the same stem. Therefore, words
in word embeddings models will be considered as
different, which may affect the accuracy and the
utility of their representation vectors, as the same
meaning could be incarnated in distributed word
forms in corpora, which has led some researchers
to think that using lemma-based models might be
better than using word-based embeddings in Arabic
(Salama et al., 2018; Shapiro and Duh, 2018). This
idea will be discussed later in sections 5 and 6.

Alkhatlan et al. (2018) suggested an Arabic
WSD approach based on Stem2Vec and Sense2Vec.
The Stem2Vec is produced by training word em-
beddings after stemming a corpus, whereas the
Sense2Vec is produced based on the Arabic Word-
Net sense inventory, such that each synset is rep-
resented by a vector. To determine the sense of a
given word in a sentence, the sentence vector is
compared with every sense vector, then the sense
with maximum similarity is selected.

Laatar et al. (2017) did not use either stemming
or lemmatization. Instead, they proposed to deter-
mine the sense of a word in context by comparing
the context vector with a set of sense vectors, then
the vector with the maximum similarity is selected.
The context vector is computed as the sum of vec-
tors of all words in a given context, which are learnt
from a corpus of historical Arabic. On the other
hand, sense vectors are produced based on dictio-
nary glosses. Each sense vector is computed as the
sum of vectors (learnt from the historical Arabic
corpus) of all words in the gloss of a word.

Other approaches to Arabic WSD (Elayeb, 2019)
employ other techniques in machine learning and
knowledge-based methods (Bouhriz et al., 2016;
Bousmaha et al., 2013; Soudani et al., 2014; Mer-
hbene et al., 2014; Al-Maghasbeh and Bin Hamzah,
2015; Bounhas et al., 2015).

In this paper, we present a set of experiments
to evaluate the performance of using Lemma2Vec
vs CBOW Word2Vec in Arabic WiC disambigua-

tion. The paper is structured as follows: Sec-
tion 2 presetns the background of this work. Sec-
tion 3 overviews the WiC disambiguation system.
Section 4 and Section 5, respectively, present the
Word2Vec and Lemma2Vec models. In Section 6
we present the experiments and the results; and in
section 7 we summarize our conclusions and future
work.

2 Background

Experiments presented in this paper are part of the
SemEval shared task for Word-in-Context disam-
biguation (Martelli et al., 2021).

The task aims at capturing the polysemous na-
ture of words without relying on a fixed sense in-
ventory. A common evaluation dataset is provided
to participants in five languages, including Arabic,
our target language in this paper. The dataset was
carefully designed to include all parts of speeches
and to cover many domains and genres. The Ara-
bic dataset (called multilingual ar-ar) consists of
two sets: a train set of 1000 sentence pairs for
which tags (TRUE or FALSE) are revealed, and a
test set of 1000 sentence pairs for which tags were
kept hidden during the competition. Figure 1 gives
two examples of sentence pairs in the dev.ar-ar

dataset. Each sentence pair has a word in com-
mon for which start and end positions in sentences
are provided. Participants in the shared task were
asked to infer whether the target word carries the
same meaning (TRUE) or not (FALSE) in the two
sentences.

{"id": "dev.ar-ar.0",

"lemma": "مَلاك",
"pos": "NOUN",

"sentence1": " المحكمةعمللسيرالمسائلهذهلأهميةونظرا
عملياتهابدءمنذالموظفينمنكافملاكتوفيريلزم،مستقبلا .",

"sentence2": " الدبلوماسيةالبعثاتجميعأمامحراسةتوجدولا
ةالعاصمفيقيادتهامقرفيالشرطةأفرادملاكفيالمزمنالنقصبسبب .”}

{"id": "dev.ar-ar.1",

"lemma": "مَلاك",
"pos": "NOUN",

"sentence1": " المحكمةعمللسيرالمسائلهذهلأهميةونظرا
عملياتهابدءمنذالموظفينمنكافملاكتوفيريلزم،مستقبلا .",

"sentence2": " مواردبشأنمعلوماتعلىالحصولفيرغبتهاعنوأعربت
التوطينوإعادةالتأهيلإعادةلجانوبشأنوملاكهماالوزارتينهاتين

الشفويالعرضفيذكرهاالواردوالمساعدة .”}

Figure 1: Two examples of sentence pairs.
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3 System Overview

This section describes our method to Arabic WiC
disambiguation based on two types of embeddings:
CBOW Word2Vec and Lemma2Vec.

Given two sentences, s1 and s2 , and two words,
vi from s1 and wj from s2 , the objective is to
check whether vi and wj have the same meaning.
To this end, our system extracts contexts of vi and
wj from the sentence pair, represents them in two
vectors and finally compares the two resulting vec-
tors using the cosine similarity. The context of
a word w of size n (denoted by context(w, n))
is composed of the words that surround the word
w, with n words on the left and n words on the
right (n varying between 1 and 10 in conducted
experiments). To represent context(w, n) in a vec-
tor space, two methods are proposed: first one is
based on CBOW Word2Vec embeddings vectors
(Mikolov et al., 2013) of the words appearing in
the context, whereas the second is based on the
Lemma2Vec of lemmas of words appearing in the
context. To select the best way to represent the
context(w, n) by a vector, classification experi-
ments were conducted using (i) different pooling
operations, min, max, mean, and std to combine
words/lemmas vectors of the context, (ii) different
threshold values (between 0.55 and 0.85) and (iii)
the removal of functional words (also called stop
words). The later are used to express grammatical
relationships among other words, they are charac-
terized by they high frequency in the corpus which
might affect the WiC disambiguation accuracy. The
cosine similarity is then used to compare vectors of
context(vi, n) and context(wj , n). Figure 2 illus-
trates how the cosine similarity is calculated from
context(vi, 3) and context(wj , 3).
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Figure 2: Calculation of context(vi, 3) and
context(wj , 3) vectors and the cosine similarity
between.

Classification experiments on SemEval-2021
ar-ar datasets were conducted using the following

two CBOW Word2Vec models and two correspond-
ing Lemma2Vec models: (i) Wiki-CBOW, a pre-
trained Word2Vec model from the set of AraVec
models (Soliman et al., 2017) , (ii) our CBOW
Word2Vec model that we trained ourselves, (iii)
Lemma2Vec model that we constructed based on
the Wiki-CBOW model, and (iv) Lemma2Vec that
we constructed based on our CBOW Word2Vec
model. Based on these four models, four exper-
iments were conducted to tune the following pa-
rameters: context size (context size), threshold,
pooling operation (pooling) and removing of func-
tional words (stop words).

4 Corpus and trained Word Embeddings

Two CBOW Word2Vec models were used in our ex-
periments. The Wiki-CBOW (Soliman et al., 2017),
which consists of 234,173 vocabulary size, and an-
other model we trained our self which consists of
334,161 vocabulary size. The Wiki-CBOW model
was learnt from a corpus of Arabic Wikipedia arti-
cles of about 78 million words, the principal hyper-
parameters are: 5 for minimum word count and 5
for window size.

Our CBOW Word2Vec model was trained on
Modern Standard Arabic corpora, such as (El-
Khair, 2017; Abbas and Smaili, 2005; Abdelali
et al., 2014) of about 3 billion words; it was fit
using 300-dimensional word vectors, 100 the min-
imum count of words, training epochs of 5 and
window size of 5.

Before training the Word2Vec model, several
normalization and preprocessing steps were per-
formed. First, all diacritics, punctuations, Madda
character, digits (Hindi and Arabic), Latin char-
acters (including accented letters) were removed.
Second, some special Arabic letters are unified.
Third, sequences of repeated characters with length
larger than 2 were reduced to one character; re-
peated spaces were also replaced by one space.
Fourth, different forms of Alifs (�

@ @

@) are replaced

with ( @). Spaces followed by a period character and
new lines were considered to be end of sentence
marks. The split method in Python is used in to-
kenization. The vocabulary size of the resulted
model is 334,161.

5 Constructing the Lemma2Vec models

Two Lemma2Vec models were produced, based
on both: the Wiki-CBOW Word2Vec model, and
our CBOW Word2Vec model. Each vocabulary in
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each of the Word2Vec models was lemmatized first.
Then a vector for each lemma ( i.e., Lemma2Vec) is
calculated as following: first all word forms belong-
ing to this lemma are fetched, then their Word2Vec
vectors are combined through a mean pooling op-
eration. The lemmatization process was performed
using in-house tools and lexicographic databases 1

belonging to Birzeit University (Jarrar, 2021; Jarrar
and Amayreh, 2019; Jarrar et al., 2019). In case of
a word cannot be lemmatized due to misspelling,
incorrect tokenization or in case of foreign word
(not included in our database), then the correspond-
ing Lemma2Vec is considered to be its Word2Vec
vector.

Table 1 summarizes the lemmatization results
that we performed on both, the Wiki-CBOW model
and our CBOW Word2Vec model. The lemma-
tized words of SemEval-2021 all ar-ar dataset, as
well as the Word2Vec and Lemma2Vec of ar-ar
datasets words’s vectors used in this paper are avail-
able on-line 2.

Wiki-CBOW Our Word2Vec
78M words

min count 5

3B words

min count 100

Unique word forms 234,173 334,161

Unique lemmas 100,040 54,788

Words not lemmatized 22,054 28,098

Table 1: Lemmatization results for both models.

6 Experiments Results and Discussion

Given our Arabic WiC disambigation method de-
scribed in Section 3, and given the SemEval mul-
tilingual dev.ar-ar dataset provided by SemEval-
2021 (Martelli et al., 2021), four classification ex-
periments were conducted using the cosine sim-
ilarity and based on the two Word2Vec models
and the two Lemma2Vec models. The objective is
to tune the following parameters for each model:
context size (ranging from 1 to 10), threshold
(we determined empirically the range from 0.55
to 0.85 with 0.1 step size), pooling (min, max,
mean and std), and stop words (yes, no). Then
the values of parameters corresponding to the high
F1-scores for TRUE (T) and FALSE (F) classes
are selected in order to classify sentence pairs in
the test.ar-ar dataset. For each model we did

1https://ontology.birzeit.edu
2https://ontology.birzeit.edu/

semeval2021_data.zip

Exp1 Exp2 Exp3 Exp4

Model
Word2Vec

Wiki-

CBOW

Lemma2Vec

Wiki-

CBOW

Word2Vec

our

model

Lemma2Vec

our model

context size 4 1 4 1
pooling min min min mean

threshold 0.66 0.56 0.83 0.58
stop words yes yes no yes

Dataset dev.ar-ar

Tag T F T F T F T F
Precision 52 52 57 58 56 56 56 56
Recall 54 51 61 53 55 57 55 58
F1-score 53 52 59 56 55 56 56 57
Dataset test.ar-ar

Accuracy 57 59 59 60

Table 2: Best F1-score, precision and recall values of
the four experiments on dev.ar-ar dataset with the
values of tuned parameters. Below are accuracies on
test.ar-ar dataset.

the following to find the high F1-scores for T and
F: For each context size (between 1 and 10) and
for each value of the stop words (yes or no) we
plotted 8 line plots (4 for T and 4 for F) for each of
the four pooling operations (mean, max, min and
std) and for threshold ranging from 0.55 to 0.85
(i.e., 20 plots for each model, resulting 80 plots).

Figures 3a, 3b, 3c and 3d show the best 4 F1-
scores line plots for each of the four models, and
Table 2 shows the effective F1-scores values for T
and F classes as well as precision and recall values
(best results marked in bold). The values of pa-
rameters corresponding to the best result were then
used in classifying the test.ar-ar dataset. The
accuracies are reported in Table 2 as well.

As shown in Figure 3, the Lemma2Vec models
have the tendency to perform better with shorter
context sizes compared with the Word2Vec mod-
els. A possible reason may be that, in case of
Lemma2Vec, the narrow meaning of words is af-
fected due to the increase number of words in-
volved in Lemma2Vec vector calculation. The
impact of Lemma2Vec on the narrow meaning of
words is discussed in the next subsection.

The results with yes for stop words are slightly
better but not significant. Additionally, the min
pooling was generally the best operation to com-
bine the context vectors, and the results of both
min and max pooling were close to each other.
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(a) Wiki-CBOW Word2Vec model.
context size = 4 - pooling = min
threshold = 0.66 - stop words = yes

(b) our Word2Vec model.
context size = 4 - pooling = min
threshold = 0.83 - stop words = no

(c) Wiki-CBOW Lemma2Vec model.
context size = 1 - pooling = min
threshold = 0.56 - stop words = yes

(d) our Lemma2Vec model.
context size = 1 - pooling = mean
threshold = 0.58 - stop words = yes

Figure 3: The best four F1-scores markers plots for each of the four models.The values of parameters are under
each plot.

6.1 Lemma2Vec-Word2Vec Error Analyses
This subsection discusses the performance of us-
ing lemma-based vs. word-based models in the
WiC disambiguation task, which we summarize in
Table 3 and Table 4.

TRUE FALSE Total
Correct L2V - Correct W2V 225 145 370
Correct L2V - Wrong W2V 118 98 216
Wrong L2V - Correct W2V 66 116 182
Wrong L2V - Wrong W2V 91 141 232
Total 500 500 1000

Table 3: Wiki-CBOW Lemma2Vec vs. Word2Vec

Table 3 presents the results of experiments
1 and 2 (using Word2Vec and Lemma2Vec of
Wiki-CBOW) whereas Table 4 presents the re-
sults of experiments 3 and 4 (using Word2Vec
and Lemma2Vec of our CBOW model). In each
table, we compare between cases that were cor-
rectly or wrongly classified by both models. For
example, the second row in Table 3 shows that
216 sentence pairs (118 TRUE class + 98 FALSE

TRUE FALSE Total
Correct L2V - Correct W2V 124 241 365
Correct L2V - Wrong W2V 188 45 233
Wrong L2V - Correct W2V 58 178 236
Wrong L2V - Wrong W2V 130 36 166
Total 500 500 1000

Table 4: Our Lemma2Vec vs. our Word2Vec

class) were correctly classified using the Wiki-
CBOW’s Lemma2Vec model but wrongly classi-
fied using the Word2Vec. Similarly, 182 sentence
pairs in the third row were correctly classified us-
ing the Word2Vec but wrongly classified using the
Lemma2Vec.

As shown in both tables’ second and third rows,
the Lemma2Vec did not significantly improve
the overall results; but notably, the Lemma2Vec
shows a significant improvement over Word2Vec
for TRUE class whereas Word2Vec is better for
FALSE class.

This conclusion is valid for all models, what-
ever are the corpora content, size and min count
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test.ar-ar.342              (Correct with Lemma2Vec  – Wrong with Word2Vec)
Sentence1: … …ةنيعمةنورم! عتمتIو ،دوفولا فقاوم فلتخم ةاعارم> حمس8 تارودلل 23احلا ماظنلاو
sentence2: … S] ةحاتملا دراوملا ةYدودحم نماهتنورمو ةمظنملا جمارب ةعVو ةUناQRSملا نع

.ةYداعلا ةUناQRSملا 3
Class: TRUE

test.ar-ar.994             (Wrong with Lemma2Vec  – Correct with Word2Vec)
Sentence1: متيQRS <خت دوجو مدع وأ ةلقUج تلاjسUغرلاو ةlة [S

.نمزلا نم ةQoفلس.جلا ةسرامم 3
sentence2:.. o]ا> نع ةYاورلا QRSمY يذلا

… ىرخأ ةUنف تاموقم دجوت امنwو ،ىرخلأا ةQtIنلا ةUبدلأاسانجلأا 3
Class: FALSE

Figure 4: Example of errors.

hyperparameter.
To understand the gain and loss by the lemma-

based models, we manually analyzed most cases.
Figure 4 illustrates such cases. The first sen-
tence pair in Figure 4 was correctly classified by
the Lemma2Vec (in Exp4) and wrongly by the
Word2Vec (in Exp3). This illustrates that the
lemma vector as a generalized model for its in-
flections (i.e., a mean of word forms’ vectors) was
better in deciding that both contexts are similar and
that the two word forms have the same meaning.
However, the second example in Figure 4 illustrates
the other way. The Lemma2Vec was too general,
and the Word2Vec was specific enough, to decide
that the two word forms, in the two contexts, are
different. The word from al-ǧins (�	�m.Ì'@) could mean
both genus and sex; however the other word form
al-↩aǧnās (�A	Jk.


B@), is semantically distinctive by its

own morphology - as it can only be plural of genus,
and cannot be plural of sex.

To conclude, although Lemma2Vec outperforms
Word2Vec in some cases (mostly in the TRUE sen-
tence pairs class), it underperforms Word2Vec in
others cases (mostly in the FALSE sentence pairs
class). Since the distribution of TRUE and FALSE
is equal in the datasets, the overall performance of
both models is close to each other. Nevertheless, in
case of an application scenario where a large pro-
portion of sentence pairs is expected to be TRUE,
we recommend the use of Lemma2Vec, otherwise
the Word2Vec.

7 Conclusions and Further Work

We presented a set of experiments to evaluate the
performance of using Word2Vec and Lemma2Vec
models in Arabic WiC disambiguation, without
using external resources or any context/sense em-
bedding model. Different models were constructed
based on two different corpora, and different types
of parameters were tuned. The final results demon-
strated that Lemma2Vec models are slightly bet-
ter than Word2Vec models for Arabic WiC dis-
ambiguation. More specifically, we found that

Lemma2Vec outperforms Word2Vec for TRUE sen-
tence pairs, but underperforms it for FALSE sen-
tence pairs.

We plan to extend our work to use our
Lemma2Vec model to build a multi-prototype em-
beddings using the large lexicographic database
available at Birzeit University. We plan also to fine
tune the recently released Arabic BERT models,
such as (Safaya et al., 2020; Antoun et al., 2020;
Abdelali et al., 2021; Inoue et al., 2021), using the
same database.
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Abstract

Consulting a dictionary or a glossary is a fa-
miliar way for many humans to figure out
what does a word in a particular context mean.
We hypothesize that a system that can se-
lect a proper definition for a particular word
occurrence can also naturally solve tasks re-
lated to word senses. To verify this hypoth-
esis we developed a solution for the Mul-
tilingual and Cross-lingual Word-in-Context
(MCL-WiC) task, that does not use any of the
shared task data or other WiC data for training.
Instead, it is trained to embed word definitions
from English WordNet and word occurrences
in English texts into the same vector space
following an approach previously proposed
by Blevins and Zettlemoyer (2020) for Word
Sense Disambiguation (WSD). To estimate the
similarity in meaning of two word occurrences,
we compared different metrics in this shared
vector space and found that L1-distance be-
tween normalized contextualized word embed-
dings outperforms traditionally employed co-
sine similarity and several other metrics. To
solve the task for languages other than English,
we rely on zero-shot cross-lingual transfer ca-
pabilities of the multilingual XLM-R masked
language model. Despite not using MCL-WiC
training data, in the shared task our approach
achieves an accuracy of 89.5% on the En-
glish test set, which is only 4% less than the
best system. In the multilingual subtask zero-
shot cross-lingual transfer shows competitive
results, that are within 2% from the best sys-
tems for Russian, French, and Arabic. In the
cross-lingual subtask are within 2-4% from the
best systems.

1 Introduction

SemEval-2021 Task 2 is a multilingual and cross-
lingual word-in-context disambiguation task (MCL-
WiC) for five different languages (Martelli et al.,

2021). 1 Each example in the multilingual sub-
task consists of two sentences in English, Rus-
sian, French, Arabic, or Chinese language con-
taining occurrences of the same target word. In
the cross-lingual subtask each example consists
of two sentences in different languages contain-
ing occurrences of two different target words. The
participants were asked to detect whether those oc-
currences corresponded to the same or different
meanings. These tasks are formalized as binary
classification tasks. The datasets contain the same
number of examples for each class. Accuracy is
utilized as the main performance metric.

Recent SOTA approaches to the WiC task mainly
include fine-tuning large universally pre-trained
masked language models (Raffel et al., 2020; Liu
et al., 2019) on labeled WiC datasets. Instead,
we decided to train a system that selects the most
appropriate definition for each word occurrence
following an approach proposed by Blevins and
Zettlemoyer (2020) for Word Sense Disambigua-
tion (WSD) and experimented with different ways
of adapting such system to the MCL-WiC task.
During the evaluation period, we experimented
with distances between probability distributions
over word definitions but did not manage to achieve
good results. But through the post-evaluation pe-
riod, we switched to distances between the contex-
tualized word embeddings of our gloss-informed
language model and improved our results signifi-
cantly achieving comparable results with the 2nd
best system for French and 6th best system for
Arabic in the multilingual subtask.

Our main interest was whether the word-in-
context systems can benefit from using gloss in-
formation, provided for each possible sense of the
word.

1https://competitions.codalab.org/
competitions/27054
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2 Background

Here we summarize prior work linking word oc-
currences and word definitions. One of the first
approaches in this field (Lesk, 1986) calculated the
lexical overlap between the context of a particular
word occurrence and all possible definitions of this
word. This approach did not take into account word
synonymy or other lexical relations. The follow-
ing work tried to combine state-of-the-art language
models with glosses from some dictionaries.

One of such methods has been proposed by Ku-
mar et al. (2019). Their EWISE system used a
pre-training procedure for a gloss encoder, that
learned knowledge graph embeddings from Word-
Net (Miller, 1995). After this pre-training, the au-
thors froze the gloss encoder and started to train a
context encoder with labeled WSD data. While the
method of Kumar et al. (2019) requires relational
information from a knowledge graph, the method
proposed by Huang et al. (2019) relies fully on
gloss information. The developed system jointly
encodes the context with all possible glosses of the
target word. The authors used a pre-trained BERT
(Devlin et al., 2019) model as initialization for their
encoder.

A similar approach has been proposed by
Blevins and Zettlemoyer (2020), who trained two
separate Transformer-based encoders for word
occurrences (Context encoder) and word defini-
tions (Gloss encoder), both initialized with BERT
weights (Devlin et al., 2019). To represent a word
occurrence, the outputs of the Context encoder for
all of its subwords were averaged. To represent a
definition, the output of the Gloss encoder from
[CLS] token was taken. Finally, for a word occur-
rence and all of its definitions, the dot products
between those outputs were calculated and the soft-
max function was applied to them, resulting in a
probability distribution over possible word senses.
The whole model was trained using cross-entropy
loss to select the correct word sense on WSD data.

3 System overview

In order to learn sense-dependent representations
of words, we pre-train our system on the Word
Sense Disambiguation task. Following the BEM
model (Blevins and Zettlemoyer, 2020), our system
consists of two separate encoders: Context Encoder
and Gloss Encoder.

Context encoder (Tc) takes a sentence c =
c0, . . . , ci−1, wc, ci+1, . . . , cn containing a target
word wc to be disambiguated, where wc is the ith

word in the sentence. The encoder then produces
the target word representation:

rwc = Tc(c)[i]

For target words that are tokenized into multiple
subword units, we average representations of these
subwords.

Gloss encoder (Tg) takes as input a gloss gs that
defines a word sense s and encodes it as:

rs = Tg(gs)[0]

Taking the output from the first input token, which
should be [CLS] for BERT or <s> for XLM-R.

We can score each of the possible senses s ∈ Sw,
for a target word wc by taking the dot product of
rwc against every rs for s ∈ Sw:

φ(wc, s) = rTwc
rs

Both encoders were initialized with BERT or
XLM-R weights. Then the whole system was pre-
trained on English WSD data (Miller et al., 1994)
with cross-entropy loss. We denote this pre-training
procedure as Gloss Language Modeling (GLM)
and compare it with pure Masked Language Model-
ing (MLM) pre-training. In both cases, the models
were not fine-tuned on any MCL-WiC data.

3.1 Adaptation to the MCL-WiC task
As EWISE (Kumar et al., 2019) and BEM (Blevins
and Zettlemoyer, 2020) systems work only with
English data, we extend the proposed approach to
the multilingual setting by replacing BERT with
XLM-R model (Conneau et al., 2019). In the result
section, we discuss how this affects the resulting
performance.

Here we present two approaches to the final
MCL-WiC task, one using distributions over pos-
sible word definitions and another exploiting dif-
ferent similarity measures between contextualized
target word embeddings from the Context Encoder.
The latter is also applicable to the contextualized
word embeddings obtained from MLM pre-trained
XLM-R, which we consider as a baseline.

3.1.1 Probability distribution over glosses
Here we exploit probability distributions
P (sense|wc1) and P (sense|wc2) produced by
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Sentence gloss #1 gloss #2 gloss #3
dev.en-en.1, Meanings are the same

No clause in a contract shall be interpreted as
evading the responsibility of superiors under in-
ternational law

one of greater rank
or station or quality
(0.82)

the head of a re-
ligious community
(0.12)

a combatant who is
able to defeat rivals
(0.06)

In Senegal too, the customs officer and his supe-
riors receive a premium in case of detecting and
preventing smuggling

one of greater rank
or station or quality
(0.58)

the head of a re-
ligious community
(0.3)

a combatant who is
able to defeat rivals
(0.09)

dev.en-en.16, Meanings are different
During the fight both of them tripped, the author
falling on the victim and stabbing him with the
knife by accident

miss a step and fall
or nearly fall (0.998)

cause to stumble
(0.0009)

put in motion or
move to act (0.0004)

The father of the child also cannot take the child
to trip during the fostering duration, without per-
mission of fosterer

make a trip for plea-
sure (0.9)

miss a step and fall
or nearly fall (0.06)

get high, stoned, or
drugged (0.02)

Table 1: Examples from the MCL-WiC development set with 3 most probable glosses of the target word predicted
by our system. Word in bold is the target word. The rounded probabilities for each of the meanings are given in
parentheses.

our WSD system for words wc1 and wc2 in their
contexts c1 and c2. wc1 and wc2 have the same
lemma and consequently have the same set of
possible meanings Sw from the vocabulary.

Gloss match prob: The probability that two
word occurrences, wc1 and wc2 , have the same
meaning (positive class) is calculated as:

P (1|wc1 , wc2) =
∑

si∈Sw

P (si|wc1) · P (si|wc2)

Gloss JSD: As an alternative measure of
word similarity in context, we compute
Jensen–Shannon divergence between two
distributions P (sense|wc1) and P (sense|wc2).

Because these methods rely on gloss informa-
tion, we need a vocabulary to find them. As for
English, we can easily use WordNet (Miller, 1995),
it becomes problematic to find definitions for other
languages. To counteract this obstacle during the
competition we used the following procedure. First,
we translated all samples from other languages to
English via machine translation 2. Then we gener-
ated all possible translations of the target word with
Yandex Translation API 3 and word2word library 4.
Finally, we tried to find one of the possible target
word translations in the translated sentence. If there
was no match for both sentences, we predicted True,
if a match was only for one, we predicted False. In
case of more than one match in the translated sen-
tence, we took the first one. In the end, we had two

2https://huggingface.co/transformers/
model_doc/marian.html

3https://yandex.com/dev/dictionary/
4https://github.com/kakaobrain/

word2word

occurrences of possibly different translations of the
target word into English and could use previous
metrics. But unlike the original English method
where we need to disambiguate between meanings
of the same word, here we build the distribution
over all possible glosses of all possible translations
of the target word.

3.1.2 Similarity between contextualized word
embeddings

In this subsection, we propose methods that fully
rely on the Context encoder and thus do not require
any additional vocabulary or glosses. We achieve
such generalization by using only outputs from the
trained Context encoder.

Cosine: Cosine similarity between outputs of the
encoder.

Euclidian+norm: Euclidian distance between
L2 normalized outputs of the encoder.

Manhattan+norm: Manhattan distance be-
tween L1 normalized outputs of the encoder.

3.2 Threshold selection

As MCL-WiC is a binary classification problem,
we need to transform our continuous similarity
measures into binary predictions. We select the
best threshold with grid search on one of the fol-
lowing datasets.

1. (xx dev) The threshold is selected on the de-
velopment set of the target language.

2. (en dev) The threshold for all languages is
selected on the English development set.
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Figure 1: Comparison of pre-training methods and similarity measures on the English MCL-WiC test set.
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Figure 2: Comparison of pre-training methods and similarity measures on MCL-WiC test sets.

3. (semcor) Instead of utilizing MCL-WiC de-
velopment data, we tried estimating the opti-
mal threshold on the training SemCor dataset.
Based on sense annotations, we constructed
30K sentence pairs in WiC format. This
resulted in a nearly-balanced WiC dataset,
which was used for grid search.

4. (cl trials) The threshold for the cross-lingual
subtask is selected on the concatenated cross-
lingual MCL-WiC trial sets.

4 Experimental setup

Besides choosing the best final predictor for MCL-
WiC, we also experimented on encoder initializa-
tion. In the result section, we compare the perfor-
mance of the models, initialized with BERT base
(Devlin et al., 2019), XLM-R base, and XLM-R
large (Conneau et al., 2019). We trained our models
on the English SemCor dataset (Miller et al., 1994)
with glosses from the WordNet 3.0 (Miller, 1995).
Systems based on the XLM-R base and XLM-R
large (Conneau et al., 2019) were trained 20 and 10
epochs respectively. Following standard practices,
we used SemEval-2007 (Pradhan et al., 2007) as
our development set for early stopping. For the

system with BERT-base, we used the originally
provided checkpoint by Blevins and Zettlemoyer
(2020).

5 Results

5.1 Similarity measures

The results of the experiments with different sim-
ilarity measures for English and non-English lan-
guages are given in Figure 1 and Figure 2 respec-
tively. Figure 1 shows that approaches based on
GLM context outputs strongly outperform meth-
ods based on distributions over senses from the
vocabulary.

Figures 1, 2 also provide an observation, that al-
most for any language and model Manhattan+norm
distance shows the best results. The only excep-
tion is the MLM BERT base model, where Euclid-
ian+norm performs slightly better.

5.2 GLM vs MLM

Figure 4 shows the gap between GLM and pure
MLM pre-training. Experiments show that models
trained with GLM procedure strongly outperform
their MLM counterparts in every language and with
any base model.
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Model en ru fr ar zh
our post-evaluation results

GLM XLM-R base - Manhattan+norm 85.1 80.1 80.5 79.2 79.1
MLM XLM-R base - Manhattan+norm 78.8 63.6 69.6 67.1 72.1
GLM XLM-R large - Manhattan+norm (en dev) 89.5 85.7 86.5 84.2 83.5
GLM XLM-R large - Manhattan+norm (semcor) 87.8 82.7 84.2 80.9 80.8
GLM XLM-R large - Manhattan+norm 89.5 85.7 85.7 82.6 83.5
MLM XLM-R large - Manhattan+norm 72.1 61.1 62.3 64.5 71.1
GLM BERT base - Manhattan+norm 88 - - - -
MLM BERT base - Euclidean+norm 82.5 - - - -

our submissions
GLM BERT base - Gloss JSD 86.4 - - - -
GLM BERT base (MT) - Gloss JSD 86.4 68.3 69.2 50.1 64.1

best submissions
Best for each lang. 93.3 87.4 87.5 84.8 91

Table 2: Best test score for each of the proposed systems. (MT) states for the Machine Translation technique,
described in Section 3.1. The threshold for binary classification was calculated either on the English dev set
(en dev), or on a part of SemCor dataset (semcor), or on the dev set, corresponding to the target language (all
others). Best for each lang. stands for the best results of the competition for each of the languages.

Surprisingly, the XLM-R base model outper-
forms the large one when pre-trained with MLM
objective only. However, after GLM pre-training
the large model performs significantly better than
the base model. We suspect that this is due to the
strong grammatical bias of contextualized word
embeddings after MLM pre-training also observed
by Laicher et al. (2021). It is easier to correctly
predict the grammatical form of a masked word in
a particular context than the exact lemma of that
word. Thus, the model is much more confident in
the grammatical form resulting in distant embed-
dings for the same word in the same sense but in
different grammatical forms. Since the large model
shall better optimize the MLM objective, its em-
beddings likely contain stronger grammatical com-
ponent hiding the sense component relevant for the
MCL-WiC task. Since word definitions correspond
to word senses and not word forms, the GLM ob-
jective helps eliminating the irrelevant grammatical
component from contextualized embeddings.

5.3 Correlation between WSD and
MCL-WiC performance

We also suspected that during pre-training on the
English WSD data, GLM models can overfit to
English texts and partially lose their cross-lingual
transferability. Thus, the best epoch checkpoint
based on WSD development set may not be the
best in terms of MCL-WiC. In Figure 3 we show
how MCL-WiC accuracy for each language and
WSD F1 score for English change during training.
Multilingual WiC performance for epoch 0 stands
for the MLM model without any GLM training.
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Figure 3: Test MCL-WiC score and SemEval07 dev
F1 score for the XLM-R large model depending on the
epoch.

The results show that choosing the best checkpoint
by WSD F1 score, we get nearly optimal results on
MCL-WiC for each language, except for French.

5.4 Interpreting system predictions

As our system embeds word definitions from Word-
Net (Miller, 1995) and word occurrences into the
same vector space, we can search for the nearest
definitions for each occurrence of the target word.
In Table 1 we show some examples from the de-
velopment set with top3 senses (glosses) predicted
by our system for each occurrence. We used GLM
XLM-R large as a backbone for this purpose.

5.5 Overall multilingual results

Table 2 shows overall results on the competition’s
test set. The submission GLM BERT base - Gloss
JSD sent during the competition employed English
BERT base (Devlin et al., 2019) backbone in the
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Figure 4: Test score for the best GLM and MLM models for each language.

WSD model, which was applicable to English data
only. The submission GLM BERT base (MT) -
Gloss JSD exploits the same basic idea but extends
the first approach to other languages with the trans-
lation technique, described in Section 3.1. For
both submissions, due to a mistake, we used the
GLM model trained for only one epoch on SemCor
(Miller et al., 1994).

As we can see from the table 2, our best sys-
tem on every language is GLM pre-trained XLM-R
large model with Manhattan+norm distance and
the threshold selected on the English MCL-WiC
development set. This system shows rather strong
results achieving the performance of the 2nd best
system for French and the 6th best system for Ara-
bic. Since this system does not use any non-English
resources for training, we suspect that it will work
for a variety of other languages on which XLM-R
was initially pre-trained, though the performance
may vary.

5.6 Cross-lingual results

Table 3 shows our post-evaluation results on the
cross-lingual subtask of MCL-WiC. The threshold
selected on the English dev set does not transfer
to the cross-lingual test sets, unlike multilingual
test sets. This is due to larger distances between
contextualized embeddings returned by XLM-R
for word occurrences in different languages. Se-
lecting threshold on the concatenation of cross-
lingual trial sets works much better. However, since
there are only 32 cross-lingual examples, there is a
wide interval of optimal thresholds giving the same
accuracy on trial. Our implementation selected
the smallest one, however, some larger thresholds
resulted in a significant decrease in performance.

Model en-ar en-fr en-ru en-zh
our post-evaluation results

(en dev) 77.6 81.5 81.8 78.9
(cl trials) 85.2 85.5 87.2 89.2

best submissions
Best for each pair 89.1 89.1 89.4 91.2

Table 3: Post-evaluation test scores for the cross-
lingual subtask. For each of our systems, we used
GLM XLM-R large model and Manhattan+norm dis-
tance. Best for each pair stands for the best results of
the competition for each pair of languages individually.

Thus, a larger cross-lingual development set is re-
quired for robust selection of the threshold.

6 Conclusion

In this paper, we presented Gloss Language Mod-
eling (GLM) procedure as a pre-training strategy
for MCL-WiC systems. We have shown that this
procedure improves multilingual WiC performance
on all languages for both XLM-R and BERT back-
bones.

Apart from that, we proposed an interpretable
zero-shot multilingual WiC algorithm which does
not require any labeled data for the multilingual
WiC task except for the threshold selection, which
can be performed using only English development
data without loss of accuracy for other languages.
We also found that L1-distance between normal-
ized contextualized word embeddings outperforms
traditionally employed cosine distance.
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Abstract
We describe the University of Alberta systems
for the SemEval-2021 Multilingual and Cross-
lingual Word-in-Context (MCL-WiC) disam-
biguation task. We explore the use of transla-
tion information for deciding whether two dif-
ferent tokens of the same word correspond to
the same sense of the word. Our focus is on
developing principled theoretical approaches
which are grounded in linguistic phenomena,
leading to more explainable models. We show
that translations from multiple languages can
be leveraged to improve the accuracy on the
WiC task.

1 Introduction

This paper describes the University of Alberta
systems for SemEval-2021 Task 2: Multilingual
and Cross-lingual Word-in-Context Disambigua-
tion (Martelli et al., 2021). We focus on the
monolingual (English) variant of the task, which
is the same as the original WiC task (Pilehvar and
Camacho-Collados, 2018). An instance of the WiC
task consists of two sentences that share a focus
word in common; the word may be inflected dif-
ferently in each sentence (e.g. “they had searched
his flat a few days before” and “the production
of lithium from salt flats”) but will share the same
lemma and part of speech. A WiC task system must
decide, given such a pair of sentences, whether the
focus tokens have the same meaning in both sen-
tences. Systems are compared in terms of their
accuracy, the percentage of test instances correctly
identified as TRUE (same meaning) or FALSE (dif-
ferent meaning). The dataset includes training, de-
velopment, and testing splits; as our methods are
unsupervised, we do not use the training data.

The goal of this paper is an exploration of the use
of translation information for the WiC task. The
intuition underlying our work is that distinctions
in meaning tend to be reflected in distinctions in

translation. We have previously presented meth-
ods leveraging translation information to improve
word sense disambiguation (Luan et al., 2020),
and most frequent sense detection (Hauer et al.,
2019), and have demonstrated that word senses
which share translations are, in general, seman-
tically related (Hauer and Kondrak, 2020a). We
have also presented theoretical formalizations of
lexico-semantic phenomena which view synonymy
and translation as two aspects of semantic equiva-
lence (Hauer and Kondrak, 2020b). Our team ad-
ditionally presented a method based on translation
information (Hauer et al., 2020) for the SemEval-
2020 Task 2 on Predicting Multilingual and Cross-
Lingual Lexical Entailment (Glavaš et al., 2020). In
this task, we investigate whether translation can be
used to detect semantic equivalence in context, just
as in the aforementioned prior task we investigated
whether translation can be used to detect lexical
entailment between word types. Our focus is on de-
veloping principled theoretical approaches which
are grounded in linguistic phenomena, leading to
more explainable models.

Our more complex methods depend upon a map-
ping between word senses and translations, as dif-
ferent senses of a word often translate differently.
We obtain such a mapping from BabelNet (Navigli
and Ponzetto, 2012), which combines information
from Princeton WordNet (Fellbaum, 1998), multi-
lingual lexical resources, and translations produced
by MT models. WordNet is comprised of synonym
sets, or synsets, which BabelNet enriches with
translations. Each of the resulting multi-lingual
synsets, or multi-synsets, contain lexicalizations
of a single concept in various languages, allow-
ing the translations of a given sense of a word to
be identified. We treat BabelNet as an imperfect
implementation of a universal multi-wordnet with
the theoretical properties described by Hauer and
Kondrak (2020b).
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Figure 1: An example of the “translation criss-cross” described in Section 3.2.

Our results can be interpreted as a proof-of-
concept for the use of contextual translations as
indicators of semantic similarity. We show that
the methods that we develop for the WiC task can
leverage translations to improve over baselines, es-
pecially when multiple target languages are consid-
ered. While it is not our objective to compete with
state-of-the-art supervised methods, we consider
this to be a positive result, and a strong lead for
future work on contextual semantic analysis.

This paper is structured as follows: Section 2
provides an overview of relevant prior literature.
Section 3 discusses the theoretical model under-
lying our work. Section 4 outlines our methods.
Section 5 describes our experiments and results.

2 Related Work

Methods for WiC task can be roughly divided into
two paradigms: contextualized-embedding-based
systems, and word sense disambiguation-based sys-
tems. Pilehvar and Camacho-Collados (2018) in-
troduce the WiC dataset as a benchmark for evalu-
ating context sensitive word representations. Soler
et al. (2019) achieve improvements by combining
similarity scores from different types of contextual
word and sentence embeddings. Liu et al. (2020)
propose a method to enhance contextual represen-
tations by leveraging other pre-trained contextual
or static embeddings.

Another approach to WiC task is to employ a
word sense disambiguation (WSD) system to tag
the target words with senses from a pre-defined
sense inventory and subsequently make a decision
based on the predicted synsets of the target words.
Loureiro and Jorge (2019b) use the LMMS sense
embeddings (Loureiro and Jorge, 2019a) to dis-
ambiguate the target words. A simple approach
of checking if the disambiguated senses are equal
lead to competitive performance in the SemDeep-5
WiC challenge (Anke et al., 2019). SENSEMBERT
(Scarlini et al., 2020a) and ARES (Scarlini et al.,
2020b) embeddings, when used as features in a

BERT-based model, also achieve competitive re-
sults on the WiC task.

Our methods combine elements of both
paradigms. We employ contextual embeddings
in our proposed translation-based methods. How-
ever, we take the embeddings of the translations of
the target words instead of the target words them-
selves. Similarly to WSD based approaches, our
methods also analyze the common synsets of the
focus tokens and their translations, with the goal
of identifying a probable shared synset. The most
similar prior work to our approach is that of Pes-
sutto et al. (2020) at the graded word similarity task
(Armendariz et al., 2020) of SemEval 2020, who
propose a translation-based approach to evaluate
the contextual similarity of a pair of words. They
hypothesize that leveraging similarity information
from more languages would allow greater accuracy.
We follow a similar intuition in our work.

3 Theoretical Solution

We first present a theoretical solution, which pro-
vides the foundation for the development of our
actual methods described in Section 4. We assume
that the two source sentences S1 and S2 in each
instance of the WiC task can be translated into any
natural language as sentences T1 and T2. Further-
more, we assume that the literal lexical translations
t1 and t2 of the focus word s can be identified in T1

and T2, respectively. For example, in Figure 1, the
focus word s in the English sentences S1 and S2 is
the noun differential, and word alignment identifies
écart and différentiel as t1 and t2. Note that the two
translations may have the same POS and lemma, a
scenario we denote as t1 = t2.

3.1 Substitution Test

Our theoretical solution is based on the notion
of the linguistic substitution test for verifying the
synonymy of senses (Hauer and Kondrak, 2020b),
which takes as input two sentences which differ
only in a single word, and returns TRUE if and
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only if the two sentences have the same meaning.
In other words, it decides whether the substitution
of one word with another changes the meaning of
the sentence. Note that this substitution test is not
sufficient to decide the WiC task, as the input sen-
tences for this task share a single word, rather than
differ in a single word. The substitution test can
be implemented by consulting a native speaker, or
approximated by a computer program. In Section 4,
we discuss an implementation based on contextual
embeddings.

An example of a valid input to the substitution
test would be the sentences I work at the plant and I
work at the factory. For this input, the substitution
test would return TRUE, since the word substitu-
tion does not change the meaning of the sentence.
The sentences I work at the plant and I work at
the flower would likewise constitute a valid input;
however, given these sentences, the substitution
test would return FALSE, since the sentences differ
semantically.

3.2 Translation Criss-Cross

In order to apply the substitution test to an instance
of the WiC task, we first translate the two source
input sentences S1 and S2 into a target language,
producing two target sentences T1 and T2. We
identify the two lexical translations t1 and t2 of
the focus word s in T1 and T2. Assuming that the
translations are correct and literal, the senses of s
in S1 and t1 in T1 will be synonymous, as well as
the senses of s in S2 and t2 in T2. If t1 and t2 have
the same POS but different lemmas, we can replace
t1 with t2 in T1 to produce a sentence T ′1 which
differs from T1 in a single word. The application of
the substitution test to (T1, T

′
1) returns TRUE if and

only if the sense of t2 in T ′1 is synonymous with
the sense of s in S1, which implies that, in addition
to s and t1, the multi-synset containing the sense
of s in S1 must also include t2.

Using our running example in Figure 1, T ′1
would be created by replacing écarts with
différentiel in T1. This produces les différentiel
de taux d’intérêt croissant, which, while not nec-
essarily grammatical, can still be evaluated by the
substitution test to decide whether the substitution
alters the semantic content of the sentence. (Or,
equivalently, whether écart and différentiel are syn-
onymous in this particular context.)

We repeat the process with the roles of T1 and
T2 reversed. That is, we construct T ′2 by replacing

t2 with t1 in T2 in order to verify whether the sense
of t1 in T ′2 is synonymous with the sense of s in S2.
If the substitution test returns FALSE for either of
the two target sentence pairs, we can conclude that
the two multi-synsets that correspond to the senses
of s in S1 and S2 must be different. Therefore,
this instance of the WiC task is resolved as FALSE.
However, if the substitution test returns TRUE for
both pairs of sentences, we cannot immediately re-
solve the instance of the WiC task, because there
could exist two (or more) multi-synsets that all con-
tain s, t1, and t2. To complicate maters, this partial
solution to the WiC task can only be applied if t1
and t2 have the same POS but different lemmas.

A complete theoretical solution can be obtained
by considering translations in multiple languages.
If the focus word s is not used in the same sense
in S1 and S2, we would expect that in some lan-
guage, the translations t1 and t2 will be different
and not mutually replaceable in both sentences.
This expectation is consistent with the speculation
of Palmer et al. (2007) that translation into a suf-
ficiently large set of language will eventually lexi-
calize every sense distinction. It is also supported
by the findings of Bao et al. (2021) who found no
evidence for the existence of universal colexifica-
tions, that is, pairs of concepts that are expressed
by the same word in every natural language.

3.3 Multi-Synset Intersection

For each language Fi in the set of all natural lan-
guages L, let ti1 and ti2 be the lexical translations
of the focus word s in the first and second input
sentences, respectively. Let T be the set consisting
of the focus word, and all its lexical translations;
that is W = {s} ∪Fi {ti1, ti2}. Assuming access to
a perfect universal multi-wordnet, we define the
set C to be the set of multi-synsets that contain all
words in T .

The size of C provides clues to the resolution
of the WiC task. We need to consider three cases:
|C| = 0, |C| = 1, and |C| ≥ 2. With some
caveats, these three cases roughly imply the follow-
ing answers to the WiC task: FALSE, TRUE, and
UNKNOWN, respectively. We discuss these three
cases in turn.

If |C| = 0, then no single concept can be ex-
pressed by s and all its translations in T, according
to the multi-wordnet. That is, there exist two trans-
lations of the focus word which cannot express
the same concept, assuming the completeness of
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the multi-wordnet. Therefore, the two focus tokens
must correspond to distinct multi-synsets, implying
FALSE.

If |C| = 1, there exists exactly one multi-synset
that contains the focus word and all its translations.
Therefore, it is possible, albeit not guaranteed, that
the focus word in both source sentences is used
in the sense that corresponds to that unique multi-
synset. In order to be sure, we could apply the
criss-cross method described in Section 3.2.
|C| ≥ 2 would imply that there exist two con-

cepts which are colexified (expressed by a single
word) in all languages. Following Bao et al. (2021),
we assume that universal collocations are at best
extremely rare. Even if they exist at all, we could
still apply the solution described in Section 3.2 to
decide the WiC task. Of course, if we are con-
sidering translations into only a small number of
languages, the possibility of |C| ≥ 2 is much more
likely. In fact, we observe |C| = 3 in our running
example, because three different BabelNet multi-
synsets contain the English focus word and its two
French translations.

4 Methods

In this section we describe four methods based on
the theoretical ideas in Section 3. All four meth-
ods rely on identifying lexical translations of the
focus word in both source sentences. If the lexical
translations cannot be recovered from the trans-
lated sentences for any of the target languages, all
methods use the same backoff approach, which is
to return FALSE for that test instance.

4.1 IDENT and CVAL

Our two simplest methods are IDENT and CVAL.
IDENT is a baseline method which returns TRUE

iff the lexical translations t1 and t2 have the same
lemma and POS in all applicable target languages.
CVAL is a method directly based on the cardinality
of the set C as defined in Section 3.3. CVAL returns
TRUE iff the translations of the focus word are
identical in each language and |C| > 0.

4.2 Synonymy Check

We implement the substitution test as a heuristic
synonymy check using dense contextualized em-
beddings. Such embeddings allow us to construct,
for any word token in a given sentence, a vector
in a continuous semantic space. The objective in
designing such embeddings is that semantically

similar tokens should have similar vectors, com-
monly measured by cosine similarity. Additional
technical details of the embeddings are provided in
Section 5.

Given a pair of sentences which differ only in
the substitution of single word, we obtain dense
contextualized embeddings of the distinguishing
word in each sentence. We then calculate the co-
sine similarity between the two embeddings. If the
similarity is greater than a threshold tuned on a
development set, this is taken as an indication that
replacing one of the distinguishing words with the
other does not alter the meaning of the sentence, as
the replacement word has the same meaning as the
original word. This implementation of the substitu-
tion test is used as a subroutine by our remaining
two methods.

4.3 SUB and CSUB

The SUB method attempts to apply the synonymy
check to each pair of translated sentences T1 and
T2 in each target language, without referring to the
|C| value. If the translations of the focus word
in T1 and T2 differ, we create the sentences T ′1
and T ′2, as described in Section 3.2, and apply the
synonymy check to (T1, T

′
1) and (T2, T

′
2). SUB

returns TRUE if the synonymy check succeeds for
all target languages for which the translations t1
and t2 can be identified. The synonymy check
trivially succeeds if t1 and t2 have the same POS
and lemma; intuitively, tokens which translate the
same way are likely to have similar meanings. If
either application of the synonymy check fails, SUB

returns FALSE. In summary, this method is similar
to the IDENT method, except that the synonymy
check is applied if the translations differ.

CSUB combines CVAL with SUB. The only dif-
ference with the SUB method is that the synonymy
check is not applied when |C| = 0. This is be-
cause the lack of any common multi-synset in a
complete perfect multi-wordnet is theoretically suf-
ficient to exclude the possibility of the two source
focus tokens having the same sense.

5 Experiments

In this section, we describe the application of our
methods to the English development and test sets.
We begin by specifying various implementation
details. Next, we describe our development experi-
ments, including results and error analysis. Finally,
we present our results on the test set. While our
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method is, in theory, applicable to any language,
and even to cross-lingual subtasks, we focus exclu-
sively on the English monolingual substask due to
time and resource constraints.

5.1 Translation and Lemmatization
We use BabelNet (Navigli and Ponzetto, 2010,
2012) as our multi-wordnet; in particular, we make
use of the BabelNet multi-synsets which are linked
to Princeton Wordnet synsets. This allows us to
exclude synsets that refer to named entities, rather
than lexicalized concepts, to limit the impact of
noise in BabelNet.

For translation, we use Google Translate, as
it is fast and publicly available. In our analysis,
we found the lexical translations obtained using
Google Translate to be of generally high quality,
which is important given our method’s dependence
on machine translation. We use French, Italian,
and Russian as our languages of translation. The
choice of the translation languages is based on the
languages selected for the shared task, and also on
the BabelNet coverage. French and Russian are two
of the languages covered by the shared task. On the
other hand, Italian seems to have the best BabelNet
coverage among the non-English languages.

For lemmatization, we use TreeTagger (Schmid,
1999, 2013), with pre-trained lemmatization mod-
els for the source and all target languages. We
lemmatize the bitexts to improve the quality of the
word alignment.

5.2 Word Alignment
Following lemmatization, we align each input sen-
tence with its translation in each target language.
To improve the quality of our unsupervised align-
ment, we obtain a large sentence-aligned parallel
corpus (bitext) in the source and target languages.
We then append to the bitext all of the lemmatized
input sentences, and all of their lemmatized lan-
guage translations. Finally, we apply an unsuper-
vised knowledge-based alignment algorithm to the
augmented bitext, and, for each sentence, identify
the word or phrase in the translated sentence cor-
responding to the source focus word. Once each
input sentence is aligned with its translation, we
extract the lemmas aligned with each focus word to-
ken. These are the lexical translations of the focus
word for this language.

To carry out the alignment, we use BabAlign
(Luan et al., 2020), a state-of-the-art knowledge-
based aligner. BabAlign leverages translation infor-

mation from BabelNet to create synthetic training
data and post-process the alignment produced us-
ing a base unsupervised alignment method. Specif-
ically, we use FastAlign (Dyer et al., 2013) as the
base aligner. When aligning input sentences with
translations, we concatenate the sentences and their
translations with the OpenSubtitles bitext (Lison
and Tiedemann, 2016) for the corresponding lan-
guage pair. For each language pair, we use the first
1M sentences of the OpenSubtitles bitext.

5.3 Contextual Embeddings

To obtain contextual representations for the pur-
poses of deciding the substitution check, we use
BERT (Devlin et al., 2019), a deep neural architec-
ture trained with the masked language model. We
chose BERT because it has been proven to capture
the semantics of a word in context (Coenen et al.,
2019). The context is the sentence containing the
focus word. Specifically, we use cased multilin-
gual BERT to generate contextualized embedding
of focus words by summing up the last four hidden
layers of the BERT model. This choice was based
on the results achieved by Devlin et al. (2019) in
the named entity recognition task, and by Soler
et al. (2019) in the SemDeep-5 WiC shared task.1

We use cased multilingual BERT embeddings
with 768 dimensions, 12 layers, 12 attention heads,
and 179M parameters. To implement the substitu-
tion check, we generate contextualized embeddings
of the translations of the focus tokens, and their sub-
stitutes, by summing the last four hidden layers of
the BERT model. Since BERT uses sub-tokens
to generate embeddings, we analyzed the impact
of two different sub-token selection techniques for
predicting word similarity: using only the first sub-
token, and using the mean over all the sub-tokens.
In our development experiments, we found that
the former yielded better results. Therefore, only
the first sub-token is used to create contextualized
embeddings for the substitution method.

5.4 Development Results

Table 1 shows the results of our development exper-
iments. The baseline translation identity method
IDENT does surprisingly well, outperforming both
methods based on intersecting sets of multi-synsets,
CVAL and CSUB. Indeed, these methods tend to
suffer accuracy degradation as more languages of
translation are added. We speculate that this is due

1https://www.dfki.de/ declerck/semdeep-5/challenge.html
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Lang. FR IT RU ALL
IDENT 59.6 58.1 57.1 59.7
CVAL 58.9 57.6 54.3 55.5
SUB 59.3 58.0 55.6 60.8

CSUB 59.2 57.8 54.3 54.1

Table 1: MCL-WiC accuracy (%) on the En-En dev set
with different methods and languages of translation.

to these methods being more vulnerable to noise
(errors or omissions) in the multi-wordnet and in
the extraction of lexical translations. However, the
best performing method is SUB, which also shows
improvement when combining all three languages
of translation. Thus, it also shows the most promise
for further improvement by adding additional lan-
guages.

Our error analysis suggests that there are three
principal causes of errors. First, translation may
be non-literal. For example, in one instance, the
adverb “unevenly” is translated into French as the
adjective “inégale” (“unequal”), leading to a false
negative. Second, distinct but synonymous transla-
tions may lead to false positives. In one instance,
the focus word “stain” is translated as “souillé” in
one sentence and “tachée” in the other. The focus
tokens have distinct meanings, reflected in their
distinct translations, “stain on a reputation” ver-
sus “stain on a surface”. However, the translations
pass the BERT-based synonymy check, since they
can be synonymous in some contexts. Finally, in
some cases, distinct senses of a word may never-
theless translate the same way. For example, in one
instance, the focus word “superior” was used in
two distinct meanings. Both these meanings can
be expressed by the French word “supérieur”, and
indeed, “superior” was translated as “supérieur” in
both sentences, resulting in a false positive.

5.5 Test Results and Discussion

Table 2 shows our results on the test data. Consis-
tent with our development experiments, the SUB

method achieves the best performance with the
combination of all three languages. The IDENT

method once again performs surprisingly well de-
spite its simplicity, outperforming the more com-
plex CVAL and CSUB methods. Different from the
development experiments, when only one language
of translation is used, Russian yields substantially
better performance compared to French or Italian
across all four methods, and Italian likewise yields

Lang. FR IT RU ALL
IDENT 55.8 58.9 61.0 61.1
CVAL 54.8 55.6 56.0 55.2
SUB 56.1 57.6 60.6 63.2

CSUB 55.2 55.2 55.8 55.7

Table 2: MCL-WiC accuracy (%) on the En-En test set
with different methods and languages of translation.

better performance than French.
Table 3 gives additional details for the results of

the SUB method. For each of the three languages,
and the combination of all three, we provide the
number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), as
well as the accuracy. We observe that using multi-
ple languages of translation results in a substantial
reduction in false positives, at the possible expense
of an increase in false negatives, while maintaining
an overall higher accuracy.

Lang. TP TN FP FN Accuracy
FR 369 192 308 131 56.1
IT 376 200 300 124 57.6
RU 327 279 221 173 60.6

ALL 339 293 207 161 63.2

Table 3: Detailed breakdown of the results of our best
performing method, SUB.

6 Conclusion

Overall, our results provide a solid proof-of-
concept for the utility of multilingual translation for
the WiC task. While not competitive with state-of-
the-art supervised methods, our results empirically
verify the hypothesis that translations convey se-
mantic information, and that this phenomenon has
applications in lexical semantics. The IDENT and
SUB methods consistently benefit from translation
into multiple languages, and this result generalizes
to unseen test data.
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Abstract
Identifying whether a word carries the same
meaning or different meaning in two con-
texts is an important research area in natu-
ral language processing which plays a signif-
icant role in many applications such as ques-
tion answering, document summarisation, in-
formation retrieval and information extraction.
Most of the previous work in this area rely on
language-specific resources making it difficult
to generalise across languages. Considering
this limitation, our approach to SemEval-2021
Task 2 is based only on pretrained transformer
models and does not use any language-specific
processing and resources. Despite that, our
best model achieves 0.90 accuracy for English-
English subtask which is very compatible com-
pared to the best result of the subtask; 0.93
accuracy. Our approach also achieves satis-
factory results in other monolingual and cross-
lingual language pairs as well.

1 Introduction

Words’ semantics have a dynamic nature which
depends on the surrounding context (Pilehvar and
Camacho-Collados, 2019). Therefore, the majority
of words tends to be polysemous (i.e. have mul-
tiple senses). For few examples, words such as
"cell", "bank" and "report" can be mentioned. Due
to this nature in natural language, it is important
to focus on word-in-context sense while extract-
ing the meaning of a word which appeared in a
text segment. Also, this is a critical requirement
to many applications such as question answering,
document summarisation, information retrieval and
information extraction.

Word Sense Disambiguation (WSD)-based ap-
proaches were widely used by previous research
to tackle this problem (Loureiro and Jorge, 2019;
Scarlini et al., 2020). WSD associates the word
in a text with its correct meaning from a prede-
fined sense inventory (Navigli, 2009). As such

inventories, WordNet (Miller, 1995) and Babel-
Net (Navigli and Ponzetto, 2012) were commonly
used. However, these approaches fail to generalise
into different languages as these inventories are of-
ten limited to high resource languages. Targeting
this gap, SemEval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation is
designed to capture the word sense without rely-
ing on fixed sense inventories in both monolingual
and cross-lingual setting. In summary, this task is
designed as a binary classification problem which
predicts whether the target word has the same mean-
ing or different meaning in different contexts of the
same language (monolingual setting) or different
languages (cross-lingual setting).

This paper describes our submission to SemEval-
2021 Task 2 (Martelli et al., 2021). Our approach is
mainly focused on transformer-based models with
different text pair classification architectures. We
remodel the default text pair classification archi-
tecture and introduce several strategies that outper-
form the default text pair classification architecture
for this task. For effortless generalisation across
the languages, we do not use any language-specific
processing and resources. In the subtasks where
only a few training instances were available, we
use few-shot learning and in the subtasks where
there were no training instances were available,
we use zero-shot learning taking advantage of the
cross-lingual nature of the multilingual transformer
models.

The remainder of this paper is organised as fol-
lows. Section 2 describes the related work done in
the field of word-in-context disambiguation. De-
tails of the task data sets are provided in Section
3. Section 4 describes the proposed architecture
and Section 5 provides the experimental setup de-
tails. Following them, Section 6 demonstrates the
obtained results and Section 7 concludes the paper
with final remarks and future research directions.
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2 Related Work

Unsupervised systems Majority of the unsuper-
vised WSD systems use external knowledge bases
like WordNet (Miller, 1995) and BabelNet (Navigli
and Ponzetto, 2012). For each input word, its cor-
rect meaning according to the context can be found
using graph-based techniques from those external
knowledge bases. However, these approaches are
only limited to the languages supported by used
knowledge bases. More recent works like Het-
tiarachchi and Ranasinghe (2020a); Ranasinghe
et al. (2019a) propose to use stacked word em-
beddings (Akbik et al., 2018) obtained by general
purpose pretrained contextualised word embedding
models such as BERT (Devlin et al., 2019) and
Flair (Akbik et al., 2019) for unsupervised WSD.
Despite their ability to scale over different lan-
guages, unsupervised approaches fall behind su-
pervised systems in terms of accuracy.

Supervised systems Supervised systems rely on
semantically-annotated corpora for training (Ra-
ganato et al., 2017; Bevilacqua and Navigli, 2019).
Early approaches were based on traditional ma-
chine learning algorithms like support vector ma-
chines (Iacobacci et al., 2016). With the word
embedding-based approaches getting popular in
natural language processing tasks, more recent ap-
proaches on WSD were based on neural network ar-
chitectures (Melamud et al., 2016; Raganato et al.,
2017). However, they rely on large manually-
curated training data to train the machine learning
models which in turn hinders the ability of these
approaches to scale over unseen words and new
languages. More recently, contextual representa-
tions of words have been used in WSD where the
contextual representations have been employed for
the creation of sense embeddings (Peters et al.,
2018). However, they also rely on sense-annotated
corpora to gather contextual information for each
sense, and hence are limited to languages for which
gold annotations are available. A very recent ap-
proach SensEmBERT (Scarlini et al., 2020) pro-
vide WSD by leveraging the mapping between
senses and Wikipedia pages, the relations among
BabelNet synsets and the expressiveness of contex-
tualised embeddings, getting rid of manual anno-
tations. However, SensEmBERT (Scarlini et al.,
2020) only supports five languages making it diffi-
cult to use with other languages.

Considering the limitations of the above meth-

ods, in this paper we propose an approach which
is based on general purpose transformer models
and does not rely on external knowledge bases.
Also, our approach shows strong few-shot/zero-
shot learning performance removing the hurdle of
having manually-curated training data for each lan-
guage pair.

3 Data

The data set used for SemEval-2021 Task 2 is de-
signed targeting a binary classification problem fol-
lowing Pilehvar and Camacho-Collados (2019). To
preserve the multilinguality and cross-linguality of
the task, five different languages: English, Arabic,
French, Russian and Chinese have been considered
for data set preparation. In the monolingual setting,
per instance, a sentence pair written in the same
language is provided with a targeted lemma to pre-
dict whether it has the same meaning (True) or
different meanings (False) in both sentences. In the
cross-lingual setting, each sentence pair is written
in two different languages with the same prediction
requirement. Few samples from the monolingual
and cross-lingual data sets are shown in Table 1.

The monolingual data set covers the language
pairs: en-en, ar-ar, fr-fr, ru-ru and zh-zh. For each
language, 8-instance trial data sets with labels were
provided to give an insight into the task. As training
data, 8,000 labelled instances were provided only
for the English language and as dev data, 1,000
labelled instances were provided per each language.
To use with final evaluation, for each language,
1,000-instance test data sets were provided.

The cross-lingual data set covers the language
pairs: en-ar, en-fr, en-ru and en-zh. Similar to the
monolingual data set, 8-instance trial data sets with
labels were provided for each language pair. How-
ever, no training or dev data sets were provided for
the cross-lingual setting. To use with the final eval-
uation, 1,000-instance test data sets were provided
per each language pair.

4 TransWiC Architecture

The main motivation behind the TransWiC architec-
ture is the success transformer-based architectures
had in various natural language processing tasks
like offensive language identification (Ranasinghe
and Hettiarachchi, 2020; Ranasinghe et al., 2019c;
Pitenis et al., 2020), offensive spans identifica-
tion (Ranasinghe and Zampieri, 2021a; Ranasinghe
et al., 2021), language detection (Jauhiainen et al.,
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Lang. Sentence 1 Sentence 2 Label

ML fr-fr la souris mange le fromage le chat court après la souris T

en-en In the private sector , activities are guided by
the motive to earn money.

The volume V of the sector is related to the
area A of the cap. F

CL en-fr click the right mouse button le chat court après la souris F

en-fr

Any alterations which it is proposed to make
as a result of this review are to be reported
to the Interdepartmental Committee on
Charter Repertory for its approval.

Il a aussi été indiqué que, selon les dossiers
médicaux, Justiniano Hurtado Torre était
mort de maladie.

T

Table 1: Monolingual (ML) and cross-lingual (CL) sentence pair samples with targeted lemma (highlighted in red
colour) and label (T:True, F:False). Lang. column represent the languages which are indicated using ISO 639-1
codes1

Figure 1: Default sentence pair classification architecture - ([CLS] Strategy).WT is the target word.

2021) question answering (Yang et al., 2019) etc.
Apart from providing strong results compared to
RNN based architectures (Hettiarachchi and Ranas-
inghe, 2019; Ranasinghe et al., 2019c), transformer
models like BERT (Devlin et al., 2019), XLM-R
(Conneau et al., 2020) provide pretrained language
models that support more than 100 languages. This
is a huge benefit when compared to the models
like SensEmBERT (Scarlini et al., 2020) which
supports only five languages. Furthermore, mul-
tilingual and cross-lingual models like multilin-
gual BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) have shown strong transfer learn-
ing performance across scarce-resourced languages
which can be useful in non-English monolingual
subtasks where there are fewer training examples
and cross-lingual subtasks where there are no train-
ing examples available (Ranasinghe and Zampieri,
2020, 2021b; Ranasinghe et al., 2020a). There-

fore we took the general purpose transformers like
BERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020), reworked their sentence pair classifica-
tion architecture with so called strategies described
below to perform well in word-in-context disam-
biguation task.

Preprocessing As a preprocessing step we add
two tokens to the transformer model’s vocabulary:
<B> and <E>. We place them around the target
word in both sentences. For example, the sentence
"la souris mange le fromage" with the target word
"souris" will be changed to "la <B> souris <E>
mange le fromage".

i [CLS] Strategy - This is the default sentence
pair classification architecture with transform-
ers (Devlin et al., 2019) where the two sen-
tences are concatenated with a [SEP] token and
passed through a transformer model. Then the
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(a) <B> Strategy (b) <B> + [CLS] Strategy

(c) <E> Strategy (d) <E> + [CLS] Strategy

(e) Entity Pool Strategy (f) Entity First Strategy

(g) Entity Last Strategy (h) [CLS] + Entity Pool Strategy

(i) [CLS] + Entity First Strategy (j) [CLS] + Entity Last Strategy

Figure 2: Strategies in the TransWiC Framework. WT is the target word.
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output of the [CLS] token is fed into a softmax
layer to predict the labels (Figure 1).

ii <B> Strategy - We concatenate the output of
two <B> tokens of the two sentences and feed it
into a softmax layer to predict the labels (Figure
2a).

iii <B> + [CLS] Strategy - We concatenate the
output of two <B> tokens of the two sentences
with the [CLS] token and feed it into a softmax
layer to predict the labels (Figure 2b).

iv <E> Strategy - Output of the two <E> tokens
of the two sentences are concatenated and feed
into a softmax layer to predict the labels (Figure
2c).

v <E> + [CLS] Strategy - We concatenate the
output of two <E> tokens of the two sentences
with the [CLS] token and feed it into a softmax
layer to predict the labels (Figure 2d).

vi Entity Pool Strategy - To effectively deal with
rare words, transformer models use sub-word
units or WordPiece tokens as the input to build
the models (Devlin et al., 2019). Therefore,
there is a possibility that one target word can
be separated into several sub-words. In this
strategy, we generate separate fixed-length em-
beddings for each target word by passing its
sub-word outputs through a pooling layer. The
pooled outputs are concatenated and fed into a
softmax layer to predict the labels (Figure 2e).

vii Entity First Strategy - Similar to the previous
strategy, instead of using all the sub-words of
the target word, we only use the output of the
first sub-word in this strategy. We feed the
concatenation of these outputs into a softmax
layer to predict the labels (Figure 2f).

viii Entity Last Strategy - Similar to the Entity
First Strategy instead of the first sub-word, we
use the last sub-word to represent the target
word. We feed their concatenation into a soft-
max layer to predict the labels (Figure 2g).

ix [CLS] + Entity Pool Strategy - We concate-
nate the pooled outputs generated by Entity
Pool Strategy with the [CLS] token and feed it
into a softmax layer to predict the labels (Figure
2h).

x [CLS] + Entity First Strategy - Similar to the
[CLS] + Entity Pool Strategy, instead of the
pooled outputs, we concatenate the first sub-
word output of the target words with [CLS]
token and feed it into a softmax layer to predict
the labels (Figure 2i).

xi [CLS] + Entity Last Strategy - In this strat-
egy, we concatenate the last sub-word output of
the target words with [CLS] token and feed it
into a softmax layer to predict the labels (Figure
2j).

5 Experimental Setup

This section describes the training data and hyper-
parameter configurations used during the experi-
ments.

5.1 Training Configurations
English-English For the English-English sub-
task, we performed training on the English-English
training data for each strategy mentioned above.
During the training process, the parameters of the
transformer model, as well as the parameters of
the subsequent layers, were updated. We used the
saved model from a particular strategy to get pre-
dictions for the English-English test set for that
particular strategy.

Other Monolingual Since there were less train-
ing data available for non-English monolingual
datasets, we followed a few-shot learning approach
mentioned in Ranasinghe et al. (2020c,b). When
we are starting the training for non-English mono-
lingual language pairs, rather than training a model
from scratch, we initialised the weights saved from
the English-English experiment. Then we per-
formed training on the dev data for each language
pair separately. Similar to English-English experi-
ments, during the training process, the parameters
of the transformer model, as well as the parameters
of the subsequent layers, were updated.

Crosslingual Since there were no training data
available for cross-lingual datasets, we followed
a zero-shot approach for them. Multilingual and
cross-lingual transformer models like multilingual
BERT and XLM-R show strong cross-lingual trans-
fer learning performance. They can be trained on
one language; typically a resource-rich language
and can be used to perform inference on another
language. The cross-lingual nature of the trans-
former models has provided the ability to do this
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(Ranasinghe et al., 2020c). Therefore, we used the
models trained on the English-English dataset to
get predictions for cross-lingual datasets.

5.2 Hyperparameter Configurations

We used a Nvidia Tesla K80 GPU to train the mod-
els. We divided the input dataset into a training set
and a validation set using 0.8:0.2 split. We predom-
inantly fine-tuned the learning rate and the number
of epochs of the classification model manually to
obtain the best results for the validation set. We ob-
tained 1e−5 as the best value for the learning rate
and 3 as the best value for the number of epochs.
We performed early stopping if the validation loss
did not improve over 10 evaluation steps. The rest
of the hyperparameters which we kept as constants
are mentioned in the Appendix. When performing
training, we trained five models with different ran-
dom seeds and considered the majority-class self
ensemble mentioned in Hettiarachchi and Ranas-
inghe (2020b) to get the final predictions.

6 Results and Evaluation

Organisers used the accuracy as the evaluation met-
ric as shown in Equation 1 where TP is True Posi-
tive, TN is True Negative, FP is False Positive and
FN is False Negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Since there were less or no training data available
for other monolingual and cross-lingual settings,
we trained and evaluated models for each of our
strategies using English-English training and dev
sets. Then the best models are picked to use with
few-shot and zero-shot learning approaches. We
report the results obtained by English-English eval-
uation in Table 2. In the BERT column, we report
the results of the bert-large-cased model while in
the XLM-R column, we report the results of the
xlm-r-large model.

As shown in Table 2, some strategies outper-
formed the default sentence pair classification ar-
chitecture. Among all experimented strategies <B>
+ [CLS] strategy performed best. Usually, mul-
tilingual transformer models like XLM-R do not
outperform the language-specific transformer mod-
els. Surprisingly, in this task XLM-R models out-
perform bert-large models. We selected three best
performing models for the submission; XLM-R

Strategy BERT XLM-R
CLS 0.8350 0.7860
<B> 0.8450 0.8750‡

<B> + CLS 0.8590 0.8810‡

<E> 0.6672 0.5590
<E> + CLS 0.6982 0.5630
Entity Pool 0.8420 0.8521
Entity First 0.8390 0.8462
Entity Last 0.8550 0.8660
CLS + Entity Pool 0.8570 0.8700‡

CLS + Entity First 0.8540 0.8580
CLS + Entity Last 0.8568 0.8610

Table 2: TransWiC accuracy in English-English dev set
for each strategy. Best is in Bold. Submitted systems
are marked with ‡

<B> + [CLS], XLM-R <B> and XLM-R [CLS] +
Entity Pool.

Since multilingual models provided the best re-
sults for the English-English dataset, it provided
an additional advantage as they can be used di-
rectly in other language pairs too as mentioned
in Section 5. For other language pairs, we did
not perform any evaluation due to the lack of data
availability. We trusted the cross-lingual perfor-
mance of XLM-R and used the best three models
of the English-English experiment. For the rest of
the monolingual pairs, we used the few-shot learn-
ing approach using the given dev sets and for the
cross-lingual pairs, we used the zero-shot learning
approach mentioned in Section 5.

We report the results we got for the test set in
Table 3. According to the results, <B> + [CLS]
strategy performs best in all the language pairs
except Ar-Ar, where <B> strategy outperforms
<B> + [CLS] strategy. When compared to the best
models submitted to each language pair, our ap-
proach shows very competitive results in the ma-
jority of the monolingual language pairs. However,
we believe that the cross-lingual performance of
our methodology should be improved. Nonethe-
less, we believe that as a methodology that did not
use any language-specific resources and did not
see any language-specific data, the results are at a
satisfactory level.

7 Conclusions

In this paper, we presented our approach for tack-
ling the SemEval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation.
We use the pretrained transformer models and re-
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Monolingual Crosslingual

Strategy en-en ar-ar fr-fr ru-ru zh-zh en-ar en-fr en-ru en-zh

I
<B> + [CLS] 0.9040 0.7800 0.7970 0.7610 0.6210 0.6690 0.5860 0.6900 0.7640
<B> 0.8980 0.7980 0.7760 0.7160 0.6090 0.6260 0.5850 0.6770 0.7280
[CLS] + Entity Pool 0.8400 0.7621 0.7321 0.6954 0.5880 0.5921 0.5572 0.6561 0.7002

II Best System 0.9330 0.8480 0.8750 0.8740 0.9100 0.8910 0.8910 0.8940 0.9120

Table 3: Row I shows the accuracy scores for the test set with strategies submitted. Best results for each language
pair with our strategies are in bold. Row II shows the accuracy scores for the test set with the best system submitted
for each language pair.

model the sentence pair classification architecture
for this task with several strategies. Our best strate-
gies outperform the default sentence pair classifica-
tion setting for English-English. For other monolin-
gual language pairs, we use the few-shot learning
approach while for cross-lingual language pairs we
use the zero-shot approach. Our results are com-
patible with the best systems submitted for each
language pair and are at a satisfactory level given
the fact that we did not use any language-specific
processing nor resources.

As future work, we would be looking to improve
our results more with new strategies. We would
like to experiment with whether adding language-
specific processing and resources would improve
the results. We are keen to add different neural
network architectures like Siamese transformer net-
works (Reimers and Gurevych, 2019) that perform
well in sentence pair classification tasks (Ranas-
inghe et al., 2019b; Mueller and Thyagarajan, 2016)
to the TransWiC framework. Furthermore, we are
hoping to work in a multi-task environment and
experiment whether transfer learning from a simi-
lar task like semantic textual similarity (Cer et al.,
2017) would improve the results for this task.
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A Appendix

A summary of hyperparameters and their values
used to obtain the reported results are mentioned
in Table 4. The optimised hyperparameters are
marked with ‡ and their optimal values are reported.
The rest of the hyperparameter values are kept as
constants.

Parameter Value
learning rate‡ 1e−5

number of epochs‡ 3

adam epsilon 1e−8

warmup ration 0.1
warmup steps 0
max grad norm 1.0
max seq. length 120
gradient accumulation steps 1

Table 4: Hyperparameter specifications
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Abstract

This paper presents our approaches to
SemEval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambigua-
tion task. The first approach attempted to
reformulate the task as a question answering
problem, while the second one framed it as
a binary classification problem. Our best
system, which is an ensemble of XLM-R
based binary classifiers trained with data
augmentation, is among the 3 best-performing
systems for Russian, French and Arabic in the
multilingual subtask. In the post-evaluation
period, we experimented with batch normal-
ization, subword pooling and target word
occurrence aggregation methods, resulting in
further performance improvements.

1 Introduction

In the Semeval-2021 Task 2: Multilingual and
Cross-lingual Word-in-Context Disambiguation
task, the participants were asked to classify whether
the target word, occurring in two sentences (sen-
tence1 and sentence2), is used in the same or in a
different meaning. The two sentences could be in
the same language or different languages. There
were two subtasks:

• Multilingual Word-in-Context Disam-
biguation, where both sentences were in
the same language, either Arabic, Chinese,
English, French or Russian

• Cross-lingual Word-in-Context Disam-
biguation, where the first sentence was in

English and the second one was either in
Arabic, Chinese, French, or Russian.

More detailed information regarding the task is
provided by Martelli et al. (2021).

We participated in both tracks and experimented
with two approaches1. The first approach fine-tunes
XLM-R (Conneau et al., 2020a) as a question an-
swering system searching in the second sentence
for a word with the same meaning as the target
word in the first sentence. The second approach
fine-tunes XLM-R as a binary classifier, and en-
sembles several such classifiers. Also, we used
data augmentation to double the number of train-
ing examples. This second approach took the 2nd
place for the monolingual subtask in Arabic and
the 3rd place for the monolingual subtask in French
and Russian. In the cross-lingual subtask, the sys-
tem ranked 6th for French and Arabic. The same
system was applied to all subtasks and languages.

During the post-evaluation period, we performed
thorough experiments with our system. We com-
pared different subword pooling methods, includ-
ing mean, max, first pooling and their combina-
tions, and found that combinations do not help
and mean pooling is overall the best choice. Un-
like pooling, instead of a simple concatenation of
contextualized embeddings for the target word oc-
currences, it is helpful to combine their difference
and normalized component-wise product. Finally,
we found it beneficial to add a batch normalization

1https://github.com/davletov-aa/mcl-wic
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layer before feeding those vectors into the classifi-
cation head.

2 Related Work

Word Sense Disambiguation (WSD) is the task of
associating the occurrence of a word in a text with
its correct meaning from a predefined inventory of
senses (Navigli, 2009; Scarlini et al., 2020a). Word-
in-Context Disambiguation is a new declination
of WSD aiming to evaluate the ability of modern
language models to accurately represent context-
sensitive words (Pilehvar and Camacho-Collados,
2019; Scarlini et al., 2020b). Its advantage is that it
does not rely on pre-defined sense inventories. Be-
cause Word Sense Disambiguation relies on world
knowledge for successful solving (Navigli, 2009),
modern large pre-trained models show promising
results in solving this task.

Among such works, we can mention ARES
(Scarlini et al., 2020b). ARES is a semi-supervised
approach for creating sense embeddings. The au-
thors use BERT and UKB (Agirre et al., 2014)
to find contexts that are similar to each other and
link them to meanings in WordNet (Miller et al.,
1990). Then, they enrich synset contexts with collo-
cational information from SyntagNet (Maru et al.,
2019). Finally, they enrich SemCor (Miller et al.,
1993) contexts and WordNet glosses to create sense-
level representations. ARES performs better than
models with a comparable number of parameters
such as BERT or RoBERTa (Liu et al., 2019).

However, there has been substantial progress
in the field of language modelling since BERT
first appeared. Many researchers have noticed that
BERT is undertrained and that training it longer
and on more data, increases the model perfor-
mance. Among such new models, we may name
XLM-RoBERTa (XLM-R) (Conneau et al., 2020a).
XLM-R, as well as BERT, is based on a Trans-
former model (Vaswani et al., 2017). XLM-R uses
masked language modelling objective (Devlin et al.,
2018; Lample and Conneau, 2019) for model train-
ing, where some tokens are replaced with a special
”[MASK]” token and the model is to restore the
masked tokens. XLM-R was trained on a cleaned
two-terabyte CommonCrawl Corpus in 100 lan-
guages.

A new promising approach to language task mod-
elling is treating any natural language task as a
question answering problem. Among such works,
we can mention (Cohen et al., 2020) where the au-

Set Pos Neg
train-en-en 4000 4000
dev-en-en 500 (0) 500 (0)
dev-ar-ar 500 (349) 500 (351)
dev-ru-ru 500 (337) 500 (363)
dev-fr-fr 500 (366) 500 (334)
dev-zh-zh 500 (323) 500 (377)
trial-xx-xx x (x) y (y)

Table 1: Statistics of the data provided by organizers.
The numbers in brackets show the portion used as train-
ing examples. In trial set there were up to 8 examples
for each of 9 multilingual and cross-lingual sets.

thors restructured relation classification as a Ques-
tion Answering (QA) like span prediction problem.
It allowed them to get state-of-the-art results for
TACRED and SemEval 2010 task 8 datasets. We
decided to adopt a similar approach to the task of
word sense disambiguation.

3 Submitted Systems Description

Our systems are based on XLM-RoBERTa (XLM-
R) model Conneau et al. (2020b). We used XLM-R
large model as a backbone in all our submissions
but switched to XLM-R base for some of the post-
evaluation experiments. Two model training scenar-
ios have been tested. In the first case (AG), due to
the symmetric nature of the dataset, we decided to
augment the dataset and flip the first and the second
sentences. In the second case (MTL), multi-task
learning was applied. More detailed descriptions
are provided in the following sections. We used
transformers library (Wolf et al., 2019).

3.1 Data

In all our experiments we used only the datasets
provided in the shared task. For training, we em-
ployed the whole English train set, 70% of the
development sets for other languages and all the
trial data. The remaining data were used to select
hyperparameters and do early stopping. We em-
ployed a lexical split resulting in different target
words for training and validation. Table 1 presents
detailed statistics. Optionally, in systems with AG
suffix, train and test time data augmentation was
performed by swapping sentences in each example
to double the amount of data. If the predictions
for symmetric examples were conflicting with each
other we assumed the prediction is negative.
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Figure 1: QA-based model architecture

3.2 QA Systems

Inspired by the work of Cohen et al. (2020), in our
preliminary experiments we tried to solve MCL-
WIC in Question Answering (QA) task manner,
where we predict the start and end positions (the
span) of the answer in a given text.

Given the target word w and a pair of tokenized
sentences [s1 ... w ... sn] and [k1 ... w ... kn], we
form the following input to XLM-R model with
marked by • and / symbols target word in the first
sentence:
[CLS] Find the same sense of the marked word
[EOS] s1 ... • w / ... sn [EOS] k1 ... w ... kn
[EOS]. We tokenize target word in context and its
left and right contexts for both sentences separately.

The architecture of our QA system could be seen
in Figure 1. We predict the span A (answer) of the
target word in the second sentence if it is used
in the same meaning as in the first sentence and
the span of the [CLS] token otherwise. Also, we
additionally predict the span of Q (question) of the
target word in the first sentence. We use a dropout
layer followed by a linear layer over XLM-R output
oi from the last layer at timesteps i to predict the
probability that oi is the start or the end of the spans
Q and A.

As for each target word we had its part of speech
label (PoS), we decided to predict it using a linear
layer over the output corresponding to [CLS] token
from the last layer of XLM-R.

During the training process, we optimize the
weighted sum of cross-entropy losses of A span, Q
span, and PoS predictions. And as the correspond-
ing weights, we take the softmax over the learnable
weights’ vector V ∈ R3.

We fine-tuned the models in the settings from
Table 2. Four times per training epoch we were
validating our models and saving the best one. Dur-
ing the inference we assumed the positive answer
if the model predicted possible span A that sat-
isfied conditions Astart < Aend and Astart >
PrefixQuestion. We did not try to train QA sys-

Hyperparameter Value
weight decay 0.1
warmup proportion 0.1
dropout 0.1
learning rate 1e-4
learning rate scheduler linear warmup
optimizer Adam
epochs 50
batch samples 64
max sequence length 256
max gradient norm 1.0

Table 2: Training hyperparameters of MTL-EN and
MTL-XX systems, submitted to the competition

tems with symmetric data augmentation.
Further, we will be referring to the model vali-

dated on the English development set as the MTL-
EN model. And as MTL-XX we will be referring
to the models validated on one of the remaining
development sets for the Russian, Arabic, French
and Chinese languages.

3.3 BC Systems

Along with QA models, we tried a more traditional
and straightforward approach of fine-tuning XLM-
R as a binary classifier (BC).

So, given the target word w and a pair of tok-
enized sentences [s1 ... w ... sn] and [k1 ... w
... kn] we formed the following input example to
XLM-R model:
[CLS] s1 ... w ... sn [EOS] k1 ... w ... kn [EOS].
The sentences were tokenized the same way as in
QA models.

We feed it to XLM-R and pool outputs os and
ok from the last layer from the subwords corre-
sponding to the target word in two sentences. In
our submissions we either took the output from
the first subword, or used max pooling. In the
post-evaluation, we also tried mean pooling and
found, that it consistently provides the best results.
Then we tried concatenating it with first (mf) or
max (mm) pooled vectors, as well as both of them
(mmf). Finally, we tried concatenating min, max
and mean pooled outputs (mmm).

After obtaining fixed-sized representations of
the first and the second target word occurrence,
we concatenate them and feed them to the binary
classifier, which is the sequence of dropout, linear,
tanh, dropout and linear layers. The architecture of
the model is depicted in Figure 2.
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Figure 2: BC-based model architecture

In the post-evaluation period we tried replacing
concatenation (concat) with alternative aggrega-
tion techniques. First, we tried using component-
wise difference (diff) or multiplication (mul) with
an optional normalization of word occurrence vec-
tors (mulnorm). Then we tried combining rep-
resentations obtained with different aggregation
techniques by concatenating them. We denote
those combinations by letter sequences, where c
stands for the concatenation of the first and the
second vector, d for their difference and m for
their component-wise product. The inputs to each
of those operations can be optionally normalized,
which is denoted by n after the corresponding op-
eration. For instance, dmn means that we con-
catenate the difference of non-normalized and the
product of normalized vectors. Also in the post-
evaluation, we found it beneficial to apply batch
normalization before feeding aggregated represen-
tations into the classification head.

During training, we applied 2-class softmax and
optimized the cross-entropy loss. We fine-tuned
BC models using almost the same settings as for
QA models. Here, we used the constant learning
rate of 1e-5 with linear warmup during the first
10% of training steps. During post-evaluation, we
added linear learning rate decay.

Our submitted BC systems are ensembles of
these three models: first, first-AG and max-AG
differing by subwords pooling strategy and by use
of data augmentation. We would be referring to
the ensemble of these models validated on the En-
glish dev set as ENS-EN and as ENS-XX for an
ensemble of models validated on corresponding
dev sets.

4 Experiments and Results

As our submissions showed us that BC models
perform much better than QA models, in our post-

Figure 3: Data augmentation effect on xlmr.large per-
formance

Figure 4: Comparison of target aggregation methods
for xlmr.base (mean pooling, no batchnorm)

Figure 5: Comparison of subword pooling methods for
xlmr.base (dmn agg. with batchnorm)

evaluation experiments we focused on them. In
the following experiments, we report the best ac-
curacy obtained during training on the English de-
velopment set (best dev.en-en) and the best aver-
age accuracy on all non-English development sets
(best dev.nen-nen) from our own split. For those
epochs where the best dev set accuracy is achieved,
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we report accuracy on the official English test set
(test.en-en) and averaged over official non-English
test sets (test.nen-nen). Due to space limitations,
we report the results on all test sets only for our
best models in Table 3.

In the first experiment, we trained the submitted
models with and without data augmentation. Fig-
ure 3 shows that the augmentation never decreases
performance, at least if the learning rate is selected
properly. Thus, we always performed data augmen-
tation in the following experiments.

Figure 4 compares target aggregation tech-
niques. The concatenation of the difference of non-
normalized vectors and component-wise product
of normalized vectors (dmn) proved to outperform
all other methods by a large margin, especially
when the learning rate is properly selected. Thus,
we used this technique for the following experi-
ments. A simple concatenation of target embed-
dings, which was used in our submissions, is more
than 3% worse and is often outperformed by the
difference or component-wise product.

Since concatenating normalized and non-
normalized vectors can make training difficult, we
decided to apply batch normalization before feed-
ing those vectors into the classification head. Fig-
ure 6 shows that batch normalization does not im-
prove results for English much, but considerably
improves the average performance on other lan-
guages. This is probably due to the fact, that the
overwhelming majority of training examples are in
English.

Also, from figure 6 we notice that for English dif-
ferent poolings give similar performance. For other
languages, first pooling is a bad option. We hypoth-
esise that this results from non-English words being
split into sub-word tokens more frequently. Mean
pooling consistently outperforms other poolings.
Figure 5 additionally compares combinations of
different subword poolings. However, those combi-
nations did not improve results compared to single
mean pooling.

Finally, we estimated how much the additional
multilingual training data help compared to using
only English training examples and counting on
cross-lingual zero-shot transfer. In table 3 we de-
note xlmr.base models fine-tuned only on English
train and trial data as enonly. We see that includ-
ing non-English examples into the training set im-
proves the results by 1.5-3% for multilingual and
even more for cross-lingual scenarios. Surprisingly,

it also gives some improvement for English.
Table 3 summarizes the results of our submitted

systems and the following post-evaluation exper-
iments. During the evaluation period, we made a
total of 4 submission attempts, two for the Question
Answering based approach and two for the binary
classifier approach. During training the best check-
point was selected either individually for each lan-
guage using corresponding dev set accuracy (XX),
or by English dev set accuracy (EN). We see that
the first approach to the task (MTL-EN, MTL-XX)
shows much worse results compared to the second
one (ENS-EN, ENS-XX). For the second approach,
we submitted two ensembles consisting of three
models shown in the same Table 3. As expected,
ensembling the models helped to improve the re-
sults greatly.

As we figured out that dmn target aggregation
and mean subword pooling performs significantly
better compared to other variants for XLMR.base
model, we trained XLMR.large version with hyper-
parameters from the best XLMR.base model. The
results of the models validated either by score on
English dev set (EN), or by the average score for
non-English dev sets (nEN), or by scores on each
dev set individually (XX), are shown in the third
group of results in the Table3. We see that these
models outperform any single model from the eval-
uation phase for all multilingual subtask’s test sets
and test.en-ar set from cross-lingual subtask.

And lastly, we report the results for an ensemble
of three XLMR.large models: two mean-dmn mod-
els trained with learning rates 1e − 5 and 2e − 5
and one mean-cnmn model trained with learning
rate equal to 1e− 5. We see that using ensemble of
models with new subword pooling and target aggre-
gation techniques helps us to improve our official
results from competition. We improved our results
for test.ru-ru (3 → 2), test.fr-fr (2 → 1), test.en-
en (15 → 12), test.zh-zh (21 → 17), test.en-ar
(6→ 4) and test.en-zh (17→ 12) sets.

5 Conclusion

In this paper, we have described our approach to
SemEval-2021 Task 2. We tried treating Word-in-
Context Disambiguation as question answering and
binary classification problems. In our case, binary
classification turned out to be a more promising ap-
proach. Also, we found that mean pooling over sub-
words is the best option, batch normalization helps
when added before classification head, and concate-
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Model ar-ar ru-ru fr-fr en-en zh-zh en-ar en-ru en-fr en-zh
our submissions: question answering based

MTL-EN 73.9 75.0 77.9 84.7 77.7 63.1 66.8 69.8 69.3
MTL-XX 77.0 76.2 73.9 84.7 76.5 – – – –

our submissions: binary classifier based
ENS-EN 84.6(2) 85.3(10) 86.4(3) 91.1(15) 83.9(21) 86.5(6) 87.0(8) 87.2(6) 86.0(17)
ENS-XX 83.8(8) 86.6(3) 86.3(4) 91.1(15) 83.5(22) – – – –

first-concat-EN 83.5 84.2 84.8 90.0 82.2 85.4 86.4 86.4 84.4
first-concat-XX 82.0 84.6 84.8 90.0 82.1 – – – –

first-concat-noAG-EN 82.3 82.5 85.4 90.8 81.4 84.9 85.7 86.1 85.8
first-concat-noAG-XX 82.9 84.0 84.9 90.8 80.9 – – – –

max-concat-EN 83.2 85.8 84.1 89.8 84.5 85.7 82.6 84.2 81.9
max-concat-XX 83.6 83.3 84.7 89.8 84.9 – – – –

post-evaluation results: xlmr.large, mean-dmn,lr=1e-5
XX 84.0 86.1 84.5 90.7 83.5 – – – –
EN 83.6 86.4 85.8 90.7 84.7 86.3 85.4 85.5 85.5

nEN 84.2 84.7 85.2 89.9 84.3 84.7 84.2 83.9 83.7
post-evaluation results: xlmr.large, mean-dmn,lr=2e-5 + mean-cnmn,lr=2e-5 + mean-dmn,lr=1e-5

ENS-EN 84.6(2) 87.0(2) 87.5(1) 91.4(12) 84.8(17) 87.6(4) 86.2(12) 86.2(7) 87.1(12)
post-evaluation results: xlmr.base, mean-dmn

XX 83.3 80.7 82.8 88.8 81.3 – – – –
enonly-XX 80.5 79.4 80.7 87.1 80.1 – – – –

EN 78.1 80.9 82.8 88.8 81.9 78.8 82.2 82.1 83.6
enonly-EN 81.9 78.6 80.7 87.1 79.6 75.5 79.5 76.7 73.4

nEN 82.1 80.7 83.4 89.1 81.3 80.7 82.4 82.7 79.9
enonly-nEN 81.3 79.4 81.4 87.8 81.0 74.3 77.9 75.9 72.5

Table 3: Results on all cross-lingual and monolingual test sets. XX denotes models validated on corresponding
dev sets. For instance, XX model’s result for ru-ru set was obtained by model validated on dev.ru-ru set. nEN
denotes models validated by averaged scores for non-English dev sets and EN denotes the ones validated on the
English dev set. During the evaluation period we submitted MTL-EN, MTL-XX, ENS-EN and ENS-XX models’
predictions.

Figure 6: Effect of batch normalization on xlmr.base

nation of target embeddings is outperformed by the
combination of the difference and the product of
normalized embeddings.
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Abstract 

This paper presents a word-in-context 

disambiguation system. The task focuses 

on capturing the polysemous nature of 

words in a multilingual and cross-lingual 

setting, without considering a strict 

inventory of word meanings. The system 

applies Natural Language Processing 

algorithms on datasets from SemEval 2021 

Task 2, being able to identify the meaning 

of words for the languages Arabic, Chinese, 

English, French and Russian, without 

making use of any additional mono- or 

multilingual resources. 

1 Introduction 

The computational task of disambiguating a word 

in the context of its sentence is still a very 

challenging topic facing natural language 

processing (NLP). In this study, we refer to word 

meaning that requires a multidisciplinary approach 

for its detection. From sense-based and 

contextualized embeddings, all tries are aimed at 

providing an understanding of words in context. 

We notice that evaluating such approaches is not 

easy. For instance, traditional Word Sense 

Disambiguation (WSD) fails to test latent 

representations unless these are linked to explicit 

sense inventories such as WordNet (Matusevych, 

2016) or BabelNet (Navigli and Pozetto, 2012; 

Luan et al., 2020). To resolve the problem of 

disambiguation for both lingual dimensions, we 

tried to use a combination of well-known 

algorithms to provide an optimal system. 

The legitimate research questions this paper 

intend to answer: Is Word-in-Context 

Disambiguation a barrier for NLP techniques? 

The approach we propose in this paper 

investigates two models of cross-lingual word 

embeddings, comparing them to the shared-

translation effect and the cross-lingual coactivation 

effects of false and true friends (cognates) found in 

human language. We find that the similarity 

structure of the cross-lingual word embeddings 

space yields the same effects as the human 

bilingual lexica (Merlo and Rodriguex, 2019). 

Research on bilingual lexica has uncovered 

fascinating interactions between the L1 (native 

language) and L2 (second language) lexica 

showing that both production and comprehension 

coactivate lexical items in both languages, 

indicating that bilinguals store lexical 

representations from their native and their second 

language in the same space.  

The rest of the paper is organized as follows: 

section 2 describes the literature related to sense 

disambiguation, section 3 presents the dataset and 

method of this study, section 4 resumes the results 

of the conducted experiments, followed by section 

5 with the conclusions and discussions about how 

to increase the accuracy. 

2 Background 

This topic has attracted significant attention in 

recent years, evidenced by increasing number of 

workshops (e.g., SemEval-2013 Task 10: Cross-

lingual world Sense Disambiguation - CLWSD). 

Participating in such competitions is especially 

attractive since teams have thus access to labeled 

data.  

For binary tasks, as the case of this competition, 

there are many computational models to be used in 

detecting the right word sense. 

FII_CROSS at SemEval-2021 Task 2: Multilingual and Cross-lingual  

Word-in-Context Disambiguation 
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The recent advancements in corpus linguistics 

technologies, as well as the availability of more and 

more textual data, encourage many researchers to 

take advantage of comparable and parallel corpora 

to address different NLP tasks. Work on this topic 

is however highly subjective and biased. In 

general, the methods are based on Bag of Words 

features, usually normalized with tf*idf or character 

n-grams features for stylistic purposes. 

Most approaches are supervised methods which 

can be classified into different methods:  

(1) regression, based on the embeddings in one 

language using a leastsquares objective (Dinu et al., 

2015; Artexe et al., 2018);  

(2) orthogonal, based on the embeddings in one 

or both languages under the constraint of the 

transformation (Zhang et al., 2016; Smith et al., 

2017);  

(3) canonical, based on the embeddings in both 

languages to a shared space, using canonical link 

extension of it (Lu et al., 2015).  

Also, several systems use an approach similar to 

ours’ in considering Sent2vec the main algorithm 

(Pagliardini et al., 2018). Other systems used a 

maxent classifier trained over local context or even 

a KNN (K-Nearest Neighbors) classifier to solve 

the CLWSD (Cross-Lingual Word Sense 

Disambiguation) task. One of the interesting 

approaches was using machine translation (Baker 

et al., 1993). Although the winning systems for the 

CLWSD task used different approaches (statistical 

machine translation and classification algorithms), 

they also only used a parallel corpus to extract 

disambiguating information, while not using 

external resources such as WordNet. As a 

consequence, their system is very flexible and 

language-independent. 

The topic of multilingual and cross-lingual 

disambiguation has attracted significant attention 

in recent years (Akyürek et al., 2020), with 

approaches ranging from learning effective vector 

representations (Loureiro and Jorge 2019, Scarlini 

et al., 2020) to infusing neural networks with 

knowledge graph information (Bevilacqua and 

Navigli 2020). 

Our approach is more focused on recent research 

on the bilingual lexicon, which uncovered 

fascinating interactions between the lexica of the 

native language and that of the second language in 

bilingual speakers. Thus, it has been found that the 

lexicon of the underlying native language affects 

the organization of the second language (Riley et 

al., 2020). In that spirit, our system includes 

distributed representations to disambiguate words 

in context.  

3 Datasets and Methods 

The dataset for the SemEval-2021 Task 2: 

Multilingual and Cross-lingual Word-in-Context 

Disambiguation is detailed in the task description 

paper (Martelli et al., 2021).  

3.1 Dataset 

The dataset (Table 1), released in JSON format and 

divided into .data and .gold files, had the following 

composition: training, development and test 

subsets for multilingual and cross-lingual settings. 

The data files contain the following information: 

(1) unique id of the pair; 

(2) target lemma; 

(3) part of speech;  

(4) first sentence;  

(5) second sentence;  

(6) start and end indices of the target word 

occurring in the first and second sentence. 

The training data set contains 8000 entries for 

each multilingual language and 8000 entries for 

cross-lingual language combinations, and in the 

test dataset there are 1000 entries for each. The 

.gold files contain the following information, as 

exemplified below: 

 

• unique id of the pair 

• tag (binary, either T/F) 

 
{ 

   "id": "training.en-en.0", 

   "tag": "F" 

}, 

 

We used NLTK to tokenize the sentences and 

removed the stop words, only keeping the lemmas 

in sentence1 and sentence2 respectively, and the 

Language Total 

words 

Training 

words 

Testing 

words 

Arabic 20000 15000 5000 

Chinese 16000 12000 4000 

English 24500 16500 8000 

French 22000 15500 6500 

Russian 20000 14500 5500 

Table 1: Corpus statistics 
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gold tag. After the transformation, the data in the 

training files look as exemplified below: 
{ 

  "sentence1": "context 

coordination integration Bolivia hold 

key play process infrastructure 

development ", 

  "sentence2": "school water needed 

girl sent fetch taking time away study 

play ", 

  "lemma": "play", 

  "tag": "F" 

},. 

3.2 Methods 

We considered that our system will first solve the 

multilingual part, followed by the cross-lingual 

part. Therefore, we propose the specific 

architecture presented in Figure 1.  

 

 

Sent2Vec presents a simple but efficient 

unsupervised method to train distributed 

representations of sentences. It can be thought of as 

an extension of FastText and Word2vec (CBOW) 

to sentences. The sentence embedding is defined as 

the average of the source word embeddings of its 

constituent words. This model is furthermore 

augmented by learning source embeddings for both 

unigrams and various n-grams of words occurring 

in sentences and averaging the n-gram embeddings 

along with the words (Pagliardini et al., 2018). 

Thus, in our output, we have the initial tag from the 

labelled data, along with the score obtained through 

Sent2Vec. 

As baseline, we used the Lesk algorithm. Thus, 

we extracted the definition of the queried target 

word from the first and the second sentence, 

respectively. Finally, we compared the definitions 

of the target word in the two contexts, thus reaching 

the True or False tag. Lesk output before 

comparing definitions is presented below. Using 

NLTK-WORDNET, we extracted all synonyms for 

a target word. 

 
Sentence 1: In that context of 

coordination and integration, Bolivia 

holds a key play in any process of 

infrastructure development. 

 

-Sense:Synset('play.v.02') 

-Definition:act or have an effect in 

a specified way or with a specific 

effect or outcome 

 

 

 

 

 

 

Sentence 2: A musical play on the 

same subject was also staged in 

Kathmandu for three days. 

 

-Sense:Synset('play.v.28') 

-Definition:discharge or direct or 

be discharged or directed as if in a 

continuous stream 

 

Our final approach was to combine the Lesk 

algorithm, along with Sent2Vec and vector cosine 

(Bojanowski et al., 2017). The cosine similarity is 

computed for each pair of sentences in our input. 

The pipeline used cross-lingually aligned versions 

of fasttext word vectors.  

After running all modules, we obtained two 

scores, given by the cosine similarity and Sent2Vec 

Figure 1. The System Architecture  

Cosine 
similarity 

Sent2Vec 

Model 

Lesk 
Algorithm 
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respectively, and a tag (T or F) provided by the 

Lesk algorithm. In order to apply an integrative 

approach, we transformed the tags from the Lesk 

algosithm into a 3rd score: if the tag is T the Lesk 

score became 0.9, while if the tag is F, the score 

became 0.3. These values were determined 

empirically, after several tests with different 

weights. Below are the scores obtained for the pair 

of sentences discussed above. 

 
sent2vec score: 0.0912621021270752 

lesk score: 0.3 

cosine score: 0.14142135623730948 

gold tag: F 

 

In order to establish a ranking on the three scores 

and their influence on the final tag, we tested and 

analyzed several combinations of weights, as 

follows: 

 
Score1 – 30%sent2vec*10 + 30%lesk + 

40%cosine*10: 0.9294717313304636 

Score2 – 30%sent2vec*10 + 20%lesk + 

50%cosine*10: 1.0408930875677729 

Score3 – 30%sent2vec*10 + 40%lesk + 

30%cosine*10: 0.818050375093154 

 Score4 – 40%sent2vec*10 + 20%lesk 

+ 40%cosine*10: 0.9907338334575388 

 

After a detailed error analysis in which we 

compared the gold tags from the development 

corpus with those issued in each of our 

combinations, we decided that the final tags be 

assigned according to the score brought by the 

formula (1): 

 
(1) FiiCros_formula = 20%*Lesk + 30% 

* Sent2Vec*10 + 50% Cosine *10 

4 Results 

The results for each individual task (Precision, 

Recall and F1-score) using the specific test dataset 

are presented: for multilingual test dataset (Table 2) 

and for crosslingual dataset (Table 3). The baseline 

identified 4483 correct tags out of 8000 inputs. 

After fine tuning the weights of the combination of 

our algorithms with the final formula discussed 

above our system reached 5760 correct tags out of 

8000 inputs.  

 

 

Model Prec

ision 

Rec

all 

F1-

score 

Lesk Baseline EN-EN 56% 65% 60,17% 

Lesk + Sent2Vec + 

Cosine Vectorial EN-EN 

72% 68% 69,94% 

Lesk Baseline FR-FR 52% 61% 56,14% 

Lesk + Sent2Vec + 

Cosine Vectorial FR-FR 

70% 66% 67,94% 

Lesk Baseline AR-AR 50% 59% 54,13% 

Lesk + Sent2Vec + 

Cosine Vectorial AR-AR 

68% 64% 65,94% 

Lesk Baseline ZH-ZH 51% 60% 55,14% 

Lesk + Sent2Vec + 

Cosine Vectorial ZH-ZH 

69% 65% 66,94% 

Lesk Baseline RU-RU 53% 62% 57,15% 

Lesk + Sent2Vec + 

Cosine Vectorial RU-RU 

71% 67% 68,94% 

 

 

Table 2. Experimental Results for  

multilingual test dataset 

Tables 3. Experimental Results for  

crosslingual dataset 

Model Preci

sion 

Rec

all 

F1-

score 

Lesk Baseline EN-AR 53% 61% 56,71% 

Lesk + Sent2Vec + 

Cosine Vectorial EN-AR 

70% 66% 67,94% 

Lesk Baseline EN-FR 49% 58% 53,12% 

Lesk + Sent2Vec + 

Cosine Vectorial EN-FR 

67% 64% 65,46% 

Lesk Baseline EN-ZH 44% 55% 48,88% 

Lesk + Sent2Vec  + 

Cosine Vectorial EN-ZH 

64% 60% 61,93% 

Lesk Baseline EN-RU 47% 57% 51,51% 

Lesk + Sent2Vec  + 

Cosine Vectorial EN-RU 

65% 61% 62,93% 
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We noticed to have lower scores when using the 

baseline (Lesk algorithm) than the combination of 

the three algorithms (Lesk, Sent2Vec and Cosine 

Vectorial). 

Although it might have seemed to have similar 

results with the simple Word2Vec version, we 

considered Sent2Vec to be more reliable because it 

did not depend on the number of words in the 

vocabulary, and this was an advantage since the 

sizes of the vocabularies were diverse across 

languages. 

5 Conclusion and Discussions 

This paper presents a system participating at 

SemEval 2021 Task 2. Our solution indicates a 

good start for solving word sense disambiguation.  

The main challenge behind word sense 

disambiguation is to make ample use of the 

available technologies since ambiguities in any 

language provide great difficulty in the use of 

information technology. The major difficulty lays 

in the fact that words in human language can be 

interpreted in more than one way, depending on the 

context (Tan, 2013).  

Since we performed a detailed investigation of 

monolingual and bilingual disambiguation, our 

experimental results showed that Sent2vec and 

Lesk approaches are remarkably efficient for both 

tasks. The overall results are satisfactory and 

exceed the baseline; however, there is still room for 

improvement.  

A larger and well-annotated dataset would 

provide more opportunities for exploring the issue 

of disambiguation. Additionally, building a dataset 

sufficient in size and diversity will allow 

experiments with deep learning methods. The 

biggest challenge in this project was working in 

different languages at the same time while some 

tools were available to English only.  

From our research, we noticed that the average 

scores are around 75% when applying separately 

Lesk and Sent2Vec (or even Word2Vec), and it 

seems to be similar when combining the two.  
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Abstract

This paper presents our submitted system to
SemEval 2021 Task 4: Reading Comprehen-
sion of Abstract Meaning. Our system uses
a large pre-trained language model as the en-
coder and an additional dual multi-head co-
attention layer to strengthen the relationship
between passages and question-answer pairs,
following the current state-of-the-art model
DUMA. The main difference is that we stack
the passage-question and question-passage at-
tention modules instead of calculating paral-
lelly to simulate re-considering process. We
also add a layer normalization module to im-
prove the performance of our model. Fur-
thermore, to incorporate our known knowl-
edge about abstract concepts, we retrieve the
definitions of candidate answers from Word-
Net and feed them to the model as extra in-
puts. Our system, called WordNet-enhanced
DUal Multi-head Co-Attention (WN-DUMA),
achieves 86.67% and 89.99% accuracy on the
official blind test set of subtask 1 and subtask
2 respectively.

1 Introduction

Recently, there has been an increasing interest on
Machine Reading Comprehension (MRC). While
most MRC studies such as CNN/Daily Mail (Her-
mann et al., 2015) focus on concrete concepts, Se-
mEval 2021 Task 4, Reading Comprehension on
Abstract Meaning (ReCAM), targets abstract con-
cept understanding, including imperceptibility in
subtask 1 and nonspecificity in subtask 2. The for-
mer, imperceptibility, highlights the abstract words
that refer to ideas and concepts that do not corre-
spond directly to human perception. The latter is
for hypernyms and abstract concepts such as the
class of vertebrate which includes whales as a con-
crete subclass (Changizi, 2008).

*Equal contribution.

Figure 1: An example of ReCAM subtask 1.

In this task, given news fragments and incom-
plete abstracts, the machine needs to select the
most suitable abstract words from candidate an-
swers. Figure 1 shows one example of ReCAM
subtask 1. Passage is the news sections and Ques-
tion is a human written summary in which abstract
words have been removed. Machines are requested
to choose abstract words from five candidates for
replacing @placeholder.

For this shared task, we regard both subtasks
as multi-choice MRC tasks. Various deep neural
networks and attention mechanisms (e.g. (Dhin-
gra et al., 2017; Wang et al., 2018; Zhang et al.,
2020a,b; Jin et al., 2020)) have been proposed
to address these tasks. In our work, follow-
ing the state-of-the-art model DUMA (Zhu et al.,
2020), we adopt a Pre-trained Language Model
(PrLM) as encoder and extend with an additional
dual multi-head co-attention layer to strengthen
the relationship between passages and question-
answer pairs. For the dual multi-head attention
layer, while DUMA builds passage-question and
question-passage attention modules in a parallel
way to simulate the transposition thinking process,
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our model stacks two attention modules in order to
simulate the process of re-considering for a deeper
understanding of the passage. More details on our
attention calculation process can be found in Sec-
tion 2. Furthermore, we add an additional layer
normalization module immediately after the atten-
tion module. From our experiments, we found that
this additional normalization module definitely im-
proves our model’s performance.

Our most significant design decision is to use
WordNet (Miller, 1995) to expand on the abstract
concepts in the candidate answers. Intuitively, ex-
panding an abstract concept according to its defi-
nition in a dictionary should help as it helps relate
the abstract concept with others that may occur
in the text. A key conclusion that we can draw
from our experiments is that this is indeed the case.
One problem that we encountered when implement-
ing this idea was that most English words have
multiple entries in WordNet. For example, bank
in WordNet can have Noun definitions as well as
Verb definitions. We addressed this problem by
using some heuristics and some additional infor-
mation such as part-of-speech labels. Because of
the significant role played by WordNet, we call
our system WordNet-enhanced DUal Multi-head
Co-Attention (WN-DUMA).

We remark that our system did not use any ad-
ditional training data for the tasks. In the final
evaluation, our model is ranked 10 out of 23 and
9 out of 28 on the official subtask 1 and subtask 2
blind test set with 86.67% and 89.99% accuracy,
respectively. The code for our model is publicly
available1.

The rest of the paper is organized as follows.
Section 2 gives the details of our system. Section
3 describes our experimental setup including the
datasets and hyper parameters used for training.
Section 4 presents experimental results. Section 5
concludes this paper with some final remarks.

2 System Description

In this section, We describe the framework of our
end-to-end model WN-DUMA. Figure 2 depicts
the detailed architecture of our approach, with in-
puts at the bottom and outputs at the top.

WordNet-enhanced Encoder We regard both
subtask 1 and 2 as multi-choice MRC problems.
Such a problem includes a passage, a question with

1https://github.com/zzshou/RCAM

Figure 2: The overall model architecture.

a @placeholder, and 5 candidate answers to choose
from. First, we replace @placeholder in the ques-
tion with the given 5 candidate answers to form
5 options. In the tasks, the candidate answers are
all single words with abstract meanings, so we de-
cided to add some extra knowledge from WordNet
(Miller, 1995) to help the system better understand-
ing the abstract meanings. More specifically, for a
single candidate answer, we find its part-of-speech
tag based on the option it’s located in, and extract
its definitions under this part-of-speech tag. After
tokenization, every instance is cast into the input
form: [CLS] passage [SEP] option + answer def-
inition [SEP]. To encode input tokens into repre-
sentations, we feed them through a PrLM based on
Transformer to obtain sequence embeddings, which
draws a global relationship between the passage
and the option-definition.

Dual Multi-head Co-Attention Layer Based
on the above process, we further separate the out-
put representations from transformer encoder to
acquire the passage context embeddings EP ∈
Rdmodel×lp and the context embeddings of option-
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definition EOD ∈ Rdmodel×lod , where lp, lod de-
note the maximum length of passage and option-
definition respectively. Then based on the bi-
directional matching network of DUMA which is
quite similar to the multi-head self-attention mod-
ule in vanilla transformer block (Vaswani et al.,
2017), we first take EOD as Query, EP as Key
and Value to calculate one of the co-attention repre-
sentations, which simulates the process of human
re-reading the passage with impression of option
and definition. The formulas are listed as follows:

Qi = EODWQ
i (1)

Ki = EPWK
i (2)

Vi = EPW V
i (3)

headi = softmax(
QiK

T
i√

dk
)Vi (4)

MHA = Concat(head1, ..., headh)W
O (5)

REP1 = Normalize(EOD +MHA) (6)

where WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk ,
W V

i ∈ Rdmodel×dv , WO
i ∈ Rhdv×dmodel are

linear transformations with learnable parameters,
dq, dk, dv denote the dimension of Query, Key and
Value, h denotes the number of heads. Different
from the structure of DUMA, here we make two
changes: 1) apply ”Add and Normalize” after get-
ting the multi-head attention representation, which
could result in more stable training. 2) compute an-
other co-attention representation by stacking rather
than paralleling: take the acquired REP1 as Key
and Value, EP as Query, which simulates the pro-
cess of re-considering the option-definition with
deeper understanding of the passage. Finally, we
obtain REP1 and REP2, which have the same di-
mension as EOD and EP , respectively. As a result,
we can stack the co-attention module for k layers.

Classifier Here the co-attention representations
REP1 and REP2 are merged and used for final
classification:

I1 = AvgPool(REP1) (7)

I2 = AvgPool(REP2) (8)

M = Concat(I1, I2) (9)

logits = MWM (10)

where I1, I2 ∈ Rdmodel , M ∈ R2dmodel ,
WM ∈ Rdmodel×nclass denotes the one-layer fully-
connected neural network, nclass denotes the num-
ber of candidate answers. Consequently, for a sin-
gle instance, we could get as many logits as the

Task 1 Task 2
Train 3,227 3,318
Dev 837 851
Test 2,025 2,017

Avg. passage length 270.3 429.7
Avg. question length 24.6 27.1

Vocabulary size 16,318 17,006
Answer vocabulary size 4,333 4,775

Table 1: Basic statistics of subtask 1 and subtask 2
dataset.

candidate answers, which are used to compute the
corss-entropy loss by softmax.

3 Experimental Setup

Data and Metric We used the official datasets
(Zheng et al., 2021) provided by SemEval 2021
Task 4 competition. They were collected from BBC
News in English language. Some basic statistics
are listed in Table 1. According to the requirement
of the organizers, participants could only use the
corresponding dataset for a specific subtask to build
models to ensure fairness. For better performance,
technics like multi-task learning (Wan, 2020) are
recommended for MRC tasks. In both subtask 1
and subtask 2, we utilize accuracy as the metric to
evaluate our model performance.

Hyper Parameters All of our codes are written
based on PyTorch2. To extract the word definition
of candidate answers, we use NLTK toolkit (Bird
et al., 2009). The transformer encoder we used
is pretrained ALBERT-xxlarge-v2 model3. Since
the code of DUMA is not open-source, we reim-
plement it by only using one co-attention layer
where the attention heads are 64 and the dimen-
sion of Query, Key and Value are all 64, because
it is pointed that more co-attention layers do not
improve the performance (Zhu et al., 2020). The
setting is also applied to our WN-DUMA for fair
comparison.

Due to limited resources, the maximum se-
quence length of input tokens is set to 150 for both
subtask 1 and subtask 2. In fact, we found that
sequence length longer than 150 can only slightly
improve the model performance. We choose mini-
batch size equal to 2, and the AdamW optimizer

2https://pytorch.org/
3https://github.com/huggingface/

transformers
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(Loshchilov and Hutter, 2018) with an initial learn-
ing rate of 5e-06. We use some strategies for more
stable training: 1) clip the gradient norm to 10;
2) adopt a linear scheduler with warm up of the
first 10% training steps. To avoid overfitting, we
apply 0.1 dropout (Srivastava et al., 2014) rate to
the co-attention layer. We trained all the models
for 3 epochs, evaluate on the dev set at every 200
training steps and save the model with the best dev
accuracy. For each single model, we run experi-
ments for 5 times with different random seeds and
use the average as the ultimate performance.

4 Results

4.1 Quantitative Analysis

Table 2 summarizes the experimental results. The
first three models only have encoder (without en-
hancement of WordNet) and classifier part. It is
clearly seen that ALBERT is much more efficient
as encoder for abstract meaning understanding. It
is worth noting that by only using the question and
answer as input, the ALBERT model can also get
pretty good results, as table 2 shows. Intuitively,
it may be because the model could utilize syntax
and semantics of the question sentence to choose
the correct answer without looking through the pas-
sage.

Compared to ALBERTxxlarge, adding DUMA
layer obtains around 0.2% improvement in subtask
1, and more than 3% improvement in subtask 2.
Besides, our WN-DUMA single model achieves
further improvements based on DUMA on both
subtasks, +0.83% and +1.3% respectively, with-
out increasing the number of parameters. Using
a majority vote scheme, we ensemble our WN-
DUMA model with different parameters for more
stable predictions. Eventually, our ensemble mod-
els which get 87.57% on subtask 1 dev set and
90.01% on subtask 2 dev set acquire the best per-
formance on test sets (86.67% and 89.99%, respec-
tively) among our submissions.

Figure 3 and Figure 4 illustrate the dev accu-
racy of different models on subtask 1 and subtask
2 as the number of training steps increases. It is
interesting to observe that models with co-attention
layer (DUMA and WN-DUMA) could get over
70% accuracy with only 10% of training examples.
While ALBERT model has to be trained with the
full dataset to get relatively high accuracy. Con-
sequently, our WN-DUMA model may be useful
when there only exists a small amount of training

Figure 3: Subtask 1 dev accuracy over number of train-
ing steps.

Figure 4: Subtask 2 dev accuracy over number of train-
ing steps.

data.

4.2 Error Analysis

In order to further improve our model performance
in the future, we analyze some incorrect predictions
made by WN-DUMA, and classify them into two
categories:

• Candidate answers with similar meanings. In
some failure cases, the similarities between
candidate answers are too high to distinguish.
For example, outstanding and extraordinary,
challenge and attempt, etc.

• Lack of commonsense and relying too much
on the information of the passage. Due to
the fact that the question is the summary of
the passage, the machine need to choose the
most appropriate answer from a global per-
spective with some commonsense. However,
our model make decisions by only capturing
the local information in some cases. A spe-
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Model Task 1 dev Task 1 test Task 2 dev Task 2 test
BERTlarge (Devlin et al., 2019) 67.74 - 69.45 -
RoBERTalarge (Liu et al., 2019) 74.31 - 74.50 -
ALBERTxxlarge (Lan et al., 2020) 84.83 - 82.84 -

ALBERTxxlarge + DUMA (Zhu et al., 2020) 85.07 - 86.13 -
ALBERTxxlarge (question only) 79.57 - 82.14 -

ALBERTxxlarge + WN-DUMA (single) 85.90 84.54 87.43 86.61
ALBERTxxlarge + WN-DUMA (ensemble) 87.57 86.67 90.01 89.99

Table 2: Model comparison on subtask 1 and subtask 2 dataset.

Figure 5: An failure example made by WN-DUMA.
The ground true is the answer with a correct mark at
the bottom. While the prediction is the answer with
”predicted” at its bottom.

cific example can be seen in Figure 5. We can
see that the model predicts that the answer is
”troubled”, most likely because the passage
mentions ”the school was trapped into finan-
cial difficulties”.

5 Conclusion

In this paper, we describe our submitted system in
SemEval 2021 Task 4 ReCAM. Unlike previous
MRC datasets, ReCAM focus more on machine’s
ability in understanding and representing abstract
concepts. In order to provide more knowledge
of abstract word, we extract WordNet definitions
for each candidate answer based on part-of-speech
tags. In addition, our proposed WN-DUMA model
consists of a PrLM as the encoder and a dual multi-
head co-attention layer to enhance the relationship

between passage and question-answer pairs as hu-
man’s re-considering process. Our WN-DUMA
model improves the performance of our baseline
model DUMA on these datasets.

There are some limitations in our experiments.
Firstly, training data size of this task is limited
compared to other MRC tasks, with less than 3400
training pairs in both subtasks. This is understand-
able as collecting labeled data in many natural lan-
guage processing tasks is expensive. Secondly,
using ALBERTxxlarge PrLM, we only set 150 as
the maximum text length in our experiments due
to device limitation. Important sentences in the
passage that are highly relevant to the summary
are sometimes not covered. For PrLMs, their per-
formance always improve as the number of their
parameters increase. The use of large pre-trained
models sometimes requires the sacrifice of context.
For our future work, we plan to explore ways to
train models more efficiently with limited amount
of labeled data, and to design more cost-effective
models to deal with long input texts.
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Abstract

Most question answering tasks usually focus
on predicting concrete answers, e.g., named
entities. These tasks can be normally achieved
by understanding the contexts without addi-
tional information required. In Reading Com-
prehension of Abstract Meaning (ReCAM)
task, the abstract answers are introduced. To
understand abstract meanings in the context,
additional knowledge is essential. In this pa-
per, we propose an approach that leverages
the pre-trained BERT Token embeddings as a
prior knowledge resource. According to the re-
sults, our approach using the pre-trained BERT
outperformed the baselines. It shows that the
pre-trained BERT token embeddings can be
used as additional knowledge for understand-
ing abstract meanings in question answering.

1 Introduction

Question answering (QA) is one of the machine
reading comprehension tasks. The goal is to find
an answer of a given question based on a given
context. In most QA tasks (Chen et al., 2016; Lai
et al., 2017), the answers are commonly concrete
words appearing in the contexts. Abstract words,
on the other hand, have usually been ignored in
such tasks. Unlike concrete words, these abstract
words are difficult to understand since they cannot
be perceived directly with human senses. To study
machine comprehension of abstract meaning, a task
called Reading Comprehension of Abstract Mean-
ing (ReCAM) (Zheng et al., 2021) was proposed.
Unlike other QA tasks, the answers in ReCAM are
abstract words that used to summarise the informa-
tion in the contexts.

ReCAM is divided into three subtasks. For sub-
task 1, the abstract answers are in the form of imper-
ceptible words such as ‘objective’, ‘chance’, and
‘prospective’. Subtask 2 is about nonspecificity.
The answers in this subtask are abstract words that

represent nonspecific or general concepts such as
‘vertebrate’. Subtask 3 focuses on generality of the
models developed in the first two subtasks. In this
subtask, the model in subtask 1 must be evaluated
on subtask 2 data and vice versa. Based on these
abstract answers, a machine has to understand the
abstract meaning of certain words. This requires an
additional knowledge to fulfill the lack of abstract
concept information (Bi et al., 2019). For example,
given a context which is a passage and a question
shown in Table 1. In the example of Table 1, the
context contains a passage and a question. The
answer ‘neglected’ does not appear anywhere in
the given passage. However, the sentence, ‘it grad-
ually fell into disrepair in the late 1980s’, provides
a clue to answer the question. If the model has a
prior knowledge that the word ‘disrepair’ have a
connection with ‘neglect’, then the correct answer
will be chosen.

In this work, we propose to use a pre-trained
word/token embedding model to provide exter-
nal knowledge for abstract meaning understanding.
The pre-trained BERT token embedding is chosen
in this work due to its good performance in various
natural language processing tasks. In our approach,
the token embeddings are firstly extracted by the
pre-trained BERT model. Presumably, these em-
beddings are enriched with additional information
for understanding the abstract meanings. These
embeddings are used as inputs in our approach to
predict answers. In this way, the prior knowledge
from the pre-trained model can be leveraged in the
task of abstract answer prediction.

2 Related Work

A QA task usually requires a machine to under-
stand a context to answer a question. Typically,
a context is a passage and an answer usually ap-
pear somewhere in a given passage. Several ap-
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proaches have been proposed to compute a com-
bined passage-question representation and then use
it to find an answer. The DeepLSTM Reader (Her-
mann et al., 2015) uses a deep long-term short-term
memory (LSTM) encoder to find a representation
of a concatenated passage-question text. The At-
tentive Reader (Hermann et al., 2015) attentively
aggregates words to compute a passage representa-
tion based on a question. The Attentive Reader was
modified in (Chen et al., 2016) where a deep LSTM
module with the dot product attention function
were replaced by a shallow bi-directional LSTM
module with the bi-linear attention function. Re-
cently, Dhingra et al. (2017) proposed a model
called Gated-Attention (GA) Reader. It combines a
multi-hop architecture and a novel attention mech-
anism to learn the representations. These models
have shown good performances in question answer-
ing when answers are concrete words. However,
in ReCAM task, the answers are abstract. Only
the given contexts may not suffice to answer the
questions.

Recently, word/token embeddings from pre-
trained models have been popularly used in many
applications. They are capable of providing ad-
ditional knowledge from the resources they were
pre-trained. Several pre-trained models have been
proposed in the past few years such as GloVe (Pen-
nington et al., 2014) and ELMo (Peters et al., 2018).
Many models have also been developed from the
transformer architecture (Vaswani et al., 2017), e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and DistilBERT (Sanh et al., 2020). They
have been highly successful in pre-training token
embeddings for various downstream tasks includ-
ing QA. However, there has been no work where
such models are applied in a QA task that focuses
on imperceptibility and nonspecificity abstractness.

3 Using pre-trained token embeddings
for a QA task

Each sample in the dataset of both subtasks con-
sists of three components: passage, question and
options. Each passage is a long text that is used
to provide context for answering a question. Each
question is a passage-summarized text containing
one special token, @placeholder. This token is a
representative of a word (an answer) that should
be filled to complete the text. The correct answer
must be selected from five possible options pro-
vided in each sample. Table 1 shows one exam-

ple in subtask 1. In the table, the first row is the
passage providing a context for this sample. The
second row is the question, which is a sentence
that summarises the given passage. It contains one
placeholder indicated by @placeholder token. This
placeholder should be replaced by an abstract word
corresponding to the passage. The third row is the
list of options that can be selected to replace the
placeholder in the question. The correct options is
marked in bold which is ‘neglected’ in this case.
The last row is the label indicates the answer of this
example ranging from 0 (the first option) to 4 (the
last option).

Given a context (a passage and a question con-
taining a placeholder token), a placeholder embed-
ding extracted from the pre-trained BERT model
should be able to guide an answer. Due to the fact
that the BERT model considers token contexts to
learn token embeddings, a placeholder embedding
should comprise information of its context. That
means any word or token with a similar embedding
should also be in the same context as a placeholder
as well. Thus, to find the correct answer from a list
of options, every option embedding extracted from
the pre-trained BERT model is compared with a
placeholder embedding. Then, any option with the
most similar embedding compared to a placeholder
embedding should be an answer. Accordingly, we
propose an approach that considers similarity be-
tween placeholder and option embeddings to pre-
dict answers. Several metrics such as dot product,
cosine similarity and euclidean distance can be
considered to measure the similarity. The selected
metric in this work is described in Section 4.

To extract placeholder and option embeddings
in each sample, a question and a passage are firstly
concatenated in the following form:

[CLS] + Question + [SEP] + Passage + [SEP]

This form is conventional in BERT framework.
Normally, a ‘[CLS]’ token is added for a classifica-
tion purpose. It is usually represented a sentence
level embedding. However, it is not utilized in our
approach since we utilized embeddings in a token
level. Two ‘[SEP]’ tokens in the form are used
to separate a question and a passage. Similarly,
for every option in each sample, both ‘[CLS]’ and
‘[SEP]’ tokens are added as follows:

[CLS] + Option + [SEP]

Then, the pre-trained BERT model is used to
extract embeddings from these prepared inputs.
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Passage The Trainspotting author has agreed to become patron of The Leith Theatre and
launch a new fundraising drive. The Leith Theatre Trust took over the lease
of the art deco venue from City of Edinburgh Council last year ... However, it
gradually fell into disrepair in the late 1980s and eventually had to be closed
down by the council ...

Question Irvine Welsh is to spearhead a campaign aimed at reviving a @placeholder
theatre in Leith 30 years after its last show.

Options (A) neglected, (B) renewed, (C) lavish, (D) revised, (E) proposed
Label 0

Table 1: An example of a passage, a question, and five options. The task is to select the correct answer (bold) for
replacing @placeholder

The placeholder embedding is extracted from the
question-passage concatenated input and each op-
tion embedding is extracted from each option input.
These embeddings are used as inputs of the pro-
posed approach. As for targets, all labels given
are converted to one-hot vectors. With the place-
holder and options embeddings as inputs and the
one-hot vectors as targets, our proposed approach
learn how to predict the probabilities that each op-
tion is an answer for each sample. Figure 1 shows
the input and target generated from an example
shown in Table 1. The pre-trained BERT model
is used to extract embeddings of the placeholder
and option tokens in the prepared format. The
embeddings are the hidden weights of the given
tokens from the last hidden layer of the pre-trained
BERT model. The label 0 is converted to a one-hot
vector [1, 0, 0, 0, 0]. These embeddings are then
passed through the prediction model. This predic-
tion model consists of six learning modules for
learning placeholder and five option embeddings
in each sample. These modules consist of a dense
layer with an output size 768 and a tanh activa-
tion function. They take a 768-dimensional pre-
trained BERT token embedding and outputs the
fine-tuned embedding with the same size. For each
placeholder embedding, the fine-tuned embedding
is produced by the placeholder embedding mod-
ule. Similarly, for each option embedding, the
fine-tuned option embedding is also obtained from
the corresponding option learning module. How-
ever, using separate option learning module for
each option may cause a bias in selecting some
options at the end. We therefore propose to use
shared-weight modules for learning all fine-tuned
option embeddings simultaneously. In other words,
all options in each sample are learned by the mod-
ules that share the same weights. After that, for

each option, the similarity between the fined-tuned
placeholder and the fine-tuned option embedding is
computed. All of the similarities from all options
are then concatenated to form a vector with the
size 5. A softmax activation function is applied on
the concatenated vector to produce the final output
with the same size. This output vector represent
the probabilities that each option is an answer of
a given sample. The entire proposed approach is
illustrated in Figure 2. In the figure, p denotes
the fine-tuned placeholder embedding while o0, o1
and o4 denote the first, the second and the last op-
tion embedding respectively. s denotes a similarity
function. s(p, oi) is the similarity between p and
any oi.

4 Experimental setup

The pre-trained BERT model used in this work is
BERT-Base-Uncased 1 (Turc et al., 2019). All in-
puts were converted to lower case and tokenized by
BERT-Uncased tokenizer. The prediction model
was trained using RMSprop optimizer for 100
epochs with the learning rate set to 0.001. A cate-
gorical cross entropy was used as a loss function.
To avoid over-fitting, both L1 and L2 regularizers
were added at the dense layer in both placeholder
and option learning modules. The regularization
factors were set to 0.001. To select the similar-
ity metric, we examined three functions, i.e., dot
product (sd), cosine similarity (sc) and euclidean-
distance-based similarity (se) computed by

sd(p, o) = p · o (1)

sc(p, o) =
p · o
||p||||o|| (2)

se(p, o) =
1

1 + ||p− o|| (3)

1https://github.com/google-research/bert
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Figure 1: The input and target generated from an example shown in Table 1

Figure 2: The proposed approach framework

where p denotes a placeholder embedding and o
denotes an option embedding. We applied these
metrics in the proposed approach and performed
experiments on the development sets provided. The
results are shown in Table 2. As in the table, the
proposed approach using a dot product performed
best compared to the others. Hence, a dot product
was used in the proposed approach when it was
applied on the trial and test sets

Similarity metric Accuracy
Subtask 1 Subtask 2

sd 0.48 0.46
sc 0.34 0.31
se 0.33 0.31

Table 2: Evaluation results of the proposed approach
using different similarity metrics on the development
sets

4.1 baselines
We compared the proposed approach named as
BERT-S with other three baselines as follows:

• MLP: a multilayer perceptron (MLP) binary
classifier. It consists of two hidden layers with
the size 512 and 128 with a rectified linear
unit (ReLU) activation function. The output
is produced by an output layer with the size
1 and a sigmoid activation function. Each in-
put is a concatenated placeholder-option em-
bedding and its label is 1 if the option is an
answer and 0 otherwise. For every sample,
an answer is chosen from the concatenated
placeholder-option embedding that gives the
highest prediction value. A binary cross en-
tropy was used as a loss function. The model
was trained by RMSprop optimizer for 100
epochs with the learning rate 0.01.

• GA: the GA Reader proposed in (Dhingra
et al., 2017). It uses a novel multiplicative
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Dataset Method Accuracy
Subtask 1 Subtask 2 Subtask 3-1 Subtask 3-2

Trial

MLP 0.44 0.28 0.20 0.19
GA 0.32 0.25 0.24 0.25
BERT-C 0.26 0.14 0.21 0.21
BERT-S 0.50 0.30 0.29 0.27

Test

MLP 0.47 0.46 0.27 0.25
GA 0.19 0.21 0.20 0.19
BERT-C 0.38 0.34 0.24 0.25
BERT-S 0.50 0.49 0.34 0.39

Table 3: Evaluation results on the trial and test sets of all subtasks

gating mechanism, combined with a multi-
hop architecture to learn token embeddings
based on the given question. The GA Reader
obtains state-of-the-art results on three QA
benchmarks. However, those benchmarks
only focuses on concrete concept answering.

• BERT-C: a modified version of the proposed
approach. Instead of using similarities be-
tween the fine-tuned placeholder and option
embeddings, scalar outputs from an MLP are
used. After the fine-tuned placeholder and
option embeddings are obtained, each fine-
tuned option embedding is concatenated to
the fine-tuned placeholder embedding. Then,
the concatenated embedding is fed to a MLP
module. This MLP module consists of three
dense layers with the output size 512, 128 and
1 respectively. The scalar outputs from all op-
tions are then concatenated and proceeded as
in BERT-S. The other settings were also set
as same as the settings in BERT-S.

5 Results

The proposed approach was evaluated on the trial
and test sets of all three subtasks. The evaluation
metric is accuracy. The results of subtask 1 and
2 are shown in Table 3. There are two results of
subtask 3 shown as subtask 3-1 and subtask 3-2.
Subtask 3-1 is the proposed approach trained on
subtask 1 but evaluated on subtask 2. Similarly,
subtask 3-2 is the proposed approach trained on
subtask 2 but evaluated on subtask 1. As shown
in the table, the proposed approach performed bet-
ter in subtask 1 compared to subtask 2. It means
that the pre-trained BERT model applied in this
work is capable of understanding imperceptible
words. In contrast, it is not suitable for nonspecific

abstract words as it performed poorer in subtask
2. For subtask 3, the proposed approach is not
generalized across imperceptible and nonspecific
concepts. This can be implied by the significant
drop in accuracy in both subtask 3-1 and 3-2. How-
ever, compared with the baselines, the proposed
approach performed better in all subtasks.

6 Conclusion

In this work, we propose to use the pre-trained
BERT token embeddings for QA of abstract mean-
ing. These embeddings are additional information
that help understanding abstract meanings in the
tasks. According to the results, our approach out-
performed the baselines in every subtask. It means
that the pre-trained BERT model is effective in QA
of abstract meaning that focus on imperceptibility
and nonspecificity. For the future work, it is worth
to fine-tune the embeddings from the pre-trained
model in an end-to-end manner. Other resources,
e.g., semantic graphs, are also worth considering
to provide more information for machine compre-
hension of abstract meanings.
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Abstract

This paper presents the system developed by
our team for Semeval 2021 Task 4: Reading
Comprehension of Abstract Meaning. The aim
of the task was to benchmark the NLP tech-
niques in understanding the abstract concepts
present in a passage, and then predict the miss-
ing word in a human written summary of the
passage. We trained a Roberta-Large model
trained with a masked language modeling ob-
jective. In cases where this model failed to
predict one of the available options, another
Roberta-Large model trained as a binary clas-
sifier was used to predict correct and incorrect
options. We used passage summary generated
by Pegasus model and question as inputs. Our
best solution was an ensemble of these 2 sys-
tems. We achieved an accuracy of 86.22% on
subtask 1 and 87.10% on subtask 2.

1 Introduction

There has been a lot of research in evaluating the
performance of machine learning models to iden-
tify concrete concepts present in text and answer
questions based on it (Hermann et al., 2015a). The
organizers of ReCAM task at Semeval 2021 have
provided a dataset to benchmark the models’ per-
formance on understanding the abstract concepts
in the text in English language. The models are
required to predict the missing words in a human
written summary of the passage. This can help
assess if the models can accurately capture the im-
portant concepts and meaning in the text.

The paper is organized as follows: In Section 2,
we give a background on the problem and method
that has been used, in Section 3, we present the pro-
posed system architecture, in Section 4, we present
the hyperparameters analysis done on the system,
in Section 5, we present the results of the proposed
architecture along with other approaches taken, and
in Section 6, we conclude the paper.

2 Background

2.1 Dataset

The organizers provide two different datasets
(Zheng et al., 2021) for two subtaks exploring two
different definitions of abstractness (Spreen and
Schulz, 1966; Changizi, 2008), imperceptibility and
nonspecificity. Anything which can’t be perceived
is described as an Imperceptible concept (Example:
culture,economy etc.) (Spreen and Schulz, 1966;
Coltheart, 1981; Turney et al., 2011). Nonspeci-
ficity, as decribed by (Changizi, 2008), rather than
looking at concrete things, focuses on generalizing
the text (Example: hypernyms of words; vertebrate
for whale). Subtask 3 explores the relationship
between the two definitions.

2.2 Masked Language Modelling

Masked Language Models have played an impor-
tant role in BERT(Devlin et al., 2019) and sub-
sequent transformer models’ success on different
datasets. Masked Language Modelling is based
on Cloze task (Taylor, 1953), which is described
as filling the blanks in sentence using the sur-
rounding context. Consider a Sequence S con-
taining n tokens (w1,w2,w3, ....,wn). In Masked
Language Models, a token wt is replaced with a
special token [MASK] and all the other tokens
w1,w2, ...,wt−1,wt+1, ...,wn) are used to predict
this token.

In our model, we use Roberta-Large’s (Liu
et al., 2019) Language Model(LMs), RobertaFor-
MaskedLM, which randomly replaces 15% of to-
kens in a sequence and then tries to predict the
masked word. Masked LMs perform better than
left-to-right, right-to-left LMs, and concatenation
of both. In a multi-layer Bidirectional LM, each
word can indirectly see itself (from 2nd layer on-
wards) after the first layer, making the process re-
dundant.
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Recently, Pegasus model, pretrained on
C4(Raffel et al., 2020) and HugeNews dataset,
(Zhang et al., 2020) has shown state-of-the-art
results for abstractive summarization on many
summarization tasks (Narayan et al., 2018;
Hermann et al., 2015b; Koupaee and Wang,
2018). It has a transformer-based encoder-decoder
architecture but has been trained with a novel
self-supervised objective. It masks entire sen-
tences in a corpus which are then generated later
as one sequence capturing the abstractive summary.

3 System Overview

The key components in our proposed system are
abstractive summarization of context using Pega-
sus, Roberta for Masked Language Modelling and
Roberta for sequence classification. Algorithm 1
presents our system’s algorithm for predicting
the option using the given context and masked
question.

Algorithm 1 MLM + Sequence Classification
1: function PREDICTOPTION(context, question, options)
2: summary_model← Pegasus-XSum
3: MaskedLM← RobertaForMaskedLM(‘Large’)
4: classifier← RobertaForSequenceClassification(‘Large’)
5: question← question.replace(‘@placeholder’,‘[MASK]’)
6: context_summary← summary_model(context)
7: mlm_input← concat(context_summary , question)
8: top5_predictions← MaskedLM(mlm_input)
9: for i in top5_predictions do

10: for j in options do
11: if i = j then return i

12: end if
13: end for
14: end for
15: max_softmax← 0

16: answer← 0

17: for i in options do
18: question← question.replace(‘[MASK]’ , i)
19: input← concat(context_summary , question)
20: softmax_score← classifier(input)
21: if softmax_score[0] < softmax_score[1] then
22: if softmax_score[1] > max_softmax then
23: max_softmax← softmax_score[1]
24: answer← i
25: end if
26: end if
27: end for
28: return answer
29: end function

Abstractive Summarization We use pretrained
Pegasus-XSum (Zhang et al., 2020; Narayan et al.,

2018) to capture the abstractive summary from
context which relates closely to the task at hand.
We also experimented by finetuning it for the given
task, by giving the corpus as input and passing
the text, obtained from question after replacing
@placeholder with the correct option, as output.
We further experimented with extracting three line
summaries by splitting context into three parts and
extracting summary for each.

RobertaForMaskedLM The task at hand can
be converted into predicting the masked token by
replacing the @placeholder in question with the
[MASK] token. We use RobertaForMaskedLM to
predict the masked token. To help the model get
the context in question, we prepend the summary
from Pegasus-XSum to the masked question text.
To finetune the model, we train it by passing
concatenation of summary and masked question as
input and providing concatenation of summary and
filling the question with correct blank as output.
Once the model is trained, we use Huggingface’s
(Wolf et al., 2020) pipeline to predict the top 5
words for filling the masked token. Out of five
predictions, word which has the highest probability
of filling the blank and which is present in the
given options is selected as the answer.

Roberta For Sequence Classification In some of
the cases, we observed that the predicted words
weren’t present in the options. For handling such
cases, we use Roberta for Sequence Classification.
We convert the task into a binary classification task
by filling the masked question with correct option
and treating it as one class and by filling the mask
with wrong options as another class. This leads
to a class-imbalanced dataset (1:4 ratio). To han-
dle this, we randomly selected equal number of
wrong-option class. On the test set, option which
achieves the highest softmax score out of all the
given options, is selected as the answer.

4 Experimental Setup

All the experiments were conducted in a Google
Colab system with 12GB RAM and T4-Nvidia
GPU. We experimented with different settings
in three components in our system: summary
extraction, Masked Language Model (MLM) and
handling cases when word predicted by MLM is
not present in the options.
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Figure 1: Salience map

Summary Extraction To identify the role of
summary in the task, we experimented with three
settings: no summary for prediction, extracting a
one line summary from Pegasus-XSum and ex-
tracting a three line summary from Pegasus-XSum.
To get a three line summary, we broke the context
into three equal parts and fed into the summary
model. Extracting one-line summary performed
best for both the subtasks.

Finetuning RobertaForMaskedLM For Masked
Language Model (MLM) to work, its very
important for the model to identify and understand
the context. Using the entire context meant that
for some cases, the input size would exceed the
limit (512 tokens) for model. So, we experimented
with two settings, one line summary prepended
to question, and using context when number of
tokens wouldn’t exceed the limit and one line
summary when it did. For an untrained MLM, the
latter setting performed better. Also, by training
the MLM, a further improvement of 4-5% was
observed. The MLM is trained with a batch size
of 2 using the Adam (Kingma and Ba, 2017)
optimizer with a learning rate of 1e-5.

Handling missing cases for Masked Language
Modelling In few of the cases it was observed that
the top 5 predictions made by MLM were not found
in options. For such cases, we experimented with
two settings: to find a pair of prediction and op-
tion which has the highest cosine similarity using
Spacy embeddings (Honnibal et al., 2020), or to
predict options using Sequence Classification (cor-
rect option as class 0, incorrect options as class
1). Input for Sequence classification was concaten-
tating one line summary with question in which
@placeholder is replaced with the options. If the
option used to replace @placeholder is correct, out-
put class is 0 else 1. Using Sequence Classification
worked better than cosine similarity. Also, Roberta-
Large outperformed other transformer models for

sequence classification on this dataset. The se-
quence classification model is trained with a batch
size of 8, sequence length of 128 and using the
Adam (Kingma and Ba, 2017) optimizer with a
learning rate of 1e-5.

5 Results

We have mentioned the accuracy of all the systems
developed by us for subtasks 1 and 2 in Table 1 and
2. We have also plotted a salience map in Fig. 1
(with AllenNLP(Gardner et al., 2017) demo tool) to
visualize the importance of each token in the predic-
tion of the masked word. The example input from
training set is: "Superleague leaders Manchester
Thunder maintained their 100% start to the sea-
son with victory over Surrey Storm. Hertfordshire
Mavericks [MASK] only their second Superleague
loss of the season after Team Bath beat them 55 -
54 in a thrilling round 13 match." The top 5 pre-
dictions by the transformer model for the masked
token are: "suffered", "recorded", "experienced",
"sustained", "had". The correct option is "suffered".
This demonstrates the effectiveness of using sum-
mary as context and formulating the problem as
masked language modeling task.

5.1 Error Analysis

Across the 2 subtasks, masked language model
made predictions which were present as part of
options for 87% of the data. We present error
analysis of the MLM over here:
a. Capturing more than one meaning
Context: (truncated) ... said he was too young
to swim and should have still been in his mother’s
care ...... mother failed to show ... It tends to be
when there’s quite stormy weather the pups will get
into trouble and they do get very tired, very hungry
and very dehydrated and they just wouldn’t survive
without assistance. .....
Question: A @placeholder baby grey seal who
was rescued from the rocks at Corbiere in Jersey
will be flown to the UK on Friday .
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System Description Subtask 1 Subtask 2
Roberta-Large as binary classifier with summary and question as input 72.69 73.20

T5 large with passage, question, options concatenated 57.20 57.85

Untrained Roberta Large with MLM objective 72.64 73.36

Untrained Roberta Large with MLM objective and cosine similarity of word
embeddings in failed cases

77.76 77.95

Trained Roberta Large with MLM objective 81.30 82.23

Trained Roberta Large with MLM objective and cosine similarity of word em-
beddings for failed cases

85.10 86.03

Trained Roberta Large with MLM objective and Roberta binary classifier
for failed cases

87.25 88.40

Table 1: +-Accuracy of experimental setups on validation set

System Description Trained On Evaluated On
Subtask-1 Subtask-2

Trained Roberta Large with MLM objective and cosine similar-
ity of word embeddings for failed cases

Subtask-1 83.20 77.24
Subtask-2 73.92 85.37

Trained Roberta Large with MLM objective and Roberta bi-
nary classifier for failed cases

Subtask-1 86.22 82.44
Subtask-2 78.56 87.10

Table 2: Accuracy of experimental setups on Test set

Correct Option: lone
Predicted Options: rare, stranded,distressed,tiny

For this particular example, the number of
tokens didn’t exceed 512 and entire context was
used. As suggested by the context, its a rare
event that a pup would be found without mother,
stranded since mother didn’t show or couldn’t find
the pup and is distressed as well.

b. Failure to capture information in one line
summary
Context: (truncated) ... "I am very saddened by
this, but what matters most now is the well-being
of our kids," he told People magazine. "I kindly
ask the press to give them the space they deserve
during this challenging time." Jolie, 41, filed for
divorce from Pitt, 52, citing irreconcilable differ-
ences on Monday. Her lawyer, Robert Offer, said
the decision had been made "for the health of the
family". .....
Summary: Actor Brad Pitt has said he is "very
saddened" after his wife Angelina Jolie filed for
divorce.
Question: Actor Brad Pitt has said he is " very
saddened " that his wife Angelina Jolie has filed for
divorce and has asked for @placeholder on their
children ’s behalf.

Correct Option: privacy
Predicted Options: support, custody, forgiveness,
protection, counseling

For this particular example, 1-line summary was
used and as evident no information pertaining to
children could be located in it. Our best guess for
these predictions are based on the data on which
model is trained and is pretty much commonsense
seeing the presence of "custody" and "support".

c. More than one correct answer
Context: . A lunar eclipse is when the Moon is
fully covered by the Earth’s shadow. It is the sec-
ond one this year. The Moon’s surface showed up
coppery orange or red because the light from all
the Earth’s sunsets and sunrises were reflected on
to it during the eclipse. In this timelapse, the Moon
can been seen re-appearing as the shadow moves
away.
Question: A total lunar eclipse has been visible
across much of the Americas and Asia , resulting
in a @placeholder " Blood Moon " .
All Options: bizarre, special, dramatic, lunar,
visible
Correct Option: dramatic
Predicted Options: rare, special, spectacular,
unique, partial
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With a context being concise and straight-
forward, it can also be termed as special or rare
other than dramatic. As per our algorithm, our
system predicted special.

6 Conclusion

We have described the systems developed by as to
solve the Reading Comprehension challenge at Se-
meval 2021. In our best performing submission, we
framed the problem as a masked language model-
ing task. We used the predictions from a separately
trained binary classifier when the above system
failed to generate words which were not part of
the options. Our models were able to achieve high
accuracy with a relatively simple setup. We were
ranked 11th out of 23 participants in subtask 1 and
12th out of 28 participants in subtask 2. As part
of future work, we aim to use information from
knowledge bases such as ConceptNet. This can
help extract broader concepts related to the words
predicted by the masked language model.
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Abstract

This paper presents our systems for the three
Subtasks of SemEval Task4: Reading Compre-
hension of Abstract Meaning (ReCAM). We
explain the algorithms used to learn our mod-
els and the process of tuning the algorithms
and selecting the best model. Inspired by the
similarity of the ReCAM task and the lan-
guage pre-training, we propose a simple yet ef-
fective technology, namely, negative augmen-
tation with language model. Evaluation results
demonstrate the effectiveness of our proposed
approach. Our models achieve the 4th rank on
both official test sets of Subtask 1 and Subtask
2 with an accuracy of 87.9% and an accuracy
of 92.8%, respectively1. We further conduct
comprehensive model analysis and observe in-
teresting error cases, which may promote fu-
ture researches.

1 Introduction

Past decades have witnessed the huge progress of
representation learning in Natural Language Pro-
cessing (NLP). With pre-trained language models,
machine reading comprehension (MRC) models
can extract answers from given documents and
even yield better performance than humans on
benchmark datasets such as Squad (Rajpurkar et al.,
2016). However, these successes sometimes lead
to the hype in which these models are being de-
scribed as “understanding” language or capturing
“meaning” (Bender and Koller, 2020). Note that the
intention of MRC is letting the systems read a text
like human beings, extracting text information and
understanding the meaning of a text then answering
questions, which means the systems can not only
conclude the semantic of the text but also compre-
hend the abstract concepts under the constraint of

∗Equal contribution and shared co-first authorship.
1Our implementation is publicly available at https://

github.com/zjunlp/SemEval2021Task4

general knowledge regarding the world (Wang and
Jiang, 2016). Nevertheless, little works as well as
benchmarks focus on this direction.

SemEval 2021 Task4 (Zheng et al., 2021) is an
MRC task that focuses on evaluating the model’s
ability to understand abstract words. Reading
Comprehension of Abstract Meaning (ReCAM)
task is divided into three Subtasks including Sub-
task 1: ReCAM-Imperceptibility, Subtask 2:
ReCAM-Nonspecificity and Subtask 3: ReCAM-
Intersection. Unlike previous MRC datasets
such as CNN/Daily Mail (Hermann et al., 2015),
SQuAD (Rajpurkar et al., 2018), and CoQA (Reddy
et al., 2019) that request computers to predict con-
crete concepts, e.g. named entities. This task chal-
lenges the model’s ability to fill the abstract words
removed from human-written summaries based on
the English context.

Note that this task’s input format is similar to
the MLM pre-training task of BERT (Devlin et al.,
2019), which aims to predict the mask tokens. Pre-
trained language models (PLMs) such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2020), DeBERTa (He et al.,
2021) have achieved success on MRC tasks. In-
spired by this, we introduce a simple yet effec-
tive method, namely, Negative Augmentation with
Language model (NAL) in SemEval 2021 Task4.
Specifically, we augment the answer distribution
with an additional negative candidate from the
mask language model’s prediction. Previous work
(Petroni et al., 2019; Zhou et al., 2020) indicates
that the pre-trained language model has already
captured much world knowledge. Thus, we argue
that knowledge can help guild the model training
and identify those ambiguous abstract meanings.
Further, we introduce other technologies such as
label smoothing, domain-adaptive pre-training in
our system. We describe the detailed approaches
used for the Subtasks in Section 3.
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We conduct comprehensive experiments in Sec-
tion 3, and we achieve the 4th system for Subtask
1: ReCAM-Imperceptibility and the 4th system for
Subtask 2: ReCAM-Nonspecificity in the leader-
board. In our experiments, we observe that PLMs
without fine-tuning can easily get 60+% accuracy
on both Subtask 1 and Subtask 2, demonstrating
that pre-trained language models already capture
some abstract meanings. We further find that our
negative augmentation with language model can
improve the performance with 2.6% in Subtask 1
and 4.6% in Subtask 2. Finally, we conduct error
analysis to promote future researches.

2 Background

Machine reading comprehension (MRC) has re-
ceived increasing attention recently, which is a chal-
lenging task. According to the type of the answer,
reading comprehension tasks can be divided into
four categories (Chen, 2018): 1) Cloze-style: The
question contains a ”@placeholder,” and the sys-
tem must choose a word or entity from the set of
candidate answers to fill in the ”@placeholder” to
make the sentence complete. 2) Multiple choice: In
this type of task, Choosing a suitable answer from
K sets of given answers. This answer can be one
word or a sentence. 3) Span prediction: This kind
of task is also called (Extractive question answer-
ing), which requires the system to extract a suitable
range of text fragments from a given original text
based on the question as to the answer. 4) Free-
form answer: This task allows the answer to be
any type of text, which is necessary to mine deep-
level contextual semantic information according
to a given question and a collection of candidate
documents, and even combine multiple articles to
give the best answer.

In SemEval 2021 Task4, it requires the system
to have a strong ability of reading comprehension
not only because the task is the cloze-style format
as mentioned above but also the abstract words
in answers. There are two definitions of abstract
words: imperceptibility and nonspecificity. Con-
crete words refer to things, events, and proper-
ties that we can perceive directly with our senses
(Spreen and Schulz, 1966; Turney et al., 2011).
Compared to concrete words like ”trees” and ”red,”
abstract words for imperceptibility are created by
humans instead of pointing the things in the natural
world. For example, as shown in Table 1, ”want”
and ”achieve” means a person’s attitude towards

P: Briton Davies won F42 shot put gold with
a Games record at Rio 2016, but was un-
able to defend his 2012 discus title as it did
not feature in Brazil. ”I don’t normally say
what I’m going for,” said the Welshman, 25.
”But this time I’m definitely going for the two
golds in both disciplines and nothing will be
better than being in front of a home crowd.”
...

Q: Paralympic champion Aled Sion Davies
@placeholder two gold medals at the 2017
World Para Athletics Championships in Lon-
don.

A: (A) suffered (B) promoted (C) remains (D)
wants (E) achieved

P: ... Low vitamin D levels can lead to brittle
bones and rickets in children. The figures
from the HSCNI show a dramatic rise in Vi-
tamin D prescriptions over the last 10 years:
The data does not include Vitamin D bought
over the counter...

Q: Rickets does not have the ring of a 21st
Century problem - it sounds more like the
@placeholder of a bygone era .

A: (A) horror (B) size (C) fate (D) tale (E)
death

Table 1: Examples of the SemEval 2021 Task 4.
Given a passage and a question, the model needs to
pick the best one from the five candidates to replace
@placeholder.

something and a person’s accomplishment about
something. Meanwhile, the abstract words for non-
specificity can be described as upper words. By
determining whether one word can generalize an-
other word, we can get dictionaries of different
levels. The words with higher levels are the non-
specificity words. Compared to concrete concepts
like groundhog and whale, hypernyms such as ver-
tebrate are regarded as more abstract (Changizi,
2008).

The difference between Subtask 1 and Subtask
2 is the definition of abstract words. So the in-
put of both Subtask 1 and Subtask 2 are the same.
The input of these tasks are shown in Table 1, it
can be represented as a triple < P,Q,A >, where
P = s1, s2, ..., sm is the passage from CNN daily
(Hermann et al., 2015), Q is a human-written sum-
mary based on the passage with one abstract word
replaced by ”@placeholder” andA is a set of candi-
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date abstract words for filling in the ”@placeholder”
in the question.

3 System Overview

3.1 Model Design

Recently, with the development of the large Pre-
trained Language Models (PLMs), such as GPT
(Radford et al., 2018), BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), DeBERTa (He et al., 2021), have overwhelm
the NLP community (Zhang et al., 2020c). The
powerful semantic feature extraction capabilities
of the PLMs make us only need to make better use
of the BERT-like model itself for downstream tasks
instead of adding different layers to the model.

Similar to the normal multi-choice task, we have
five candidates, one passage, and one question per
sample. Here we leverage PLMs as encoders to cap-
ture the global context representation about the pas-
sage, question, and answer. Then a decoder is used
to determine the score of each < P,Q,A > pair.
Since we get A1, ..., An n answers, for every pas-
sage, we construct n input samples as [Q−Ai;P ],
the concatenation of Q−Ai and P . Because the
question is the summary with an abstract word re-
moved. We construct Q−A by replacing ”@place-
holder” with the option from the candidate set in-
stead of concatenating Q and A. After encoding
all n inputs for a single passage, we get the global
representations Ti for different options in the candi-
date set. During fine-tuning PLMs, the first special
token [CLS] represents the global meaning of the
whole input. We use an dense decoder layer to com-
pute the score for all Ti, the calculation of score is
as follow:

Ti = PLM(Q−A;P ) (1)

scorei =
exp (f (Ti))∑
i′ exp (f (Ti′))

(2)

where the [Q − A;P ] is the input constructed ac-
cording to the instruction of PLMs and MRC tasks,
and the T∗ is the final hidden state of the first token
[CLS]. The candidate answers with higher scores
will be identified as the final prediction.

Since previous research (Gao et al., 2020; Yang
et al., 2019) demonstrate that there exists a gap be-
tween language model pre-training and fine-tuning
the models in the downstream task and inspire by
the similar task definition as MLM, we introduce

Figure 1: The procedure of Negative Augmentation
with Language Model (NAL).

the negative augmentation with language model
mechanism (Section 3.2). Note that the additional
label will enhance the discriminability of the ab-
stract meanings in a contrastive manner. In other
words, the model is encouraged NOT to gener-
ate those abstract tokens from the language model,
but the golden candidates from the given docu-
ments. We further introduce the label smooth-
ing (Section 3.3), which can enhance the model
performance. Finally, we leverage task-adaptive
pre-training (Section 3.4) inspired by (Gururangan
et al., 2020) to obtain better performance.

3.2 Negative Augmentation with Language
Model

Inspired by the same format of MLM and this task,
we first conduct a toy experiment to test whether
a PLM can get the right answer without any su-
pervised signal. Firstly we replace the ”@place-
holder” with [MASK] to reconstruct the input and
ask the BERT model with MLM head to predict
the word token at the [MASK]. Then we calculate
the similarity between the word model predict and
the options from the set of candidate answers. We
set the option with the highest similarity score as
the model’s choice. Then we find that the BERT
model without any fine-tuning gets 60+% accuracy
in both Subtask 1 and Subtask 2. The result above
shows that PLMs have the ability to predict abstract
words, and those predicted words can be leveraged
as negative candidates in the fine-tuning period.

Note that huge languages have quantities of
parameters; the PLMs are able to store much
knowledge through pre-training tasks. However,
[MASK] is not used when fine-tuning the model
for downstream tasks; how to use the knowledge
stored by the model on pre-training tasks more ex-
plicitly on downstream tasks has become a hot topic
of current research. Motivated by this, we try to
bridge the gap between pre-train and downstream
tasks. Inspired by the contrastive learning (Chen
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Figure 2: System overview (Best viewed in color.). The top of the Figure refers to the normal fine-tuning of
multi-choice models, ignoring the form of pre-training tasks. While the bottom of the Figure refers to our system
with Negative Augmentation with Language Model (NAL), which uses the abstract words predict by the original
PLM as negative candidates to augment fine-tuning.

et al., 2020; Robinson et al., 2020) as stronger neg-
ative samples will help the model learning with
better performance, we introduce our negative aug-
mentation with language model method. Specifi-
cally, we let the PLMs predict the ”@placeholder”
replaced with [MASK] token to generate negative
candidates. Thus, we can leverage those negative
words that may mislead the models to help train
the models. Formally, we have:

P = p(mi|θ, [Q−A;P ]),mi ∈ [1, 2, ..., |V |] (3)

where P are the distribution of words model, pre-
dict, mi is the token in the vocabulary, and |V | is
the total number of the vocabulary. We can use
the distribution to get the top confusing words to
augment our models, which is described in Figure
2. Due to the limitation of GPU, we add the most
possible word to augment our models.

3.3 Label Smoothing

Label smoothing is a well-known ”trick” to im-
prove the model’s performance effectively. It en-
courages the activations of the penultimate layer
to be close to the template of the correct class and
equally distant to the templates of the incorrect
classes (Müller et al., 2019). With more options
than the original dataset by the approach mentioned
in Section 3.2, label smoothing will magnify our
method’s effect while fine-tuning the models. Sup-
pose the output of the final layer and softmax layer

as follows:

pk =
ex

Twk

∑L
l=1 e

xTwl
(4)

where pk is the likelihood the model assigns to the
k-th class, wk represents the weights and biases of
the last layer. x is the vector containing the activa-
tions of the penultimate layer of a neural network
concatenated with ”1” to account for the bias. let
us see the equitation about the cross entropy loss.

L = −
M∑

c=1

yk log (pk) (5)

The cross-entropy formula without Label
smoothing only focuses on whether the positive
example is true and does not pay attention to the
negative examples’ relationship. We make the soft
y as follows:

yi =

{
(1− ε), right answer

ε
K−1 ,wrong answer (6)

We set ε as 0.1 in our models.

3.4 Task-Adaptive Pre-training

The BERT-like model is pre-trained in the general
domain corpus such as Wikipedia. Since passages
mainly come from CNN daily, the data distribu-
tion may be quite different from pre-training data.
Therefore, we utilize task-adaptive pre-train BERT
with masked language model and next sentence
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Statistics / Dataset Subtask 1 Subtask 2

# Train 3,227 3,318
# Trail 1,000 1,000
# Dev 837 851
# Test 2,025 2,017
Avg. # Length Per Passage 262 418

Table 2: Statistics of the SemEval 2021 Task 4 dataset.

prediction tasks on the domain-specific data. Task-
adaptive pre-training not only makes the model
better fit the distribution in the domain but also
helps the model to predict good negative words to
enhance the original dataset, which is described in
Section 3.2. We take two different approaches for
task-adaptive pre-training as follows:

1) In-domain pre-training, we use the source data:
CNN Daily to task-adaptive pre-training our
base models(Sun et al., 2020).

2) Within-task pre-training, practically we replace
the ”@placeholder” with the correct answer and
put the same input format as the fine-tuning
steps, which is [Q − A;P ] (Gururangan et al.,
2020).

4 Experimental Setup

4.1 Dataset
In Subtask 1, the training/trail/development/test
contains 3, 227/1, 000/837/2, 025 instances. In
Subtask 2, the training/trail/development/test con-
tains 3, 318/1, 000/851/2, 017 instances. The over-
all statistics can be found in Table 2.

4.2 Pre-processing
For data pre-processing, we use the byte-level BPE
encoding (Sennrich et al., 2016), and the official
vocabulary contains more than fifty thousand byte-
level tokens. All tokens are stored in MERGES.TXT,
while VOCAB.JSON is a byte-to-index mapping.
Generally speaking, the higher the frequency, the
smaller the byte index. Since the average length of
the passage about Subtask 1 and Subtask 2 is 262
and 418, we divide those long context paragraphs.
We limit the max number of tokens in an input sam-
ple [Q − A;P ] to 256 for our system. Statically,
60% of the paragraphs exceeds the 256 tokens (in-
cluding the special tokens like [CLS], [SEP] and
so on. For these input samples, we divide them into
new input samples with at most 256 tokens. To be
more specific, we divide the passage to different
inputs with the same question and answer.

4.3 Hyper-parameter Setting

Our system is implemented with PyTorch (Paszke
et al., 2019) and we use the PyTorch version of
the pre-trained language models2. We employ
RoBERTa, ALBERT, and DeBERTa large models
as our PLM encoder. We use AdamW optimizer
(Loshchilov and Hutter, 2018) to fine-tune the mod-
els. We set the batch size to 1, and the max length
of input to 256 for RoBERTa, 128 for ALBERT.

Usually, the batch size has a significant influ-
ence on the BERT-like model; due to the limit of
GPU memory, we use gradient accumulation in
our training steps. We set the gradient accumu-
lation step as 32, which means the formal num-
ber of batch sizes is 32 in training. We pick the
best learning rate from the dev set, fine-tuning the
RoBERTa, ALBERT, DeBERTa with the learning
rate of 9×10−6, 1×10−5 and 1×10−5 respectively.
We set the number of epoch to 8 for ALBERT and
12 for RoBERTa and DeBERTa. Furthermore, we
save the best model on the validation set for testing
during training. Because the formats of both Sub-
task 1 and Subtask 2 are the same, we set the same
batch size and max length of the input sequence for
training.

5 Results

5.1 Subtask 1 Results

On Subtask 1 , the ReCAM-Imperceptibility task,
the evaluation results are illustrated in Table 3.
We set the three baseline models: RoBERTaLarge,
DeBERTaLarge, and ALBERTxxLarge. RoBERTaLarge

+ NAL, DeBERTaLarge + NAL, and ALBERTLarge

+ NAL denotes the language model with our pro-
posed negative augmentation with language model.
Ensemble refers to the ensemble model of the three
models as mentioned above with all strategies. We
find that ALBERT achieves better performance in
Subtask 1 but fails to get good performance in Sub-
task 2, while DeBERTa and RoBERTa have better
performance in Subtask 2. Comparing with the
original RoBERTa, DeBERTa, and ALBERT mod-
els, each model is hugely improved with NAL by
about 2.1% accuracy. We further observe that De-
BERTa and RoBERTa, which have the same archi-
tecture, obtain better performance than ALBERT in
the dev and test sets. We think the possible reason
is that ALBERT uses layer weight sharing, which

2https://github.com/huggingface/trans
formers (version 3.3.0)
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Model Dev Test
Baseline
RoBERTaLarge 83.3 -
ALBERTxxLarge 85.1 -
DeBERTaLarge 84.1 -
Ours
RoBERTaLarge + NAL 85.9 86.1
ALBERTxxLarge+ NAL 86.2 85.6
DeBERTaLarge+ NAL 86.7 86.8
Ensemble 88.5 87.9

Table 3: Results (Accuracy) on Subtask 1.

Model Dev Test
Baseline
RoBERTaLarge 86.7 -
ALBERTxxLarge 84.3 -
DeBERTaLarge 87.7 -
Ours
RoBERTaLarge + NAL 91.1 89.7
ALBERTxxLarge+ NAL 89.3 88.6
DeBERTaLarge+ NAL 91.3 90.3
Ensemble 93.7 92.8

Table 4: Results (Accuracy) on Subtask 2.

reduces the model’s generalization ability in read-
ing comprehension, especially the abstract words
meaning. Finally, the ensemble of the best model of
RoBERTa, DeBERTa, and ALBERT lead to a sig-
nificant improvement (4.3% accuracy) compared
with baselines, which is also our final submission
to the leaderboard.

5.2 Subtask 2 Results

On Subtask 2, the ReCAM-Nonspecificity task, the
experiment results are showed in Table 4. Similar
to the models in Subtask 1, we choose RoBERTa,
DeBERTa and ALBERT as our baseline models.
All RoBERTaLarge + NAL , ALBERTxxLarge + NAL
and DeBERTaLarge + NAL are the models with nega-
tive augmentation with language model. Ensemble
refers to the ensemble model of RoBERTa, De-
BERTa, and ALBERT with all strategies. We notice
that our proposed mechanism brings significant im-
provement (averaging 4.3% of the accuracy score)
compared with baselines, demonstrating the effec-
tiveness of our proposed strategies such as negative
augmentation with a language model, label smooth-
ing, and task-adaptive pre-training. We observe

that ensemble approach of three enhanced models
(RoBERTaLarge + NAL, ALBERTxxLarge+ NAL and
DeBERTaLarge+ NAL) obtain the best accuracy of
92.8% at test set, which is also our final submit to
the leaderboard.

5.3 Subtask3 Results

Subtask3 focuses on the model’s transferability.
During the evaluation period, we use the data on
Subtask 2 to evaluate the models trained on the Sub-
task 1 and vice versa. We obtain the 82% accuracy
of the model trained on Subtask 1 and evaluated on
Subtask 2 on the dev set.

During experiments for all tasks, we have tried to
use different decoders like MLP and other network
architecture. Eventually, we find that it does not
help to improve the system’s performance. An
explanation is that the pre-trained language models
(PLMs) have already captured global contextual
sentence meaning at the [CLS] token.

5.4 Further Analysis

5.4.1 Analysis of Negative Augmentation
with Language Model

During our experiments, we conduct case studies to
figure out how our method of NAL helps the model
to boost performance. From Table 5, we notice
that the original PLM considers using the ”all”,
”half” as its choice instead of ”parts”. Although
fine-tuned on the downstream task, the baseline
model still choose ”half”. In our NAL method,
we add some misleading negative words to help
models correct the knowledge learned from the
pre-training task.

5.4.2 Analysis of Passage Length
In usual MRC tasks, the length of the passage is a
key factor for the models to solve the problems. We
conduct experiments to analyze the performance
regarding different lengths of passage. Contrary to
the common assumption, from Figure 3 and Figure
4, we observe that the instances with long passage
obtain better performance. We think that abstract
mean understanding may need comprehensive con-
text information from the long sentence, and we
will conduct further analysis in future works.

5.4.3 Case Study
We select four kinds of different types of error
cases to promote further researches. We classify
the examples according to the main causes (pre-
training, fine-tuning, and so on) of the error. We
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Example
Question: The Aurora Borealis, better known as the Northern Lights, was spotted across

@placeholder of England on Sunday.
Answer set {(A) millions, (B) parts, (C) half, (D) isle, (E) remains}
NAL set {all, half, parts}
Baseline (C) half
Model with NAL (B) parts
Question: The BBC is providing live coverage of the Scottish National Party conference in

Glasgow. This live @placeholder has finished .
Answer set {(A) results, (B) recording, (C) event, (D) action, (E) center}
NAL set {blog, recording , stream}
Baseline (B) recording
Model with NAL (C) event

Table 5: We can clearly see the negative options can help the model better understand the abstract meaning in the
passage and question. Answers are bold in the Table.
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Figure 3: Results (Accuracy) on Subtask 1 with the
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Figure 4: Results (Accuracy) on Subtask 2 with the
length of passage.

think it will help us better understand what the
model learns from pre-training and fine-tuning.

Case 1 - Influenced by the original pre-training
task

• Passage: ”...found the United States to have
the highest number of sleep deprived students,
with 73% of 9 and 10 year olds and 80% of 13
and 14 year olds identified by their teachers
as being adversely affected. The BBC’s Jane
O’Brien reports.”

• Question: Sleep deprivation is a significant
hidden factor in lowering the @placeholder

of school pupils , according to researchers
carrying out international education tests .

• Answer: (A) morale (B) IQ (C) mortality (D)
closure (E) achievement

• Negative augmented choice: (F) intelli-
gence

• Right Option: (E) achievement
• Wrong Option: (B) IQ
• Potential causes: After pre-training on the

large general domain corpus, PLMs have
a huge bias on predicting the [MASK] to-
ken. Just like the ”IQ” model predict in the
”@placeholder”. Even after fine-tuning, our
models still cannot recognize the strong evi-
dence ”being adversely affected”. In our daily
life, we wouldn’t hold that being adversely af-
fected by lack of sleep can lead to a decrease
in IQ. We usually say that lack of sleeping
may lower one’s achievement in the future.

• How to help models? To prevent the model
from relying too much on pre-training tasks,
we create more negative samples to help the
model to understand what is wrong or right
about the abstract words.

Case 2 - Adverse affected by fine-tuning
• Passage: ” 17 May 2017 Last updated at

12:44 BST Adrien Gulfo, wearing red, who
plays for the Swiss side Pully Football, tried to
clear the ball away from his goal with a spec-
tacular bicycle kick. Unfortunately for him it
all went very wrong - watch the video... There
was a happy ending to the story for Gulfo
though, Pully went through to the cup final on
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penalties after the match finished 3-3.”
• Question: You won’t believe this own goal

that was @placeholder in the Swiss lower
league !

• Answer: (A) scored (B) born (C) eliminated
(D) closed (E) beaten

• Negative Augmented Choice: (F) scored
(model predict ”scored.” Because it is the right
answer, so we choose another choice ”played”
as an augmented choice. )

• Right Option: (A) scored
• Wrong Option: (E) beaten
• Potential Causes: It is quite weird that the

original PLMs can predict the right answer,
but fail to make it after fine-tuning. We sup-
pose that in the process of fine-tuning, the
inconsistency of abstract vocabulary predic-
tion and the interference of other vocabulary
caused the model’s effect in some cases to
decrease instead.

• How to help models? We could use our ap-
proach of NAL to increase the weight of the
knowledge learned in the pre-training task or
leverage external knowledge (Zhang et al.,
2019, 2020b; Yu et al., 2020; Zhang et al.,
2020a).

Case 3 - Obscure abstract word meaning
• Passage: ” ...Mr Habgood said: ”We’re pretty

sure it will be popular because it was when
East Street was closed for other reasons and
we want to make it a friendlier place to be. ”It
does fit with our larger objectives to improve
the town and make it safer for cyclists and
pedestrians.” ...”

• Question: Three busy town center streets
are to be pedestrianised in a bid to improve
@placeholder for shoppers and cyclists .

• Answer: (A) opportunities (B) services (C)
quality (D) disruption (E) safety

• Negative Augmented Choice: (F) access
• Right Option: (E) safety
• Wrong Option: (B) services
• Potential Causes: Due the limit of GPU

memory, we cannot put the long passage into
the model once a time. So during the train-
ing, the model can only see a small chunk of
the passage, so that it cannot get the global
representation of the passage.

• How to help models? We chunk those long
sentences with the approach of the sliding
window to help the model understanding the

whole passage.

Case 4 - Hypernyms is not always right
• Passage: ” North Wales Fire and Rescue Ser-

vice was called to Express Linen Services on
Vale Road in Llandudno Junction just before
19:30 GMT on Thursday. North Wales Police
said a man was treated at the scene for smoke
inhalation. Police have asked people to avoid
the area...”

• Question: A number of @placeholder have
been evacuated as firefighters tackle a blaze
at a commercial laundry firm ’s premises in
Conwy county.

• Answer: (A) families (B) properties (C) wa-
ter (D) disruption (E) vehicles

• Negative Augmented Choice: (F) homes
• Right Option: (B) properties
• Wrong Option: (A) families
• Potential Causes: Hypernyms is the main fo-

cus of Subtask 2, the model may consider the
”families” as the upper level of the ”people”
occur in the passage and choose the ”(A) fam-
ilies” instead of the right answer ”(B) proper-
ties”.

• How to help models? We try to use the
proposed NAL to add more abstract words
learned from the pre-training to mitigate this
issue.

6 Conclusion

This paper presents our system design for the Se-
mEval 2021 Task4. We propose a simple yet effec-
tive method called negative augmentation with lan-
guage model. Comprehensive experiments demon-
strate the effectiveness of our proposed approach.
We also conduct case studies and investigate why
the model fails to obtain the correct prediction.

Note that language models are pre-trained from
the huge corpus; recently, researchers have iden-
tified the bias in the language model, which may
mislead the model prediction. Our proposed neg-
ative augmentation with language model can help
the model better discriminate candidates in fine-
tuning, thus boost the performance. From another
perspective, as depicts in Section 3.2, the language
model without any fine-tuning gets 60+% accuracy
in both Subtask 1 and Subtask 2. This indicates
that bias exists in the datasets (Part of the abstract
meaning can be obtained from the language model).
More strong benchmarks should be constructed in
the future.
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Abstract

This paper describes the winning system for
subtask 2 and the second-placed system for
subtask 1 in SemEval 2021 Task 4: Reading
Comprehension of Abstract Meaning. We pro-
pose to use pre-trained ELECTRA discrimina-
tor to choose the best abstract word from five
candidates. An upper attention and auto de-
noising mechanism is introduced to process
the long sequences. The experiment results
demonstrate that this contribution greatly fa-
cilitates the contextual language modeling in
reading comprehension task. The ablation
study is also conducted to show the validity of
our proposed methods.

1 Introduction

Reading Comprehension of Abstract Meaning (Re-
CAM) (Zheng et al., 2021) is a cloze-style task,
which takes a document and related human written
abstract with one word replaced by a placeholder
as input. The model is required to choose the best
word from five candidates. The ReCAM consists
of three subtasks. In subtask 1 and 2, participating
systems are required to choose the best impercepti-
ble concept and hyper-nyms concepts word respec-
tively. Subtask 3 aims to evaluate performance of
a system trained on one definition and test on the
other.

Traditional cloze-style reading comprehension
model (SA reader) (Kadlec et al., 2016) uses at-
tention to directly pick the answer from the con-
text, which makes model incapable to answer the
question where the answer does not appear in pas-
sage. Furthermore, GA reader (Dhingra et al.,
2017) adopts multi-hop attention mechanism to
build query-specific representation of answer for
ranking the candidates which is not part of passage.

Pre-trained language models (Radford et al.,
2018; Devlin et al., 2019; Yang et al., 2019; Lan
et al., 2020) have been widely adopted for context
modeling in many Natural Language Processing

tasks. These models are pre-trained on huge cor-
pora with plain texts and can better model con-
textual dependencies of tokens, thus enhance the
performance of downstream approaches. As de-
scribed in (Lai et al., 2017; Zhang et al., 2020;
Chen et al., 2019; Zhu et al., 2018), they improved
the performance of single-choice reading compre-
hension tasks by introducing pre-trained model,
but they takes excessive memory for concatenating
each option with the question and the passage.

GPT2 (Radford et al., 2018) has outperformed
the SOTA result on cloze-style task CBT (Hill et al.,
2016). As stated in (Radford et al., 2018), GPT2
computes the probability of each choice and the
rest of the sentence conditioned on this choice ac-
cording to the pre-trained model, the answer is the
choice with highest probability. GPT2 outperforms
RNN-based models without fine-tuning on CBT
task, we assume that pre-trained language model
has better potential to address the cloze-style prob-
lem than fine-tuning the pre-trained model with an
additional ranking network.

The most relevant work to our model is Pattern-
Exploiting Training (PET) (Schick and Schütze,
2020a,b), which proposed to reformulate the sen-
tence classification task to cloze-style task with
defined golden answer word as supervising signal.
The comparison between PET and our proposed
method is reported in section 5.

Different with PET, We propose a novel Auto
Denoising Discriminator for Abstract Concept in
reading comprehension (ADDAC) by fine-tuning
the pre-trained discriminator of ELECTRA (Clark
et al., 2020). Auto Denoising is introduced while
processing long sequences. By fine-tuning the pre-
trained model on its own structure with the original
pre-training loss , the tasks results is significantly
improved even with small train dataset, we suppose
the representations stored in the pre-trained model
has been maximum reserved in this way.
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2 Background

2.1 Task Description

The task intends to answer a cloze-style question,
the answer to which depends on the understanding
of a context document provided with the question.
The model is also provided with a set of possible an-
swers from which the correct one is to be selected.
This can be formalized as follows:

The training data consists of tuples (q, d, a, A),
where q is an abstract sentence of document d and
one word in q is replaced with a placeholder. A is
a set of possible options and a ∈ A is the golden
answer. Both q and d are sequences of words and
golden answer a does not appear in the article d.

2.2 ELECTRA vs ALBERT

Since the success of BERT (Devlin et al., 2019),
pre-trained language models have adopted a large
amount of parameters to achieve better model-
ing performance. ALBERT (Lan et al., 2020)
uses factorized embedding parameterization and
cross-layer parameter sharing to greatly reduce the
amount of model parameters and achieved SOTA
in multiple natural language understanding task.
ALBERT outperforms other pre-trained language
models which is trained by MLM(masked language
model) in combination with PET method for this
task.

ELECTRA (Clark et al., 2020) proposed the
RTD (replaced token detection) task with adver-
sarial learning as an alternative to the MLM task.
A smaller generator is used to replace the special
token [MASK] in training samples, and then a dis-
criminator is trained to predict each word in the in-
put is real or generated by generator. In section 3.1,
we will elaborate the details about our proposed
discriminator mechanisms based on ELECTRA.
The performance comparison between ALBERT
with PET and our proposed discriminator model on
ReCAM task is reported in Section 5.

3 System overview

3.1 Pre-trained Discriminator

We approach the competition tasks as cloze-style
task, which can be reformulated to masked lan-
guage modeling (Devlin et al., 2019) problems. As
shown in Figure 1, we replace placeholder with
golden and negative options in question q denoted
as qA, which is further concatenated with corre-
sponding document d in pre-trained model input

…

qualifying starting remain

110

Pre-trained Discriminator

logitp

[CLS]

labels:

options:

LBCE

…@placeholder [SEP] [SEP]d
q

a

Figure 1: Discriminator overview, the placeholder in
q is replaced by a which is one of candidate options,
the label of golden option is 0 followed the ELECTRA
pre-training setting.

style ([CLS]qA[SEP ]d[SEP ]). We ignore the
part of sequence which exceed the maximum length
of input sequence . The input sequence is forward
to ELECTRA discriminator and the hidden states
are calculated by Equation 1

HqA = F ([qA; d]) (1)

logitp = D(Hp) (2)

where F is the pre-trained 24-layer transformers
and D is a linear layer which classify the hidden
states of replaced word from ELECTRA Discrimi-
nator. HqA ∈ RN×d are the hidden states of input
sequence, in which N and d are the maximum
length of input sequence and the dimension of hid-
den states. Then we only use the hidden states of
placeholder Hp ∈ Rd selected from HqA as the
input to D. BCE (Binary Cross Entropy) loss,
which measures the Binary Cross Entropy between
the golden label and the output, is used for binary
classification as Equation 3.

LBCE = BCE(Sigmoid(logitp), lp) (3)

where lp is the binary label of option word (replac-
ing placeholder in input sequence). The label is
set to 0 for golden option, 1 for negative options,
which is the same as ELECTRA pre-training set-
ting (Clark et al., 2020). While in inference, the
option with lowest logitp is regard as the right an-
swer to the question. The experiment results show
that discriminator outperforms the ranking and PET
implementation on this task (see section 5).
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We also implement a ranking model based on
ELECTRA for single-choice reading comprehen-
sion task to compare with the Discriminator ap-
proach. The question and document is combined
with each option as the input of ELECTRA en-
coder, which is denoted as S ∈ RN×m, where N
is the length of sequences and m is the number of
options. A linear layer and a softmax layer is added
after ELECTRA encoder as the ranking network,
which use the hidden states of [CLS] in S as input.

3.2 Processing Long Input Sequence

Most of the pre-trained models have a limitation
in processing long sequences. The maximum se-
quence length of ELECTRA is 512, which is much
shorter than the maximum length of input sequence
(i.e. concatenation of question and document). We
propose two methods for processing long input
sequences: 1) document is segmented to shorter
passages, which leads to the problem of mislabel
samples. We introduce an auto denoising mecha-
nism to address the problem. 2) We adopt an upper
attention upon transformers.

Auto Denoising The whole document d is seg-
mented into a set of fragments {sd1, sd2, · · · , sdk}
with a fixed window size. Then, these fragments
combine qa to form model input sequence. In the
inference phase, the lowest predicted logit is se-
lected from all results of fragments as Equation
4.

logitp =
k

min
i=1

D(F ([qA; s
d
i ])) (4)

where q with placeholder replaced by a specific
option from A denote as qA. However, this method
causes the noisy-label problem. Supposed that the
answer a just finds proof from fragment sd1, which
results in other samples (0, [qa; s

d
i 6=1]) to be mis-

labeled samples, which significantly impact train-
ing of model and decrease the prediction accuracy.
Therefore, we take the advantage of a noise-tolerant
loss (bi-tempered logistic loss, BT (Amid et al.,
2019)) and a noise detection method (over-fitting
to under-fitting, O2U (Huang et al., 2019)) in this
work. The BT logistic loss lowers gradient on
noisy samples which relieve the negative effects on
model training via adjusting bi-temperature. The
O2u makes full use of the property that model is
easier to forget the mislabeled samples than the
clean samples, to identify and filter the mislabeled
samples.

Upper Attention The long sequence of input is
segmented into small segments with the length of
512 tokens and each segments are concatenated
with same question to form the input sequences,
which are encoded into hidden states Hi ∈ Rd×512

, where i is the index of segments of passage, the
d is the dimension of hidden states and 512 is the
sequence length. The hidden states of placeholder
is denoted as Hp

i ∈ Rd. We use a 1-layer multi-
head self-attention block to fuse the hidden states
of placeholder from multiple segments output.

Hp
fuse = Ag(H

p
1 , H

p
2 ...H

p
k) (5)

where k is the number of segments, Ag is 1-layer
multi-head-attention, without residual connection.
Hp

fuse is applied in Equation 2 and Equation 3 for
training.

3.3 Optimizer

The ELECTRA-large which has large amount of pa-
rameters tends to over-fit on small training dataset.
We utilize RecAdam (Chen et al., 2020) to fine-
tune the pre-trained model to address the over-
fitting problem. RecAdam optimizer is proposed
to address the catastrophic forgetting problem of
sequential transfer learning paradigm by introduc-
ing a recall and learn mechanism into Adam opti-
mizer, which maintain the learned knowledge in
pre-trained model while learning a new task.

3.4 Data augmentation

To further boost the performance of our proposed
model, we conduct data augmentation.We random
pick 3000 articles in CNN/DailyMail (Hermann
et al., 2015), and craw 824 latest articles from BBC
news website. The CNN news is much longer than
the training samples, while the length of BBC news
is approximately same. The extra training samples
are generated in following steps: 1) The title of
news article is used as abstract. 2) We pick one
most meaningful word from abstract by TF-IDF
scores and the origin word is used as golden op-
tion. 3) We use words with same category of POS
(Part Of Speech) from other documents as negative
options. We train models on the extra to dataset
as warming up and further train the models with
training dataset. Unfortunately, extra training data
did not effectively improve the performance of our
model on this task. We just use extra data in models
ensemble phase.
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4 Experimental setup

4.1 Data
We use the official released dataset of SemEval2021
Task4 for experiments. The dataset of subtask
1 contains 3227/837/2025 samples for train, dev
and test data. The subtask 2 dataset contains
3318/851/2017 samples for train, dev and test
data. The maximum/mean length of subtask 1
and subtask 2 training data are 2275/374.34 and
2274/578.31, respectively. The statistics of sample
length shows that length of article in subtask 2 is
much longer than the length in subtask 1. The rate
of the sequences exceeding 512 tokens is 13.95%
in subtask 1, 42.46% in subtask 2, which may cause
that the methods for processing long sequences are
more effective in subtask 2.

Since the provided dataset is small, we apply
data augmentation in model ensemble to further
improve generalization of the model (see Section
3.4).

4.2 Parameter settings
Our implementation is based on the Pytorch frame-
work for transformer-based models(Wolf et al.,
2020). We trained our model based on the pre-
trained ELECTRA-Large discriminator, and adopt
the same model structure for subtask 1 and sub-
task 2. We use Adam optimizer with a learning
rate of 1e-5, batch-size of 32 to train the baseline
model, which is actually the ELECTRA discrim-
inator. The max sequence length is 512 and the
epoch of training is set to 5. To address the over-
fitting problem, we apply RecAdam with sigmoid
annealing function, where the annealing rate is 0.01
and the annealing time-step is 500. The coefficient
of the quadratic penalty is set to be 5,0000. For
Auto Denoising, the two temperatures and label
smoothing of BT are equal to 0.9, 1.5 and 0.1 re-
spectively. The maximum learning rate, minimum
learning rate and epochs in cyclical round about
O2U are set to be 5e-5, 1e-6 and 5.0 respectively.

Since only 5 submissions are permitted in sub-
mitting phase, we trained multiple models under
different settings for model ensemble. We also
adopt 8-fold cross-validation training to improve
the model generalization.

4.3 Ensemble
Two strategies are used for our final submissions on
test data: 1) we ensemble all 8 models from 8-fold
cross-validation training by averaging their outputs,

which is trained on the train data of each subtask;
2) we trained multiple models on the train data and
the augmented data with different model structures.
7 top different models are selected based on the
dev accuracy for models ensemble, then average
their outputs as the final output. Moreover, the
model trained in cross-validation is Discriminator
with Auto Denoising and RecAdam optimizer for
subtask 2, and Discriminator with RecAdam for
subtask 1. While in top ensemble, the techniques
of Discriminator, Auto Denoising, RecAdam and
Upper Attention are applied in different models.

5 Results and Analysis

5.1 Single Model Performance

We implement two baseline models for comparison
with our proposed method. The ALBERT PET
is the combination of PET method (Schick and
Schütze, 2020a,b) and ALBERT-xxlarge model,
which is trained by the MLM. The golden answer
of training dataset is used as the target for MLM,
but the negative ones are omitted in training. The
ELECTRA Rank reformulates the cloze-style task
to single-choice task, which is described in section
3.1.

Label accuracy is the official metric of the
tasks and Table 1 shows the results on develop-
ment dataset. Task3(1-2) is the subtask 3 which
is trained on subtask 1 dataset and test on sub-
task 2, Task3(2-1) means train on subtask 2 and
test on subtask 1. It is obvious that our pro-
posed ELECTRA Discriminator significantly im-
prove the performance of all tasks and outperform
the best baseline by 4.7%/1.16%/3.76%/8.85% in
subtask1/subtask2/subtask3(1-2)/subtask3(2-1) re-
spectively. This confirms our hypothesis that pre-
trained language model has more potential for
cloze-style task. The PET with ALBERT is not suit-
able for this task because it can not utilize the nega-
tive options. The ELECTRA Rank performance is
unsatisfactory, suggesting that fine-tuning on rank-
ing network damage the knowledge stored in the
pre-trained model.

The results of ablation study are also reported
in Table 1. Disc (Discriminator) with RecAdam
achieves further improvement in all tasks by
0.25% / 0.53% / 0.25% / 0.26% in subtask1 /
subtask2 / subtask3(1-2) / subtask3(2-1) respec-
tively, which prove the RecAdam optimizer is
more effective for pre-trained model and also
promotes the model generalization. Disc+Upper,
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Table 1: Single Model Performance on dev dataset, the ablation study is demonstrated below.

Method Task1 Task3(1-2) Task2 Task3(2-1)
ALBERT PET 89.25 83.31 90.48 82.80
ELECTRA Rank 88.53 88.13 90.24 83.75
ELECTRA Discriminator 93.42 90.71 93.88 91.16
+RecAdam 93.66 91.19 94.12 91.40
+Upper 93.54 89.54 94.35 91.39
+Upper+RecAdam 93.31 91.42 94.12 91.51
+AutoDenoise+RecAdam 93.55 91.42 94.01 91.88

Table 2: Ensemble Performance on dev and test dataset, where 8-fold is the models from 8-fold cross-validation
training, top ensemble means that ensemble the models with top dev accuracy.

Method Task1 Task3(1-2) Task2 Task3(2-1)

Dev set
8-fold ensemble 92.47 - 92.94 -
top ensemble 94.50 - 95.53 -

Test set
8-fold ensemble 93.04 93.90 94.99 91.35
top ensemble 92.74 94.19 95.29 91.65

Disc+AutoDenoise+RecAdam achieve the best re-
sults in task2 and task3(2-1) respectively. This
prove the validity of the two methods we proposed
for long sequences. The Upper Attention achieve
the best result on task2, while AutoDenoise achieve
the best result on task3. We ensemble them to
produce a stronger system. The Upper and Auto-
Denoise do not effectively improve the baseline
in subtask 1, since the mean length of subtask 1
is 374.34 which is much shorter than the max se-
quence length of original pre-trained model.

5.2 Ensemble Performance

The performances of ensemble models are shown
on Table 2, which is obtained from the competition
leader-board. Our system got the first place in sub-
task 2 and the second place in subtask 1. For the
subtask 3, our ranking is first place in subtask3(2-
1), and second place in subtask3(1-2), that indicates
our system has strong transfer capability in abstrac-
tive reading comprehension tasks. Ensemble re-
sults on dev dataset are exhibited for comparison,
and we do not experiment model ensemble on dev
data of subtask 3.

5.3 Memory-Efficiency

We trained all compared models on 16GB Tesla-
V100 GPU, except for ELECTRA Rank which
takes 17GB with batch size set to 1. Our proposed
Discriminator only take 9GB, since one option with
article and question is considered as single training

sample for binary classification task. In contrast,
ELECTRA Rank is required to encode the input
sequence with different options at once to learn
the ranking function between positive and negative
options. ELECTRA Discriminator is much faster
than ELECTRA Rank to converge. The epoch of
training ELECTRA Discriminator is less than 5
and ELECTRA Rank needs at least 10 train epochs
to converge.

Conclusion

In this paper, we propose an effective framework of
combining ELECTRA discriminator with denois-
ing learning method to boost the performance of
cloze-style reading comprehension task. Our pro-
posed model outperforms all others participating
system on subtask 2 and gets the second-placed on
subtask 1. We have conducted an ablation study,
demonstrating the validity of Discriminator, Upper
attention and Auto denoising. Pre-trained models
have made great performance gain compared to
traditional neural network models in many natural
language tasks and is able to build comprehensive
hidden representation of input text. The above
experiment results may suggest that the current
pre-trained model mechanism still has room for
improvement.
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Abstract

SemEval task 4 aims to find a proper option
from multiple candidates to resolve the task
of machine reading comprehension. Most ex-
isting approaches propose to concat question
and option together to form a context-aware
model. However, we argue that straightfor-
ward concatenation can only provide a coarse-
grained context for the MRC task, ignoring the
specific positions of the option relative to the
question. In this paper, we propose a novel
MRC model by filling options into the ques-
tion to produce a fine-grained context (defined
as summary) which can better reveal the re-
lationship between option and question. We
conduct a series of experiments on the given
dataset, and the results show that our approach
outperforms other counterparts to a large ex-
tent.

1 Introduction

In order to make the computer understand, rep-
resent and express better, we study the abil-
ity of MRC to understand Abstract defini-
tions(Spreen and Schulz, 1966; Changizi, 2008) in
the Reading Comprehension of Abstract Meaning
task(ReCAM). In ReCAM task, there are two kinds
of abstract definitions, one is imperceptibility and
the other is nonspecificity. To evaluate the model
performance comprehensively, three subtasks are
designed(Zheng et al., 2021):

Subtask 1) ReCAM-Imperceptibility - A pas-
sage, a question with a placeholder, and answers
used to fill in the placeholder are given. The an-
swers are all imperceptibility words so as to evalu-
atethe model’s ability to comprehend these imper-
ceptibility words.

Subtask 2) ReCAM-Nonspecificity - A passage,
a question with a placeholder, and answers used
to fill in the placeholder are given. The answers
are all Nonspecificity words so as to evaluatethe

model’s ability to comprehend these Nonspecificity
words.

Subtask 3) To provide more insights into the
relationship between two abstract views, it requires
to test the performance of the model trained on one
data set and evaluated on the other one.

Because question is obtained by hollowing out
summary of passage and answer is abstract words
to fill in(Zheng et al., 2021), there is a seman-
tically complementary relationship between the
question and answer. As shown in the Figure 1,
in the previous work(Jin et al., 2020; Zhu et al.,
2020), the model inputs passage, question and an-
swer independently. It can only provide a coarse-
grained context for the MRC task, ignoring the
specific positions of the option relative to the ques-
tion. Quesiton cannot be a complete sentence, and
the answer lacks contextual information about the
question. To solve this problem, we introduce
Complete Summary Representation by Filling An-
swers into Question for Maching Reading Com-
prehension(ComSR). ComSR convert the original
question and answer into summary. In this way, we
can turn the problem into matching correct sum-
mary for the passage. By replacing the answer
option into the question placeholder, the original
question has higher semantic integrity, and the orig-
inal answer obtains the context information from
the question to eliminate language ambiguity such
as polysemy.

Based on the results, ComSR is superior to pre-
trained language models and the latest MRQA mod-
els, with the accuracy rate of 64.76% in subtask 1,
64.86% in subtask 2, and shows great generaliza-
tion ability in Subtask 3.

2 System overview

Figure 2 illustrates the overall structure of ComSR.
Since just one summary option belongs to the pas-
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Figure 1: The framework of previous MCQA model. The abstract word in answer has a polysemy phenomenon.
Entering question and answer separately cannot eliminate ambiguity.

Figure 2: The framework of our model. By replacing the answer option into the question placeholder, answer
obtains the context information from question, so the ambiguity is eliminated.

sage, we input passage and summary together to
better reflect the corresponding relationship be-
tween the passage and the summaries. As BERT
has been shown to be a powerful feature extractor
for various tasks(Ran et al., 2019), we use BERT
as the encoder to extract the vector representation
of the semantic meaning of the passage and the
summaries, as well as the relationship between the
passage and the summaries. Finally, we use a clas-
sifier layer to convert the hidden state into the final
selection of the model.

2.1 Input Layer

The initial question uses ”@placeholder” to repre-
sent the abstract word, which makes the question
sentence not a complete sentence. We replace the
”@placeholder” in question with the answer word
to get the summary S. As a complete sentence, S
provides rich context information to answer, thus
effectively eliminating the ambiguity caused by
polysemy in answer. Then the passage P and the
summary S are concatenated, using [CLS] at the
beginning and [SEP] at the end of sentences to get
input vector.

x = [p; s] (1)

where x denotes input vector, p denotes passage
vector and s denotes summary vector.

2.2 Encoder

Although Pre-trained language models have
achieved good results in various NLP tasks, most
existing MCQA datasets are small in size, pre-
trained language models are hard to get adequate
training. To solve this problem, we use the encoder
obtained through multi-stage multi-task learning in
MMM (Jin et al., 2020) as the initial encoder1. The
reasons are as follows. First, the use of multiple
data sets for training makes up for the shortcomings
of the small amount of data in a single data set. It
uses four similar task data sets, MultiNLI(Williams
et al., 2017), SNLI (Young et al., 2014), DREAM
(Sun et al., 2019), and RACE (Lai et al., 2017)
for training, which has significantly more data
than a single MCQA data set, thus solving the de-
fect of insufficient data in a single data set. Sec-
ond, the model uses two natural language infer-
ence datasets, MNLI and SNLI, as out-of-domain

1https://drive.google.com/
drive/folders/1EECS9na9PpX9CO_
cCzYj9FDkiBvOpyxv
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source datasets for Coarse-tuning, and two MCQA
datasets, DREAM and RACE, as in-domain source
datasets for Multi-task learning. The characteristics
of different data sets make the model have better
generalization ability(Jin et al., 2020). Third, be-
cause these data sets are highly related to ReCAM,
it is suitable to use MMM encoder as initial encoder
of ComSR.

Hp = Bert(p), Hs = Bert(s) (2)

where Bert(·) indicate BERT model which re-
turn the last attention layer. Hp ∈ Rl×|p|,Hs ∈
Rl×|s| are sequence representation of the passage
and summary. |p|, |s| are the length of the passage
and summary. l is the dimension of the hidden
state.

2.3 Answer Prediction

In the answer prediction module, we pass the out-
put of the encoder through a fully connected layer
and a pooling layer to finally get the score of each
option.

sk = vT
s tanh (Wk [H

p;Hs] + bk) (3)

where sk is score of the answer, vT
s and Wk are

learnable parameters. tanh(·) performs tanh acti-
vation function, Wk ∈ Rl×l,bk ∈Rl,vT

s ∈ Rl.
The probability P (k | P, S) of summary Sk to

be the correct answer is computed as

P (k | P, S) = exp (sk)∑N=5
i exp (si)

(4)

Then according to P (k | P, S), the loss function
is defined as

J(θ) = − log(P (k | P, S)) (5)

3 Experimental setup

3.1 Dataset

The data set of Reading Comprehension of Abstract
Meaning (ReCAM) is provided by the organizer
of the competition containing a large number of
abstract words in answers. Abstract words refer
to thoughts and concepts that are far from imme-
diate perception. In ReCAM, we divide abstract
words into Imperceptibility words and Nonspeci-
ficity words, and provide two data sets, respectively.
The accuracy we showed in the paper was tested
on the dev dataset.

3.1.1 ReCAM-Imperceptibility
Imperceptible words are the words of being Im-
perceptibility by eyes or senses, such as experi-
ence, success, significant, challenge. This data
set provides a passage, a question with a place-
holder and five answers with an imperceptibility
word. The training set/test set/validation set con-
tains 3227/2025/837 pieces of data respectively.

3.1.2 ReCAM-Nonspecificity
Nonspecific words are words with very broad con-
cepts, and hypernyms are often words of this type,
such as food, jewelry, people, and vehicle. This
data set provides a passage, a question with a
placeholder and five answers with a Nonspecificity
word. The training set/test set/validation set con-
tains 3318/2017/851 pieces of data respectively.

3.2 Implementation Details

In the test method, we use the accuracy of the
model in the answer option of the data set as the
measurement standard. For model training, we will
train each tested model for 10 epochs at a learn-
ing rate of 3e-05, use cross-entropy to calculate
loss, and use Adam optimizer(Kingman and Ba,
2015) for fine-tuning. On hardware devices, we
use GeForce RTX-2080Ti to provide computing.

4 Results

4.1 Comparison with Baselines

Since our model uses BERT as encoder, we use the
original BERT(Devlin et al., 2018) for comparison.
As pre-trained language models like BERT, we
use ALBERT(Lan et al., 2019) and RoBERTa(Liu
et al., 2019) in the experiment. In addition, we
also adopt MMM(Jin et al., 2020) that performed
well in multi-choice data sets such as RACE(Lai
et al., 2017) and DREAM(Sun et al., 2019) to do
experiments.

Model Subtask
1(%)

Subtask
2(%)

BERT-base 47.19 50.65
RoBERTa 22.34 22.44
ALBERT 36.91 37.25
MMM+BERT-base 57.11 59.11
ComSR+BERT-base(ours) 64.76 64.86

Table 1: Experimental results on ReCAM. The overall
best results are in bold face.
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Model I→N (%) N→I (%)
ComSR(Passage + summary)(ours) 50.65(14.11 ↓) 51.73(13.13 ↓)
ComSR(Passage + summary + question) 48.53(17.18 ↓) 49.94(15.51 ↓)
ComSR(Passage + summary + answer) 44.89(18.55 ↓) 46.71(18.38 ↓)
MMM(Passage + question + answer) 39.48(17.63 ↓) 43.73(15.38 ↓)

Table 2: Comparison generalization on ReCAM. I→N denotes training on the Imperceptibility dataset and testing
on the Nonspecificity dataset, N→I is the opposite. ↓ represents the drop for a model compared to the test in its
own test set and + denotes concatenation.

Table 1 show that the model has similar features
in task1 and task2. In the experimental results
of task1 and task2, we can find that (1) Although
pre-trained language models have slightly different
results depending on the models, the overall level is
low on the small data set. (2) MMM proposed for
the MCQA task performs better than the pre-trained
language model on ReCAM. This is because the
encoder of MMM uses the Multi-stage Multi-task
Learning to train on NLI data sets such as MNLI
and SNLI and on MCQA data sets such as DREAM
and RACE, which is more suitable for ReCAM. (3)
The performance of ComSR is better than other
baselines, and it has significantly improved. It can
be seen that, under the condition of using the same
encoder, replacing the placeholder of question with
answer is more conducive to understand sentence
meaning.

4.2 Analysis Studies

4.2.1 The completeness of the semantic
expression of summary

Converting question and answer into summary in-
put improves semantic integrity and the model’s
ability to understand sentences. However, is the se-
mantics provided by summary complete? To study
this problem, we set up the following experiment.

Model Subtask
1(%)

Subtask
2(%)

ComSR(Passage +
summary)(ours)

64.76 64.86

ComSR(Passage +
summary + ques-
tion)

65.71 65.45

ComSR(Passage +
summary + answer)

63.44 65.09

Table 3: Comparison among different implementation
of the input method on ReCAM. + denotes concatena-
tion.

If there is a loss of semantics in the synthesis
of the summary, then the summary can be sup-
plemented when the original question and answer
are used, thereby improving the performance of
the model. However, it can be seen from the
table 3 results that some of the experimental re-
sults of the passage+ summary+answer and pas-
sage+summary+question groups are equal to pas-
sage+summry and even slightly lower than pas-
sage+summary. Therefore, the conversion of ques-
tion and answer into summary makes the semantics
of options more complete, and there is no semantic
loss.

4.2.2 Research on model generalization
To study the generalization ability of the model,
(1) we use the ReCAM-Imperceptibility data set to
train and test it in the ReCAM-Nonspecificity data
set. (2) we use the ReCAM-Nonspecificity data set
to train and test it in the ReCAM-Imperceptibility
data set. In order to study the most suitable
input form, we use passage+summary+question,
passage+summary+answer and MMM (pas-
sage+question+answer) model for comparison.

According to the experimental results in table 2,
after switching the data set for testing, the high-
est accuracy is ComSR(Passage + summary). Al-
though the results of the test in another data set
have dropped, the ComSR using the Passage and
summary received the least impact. In summary,
ComSR(Passage + summary) performs best in the
above models, and the method of matching sum-
mary and Passage alone has stronger generalization
ability.

4.2.3 Case Analysis
Table 4 shows a passage and its corresponding ques-
tion and answers. To understand ComSR’s ability
to disambiguate, we specifically selected samples
that contained polysemous words in answers. In
this example, the answer ”goods” is a typical poly-
semous word.
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Passage Media playback is unsupported
on your device 19 November
2013 Last updated at 19:46 GMT
Following the deaths of six cy-
clists in a period of 14 days, there
have been increased calls for re-
strictions on HGVs during peak
times. Paul Hutchin shows re-
porter Marc Ashdown what it is
like driving a lorry in the capital.

Question Heavy @placeholder vehicles
have been involved in nine of this
year ’s 14 cyclist crash fatalities
in London.

Answers (a) operators (b) goods (c)
groups (d) patrol (e) air

Table 4: Example of ReCAM.

Models take the logarithm of the value to get the
predictions. Because many of the predictions are
negative, we add bias = 12.5 to the predictions for
easy viewing and show it in Figure 3.

(a) MMM(passage + question + answer)

(b) ComSR(passage + summary)

Figure 3: Prediction distributions in different models.
The model selects the answer with the highest predicted
value as the output option.

We observe that although MMM selects the right
option, the difference between the correct answer
and other option values in the probability distri-
bution is not obvious. On the contrary, correct

prediction value is much higher than other values
in ComSR. By combining question and answer into
summary, ComSR can not only improve the seman-
tic integrity of the sentence, but also eliminate the
ambiguity caused by the polysemy of the original
answer. Therefore, even for polysemous words that
are prone to ambiguity, ComSR can obtain accu-
rate answers by fully understanding the summary
representation.

5 Conclusion

We proposed ComSR for multiple choice reading
comprehension to complete summary representa-
tion. Merging the separated question and answer
into a summary could improve semantic integrity
and better reveal the relationship between option
and question. Results showed that our model can
achieve relatively high performance compared to
the latest baseline in terms of accuracy and gener-
alization ability.
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Abstract

In recent years, the widespread use of social
media has led to an increase in the generation
of toxic and offensive content on online plat-
forms. In response, social media platforms
have worked on developing automatic detec-
tion methods and employing human modera-
tors to cope with this deluge of offensive con-
tent. While various state-of-the-art statistical
models have been applied to detect toxic posts,
there are only a few studies that focus on de-
tecting the words or expressions that make a
post offensive. This motivates the organization
of the SemEval-2021 Task 5: Toxic Spans De-
tection competition, which has provided par-
ticipants with a dataset containing toxic spans
annotation in English posts. In this paper, we
present the WLV-RIT entry for the SemEval-
2021 Task 5. Our best performing neural trans-
former model achieves an 0.68 F1-Score. Fur-
thermore, we develop an open-source frame-
work for multilingual detection of offensive
spans, i.e., MUDES, based on neural trans-
formers that detect toxic spans in texts.

1 Introduction

The widespread adoption and use of social media
has led to a drastic increase in the generation of
abusive and profane content on the web. To counter
this deluge of negative content, social media com-
panies and government institutions have turned
to developing and applying computational mod-
els that can identify the various forms of offensive
content online such as aggression (Kumar et al.,
2018, 2020), cyber-bullying (Rosa et al., 2019),
and hate speech (Ridenhour et al., 2020). Prior
work has either designed methods for identifying
conversations that are likely to go awry (Zhang

WARNING: This paper contains text excerpts and words
that are offensive in nature.

et al., 2018; Chang et al., 2020) or detecting of-
fensive content and labelling posts at the instances
level – this has been the focus in the recent shared
tasks like HASOC at FIRE 2019 (Mandl et al.,
2019a) and FIRE 2020 (Mandl et al., 2020), Ger-
mEval 2019 Task 2 (Struß et al., 2019), TRAC
(Kumar et al., 2018, 2020), HatEval (Basile et al.,
2019a), OffensEval at SemEval-2019 (Zampieri
et al., 2019b) and SemEval-2020 (Zampieri et al.,
2020).

With respect to identifying offensive language
in conversations, comments, and posts, noticeable
progress has been made with a variety of large,
annotated datasets made available in recent years
(Pitenis et al., 2020; Rosenthal et al., 2020). The
identification of the particular text spans that make
a post offensive, however, has been mostly ne-
glected (Mathew et al., 2021) as current state-of-
the-art offensive language identification models
flag the entire post or comment but do not actually
highlight the offensive parts. The pressing need for
toxic span detection models to assist human con-
tent moderation, processing and flagging content
in a more interpretable fashion, has motivated the
organization of the SemEval-2021 Task 5: Toxic
Spans Detection (Pavlopoulos et al., 2021).

In this paper, we present the WLV-RIT sub-
mission to the SemEval-2021 Task 5. We ex-
plore several statistical learning models and re-
port the performance of the best model, which
is based on a neural transformer. Next, we gen-
eralise our approach to an open-source frame-
work called MUDES: Multilingual Detection of Of-
fensive Spans (Ranasinghe and Zampieri, 2021a).
Alongside the framework, we also release the pre-
trained models as well as a user-friendly web-based
User Interface (UI) based on Docker, which pro-
vides the functionality of automatically identifying
the offensive spans in a given input text.
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2 Related Work

Datasets Over the past several years, multiple
post-level, offensive language benchmark datasets
have been released. In Zampieri et al. (2019a), the
authors compiled an offensive language identifica-
tion dataset with a three-layer hierarchical annota-
tion scheme – profanity, category, and target identi-
fication. Rosenthal et al. (2020) further extended
the dataset using a semi-supervised model that was
trained with over nine million annotated English
tweets. Recently, Mathew et al. (2021) released
the first benchmark dataset which covered the three
primary areas of online hate-speech detection. The
dataset contained a 3-class classification problem
(hate-speech, offensive, or neither), a targeted com-
munity, as well as the spans that make the text hate-
ful or offensive. Furthermore, offensive language
datasets have been annotated in other languages
such as Arabic (Mubarak et al., 2017), Danish (Sig-
urbergsson and Derczynski, 2020), Dutch (Tulkens
et al., 2016), French (Chiril et al., 2019), Greek
(Pitenis et al., 2020), Portuguese (Fortuna et al.,
2019), Spanish (Basile et al., 2019b), and Turkish
(Çöltekin, 2020).

Apart from the dataset released for SemEval-
2021 Task 5, HateXplain (Mathew et al., 2021) is,
to the best of our knowledge, the only dataset that
we could find that has been annotated at the word
level. The dataset consists of 20, 000 posts from
Gab and Twitter. Each data sample is annotated
with one of the hate/offensive/normal labels, com-
munities being targeted, and words of the text are
marked by the annotators who support the label.

Models In the past, trolling, aggression, and cy-
berbullying identification tasks on social media
data have been approached using machine and
deep learning-focused models (Kumar et al., 2018).
Across several studies (Malmasi and Zampieri,
2017, 2018; Waseem and Hovy, 2016) researchers
have noted that n-gram based features are very
useful when building reliable, automated hate-
speech detection models. Statistical learning mod-
els aided with natural language processing (NLP)
techniques are frequently used for post-level of-
fensive and hateful language detection (Davidson
et al., 2017; Indurthi et al., 2019). Given the in-
creased use of deep learning in NLP tasks, of-
fensive language identification has seen the intro-
duction of methods based on convolutional neural
networks (CNNs) and Long Short-term Memory

(LSTM) networks (Badjatiya et al., 2017; Gambäck
and Sikdar, 2017; Hettiarachchi and Ranasinghe,
2019). The most common approach has been to
use a word/character embedding model such as
Word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), or fastText (Mikolov et al., 2018)
to embed words/tokens and then feed them to an
artificial neural network (ANN) (Zampieri et al.,
2019b).

With the introduction of BERT (Devlin et al.,
2019), neural transformer models have become
popular in offensive language identification. In
hate speech and offensive content identification in
Indo-European languages, the BERT model has
been shown to outperform GRU (Gated Recurrent
Unit) and LSTM-based models (Ranasinghe et al.,
2019). In Mandl et al. (2019b), the best perform-
ing teams on the task employed BERT-based pre-
trained models that identified the type of hate and
target of a (text) post.

The SemEval-2019 Task 6 (Zampieri et al.,
2019b) presented the challenge of identifying and
categorizing offensive posts on social media, which
included three sub-tasks. In sub-task A: offensive
language identification, Liu et al. (2019a) applied a
pre-trained BERT model to achieve the highest F1
score. In Sub-task B: automatic categorization of
offense types, BERT-based models also achieved
competitive rankings. We noticed similar trends
in SemEval-2020 Task 12 (Zampieri et al., 2020)
as well. Not limited to English, transformer mod-
els have yielded strong results in resource-scarce
languages like Bengali (Ranasinghe and Zampieri,
2020) and Malayalam (Ranasinghe et al., 2020)
along with cross-lingual transfer learning from
resource-rich languages (Ranasinghe and Zampieri,
2020, 2021b). Nonetheless, despite the recent suc-
cess of statistical learning in offensive language
detection problems, due to the lack of finer-grained,
detailed datasets, models are limited in their ability
to predict word-level labels.

3 Task and Dataset

In the SemEval-2021 Task 5 dataset, the sequence
of words that makes a particular post or comment
toxic is defined as a toxic span. The dataset for
this task is extracted from posts in the Civil Com-
ments Dataset that have been found to be toxic.
The practice dataset has 690 instances out of which
43 instances do not contain any toxic spans. The
training dataset has a total of 7, 939 instances and
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Post Offensive Spans

Stupid hatcheries have completely fucked everything [0, 1, 2, 3, 4, 5, 34, 35, 36, 37, 38, 39]
Victimitis: You are such an asshole. [28, 29, 30, 31, 32, 33, 34]
So is his mother. They are silver spoon parasites. []
You’re just silly. [12, 13, 14, 15, 16]

Table 1: Four comments from the dataset along with their annotations. The offensive words are displayed in red
and the spans are indicated by the character position in the instance.

comprises 485 instances without any toxic spans.
Each instance is composed of a list of toxic spans
and the post (in English). In Table 1, we present
four randomly selected examples from the training
dataset along with their annotations.

Figure 1: The Bi-LSTM-CRF model. Green squares
represent the top CRF layer. Non-offensive and offen-
sive tokens are shown as 0 and 1, respectively.

4 Methodology

4.1 Lexicon-based Word Match

Lexicon-based word-matching algorithms often
achieve balanced results. For the lexicon, we col-
lected profanity words from online resources1,2.
Then, we added the toxic words present in the train-
ing dataset and we run a simple word matching
algorithm the trie data structure. As anticipated,
the algorithm does not evaluate the toxic spans con-
textually and misses censored swear words. For
instance, the word f**k is missed, which is not
present in the lexicon. Nonetheless, this result pro-
vides as a useful baseline performance measure-
ment for the task.

4.2 Recurrent Networks: Long Short-Term
Memory

Long Short-term Memory (LSTM) is a recurrent
neural network model that uses feedback connec-

1https://www.cs.cmu.edu/˜biglou/
resources/bad-words.txt

2https://github.com/RobertJGabriel/
Google-profanity-words

tions to model temporal dependencies (past-to-
present) in sequential data. Bidirectional LSTM
(Bi-LSTM) is capable of learning contextual in-
formation both forwards and backwards in time
compared to conventional LSTMs. In this study,
we used the Bi-LSTM architecture given this bi-
directional ability to model temporal dependencies.
Conditional random fields (CRF) (Lafferty et al.,
2001) are a statistical model that are capable of
incorporating context information and are highly
used for sequence labeling tasks. A CRF connected
to the top of the Bi-LSTM model provides a power-
ful way to model relationships between consecutive
outputs (across time) and provides a means to ef-
ficiently utilize past and future tag information to
predict the current tag.

The final hybrid model is comparable to the pre-
vious state-of-the-art sequence tagging Bi-LSTM-
CRF model (Huang et al., 2015). Figure 1 presents
the Bi-LSTM-CRF architecture we designed for
this study, which has 4.2 million trainable parame-
ters. We trained the model on mini-batches of 16
samples with a 0.005 learning rate for 5 epochs
with a maximum sequence length of 200.

4.3 Neural Transformers
Recently, pre-trained language models have been
shown to be quite useful across a variety of NLP
tasks, particularly those based on bidirectional neu-
ral transformers such as BERT (Devlin et al., 2019;
Li et al., 2019). Transformer-based models have
also been shown to be highly effective in sequence
classification tasks such as named entity recogni-
tion (NER) (Luoma and Pyysalo, 2020). In our
work, we extend the BERT model by integrating
a token level classifier. The token-level classifier
is a linear transformation that takes the last hidden
state of the sequence as the input and produces a
label for each token as its output. In this case, each
token will be predicted to have one of two possible
labels – toxic or not toxic. We fine-tuned the un-
cased BERT transformer model with a maximum
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Figure 2: The two-part model architecture. Part A depicts the language model and Part B is the token classifier.
(Ranasinghe and Zampieri, 2021a)

sequence length of 400 with batches of size of 16.
We also experimented with customising the lay-

ers in between the BERT transformer and token-
classification layer by adding a CRF layer between
them given that it has been shown that BERT-CRF
architectures often outperform BERT baselines in
similar sequence labeling tasks (Huang et al., 2019;
Souza et al., 2020). Therefore, we added a sequen-
tial CRF layer on top of the BERT transformer
and further incorporated dropout (probability of
dropping a neuron was 0.2) to introduce some reg-
ularization. Unfortunately, in our experiments, we
found that adding a CRF layer does not signifi-
cantly improve the final generalization results. Ad-
ditionally, we experimented with transfer learning
to identify if a further boost in model generalization
was possible if we first trained a basic BERT trans-
former on HateXplain (Mathew et al., 2021) and
then fine-tuned it using our extended architecture
as described above. However, the transfer learning
process did not improve results any further.

Development of MUDES Given the success we
observed using neural transformers such as BERT,
we developed a (software) framework we call
MUDES (Ranasinghe and Zampieri, 2021a): Mul-
tilingual Detection of Offensive Spans, an open-
source framework based on transformers to detect
toxic spans in texts. MUDES offers several capa-
bilities in addition to the (automatic) token classi-
fication we described earlier. MUDES has the fol-
lowing components: a) Language Modeler: Fine–
tuning transformer models using masked language

modeling before performing the downstream task
often leads to better results (Ranasinghe and Het-
tiarachchi, 2020) and MUDES incorporates this,
b) Transformer Type Variety: since there are
many varieties of neural transformers, e.g., XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019b)
that have been shown to outperform BERT-based
architectures (Ranasinghe and Hettiarachchi, 2020;
Hettiarachchi and Ranasinghe, 2020a), our soft-
ware framework provides support for these archi-
tectures, and, finally, c) Model Ensembling: mul-
tiple MUDES models with different random seeds
can be trained and the final model prediction is the
majority vote from all the models, aligning with the
approach taken in Hettiarachchi and Ranasinghe
(2020b, 2021); Jauhiainen et al. (2021).

The complete architecture of MUDES is de-
picted in Figure 2. We used several popular trans-
former models including BERT (Devlin et al.,
2019), XLNET (Yang et al., 2019), RoBERTa (Liu
et al., 2019b), SpanBERT (Joshi et al., 2020), and
ALBERT (Lan et al., 2020). We compared these
transformer architectures against the spaCy token
classifier baseline (reported by the competition
organisers) and report these results in Section 5.
Since adding a CRF layer did not improve the re-
sults in our models, we do not add this to MUDES.

Parameter optimization involved mini-batches of
8 samples using the Adam update rule (global learn-
ing rate was 2e−5 and a linear warm-up schedule
over 10% of the training data was used). Models
were evaluated using a validation subset that con-
tained 20% of the training data. Early stopping
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was executed if the validation loss did not improve
over 10 evaluation steps. Models were trained for
3 epochs on an Nvidia Tesla K80 GPU using only
the training set provided.

5 Evaluation and Results

For evaluation, we followed the same procedure
that the task organisers have used to evaluate the
systems.

Let system Ai return a set St
Ai

of character off-
sets for parts of a text post that have been found
to be toxic. Let Gt be the character offsets of the
ground truth annotations of t. We compute the F1
score of system Ai with respect to the ground truth
G for post t as mentioned in Equation 1 where |
·| denotes set cardinality. P t and Rt measure the
precision and recall, respectively.

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)
(1)

Model Trial F1 Test F1
MUDES RoBERTa 0.6886 0.6801

MUDES BERT 0.6771 0.6698
MUDES SPANBert 0.6751 0.6675

MUDES XLNet 0.6722 0.6653
BERT 0.6738 0.6538

BERT-CRF 0.6643 0.6517
BERT HateXplain 0.6387 0.6326

spaCy baseline 0.5976 0.5976
Bi-LSTM-CRF 0.5631 0.5398

Lexicon word match 0.3378 0.4086

Table 2: Results ordered by test F1 score. The Trial F1
column shows the F1 scores on the trial set and the Test
F1 column shows the F1 scores for test set.

Observe in Table 2 that all of our deep neural-
based models outperformed the spaCy baseline
while the lexicon-based word match algorithm pro-
vided fairly good results despite it being an unsu-
pervised method. Our best model is the MUDES
RoBERTa model which scored 0.68 F1 score in
the test set and is very compatible with the 0.70
F1 score that the best model scored in the compe-
tition. Furthermore, it is clear that the additional
features supported by our MUDES framework, e.g.,
language modeling and ensembling, improves the
results over a vanilla BERT transformer.

6 Conclusion and Future Work

In this paper, we presented the WLV-RIT approach
for tackling the SemEval-2021 Task 5: Toxic Spans
Detection. SemEval-2021 Task 5 provided partici-
pants with the opportunity of testing computational
models to identify token spans in toxic posts as
opposed to previous related SemEval tasks such as
HatEval and OffensEval that provided participants
with datasets annotated at the instance level. We
believe that word-level predictions are an impor-
tant step towards explainable offensive language
identification.

We experimented with several methods includ-
ing a lexicon-based word match, LSTMs, and neu-
ral transformers. Our results demonstrated that
transformer models offered the best generalization
results and, given the success observed, we devel-
oped MUDES, an open-source software framework
based on neural transformers focused on detecting
toxic spans in texts. With MUDES. we release
two English models that performed best for this
task (Ranasinghe and Zampieri, 2021a). A large
model; en-large based on roberta-large which is
more accurate, but has a low efficiency regarding
space and time. The base model based on xlnet-
base-cased; en-base is efficient, but has a compar-
atively low accuracy than the en-large model. All
pre-trained models are available on Hugging Face
Model Hub (Wolf et al., 2020)3. We also make
MUDES available as a Python package4 and set up
as an open-source project5. In addition, a proto-
type User Interface (UI) of MUDES has been made
accessible to the general public6 based on Docker7.

In terms of future work, we would like to experi-
ment with multi-task (neural) architectures that can
be used for offensive language identification capa-
ble of carrying out predictions at both the word-
level and post-level jointly. Furthermore, we would
like to evaluate multi-task architectures on multi-
domain and multilingual settings as well as broaden
our experimental comparison to other types of re-
current network models, such as the Delta-RNN
(Ororbia II et al., 2017).

3Available on https://huggingface.co/mudes
4Available at https://pypi.org/project/

mudes/
5The MUDES GitHub repository is available at https:

//github.com/tharindudr/MUDES
6The UI can be accessed from http://rgcl.wlv.ac.

uk/mudes/
7Available at https://hub.docker.com/r/

tharindudr/mudes
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Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben
Verhoeven, and Walter Daelemans. 2016. A
Dictionary-based Approach to Racism Detection in
Dutch Social Media. In Proceedings of TA-COS.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on Twitter. In Proceedings of
NAACL Student Research Workshop.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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Abstract

Toxic span detection requires the detection
of spans that make a text toxic instead of
simply classifying the text. In this paper, a
transformer-based model with auxiliary infor-
mation is proposed for SemEval-2021 Task
5. The proposed model was implemented
based on the BERT-CRF architecture. It con-
sists of three parts: a transformer-based model
that can obtain the token representation, an
auxiliary information module that combines
features from different layers, and an out-
put layer used for the classification. Vari-
ous BERT-based models, such as BERT, AL-
BERT, RoBERTa, and XLNET, were used to
learn contextual representations. The predic-
tions of these models were assembled to im-
prove the sequence labeling tasks by using a
voting strategy. Experimental results showed
that the introduced auxiliary information can
improve the performance of toxic spans detec-
tion. The proposed model ranked 5th of 91 in
the competition. The code of this study is avail-
able at https://github.com/Chenrj233/
semeval2021_task5

1 Introduction

Existing toxicity detection datasets and models
classify the entire comment or document and do
not identify the range that makes the text toxic. A
system that accurately locates the toxicity range in
the text is crucial in achieving semi-automatic re-
view. As a complete submission for the shared task,
systems are required to extract a list of toxic spans
or an empty list per text. We define a sequence
of words that attribute to the text’s toxicity as the
toxic span. Table 1 shows two toxic spans, ”stupid”
and ”a!@#!@,” which have character offsets from
10 to 15 (counting starts from 0) and from 51 to 56,
respectively. Systems are then expected to return
the offset list for this text.

Text
This is a stupid example, so thank you for
nothing a!@#!@.
Offset List
[10,11,12,13,14,15,51,52,53,54,55,56]

Table 1: Example of toxic spans detection shared task.

The main purpose of this task is to identify the
toxic spans in a given text; this can be transformed
into a sequence labeling task in natural language
processing. Unlike normal sequence labeling tasks,
this task is more challenging because the toxic
spans in the text may involve a word, phrase, or
even a sentence. Traditional methods used to ad-
dress the problem of sequence labeling include con-
ditional random fields (CRF) (Lafferty et al., 1999),
combined models of both long-short-term mem-
ory and CRF (LSTM-CRF) (Gupta et al., 2019),
and bidirectional encoder representation from trans-
formers (BERT) (Devlin et al., 2019).

In this study, we use BERT, ALBERT (Lan et al.,
2019), RoBERTa (Liu et al., 2019), and XLNET
(Yang et al., 2019) to solve this problem. Com-
pared with the conventional model, our model adds
auxiliary information to improve the performance
in this task. After a simple analysis of the text
data, it can be found that not all the words in the
toxic span have a toxic meaning, and some toxic
meanings occur in a specific context or semantic
conditions. Therefore, if the tokens can be classi-
fied with the auxiliary information such as sentence
representation, the performance of the model will
improve. The results of the experiment prove that
some of the proposed methods are effective. By us-
ing ensemble learning, we merge the results of the
BERT, ALBERT, RoBERTa, and XLNET models
into the final prediction, obtaining the 5th rank out
of 91 and a F1 score of 0.696.
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Figure 1: Overall architecture of the proposed transformer-based model with auxiliary information.

The remainder of this paper is organized as fol-
lows. Section 2 describes the specific structure
of the adopted model. The experimental results
are summarized in Section 3. Finally, Section 4
presents the conclusions of the study.

2 Transformer-based Model with
Auxiliary Information

Figure 1 shows the architecture of the pro-
posed model, which consists of three layers: a
transformer-based layer, an auxiliary information
layer, and an output layer. The transformer-based
layer can be BERT, ALBERT, RoBERTa, XLNET,
or any other transformer-based model. In the auxil-
iary information layer, several approaches are ap-
plied to combine token representation. The com-
bined token representations are used in the output
layer to output the label of each token.

2.1 Transformer-based Layer

The transformer-based layer is the first part of the
model. The purpose of this layer is to obtain the
representation of tokens and the entire text. For il-
lustration, we can use the BERT-large (Devlin et al.,
2019) model to produce token representations from
each layer. With BERT-large, 25 layers of token
representation vectors can be obtained: one embed-

ding representation and twenty-four hidden states.
Unlike previous methods, 25 layers of token rep-
resentation vectors are combined by using several
methods in the next layer. The representations pro-
duced by the transformer-based layer are then fed
into the next layer.

2.2 Auxiliary Information Layer
The traditional method directly passes the token
representation vectors to the classification layer. To
improve the performance of the model, we attempt
to combine token representation vectors and the
sentence representation vector in different ways.
Figure 2 depicts the attempted methods, which are
described as follows:

• Method 1. Token vector of the last layer and
the sentence vector.

• Method 2. Token vector of the last layer con-
catenated with the sentence vector.

• Method 3. Linear combination of the token
vector of each layer.

• Method 4. Linear combination of the token
vector of each layer and the sentence vector.

The combined representation of tokens passes
on to the next layer.
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Figure 2: Different types of representations in auxiliary information layer.

2.3 Output Layer

The output layer is a fully connected dense layer
with softmax activation. It aims to classify whether
a token belongs to the toxic span in a text. The
combined representation of each token passed by
the auxiliary information layer is the input of this
layer, and the output layer predicts the labels for the
candidate tokens. The loss function of the proposed
model is the categorical cross-entropy.

3 Experimental Results

In this section, we present the comparative results
of the proposed model.

3.1 Dataset

During the competition, we used only the data
(Pavlopoulos et al., 2021) provided by the task or-
ganizer for the experiments. This task involves trial
data (which include 689 posts and spans), training
data (which include 7939 posts and spans), and
test data (which include 2000 posts). We used the
training data as the training set and trial data as
the validation set. We needed to find the subscript
offset set of the toxic spans of each post in the test

data.
As this is a sequence labeling task, a common

data preprocessing method is to use the BIO tag-
ging format. We observed better performance when
the IO tagging format was adopted during the ac-
tual training process. Therefore, our output layer
was a two-classification layer that outputs the prob-
ability of a token belonging to a toxic span.

3.2 Evaluation Metrics
For this task, we employed the F1-score metric (da
San Martino et al., 2020) to evaluate the responses
of a system participating in the challenge.

For each post, ti, the predicted span was a set,
Si, of character offsets and Gi was the character
offset of the groundtruth annotations of ti. The F1

score of ti was calculated as follows:

F1(Si, Gi) =
2 ∗ P (Si, Gi) ∗R(Si, Gi)

P (Si, Gi) +R(Si, Gi)
(1)

where P (Si, Gi) and R(Si, Gi) are respectively
precision and recall scores defined as follows:

P (Si, Gi) =
|Si ∩Gi|
|Si|

(2)
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Transformer model Auxiliary information Validation set Test set

BERT-large

None 0.649 0.679
Add sentence vector 0.670 0.679
Concatenate sentence vector 0.671 0.671
Linear combination 0.661 0.683
Linear combination plus sentence vector 0.672 0.679

ALBERT-xlarge

None 0.659 0.675
Add sentence vector 0.665 0.665
Concatenate sentence vector 0.656 0.668
Linear combination 0.648 0.667
Linear combination plus sentence vector 0.657 0.670

RoBERTa-large

None 0.656 0.676
Add sentence vector 0.620 0.662
Concatenate sentence vector 0.610 0.673
Linear combination 0.663 0.667
Linear combination plus sentence vector 0.667 0.667

XLNET-large

None 0.659 0.679
Add sentence vector 0.674 0.674
Concatenate sentence vector 0.669 0.669
Linear combination 0.674 0.675
Linear combination plus sentence vector 0.678 0.681

Table 2: F1-score of different models on validation set and test set.

R(Si, Gi) =
|Si ∩Gi|
|Gi|

(3)

If Gi is empty for some post ti, we set
F1(Si, Gi) = 1 if Si is also empty and
F1(Si, Gi) = 0 otherwise. Finally, we averaged
F1(Si, Gi) over all posts ti.

3.3 Implementation Details

Each model was fine-tuned for eight epochs. We
used the Adam (Kingma and Ba, 2015), AdamW
(Loshchilov and Hutter, 2017), and Stochastic Gra-
dient Descent (SGD) algorithm for optimization.
The final one used was AdamW with a learning
rate of 5e− 6.

In the training process, we attempted to use the
cross-entropy loss, focal loss (Lin et al., 2020),
and Dice loss (Li et al., 2020). The results on the
validation set showed that the focal loss and Dice
loss are better than the cross-entropy loss. This
may be due to an imbalance between the toxic and
nontoxic categories in the text. In order to compare
with the baseline model, we finally used the cross-
entropy loss function to train all models.

3.4 Comparative Results

We used BERT, ALBERT, RoBERTa, and XLNET
as the transformer-based layers. The model exhibit-

ing the best performance on the validation set in
the eight epochs was used to predict the spans on
the test set in the competition. The results on the
test set are presented in Table 2. The model that
performed the best on the test set over the eight
epochs is also presented in Table 2.

In terms of the performance on the validation
set, the BERT and XLNET models with the auxil-
iary information layer are better than those without.
Method 4, mentioned earlier, achieves the high-
est F1 score. In case of ALBERT, only method 1
improves the performance. Methods 3 and 4 can
improve the performance of RoBERTa.

Regardless of the performance on the validation
set, the F1 score increases by 0.004 when using
method 3 in the BERT model and increases by
0.002 when using method 4 in XLNET. The auxil-
iary information layer does not improve the perfor-
mance of ALBERT and RoBERTa.

The results show that the performance of the
best-performing model on the validation set is sig-
nificantly different from that of the best-performing
model on the test set. The reason for this differ-
ence may be the inconsistent data distribution of
the validation and test sets.

However, the results indicate that when the vali-
dation set is not appropriate, the auxiliary informa-
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tion layer can effectively improve the performance
of the baseline model on the validation set. The
BERT and XLNET models are the most suitable
for the auxiliary information layer.

4 Conclusion

In this paper, we introduce the method we used in
SemEval-2021 Task 5. We improved the perfor-
mance of the basic model by reducing the number
of categories for each token, selecting the appro-
priate loss function, adding some additional infor-
mation to the representation vector of the tokens
during classification, and finally obtaining a model
that can detect the toxicity in a text. Our experimen-
tal results showed that adding auxiliary information
to the original token representation vector is helpful
in sequence labeling tasks.

In addition, we found that the model has some
limitations. After analyzing the prediction results,
we observed that although the model can learn the
representation of each token well, token classifica-
tion errors can occur when some tokens are toxic
without the entire text being toxic. One possible
solution for this is to add a text classification task
to train the model.
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Abstract

We present our works on SemEval-2021 Task
5 about Toxic Spans Detection. This task aims
to build a model for identifying toxic words in
whole posts. We use the BiLSTM-CRF model
combining with ToxicBERT Classification to
train the detection model for identifying toxic
words in posts. Our model achieves 62.23% by
F1-score on the Toxic Spans Detection task.

1 Introduction

Detecting toxic posts on social network sites is a
crucial task for social media moderators in order
to keep a clean and friendly space for online dis-
cussion. To identify whether a comment or post
is toxic or not, social network administrators often
read the whole comment or post. However, with a
large number of lengthy posts, the administrators
need assistance to locate toxic words in each post to
decide whether a post is toxic or non-toxic instead
of reading the whole post. The SemEval-2021 Task
5 (Pavlopoulos et al., 2021) provides a valuable
dataset called Toxic Spans Detection dataset in or-
der to train the model for detecting toxic words in
lengthy posts.

Based on the dataset from the shared task, we
implement the machine learning model for detect-
ing toxic words posts. Our model includes: the
BiLSTM-CRF model (Lample et al., 2016) for de-
tecting the toxic spans in the post, and the Toxi-
cBERT (Hanu and Unitary team, 2020) for classify-
ing whether the post is toxic or not. Before training
the model, we pre-process texts in posts and encode
them by the GloVe word embedding (Pennington
et al., 2014). Our model achieves 62.23% on the
test set provided by the task organizers.

2 Related works

Many corpora are constructed for toxic speech de-
tection problems. They consist of flat label and

hierarchical label datasets. The flat label datasets
only classify one label for each comment in the
dataset (e.g., hate, offensive, clean), while hierar-
chical datasets can classify multiple aspects of the
comment (e.g., hate about racism, hate about sexual
oriented, hate about religion, and hate about dis-
ability). For flat label, we present several datasets
including the two datasets which are provided
by Waseem and Hovy (2016) and Davidson et
al. (2017) in English, the dataset of Albadi et al.
(2018) in Arabic, and the dataset of by Alfina et
al. (2017) in Indonesian. For the hierarchical label,
we introduce the dataset constructed by Zampieri
et al. (2019) in English, the dataset provided by
Fortuna et al. (2019) in Portuguese, and the CO-
NAN dataset by Chung et al. (2019), which is the
multilingual corpus (constructed in Italian, English,
and French).

In addition, many of shared tasks about hate
speech and abusive languages are organized, such
as the SemEval-2019 Task 5 (Multilingual) (Basile
et al., 2019), the SemEval-2019 Task 6 (English)
(Zampieri et al., 2019), the PolEval 2019 Shared
task 6 (Polish) (Ptaszynski et al., 2019), the Ger-
mEval 2018 (Germany) (Wiegand et al., 2018),
EVALITA 2019 (Italian) (Bosco et al., 2018), Toxic
Comment Classification Challenge1, and VLSP
2019 Shared task (Vietnamese) (Vu et al., 2019).

Besides, SOTA approaches like deep learning
(Badjatiya et al., 2017) and transformers models
(Isaksen and Gambäck, 2020) are applied in the
hate speech detection and toxic posts classification.
However, these models only classify based on the
whole posts or documents. For the Toxic Spans
Detection task, we adapt the mechanism from Se-
quence tagging (Wang et al., 2020) and Name en-
tities Recognition (Lin et al., 2017) for detecting
toxic words from posts.

1https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge
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3 Dataset

The dataset is provided from the SemEval-2021
Task 5: Toxic Spans Detection (Pavlopoulos et al.,
2021). It includes the training and the test sets.
Both of them consist of two parts: the content of
posts and the spans denoting the toxic words in the
posts. Spans represent toxic words in the posts as a
set of character indexes. Table 1 illustrates several
examples from the training set.
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Figure 1: Number of toxic words in spans for each post
in the training set.
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Figure 2: Number of toxic words in spans for each post
in the test set.

According to Table 1, a post contains multiple
spans of toxic words. For each span, it contains a
single word, a phrase, or a sentence. As described
in Figure 1, most of the spans in the training set
are single words, which account for 67.65%, while
only 20.06% of spans contains two words, and
6.1% of spans is empty. Posts whose spans contain
more than two words in the dataset are few. Espe-

cially in the training set, there is a post in which
spans contain 25 words.

Besides, Figure 2 illustrates the number of toxic
words in spans per post for the test set. Spans
containing single words account for the highest
percentage (70.35%) in the test set, and are higher
than in the training set, while the multiple-word
spans are few. Also, the empty spans in the test
set are higher than the training set, and the longest
post in the test set contains only seven words.

4 System description

4.1 Data preparation

With the given dataset from the SemEval-2021
Task 5 about Toxic Spans Detection (Pavlopoulos
et al., 2021), we firstly transform spans into a set of
words. Then, we pre-process the posts as follows:
(1) Segmenting the posts by the TweetTokenizer
from nltk2, and (2) Changing texts to lower case.

4.2 Feature extraction

We use the glove.twitter.27b.25d word embedding3

to construct the dictionary and encode the text of
posts. Posts are encoded by the dictionary of the
word embedding. The < UNK > tokens are
added if a word in posts is not found in the dic-
tionary. To make sure all vectors are the same
length, we add the < PAD > token. Then, we
set the maximum length of vectors equal to 128.
Spans are transformed into a one-hot vector corre-
sponding to each word in posts where toxic words
are denoted as 1 and others are denoted as 0. Table
2 illustrates an example of encoding data in our
system.

4.3 Training models

Detection model: BiLSTM-CRF is a deep neu-
ral model used for Named-entity recognition task
(Lample et al., 2016). We implement this model
for the task of detecting toxic words in documents.
The model includes three main layers: (1) The
word representation layer uses embedding matrix
from the GloVe word embedding, (2) The BiLSTM
layer for sequence labeling, and (3) The Condi-
tional Random Field (CRF) layer to control the
probability of output labels. The output is a binary
vector, in which each value determines whether

2https://www.nltk.org/api/nltk.
tokenize.html

3https://nlp.stanford.edu/projects/
glove/
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No Posts Spans
1 What a knucklehead. How can anyone not know

this would be offensive??
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

2 I only use the word haole when stupidity and arro-
gance is involved and not all the time. Excluding the
POTUS of course.

[31, 32, 33, 34, 35, 36, 37, 38, 39, 45,
46, 47, 48, 49, 50, 51, 52, 53]

3 Such garbage logic by republicans which will
backfire and rush america into the great depression II

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32]

4 what a hypocrite of bs,, tell us loser how you live
without gasoline, plastic, medical needs and medica-
tions, all from OIL,, but you cant of course so you
ignorant fools in your hypocrisy spew this bs

[7, 8, 9, 10, 11, 12, 13, 14, 15, 155, 156,
157, 158, 159, 160, 161, 162, 178, 179,
180, 181, 182, 183, 184, 185, 186]

5 Exposing hypocrites like Trump and Pence is thera-
peutic for you? Good job!

[]

Table 1: Sample posts from the training set. The toxic span are highlighted as bold.

Original Transformed

Text I only use the word haole when stupidity and
arrogance is involved and not all the time. Ex-
cluding the POTUS of course.

[’i’, ’only’, ’use’, ’the’, ’word’, ’haole’, ..]
Vector: [12, 216, 718, 15, 894,..]

Spans [31, 32, 33, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48,
49, 50, 51, 52, 53]

[’i’, ’only’, ’use’, ’the’, ’word’, ’haole’,
’when’, ’stupidity’, ’and’, ’arrogance’,
’is’, ...]
Vector: [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0 ...]

Table 2: Example of encoding data into vectors.

a word is toxic or non-toxic. The architecture of
BiLSTM-CRF is described in Figure 3.

Classification model: The ToxicBERT model
(Detoxify) is introduced by Hanu and Unitary team
(2020) with the purpose to stop online abusive com-
ments. It is a pre-trained model and is easy to
use by using transformers library4. The model is
trained on the Toxic Comments Classification Chal-
lenge datasets provided by Jigsaw.

Our system combines the detection and clas-
sification model together. The detection model
(BiLSTM-CRF) returns the toxic spans from the
post, while the classification model (ToxicBERT)
classifies whether a post is toxic or non-toxic. If a
post is non-toxic, the classification model returns
an empty span. By contrast, it reserves the spans
of the detection model. Then, predicted spans are
decoded to character indexes for submission. Our
system is illustrated in Figure 4

4https://huggingface.co/unitary/
toxic-bert

input_3: InputLayer
input:

output:

(None, 128)

(None, 128)

embedding_3: Embedding
input:

output:

(None, 128)

(None, 128, 25)

dropout_3: Dropout
input:

output:

(None, 128, 25)

(None, 128, 25)

bidirectional_3(lstm_3): Bidirectional(LSTM)
input:

output:

(None, 128, 25)

(None, 128, 256)

time_distributed_3(dense_3): TimeDistributed(Dense)
input:

output:

(None, 128, 256)

(None, 128, 128)

crf_3: CRF
input:

output:

(None, 128, 128)

(None, 128, 2)

Figure 3: The BiLSTM-CRF model architecture.
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Yes 

No 

Input data 
What a knucklehead. .... 

Output spans 
[0, 0, 0, 1, 1, ...] 

BiLSTM - CRF 

Output spans 
[0, 0, 0, 1, 1, ...] 

Toxic Bert 
Classification 

Toxic ? 

Empty spans 
[] 

Figure 4: Our system architecture.

5 Experimental results

5.1 Evaluation metric

The variant version of F1-score is used to evaluate
the results of the competition (Da San Martino
et al., 2019). Let T is the total of post in the dataset,
T = [t1, t2, ..., tn], n is the number of posts, A is
spans given by the model, and G is ground truth
spans.

The F1-score over the dataset is defined as:

1

|T |
T∑

t

F t
1 = 2 ∗ P t(A,G) ∗Rt(A,G)

P t(A,G) +Rt(A,G)
(1)

In the Equation 1, P t determines the precision,
and Rt determines the recall of the post t. The pre-
cision and recall are calculated as Equation 2 and
Equation 3, respectively. The St in both Equation
2 and Equation 3 is set of toxic characters of post t
(span).

P t(A,G) =
|St

A ∩ St
G|

St
A

(2)

Rt(A,G) =
|St

A ∩ St
G|

St
G

(3)

5.2 Main result from task

Model Result (%)
BiLSTM-CRF 61.32

BiLSTM-CRF + ToxicBERT 62.23
Top 1 rank 70.83

Table 3: Experimental results obtained by our system
in comparison with Top 1 rank result.

According to Table 3, when only BiLSTM-CRF
is used, the result by F1 score is 61.32%. The
result increases up to 62.23% when we applied
ToxicBERT Classifier, and this is our final result of
the shared task (ranked 63th among 92 teams).

5.3 Error analysis

According to Table 4, the appearance of the Toxi-
cBERT classifier can make a better prediction for
the non-toxic posts (See example No. 1). This
increases the performance of our system, however,
not significantly, because the number of empty
toxic span comments in the test set is not too much
(as described in Section 3). Apart from empty
spans, wrong predictions are fell into the case as
example No.3. Although the ToxicBERT model
predicts this example as non-toxic, the BiLSTM-
CRF model predicts it as empty spans, and thus
the result is empty spans according to the result of
the BiLSTM-CRF model. For example No.2, the
system returns wrong spans for the first span in the
post. Finally, our system cannot predict well for
spans that contain more than two words. It returns
spans, but not enough, as shown in examples No.4
and No.5 from Table 4.

6 Conclusion

We use the BiLSTM-CRF and ToxicBERT models
for detecting toxic words in the posts. Our model
achieves 62.23% by F1-score from the competition.
From the error analysis, we found that our model
predicts well just for single-word spans and empty
spans.

In further researches, we improve the perfor-
mance of the detection model by applying the at-
tention mechanism and using the character-level
representation combining with word-level represen-
tation. Character-level models like CharBERT (Ma
et al., 2020) is a potential approach to increase the
performance of toxic spans detection tasks.
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No. Posts Gold span Prediction span:
BiLSTM-CRF

Prediction span:
BiLSTM-CRF+
ToxicBERT

1 Indeed, people the
world over, all know
that President Trump
is a loser!

[] [66, 67, 68, 69, 70] []

2 Idiot ”miner” in
the photo isn’t even
wearing a dust mask.
MSHA needs to in-
spect this operation
for more worker safety
violations.

[0, 1, 2, 3, 4] [-1, 0, 1, 2, 3] [-1, 0, 1, 2, 3]

3 People who are anti-
immigration are weak,
lying, racist whiners.

[49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59,
60, 61, 62]

[] []

4 Uh-No, keep voting for
failed Liberal idiocy
that guarantees results
ala Detroit, Chicago,
etc. You’ll wish your
body had only some
crap rather than gang-
banger gunfire.

[38, 39, 40, 41, 42,
43]

[38, 39, 40, 41, 42,
43, 133, 134, 135,
136]

[38, 39, 40, 41, 42,
43, 133, 134, 135,
136]

5 What is he going to do
about those toxic mer-
cury florescent bulbs
Bush and Gore pushed
on the stupid American
public?

[94, 95, 96, 97, 98,
99, 100, 101, 102,
103, 104, 105, 106,
107, 108, 109, 110,
111, 112, 113, 114,
115]

[94, 95, 96, 97, 98,
99]

[94, 95, 96, 97, 98,
99]

Table 4: Several wrong predictions on the test set by our system.
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Abstract

This paper discusses different approaches to
the Toxic Spans Detection task. The prob-
lem posed by the task was to determine which
words contribute mostly to recognising a doc-
ument as toxic. As opposed to binary classi-
fication of entire texts, word-level assessment
could be of great use during comment modera-
tion, also allowing for a more in-depth com-
prehension of the model’s predictions. As
the main goal was to ensure transparency and
understanding, this paper focuses on the cur-
rent state-of-the-art approaches based on the
explainable AI concepts and compares them
to a supervised learning solution with word-
level labels. The work consists of two xAI
approaches that automatically provide the ex-
planation for models trained for binary classi-
fication of toxic documents: an LSTM model
with attention as a model-specific approach
and the Shapley values for interpreting BERT
predictions as a model-agnostic method. The
competing approach considers this problem as
supervised token classification, where models
like BERT and its modifications were tested.
The paper aims to explore, compare and assess
the quality of predictions for different meth-
ods on the task. The advantages of each ap-
proach and further research direction are also
discussed.

1 Introduction

The popularity of social media platforms has been
continuously increasing over time. As reported by
Social (2020), 3.8 billion people have been active
users of social media in January 2020. While user
inter-connectivity carries a lot of positive effects,
there is still a significant threat of cyberbullying
and harassment caused by the illusion of anonymity
online. Statistics released by Facebook (Richter,
2020) identified that in the first quarter of 2020,
there were 2.3 million bullying/harassment posts

and 9.6 million hate speech posts detected as a
violation of Community Standards.

The importance of keeping the online commu-
nity safe for users has caused many researchers
to focus their work on detecting toxic contents in
order to assist moderators in their difficult and men-
tally exhausting work. A lot of progress has been
done in the task of toxic comment classification, but
unfortunately, complex models still lack clear ex-
planation and cannot gain much moderators’ trust.
A step towards increasing the transparency and
therefore trust in automatic comment classifiers
would be extending current approaches to operate
on word-level rather than document-level. The abil-
ity to extract and highlight key text fragments that
cause the toxic character of a comment could be of
great use in post moderation.

The lack of extensive datasets for word-level
toxicity detection poses an obstacle to traditional,
supervised learning classification, as current state-
of-the-art models are very complex and normally
require large-scale data. Therefore, with the subject
of this task being defined in terms of understanding
and transparency for endpoint users, the authors
decided to explore the explainable AI methodol-
ogy. Ongoing research in xAI community exam-
ines many different approaches, with the two of
them being in the focus of current work: model-
specific attention-based (Mohankumar et al., 2020)
and model-agnostic (Lundberg and Lee, 2017) ex-
planations. This paper aims to compare the results
obtained by these methods on Toxic Spans Detec-
tion task (Pavlopoulos et al., 2021) for the English
language using supervised models (Devlin et al.,
2018), acting as a baseline approach.

This paper is organised as follows. Related
works and the backgrounds of discussed methods
are described in Section 2. Section 3 presents
three approaches to toxic spans detection, each
with method-specific details in the corresponding
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subsection. Finally, the results of the experiments
are included in Section 4, with the discussion and
conclusions in Section 5 and 6 respectively.

2 Related work

Pavlopoulos et al. (2017) introduced the application
of a GRU-based Recurrent Neural Network for
toxicity detection in documents. This approach
was compared to the previous state-of-the-art for
this task, presented in Wulczyn et al. (2017), which
involved the use of Logistic Regression and Multi-
layer Perceptron and operated on n-grams. Another
model compared in their work was a Convolutional
Neural Network with pretrained word embeddings.
RNN model outperformed other approaches, and
it was further extended by the attention module,
which improved the quality of classification.

Attention has been commonly used by many re-
searchers as a medium of explanation for the predic-
tions made by the model (Ghaeini et al., 2018). It
allows to analyse what part of the input the model
focuses on the most while making a prediction.
Current research does not provide a unified answer
to whether the attention mechanism in models is
a good source of explanation. Experiments car-
ried out in Jain and Wallace (2019) point out that
attention might not be a reliable method for in-
terpreting the model’s predictions. This was due
to the fact that the attention distribution did not
align well with other feature-importance measures.
The other argument was that providing very dif-
ferent attention distribution often does not impact
the predictions made by the model significantly.
However, Wiegreffe and Pinter (2019) challenges
the aforementioned work, claiming that while the
answers given by attention should not be uncontrol-
lably trusted and the definition of explanation must
be clearly stated, it could still be a useful tool for
model understanding and should not be disregarded
easily.

An alternative formulation of the Toxic Spans
Detection is to treat it as a supervised learning
task, which involves training the models to predict
the toxicity of each word separately. Previously
used, Recurrent Neural Networks have been re-
placed as the state-of-the-art approach for many
tasks by transformer-based models (Vaswani et al.,
2017). Transformer architecture, consisting of an
encoder and decoder enriched with multi-head at-
tention modules, turned out to outperform previous
approaches on a series of NLP tasks. Bidirectional

Encoder Representations from Transformers (De-
vlin et al., 2018) has been proposed as a power-
ful tool for many language-based problems. Typ-
ically, BERT is pre-trained on two unsupervised
tasks when it is fed with large-scale text corpora
and later adapted to a specific task during the fine-
tuning stage, requiring much less data and comput-
ing time.

3 Toxic Spans Detection

This section describes the following approaches:
analysing the attention of an LSTM model with
orthogonalization of hidden states 3.1; using SHAP
to provide explanation of BERT predictions for
toxic comment classification 3.2; training BERT
for classification of toxic tokens 3.3.

3.1 Orthogonal LSTM

As stated in the previous section, attention in RNN
models is still a questionable medium of expla-
nation. An interesting approach to LSTM with
attention has been proposed in Mohankumar et al.
(2020). The authors claim, that attention vectors
in LSTM models are too similar to each other and
therefore, cannot be used to explain the predictions.
They propose an orthogonalization technique to in-
crease the conicity of hidden states, enabling better
interpretability. The equations of LSTM units are
updated in order to orthogonalize the hidden state
at a given time with respect to the previous states.
The implementation used in this work has been
adapted from the source code1 provided by the
authors of the original paper (Mohankumar et al.,
2020).

During the preprocessing stage, the inputs with
toxicity higher than 0.5 were considered as toxic
examples. Due to the memory limitations of our
computing architecture, the entire CivilComments
(Borkan et al., 2019) dataset could not be used
for training. Therefore, Random Undersampling
(Cochran, 1977) of majority class was performed.
The resulting set consisted of 350000 examples.
The text was tokenized using spaCy tokenizer, spe-
cial characters were removed as well as newline
characters, multiple spaces were compressed to
one space and capital letters were replaced by a
lowercase equivalent. Finally, tokens were rep-
resented using FastText embeddings (Bojanowski
et al., 2016) with the size of 300. The data was

1https://github.com/akashkm99/
Interpretable-Attention at commit 2d8dd37.

853



Figure 1: The chart of span-level F1 score with respect
to the threshold for OrthoLSTM. Results obtained on
the validation set.

split into training, validation and testing sets with
the 80:10:10 ratio.

The model consisted of 1-layered orthogonal
LSTM followed by the dense layer and was trained
using Adam optimizer with learning rate of 1e-3,
weight decay of 1e-5 and the batch size 32. This
model has obtained 0.957 ROC AUC for comment-
level classification. The performance of the model
proved it to be sufficient for further analysis of
the attention. The key parameter to obtain token-
level prediction was setting a threshold for toxic
token selection based on the attention value. Two
approaches were investigated:

• value-based: all tokens with an attention score
higher than the certain threshold were selected
as toxic

• cumulative: sorting the tokens by the highest
attention score, each token was added to the
toxic set as long as the cumulative value of
attention was not covered (e.g. 70% of the
whole model’s attention)

The span-level F1 score on the validation set with
different threshold values for both approaches is
presented in Figure 1. The best results were ob-
tained by 0.12 threshold for the value method and
0.48 threshold for the cumulative method.

3.2 SHAP

Shapley Additive Explanations (Lundberg and Lee,
2017) method has been introduced as a model-
agnostic framework that provides interpretation for
model predictions. The authors of SHAP recognise

Figure 2: The chart of span-level F1 score with respect
to the threshold for SHAP. Results obtained on the val-
idation set.

that common feature importance measures rely on
the same explanation model and propose a new
method consisting of Shapley values approximated
with kernel methods e.g. LinearLIME.

The authors decided to apply SHAP frame-
work to explain the BERT model, trained for
toxic comment classification. An implemen-
tation provided by Hanu and Unitary team
(2020) in Detoxify2 repository was used. The
model is the bert-base-uncased 3 from
transformers library trained on Wikipedia
Comments (Wulczyn et al., 2017) using Adam ot-
pimizer with learning rate 3e-5 and weight decay
3e-6. The model obtains 0.909 ROC AUC in the bi-
nary classification task on CivilComments dataset
(Borkan et al., 2019).

As in the previous method, the problem of thresh-
old selection has been a significant bottleneck of
this approach as well. The difference, as opposed
to LSTM with attention, is that SHAP scores do
not sum up to 1. This allowed to treat the values
in two more ways: operating on unchanged values
or rescaling them to sum up to 1 and performing
operations in the previous fashion. The results
are presented in Figure 2. Overall, the scaled ap-
proaches outperformed methods using raw SHAP
scores.

3.3 Token classification
As opposed to explanation-based solutions pre-
sented in the previous section, the authors also

2https://github.com/unitaryai/detoxify
at commit 18fd29e.

3https://huggingface.co/
bert-base-uncased
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tested a classic, supervised learning approach to the
task. This solution is based on pre-trained BERT
model (Devlin et al., 2018), which is fine-tuned to
predict toxic spans.

The trial part of the dataset was used for vali-
dation, where the training and testing parts were
used according to their purpose. Due to the size of
the training set, a model as complex as BERT is
prone to overfitting. Therefore, the training time
of the model consisted of 3 epochs and the learn-
ing rate started from 4.7e-5 and was divided by 10
after each epoch. The authors also proposed data
augmentation to deal with this problem which was
described in details in Section 3.3.3. As optimizer
AdamW was used and batch size was set to 8.

3.3.1 Dealing with long inputs
The dataset for the task contained many comments
with a noticeably large number of tokens. How-
ever, the BERT model is limited to 512 tokens for
input data. The problem was solved by reformat-
ting the input to fit the given size. A sample was
built by adding whole sentences from the input as
long as the size limit was not exceeded. A set of
possible breakpoints consisted of end of sentence
positions to ensure that each sentence is not split
in half. Chosen breakpoints and sentence IDs were
remembered in order to calculate the span-level F1
score. The length of the preprocessed samples did
not have to be based only on BERT limitations and
can be adjusted for better training complexity. The
shorter splits were tested as a way to speed up the
learning process. The results were presented in Ta-
ble 1. The training time was reduced by 40%, but
the decrease in quality of prediction appeared due
to the much narrower context fed into the model.

Time [m] span-level F1

Tokens 128 43 0.660
512 72 0.672

Table 1: The learning time in minutes and span-level F1
score on validation set according to the length of input
in tokens.

3.3.2 BERT extensions comparison
Furthermore, given promising results obtained by
BERT, the authors have decided to compare it to
other BERT-based models. The models selected
for testing were ELECTRA (Clark et al., 2020),
XLNet (Yang et al., 2019), RoBERTa (Liu et al.,
2019), SqueezeBERT (Iandola et al., 2020) and

for each of them the implementation from the
transformers4 library was taken. The mod-
els were tested in the same manner as BERT. The
hyperparameters learning rate, batch size etc. were
also the same. The results are presented in Table
2. One can notice that models with a higher num-
ber of parameters tend to work better. However,
learning curves analysis indicates that they are also
more prone to overfitting.

Model span-level F1
XLNet 0.678
RoBERTa 0.676
BERT 0.672
SqueezeBERT 0.657
ELECTRA 0.646

Table 2: The comparison of BERT and BERT-based
models on the validation dataset.

3.3.3 Data augmentation
In order to deal with overfitting, the authors de-
cided to apply a simple augmentation method. The
augmentation is performed by random swaps of
words appearing in text no further than 3 words
from each other. The number of swaps depends
on the length of the input, for each input it is cal-
culated as follows: alpha ∗ number of tokens.
The results obtained while using augmentation pre-
sented in Table 3 are ambiguous and do not give
a clear answer whether it helps or not. However,
after a thorough analysis of train vs. loss curves,
the authors noticed that the model does not overfit
quite as much and the metric have smaller fluctu-
ations. Therefore, the authors decided to use this
technique during further training whenever it helps
on the validation dataset.

alpha span-level F1
0 0.672
0.2 0.669
0.5 0.675

Table 3: The span-level F1 score on validation set for
BERT model with augmentation with a given alpha.

3.3.4 Filling empty spaces in between spans
While analysing the labels provided for the training
set, the authors noticed that at times, whole text

4https://huggingface.co/transformers at
version 4.0.1
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fragments were labelled as toxic, including spaces
in between words. Further analysis showed that
9.54% spans in the training set are spaces. Due to
the fact that tokenization resulted in omitting those
spaces, an experiment had been performed in order
to deal with this problem. If the output contained
toxic spans separated by one or two characters, the
character was also considered toxic. This technique
slightly improved the performance as noted in Ta-
ble 4, therefore the authors decided to include it in
the final solution.

Chars span-level F1
0 0.6720
1 0.6735
2 0.6730

Table 4: The results of marking the given number of
characters in between toxic spans as toxic by BERT on
validation set.

3.3.5 Ensemble

Models previously described in Section 3.3.2 were
concatenated into an ensemble. The aggregation
of predictions was performed with hard voting - a
span was considered toxic only when 3 out of 5
models returned a toxic prediction.

4 Results

The results obtained by different methods on the
test set are presented in Table 5. The highest per-
forming model in this paper turned out to be an
ensemble of different BERT-based models scoring
13th out of 91 solutions. The source code for all
approaches is publicly available on GitHub5.

5https://github.com/hancia/
ToxicSpansDetection

Method span-level f1
OrthoLSTM 0.4970
SHAP 0.5987
BERT 0.6513
XLNet 0.6624
BERT + aug 0.5 + fill 1 0.6780
Ensemble 0.6859

Table 5: The comparison of selected models’ per-
formance on the test dataset. Ensemble consists of
all models stated in the section 3.3.2 - BERT was
used with augmentation (alpha=0.5) and filling chars
(char=1), other models were only used with filling
chars (char=1).

5 Discussion

As presented in the previous section, the supervised
solution to token classification outperformed both
xAI approaches. The BERT model was trained
specifically to solve this type of problem and there-
fore achieved a score slightly better than LSTM
or SHAP. High labelling costs need to be taken
into account when comparing those solutions, as
training a robust BERT model would require much
more data, that would not be necessary for xAI
approaches, which are generally unsupervised.

Surprisingly, a model-agnostic approach turned
out to perform much better than the attention-
based solution, even though the explained models
achieved very similar results on the toxic comment
detection task. In Figure 3 one can see that the
number of false negatives was significantly higher
while relying on attention than it was while using
Shapley values. This could be because the model
might pay a significant portion of attention to a
very toxic word, which is enough to recognise the
comment as toxic. While analysing the model’s
focus can improve the understanding of how the
model works, it might not necessarily be enough to

Figure 3: Confusion matrices for each method. 1 refers to toxic class, non-toxic samples are marked by 0.

856



translate into clear decisions for each of the input
components. Furthermore, the need for threshold
tuning somehow forced explainable approaches to
mark a certain number of tokens as toxic, which
could be reflected in a slightly higher number of
false positives. Visualisations of example predic-
tions can be seen in Table 6.

While xAI approaches might not be fitted to
solve the problem of predicting the toxicity of each
input word, they might still be useful for improving
the transparency and understanding of predictions
made by comment-level models. As recognised in
error analysis, the number of false negatives was
significantly higher for LSTM and SHAP. But in
terms of explanation, it might be enough for the
user to obtain the few most toxic words per com-
ment, rather than marking all of them, no matter
how low the toxicity score is. This would not only
provide the explanation on what the model consid-
ered while making a prediction but would also be a
clear and transparent answer for the user in many
real-time use cases. Further examination might
need to be done in order to assess the performance
of those methods for a task specified in the afore-
mentioned way.

6 Conclusions

This work discussed different approaches to the
Toxic Spans Detection task. Supervised toxic to-
ken classification and xAI methods were examined
to compare the results and assess whether explain-
ing high-performing models can lead to a similar
quality of prediction as models dedicated to a more
detailed task. The supervised approach using the
BERT model achieved the best result in this task,
but the xAI methods have proven to be an interest-
ing alternative that could reduce data preparation
costs and improve transparency and understanding
of the model’s predictions. While not currently
outperforming BERT, explainable methods can be
sufficient for many tasks where binary decision
models are used. A system for toxic spans detec-
tion was prepared, achieving a 0.6859 span-level
F1 score and placing 13th out of 91 in the overall
ranking.
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A Examples

OrthoLSTM SHAP Ensemble
That’s right. They are not normal.
And I am starting from the premise
that they are ABNORMAL . Pro-
ceed wth the typical racist , bigot ,

sexist rubbish . Thanks !

That’s right. They are not normal.
And I am starting from the premise
that they are ABNORMAL . Pro-
ceed wth the typical racist, bigot,
sex ist rubbish . Thanks!

That’s right. They are not normal.
And I am starting from the premise
that they are ABNORMAL . Pro-
ceed wth the typical racist , bigot ,

sexist rubbish . Thanks!
A rock has more mental horsepower
than the indubitably ignorant . And
more integrity as well. They’re largely
very dishonest people who repeat the

same lies over and over. Just like
their hero .

A rock has more mental horsepower
than the indubitably ignorant . And
more integrity as well. They’re largely
very dishonest people who repeat the
same lies over and over. Just like their
hero.

A rock has more mental horsepower
than the indubitably ignorant . And
more integrity as well. They’re largely
very dishonest people who repeat the
same lies over and over. Just like their
hero.

Ha ha, HILLARY LOST. All you
hillary fools need to be rounded up
and put in prison along with your
leader. You are all anti–American
scum. Perhaps we should dump you
in Mexico along with all the illegal
trash you let in....if you love ’em

so much, go live with ’em. But you
are not welcome here, you hate filled
Marxist morons.

Ha ha, HILLARY LOST. All you

hillary fools need to be rounded up
and put in prison along with your
leader. You are all anti–American
scum . Perhaps we should dump

you in Mexico along with all the illegal
trash you let in....if you love ’em so

much, go live with ’em. But you are
not welcome here, you hate filled
Marxist morons .

Ha ha, HILLARY LOST. All you
hillary fools need to be rounded up
and put in prison along with your
leader. You are all anti–American
sc um . Perhaps we should dump
you in Mexico along with all the ille-
gal trash you let in....if you love ’em
so much, go live with ’em. But you
are not welcome here, you hate filled
Marxist morons .

Rabidly anti-Canadian troll . Rabidly anti -Canadian troll . Rabid ly anti-Canadian troll .
No, my poor benighted

correspondent , your reduction-
ism reveals an archaic mindset.
Intersex, questioning, nongendered,
and a vast variety of others have rights
too!

No, my poor benighted correspon-
dent, your reductionism reveals an ar-
chaic mindset. Intersex, questioning,
nongendered, and a vast variety of oth-
ers have rights too!

No, my poor benighted correspon-
dent, your reductionism reveals an ar-
chaic mindset. Intersex, questioning,
nongendered, and a vast variety of oth-
ers have rights too!

justin is an embarrassment to
Canada. he needs a muzzle. he needs
a brain .

justin is an embarrassment to
Canada. he needs a muzzle. he needs
a brain .

justin is an embarrassment to
Canada. he needs a muzzle. he needs
a brain.

You are a simpleton , who is full of
racial hatred. That is too bad. You
make America a worse place.

You are a simpleton , who is full of

racial hatred . That is too bad. You
make America a worse place.

You are a simple ton , who is full of
racial hatred. That is too bad. You
make America a worse place.

When you consider the source - he
writes like the Trump we’ve all come
to know - ”I could stand in the middle
of 5th Avenue and shoot somebody
and I wouldn’t lose voters”, a racist ,
misgynistic , liar who only brings

hate to the table .

When you consider the source - he
writes like the Trump we’ve all come
to know - ”I could stand in the mid-
dle of 5th Avenue and shoot somebody
and I wouldn’t lose voters”, a racist ,
misgynistic , liar who only brings

hate to the table.

When you consider the source - he
writes like the Trump we’ve all come
to know - ”I could stand in the mid-
dle of 5th Avenue and shoot some-
body and I wouldn’t lose voters”, a
racist , mis gy nistic , liar who

only brings hate to the table.

Total rubbish ! The birther bit was
started by Crooked Hillary and perpet-
uated by Zero his own damn self.

Total rubbish ! The birther bit was
started by Crooked Hillary and perpet-
uated by Zero his own damn self.

Total rubbish ! The birther bit was
started by Crooked Hillary and perpet-
uated by Zero his own damn self.

Damn , you beat me to it Damn , you beat me to it Damn , you beat me to it
I don’t think they eat them, just kill
them , chop them up and sell off the

parts .

I don’t think they eat them, just kill
them, chop them up and sell off the
parts.

I don’t think they eat them, just
kill them , chop them up and sell

off the parts.
F*cking nasty ... F* ck ing nasty... F*cking nasty ...

Table 6: Example predictions done by models. No background colour refers to true negative, green - true positive,
red - false negative and blue - false positive. Examples were selected where the predictions between models were
different.
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Abstract

Many new developments to detect and miti-
gate toxicity are currently being evaluated. We
are particularly interested in the correlation be-
tween toxicity and the emotions expressed in
online posts. While toxicity may be disguised
by amending the wording of posts, emotions
will not. Therefore, we describe here an en-
semble method to identify toxicity and clas-
sify the emotions expressed on a corpus of
annotated posts published by Task 5 of Se-
mEval 2021—our analysis shows that the ma-
jority of such posts express anger, sadness and
fear. Our method to identify toxicity combines
a lexicon-based approach, which on its own
achieves an F1 score of 61.07%, with a su-
pervised learning approach, which on its own
achieves an F1 score of 60%. When both meth-
ods are combined, the ensemble achieves an F1
score of 66.37%.

1 Introduction

Healthy conversations are only possible when peo-
ple feel safe from abuse and do not resort to using
violent language. Regrettably, violent and inflam-
matory language is becoming increasingly common
online. Indeed, the rhetoric of violence recently em-
ployed on social media has persuaded platforms,
such as Twitter, to create new policies to prevent the
use of threatening language (Twitter, Inc., 2021). A
jargon word, cyberbullying, has been coined lately
to refer to the use of electronic communication to
send or post messages of an intimidating or threat-
ening nature (Zaheri et al., 2020).

Along with cyberbullying, other forms of verbal
abuse employed on social media, such as online
harassment and hate speech, are now being collec-
tively referred to as toxicity in language (Mohan
et al., 2017). We are interested in developing algo-
rithms to recognise toxicity and measure its impact
on the sentiment expressed.

Most of the data available to investigate toxic-
ity classify whole comments or documents (Wul-
czyn et al., 2017; Borkan et al., 2019), and do
not identify “spans”—that is, the precise word se-
quences that make a text toxic. Given how impor-
tant such spans are for the implementation of semi-
automated moderation, we have participated on
Task 5 (Toxic Spans Detection) of the International
Workshop on Semantic Evaluation (SemEval) 2021
(Pavlopoulos et al., 2021). Thus far, we have con-
centrated on the combination of two approaches: a
lexicon-based approach and a supervised learning
approach to identify toxic spans.

Although the identification of toxic spans in on-
line posts can be aided by a suitable lexicon of
toxic words, such words can easily be concealed
through minor changes—for instance, “fck urself”
is a toxic span that would evade detection based on
basic lists of profane words. However, emotions
are harder to conceal. Hence, we are interested
in using opinion mining to uncover the emotions
expressed in text. Emotions may be able to iden-
tify toxicity, regardless of wordings and spellings.
Thus, we dedicate part of this study to measure the
correlation between toxicity and emotions.

The remainder of this paper is organised as fol-
lows: Section 2 reviews the related work. Sec-
tion 3 describes the datasets that we used for our
experimentation. Section 4 is dedicated to explain
our algorithm for the identification of toxic spans.
Section 5 presents our results and, finally, Section 6
offers our conclusions.

2 Background

The existing literature on toxicity focuses on two
main aspects: the compilation and annotation of
corpora for research purposes (Fortuna et al., 2020;
Waseem, 2016); and the automatic detection of
different types of toxic text.
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Among the different types of toxic text under
scrutiny, we may include hate speech (Badjatiya
et al., 2017; Davidson et al., 2017; Del Vigna et al.,
2017), online harassment (Golbeck et al., 2017),
racism (Waseem, 2016), sexism (Jha and Mamidi,
2017), abusive language (Mehdad and Tetreault,
2016) and cyberbullying (Zhong et al., 2016).

At present, the detection of toxicity is largely
based on state-of-the-art natural language process-
ing techniques, typically involving machine learn-
ing. The main drawback of such techniques resides
in the limited generalisation potential of trained
machine learning models (Fortuna et al., 2020). To
overcome this weakness, we have integrated into
our research the use of a lexicon-based approach,
where toxic language is identified with the help
of a dictionary of words associated with toxic text
(De Smedt et al., 2020).

Combining lexicons with machine learning ap-
proaches has already been evaluated by other re-
searchers, remarkably Pamungkas and Patti (Pa-
mungkas and Patti, 2019), though they employed
a lexicon originally built for the Italian language,
and then translated it into other languages, whereas
we focus on English from the start. Various other
lexicons, handcrafted by domain experts who spe-
cialise on the identification of toxicity have been
published too—for example, Textgain’s Profan-
ity and Offensive Words lexicon (De Smedt et al.,
2020)—but many of them are not available for free.

In an attempt to mitigate toxicity and promote
work on this area, the research community has re-
leased a number of annotated datasets for inves-
tigating different forms of toxicity (Waseem and
Hovy, 2016; Waseem, 2016; Golbeck et al., 2017).
However, they all follow different labelling conven-
tions. Consequently, they cannot be analysed using
a uniform method.

Overall, toxicity detection and classification
lacks a consistently labelled standard dataset for
comparative evaluation (Schmidt and Wiegand,
2017). Therefore, the data provided by Task 5
(Toxic Spans Detection) of SemEval 2021 is very
well regarded (Pavlopoulos et al., 2021).

3 Experimental Setup

Task 5 of SemEval 2021 uses posts from the pub-
licly available Civil Comments dataset (Tensor-
Flow, 2021). Such a dataset comprises annotations
indicating which entire posts are toxic, but it does
not label particular toxic spans within the posts.

The Civil Comments platform (Drupal, 2021),
which is where the posts come from, is a comment-
ing plugin for independent news websites. All the
comments were created between 2015 and 2017,
and they appeared on approximately 50 English
language websites across the world. When Civil
Comments shut down in 2017, the comments be-
came publicly available in an open archive for fu-
ture research (TensorFlow, 2021).

To build the dataset, SemEval retained only posts
that were found toxic—or severely toxic—by at
least half of the annotators involved in Borkan, et
al.’s annotation (Borkan et al., 2019). This com-
prises 30k toxic posts, approximately, out of the
original 1.2M. Then, a random subset of 10k posts
from these 30k toxic posts were chosen for toxic
spans annotation (CodaLab, 2021).

4 System Overview

Although machine learning technology is being
widely employed to detect toxic text automatically,
the use of a lexicon to identify and prevent toxicity
in social media still constitutes a valuable approach.
Indeed, the number of lexicons specialised on the
detection of profanity, offensive speech and toxi-
city in general has grown steadily in recent times
(De Smedt et al., 2020).

Lexicons are not susceptible to algorithmic bias
(Hajian et al., 2016), and are not limited to the
domain and scope of the training data, which has
previously raised a number of ethical concerns,
given how much training data is historically asso-
ciated with particular communities (Hao, 2019).
Hence, we employ a lexicon as our first step in the
detection of toxic spans.

Originally, our lexicon was made, specifically,
for Task 5 of SemEval 2021, as we compiled it by
extracting all the toxic words available in the train-
ing and trial datasets for Task 5—we considered a
word as a toxic word if it was included in a toxic
span identified by the annotators.

Upon compiling all the toxic words available in
the training and trial datasets (1,287 words), we
proceeded to extend our lexicon with words listed
in other lexicons. While there are many freely-
available lexicons of toxic words, we favoured
those that maintained the accuracy of the detec-
tion of toxic spans achieved by our lexicon. Ta-
ble 1 shows the F1 scores achieved by each of the
lexicons considered, when combined with our lexi-
con to evaluate them on the training dataset.
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Lexicon F1 Training Number of words
Task 5 Lexicon 64.30% 1,287
Banned Word List 64.30% 1,332
Offensive/Profane Word List 61.25% 2,516
Google’s Profanity Words 64.30% 1,681
Insult.wiki 63.94% 1,846
Compiled bad words 63.99% 2,546
Swear Word List & Curse Filter 64.30% 1,580

Table 1: F1 score per lexicon (evaluated on the training dataset).

The first row of Table 1 refers to the lexicon
we created after compiling all the toxic words
available in the training and trial datasets of Task
5 of SemEval 2021—we named this lexicon the
Task 5 Lexicon. Using bold font, we have high-
lighted the details of the lexicons that achieved
the same F1 score as the Task 5 Lexicon, when
combined with it to evaluate them on the training
dataset. Such lexicons are the ones that we decided
to use, namely, the Banned Word List (http://
www.bannedwordlist.com/), Google’s Profanity
Words (https://github.com/RobertJGabriel/
Google-profanity-words), and the Swear Word
List & Curse Filter (https://www.noswearing.
com/dictionary). Table 1 also displays the num-
ber of words available in each of the lexicons eval-
uated, when combined with the Task 5 Lexicon.

As shown in Table 1, the Offensive /
Profane Word List (https://www.cs.cmu.
edu/˜biglou/resources/) and the Com-
piled bad words (https://github.com/
minerva-ml/open-solution-toxic-comments/

blob/master/external_data/compiled_bad_

words.txt) have a negative impact on the perfor-
mance of toxicity detection, even if it is only by a
small margin. Thus, we discarded these lexicons.

After creating our lexicon, we manually removed
from it words that were part of the toxic spans an-
notated in Task 5 of SemEval 2021, but were not
included in the three lexicons displayed in bold
font in Table 1. For example, the word “mistake”
located in the post “They elected Trump,
which was certainly a mistake” was
considered toxic by the annotators, in the context
of the post. However, we removed it from our lexi-
con, because “mistake” does not appear in any of
the three lexicons mentioned above. Our lexicon
comprises a total of 1,929 words, and we refer to
it as the Orthrus lexicon—it is available at https:
//github.com/Orthrus-Lexicon/Toxic.

While our lexicon-based approach was consider-
ably useful to identify toxicity, as we will show in
Section 5, we recognise the value of machine learn-
ing approaches. The success of the Perspective
project undertaken by Google and Jigsaw to rate
toxicity by means of machine learning (Jain et al.,
2018), as well as the impact of the Perspective
API to mitigate toxicity using machine learning cer-
tainly deserve our attention. Therefore, we opted to
employ spaCy (Explosion, 2021b), an open-source
software library for natural language processing,
to develop a supervised learning approach for the
identification of toxicity.

Our choice of spaCy was further motivated by
the organisers of Task 5 of SemEval 2021, who
released a Python script referring, precisely, to
this library (Task 5, 2021). Initially, we employed
en core web sm, which is a spaCy model for
the English language (Explosion, 2021a). We em-
ployed this model, because it was the one used
in the code provided by the organisers of Task 5
as a solution for some NLP tasks—namely, POS
tagging, NER and dependency parsing (Task 5,
2021). However, given that en core web sm is
based on a small English corpus, we also tested
en core web lg, which is spaCy’s large English
model (Explosion, 2021a).

Despite spaCy’s large English model being un-
derstandably slower, it did not appear to improve
the performance of our implementation. The F1
score achieved, on average, by spaCy’s small En-
glish model after 10 executions (59.61%) was ap-
proximately the same as the score achieved by the
large English model under the same circumstances
(59.95%). Thus, we favoured the choice of the
small model, as it was faster to train.

5 Results

Table 2 shows the F1 score achieved by our imple-
mentation when evaluating it on the test dataset.
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Approach F1 Score
Orthrus Lexicon 61.07%
Orthrus Lexicon + spaCy Model (Union) 61.53%
Orthrus Lexicon + spaCy Model (Intersection) 66.37%

Table 2: Evaluation on the test dataset.

As shown in Table 2, our lexicon achieves, on
its own, an F1 score of 61.07%. By combining
our lexicon with the supervised learning approach
implemented using spaCy, we achieve two results:
61.53%, if we consider the union of the results
yielded by the lexicon and the supervised learning
approach; and 66.37%, if we consider the intersec-
tion of the results yielded by the lexicon and the
supervised learning approach.

We are interested in the identification of emo-
tions expressed in text, because concealing emo-
tions may be harder than disguising toxicity. For
example, the post “uh, no, he’s a belligerent buf-
foon (and a traitor)”, which is post 1,928 of the
training dataset of Task 5 of SemEval 2021, lacks
any recognisable toxic features, such as insults or
swear words. Hence, it is classified as non-toxic by
any of the lexicons highlighted in bold font in Ta-
ble 1. Moreover, this post does not have any toxic
spans marked by the annotators. Nevertheless, the
negative sentiment of “belligerent buffoon” and
“traitor”—words which are not typically found in
any abusive word list—guarantees that the message
conveyed is definitely toxic; otherwise, it would
not be part of the training dataset.

If we included emotion information in our analy-
sis, we could immediately detect the negative tone
of the post mentioned above. Indeed, the proba-
bility of such a post to communicate anger is 1.0,
according to text2emotion, a Python package
to extract emotions from text (Python Software
Foundation, 2021). The expression of anger is so
evident in this case that the post can be marked as
a candidate to be considered toxic.

Using text2emotion, we assigned each post
in the test dataset a probability associated with each
of the emotions reported in Figure 1. The values
shown in Figure 1 represent the addition of the
probabilities of each emotion to occur in each of the
posts of the test dataset. Clearly, fear, sadness and
anger—the three emotions combined together—are
more likely to occur than happiness and surprise—
the two emotions combined together—which may
characterise the toxicity of the dataset.

Figure 1: Emotion expressed on the test dataset.

6 Conclusions

In this paper, we have described the creation of
a lexicon of toxic words and a supervised learn-
ing approach to identify toxicity in online posts.
Our lexicon, along with the supervised learning
approach, achieved an F1 score of 66.37% on Task
5 of SemEval 2021. We have also explored the
relationship between emotions and toxicity. Al-
though our study is still in progress, preliminary re-
sults indicate that there exists a correlation between
emotions such as sadness and fear and toxicity.
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Abstract

Toxic spans detection is an emerging challenge
that aims to find toxic spans within a toxic
text. In this paper, we describe our solutions
to tackle toxic spans detection. The first so-
lution, which follows a supervised approach,
is based on SpanBERT model. This latter is
intended to better embed and predict spans of
text. The second solution, which adopts an un-
supervised approach, combines linear support
vector machine with the Local Interpretable
Model-Agnostic Explanations (LIME). This
last is used to interpret predictions of learning-
based models. Our supervised model outper-
formed the unsupervised model and achieved
the f-score of 67,84% (ranked 22/85) in Task 5
at SemEval-2021: Toxic Spans Detection.

1 Introduction

By dint of the massive production of user-generated
content in social media, moderation becomes cru-
cial to promote healthy online discussions by re-
moving toxic posts and contents. However, it is
nearly impossible for a human to keep tracking
user-generated content. Thus, the need for the right
tools and technologies to help in such a task be-
comes a necessity.

The Toxic Spans Detection task aims to detect
the spans that make a text toxic. While several
toxicity detection datasets (Wulczyn et al., 2017;
Borkan et al., 2019) and models (Pavlopoulos
et al., 2017a, 2019; Schmidt and Wiegand, 2017;
Pavlopoulos et al., 2017b; Zampieri et al., 2019;
Alami et al., 2020) have been released. However,
these works estimate the likelihood of a document
being toxic with weak interpretability. In fact, high-
lighting toxic spans can assist human moderators
who often deal with lengthy comments, and who
prefer attribution instead of just a system-generated
unexplained toxicity score per post.

∗contributed equally

In this paper, we propose two solutions to tackle
toxic spans detection (Pavlopoulos et al., 2021).
The first solution, which follows a supervised ap-
proach, is based on SpanBERT (Joshi et al., 2020)
model that is pre-trained on span boundary objec-
tive and considers masks contiguous spans. There-
fore, SpanBERT gives better spans representations
and predictions. The second solution, which adopts
an unsupervised approach, combines linear support
vector machine (Fan et al., 2008) with the Local In-
terpretable Model-Agnostic Explanations (LIME)
(Ribeiro et al., 2016). LIME is an explanation
technique that seeks to faithfully interpret the pre-
dictions of any classifier.

This paper is organized as follows: Section 2
describes the proposed methods; Section 3 presents
the experimental results; Finally, Section 4 con-
cludes and outlines future directions.

2 Methods

In this section, we describe the proposed solu-
tions including SpanBERT-based method which
is based on supervised approach, and SVM and
LIME-based method that is based on unsupervised
approach.

2.1 SpanBERT-based method

We use SpanBERT (Joshi et al., 2020) a pre-trained
model built to improve spans of text representa-
tion and prediction. It differs from BERT (Devlin
et al., 2019) as it (1) masks contiguous random
spans, instead of random tokens; and (2) is trained
on span-boundary objective, i.e., the model is op-
timized to predict the masked span given tokens
at its boundary. We considered the toxic span text
detection as a sequence labeling task. Thus, we
performed a transformation to the dataset and fine-
tuned SpanBERT to this specific task.
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2.1.1 Data preparation
The raw dataset consists of a set of toxic texts
where each element is annotated with an array
that contains characters’ indices. These indices
are considered as the toxic span of text. In order
to train SpanBERT on this dataset, we applied the
pre-trained SpanBERT tokenizer to tokenize sen-
tences, and we built the target arrays by annotating
words that contain toxic characters’ indices. For
instance, given a sentence that contains n tokens,
then the target array contains n elements, where
the elements that contain a toxic character are la-
beled as positive ”1” otherwise they are labeled as
negative ”0”. Figure 1 illustrates the pipeline of
dataset preparation.

Figure 1: The pipeline of dataset preparation

2.1.2 Toxic spans detection
We considered the toxic span detection as a se-
quence labeling task. Therefore, we fine-tuned
SpanBERT pre-trained model on token classifica-
tion task. First, we tokenize the sentence and map
its tokens into indices according to SpanBERT vo-
cabulary. Next, we fed the model with tokens in-
dices. Then, it computes tokens embeddings by
applying SpanBERT pre-trained model. After that,
we compute the probability if a given token is toxic
by applying a linear layer followed by a softmax on
tokens embeddings. Finally, the model is trained
to optimize the cross-entropy loss. Figure 2 shows
the flowchart of the SpanBERT-based model. It
is worth noting that we filter predicted spans by
removing toxic character offsets that have a size
equal to one.

2.2 SVM and LIME-based method
2.2.1 Data preparation
The data preparation for our unsupervised method
can be summarized as follows:

Figure 2: The flowchart of SpanBERT-based model

1. We combine both SemEval 2021 Task 5:
Toxic Spans Detection training set which
contains 7939 toxic comments, SemEval
2021 Task 5: Toxic Spans Detection test
set that contains 2000 toxic comments, and
159571 comments (16225 toxic comments
and 143346 non-toxic comments) from Kag-
gle Jigsaw Toxic comment classification chal-
lenge 1 in order to use them for training the
linear support vector machine classifier. Later,
We label the toxic comments with 1 and non-
toxic comments with 0.

2. Word-level uni-grams and bi-grams are ex-
tracted, then vectorized using TF-IDF scores.

2.2.2 Toxic spans detection
The toxic spans detection task adopted by our un-
supervised method can be summarized as follows:

1. We train the linear support vector machine
classifier on 26164 toxic comments and
143346 non-toxic comments (the combina-
tion of SemEval 2021 Task 5: Toxic Spans
Detection training set, SemEval 2021 Task 5:
Toxic Spans Detection test set, and a subset of
Kaggle Jigsaw Toxic comment classification
challenge dataset).

1https://raw.githubusercontent.com/
iampukar/toxic-comments-classification/
master/train.csv
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2. We apply the trained model on the SemEval
2021 Task 5: Toxic Spans Detection test set
comments to predict their toxicity, then, we
use the LIME technique to explain the predic-
tions (Figure 3).

3. We discard words that contribute less to the
toxic category by applying a thresholding tech-
nique. Words with a high influence score,
greater or equal to the threshold, are consid-
ered toxic, therefore, we retrieve their charac-
ter offsets (toxic spans).

Figure 3: Lime explanations

By training the linear support vector machine
classifier on the SemEval 2021 Task 5: Toxic Spans
Detection test set, we guarantee that the model ac-
curately predicts the toxicity of its comments with
precision, recall, f-score, and accuracy of 1 (the
model correctly predict the toxicity of all 2000 re-
views in the test set). Besides, we ensure that the
LIME explanations are somewhat accurate. In fact,
if the model misclassifies the toxicity of the com-
ments, the LIME explanations will be inaccurate
since the latter will explain wrong predictions.

From Figure 3, we can see that the words ”silly”
and ”stupid” contribute to the toxic category 42%
and 23% respectively in the following toxic com-
ment ”Please people, stop using these silly, stupid
emoticons”. Since we only consider words with
high influence scores for the toxic category (greater
or equal to 0.13), we keep the two words ”silly”
and ”stupid”, and we discard the remaining words.
Next, we retrieve their character offsets from the
comment as shown in Table 1.

3 Experimental results

We experimented our models on the SemEval 2021
Task 5: Toxic Spans Detection dataset. The train-
ing set and test set contain 7939 and 2000 toxic

comments labeled with their toxic spans. All our
experiments have been conducted in Google Colab
environment2, The following libraries: Hugging
Face3, LIME4, Scikit-Learn5, and PyTorch6 were
used to train and to asses the performance of our
models.

3.1 Evaluation Metric
In order to measure the performance of our models,
we employ the F1 score proposed in (Da San Mar-
tino et al., 2019). Considering a post t and a sys-
tem Ai which predict a set St

Ai
of toxic character

offsets. Let denote by Gt the expected character
offsets. Then, the F1 score of the model Ai with
respect to G for t is computed in the following
manner:

P t (Ai, G) =

∣∣∣St
Ai
∩ St

G

∣∣∣
∣∣∣St

Ai

∣∣∣
(1)

Rt (Ai, G) =

∣∣∣St
Ai
∩ St

G

∣∣∣
|St

G|
(2)

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)
(3)

where | · | denotes set cardinality.

3.2 Performance Evaluation
On the one hand, we compared various pre-trained
models, including BERT-base, BERT-large, Distil-
BERT (Sanh et al., 2019), and SpanBERT-large,
to compute tokens embeddings. All the models
are based on transformers (Vaswani et al., 2017)
technique. The SpanBERT model achieves the best
results due to the fact that is trained with contigu-
ous masked spans and optimizes the span boundary
objective. On the other hand, we compared the
logistic regression LIME (LR-LIME) to linear sup-
port vector machine LIME (LSVM-LIME). The
latter produces superior scores. Table 2 reports the
obtained results for both supervised and unsuper-
vised techniques. SpanBERT outperforms all the
models by scoring about 0.6783 F1 score. During
the fine-tuning of SpanBERT model, we set the
hyper-parameters as follows: 1.5e− 5 as the learn-
ing rate, 3 epochs, 256 as the max sequence length,
4 as batch size, 476 as the warmup steps, and 0.01

2https://colab.research.google.com/
3https://huggingface.co/
4https://lime-ml.readthedocs.io/en/latest/lime.html
5https://scikit-learn.org/stable/
6https://pytorch.org/
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Comment Toxic spans
Please people, stop using these silly, stupid emoticons. [32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44]

Table 1: Example of unsupervised toxic spans detection

Method F1 score
LR-LIME 0.5887938605
LSVM-LIME 0.592141639
DistilBERT 0.6636129383
BERT-base 0.6714433707
BERT-large 0.6677294902
SpanBERT-large 0.6783641122

Table 2: Toxic spans detection results

as the weight decay. For the unsupervised tech-
nique, several experiments have been conducted
to reach the suitable threshold. Actually, 0.12 and
0.13 thresholds achieved the best performances for
LR-LIME and LSVM-LIME, respectively.

4 Conclusion

In this paper, we described our models for tack-
ling SEMEval 2021 Task 5: Toxic Spans Detection.
Two approaches have been employed. A super-
vised approach based on transformers technique,
where toxic sequences are tokenized and embed-
ded using pre-trained models. We optimize the
likelihood of a token to be toxic by minimizing
the cross-entropy loss. SpanBERT scored the best
results by achieving about 0.6783 F1 score. An
unsupervised approach based on shallow machine
learning and LIME, which is an explanation tech-
nique that explains the prediction of any classifier
in an interpretable and faithful manner. Since the
top-ranked score was about 0.7083 F1 score, fu-
ture studies and works will focus on improving the
performance of toxic spans detection task.
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Abstract

This paper introduces our system at SemEval-
2021 Task 5: Toxic Spans Detection. The task
aims to accurately locate toxic spans within a
text. Using BIO tagging scheme, we model
the task as a token-level sequence labeling task.
Our system uses a single model built on the
model of multi-layer bidirectional transformer
encoder. And we introduce conditional ran-
dom field (CRF) to make the model learn the
constraints between tags. We use ERNIE as
pre-trained model, which is more suitable for
the task accroding to our experiments. In addi-
tion, we use adversarial training with the fast
gradient method (FGM) to improve the robust-
ness of the system. Our system obtains 69.85%
F1 score, ranking 3rd for the official evalua-
tion.

1 Introduction

With the prosperity of the Internet, it is easier and
easier for people to get information and publish
their opinions online. However, sometimes users’
opinions can be offensive to others. Because toxic
posts will have a negative impact on the network
environment, and manual identification is time-
consuming and expensive, automatic detection of
these behaviors has attracted researchers’ attention.

After adapting the hate-speech problem to the
problem of word sense disambiguation, an ap-
proach to detect hate speech in online text is pre-
sented (Warner and Hirschberg, 2012), which uses
template-based strategy to generate features and an
SVM classifier to identify whether the text is toxic
or not. In SemEval-2020 Task 12 (Zampieri et al.,
2020) and SemEval-2019 Task 6 (Zampieri et al.,
2019), which also related to offensive statements,

∗ Equal contribution.
† Corresponding author.

transformer-based methods were the most popular
approaches for their great advantages in learning
word representations in context.

In Semeval-2021 task 5: Toxic Spans Detec-
tion (Pavlopoulos et al., 2021), the organizers use
posts from the publicly available Civil Comments
dataset (Borkan et al., 2019), which already com-
prises post-level toxicity annotations. After manual
annotation, character-level annotation results are
obtained, which are the toxic spans we need to lo-
cate. The task extends the prior work by identifying
spans that make a text toxic, which can better ex-
plain why posts are offensive rather than just giving
a system-generated unexplained toxicity score.

We model the task as a sequence labeling task be-
cause toxic spans are contextually influenced. Our
model is in Transformer-CRF architecture, and we
try different pre-trained models as the transformer’s
initialization to fine-tune model suitable for toxic
spans detection. The Conditional Random Fields
(CRF) (Lafferty et al., 2001) allows the model to
learn the constraints between tags. We also use
the Fast Gradient Method (FGM) (Miyato et al.,
2016) as adversarial training strategy, which ap-
plies perturbation to word embedding to enhance
the robustness of the model.

The paper is organized as follows: Section 2
briefly introduces the Toxic Spans Detection shared
task. Section 3 talks about our system, includ-
ing pre-processing and post-processing. Section 4
shows our experiment results. Finally, the conclu-
sion and future work are drawn in Section 5.

2 Toxic Spans Detection

The research of automatic offensive language detec-
tion has gained attention in the past decade. Instead
of just classifying the whole comments or docu-
ments, the Toxic Spans Detection task requires the
system to detect the spans that make a text toxic.
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Figure 1: Model structure of Transformer-CRF. In our system, the transformer encoder is ERNIE. “[CLS]” and
“[SEP]” are the special input tokens, “TokenN” means the Nth token in tokenized text. “E[CLS]”, “E[SEP]” and
“EN” means the output of “[CLS]”, “[SEP]” and the Nth token’s embedding after Transformer Encoder. The output
of Transformer-CRF is “TagN”, which is ”B-toxic”, ”I-toxic” or ”O”.

People often judge offensive sentences in terms
of words, therefore the toxic spans in this task are
always associated with words. In this task, the
input sentence may contain no toxic span, which
means it is not offensive. On the other hand, there
may be more than one word that shows the author’s
malice in the sentence. Considering toxic spans
are contextually influenced, we model the task as
a token-level sequence labeling task and use BIO
tagging scheme.

3 System description

Our system uses a single model to get the result,
which is in Transformer-CRF architecture. In our
system, we utilize a pre-trained contextualized lan-
guage model, namely ERNIE 2.0 (Sun et al., 2019),
to identify the toxic tokens. And we introduce CRF
to learn the constraints between tags. In addition,
we use adversarial training with the FGM to im-
prove our performance.

3.1 Data pre-processing

Toxic spans detection is a character-level task. Con-
sidering transformer architecture requires token-
level inputs, we choose token-level sequence label-
ing instead of character-level. When converting
character-level sequence labels to token-level, the
tokenizer we use is the one used in pre-training.
And we lowercase the text before tokenized.

After tokenizing the text, we tag the tokens. If
one of the token’s spans is tagged as toxic in the
original dataset, considering the tag of the previous
token, the token will be tagged as “B-toxic” or “I-
toxic” in pre-processed data. If the token’s spans
are not tagged as toxic in the original dataset, the
token will be tagged as “O” in pre-processed data.
Some typical examples are shown in Table 1.

3.2 Transformer-CRF architecture
Our system uses a single model to get token-level
predictions. The model is in Transformer-CRF
architecture. As shown in Figure 1, it consists
of three components: transformer encoder, fully
connected layer, and a CRF layer.

First, the transformer encoder is used to extract
representations of the input tokens. Based on multi-
layer bidirectional transformer encoder, we use
ERNIE as pre-trained model to encode. During
pre-training, transformer-based language models al-
ways use inputs with special tokens (such as [CLS]
or [SEP]). Therefore, after tokenizing text into to-
kens, we insert “[CLS]” at the beginning of the
token list and “[SEP]” at the end to make our in-
put closer to what it would be when ERNIE was
pre-trained. When we train the model, the tag of
“[CLS]” and “[SEP]” is “O”, and we drop the tags
of them during predicting.

After we get the embeddings of tokens, the rep-
resentations are fed into a fully connected layer to
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Origin tags Origin data Tokens and tags

8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, . . .

Another violent and aggressive

immigrant killing a innocent and

intelligent US Citizen....

another O
violent B-toxic
and I-toxic
aggressive I-toxic
... ...

7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17

What a knucklehead. How

can anyone not know this

would be offensive??

what O
a O
kn B-toxic
##uck I-toxic
##le I-toxic
##head I-toxic
... ...

Table 1: Typical Examples, where “Origin tags” means the toxic spans given in the dataset, “Origin data” means
the comment given in the dataset, “Tokens and tags” means the tokens and tags after tokenized and tagged.

reduce dimension. Finally, the CRF layer decodes
the reduced representations into the most probable
tag sequence using the Viterbi algorithm. Using
only the fully connected layer may output illegal
tags (e.g. “... O I-toxic O ...”), while introduc-
ing the CRF layer allows the model to learn the
constraints between tags. When fine-tuning the pre-
trained model, the layer closer to the input is more
likely to learn more simple features. We want to
modify the deeper weights more to adapt to the tar-
get task. Therefore, we use different learning rates
for different parts of the network. The transformer
encoder has a lower learning rate, while the fully
connected layer and the CRF layer have a higher
learning rate.

We train the model maximizing the log-
likelihood of the given sequence of tags, as com-
pared to the gold training labels. Except that, we
use the FGM as an adversarial training strategy to
improve the performance of our system. FGM ap-
plies perturbation to word embedding to enhance
the robustness of the model.

Given a token sequence S = t1, t2, . . . tN as
input where N denotes the sequence length. The
process for the model to obtain token-level results
is as follows:

ei = transformer encoder(ti) (1)

outi = Woei + bo (2)

tagi = crf(outi) (3)

Where ti is the current token, and ei denotes the
output of transformer encoder. Then ei is fed into

fully connected layer to reshape into outi. After
that, the CRF layer use outi to get token-level result
tagi.

3.3 Post-Processing

Our model produces token-level predictions, but
detecting toxic spans within the text is a character-
level task. To get the results, we use the opposite
way of pre-processing to get spans from model’s
predictions. Particularly, we assume the blank be-
tween toxic tokens should be tagged as toxic, too.
This is observed from the spans of the dataset.

4 Experiment

4.1 Dataset

We trained our models by SemEval-2021 Task 5
training data which consists of 7,939 samples with
a total of 139,115 toxic spans. We convert the span
from character-level to token-level, as described in
section 3.1. Then we get a total of 31,114 toxic
tokens, with an average of 3.92 per sample. And
each sample contains an average of 48.50 tokens.

4.2 Metric

Let system A return a set St
A of character offsets,

for the post t that found to be toxic. Let St
G be the

set of character offsets of the ground truth anno-
tations of t. We compute the F1 score of system
A with respect to the ground truth G for post t as
follows, where | · | denotes set cardinality.

P t =
|St

A ∩ St
G|

|St
A|

(4)
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Method F1
BERT-CRF 0.6933
ELECTRA-CRF 0.6944
ERNIE-CRF 0.6985
ERNIE-CRF w/o-adv 0.6964
ERNIE-CRF nltk-preprocessing 0.6557

Table 2: Results on the official evaluation testing data. “w/o-adv” means no adversarial training. “nltk-
preprocessing” means using NLTK for pre-processing.

Rt =
|St

A ∩ St
G|

|St
G|

(5)

F t
1 =

2 · P t ·Rt

P t +Rt
(6)

If St
G is empty for some post t (no gold spans are

given for t), we set F t
1 = 1 if St

A is also empty, and
F t
1 = 0 otherwise. We finally average F t

1 over all
the posts t of an evaluation dataset T to obtain a
single F1 score for system A.

F1 =

∑
t∈T F t

1

|T | (7)

4.3 Experiment Settings

We try different pre-trained model as the trans-
former’s initialization such as BERT (Devlin et al.,
2018), ELECTRA discriminator (Clark et al., 2020)
and ERNIE 2.0 (Sun et al., 2019). We find that the
models initialized with ERNIE 2.0 always achieve
better performance. So we select ERNIE 2.0 as the
transformer’s initialization, which has 768 hidden
units, 12 heads, 12 hidden layers.

For other parameters, we use streams of 256
tokens, a mini-batch of size 32, transformer’s learn-
ing rate of 3e-5, CRF’s learning rate of 1e-3, the
epoch of 3, and the random seed of 42.

4.4 Testing Results

As shown in Table 2, we build five systems in-
cluding: (1) BERT-CRF means model using
BERT (Devlin et al., 2018) as the transformer’s ini-
tialization; (2) ELECTRA-CRF means model us-
ing ELECTRA discriminator (Clark et al., 2020) as
the transformer’s initialization; (3) ERNIE-CRF
means model using ERNIE 2.0 (Sun et al., 2019) as
the transformer’s initialization; (4) ERNIE-CRF
w/o-adv; (5) ERNIE-CRF nltk-preprocessing.
All models are Transformer-CRF architecture. All
models use adversarial training with the FGM ex-
cept ERNIE-CRF w/o-adv. All models convert
character-level sequence labels to token-level with

tokenizers used in pretraining, except for ERNIE-
CRF nltk-preprocessing, which uses NLTK (Bird
et al., 2009) for pre-processing.

Table 2 shows the overall performances of our
models on the official evaluation testing data. The
ERNIE based model achieves better performance
than both the BERT based model and the ELEC-
TRA based model. We conjecture that ERNIE 2.0
is pre-trained through multi-task learning, which
allows it to capture lexical, syntactic, and semantic
information, such as named entities and discourse
relations. And this makes it more suitable for Toxic
Spans Detection task.

Adversarial training proved to be effective.
Although only a small improvement has been
achieved, experiments show that FGM can always
achieve a stable improvement. Adversarial training
adds some perturbation to the input, which makes
the model more robust and has a better performance
on the unknown test set.

ERNIE-CRF achieves more than 4 points
improvements over ERNIE-CRF nltk-
preprocessing, which proves the importance
of choosing the correct method to convert
character-level sequence labels to token-level. We
conjecture that there is a mismatch between the
word segmentation results of NLTK and the input
required by the Transformer model.

4.5 Attempts with no obvious improvement

It is worth mentioning that the best performance of
our system is based on a single model. We tried
model ensemble to improve the performance of the
single model but failed. Due to the limitation of
time and submission, we did not find an ensemble
method with obvious improvement.

The BiLSTM network has a strong ability to cap-
ture long-term dependencies of the input sequence
for sequence labeling task (Huang et al., 2015). We
tried to add BiLSTM layer after transformer. But
this resulted in overfitting, and the training speed
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was greatly reduced.
We also tried to combine the information from

word embedding with the information from the
deep layer. It is proved that, in the machine trans-
lation task, the low layers of the network are more
focused on lexical information, while deeper lay-
ers pay more attention to word meaning (Belinkov
et al., 2017). In toxic spans detection task, we con-
sider the information from the lower layers to be
important. So we concatenate the word embedding
layer with the output of ERNIE, but this didn’t
work.

5 Conclusion and Future Work

The paper describes our system at SemEval-2021
Task 5, which integrating Transformer and CRF for
Toxic Spans Detection task. It is shown that, in this
task, using ERNIE as pre-trained model achieves
better performance in Transformer-CRF architec-
ture. We convert the character-level sequence label-
ing task into token-level, and prove the importance
of preprocessing method. We also use adversarial
training with the FGM to improve the robustness
of the system. Our system achieves the third F1
score in official evaluation.

Since the best performance of our system is
based on a single model, we are planning to find
an effective ensemble method to improve the per-
formance of the single model in the future.
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Abstract

This paper describes our contribution to
SemEval-2021 Task 5: Toxic Spans Detection.
Our solution is built upon RoBERTa language
model and Conditional Random Fields (CRF).
We pre-trained RoBERTa on Civil Comments
dataset, enabling it to create better contextual
representation for this task. We also employed
the semi-supervised learning technique of self-
training, which allowed us to extend our train-
ing dataset. In addition to these, we also iden-
tified some pre-processing steps that signifi-
cantly improved our F1 score. Our proposed
system achieved a rank of 41 with an F1 score
of 66.16%.

1 Introduction

In recent years there has been an exponential in-
crease in the use of social network platforms. With
rising abusive language and hate on such plat-
forms, it is more important than ever to main-
tain online conversations constructive and inclu-
sive. This problem can be tackled by filtering toxic
comments/posts. The massive volume of data gen-
erated at a fast pace makes manually filtering each
comment complicated and time-consuming. This
process can be automated by modelling it as a su-
pervised classification problem. A similar task was
proposed in SemEval-2019 Task 6: Identifying and
Categorizing Offensive Language in Social Media
(OffensEval) (Zampieri et al., 2019). Most of the
top-ranked teams in this task used transformer lan-
guage models (Liu et al., 2019a; Zhu et al., 2019;
Pelicon et al., 2019; Wu et al., 2019) or an ensemble
of CNN and RNN (Mahata et al., 2019; Mitrović
et al., 2019) to classify the sentences.

The problem with the above approach is that it
doesn’t give moderators much knowledge about
the reason for a sentence’s toxicity. Highlighting

∗Equal Contribution. Author order determined by a coin
flip

toxic spans can help human moderators who fre-
quently deal with long comments and prefer at-
tribution rather than just an unexplained toxicity
score. SemEval 2021 Task 5: Toxic Span Detection
(Pavlopoulos et al., 2021) gave a chance to propose
NLP systems to solve this problem. The task is con-
cerned with developing systems that can recognise
spans that contribute to the text’s toxicity.

This task had a few challenges. Since the sam-
ples were from an online commenting platform,
they were grammatically incorrect and consisted of
many out of vocabulary words. The noisy and am-
biguous structure of comments significantly ham-
pers the performance of general NLP models. The
training dataset had a little less than 8000 sam-
ples. Thus, there was a need to select systems that
can produce meaningful results, even with a lim-
ited number of training samples. Undoubtedly, the
hardest part is to identify spans that can account
for the toxicity of the sample. The span could be
as small as a single token and as large as the sam-
ple itself. The linguistic variations in the usage of
words and phrases make such attribution even more
difficult.

We formulated the task as a sequence tagging
problem and used RoBERTa (Liu et al., 2019b),
a pre-trained Transformer-based (Vaswani et al.,
2017) language model as our base model. We fur-
ther pre-trained RoBERTa on the Civil Comments
Dataset as a masked language model (Devlin et al.,
2018) to create a domain-specific model. We em-
ployed a Conditional Random Field (CRF) layer
(Lafferty et al., 2001) for predicting the most prob-
abilistic sequence of labels for each input sequence.
We also applied a few pre-processing steps, which
lead to significant performance improvements.
Lastly, we leveraged the semi-supervised learning
technique of self-training (Yarowsky, 1995; Liao
and Veeramachaneni, 2009; Jurkiewicz et al., 2020)
by training our model on the manually annotated
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Figure 1: Our Model Architecture. We used RoBERTa as our transformer. Classifier constitutes two dense layers
and a CRF layer with three labels.

dataset and using it to further extend the training
set by generating toxic spans for other unannotated
datasets. We have made our system’s implementa-
tion available through GitHub1.

The rest of the paper is organised as follows. Sec-
tion 2 explains our model implementation in detail.
Section 3 and 4 presents our experimental setup
and achieved results, respectively. In section 4, we
perform error analysis, followed by conclusions in
the last section.

2 System Description

2.1 Pre-Training

Toxic comments have a different language con-
struct from the general language. Their slang and
obfuscated content (van Aken et al., 2018) make
it difficult for the language models pre-trained on
broader datasets to understand them. Similar to
other domain-specific models (Beltagy et al., 2019;
Lee et al., 2020; Paraschiv et al., 2020), we pre-
trained the RoBERTa-base model on the Civil com-
ments dataset using Masked Language Modelling
(MLM) (Devlin et al., 2018) to provide the nec-
essary domain knowledge and created our model
RoBERTa(p). The original weights of RoBERTa-
base served as the starting point for the pre-training.
The pre-training was done for 0.2 million steps with
a batch size of 32 and a learning rate of 2e-5.

1https://github.com/jain-abhinav02/
Toxic_Spans_Detection

2.2 Fine-Tuning

We formulated the task as a token level sequence
tagging problem where we classify each token as
Begin, Inside or Outside (BIO scheme). Having
begin and end tags helps formulate the notion of
spans better and creates dependencies between var-
ious tokens of a toxic span (Singh et al., 2020),
allowing it to perform better than other alternatives
such as IO (Inside Outside).

Pre-Processing: We applied a few pre-
processing steps before fine-tuning RoBERTa on
the input text samples. First, we converted all
the text samples to lowercase. We observed that
punctuation marks did not add any significant
information to the semantics of a sentence. There-
fore, as a part of the data cleaning, punctuation
marks such as commas and dashes were removed.
We also collapsed multiple space characters into a
single space.

Model: We provided the text samples as input
to our pre-trained RoBERTa(p) model to get 768-
dimensional contextual embeddings for each token.
These contextual embeddings were passed through
two dense layers of 512 and 128 dimensions, fol-
lowed by a Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) layer with three labels (B-Begin,
I-Inside or O-Outside). The CRF layer models the
correlation between the labels predicted for the in-
dividual tokens. It receives the logits for each input
token and predicts the most probabilistic sequence
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Model Tag F1 Precision Recall
RoBERTa IO 0.6091 0.5831 0.7224
RoBERTa(p) IO 0.6183 0.5841 0.7408
RoBERTa(p) + PP IO 0.6376 0.6259 0.7264
RoBERTa(p) + PP + CRF IO 0.6422 0.6323 0.7246
RoBERTa(p) + PP + CRF BIO 0.6566 0.6512 0.7203
RoBERTa(p) + PP + CRF + ST(1) BIO 0.6613 0.6537 0.7295
RoBERTa(p) + PP + CRF + ST(2) BIO 0.6634 0.6590 0.7262

Table 1: Our model results on Test Set. RoBERTa(p) is our model pre-trained on domain-specific data. PP stands
for Pre-processing. ST(1) and ST(2) represents self-training first and second iteration results, respectively.

Figure 2: Self-Training of RoBERTa

of labels for each input sequence. Figure 1 shows
our model architecture.

Post-Processing: The tokens decoded as B-
Begin or I-Inside were marked as toxic. The char-
acter spans corresponding to these toxic tokens
were added to the predicted spans. Two consecu-
tive spans were merged if separated by at most five
characters, provided all of them are non-alphabetic.

2.3 Self-Training
The best performing model on the manually anno-
tated dataset (gold dataset) was used to generate
toxic spans for the unannotated dataset. When
selecting the unannotated data, we followed the
process similar to the one used for creating the
gold dataset (Pavlopoulos et al., 2021) that is, filter
the most toxic samples (toxicity ≥ 0.80 ) from the
Civil Comments dataset and select a random set
of 10,000 samples. This process allowed the sil-
ver data to have similar toxicity distribution as the
gold data. The newly generated annotations (silver
dataset) were then used along with the gold dataset
to train a new model. The model trained on the
combined gold and silver dataset gave better per-
formance (F1 score: 66.13%) than the one trained

only on the gold dataset (F1 score: 65.66%). We
repeated this process for one more iteration with
another random set of 10,000 samples (F1 score:
66.34%). Figure 2 gives a simplistic idea of self-
training.

3 Experimental Setup

Data: Each training example consisted of a text
sample in English, and its ground truth toxic span
provided as a list of character offsets (possibly
empty). The posts were sampled from the publicly
available Civil Comments dataset. The training
set consisted of 7939 samples. We randomly sam-
pled 20% of it as the development set. The test
set for the evaluation phase had 2000 samples. In
the training dataset, sample length varies from 1
to 421 tokens, with an average length of 47 tokens
when tokenized using the RoBERTa-base tokenizer.
Nearly 10% of all tokens in the training dataset
are marked as toxic. The mean span length is 17.5
characters and 485 samples have empty spans. Fur-
ther details about the dataset can be found in the
task description paper (Pavlopoulos et al., 2021).

Evaluation measures: The evaluation measure
for a sample is the F1 score between the predicted
spans and the ground truth spans as defined in the
SemEval-2021 Task 5 paper (Pavlopoulos et al.,
2021). The overall score is obtained by taking the
mean of the F1 score of all samples in the test set.

Implementation details: Since the text samples
were lengthy, we split them into sentences. We
used spacy’s sentence tokenizer for this purpose.
Adam (Kingma and Ba, 2014) was used as the op-
timizer with a learning rate of 1e-5. The batch size
was set to 32. All the model variants were trained
for at most five epochs. We used the RoBERTa-
base tokenizer and model implementation provided
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Original Spans Predicted Spans
Small Sentences

[Sick pervert] Sick pervert
[bloody wankers] bloody wankers

Rare Words
Just another day in the Trump [kleptocracy]. Just another day in the Trump kleptocracy.
Should ha taken his weapon n [pulverized] him Should ha taken his weapon n pulverized him

Non-swear words
When you’re ready to place a monetary bet on
whether these guys get charged with terrorism,
lemme know. Otherwise, I know you’re [all blus-
ter and no balls].

When you’re ready to place a monetary bet on
whether these guys get charged with terrorism,
lemme know. Otherwise, I know you’re all bluster
and no [balls].

Yes, I agree. We need an electoral college for
Washington so that Seattle no longer votes for
Washington. My goodness,they are a [bunch of
loons]!

Yes, I agree. We need an electoral college for
Washington so that Seattle no longer votes for
Washington. My goodness,they are a bunch of
[loons]!

Table 2: Common errors made by our model. Spans are made bold and are present in between square brackets.

by Huggingface2. The RoBERTa model was fol-
lowed by two dense layers with 512 and 128 units
with relu (Agarap, 2018) as the activation function
and a dropout rate of 0.1. The output layer had two
or three labels depending on the tagging scheme.
We applied the post-processing steps mentioned in
section 2.2 for all the model variants.

4 Results

Table 1 shows that our RoBERTa(p) model out-
performs the original RoBERTa model. As sug-
gested earlier, domain-specific pre-training allows
the model to understand the language construct of
toxic comments better. Additionally, we observe a
significant increase in performance by adding pre-
processing steps as it makes the model more robust
to the noise present in the text samples. Adding the
CRF layer further improves the F1 score by elim-
inating the problem of independent label predic-
tion. It is evident from table 1 that the BIO tagging
scheme performs better than the IO tagging scheme
when working with CRF, suggesting it can better
understand the span nature of the output. Finally,
using two rounds of self-training helped us achieve
our best F1 score, 66.34%3.

One interesting observation that can be drawn
from Table 1 is that for almost all the models, the

2https://github.com/huggingface/
transformers

3We achieved an F1 score of 66.16% in the official compe-
tition. However, our model achieved a even higher F1 score
66.34%, when the predictions of a different epoch were used
for evaluation.

Figure 3: Distribution of F1 Score across different span
lengths. Here span length refers to the total length of
the toxic span in each sample. The value represented is
the mean F1 score of all the text samples whose toxic
span length falls in a particular range.

recall remains constant and improvement in F1 is
due to improvement in precision. The constancy of
recall indicates that few spans are not captured as
toxic by any of the models.

5 Error Analysis

Figure 3 shows the variation of the F1 score across
different toxic span lengths on the test dataset. Our
model achieved a very high F1 score when one
(Span Length 1-9, Mean F1 Score: 83.17%) or
two (Span Length 10-17, Mean F1 Score: 74.44%)
words are marked as toxic in a text sample. As
the number of characters marked as toxic increases,
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the F1 score falls drastically, reaching as low as
24.82% when more than 58 characters are marked
as toxic. There are two main reasons for this. First,
it is easier for the model to capture short-term de-
pendencies than long-term dependencies. Second,
only 10% of the training data has a span length
of more than 25 characters making the model less
equipped to capture such toxic spans.

To investigate our model’s most problematic
cases, we analysed the samples for which our
model gave a zero F1 score. There were 447 such
samples, of which 349 samples did not have any
toxic span in the ground truth. This is also reflected
in Figure 3, as the mean F1 score of all the samples
with zero span length is 11.42%. Further analysis
revealed that our model tends to mark those tokens
as toxic, which were frequently found to be toxic
elsewhere. A few samples with empty toxic spans
had doubtful gold annotations. However, in other
samples, our model failed to capture the sentence’s
context precisely and predicts tokens that were not
used in a toxic sense.

Table 2 shows other standard errors our model
makes. It seems that our model has a problem with
small sentences. More often than not, it misses
the toxic span present in it and returns an empty
span. A similar case occurs when it encounters text
samples with rare toxic words. These words may
be present in very few examples or be completely
absent from the training dataset, making our model
less endowed to understand them. Other than these,
our model sometimes misses the non-swear words
in a toxic span.

6 Conclusion

This paper described our system developed for
SemEval-2021 Task 5: Toxic Span Detection. We
built our solution on the RoBERTa language model
and Conditional Random Fields (CRF). Though
RoBERTa alone can achieve great results, we
highlighted the benefits of using external datasets
and the performance improvements it can help
us achieve. We pre-trained RoBERTa on the
Civil Comments dataset to impart domain-specific
knowledge to it. We also employed the semi-
supervised learning technique of self-training to
extend our training dataset. In addition to these, we
also discovered some pre-processing steps that sig-
nificantly improved our F1 score. Experimenting
with different tagging schemes, we found out that
the BIO scheme works the best with CRF.

In future, we plan to experiment with other lan-
guage models such as T5 (Raffel et al., 2019), XL-
Net (Yang et al., 2019) and DeBERTa (He et al.,
2020). The system could also benefit from the addi-
tion of syntactic and semantic features at the word
and sentence level.
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mala, and Filip Graliński. 2020. Applicaai at
semeval-2020 task 11: On roberta-crf, span cls and
whether self-training helps them. arXiv preprint
arXiv:2005.07934.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Wenhui Liao and Sriharsha Veeramachaneni. 2009. A
simple semi-supervised algorithm for named entity
recognition. In Proceedings of the NAACL HLT
2009 Workshop on Semi-supervised Learning for
Natural Language Processing, pages 58–65, Boul-
der, Colorado. Association for Computational Lin-
guistics.

879



Ping Liu, Wen Li, and Liang Zou. 2019a. NULI
at SemEval-2019 task 6: Transfer learning for of-
fensive language detection using bidirectional trans-
formers. In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 87–
91, Minneapolis, Minnesota, USA. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Debanjan Mahata, Haimin Zhang, Karan Uppal, Ya-
man Kumar, Rajiv Ratn Shah, Simra Shahid, Laiba
Mehnaz, and Sarthak Anand. 2019. MIDAS at
SemEval-2019 task 6: Identifying offensive posts
and targeted offense from Twitter. In Proceedings of
the 13th International Workshop on Semantic Eval-
uation, pages 683–690, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.
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Abstract

We leverage a BLSTM with attention to iden-
tify toxic spans in texts. We explore differ-
ent dimensions which affect the model’s per-
formance. The first dimension explored is the
dataset the model is trained on. Besides the
provided dataset, we explore the transferabil-
ity of 5 different toxic related sets, including
offensive, toxic, abusive, and hate sets. We
find that the solely offensive set shows the
highest promise of transferability. The sec-
ond dimension we explore is methodology,
including leveraging attention, employing a
greedy remove method, using a frequency ra-
tio, and examining hybrid combinations of
multiple methods. We conduct an error analy-
sis to examine which types of toxic spans were
missed and which were wrongly inferred as
toxic along with the main reasons why they oc-
curred. Finally, we extend our method via en-
sembles, which achieves our highest F1 score
of 55.1.

1 Introduction

Social media platforms (e.g. Twitter) benefit from
a welcoming environment. Toxicity introduced by
users can drive new (or existing) users away. There-
fore, it is beneficial for platforms to moderate the
amount of toxic language allowed. Often human
moderators are employed to address this. How-
ever, as the numbers of users increase on a plat-
form, it can be difficult for human moderation as
the sheer amount of content generated increases as
well. Thus platforms employ automated assistance
(Terdiman, 2018).

While automated toxic language classifiers have
made strides at determining if text is toxic (Yenala
et al., 2018; Zhang et al., 2018), much work is still
left for humans who are reviewing the text. In large
texts, the reason for toxicity might only be one or
two words, however, the moderator will have to

Text Toxic Span
What a jerk! [7, 8, 9, 10]
“Trump is up to the task”
LMAO, you are an idiot

[44, 45, 46, 47,
48]

Canada: Institution-
alised mediocrity.

[ ]

Contrary to popular be-
lief not all criminals
are stupid. Fortunately,
there are plenty like this
moron that are.

[49, 50, 51, 52, 53,
54, 98, 99, 100,
101, 102]

Table 1: Examples of toxic spans in toxic texts. The
numbers indicate the character position of the toxic
span. Empty brackets indicate no specific span.

scan the entire text to find the toxicity. Repeating
this process across many texts is cumbersome. Au-
tomated systems could assist human moderators
further by noting which areas in the text are toxic,
thus allowing the human to quickly check text for
toxicity. Finding these toxic areas is the task that
is proposed by (Pavlopoulos et al., 2021). Specif-
ically, given English toxic text, determine where
the “toxic spans” occur, where a “toxic span” is the
character positions in the text where the toxicity
appears. For example, in “your an idiot, this is
a tax based on a lie”, the toxic span would be [8,
9, 10, 11, 12] or the character positions of “idiot”.
Note that not all toxic texts have toxic spans. For
example, “Religious people no longer have a place
in this country.” is a toxic phrase, yet no specific
words are themselves toxic. More examples can be
found in Table 1.

To find toxic spans in text, we employ a Bidirec-
tional Long Short-term Memory model (BLSTM)
with attention. We examine several indirect meth-
ods which align with the BLSTM, including using
the attention layer for information. While the pro-
vided dataset allows for direct methods, i.e. meth-
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ods which directly use the given spans for training,
this span format is new to this task. Thus many pre-
viously developed toxic datasets would need to be
converted to be useful to a direct model (since they
are binary labeled sets, not span labeled sets). How-
ever, the indirect methods we explore can leverage
previously developed datasets, which opens up re-
search possibilities. Therefore, we examine how
well toxic texts other than the provided training
data transfer to this task. An additional benefit is
that since toxicity can be subjective (Aroyo et al.,
2019), examining how different datasets transfer
to this task will help illuminate the similarities and
differences between definitions of toxicity. Finally,
we provide our code and outputs for reproducibil-
ity1.

2 Approach

We expand on the approach we use to identify
toxic spans. We examine both different toxic based
datasets as well as different BLSTM based meth-
ods.

2.1 Base Architecture

We leverage a bidirectional LSTM (BLSTM) with
attention as our base architecture. The BLSTM
has a hidden layer size of 200. We use glove em-
beddings2 (Pennington et al., 2014) of size 200
trainined on Wikipedia and Gigaword corpora. We
train our system over 10 epochs with a batch size
of 64.

2.2 Toxic Datasets

We examine the provided training set as well 5
different toxic-based data sets. All are in English to
match the provided test set. Each additional dataset
is explicitly toxic or in a related area (e.g. offense).
The dataset chosen can affect performance on the
test data as data can vary in their definitions of
toxicity. The datasets examined are:
Toxic Train: The training set provided by the task
organizers. This set had no non-toxic examples
thus we pulled non-toxic examples from the Kaggle
Toxic set at a 1-to-1 ratio. This results in a training
set size of 15,878.
OLID: (Zampieri et al., 2019a) A dataset com-
posed of offensive and non-offensive tweets. It
was used in both OffensEval 2019 (Zampieri et al.,
2019b) and OffensEval 2020 (Zampieri et al., 2020)

1Code: https://github.com/JonRusert/semeval-2021-task-5
2https://nlp.stanford.edu/projects/glove/

(offense language classification tasks). The training
set is composed of 13,240 tweets.
Kaggle Toxic: Comments from Wikipedia’s talk
page edits, presented in the Kaggle toxic classifi-
cation challenge3, labeled as toxic or not toxic (as
well as further dividied into subcategories). The
training set is 159,571 comments.
Founta: (Founta et al., 2018) A dataset of tweets
annotated via the CrowdFlower platform. The la-
bels are hateful, abusive, or none. For training,
we combine hateful and abusive into a single toxic
category. The training set is of size 85,966.
Davidson: (Davidson et al., 2017) Annotated tweet
dataset composed of offensive, hatespeech, and
neither tweets. Our training set combines offense
and hate into a single toxic label and is of size
24,783.
Gab Hate: (Kennedy et al., 2018) A dataset from
Gab social network4. Each post is annotated by at
least 3 annotators as either hateful or not. Similar
to prior research, our positive (toxic) labeled are
those for which the majority of annotators agree.
The training set is of size 27,665.

2.3 Methods
We leverage previously examined methods in areas
such as robustness (Hsieh et al., 2019) and style
transfer (Xu et al., 2018; Wu et al., 2019). Each
method stems from the BLSTM, but some can be
adapted for other machine learning systems.
Attention: Previous work has used attention for
robustness attacks (Hsieh et al., 2019) and style
token masking (Xu et al., 2018). Following these,
we leverage the attention layer in the BLSTM. Each
token (word) has an attention score used to generate
the class label (toxic, non-toxic). We use this score
to determine if a given token is toxic. We label
each token with an attention score of greater than
the average attention score as part of the toxic span.
Frequency Ratio: In theory, a toxic token should
exist more frequency in toxic texts, compared to
non-toxic texts. Following previous research (Wu
et al., 2019), we generate a frequency score for
each token:

sc(u, a) =
count(u,Da) + λ

(
∑

a′∈A,a′ 6=a count(u,Da′)) + λ
(1)

where u is the token, a is an attribute (e.g. toxic or
non-toxic), Da represents the texts with attribute a,

3https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

4https://gab.com/
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Toxic Datasets
Train OLID Kaggle-Toxic Founta Gab Davidson Average

M
et

ho
ds

Attention 50.1 50.1* 39.4 35.2 17.4 22.8 35.8
Greedy Remove 38.3 44.7 43.3 41.9 20.8 18.6 34.6
Frequency Ratio 41.5 45.5 22.5 44.3 19.7 8.0 30.3
Simple Hybrid 38.4 45.5 41.7 39.6 17.7 21.7 34.1
Recall Hybrid 37.9 45.2 38.4 34.6 17.8 22.7 32.8

Precision Hybrid 50.7 49.8 44.6 42.6 20.8 19.0 37.9
Average 42.8 46.8 38.3 39.7 19.0 18.8

Top System 70.8

Table 2: Full Results on the provided Toxic Span Test Set. Results are F1 scores. * - Version submitted to task
organizers. Top System is the highest result submitted by another team to the task organizers.

and count(u,Da) represents the number of times
u appears in Da. The score (sc(u, a)) is then mea-
sured against a threshold to determine whether the
token is representative of that attribute. For our
method, we chose a threshold of 5, such that, if
sc(u, a) >= 5, then u is considered part of the
toxic span.

Greedy Remove: Also seen as “Greedy select”
(Hsieh et al., 2019) or “Important Score” (Lee,
2020) in previous research, greedy remove deter-
mines the amount each token is contributing to
the text by removing each token one-by-one (each
token is replaced after drop is noted) and noting
the drop in toxic probability. The token with the
highest probability is removed (i.e. added to the
toxic span) and then the BLSTM classification is
checked. If the text is no longer considered toxic,
the toxic span is returned, otherwise the next token
with the highest drop is removed and it is added to
the toxic span. This process is continued until the
text is no longer considered toxic by the BLSTM.

Simple Hybrid: We combine the greedy remove
and attention approaches. We first obtain the spans
from the greedy remove. If the span is empty (i.e.
“[]”), then we choose the spans found by the at-
tention method, otherwise we choose the spans
obtained from the greedy remove method.

Recall Hybrid: Similar to the simple hybrid, how-
ever, we aim to maximize recall. We obtain spans
from both the greedy remove and attention ap-
proaches and return the union of the two sets.

Precision Hybrid: Similar to the simple hybrid,
however, we aim to maximize precision. We obtain
spans from both the greedy remove and attention
approaches and return the intersection of the two
sets.

3 Experimental Results

3.1 Experiments

We train corresponding BLSTMs on each of the
6 presented datasets (Section 2.2). We test the
methods of each BLSTM on the provided toxic test
set. The test set contains 3,180 texts. The score
used is the F1 for a given text t, where Ai is the
system and G is ground truth, and St is the set of
toxic spans:

F t
1(Ai, G) =

2 · P t(Ai, G) ·Rt(Ai, G)

P t(Ai, G) +Rt(Ai, G)
(2)

P t(Ai, G) =
|St

Ai
∩ St

G|
|St

Ai
| (3)

Rt(Ai, G) =
|St

Ai
∩ St

G|
|St

G|
(4)

When St
G is empty and St

Ai
is empty, then

F t
1(Ai, G) = 1, otherwise F t

1(Ai, G) = 0. Fi-
nally, to obtain a single score, the F1’s are averaged
across texts.

3.2 Results

We examine the performance of various combina-
tions of approaches on the test data. Full results are
found in Table 2.
Provided Train Data + Precision Hybrid Ap-
proach achieves highest F1. Our highest achieved
F1 score, on the test data, is 50.7. This is achieved
via a BLSTM trained on the provided training
data (Toxic Train) which uses the precision hy-
brid approach to find toxic spans. The next highest
was from both the OLID BLSTM and Toxic Train
BLSTM both using attention and achieving an F1
of 50.1.
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Missed Spans
See a shrink you *pathetic* <troll>.
<Total> *rubbish*! The birther bit was started by Crooked Hillary and perpetuated by Zero his
own damn self.
and he is to *stupid* to know it. The guy is a total <poser> and a *fool*
Along with ’fat, dumb and happy’. Or maybe ’<stupid> is as *stupid* does’?
<Your an> *idiot*. The top 1% will get the biggest break while the rest of us struggle to pay rent.
In this case, anyway, I have bad news for you. <URStupid>
Sick <f**ks> like this should just be shot. What a waste of skin, air, and taxpayers money.
Falsely Detected Spans
Yes....it is to be expected....oddly enough it happens every time he opens his mouth and says
<dumb> >thin<gs.
”””>Trump< is up to the task”” LMAO, you are an id*iot*>,”<
You are a *simpleton*, who is full of racial >hatred<. That is too bad. You make America a worse
place.
I always knew you were a >dirty< cop.
By the way, Nazis were and are fascists so if you are one, your a *fascist*. >Scum< like this and
Trumpler need to be run out of our country and given to ISIS to use as chew toys
McCain is a >pig<.
LNG is much better for the environment than diesel, yet these >stupid< hippies complain.

Table 3: Examples of missed spans and falsely detected spans. <Red> indicates missed tokens. *Blue* indicate
correctly identified spans. >Green< indicates wrongly asserted spans. Note that **, <>, >< are not originally in
text and are included for accessibility.

OLID shows strongest transferability. The
OLID trained BLSTM achieved the highest F1
scores across all methods versus the other transfer
sets, with an average of 46.8 (range: 44.7 - 50.1).
The next highest set was Founta (avg: 39.7, range:
34.6 - 44.3). Surprisingly, Kaggle-Toxic (avg: 38.3,
range: 22.5 - 44.6) arrives at third highest. This is
surprising because the goal of the task is to identify
“toxic” spans and Kaggle is toxic data, while OLID
is offense, and Founta is abuse/hate data. The Gab
and Davidson BLSTMs perform poorly in compar-
ison only achieving average F1s of 19.0 and 18.8
respectively.
Precision Hybrid Averages Highest F1 Score.
On average, the precision hybrid method outper-
forms other methods across datasets. The precision
hybrid approach averages a F1 score of 35.4 (range:
19.0 - 49.8). The attention approach is second high-
est (avg: 35.8, range: 17.4 - 50.1), followed by the
greedy remove (avg: 34.6, range: 18.6 - 44.7). This
points to precision hybrid as a solid approach when
the transfer strength is unknown.
Indirect methods pale in comparison to more
direct systems. Although we examined various
combinations of systems, our highest F1 (50.7) is
still far less than the top submitted system (HITSZ-

HLT) 70.8. This difference is most likely due to
our system aiming to find toxic spans indirectly,
rather than directly training on the spans.

4 Error Analysis
To determine how to improve our system, we ex-
amine the spans commonly missed in the test set
as well as spans commonly predicted wrongly. We
examine errors in our top system (Toxic Train -
Precison Hybrid).
4.1 Spans Missed

We find our system misses spans for several reasons.
We present examples in Table 3.
Translation from tokens to character positions.
One reason for missed spans is the difficulty be-
tween translating toxic tokens to toxic spans. As
our methodology finds specific tokens toxic, it
needs to back-translate that to character positions in
the original text. However, the text is pre-processed
to help our system analyze it and therefore prob-
lems occur when lining up the characters.
Toxic words are part of a phrase. Another rea-
son for missed spans is they are part of a toxic
phrase and others part of the phrase are more toxic.
For example, “Total rubbish” is marked as entirely
toxic, however, our system marks only “rubbish”.
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Spans Missed
Translation Part of Phrase Overshadowed by

more toxic words
Non Standard Words

75 8 25 2
Spans Falsely Detected

Non-Toxic becoming
Toxic

Translation Unclear Why Not
Toxic

Toxic word in not
toxic usage

19 23 22 30

Table 4: Frequencies of errors on 100 sampled texts. Note that multiple errors can exist in one text. Also, not all
sampled texts have one of the prominent errors.

Another example is our system marking “pathetic”
correctly but not “troll” in “pathetic troll”. Our sys-
tem misses that these non-toxic words (e.g. “total”)
can become toxic when combined in a phrase.
Certain words overshadowed by more toxic
words. Some of the tokens which remain (e.g.
“poser”) seem to be overshadowed by a stronger
toxic word. For example, “and he is to stupid to
know it. The guy is a total poser and a fool”, is
marked as having three toxic spans (stupid, poser,
fool), however, our system labels “stupid” and
“fool” as toxic spans but not “poser”. This is most
likely because our system views “stupid/fool” as
more toxic words and thus assigns higher attention
scores than for “poser”.
Toxic words are non standard words. Since
the BLSTM uses word embeddings, non standard
words are missed by our system. For example,
“In this case, anyway, I have bad news for you.
URStupid”, “URStupid” is marked as toxic, but it
is a non standard word.
4.2 Spans Falsely Detected

Table 3 also contains examples of wrongly pre-
dicted spans by our system. We’ve identified rea-
sons for these errors as well.
Non-toxic words become associated with toxic-
ity in training set. Depending on the training set,
our model can learn non-toxic words as toxic if they
occur more frequently with the toxic label com-
pared to the non-toxic. An interesting example is
“trump” being marked as a toxic span, which means
the training data provides “trump” in enough toxic
texts for our system to associate that with toxicity.
Translation to character indexing. Similar to
missing gold spans, our system’s predicted spans
are often shifted off of the correct token. For ex-
ample, in the phrase “dumb things”, our system
correctly identifies that “dumb” is a toxic span,
but during translation back to character index, it

is shifted 4 characters to the right, so instead our
system says “thin” (part of “things”) is the toxic
span. This issue causes many similar misses.
Toxicity is not always clear. Another reason for
wrongly identified spans is that the toxicity isn’t
always clear. That is, words which appear to be
toxic, are marked as non toxic in the gold labels.
For example, in “I always new you were a dirty
cop.”, calling someone a “dirty cop” is arguably
toxic, and our system marks “dirty” as toxic, but
the gold standard labels indicate there is no toxic
span in the text. This could be attributed to toxicity
being a subjective idea (Aroyo et al., 2019).
Toxic words used in non-toxic ways. A final
prominent reason for falsely predicted spans is
words that are sometimes toxic, appear in non toxic
sentences. For example, in “... Gotta ask, you got
back flow preventer on your plumbing or is that
some of the stupid you can’t fix?”, our classifier
tags “stupid” as toxic, but it is not. This category
has an overlap as well with the previous unclear cat-
egory since toxicity can be subjective. Where the
annotators might label a word are being used in a
non-toxic way, we might label it as toxic and there-
fore say it is unclear why the span is not counted
correctly.
4.3 Quantifying Errors

To obtain an understanding of the frequency of
the different types of errors we randomly sample
100 texts which contained missed spans and 100
texts which contained falsely predicted spans. The
results can be found in Table 4.

For missed spans, we see the translation from
tokens to character positions causing the largest
problems, as it occurs in 75 out of 100 samples.
Words overshadowed by more toxic words was the
next highest error appearing in 25 of 100 samples.

For falsely detected spans, the errors are more
evenly spread out. Toxic words used in non-toxic
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manners caused the most false predictions (30 out
of 100), followed by the translation from tokens to
spans (23 out of 100). These errors highlight the
importance of the translation step, and where our
system could benefit the most for improvement in
the future.

5 Leveraging Multiple Views via
Ensemble of Datasets

Ensemble F1
Train + OLID + Kaggle-Toxic 54.0
Train + OLID + Kaggle-Toxic + Founta 49.6
Train + OLID + Founta 53.6
All 39.3
Train + Kaggle-Toxic + Founta 50.7
OLID + Kaggle-Toxic + Founta 49.5
Train + OLID-Att + Kaggle-Toxic 55.1
Top Solo (Toxic Train - Prec. Hybrid) 50.7

Table 5: F1 scores of ensemble models. All systems
use the Precision Hybrid method, except for OLID-Att
which uses the attention method. Train = Toxic Train

As toxicity can vary, it follows that different
toxic datasets can identify different aspects of toxic
spans. We explore this idea further by creating a
simple majority voting ensemble model. The en-
semble model takes in the predictions of multiple
models trained on different datasets, then indices
are included if a simple majority votes for the index.
A summary of the performance of these models is
found in Table 5. Due to its performance, the Preci-
sion Hybrid method is used in all instances except
OLID-Att which leverages the attention method.
Ensemble outperforms top solo model. The top
ensemble combination achieves an F1 score of 55.1,
which is higher than the top solo F1 of 50.7. This
ensemble consists of top scoring solo datasets and
their top scoring respective methods: Toxic train -
Precision Hybrid, OLID - Attention, and Kaggle-
Toxic - Precision Hybrid. This higher score helps
demonstrate how the various toxic-based datasets
can bring useful perspectives to the solution.
Lower systems reduce performance of ensem-
ble. While an ensemble can increase performance,
not all toxic-based datasets help the model. While
the top three solo datasets achieve an F1 score of
54, adding Founta reduces it to 49.6. Adding the
lowest performing sets (Gab and Davidson), re-
duces F1 to 39.3. Thus the datasets used in the
ensemble require much consideration.

6 Related Work
We provide a brief look at work related to ours and
highlight recent related ideas.
Toxic Language: In recent years toxic language
classification has seen much focus. Organized tasks
for offensive language classification were seen mul-
tiple years in a row in GermEval (Wiegand et al.,
2018), OffensEval 2019 (Zampieri et al., 2019b),
and OffensEval 2020 (Zampieri et al., 2020). Ad-
ditionally, hate and abuse have been the focus of
classification (Founta et al., 2018) (Davidson et al.,
2017). For toxicity specifically, Karan and Šnajder
(2019) examine detecting threads that could lead to
toxic language in the future. van Aken et al. (2018)
present specific challenges that remain for toxic
classification.
Methodology: Our work draws from both robust-
ness and text style transfer work. Robustness
work looks at attacks of adversaries against clas-
sification (and other) systems. Hsieh et al. (2019)
look at the robustness of attention based systems.
Their “greedy-select” method for selecting words
to change in obfuscation, is similar to our “greedy-
remove” method. Style transfer often focuses on
transferring text from one style to another. To
change the style, some authors first remove or mask
words which indicate the initial style from the text.
Wu et al. (2019) accomplish this by leveraging both
a frequency ratio method (same as ours) and atten-
tion. Though, the methodology is similar, we ex-
amine it in terms of toxic span identification where
it has not been done before.

7 Conclusion

We leveraged various BLSTM methods to iden-
tify toxic spans. We find that a combination of
a “Greedy-Remove” and “Attention” based meth-
ods with a focus on precision produces the highest
overall results.

We examined how well various toxic related
datasets are able to transfer to this task. We find
that OLID, an offensive labeled dataset, transfers
the highest, achieving an F1 only 0.6 lower than
the provided dataset. Furthermore, we found that
combining the viewpoints of the datasets in an en-
semble model can increase the performance (F1 to
55.1).

Finally, we examined the errors our system made
and the causes. We found that many errors were
made when translating from tokens to character in-
dex. Future work would improve on this translation
step to tighten the span indication.
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Mladen Karan and Jan Šnajder. 2019. Preemptive toxic
language detection in Wikipedia comments using
thread-level context. In Proceedings of the Third
Workshop on Abusive Language Online, pages 129–
134, Florence, Italy. Association for Computational
Linguistics.

Brendan Kennedy, Mohammad Atari, Aida M Da-
vani, Leigh Yeh, Ali Omrani, Yehsong Kim, Kris
Coombs Jr, Shreya Havaldar, Gwenyth Portillo-
Wightman, Elaine Gonzalez, et al. 2018. The gab
hate corpus: A collection of 27k posts annotated for
hate speech. PsyArXiv. July, 18.

Joosung Lee. 2020. Stable style transformer: Delete
and generate approach with encoder-decoder for text
style transfer.
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Abstract

The SemEval 2021 task 5: Toxic Spans Detec-
tion is a task of identifying considered-toxic
spans in text, which provides a valuable, au-
tomatic tool for moderating online contents.
This paper represents the second-place method
for the task, an ensemble of two approaches.
While one approach relies on combining differ-
ent embedding methods to extract diverse se-
mantic and syntactic representations of words
in context; the other utilizes extra data with
a slightly customized Self-training, a semi-
supervised learning technique, for sequence
tagging problems. Both of our architectures
take advantage of a strong language model,
which was fine-tuned on a toxic classification
task. Although experimental evidence indi-
cates higher effectiveness of the first approach
than the second one, combining them leads to
our best results of 70.77 F1-score on the test
dataset.

1 Introduction

Social Network sites are an integral part of our
society. These platforms are often designed to max-
imize user interaction without sufficient means to
moderate such interactions. The amount of users
being cyber-bullied by toxic comments has reached
an alarming proportion (Chan et al., 2021). To effi-
ciently maintain the health of online communities,
an automatic online-content filtering tool needs to
be developed. Numerous previous attempts to re-
solve this issue have focused on toxic comment
classification (Georgakopoulos et al., 2018; Chu
et al., 2017; Pham et al., 2020; Risch and Krestel,
2020). Although these classification models are
capable of detecting toxic comments, their outputs
are not interpretable (Mathew et al., 2020).

On the other hand, Toxic Spans Detection
(Pavlopoulos et al., 2021) is a task of locating toxic

∗equal contribution

segments in texts. With such a system, the moder-
ators can easily highlight offensive words in com-
ments, which is an essential and explainable assis-
tance for automated comment rating. In this paper,
we propose our two approaches to resolve the task.
Our contributions are as follows:

• We investigate the effectiveness of our slightly
customized Self-training (Wei et al., 2021)
technique for a sequence tagging problem -
Toxic Spans Detection.

• We explore the benefits of combining differ-
ent word representations including Byte Pair
Encoding (Sennrich et al., 2015), contextual
character-level (Akbik et al., 2018), FastText
(Bojanowski et al., 2016) and RoBERTa (Liu
et al., 2019) word embeddings in order to uti-
lize different syntactic and semantic informa-
tion learned by these embedding methods.

• Taking advantage of a well-domain-adaptive
pre-trained language model on a classifica-
tion task (Unbiased-toxic-RoBERTa (Hanu
and Unitary team, 2020)), we successfully in-
tegrate our two above-mentioned methods to
achieve a high F1-score of 70.77 and rank
2nd at the Semeval 2021 Task 5: Toxic Spans
Detection.

• Numerous exciting insights of the system’s
performance have been drawn with detailed
error analysis.

2 Related Work

2.1 Word representation learning
Word2Vec (Mikolov et al., 2013) is among the earli-
est models for extracting continuous word represen-
tations. Although there have been numerous mod-
ern pre-trained text embeddings that outperformed
Word2Vec in downstream tasks, it is still widely
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used due to its simplicity and effectiveness (Akbik
et al., 2018). However, Word2Vec fails to handle
rare or out-of-vocabulary words. To address this
problem, FastText (Bojanowski et al., 2016) learn a
word representation as sum of its character n-grams
embeddings. On the other hand, (Sennrich et al.,
2015) utilizes Byte Pair Encoding, an alternative
approach for learning sub-word representations.

Recent pre-trained language models learn
context-sensitive word representations by utilizing
different pretext tasks namely autoregressive lan-
guage modeling (Radford et al., 2019; Akbik et al.,
2018), masked language modeling (Devlin et al.,
2018) on a large amount of unlabeled data. Those
methods have led to significant improvements in
a wide range of downstream tasks, including Text
Classification (Howard and Ruder, 2018), Question
Answering (Devlin et al., 2018) and Named Entity
Recognition (Akbik et al., 2019b).

Unbiased Toxic RoBERTa (Hanu and Unitary
team, 2020) is a language model that utilizes gen-
eral pre-trained RoBERTa (Liu et al., 2019) to
continually pre-train a toxic comment classifica-
tion task on Civil Comments Dataset 1. This
toxic-domain-adaptive language model can be suc-
cessfully employed to Toxic Spans Detection task
whose domain is a subset of Civil Comments.

2.2 Self-training

Self-training, a semi-supervised method, incorpo-
rates the prediction of teacher models on extra
available in-domain unlabeled data into the train-
ing of a student model (Wei et al., 2021). Self-
training has been recently successfully applied in
both Computer Vision and Natural Language Pro-
cessing tasks, including Image Classification (He
et al., 2018), Object Detection (Xie et al., 2020),
Machine Translation (He et al., 2020), ect. Despite
its merits, issues such as the lack of in-domain unla-
beled data (Du et al., 2020) and unreliable-pseudo
labels (Pham et al., 2021) are the main obstacles
for the success of Self-training.

For sequence-tagging problems, there are vari-
ous methods of coping with noisy-pseudo labels.
Unlike classification tasks, noisy self-labeled data
can be easily eliminated by removing those which
have low confidence scores; there is a lack of a
comprehensive means to determine this score for a
sequence-labeling data point. In several recent re-

1https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification

search, a deep reinforcement learning (Chen et al.,
2018) and meta-learning (Wang et al., 2020) has
been proposed to reduce “error propagation from
noisy pseudo-labels” for sequence labeling tasks.

3 Methodology

In this section, we describe our proposed frame-
work in detail. Firstly, we develop a simple but
strong baseline to discover the effectiveness of dif-
ferent backbone models. Consequently, we build,
extend, and customize our two methods on top of
the best backbone and baseline model.

3.1 Baseline

We consider this task as a word-level binary classifi-
cation problem even though the label annotation of
the dataset is at character-level. Therefore, we first
align character annotations to word annotations.
We utilize a straightforward architecture, with a
pre-trained language model as the backbone and a
simple classifier on top of it. Specifically, let denote
w = {w1, w2, ..., wm} and y = {y1, y2, ..., ym}
with wi, yi is the word and its label at position i re-
spectively, and x = {x1, x2, ..., xn} with xj is the
jth subword tokens. Notice here that m and n can
be different because language models learns sub-
word representations instead of word-embeddings.
h = {h1, h2, ..., hn} is the set of contextual embed-
ding for all tokens in x (taken from the last layer’s
output of the backbone) and p = {pi, p2, ..., pm}
with pi is the set of all subword positions of the
word at position i. To obtain a word-level embed-
ding, we took the sum of its corresponding subword
embeddings.

ei =
∑

j∈pi
hj

Then probability distribution of the word at po-
sition i is formulized as follow.

p(wi) = Softmax(WcReLU(Whei + bh) + bc)

With Wc, bc and Wh, bh are the learnable
weights and bias respectively. We optimize the
model by minimize the Cross Entropy loss between
the ground-truth and model predictions.

3.2 Method 1: Feature-based Learning

We customize and extend the baseline model by
constructing a standard Named Entity Recognition
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Figure 1: An illustration of our method. We start with a baseline, a simple sequence tagger utilizing Toxic
RoBERTa as the backbone. In the Self-training branch, the teacher- the best-scored baseline, generates soft pseudo
labels for the student to learn. On the other hand, the Feature-based Learning model concatenates the input vector
with different embedding methods i.e. Flair, FastText and BPE, then trains the Named Entity Recognition task.
Predicted character offsets (for each sentence) of two models are combined using Intersection Union (Ensemble
Section) to obtain the final prediction.

model using Flair package (Akbik et al., 2019a) 2 in
which each span is an entity encoded in IOB format.
The model consists of two parts: input representa-
tion using diverse embeddings and a feature-based
model.

3.2.1 Input Representation
In represent both syntactic and semantic informa-
tion of a word, we combine embeddings extracted
by different word embeddings methods. These rep-
resentations strengthen advantages of each other
while mutually easing their weaknesses.

These word embeddings and their usage in our
works are as follows:

• Flair: Contextual Flair model works on char-
acter level. We fine-tune two models ‘news-
forward’ and ‘news-backward’, on the Next
Character Prediction task (Akbik et al., 2018),
with 600K toxic texts from the Civil Com-
ment Dataset to adapt them to toxic comment
domain.

• Toxic RoBERTa: To utilize contextual em-
beddings from Toxic RoBERTa, besides fea-

2https://github.com/flairNLP/flair

tures derived from the last layer as our base-
line, we concatenate two more layers: the
first one (layer 1) and the middle one (layer
6). This choice allows the feature learning to
understand three levels of context-specificity
(Ethayarajh, 2019). The final word represen-
tation is obtained by taking the sum of its
subword embeddings.

• FastText with Byte Pair Embedding: It
has been practically proven that combining
contextual embeddings with static embed-
dings improves the performance of many NLP
downstream tasks (Peters et al., 2018). We dis-
card subword part, take only word vector part
of a FastText model (pre-trained on Common
Crawl dataset) for word representation and
utilize an external English Byte Pair Embed-
ding for out-of-vocabulary functionality. This
combination performs as well as the original
FastText while effectively reduces memory
usage.

All of the above embeddings are concatenated to
form a long vector for each word, which is digested
by a feature learning model.
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3.2.2 Feature Learning
The feature learning part is a sequence-to-sequence
model that takes a sequence of word vectors and
learns higher-level features and inferences tags. We
use a linear layer to reproject the word embeddings
onto a vector space with dimensions equal to the
length of concatenated word embeddings. Two
follow-up BiLSTM (Hochreiter and Schmidhuber,
1997) (Dyer et al., 2015) blocks are added to learn
high-level semantic-syntactic dependencies of the
sequence. Finally, a Conditional Random Fields
(Sutton and McCallum, 2010) layer, placed on top
of the BiLSTMs, makes tag prediction for each
word.

3.3 Method 2: Self-training With In-domain
Unlabeled Data

3.3.1 In-domain data retrieval
In-domain unlabeled data is one of the determining
factors for Self-training. The Toxic Spans Detec-
tion task’s labeled dataset is a subset of toxic-and-
severe-toxic-labeled data in Civil Comment Dataset
(Pavlopoulos et al., 2021). To retrieve additional
data, we first selected posts classified as toxic by at
least half of its toxicity annotators. After removing
texts in both train and trial labeled datasets from
the retrieved data, we randomly select a subset of
30,000 unseen texts for the task. The choice of
extra datasets’ size is heuristic and limited due to
low-computing resources.

3.3.2 Data filtering and soft label
We slightly customized the pseudo-labels distilla-
tion process applied in classification tasks (He et al.,
2018) for the sequence-tagging problem. Instead
of evaluating and selecting each text in unlabeled
data, we use the teacher model’s post-softmax class
probabilities to evaluate and select each word in
a context. Specifically, if each word’s confidence
score is greater than a threshold, we keep the back-
propagation process through that word; otherwise,
we ignore it. Notice here that the probabilities men-
tioned above are also utilized as confidence scores
and pseudo-labels for the student training.

3.3.3 Combine generated-labeled data with
original-labeled data

The student model is trained on a combination of
original-labeled and synthetic-labeled datasets. It
has the same architecture as the teacher model ex-
cept for increases in dropout rates of dropout layers
and the hidden size in the model’s head classifier.

We chose the best checkpoint of the baseline model
as teacher model.

3.3.4 Post-processing
For each continuous toxic-predicted span, we elim-
inate any existing punctuation at both its begin-
ning and end. Additionally, to partially prevent our
model from predicting common toxic comments’
targets as toxic spans, we exclude any predicted
span in our predefined list of targets (described
in details in the Appendices section). This list is
based on the identity-targets list of toxic comments
in the Civil Comments Dataset.

3.4 Ensemble Learning
We combine our two approaches by taking intersec-
tion (Intersection Ensemble) or the union (Union
Ensemble) of predicted character offsets generated
by best model results, from each method, to obtain
the final offsets for each sentence.

SI = S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2}
SU = S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2}

With SI, SU, S1,S2 are the intersection, union
Feature-based Learning and Self-training offset pre-
dictions for one sentence of the ensemble model
respectively.

Figure 1 illustrates our composed framework:
the two approaches, built and extent on top of the
baseline, are combined for the final predictions.

4 Experiments

4.1 Dataset
The original dataset contains 7939 annotated sam-
ples for training and 2000 unlabeled samples for
testing. We use a small trial dataset, given by the
task organizer which consists of 690 labeled sam-
ples, as our development set. We train our models
on the training set, use the development set to find
the best hyper-parameters, and finally make our
submission on the private test set.

4.2 Experiment setup
This section focused on the hyper-parameters con-
figurations of our two methods and is mentioned in
the Appendices section.

4.3 System Configuration
Our experiments are conducted on a computer with
Intel Core i7 9700K Turbo 4.9GHz, 32GB of RAM,
GPU GeForce GTX 2080Ti, and 1TB SSD hard
disk.
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4.4 Evaluation Metric
The evaluation metric of our system is defined, by
the task organizer (Pavlopoulos et al., 2021) , as
follow:

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)

P t (Ai, G) =

∣∣St
Ai
∩ St

G

∣∣
∣∣∣St

Ai

∣∣∣

Rt (Ai, G) =

∣∣St
Ai
∩ St

G

∣∣
∣∣St

G

∣∣

if St
G = {φ} ⇒ F t

1 (Ai, G) =

{
1 if St

Ai
= {φ}

0 otherwise

F T
1 (Ai, G) =

1

n

n∑

t=1

F t
1 (Ai, G)

With:

• St
Ai

: character offsets of toxic post t, output
of system Ai

• Gt : ground truth character offsets of toxic
post t

• Ft
1 (Ai,G) : F1 score of system Ai , with

respect to ground truth Gt of post t

• FT
1 (Ai,G) : F1 score of system Ai on

dataset T

• |.| : set cardinality

4.5 Results
4.5.1 Baseline result
Table 1 indicates the performances of our baseline
model with two different backbones, RoBERTa
(Liu et al., 2019) and Unbiased Toxic RoBERTa
(which is refered as Toxic RoBERTa for the rest
of the paper) (Hanu and Unitary team, 2020). The
toxic domain-adaptive pre-trained language model
outperforms general RoBERTa by a large margin
(up to 0.68), which sheds light on the necessity of
adapting universal representations to task-specific
domains.

Backbone Private test
F1-score

RoBERTa 68.62

Toxic RoBERTa 69.30

Table 1: Performances of the baseline model with two
different backbones.

4.5.2 Feature-based Learning result
We froze Toxic RoBERTa backbone in all experi-
ments of feature-based learning except the last one.
This latest experiment compares the differences in
model performances between tuning and not tuning
Toxic RoBERTa.

Word Embeddings Private test
score

Toxic RoBERTa 69.89

FastText w/ BPE 67.89

Flair 67.92

Toxic RoBERTa + Flair 69.99

Toxic RoBERTa
+ FastText w/ BPE

69.95

Toxic RoBERTa
+ Flair + FastText w/ BPE

70.26

Toxic RoBERTa (fine-tuned)
+ Flair + FastText w/ BPE

67.37

Table 2: Results of different embedding combinations
for method one

Table 2 shows the feature-based model’s perfor-
mance with different word embeddings and the gap
in F1-score between feature-based and fine-tuning
models. Our findings are as follows:

Toxic RoBERTa was the best feature extractor
since using it achieved a competitive F1-score of
69.89. On the other hand, using only Flair results
in a slightly better performance than FastText with
BPE (67.92 and 67.89 respectively).

Adding more features (learned by Flair or Fast-
Text with BPE embeddings) to ones learned by
Toxic RoBERTa improved F1-score (69.99 and
69.95 respectively). Ultimately, combining all the
word-representations obtained the highest score at
70.26.

Fine-tuning RoBERTa dramatically decreased
the performance (up to 3-4).
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4.5.3 Self-training result
Table 3 presents the performance result of the 2nd
method. Our choice of the teacher was the best-
performed baseline model with 69.30 F1-score.
Post-processing enhanced this performance, re-
sulted in 69.44 F1-score. Self-training only leads
to a better student with an improvement of 0.1 com-
pared to the post-processed teacher model. We
suspect that this unimpressive increase is due to the
teacher model’s confirmation bias and the unsolved
issue of noisy-pseudo labels (Pham et al., 2021).

Backbone Private test
F1-score

Teacher w/o Post processing 69.30

Teacher w/ Post processing 69.44

Student 69.54

Table 3: Performances of the teacher model with and
without post-processing and student model.

4.5.4 Ensemble learning result
Table 4 illustrates the effectiveness of our ensem-
ble methods. Intersection Ensemble results in a
significant improvements of our system prediction
(0.51 and 1.23 compared to Feature-based Learn-
ing and Self-training respectively) while Union En-
semble leads to a substantial decrease of F1-score
(-1.14 and -0.42 compared to method 1 and 2 re-
spectively). This exciting finding indicates that In-
tersection Ensemble can rule out numerous falsely
positive tokens of our two models whereas Union
Ensemble worsen the performance by integrate
these false positives.

Method Private test
F1-score

Feature-based Learning 70.26

Self-training 69.54

Union Ensemble 69.12

Intersection Ensemble 70.77

Table 4: Performance of ensemble models with differ-
ent ensemble methods.

5 Error Analysis

Carefully analyzing errors made by our ensemble
model on the test dataset has shed light on our sys-

Figure 2: Analysis of the detection of lengthy toxic
spans.

tem’s weaknesses. The following terms are defined
to aid the reading of this section:

• Toxic span: ground-truth toxic span.

• Long span: contains at least two words.

• True positive span: all words in the span are
correctly predicted as toxic.

• False negative span: at least one word in the
toxic span are predicted as non-toxic.

5.1 Unsuccessful detection of lengthy toxic
spans

Among false negative spans in our system’s predic-
tions, 218 spans are short spans, which constitutes
a small portion of the total short spans of the test
set. In contrast, the other 158 spans are long spans
while the total number of long spans of the test set
is 200. This means our model had a bad perfor-
mance on lengthy toxic spans with false negative
rate up to 79%.

Figure 2 further investigates on long span failure.
While 90% (38 spans/42 spans) of our correctly
predicted long spans contains only two word, this
numbers for false-negative spans decrease to 62%
(98 spans/158 spans). Longer spans are harder to
predict. Failing to detect spans with more than
three words contributes approximately 38% to the
model’s false-negative.

Table 5 demonstrates several instances of the
failure.

5.2 False negatives due to post-processing
Although experimentally showed its effectiveness,
post-processing after Self-training inevitably ex-
cluded continuous predicted spans such as “NIG-
GERS” and “MUSLIMS” which are potentially a
part of ground-truth toxic spans.
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Ground-truth Prediction

Bunch of cowards cowards

burn them at the stake burn them

big, fat, orange buffoon None

you’re a fecking write-off None

Table 5: Several instances of errors in detecting long-spans

I wish this moron would have been shot to death by the US soldier instead of the other way around.
I hope that 10 million is given to the soldier’s family who actually deserve it.

Our ignorant, clueless legislators are working hard to ensure that Alaskans are as
ignorant and clueless as the legislators themselves are.
Stupid Alaskans are the only way these moronic legislators will continue to get re-elected.

Trash, and just not the regular bigoted flatulence, this crap you write is evil trash

Note: Underlines are the prediction of our models and bold text are our manually annotated toxic-spans.

Table 6: Several examples of our model predictions on no-span texts, which may have been mis-annotated

5.3 Failure due to mis-annotated spans

We notice our model predicted false positive to-
kens in 469 toxic comments and most of them (308
comments) are humanly annotated with no toxic
spans. In our opinion, many of these texts are mis-
annotated, which potentially lower the precision of
our system.

Table 6 presents several examples of this issue.
The underlines are our model predictions, while the
bold text spans are our opinion of what toxic anno-
tations should be for the given text. All these texts
contain no toxic spans, according to the dataset’s
annotators.

6 Conclusion

In this paper, we proposed a system to resolve
the SemEval task 5: Toxic Spans Detection. Our
method utilized a pre-trained language model in
toxic-domain and successfully combined two ap-
proaches Self-training and Feature-based Learning
to achieve a high F1-score of 70.77. Finally, we
provided insights into failure of the system and the
task’s potential falsely-negative annotations issue
with careful error analysis.

Despite our success on the leader board, in future
research, we determine to improve our model as
follow:

• Investigate a solution for the noisy-pseudo
label issue to enhance the performance of the

Self-training method.

• Combine Self-training with Feature-based
Learning to learn a more robust toxic-span
detection model.
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A Appendices

To form our target list in 3.3.4, we include original
form, plural form, upper or lower case of each word
in the table 7 to that list.

Target Identities

Male, female, transgender,
heterosexual, homosexual, gay,
lesbian, bisexual, Christian,
catholic, jewish, Muslim,
Islam, hindu, buddhist,
atheist, black, white,
asian, latino, Nigger, Mexican.

Table 7: Common target identities in Civil Comment
dataset.

Table 8 describes hyperparameter configuration
for training. For Feature-based Learning, Flair em-
beddings are fine-tuned before training the NER
model. Turn into Self-training, the best baseline
model is used as the teacher. If not specified, the
corresponding hyper-parameter value is used for
training both baseline and student models
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Task Hyperparameter Value Description

Fine-tune
Flair

pre-trained weights
”news-forward”/
”news-backward”

Initial weights of the Flair models.

sequence length 250 Length of character sequences

mini batch size 500 Size of batches during training

learning rate 20 Initial learning rate

patience 10 Number of epochs without improvement

max epochs 5 Number of maximum training epochs

optimizer SGD Optimizer used for training

scheduler AnnealOnPlateau Learning rate scheduler

Train NER
model

dropout 0.3995 Probability of an element to be zeroed

locked dropout 0.4413
Probability of entire parameters in
embedding space to be zeroed

word dropout 0.0677
Probability of entire words (or characters)
in embedding space to be zeroed

learning rate 0.0005 Initial learning rate

min learning rate 1e-07
Minimum learning rate to terminate
training

mini batch size 32 Size of batches during training

max epochs 50 Number of maximum training epochs

optimizer AdamW Optimizer used for training

scheduler AnnealOnPlateau Learning rate scheduler

Baseline +
Self-training

hidden size T 150
Size of the linear projection of
the teacher’s head classifier

hidden size S 160
Size of the linear projection of
the student’s head classifier

learning rate 1e-05 The learning rate used for training

optimizer AdamW Optimizer used for training

scheduler None No learning rate scheduler used

dropout T 0.3
Dropout rate of all dropout
layers in the teacher head classifer

dropout S 0.4
Dropout rate of all dropout layers in
the student head classifer

max epochs 5 Total training epochs

label smoothing 0.15 Label smoothing coefficient

confidence threshold 0.7

Use in obtaining extra data
for student model, all words with
post-softmax score (calculated
by the teacher model) less than this
threshold will be ignored

batch size 8 Size of batches during training

Table 8: Hyperparameters for feature-based model training.897
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Abstract

This paper describes the system developed by
the Antwerp Centre for Digital humanities and
literary Criticism [UAntwerp] for toxic span
detection. We used a stacked generalisation
ensemble of five component models, with two
distinct interpretations of the task. Two mod-
els attempted to predict binary word toxicity
based on ngram sequences, whilst 3 categori-
cal span based models were trained to predict
toxic token labels based on complete sequence
tokens. The five models’ predictions were en-
sembled within an LSTM model. As well as
describing the system, we perform error analy-
sis to explore model performance in relation to
textual features. The system described in this
paper scored 0.6755 and ranked 26th.

1 Introduction

SemEval 2021 Task 5: Toxic Spans Detection
was organised by John Pavlopoulos and colleagues,
and described in detail in their task description
paper (Pavlopoulos et al., 2021). Competing teams
were asked to develop systems capable of detecting
spans of toxic text. Predictions were evaluated
using a pairwise F1-score of toxic character offset
predictions, described in section 5.1.

Initial analysis of the development data revealed
that toxic spans were varied in content and not
limited to single words. Though most examples
contained single toxic words or phrases, others
contained longer spans and complete sentences.
Figure 1 illustrates this phenomena. With this in
mind, we sort a strategy that combined longer span
based detection with binary word classification.

Table 1 reveals that toxic spans were on average
3̃ times longer in the development set, whilst stop
words were 4̃ times more frequent. Figures 8 and 9
shows the frequency of these features in relation to
model performance.

# 38 ... while brutal scum hold sway in our institu-
tions.

# 36 Why even bother to give this woman a time of day.
Bury her in the cotton field where she belong.

# 31 other religions aren’t carrying
out the violent and extremist
doctrines as Islamists are.

# 34 I hope he and other car theves read this,
I’ll shoot you if I catch you in my vehicles

stealing then call the police.

Figure 1: Example of possible annotation rationales.

dev test
mean total std mean total std

TOX words 3.22 25547 9.37 1.24 2488 3.59
stop ws 0.98 7802 3.82 0.26 529 1.73

NOT words 32.52 258165 34.39 31.44 62884 30.87
stop ws 16.19 128533 17.55 15.45 30909 15.75

support 7939 2000

Table 1: Macro values for toxic and non-toxic spans for
development and test data. Mean average, total number,
and standard deviation are shown for all words and stop
words. Support is shown from development and test
data as the total number of samples

Strategy We combined models that used antithet-
ical contexts, i.e. full sequences, and shorter ngram
sequences before and after a given word. This
approach is based on the hypothesis that their pre-
dictions would have a low correlation, and in turn,
they would create ideal ensemble components.

Results The system described in this paper
scored 0.6755 and ranked 26th. We discovered that
model correlation did play a factor in the accuracy
of an ensemble approach; however, much of this
performance increase was lost in transition to test
data, where correlation increased on the most fre-
quent type of examples. In section 5.3 we analyse
model performance and correlation in relation to
textual features.

898



2 Background

Toxic span detection is a development of binary tox-
icity detection which has garnered recent attention,
in the form of shared-tasks and datasets (Wulczyn
et al., 2017; Zampieri et al., 2019).

Features Teams were supplied with development
data consisting of 7939 text samples in varying
lengths up to 1000 characters, and tested on 2000
text samples.

Target Span detection asks systems to detect
which specific series of characters are toxic, ir-
respective of the text’s overall toxicity. Figure 2
illustrates the target value for SemEval 2021 Task 5.
Unlike Named Entity Recognition, systems were
not scored on their performance at negative, begin-
ning, middle, or end token detection. This target
definition led to a focus on positive optimisation,
where false positives were of more importance than
true negatives. In section 5.3 on error analysis we
compare model scores using a binary word level
representation of toxicity, that scores both positive
and negative prediction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S a i d a v i l l a g e i d i o t .

Figure 2: Illustration of toxic span character offsets.

3 System overview

Figure 3: Model Diagram including all component
models. Colours represent layer types and arrows rep-
resent training pipeline.

Task Interpretations We used two types of com-
ponent models; binary word level models and cate-
gorical span based models, and combined those

in an LSTM network (Hochreiter and Schmid-
huber, 1997). We used two word based mod-
els [GLOV, BERT] and three span based mod-
els [ALBE, ROBE, ELEC], the softmax output of
all models were concatenated and supplied to an
LSTM model [ENSE].

Motivation We intended for the word based mod-
els to learn local features in the tokens nearest the
target word, and for the span based to learn the
overall features that affected sub and multi word
toxicity.

3.1 Baselines
To interpret the task we relied on the Spacy
implemented baseline shared by the organiz-
ers and described in the task description
paper (Pavlopoulos et al., 2021; Honnibal
et al., 2020). The approach retrained the
RoBERTa based en_core_web_trf model’s
ner, trf_wordpiecer, and trf_tok2vec
components, producing f1-scores of 0.5630 on the
development data and 0.6305 on test data. To In-
terpret the problem further, we implemented two
simple baselines.

Lexical Lookup Using a subset of samples from
the development data, we created a toxic words list
from all words within toxic spans, except for stop
words 1. On the test data, we then classified words
as toxic if they appeared within the aforementioned
toxic words list. We then converted word offsets
into character offsets. This approach achieved an
F1-score of 0.4161 on the test data.

SVM Using Term Frequency to Inverse Docu-
ment Frequency we created two document vector
representations of toxic and non-toxic spans. Using
a Support Vector Machine, we predicted the proba-
bility that a word vector appeared within a toxic or
non-toxic document (Salton and McGill, 1986; Wu
et al.). We then used a binary threshold of 0.5 and
class weights based on relative label frequency to
predict whether a word was toxic. This approach
achieved an F1-score of 0.5489 on the test data.

3.2 Component Models
3.2.1 Span Prediction
Span prediction models used the complete se-
quence of words, up to a maximum length, to pre-

1The toxic words list was created from the first 5800 sam-
ples of the development data. We used Spacy tokenisation and
English stop words list, and we removed space and character
offsets from predictions.

899



Figure 4: Illustration of toxic span prediction based on
complete sequence.

dict toxic character offsets. Sequences were rep-
resented as token reference indexes, described in
section 4.1. The target sequence was processed
from character offsets into categorical arrays for
toxic, non-toxic, and padding tokens. 4.1.

Transformer Models We selected three pre-
trained transformer models (ALBERT, RoBERTa,
ELECTRA) and fine-tuned them for this task with
extra linear layers. We performed separate hyper-
parameter optimisation for each model, detailed in
section 4.2. ALBERT is a lightweight implemen-
tation of a BERT model (Lan et al., 2020; Devlin
et al., 2019) that uses feature reduction to reduce
training time. ELECTRA is a further development
of the BERT model that pre-trains as a discrimi-
nator rather than a generator (Clark et al., 2020).
RoBERTa develops the BERT model approach for
robustness, (Liu et al., 2019). During develop-
ment we found that these three transformer models
achieved the highest f1-scores in relation model
correlation compared to alternatives. All models
used the Adam optimizer (Kingma and Ba, 2017).

3.2.2 Binary Word Prediction

Figure 5: Illustration of toxic word prediction based on
sequence before and after target word.

The binary word level models treated the task as
word toxicity prediction based on a sequences of
words before and after the target word. Figure 5
illustrates this approach. The target word toxicity
was represented as a binary value. The sequence
length before and after the target word was opti-
mised for each model, and described in section
4.2.

Siamese-LSTM with Glove Word Embeddings
A Siamese LSTM model used two networks based
on separate glove embeddings of the sequence of

Task Representation
input text ”There are still morons ”
target labels 17, 18, 19, 20, 21, 22

BERT Representation
input tokens there are still mor ##ons
word ids 0 1 2 3 3
target labels 0 0 0 1 1

Figure 6: Input features and target labels for an exam-
ple sequence, comparing a BERT specific token rep-
resentation with the character offset representation de-
fined by organisers (Pavlopoulos et al., 2021).

words before and after the target words (Bao et al.,
2018; Baziotis et al., 2017).

LSTM Finetuning BERT-base An LSTM
model was trained based on the output of a
BERT-base model. The words before and after the
target word were used as model features, and the
target word toxicity was represented as a binary
value (Devlin et al., 2019).

3.3 Ensemble Model

A Bidirectional LSTM model was used to predict
token toxicity based on tokenised word features
and component model predictions. The model used
transformer style feature representations to predict
a sequence of categorical representations for token
toxicity, as described in section 4.1. The ensem-
ble model relied on five fold cross validation, as
described in section 4.2.

3.3.1 Component model Predictions
Component model predictions were concatenated
together as categorical representations of labels
(not toxic, toxic, padding : 0,1,2). Each model’s 3
dimensional output (number of samples, sequence
length, number of labels) was permuted into a 4
dimensional matrix (number of samples, sequence
length, number of labels, number of models).

4 Experimental setup

4.1 Pre-Processing

Tokenisation Text sequences were tokenised
into character sequences using a BERT tokenizer
and excess characters were replaced with a # char-
acter, as shown in Figure 6 (Devlin et al., 2019).
Sequences were padded and truncated for unifor-
mity to a length of 200 tokens. Longer sequences
were handled separately, and predictions were com-
bined in post-processing, described in section 4.4.
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Target Label Representation To best suit the
component models, we used a target representation
based on the character sequences from the BERT
tokenizer. Each word-like sequence was given a
label based on its word-id, and converted into
categorical binary arrays, or one-hot vectors. This
is illustrated in Figure 6.

4.2 Training and Optimisation

Cross Validation We used stratified k fold vali-
dation of the development data to train all models.
After optimisation, each component model’s pre-
dictions on the test portion of fold k were added
to the train portion of the other folds. Producing
unseen training features for the ensemble model.
This process avoids overfitting in component mod-
els, and facilitates training an ensemble model on
the complete development data (Fushiki, 2011; Pe-
dregosa et al., 2011).

Hyper-Parameter Optimisation Model param-
eters were optimised for each fold of the develop-
ment data and the best models were used by the
ensemble model. Table 2 shows the optimum pa-
rameters for each model used on the test data. We
used Bayesian optimization for each fold of the de-
velopment data to find optimum parameters (Snoek
et al.). Component models were selected based on
their f1-score and prediction correlation to other
models. The ensemble model was trained on the
predictions of the optimum model for each fold of
the development data, expanded on in Section 4.3.

span-based word-based
method ELEC ROBE ALBE GLOV BERT ENSE

dropout 0.05 0.40 0.23 0.4 0.3 0.23
epochs 4 4 4 20 6 4
layers 2 2 3 3 3 3
nodes 9 3 6 20 3 6
neg weight 1.00 0.92 1.12 0.6 1.0 1.0
pos weight 1.00 1.24 0.94 6.0 1.0 1.0

dev F1 0.665 0.663 0.682 0.647 0.656 0.702

test F1 0.673 0.662 0.672 0.637 0.634 0.675

Table 2: Table of the best model parameters. Pairwise
F1 scores are shown for all span based models.

4.3 Prediction

To predict spans for submission, a version of each
component model optimised for each fold of the
development data was supplied the test data and
their outputs were averaged. The ensemble model

was then supplied component model predictions
and tokenised text sequences.

4.4 Post-processing

Model output was converted from 2 dimensional
token-level categorical arrays (n tokens, n labels)
into character offsets. The character offsets of
each positively labeled token was then added to
a list, as illustrated in Figure 6. The predictions
of sequences that had been truncated during pre-
processing, were combined and duplicates were
removed.

5 Results

Table 3 reveals that the ensemble model achieved
a similar score on both development and test data,
while the ALBERT, ELECTRA, and baseline mod-
els improved in testing. Crucially, the 5̃% increase
in f1-score from component models to ensemble,
that we see on the development data, was not trans-
ferred to the test data.

dev test
F1 P R F1 P R

ENSE 0.6736 0.6664 0.7000 0.6755 0.6538 0.7182

ALBE 0.6284 0.6966 0.6677 0.6684 0.6695 0.6995
ELEC 0.6390 0.6975 0.6936 0.6668 0.6459 0.7296
ROBE 0.6418 0.7047 0.6908 0.6192 0.5771 0.7386
BERT 0.6568 0.6209 0.6260 0.5568 0.4209 0.5260
GLOV 0.6378 0.5850 0.5547 0.4378 0.4850 0.5547

BASE 0.5523 0.6247 0.5630 0.6305 0.5969 0.6548

Table 3: Scores on development and test data. The fi-
nal submitted system predictions [ENSE] are shown in
bold and component models are shown in italic.

5.1 Task Specific Evaluation Metrics

Systems are evaluated with an F1 score of character
offsets (Pavlopoulos et al., 2021) . In cases where
predicted spans are empty, 1 is given when true
spans are empty and 0 is given if there are any true
spans.

5.2 Model Correlation

Figure 7 reveals that the ensemble and ALBERT
models have a high correlation, a logical outcome
of their shared base layers; whilst word based mod-
els [BERT, GLOV] have a low correlation, reflect-
ing their diverse interpretations.
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Figure 7: Model Correlation calculated using a macro
average f1-score

5.3 Error Analysis

We performed error analysis to interpret the hypoth-
esis that there are multiple annotation rationales;
single toxic words, and longer offensive sentences,
illustrated in Figure 1.

Toxic Span Length Figure 8 reveals that the
length of toxic spans had an impact on model per-
formance. Models were less accurate at detecting
longer spans on both development and test data.
Furthermore, the impact of this effect on test data
was decreased as there were fewer longer toxic
spans.

Figure 8: Model F1 score at n tokens per toxic span.
Bars show the frequency of n tokens in development
and test data. Shaded areas shows standard deviation
of the f1-score for the ensemble model.

Stop Words in Toxic Spans The frequency of
stop words in toxic spans also affected model per-
formance. Figure 9 reveals that, where present,
spans with more stop words caused lower model
accuracy.

Figure 9: Model F1 score at n stop words per toxic
span, and n stop word frequency.

Binary Token Level Evaluation By using token
level scoring we are able to reveal how the models
perform on both positive and negative tokens. Here,
the target labels are represented as binary arrays;
1 for toxic tokens and 0 for non-toxic. We can not
expect these calculations to align with character
offsets, due to variance in tokenisation and parsing.

Figure 10: Binary token level scores for precision, re-
call, and f1-score.

6 Conclusion

Our initial hypothesis, that combining word based
and span based approaches would yield a signif-
icant performance boost, did not stand up. We
measured a 5̃% increase in f1-score on develop-
ment data, but this was not transferred to test data.
In future work, we would look to a strategy that
incorporated model transferability in component
model selection, with the intention of better han-
dling fluctuations in annotation rationale. Drawing
on recent work (Fortuna et al., 2021).
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Abstract
This article introduces the system description
of the hub team, which explains the related
work and experimental results of our team’s
participation in SemEval 2021 Task 5: Toxic
Spans Detection. The data for this shared task
comes from some posts on the Internet. The
task goal is to identify the toxic content con-
tained in these text data. We need to find the
span of the toxic text in the text data as accu-
rately as possible. In the same post, the toxic
text may be one paragraph or multiple para-
graphs. Our team uses a classification scheme
based on word-level to accomplish this task.
The system we used to submit the results is
ALBERT+BILSTM+CRF. The result evalua-
tion index of the task submission is the F1
score, and the final score of the prediction re-
sult of the test set submitted by our team is
0.6640226029.

1 Introduction and Background

From the popularization of the Internet to the first
year of the mobile Internet in 2011, the number of
online social media and social media users has con-
tinued to grow. In the context of the ever-expanding
user base, coupled with the free and interactive
features of online social media communication.
Therefore, online social media has exposed many
issues worthy of our attention, such as the lack of
communication standards and the out-of-control of
information dissemination, which makes the dis-
semination of online social media prone to various
negative functions (Baccarella et al., 2018).

The task of toxic span detection is to detect
the span of text with toxic information in the text
(Pavlopoulos et al., 2021). The goal of the task
is to predict the beginning and ending character
positions in the text as accurately as possible. Re-
viewing the content in online media can effectively
avoid the spread of a series of negative informa-
tion such as cyber violence, cyberbullying, and

false news. Audits are essential to promote healthy
online discussions. However, the content and num-
ber of posts in social media are too large, and the
manual review method obviously cannot achieve
a good effect. Therefore, in combination with the
development of modern technology, achieving a
semi-automatic audit is the best solution.

2 Related Work

There are many different kinds of methods for iden-
tifying negative information in social media, but
usually, these methods mainly focus on supervised
learning. Simple SurfaceFeatures similar to the
bag of words model can provide very clear and
easy-to-understand information in text processing
tasks. The general approach of this method is to
merge multiple larger n-grams into a feature set
(Nobata et al., 2016; Djuric et al., 2015). Use the
artificial neural network method to train the word
embeddings in the corpus. The purpose is to use the
distance between vectors to indicate the semantic
similarity of different words. Djuric et al. pro-
posed a method of directly using embedding to
represent the entire text and showed us the effect
of this method (Sun et al., 2019).

Negative information in the text can be detected
by the above methods. But more information needs
to be obtained according to the context. The pre-
trained language model based on the Transformer
architecture has great advantages both at the word
level and in context information (Wang et al., 2019).
Therefore, in this task, we try to combine the pre-
trained language model to complete the detection
of toxic content.

3 Data and Methods

In this section, we introduce the data provided by
the task organizer team to the participating teams,
as well as the models and methods we use.
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Figure 1: A word cloud diagram of the training set text
data provided by the task organizer team. The result
shown in the figure is the data after removing the stop
words.

Figure 2: A word cloud diagram of the test set text data
provided by the task organizer team. The result shown
in the figure is the data after removing the stop words.

3.1 Data Description

The task organizer team provides each team with
training data sets and test data sets related to the
“Toxic Spans Detection” task. The training data
set consists of two parts, one is the text data of
the post, and the other is the index position of the
span of Toxic Spans. Each post corresponds to
an index span data. There are some posts in the
training set that do not contain toxic content, and
there are one or more pieces of toxic content in
the remaining posts. Also, in the index range of
these toxic content, it may be a phrase, a sentence,
or a word. The length of the post is not the same.
Compared with the training data set, the test set
only contains the text data of the posts. We need
to use our method to predict the index span of the
toxic content of posts in the test set. Table 1 shows
the sample data of the data we used in the task.

There are 7939 and 2000 pieces of data in the
training set and test set, respectively. We visualize
the text data in the training set and the text data
in the test set using word cloud graphs. The word
cloud image clearly shows us the characteristics
of word frequency distribution in the text data set.
Regardless of the text data in the training set data
or the text data in the test set data, some insulting

Figure 3: The model structure and data flow we used in
the task.

Figure 4: The BiLSTM structure and data flow

vocabulary, as well as some neutral vocabulary and
human names (Trump) appear most. Those sen-
tences with insulting words are usually detected as
text with toxic spans. Some short sentences com-
posed of words with neutral meanings and other
phrases may also be recognized as text with toxic
spans. The reason is because these sentences com-
bined with some background information will con-
vey unfriendly information. Figure 1 and Figure 2
show the word frequency information in the train-
ing set and the word frequency information in the
test set.
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Data category Text Spans
train “““who do you think should do the killing?”” [32, 33, 34, 35, 36, 37, 38]
train “CROOKED Trump = GUILTY as hell. pathetic” [32, 33, 34, 35, 36, 37, 38, 39]
train He is a scary maniac with a psychopath attitude. []
test This idiot has no clue. [5, 6, 7, 8, 9]

Table 1: Part of the data samples in the training set and test set provided by the task organizer team.

3.2 Methods

In our system, we use pre-processed data as the
input to ALBERT. The architectures of ALBERT
base and BERT base are both composed of 12-layer
Transformer(Devlin et al., 2018; Lan et al., 2019).
Compared with the BERT model, the result of the
original embedding parameter P is the product of
the vocabulary size V and the hidden layer size
H. ALBERT factorizes the Embedding matrix by
using a lower-dimensional embedding space of size
E and then project it to the hidden space.

V ∗H = P → V ∗E+E ∗H = P (1)

Different from H=E in BERT, when H� E, the
number of parameters of ALBERT has a signifi-
cant reduction. Another big difference from BERT
is that ALBERT’s default decision is to share all
parameters across layers (Lan et al., 2019). Based
on these improvements, the training effect of AL-
BERT is better than that of BERT. In terms of mem-
ory usage, the ALBERT pre-training model is also
smaller than the BERT pre-training model.

Based on the structural characteristics of the
RNN artificial neural network, the RNN net-
work has great advantages in processing text data
(Zaremba et al., 2014). But in the actual training
process, a simple RNN network is difficult to con-
verge. Because the loss value of the RNN network
is continuously accumulated as the text sequence in-
creases. Compared with the RNN network, LSTM
artificial neural network has great advantages in
model convergence and processing long text (Gers
et al., 1999; Olah, 2015). LSTM is mainly com-
posed of two key points, one is the cell state, the
other is the gate unit. The information learned by
the LSTM unit will be directly stored in the cell
state, and we can input and update the value in the
cell state. The gating unit plays a role in control-
ling how to update the value in the cell state. These
gating units are composed of forget control gate,
input control gate, and output control gate. The key

to the composition of the gating unit is the sigmoid
function.

In our system, first, we use the preprocessed data
as the input of ALBERT. Then, use the output of
ALBERT as the input of BiLSTM. Next, the output
of the BiLSTM model is used as the input of CRF.
Finally, a classifier is used to classify the output
results of CRF. The classifier needs to classify each
word in the text into one of four different categories.
These four categories are the beginning of the text
span, the inside of the text span, the outside of the
text span, and the toxic span formed by a single
word. The architecture of BiLSTM, our model
architecture and data flow can be seen in Figure 3
and Figure 4.

4 Experiment and Results

In this section, we will introduce the data prepro-
cessing methods and experimental settings we used
in the task and the final results.

4.1 Data Preprocessing

Because our model and method are to classify con-
tent at the word level. So we preprocessed the text
data provided by the task organizer team. Prepro-
cessing mainly involves dividing all words in each
post into one of four categories (Begin, Out, Inner,
Single). These four categories represent our spe-
cific description in Section 3.2, paragraph 4. Then
split the processed training set into a new train-
ing set and a validation set. The split rule is to
randomly extract part from the training set as the
validation set, and the ratio of the training set to the
validation set is 8: 2.

4.2 Experiment setting

We use preprocessed data as input to the model.
During the training process, we adjust the param-
eters of the model according to the results of the
model on the validation set. The learning rates
used by the ALBERT-base, BiLSTM, CRF and
classifier modules in the model are not the same.
The learning rate used by ALBERT-base and BiL-

906



STM is 3e-5, and the learning rate used by CRF
and classifiers is 1e-4. The maximum length of
sentences input in the model is fixed at 120 words.
The choice of this length comes from the length of
the text in the data and the memory size of the GPU.
Sentences that do not reach 120 words in length
will be supplemented with zeros. Sentences longer
than 120 words will be deleted. The epoch and
batch during training are 10 and 32, respectively.
The optimizer used in our experiment is Radam
(Liu et al., 2019).

4.3 Results evaluation method

The evaluation index announced by the task orga-
nizer team is the F1 score. Let system Ai return
a set St

Ai
of character offsets, for parts of the post

found to be toxic. Let G be the character offsets
of the ground truth annotations. We compute the
F1 score of system Ai with respect to the ground
truth G for post t as follows, where | · | denotes set
cardinality.

F t
1(Ai, G) =

2 · P t(Ai, G) ·Rt(Ai, G)

P t(Ai, G) +Rt(Ai, G)
(2)

P t(Ai, G) =
|St

Ai

⋂
St
G|

|St
At
| (3)

Rt(Ai, G) =
|St

Ai

⋂
St
G|

|St
G|

(4)

If St
G is empty for some post t (no gold spans

are given for t), we set F1t(Ai, G) = 1 if St
Ai

is
also empty, and F1t(Ai, G) = 0 otherwise. We
finally average F1t(Ai, G) over all the posts t of
an evaluation dataset T to obtain a single score for
system Ai (Da San Martino et al., 2019).

4.4 Results

In the final results list announced by the task or-
ganizer team, a total of 91 team results are pre-
sented in the list. Our team’s F1 result score was
0.6640226029, ranking 37th. Table 2 presents the
result score of our system on the validation set and
the result score on the test set. Compared with the
results of the top 3 teams in the ranking, our result
is 0.0442802224 different from the optimal result.
Table 3 shows the scores of the top three teams and
our team on the test set.

Data F1 score
Validation set 0.6821240031
Test set 0.6640226029

Table 2: The scores obtained by our system on the val-
idation set and test set. The validation set comes from
20% of the training set provided by the task organizer
team.

team F1 score Rank
HITSZ-HLT 0.7083028253 1
S-NLP 0.7077035474 2
hitmi&t 0.6984762534 3
hub(our method) 0.6640226029 37

Table 3: In the result list released by the task orga-
nizer team, the top 3 submitted test set prediction re-
sults scores and our submitted test set prediction results
scores. A total of 91 participating teams submitted the
prediction results of the test set.

5 Conclusion

This paper presents the system description submit-
ted by our team to SemEval 2021 Task 5: Toxic
Spans Detection. Our goal is to use our system to
detect the span of toxic content as accurately as
possible. We use a classification scheme based on
word-level to complete the task. The system com-
bines the pre-training language model (ALBERT)
and BiLSTM+CRF commonly used in NLP tasks.
The results we submitted proved the feasibility of
our system, but compared with the optimal results,
our method still has room for improvement. In fu-
ture work, we will try to improve our methods to
achieve better results.
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Abstract

This paper describes our contribution to
SemEval-2021 Task 5: Toxic Spans Detec-
tion. Our approach considers toxic spans de-
tection as a segmentation problem. The sys-
tem, Waw-unet, consists of a 1-D convolu-
tional neural network adopted from U-Net ar-
chitecture commonly applied for semantic seg-
mentation. We customize existing architec-
ture by adding a special network block con-
sidering for text segmentation, as an essential
component of the model. We compared the
model with two transformers-based systems
RoBERTa and XLM-RoBERTa to see its per-
formance against pre-trained language models.
We obtained 0.6251 f1 score with Waw-unet
while 0.6390 and 0.6601 with the compared
models respectively.

1 Introduction

Unlike the text classification problems targeting
to classify whole documents (Borkan et al., 2019;
Schmidt and Wiegand, 2017; Pavlopoulos et al.,
2019), toxic span detection is an NLP task focus-
ing on capturing granular contents that make a text
toxic. Proposed solutions may contribute to man-
aging semi-automated moderations such as online
discussions or news portals that are open to large
participation and user comments. Therefore, the
evaluation of systems that could accurately locate
toxic spans within a text is considered a crucial step
for this task (Pavlopoulos et al., 2021).

We adapt two solution approaches for the task.
For the first approach, we consider toxic spans de-
tection as a segmentation problem while in the
second one we use transformers-based models.
Our proposed model for the first approach uses
character-based tokenized chunks as an input and
outputs segmented text. The system uses a 1-
dimensional (1-D) convolutional neural network
adopted from U-Net architecture (Ronneberger

et al., 2015) commonly applied for semantic seg-
mentation. We previously studied this approach,
as we call Waw-unet, on text parsing problems
for unstructured postal addresses, and achieved re-
markable results (Delil et al., 2020).

In our second approach, we consider toxic spans
as a single label Named-Entity Recognition prob-
lem. We employ several different transformers-
based models and obtained better scores with
RoBERTa (Liu et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) network architectures. To
see the difference between our main system and
transformers-based models, we compared model
achievements, and obtained 0.6251 f1 score with
Waw-unet while 0.6390 and 0.6601 with the other
models respectively. Following the final rankings,
our best score ranked 44th among 91 submissions1.

2 Waw-unet Architecture

Waw-unet is a fully convolutional neural network
architecture we designed by taking inspiration from
U-Net architecture which was firstly developed for
segmentation problems (Ronneberger et al., 2015).
The U-Net network architecture is composed of
two symmetric parts, which uses dimension reduc-
tion for the first half of the network, and then in-
creases its dimension in the second half. In this
architecture, the connections are taken from the
convolutional layers on the encoding part, which
also feeds each corresponding layer of the decoding
part.

Similar to the pixel-based image segmentation,
Waw-unet takes input samples, in our case text, and
generates homogeneous masked regions for the tar-
geted segment. However, unlike image processing
which has multi-channel input, the network has 1-
D input due to the single-dimensional nature of text

1Source code for our model is published on
https://github.com/birolkuyumcu/wawunet_
for_toxicspan
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Figure 1: Waw-unet network architecture

data (Fig. 1). The outputs of the convolution layers
are combined and passed through a 1-D convolu-
tion layer, and then we use batch normalization to
accelerate training and prevent the objective func-
tion from getting stuck in local minima. After this
stage, before the outputs send to the next block, if
the output is in the encoder part their dimensions
are reduced in half using max pooling, while dou-
bled if it’s in the decoder part by upsampling.

Although its architecture adapted from U-Net,
we customize existing architecture by adding a spe-
cial network block for text segmentation, as an
essential component of the model. Waw-unet uses
a special network block, which we call it Waw-
block, to extract the attributes in the targeted text
patterns. In our architecture, each waw-block con-
tains three convolutional layers with different ker-
nel sizes. Waw-unet learns input features through
filter sizes of the 3, 5, and 7 as shown in Fig. 2.

2.1 Data Preparation

As we use a character-based system in our model,
the total number of characters in the dataset and
the maximum character length for each sample
need to be determined. In the training dataset, the
former was 1047, while the latter calculated as 125.
Since our model has encoder-decoder architecture,
to prevent matrix dimension problems, the input
size has to be selected so that it can be divided by
2 until the end of the encoder part. Therefore, we
defined max input size, the closest value as 1056,
and the input matrix dimension as 1056 x 125. In
accordance with the segmentation logic, the output
character positions contain toxic spans masked as 1

and the other parts of the text masked as 0 (Fig. 3).

2.2 Model Training
The Tversky similarity index (TI) is used to
calculate the loss function for training the network.
It is an asymmetric similarity measure that is a
generalization of Dice coefficient and Jaccard
index (Tversky, 1977). To define Tversky loss
function we use the following formulation:
TI : Tversky Index
TP : True Positive
FP : False Positive

TI = TP/(TP + a ∗ FN + b ∗ FP )

b = 1− a

Here, we use 1 − TverskyIndex as the loss
function. The parameters a and b are used to pro-
vide weight to the represented classes. In our case,
we determine a = 0.7 to give weight to the false-
negative classification so that the loss function is
modified accordingly. Additionally, Dice similar-
ity coefficient was used as a metric to judge the
performance of the model training.

3 Transformers Models for NER

Toxic span detection can be adopted to NER prob-
lems by considering targeted toxic part of text as
a predefined named-entity. We experiment with
transformers models as an alternative for our model
to see its performance. We use pre-trained models
RoBERTa (Liu et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) in our study utilising Hug-
gingFace Trainer class.
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Figure 2: Waw-block architecture

Figure 3: Waw-unet: Character-based masking

RoBERTa is an extension of pre-trained trans-
former model BERT with over more data and
some configuration changes to the pre-training
stages. The modifications include such as train-
ing longer and bigger batches, dynamically chang-
ing the masking pattern, and training on longer
sequences (Liu et al., 2019). On the other hand,
XLM-RoBERTa uses self-supervised training tech-
niques designated to solve the cross-lingual under-
standing task. The model improves upon previ-
ous multilingual approaches by incorporating more
training data and languages (Conneau et al., 2020).

To prepare toxic spans dataset for training, word
labeling operation carried out by converting toxic
spans into toxic words based on whether more than
50% of their characters labeled as toxic (Fig.4).

We use the Simple Transformers library (Ra-
japakse, 2019) to prepare our data for pre-
trained models. Tokenized input containing the
3 columns—sentence id, words, and labels. Each
value in words has a corresponding label value. In

Figure 4: Transformers NER model: Word-based entity
labeling

this data format, the sentence id determines which
words belong to a given sentence (Fig. 5). We use
the maximum sequence length of 128 for training
and evaluation dataset.

4 Results

We evaluate our system as well as transformers
models’ performance on the SemEval-2021 Task 5:
Toxic Span Detection trail dataset and also report
the evaluation result on the blind test dataset. We
use standard train/test split of the official release
dataset of the Task for experiments.

For our main system model, Waw-unet, we start
model training with 300 epochs and utilize early
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Figure 5: Transformers NER model: Input data format

stopping and learning pause using Keras’s learning
callbacks (Chollet et al., 2015). On the other hand,
we trained transformers models with 8 batch size
with 17 epochs. We gained the best score in 7th
epoch on both pre-trained language models.

XLM-RoBERTa model gained best score 0.6601
while waw-unet and RoBERTa reached 0.6251 and
0.6390 respectively as shown in Table 1.

F1 For Waw-Unet RoBERTa XLM-RoBERTa
Train 0.812 0.803 0.806
Trial 0.602 0.645 0.643
Test 0.625 0.639 0.660

Table 1: Model results

5 Conclusion

We framed the problem as a semantic segmenta-
tion task, and developed a unique approach to ex-
tract targeted spans from provided text data. Pro-
posed system performs relatively well than ex-
pected against pre-trained transformers. Our mod-
els do not use any of the external dataset or auto-
matic linguistic annotations, such as PoS or named
entity tags. Overall, we showed that segmentation
based systems can be used to address the toxic de-
tection task. Our best submitted result was ranked
44th among 91 submissions, obtaining an average
F1 score of 0.6601, 4.82 points behind the first
ranked system.

For future studies, we’re planning to work on
unsupervised training of the Waw-unet architecture
on large datasets to compete with the pre-trained
general language models.
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Abstract

This paper describes our system for SemEval-
2021 Task 5 on Toxic Spans Detection. We de-
veloped ensemble models using BERT-based
neural architectures and post-processing to
combine tokens into spans. We evaluated sev-
eral pre-trained language models using various
ensemble techniques for toxic span identifica-
tion and achieved sizable improvements over
our baseline fine-tuned BERT models. Finally,
our system obtained a F1-score of 67.55% on
test data.

1 Introduction

Toxic speech has become a rising issue for social
media communities. Abusive content is very di-
verse and therefore offensive language and toxic
speech detection is not a trivial issue. Besides, so-
cial media moderation of lengthy comments and
posts is often a time-consuming process. In this
regard, the task of detecting toxic spans in social
media texts deserves close attention.

This work is based on the participation of our
team, named MIPT-NSU-UTMN, in SemEval 2021
Task 5, “Toxic Spans Detection” (Pavlopoulos
et al., 2021). Organizers of the shared task pro-
vided participants with the trial, train, and test sets
of English social media comments annotated at the
span level indicating the presence or absence of text
toxicity. We formulated the task as a token clas-
sification problem and investigated several BERT-
based models using two-step knowledge transfer.
We found that preliminary fine-tuning of the model
on data that is close to the target domain im-
proves the quality of the token classification. The
source code of our models is available at https:
//github.com/morozowdmitry/semeval21.

The paper is organized as follows. A brief review
of related work is given in Section 2. The definition
of the task has been summarized in Section 3. The

proposed methods and experimental settings have
been elaborated in Section 4. Section 5 contains
the results and error analysis respectively. Section
6 is a conclusion.

2 Related Work

Computational approaches to tackle text toxicity
have recently gained a lot of interest due to the
widespread use of social media. Since moderation
is crucial to promoting healthy online discussions,
research on toxicity detection has been attracting
much attention. Our work is also related to hate
speech and abusive language detection (Fortuna
et al., 2020).

The toxic speech detection task is usually framed
as a supervised learning problem. Moreover, fairly
generic features, such as bag of words (Harris,
1954) or word embeddings (Mikolov et al., 2013),
systematically yield reasonable classification per-
formance (Fortuna and Nunes, 2018; Schmidt and
Wiegand, 2017). To better understand the mech-
anisms of toxic speech detection, some scholars
(Waseem et al., 2017; Lee et al., 2018; Karan
and Šnajder, 2018; Swamy et al., 2019) compared
different techniques for abusive language analy-
sis. Neural architectures and deep learning meth-
ods achieved high results in this domain. Thus,
Pavlopoulos et al. (2017a,b) explored the possibil-
ities of deep learning and deep attention mecha-
nisms for abusive comment moderation. Park and
Fung (2017) proposed an approach to performing
classification on abusive language based on convo-
lutional neural networks (CNN). Chakrabarty et al.
(2019) used Bidirectional Long-Short Term Mem-
ory network. Castelle (2018) experimented with
CNN and Gated Recurrent Units. Some recent stud-
ies (Mozafari et al., 2019; Risch et al., 2019; Liu
et al., 2019a; Nikolov and Radivchev, 2019) uti-
lized pre-trained language models such as Bidirec-
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tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) to detect offensive or
abusive language.

In recent years, the task of detecting and an-
alyzing abusive, toxic, or offensive language
has attracted the attention of more and more re-
searchers. The shared tasks based on carefully
curated resources, such as those organized at the
SemEval (Zampieri et al., 2019; Basile et al.,
2019), GermEval (Wiegand et al., 2018), EVALITA
(Bosco et al., 2018), and OSACT (Mubarak et al.,
2020) events, have significantly contributed to the
progress of the field and to the enrichment of lin-
guistic resources. In addition to the corpora col-
lected for these shared tasks, Rosenthal et al. (2020)
released a large-scale dataset for offensive language
identification. Ibrohim and Budi (2018); Leite et al.
(2020); Pitenis et al. (2020); Komalova et al. (2021)
presented various datasets for abusive speech de-
tection in non-English languages. Most of these
datasets classify whole texts or documents, and do
not identify the spans that make a text toxic.

3 Shared Task

The task focuses on the evaluation of systems that
detect the spans that make a text toxic, when detect-
ing such spans is possible. The goal of the task is to
define a sequence of words (character offsets) that
attribute to the toxicity of the text, for example:

• Input. “This is a stupid example, so thank
you for nothing a!@#!@”.

• Output. [10,11,12,13,14,15,51,52,53,54,55,
56].

The sources of data were various posts (com-
ments) from publicly available datasets. The pro-
vided dataset contains 10,629 posts split into train-
ing (7939), trial (690), and test (2000) subsets.

Inspired by Da San Martino et al. (2019), the
organizers proposed to employ the F1-score for
evaluating the responses of a system participating
in the shared task. Let system Ai return a set St

Ai

of character offsets, for parts of the post found to be
toxic. Let Gt be the character offsets of the ground
truth annotations of t. The F1-score of system Ai

is calculated with respect to the ground truth G for
post t as follows, where | · | denotes set cardinality.

Ft
1(Ai, G) =

2·P t(Ai,G)·Rt(Ai,G)
P t(Ai,G)+Rt(Ai,G) ,

Pt(Ai, G) =
St
Ai
∩St

G

St
Ai

,

Rt(Ai, G) =
St
Ai
∩St

G

St
G

.

The final F1-score is an average Ft
1(Ai, G) over

all the posts t of an evaluation dataset T to obtain
a single score for system Ai.

4 Methodology

The stated problem was modified from char-level
to token-level binary-classification. The proposed
solution utilizes a pre-trained language model with
a classification head to classify tokens. Different
configurations of BERT pre-trained as masked lan-
guage models were considered as a backbone.

Due to the lack of available token-level labeled
public datasets for toxic comment and the rela-
tively small size and sparsity of dataset provided
by the competition, the following training pipeline
was proposed to enhance knowledge transfer. First,
fine-tune pre-trained BERT on a larger-scale task
of toxic comment classification, using the Jigsaw
dataset1 from which the competition data were con-
structed. Second, fine-tune obtained model to solve
the actual toxic tokens classification problem. The
exact training parameters are to be found below.

For the first step:

• remove texts occurred in spans dataset from
classification dataset to prevent data leakage
(so as spans dataset is sampled from classifi-
cation dataset);

• 4 epochs, 200 tokens max length, 64
batch size, 10 gradient accumulation, mixed-
precision FP16;

• default AdamW (Loshchilov and Hutter,
2017) with lr = 4e-5, Layer-wise Decreas-
ing Layer Rate (Sun et al., 2019) with decay
η = 0.95 and cosine learning rate (LR) sched-
ule with T = 4 epochs and constant LR after
epoch 3;

• selected bert-base-uncased as best perfor-
mance / speed ratio;

• the best model on validation selection each
0.1 epoch by AUC.

For the second step:

• hold-out ≈ 14% of data to train ensemble of
models later;

1https://www.kaggle.com/c/jigsaw%
2Dtoxic%2Dcomment%2Dclassification%
2Dchallenge
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• out-of-5-fold training on the residual ≈ 86%
of data;

• 4 epochs, 512 tokens max length, 16 batch
size, 10 gradient accumulation, mixed preci-
sion FP16;

• default AdamW with lr = 4e-5, Layer-wise
Decreasing Layer Rate with decay η = 0.95
and cosine LR schedule with T = 4 epochs;

• the best model on validation selection each
0.1 epoch by F1-score.

The final solution containsN×K models, where
N is the number of different backbone BERT archi-
tectures, K is the number of folds (5 in the current
experiments). Obtained models are further to be en-
sembled using different strategies with validation
on the single hold-out dataset:

• hard voting: final spans are selected as at least
one model (spans union), as all the models
(spans intersection) or as some intermediate
methods with at least m models;

• soft voting: final probability is calculated as a
weighted sum of models probabilities;

• train meta classifier.

5 Experiments and Results

Three pre-trained backbone BERT architectures
were considered: bert-base-uncased, bert-large-
uncased (Devlin et al., 2018), and bert-base pre-
trained for Hate Speech Detection (dehate-bert)
(Aluru et al., 2020). First step setup and results:

• select subset of Jigsaw toxic classification
data: all the targets with toxicity score ≥ 0.5
(L = 135168 objects) as class 1 and randomly
sampled 3 ∗ L objects with toxicity score <
0.5 as class 0;

• stratified 80% train, 20% validation;

• 0.968 AUC bert-base, 0.968 AUC bert-large,
0.942 AUC dehate-bert.

So as models except bert-base-uncased did not
show compatible performance for token classifi-
cation (and later for tests on the fold 0 did not
show good F1-score for the actual task as well),
later experiments were continued only for bert-
base-uncased pre-trained model fine-tuned on to-
ken classification.

For step two results are following:

• train + trial, 8621 comments;

• average F1-score over 5 folds is 0.6714.

The experiments were conducted with Hugging-
face transformers library (Wolf et al., 2019).

Many patterns in our results are expected, but
some stand out. In general, our model is good
at detecting obscene language and utterances that
demean honor and dignity or denote low moral
character. We noticed that our model is not very
good at identifying the posts that have no toxic span
annotations. According to the corpus description,
in some toxic posts, the core message is conveyed
may be inherently toxic. Thus, a sarcastic post can
indirectly claim that people of a particular origin
are inferior. Hence, it was difficult to attribute the
toxicity of those posts to particular spans. In such
cases, the corresponding posts were labeled as not
containing toxic spans. Among our results, there
are many examples where the model detected spans
in not annotated posts, for example:

• “uhhh Hillary Clinton is a serial killer and
thief”: [] (true annotation), [26, 27, 28, 29,
30, 31, 33, 34, 35, 36, 37, 38, 44, 45, 46, 47,
48] (our annotation, “uhhh Hillary Clinton is
a serial killer and thief”);

• “This goes way beyond just being an asshole
skipper, dude must have some serious mental
issues”: [] (true annotation), [35, 36, 37, 38,
39, 40, 41] (our annotation, “This goes way
beyond just being an asshole skipper, dude
must have some serious mental issues”).

In addition, some texts in the dataset raise ques-
tions of the annotation credibility, for example:

• “How the hell is this news? Am I sup-
posed to be shocked that the Crown Prince
of Bahrain or one of the world’s biggest
celebrity superstars get’s better access to the
State Department then I do? During which ad-
ministration has this ever not been true? The
media’s desperation to keep this election close
is far past ridiculous” (training set, the toxic
span annotation is underlined);

• “Yup. NVN used the Press. The Press was
USED. Used like their sister on prom night!
Idiots. All faux-erudite, not realizing they
were being played” (training set, the original
annotation is underlined);
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Rank Team F1-score
1 HITSZ-HLT 0.7083
26 UAntwerp 0.67552
27 MIPT-NSU-UTMN 0.67551
28 NLRG 0.67532

Avg result 0.57805

Table 1: Results on the test set.

• “And you are a complete moron
who obviously doesn’t know the mean-
ing of the word narcissist. By the way
your bias is showing” (test set, the original
annotation is underlined, the annotation of
our model is highlighted in bold).

The final result of our model is presented in Ta-
ble 1. As can be seen from the table, the systems of
the participants produce close results. Our system
achieved 67.55% of F1-score on the test set of this
shared task that attracted 91 submitted teams in
total. This value exceeded the average result by
almost 10%.

6 Conclusion

This paper introduces our BERT-based model for
toxic spans detection. As expected, pre-training
of the BERT model using an additional domain-
specific dataset improves further toxic spans de-
tection performance. Experimenting with different
fine-tuning approaches has shown that our BERT-
based model benefits from the two-step knowledge
transfer technique. An ensemble with spans inter-
section obtained our best result on the test data.

In our future work, we will evaluate various lan-
guage models, such as distilled versions of BERT
(Sanh et al., 2019; Jiao et al., 2020) and RoBERTa
(Liu et al., 2019b).

References
Sai Saket Aluru, Binny Mathew, Punyajoy Saha, and

Animesh Mukherjee. 2020. Deep learning mod-
els for multilingual hate speech detection. arXiv
preprint arXiv:2004.06465.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Nozza Debora, Viviana Patti, Francisco
Manuel Rangel Pardo, Paolo Rosso, Manuela
Sanguinetti, et al. 2019. Semeval-2019 task 5:
Multilingual detection of hate speech against immi-
grants and women in twitter. In 13th International
Workshop on Semantic Evaluation, pages 54–63.
Association for Computational Linguistics.

Cristina Bosco, Dell’Orletta Felice, Fabio Poletto,
Manuela Sanguinetti, and Tesconi Maurizio. 2018.
Overview of the evalita 2018 hate speech detection
task. In EVALITA 2018-Sixth Evaluation Campaign
of Natural Language Processing and Speech Tools
for Italian, volume 2263, pages 1–9. CEUR.

Michael Castelle. 2018. The linguistic ideologies of
deep abusive language classification. In Proceed-
ings of the 2nd Workshop on Abusive Language On-
line (ALW2), pages 160–170.

Tuhin Chakrabarty, Kilol Gupta, and Smaranda Mure-
san. 2019. Pay “attention” to your context when
classifying abusive language. In Proceedings of the
Third Workshop on Abusive Language Online, pages
70–79.

Giovanni Da San Martino, Seunghak Yu, Alberto
Barrón-Cedeno, Rostislav Petrov, and Preslav
Nakov. 2019. Fine-grained analysis of propaganda
in news article. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5640–5650.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Paula Fortuna and Sérgio Nunes. 2018. A survey on au-
tomatic detection of hate speech in text. ACM Com-
puting Surveys (CSUR), 51(4):1–30.

Paula Fortuna, Juan Soler, and Leo Wanner. 2020.
Toxic, hateful, offensive or abusive? what are we
really classifying? an empirical analysis of hate
speech datasets. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
6786–6794.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Muhammad Okky Ibrohim and Indra Budi. 2018. A
dataset and preliminaries study for abusive language
detection in indonesian social media. Procedia Com-
puter Science, 135:222–229.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling bert for natural language
understanding. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing: Findings, pages 4163–4174.
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Abstract

The increment of toxic comments on online
space is causing tremendous effects on other
vulnerable users. For this reason, consider-
able efforts are made to deal with this, and
SemEval-2021 Task 5: Toxic Spans Detection
is one of those. This task asks competitors to
extract spans that have toxicity from the given
texts, and we have done several analyses to
understand its structure before doing experi-
ments. We solve this task by two approaches,
Named Entity Recognition with spaCy’s li-
brary and Question-Answering with RoBERTa
combining with ToxicBERT, and the former
gains the highest F1-score of 66.99%.

1 Introduction

The world of social media is overgrowing, and
users easily express their opinions or feelings to-
ward topics that they are concerned about. How-
ever, because of the freedom of speech, lots of toxic
comments or contents are uncontrollably increas-
ing. There are several kinds of research about the
effect of toxic speech on users’ health. In 2017, re-
search about the impact of toxic language on health
was conducted (Mohan et al., 2017). Sometimes,
with toxic words, conversations can become cy-
berbullying, cyber threats, or online harassment,
which are harmful to users. To reduce those neg-
ative impacts, there are abundant researches for
classifying contents into toxic or non-toxic, and
then they hide the whole text if it is toxic. However,
that action may inhibit the freedom of speech. As a
result, censoring only toxic spans is the better solu-
tion for this problem. Therefore, in SemEval-2021
Task 5: Toxic Spans Detection (Pavlopoulos et al.,
2021) we try to realize it.

About toxic contents on the internet, researches
were only about binary toxicity classification. Still,

in task 5 of SemEval-2021, which is about toxic
spans detection, we conduct more in-depth re-
search into the toxicity, find exactly which parts
of the text are toxic. As the NER approach and
Question-Answering (QA) approach, we propose
two approaches for solving this problem. We use
RoBERTa (Liu et al., 2019) combining with Tox-
icBERT (Hanu and Unitary team, 2020), transfer
learning models, for QA approach and spaCy’s
library (Honnibal and Montani, 2017) for NER ap-
proach.

We organize the paper as follows. Section 2
is related works that we consult for building the
systems. The dataset and analyses are defined in
Section 3. In section 4, we introduce our two pro-
posed systems for toxic spans detection. Section
5 describes the results of the studies and analyses.
Finally, in Section 6, we bring our work to a close.

2 Related Works

Researchers around the world these days have
started to concentrate on toxic speech. It inflicts
individual and group harm, damaging our social
fabric (Tirrell, 2018). Several datasets for classi-
fying toxicity on toxic speech on online forums,
such as the dataset provided by Waseem and Hovy
(2016) for English, BEEP! dataset for Korean by
Moon et al. (2020), the dataset for Russian provided
by Smetanin (2020), TolD-Br dataset for Brazil-
ian Portuguese by Leite et al. (2020), and UIT-
ViCTSD, a dataset about constructive and toxic
speech detection for Vietnamese (Nguyen et al.,
2021).

Besides, there are shared tasks about toxic
speech as well as hate speech such as these from
SemEval, includes SemEval-2019 Task 5 Multi-
lingual Detection of Hate (Basile et al., 2019),
SemEval-2019 Task 6 Identifying and Catego-
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rizing Offensive Language in Social Media (Of-
fensEval) (Zampieri et al., 2019), SemEval-2020
Task 12 Multilingual Offensive Language Identi-
fication in Social Media (Zampieri et al., 2020),
and SemeEval-2021 Task 5 Toxic Spans Detection
(Pavlopoulos et al., 2021), which is the current task
we have to deal with in this paper.

3 Dataset

The origin of this SemEval-2021 Task 5 dataset
comes from the publicly available Civil Comments
dataset (Borkan et al., 2019), which consists of
1.2M posts and comments. The data in this public
dataset have no annotation of any toxic spans in
toxic posts but do have post-level toxicity annota-
tions, which mean showing which posts or entire of
them are toxic. And the holders of this task retain
30K of them, which were annotated to be toxic or
severely toxic by at least half of the crowd-raters
from annotations of Borkan et al.

The task holders then randomly keep 10K posts
from the 30K posts for annotating toxic spans. They
employ three experienced crowd-raters per post
from a third-party crowd-annotation platform, and
they warn them about adult content. However, task
organizers also claim that not all toxic posts are
annotated with toxic spans.

The task for crowd-raters is to highlight toxic
sequences of the comments, and if the comment is
not toxic or should annotate the whole of it, crowd-
raters have to check the appropriate box without
highlighting any spans. Consequently, we have two
columns, the spans column and the text column.
The spans column has lists of numbers or null that
reference toxic character offsets in the text column,
and some of the given data are shown in the fol-
lowing table.

spans text
[7, 8, 9, 10, 11, 12] Pretty damned eloquent ...

:)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28]

He might fire you to the
moon, but you already have
a head full of cheese!

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 98, 99, 100, 101,
102, 103, 104, 105, 106]

Nauseating and disgust-
ing. Thank goodness the
First Amendment permits
people to demonstrate their
stupidity.

[] Not if they shoot you first...

Table 1: Examples for the given data.

The competitors receive two separate training

and test sets from organizers. In the training set,
there are 7,939 records, and in the test set, there are
2,000 records. Furthermore, as mentioned in the
data annotating process, one text that possibly has
multiple toxic spans is highlighted. Figure 1 and
Figure 2 illustrate the distribution of spans in the
training and the test sets.

Figure 1: Distribution of spans in the training set.

Figure 2: Distribution of spans in the test set.

For more details, according to Figure 1 and Fig-
ure 2, there is a significant number of single spans
in each post, and it accounts for nearly 68.8% and
70.8% in the training set and the test set, respec-
tively. It is also interesting to notice that the number
of zero spans is not tiny, and the proportion of it
in the training set is less than in the test set, more
specifically, 19.7% in the test set and 6.15% in the
training set.

Moreover, we also calculated the Jaccard score
of text and spans in the given dataset for more in-
depth analysis. The Jaccard score, also known as
the Jaccard index or Jaccard similarity coefficient,
was developed by Paul Jaccard (Jaccard, 1912) and
it is a statistic used for measuring the similarity and
diversity of sample sets as follows.
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Figure 3: Histogram of Jaccard score of each record in
the training set and the test set.

The histogram in Figure 3 illustrates that most
of the data points have Jaccard scores in the range
of 0 to 0.35, and the peak is at 0 to 0.05, which
means toxic character offsets are just a fraction in
each post even there are records annotated all char-
acters of the post are toxic. There are 16 records
in the test set and 212 records in the training set
with Jaccard scores at 0.95 to 1.0. For that reason,
just the toxic part(s) of the comments needs to be
censored rather than the whole comment as in the
traditional method.

4 Systems

In this paper, we propose two systems for the toxic
spans detection task with NER and QA approaches.
The first system is the QA approach based on
RoBERTa and the second system is the NER ap-
proach based on spaCy’s library.

4.1 Question-Answering Approach Based on
RoBERTa

With the QA approach, we use RoBERTa combin-
ing with ToxicBERT as the basis for the system.
RoBERTa (Liu et al., 2019) is a transfer learning
model and it is a replication study of BERT (Devlin
et al., 2019). Unlike BERT, to improve the train-
ing performance, RoBERTa eliminates the Next
Sentence Prediction (NSP) task of the pre-trained
model BERT. ToxicBERT (Hanu and Unitary team,
2020) is also a transfer learning model, and it uses
BERT as the main model for classifying toxicity.
ToxicBERT has an outstanding performance for the
task of Jigsaw Unintended Bias in Toxicity Classi-

fication 1 on Kaggle, which uses the same dataset
with SemEval-2021 Task 5, with 93.64% F1-score.
We use two models for our QA approach system,
and the overview of the system with training and
testing phases is described in Figure 4.

Figure 4: Training and testing phases of toxic spans
detection with RoBERTa based system.

Figure 5: Data preprocessing of RoBERTa based sys-
tem for toxic spans detection.

Firstly, we preprocess the training set with tech-
niques to get the right format for the RoBERTa
model, mentioned in Figure 5. The model we used
only approve one spans, but several examples have
more than one in the training set, and we called it
"multi-span". Hence, we split multi-span (*) into
single spans (**) (***) as below.

• Plain text:

(*) This bitch is so fucking idiot.

• After splitting:

(**) This bitch is so.

(***) This is so fucking idiot.

After splitting texts, we tokenize the dataset with
a subword model as Byte-Pair Encoding (BPE)
(Sennrich et al., 2016). Then, we feed the data into
a pre-trained RoBERTa model and fine-tune it with
suitable parameters. We analyze the length of the
texts in the dataset and set max_length=512 and
epochs=5 for the model. After searching for exten-
sive hyper-parameters, we set the learning_rate and
drop_out equal to 3e-5 and 0.1, respectively. We
also train the model with 5-fold cross-validation.
After the training phase, the trained RoBERTa
model is used for predicting new toxic spans.

1https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification
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Figure 6: Predicting toxic spans with trained model by QA approach.

In the testing phase, besides using RoBERTa, we
use another transfer learning model is ToxicBERT
(Hanu and Unitary team, 2020) for identifying toxic
comments. With ToxicBERT, we classify the input
text into toxic or non-toxic labels before predicting
spans. If the result is non-toxic, we stop the predic-
tion, and the result is an empty spans. If it is toxic,
we feed the text into the RoBERTa model to pre-
dict toxic words. After having the spans, to ensure
that the text still has toxic words, we remove the
predicted toxic word(s) from the processing text
and then recheck its toxicity by ToxicBERT and
re-predict its remaining toxic words (if any).

Because final results are words, we transform
them into spans for the requirement of this task.

4.2 NER Approach Based on spaCy’s
Library

In this approach, we tag all the characters spans
with text as TOXIC to train the model, and we
predict all TOXIC tags in the text set of texts.

For solving this, we choose version 2.2.5 of
spaCy’s NER Model (Honnibal and Montani,
2017) because of its exceptionally efficient sta-
tistical system in both speed and accuracy for this
named-entity recognition. Apart from default enti-
ties such as location, person, organization, and so
on, spaCy also enables training the model with new
entities by updating it with newer examples.

Figure 7: Training and testing phases of toxic spans
detection with spaCy based system.

The above Figure 7 shows the process of our
spaCy based system. Both training and test sets
have to be tokenized before feeding them into
the spaCy NER model or being predicted by the
TOXIC entities. For more details, in the training
phase, the input data have to be in the right for-
mat for the spaCy NER model as in the following
Figure 8.

Figure 8: Process of re-formatting data for spaCy based
system.

SpaCy has not published the architecture of their
models yet, but they do have a brief explanation
about how their models work, especially the NER
model, through a four-step formula: embed, en-
code, attend, and predict.
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Figure 9: Diagram of how spaCy’s models work.

As in Figure 9, spaCy’s model is fed with unique
numerical values (ID) which address a token of a
corpus or a class of the NLP task (named entity
class). In the first embed stage, word similarities
are revealed by extracting hash, which is collected
by extracting word features as the lower case, the
prefix, the suffix, and the shape. The encode stage
is fed with a sequence of word vectors from the
previous stage to calculate a representation which
is named sentence matrix. In the sentence matrix,
the meaning of each token in the context of neigh-
boring tokens is represented in each row, and this
is done by using a bidirectional RNN (Schuster and
Paliwal, 1997). The output matrix from the sec-
ond stage is injected into the Attention Layer of the
CNN after summarized by a query of vectors. Fi-
nally, to predict the toxic class, a softmax function
is utilized. After the model is trained, the CNN
model is now used for the NER task to extract the
toxic class.

The given toxic spans dataset is fed into spaCy’s
library for training with a suitable format. During
the contest, my team was using spaCy’s library for
a small model for English (en_core_web_sm) at
version 2.2.5, and we tried different parameters to
get the optimal result. When training, the dataset
is shuffled and passed through spaCy’s training
algorithm in batches with an increment of batch
sizes from 4.0 to 32.0 and step of 1.001. Moreover,
the drop rate is consistently at 0.5, and most of the
experiments loop 45 times.

5 Experiments

After building two such systems, we start to exper-
iment on the test set, and the following subsections
dicuss our results.

5.1 Evaluation Metrics

Before going through experimental results, we
first discuss the evaluation metrics used in this
SemEval-2021 Task 5.

In this task, all of the responding systems from
participants are evaluated by F1 score (Da San Mar-
tino et al., 2019). Assuming the system Si returns

Ct
Si

, which is a toxic character offsets of the post.
Let Gt be the character offsets of the ground truth
annotation of t. In the following formulas, the F1
score of system Si is computed regarding ground
truth G of post t (|·| indicates set cardinality).

If St
G is empty for posts t, we set F t

1(Si, G) =
1 and if St

Ai
is empty, F t

1(Si, G) = 0. Finally, we
calculate average of F t

1(Si, G) of all over the posts
t if test set to get a sigle F1 score of the system Si.

5.2 Experimental Results
The results of our systems compared with other
teams’ are shown in Table 2.

Rank Team name F1-score
1 HITSZ-HLT 70.83
2 S-NLP 70.77
33 lz1904 67.00

34 UIT-E10dot3 spaCy 66.99
RoBERTa 52.12

17.00±1.

Table 2: The results of our systems compared with
other teams by F1-score (%).

During the SemEval-2021 Task 5, with the
spaCy base system, we achieved rank 34 out of
91 teams, and in the table above, we have shown
our result with the spaCy based system and the
RoBERTa based system in comparison with rank
1, 2, 33 and random baseline of this task. The F1-
score of our best system is 66.99%, 3.84% lower
than the first rank team, and 49.09% higher than
the baseline model.
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5.3 Result Analyses

After analyzing our most effective system based
on spaCy’s library, we spot crucial errors in pre-
dicting and datasets by comparing predicted spans
to gold spans. Several records in the given data
are standing alone without the context that leads
to confusing or multi-meaning. Moreover, com-
ments are using slang(s) or idiom(s), causing null
output for our system. We also realize a lack of
consistency or highlighting non-toxic spans when
annotating data about the datasets. Likewise, sev-
eral words in the text have spelling mistakes that
intentionally also impair our system performance.
Evidence for those errors are in Table 3, Appendix.

6 Conclusion and Future Work

In this paper, we introduced two proposed systems
for toxic spans detection based on named entity
and question-answering approaches. We obtained
the highest results with the SpaCy’s library based
system with the F1-score of 66.99% and ranked 34
out of 91 teams in SemEval-2021 Task 5.

In future, we plan to improve our systems by im-
plementing various SOTA models for toxic spans
detection. With the built systems, we can create
friendly online conversations and make social me-
dia forums safer for users.
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2020. Semeval-2020 task 12: Multilingual offensive
language identification in social media (offenseval
2020).

925



No. Predicted by spaCy base system Ground Truth

Requiring context («)

1 No, my poor benighted correspondent, your
reductionism reveals an archaic mindset. In-
tersex, questioning, nongendered, and a vast
variety of others have rights too!

No, my poor benighted correspondent, your
reductionism reveals an archaic mindset. In-
tersex, questioning, nongendered, and a vast
variety of others have rights too!

Slang(s) / Idiom(s)

2 Lord have Mercy on us, Trump is running
amok.

Lord have Mercy on us, Trump is running
amok.

3 No, dumdum-you dont get it. The business
does not get to decide who he serves and who
he does not. If he makes cakes for one, he
must make them for ALL

No, dumdum-you dont get it. The business
does not get to decide who he serves and who
he does not. If he makes cakes for one, he
must make them for ALL

4 Ugh, the worst, burn them at the stake. Ugh, the worst, burn them at the stake.

Lacking of consistency or highlighting non-toxic spans when annotating (¨)

5 There is even a website where sore loser
Democrats can pretend that Hillary won. La-
la-land indeed! #liberaltears #salt #schaden-
freude

There is even a website where sore loser
Democrats can pretend that Hillary won. La-
la-land indeed! #liberaltears #salt #schaden-
freude

6 Hey Repubes, I bet you think that "wall" is
going to be built on Mexicos dollar too huh?
What a bunch of gullible losers!!!!

Hey Repubes, I bet you think that "wall" is
going to be built on Mexicos dollar too huh?
What a bunch of gullible losers!!!!

7 <Trump was a draft dodger during Viet-
nam.>The president is a coward and a hyp-
ocrite who not only dodged the draft and
avoided any and every opportunity to serve. . .
No one has more contempt for the flag than
does Donald J. Trump. No one.

<Trump was a draft dodger during Vietnam.>
The president is a coward and a hypocrite who
not only dodged the draft and avoided any
and every opportunity to serve. . . No one has
more contempt for the flag than does Donald
J. Trump. No one.

Spelling mistake

8 FUKC YOU @QuinHillyer YOU ARE THE
ONE NEED TO GO, YOU ANTI AMERICA
FAKE MOTHER FUKCER

FUKC YOU @QuinHillyer YOU ARE THE
ONE NEED TO GO, YOU ANTI AMERICA
FAKE MOTHER FUKCER

9 Hey Repubes, I bet you think that "wall" is
going to be built on Mexicos dollar too huh?
What a bunch of gullible losers!!!!

Hey Repubes, I bet you think that "wall" is
going to be built on Mexicos dollar too huh?
What a bunch of gullible losers!!!!

Table 3: Examples for result analyses.

(«) The table shows that with this example, our system predicts that there are no toxic spans; meanwhile,
in ground truth, the word benighted is highlighted to be toxic. We assume that because of lacking the
context of the text and the word benighted also has multi-meaning.

(¨) The table shows that in example No. 5, the word loser is annotated to be toxic when in example
No. 6, also having the plural form of word loser but not to be highlighted. Meanwhile, in example No.
7, the spans Vietnam.> is highlighted even if it does not have toxicity.
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Abstract

This work describes the participation of the
Skoltech NLP group team (Sk) in the Toxic
Spans Detection task at SemEval-2021. The
goal of the task is to identify the most toxic
fragments of a given sentence, which is a bi-
nary sequence tagging problem. We show that
fine-tuning a RoBERTa model for this prob-
lem is a strong baseline. This baseline can be
further improved by pre-training the RoBERTa
model on a large dataset labeled for toxicity at
the sentence level. While our solution scored
among the top 20% participating models, it is
only 2 points below the best result. This sug-
gests the viability of our approach.

1 Introduction

Toxicity and offensive content is a major concern
for many platforms on the Internet. Therefore, the
task of toxicity detection has attracted much atten-
tion in the NLP community (Wulczyn et al., 2017;
Hosseini et al., 2017; Dixon et al., 2018). Until
recently, the majority of research on toxicity fo-
cused on classifying entire user messages as toxic
or safe. However, the surge of work on text de-
toxification, i.e., editing of text to keep its content
and remove toxicity (Nogueira dos Santos et al.,
2018; Tran et al., 2020), suggests that localizing
toxicity within a sentence is also useful. If we
know which words of a sentence are toxic, it is
easier to “fix” this sentence by removing or replac-
ing them with non-toxic synonyms. Mathew et al.
(2020) make human labelers annotate the spans
as rationales for classifying a comment as hateful,
offensive, or normal. They show that using such
spans when training a toxicity classifier improves
its accuracy and explainability and reduces unin-
tended bias towards toxicity targets.

This year the SemEval hosts the first competition
on toxic spans detection, namely, SemEval-2021

Task 51 (Pavlopoulos et al., 2021). It provides
training, development, and test data for English. As
far as we know, it is the first attempt to explicitly
formulate toxicity detection as sequence labeling
instead of classification of sentences.

Multiple NLP tasks recently benefited from
transfer learning — transfer of probability distri-
butions learned on some task to another model
solving a different task. The most common ex-
ample of transfer learning is the use of embeddings
and language models pre-trained on unlabeled data
(e.g. ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019) and its variations, T5 (Raffel et al.,
2020), etc.) on other tasks (e.g. He et al. (2020);
Wang et al. (2020) inter alia use pre-trained BERT
models to perform tasks from the GLUE bench-
mark (Wang et al., 2018)).

Word-level toxicity classification can be for-
mulated as a sequence labeling task, which also
actively uses the pre-trained models mentioned
above. BERT comprises the versatile information
on words and their context, which allows to suc-
cessfully use it for sequence labeling tasks of dif-
ferent levels: part-of-speech tagging and syntactic
parsing (Koto et al., 2020), named entity recog-
nition (Hakala and Pyysalo, 2019), semantic role
labeling (He et al., 2019), detection of Machine
Translation errors (Moura et al., 2020).

This diversity of applications suggests that word-
level toxicity detection can also benefit from pre-
trained models. Besides that, toxicity itself has
been successfully tackled with BERT-based mod-
els. Research on sentence-level toxicity extensively
used BERT and other pre-trained models. Both
language-specific and multilingual BERT models
were used to fine-tune toxicity classifiers (Leite
et al., 2020; Ozler et al., 2020). This shows that
BERT has information on toxicity.

1https://competitions.codalab.org/
competitions/25623
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Thus, we follow this line of work. Namely, we
fine-tune a RoBERTa model (Liu et al., 2019) to
perform a sequence labeling task. Besides that,
we train a model for sentence classification on the
Jigsaw dataset of toxic comments and use the in-
formation from this model to detect toxicity at the
subsentential level. This helps us overcome the
insufficient data size.

This is in line with previous work, which has
shown that sentence-level labels can be used in
combination with token labels (Rei and Søgaard,
2019) or completely substitute them (Rei and
Søgaard, 2018; Schmaltz, 2019).

In our experiments, we test the hypothesis that
the sentence-level toxicity labeling can be used for
a sequence labeler that recognizes toxic spans in
text. We suggest three ways of incorporating this
data: as a corpus for pre-training, pseudo-labeling,
and for joint training of sentence-level and token-
level toxicity detection models. Our experiments
show that the latter method yields the best result.
Moreover, we show that using sentence-level la-
bels can dramatically improve toxic span prediction
when the dataset with token-level labels is small.

The contributions of this work are the following:

• We successfully use the dataset labeled for
toxicity at the sentence level for token-level
toxicity labeling,

• We propose a model for joint sentence- and
token-level toxicity detection,

• We analyze the performance of our models,
showing their limitations and reveal the ambi-
guities in the data.

2 The task

The training data of the task comprises 7,940 En-
glish comments with character-level annotations of
toxic spans. The labeling was performed manually
by crowd workers.

The spans labeled as toxic often contain rude
words: “Because he’s a moron and a bigot. It’s
not any more complicated than that.” (toxic
spans are underlined). Other toxic spans con-
sist of words that become toxic in context: “Sec-
tion 160 should also be amended to include
sexual acts with animals not involving penetra-
tion”. Borders of some toxic spans fall in the mid-
dle of a word; we treat such cases as markup errors.

As a development set, we use the trial dataset
of 690 texts provided by the task organizers. We

evaluate our final models on the hidden test set of
the task consisting of 2,000 texts.

3 Pre-training for toxic span detection

Here we give the motivation behind our models and
describe their architecture and training setup.

3.1 Motivation
Our intuition is that the toxicity is often lexically-
based, i.e., there are certain words that are consid-
ered offensive and make the whole sentence toxic.
In this case, we expect that as we add extra data
to our toxic span dataset, after some point, the vo-
cabulary of toxic words in it will saturate and stop
increasing. However, Figure 1 shows that the size
of the toxic vocabulary linearly depends on the
dataset size, which suggests that its size is insuf-
ficient for the task. In this case, the model will
often need to label unseen words. To mitigate the
lack of data, we leverage the additional dataset
with toxicity information, namely, the Jigsaw toxic
comments dataset2 which features 140,000 user
utterances labeled as toxic or safe.
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Figure 1: Size of the toxic vocabulary as a function of
the corpus size.

3.2 Transfer learning for spans detection
Our base model is RoBERTa. We fine-tune
roberta-base model on the toxic spans train-
ing set for sequence labeling task (further denoted
as RoBERTa tagger). This model already gives
promising results. We further improve it by provid-
ing it with the additional training signal from the

2https://www.kaggle.com/c/jigsaw-
toxic-comment-classification-challenge/
data
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Jigsaw toxic comments dataset. We propose three
ways of incorporating this data.

The first way is pseudo-labeling (Lee et al.,
2013). We apply the RoBERTa tagger to predict
the toxic spans in the Jigsaw dataset. We use these
predictions to further train the model.

Another option is to use the Jigsaw data to fine-
tune RoBERTa with it. We suggest two scenarios.
The first is to fine-tune the model on the Jigsaw
dataset for the sentence classification task, and then
on the toxic spans dataset — this model is referred
to as RoBERTa classifier + tagger. In this case,
the model has different output layers for the two
tasks, and other layers are shared.

Finally, we propose a novel architecture for joint
token- and sentence-level classification, where the
score y for a sentence x = {x1, x2, ..., xn} is com-
puted as the average of word-level scores:

ŷ = σ

(
α+ β

1

n

n∑

i=1

ŷγi

)

where α, β and γ are trainable parameters, and
σ is the logistic function. This model does not
need to be trained on the data with token-level la-
beling but can get token-level toxicity information
from sentence labels. We fine-tune this model both
on Jigsaw and toxic spans datasets. The model is
referred to as tagging classifier.

3.3 Working with spans

To reformulate toxic spans detection as a token
classification problem, we label a token as toxic
if at least one of its characters is toxic. When
projecting the predicted token-level labels back to
the character level, we try two strategies:

1. Consider a token to be toxic if its toxicity
score is higher than the threshold, do not force
the labels of tokens within a word to agree
with each other.

2. Consider a word to be toxic if the aggregated
toxicity score of all its tokens is higher than
the threshold. We try four different aggre-
gation functions: min, max, mean, and the
simplified naive Bayes formula:

x̃ =

∏
i xi∏

i xi +
∏
i (1− xi)

.

In both methods, we label a space character as toxic
only if the characters both to the right and to the
left of it are toxic.

4 Baselines

In this section, we present a set of common base-
line approaches used for sequence tagging, such
as CRF and LSTM with pretrained word embed-
dings. We implement them in order to analyze the
performance of our methods in the context of other
techniques.

Word-based LogReg This is a vocabulary-based
method: we label words as toxic if they appear in
our toxic vocabulary. The vocabulary is created as
follows. We create a set of toxic and safe phrases,
where toxic phrases are toxic spans from our data
and safe phrases are sentences from our data with
removed toxic spans. We then train a binary logistic
regression classifier of toxic and safe phrases using
words as features. The by-product of this classifier
is the list of weights for all words from the data.
We consider words with weights greater than a
threshold as toxic.

Attention-based LogReg Another approach to
represent words is to take their attention weights
from a RoBERTa-based sentence-level toxicity
classifier (we train it on the Jigsaw dataset). We as-
semble attention weights from all RoBERTa heads
and layers in a single vector of dimension 144.
These vectors are used as features in a logistic re-
gression classifier. This approach is motivated by
the fact that a RoBERTa model trained to recognize
toxicity puts more emphasis on certain words as-
sociated with sentence-level toxicity. Surprisingly,
this model underperforms the logistic regression
classifier, which uses words as features.

Conditional Random Fields We suggest that
the toxicity level of a word can be context-
dependent, so we also experiment with sequence la-
beling models. We try Conditional Random Fields
(CRF) (Lafferty et al., 2001) model. It uses the
following features: the word itself, the word’s part
of speech, whether the word is a digit and con-
sists of uppercase letters. Each word is represented
with these features of the current, previous, and
next words. The model performs closely to the
attention-based classifier.

Sequence labeling with LSTM Finally, we ex-
periment with the LSTM architecture (Hochreiter
and Schmidhuber, 1997). We implement a Bi-
LSTM network and also train an LSTM tagger
from the AllenNLP library.3 We do not use any pre-

3https://github.com/allenai/allennlp
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trained embeddings in the Bi-LSTM model and use
two versions of the AllenNLP LSTM: without pre-
trained embeddings and with GloVe embeddings
(Pennington et al., 2014).

5 Evaluation

5.1 Experimental Setting
For each transfer learning model, we use two-
stage fine-tuning. We first train only the output
layers of the models with the learning rate of
10−3, and then the whole models with the learn-
ing rate of 10−5. In both cases, we use linear
learning rate warm-up for 3000 steps. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
and the batch size of 8, and early stopping to de-
termine the number of training steps. We use the
transformers4 library for training.

For all the models which use the additional data
from Jigsaw, we apply this scheme twice. The
pseudo-label model is first fine-tuned on the origi-
nal toxic spans dataset, and then on the self-labeled
Jigsaw dataset, whereas the RoBERTa classifier
+ tagger and tagging classifier are first fine-tuned
on the Jigsaw dataset (as classifiers), and then on
the toxic spans dataset (as taggers).

5.2 Results
The scores of our models and the competing sys-
tems are shown in Table 1. Our best submitted sys-
tem (tagging classifier) had the F1-score of 0.681
on the test set, while the best team over the whole
task got 0.708. This brings our team to the top
20% of the leaderboard. The pseudo-labeling ap-
proach was only marginally worse, scoring 0.674.
Simply fine-tuning RoBERTa only on the tagging
problem scored 0.668. On the other hand, none of
our baselines could approach this result. Our best
baseline is the word-based LogReg classifier. Ap-
parently, other models fail to learn even the toxic
vocabulary because their word representations are
not informative enough.

While our best-performing model is only 18th
best out of 92 participating systems, the results of
the top systems are fairly close to ours (the dif-
ference is less than 2.5%). The variation of deep
learning models often falls in this margin (Reimers
and Gurevych, 2017). For our models, the sample
standard deviation of the F1-score is about 0.9%, so
the difference between their performance is likely
to be statistically insignificant.

4https://huggingface.co/transformers

Model F1 score

Top-5 participants

HITSZ-HLT 0.708
S-NLP 0.707
hitmi&t 0.698
L 0.698
YNU-HPCC 0.696

Our models

tagging classifier 0.683
pseudo-labeling 0.682
RoBERTa tagger 0.678
RoBERTa classifier + tagger 0.670

Our baselines

Word-based LogReg 0.556
LSTM basic embeddings 0.538
Bi-LSTM basic embeddings 0.530
Attention-based Logreg 0.524
CRF 0.523
LSTM Glove embeddings 0.497

Table 1: Performance of our models (baselines and
RoBERTa-based models) and their comparison with
the 5 best-performing participants. Models within each
section are sorted from best to worst.

An important hyper-parameter of the models is
the probability threshold. It is usually fine-tuned
on the development set. However, the development
set provided for the task is too small. The thresh-
old fine-tuned on it performs even worse than the
standard threshold of 0.5. Thus, during the evalua-
tion period of the competition, we tried submitting
models with different threshold values. While this
is not a completely fair practice because we indi-
rectly used the test for tuning a model parameter,
we suspect that many teams were overfitting to the
test set in a similar way. We suggest that in order to
make the evaluation fair, the results of the models
on the final test set should not be available before
the end of the competition, even in the indirect way
(i.e., in the form of teams ranking without scores
as it was done in this competition).

The best results which we report here were
achieved with the threshold of 0.6 (see Table 1).
We compare these results with those of the same
models with the default threshold of 0.5 in Table 3.
It shows that these scores are lower by up to 1%.

Another hyper-parameter of our models is
the method of converting token-level labels to
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Aggregation Type F1 score

No aggregation 0.685

Aggregation of word-level scores

max token score 0.673
min token score 0.641
average token scores 0.670
naive Bayes 0.653

Table 2: Scores of the tagging classifier model with
different token aggregation methods (computed on the
development set).

Model threshold
0.5 0.6

tagging classifier 0.681 0.683
pseudo-labeling 0.674 0.682
RoBERTa tagger 0.668 0.678
RoBERTa classifier + tagger 0.664 0.670

Table 3: F1-scores of models with different probability
thresholds.

character-level labels. We compare different meth-
ods on the development set (see Table 2). Sur-
prisingly, the prediction of labels for each token
individually with no aggregation works better than
assigning labels to the whole words. This might
happen because the attempts to decode words con-
sistently lead to the propagation of wrongly pre-
dicted labels. Following this observation, we use
the no-aggregation strategy for all models.

5.3 Efficiency of pre-training
To understand the effect of the use of additional
sentence-labeled data, we compare the perfor-
mance of RoBERTa tagger (a model which uses
only the toxic span dataset) and tagging classi-
fier (a model which uses sentence-labeled Jigsaw
data in addition to the toxic span dataset) models
trained on subsets of the data of different sizes. We
would like to see if the usefulness of additional
sentence-labeled data reduces as we get more data
with token-level labeling.

Figure 2 plots the F1-scores of the two models
trained on datasets of sizes between 10 and 7,940
sentences. It shows that when the training set size is
between 10 and 1,000, pre-training with sentence-
level annotations gives a considerable boost in per-
formance. However, the effect of this pre-training
becomes insignificant after the size of the data with

word-level labeling reaches around 3,000. Thus,
this pre-training strategy is efficient only in cases
when the size of the data with word-level labeling
is very small.
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Figure 2: Learning curves for two transfer learn-
ing models, with (tagging classifier) and without
(RoBERTa tagger) additional sentence-level data.

5.4 Error analysis

We analyze the errors of our best submitted system
(tagging classifier) by comparing its predictions
with the ground truth labels released after the end
of the competition.

The vocabulary of false negative spans (527
unique tokens) is more diverse than that of false
positives (275 unique tokens), while the number of
false positives and false negatives in the test set is
comparable (860 vs 813 tokens). It may indicate
that the model is cautious and prefers to highlight
only the hypotheses which have high confidence,
while human annotators are more creative in their
analysis. We give some examples of correct and
incorrect labelings by our model in Table 4.

The most frequent false positive words charac-
terize incompetence or lack of mental capacities:
stupid, idiot, ignorant, moron, dumb, etc. Other
frequent false positives are derogatory (pathetic,
ridiculous, ass, garbage, loser, etc.), denounce par-
ticular misdeeds (liar, troll, racist, hypocrite, etc.),
or express general negativity (damn, fuck, etc.). It
is not obvious why human annotators label them
as toxic in some cases, and as non-toxic in other
cases. We suspect that inter-annotator agreement
on such words is not very high.

The most frequent false negative words are func-
tion words: and, the, are, a, you etc. It happens
because annotators sometimes label the whole text
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Correct labeling

See a shrink you pathetic troll.
They’re not patriots. They’re vandals, thieves, and bullies.
Trudeau and Morneau are fiscally and economically inept and incompetent.

Incorrect labeling

That’s right. They are not normal. And I am starting from the premise that they are
ABNORMAL. Proceed wth the typical racist, bigot, sexist rubbish. Thanks!
ADN is endorsing, without officially endorsing. Bunch of cowards!!!
Rabidly anti-Canadian troll.

Table 4: Examples of ground truth (underlined) and predicted (in bold) toxic spans

Top 20 false positive words Top 20 false negative words

stupid ass and of
idiot liar the have
ignorant garbage are loser
moron loser a crap
dumb fools ignorant all
idiots troll racist chemical
fool crap you that
pathetic damn in not
stupidity fuck is bunch
ridiculous clown to dumb

Table 5: The most common false positive and false negative words

or a large chunk of it as toxic. The more mean-
ingful false negatives belong to the same classes
as the false positives (ignorant, racist, loser, etc.).
The most common false positive and false negative
words are listed in Table 5.

In general, the performance on this task might
be limited to 0.7 F1-score (the quality of the best-
performing model) by the ambiguity of the annota-
tions. In future work, it

6 Conclusions

We present a number of models for the detection
of toxic spans within toxic sentences. All models
are RoBERTa language models fine-tuned on the
data with character-level labeling of toxic spans.
In addition to that, we perform fine-tuning on an
additional dataset with sentence-level toxicity la-
beling. This yields an improvement. However, our
analysis shows that the effect of such pre-training
is marginal when the main dataset size exceeds
1,000 samples. Therefore, substantial improvement
is observed for small dataset sizes. Nevertheless,
the models we propose can be useful in extremely

low-resource scenarios.
Our model performs closely to the winning sys-

tems. We suggest that the differences between the
20 top models might be attributed to the variation of
deep learning models and overfitting the test set. In
addition to that, the error analysis shows that some
errors in our model might be due to inconsistencies
in the test data.

We release the code required to reproduce our
experiments online.5
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Abstract

Detection of toxic spans - detecting toxicity of
contents in the granularity of tokens - is crucial
for effective moderation of online discussions.
The baseline approach for this problem using
the transformer model is to add a token classi-
fication head to the language model and fine-
tune the layers with the token labeled dataset.
One of the limitations of such a baseline ap-
proach is the scarcity of labeled data. To im-
prove the results, We studied leveraging ex-
isting public datasets for a related but differ-
ent task of entire comment/sentence classifica-
tion. We propose two approaches: the first ap-
proach fine-tunes transformer models that are
pre-trained on sentence classification samples.
In the second approach, we perform weak su-
pervision with soft attention to learn token
level labels from sentence labels. Our experi-
ments show improvements in the F1 score over
the baseline approach. The implementation
has been released publicly.1

1 Introduction

The growth of social media platforms has led to an
increase in hate speech and abusive language in on-
line communities, primarily due to the anonymity
provided on such platforms (Mollas et al., 2020).
Since manual moderation is not feasible for the
gigantic amount of textual data, automated tox-
icity detection has received significant attention
with numerous datasets being released in recent
years (Pavlopoulos et al., 2020). However, most of
the existing work on toxicity detection labels the
entire comment as toxic or non-toxic and does not
provide information about which specific part of
the comment is toxic. In practice, human moder-
ators (e.g., news portals moderators) can benefit
from information on which character indices of the

1https://github.com/vaibhav29498/Toxi
c-Spans-Detection

part of the comment that is toxic instead of just a
system-generated unexplained toxicity score per
post. Designing models that can accurately locate
toxic spans within a text is thus a crucial step to-
wards successful semi-automated moderation. This
is challenging because of the scarcity of datasets
that are labeled on a segment or token level.

This paper explains our approaches for the
SemEval-2021 Task 5 which requires us to identify
the character offsets for the toxic spans within a
comment (Pavlopoulos et al., 2021). We explore
possible techniques for improving the results of
the vanilla transformer model by leveraging several
available public datasets.

2 Related Work and Background

Sequential adaptation Using pre-trained lan-
guage models has recently proved to be effective
for language understanding tasks (Phang et al.,
2018). The supplementary training is particularly
beneficial when labeled data is scarce (Phang et al.,
2018). A popular transfer learning technique in
Natural Language Processing (NLP) has been to
pre-train sentence encoder neural networks, such
as BERT (Devlin et al., 2019), on unsupervised
tasks and then fine-tune the encoders for the target
supervised learning task. However, this approach
can be found inadequate if the input distribution
for the target task is considerably different from
that of the corpus used for pre-training. Phang et al.
(2019) suggested that training on related data-rich
supervised tasks as an intermediate step can help
in making the final trained model more robust and
effective. This approach is called Supplementary
Training on Intermediate Labeled-data Tasks. This
can also help the model in learning the domain
knowledge when in-domain data is available.

Weakly Supervised Learning Zhou (2018) de-
fined inexact supervision as a type of weakly super-
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vised learning in which coarse-grained labels are
used to train for a more specific problem. Rei and
Søgaard (2018) used this approach for inferring
token-level labels by training a sentence classifi-
cation model. They used a bidirectional LSTM to
get a contextual representation h̃i ∈ Rm for ev-
ery token wi, and pass it through a fully-connected
layer with hyperbolic tangent activation to obtain
hi ∈ Rn:

hi = tanh(Whh̃i + bh) (1)

where Wi ∈ Rn×m and bi ∈ Rn.
They then used a two-layer feed forward neural

network followed by a soft-attention layer to get a
single-valued attention score ai for each token:

ei = tanh(Wchi + bc) (2)

ẽi =Wc̃ei + bc̃ (3)

ãi = σ(ẽi) (4)

where Wc ∈ Rp×n, bc ∈ Rp, Wc̃ ∈ R1×p,
bc̃ ∈ R, and ãi is the normalized attention score.
These scores indicate the importance of the to-
kens towards predicting the sentence class and
can be considered as the token-level predictions.
Their normalized forms are used for constructing a
weighted average sentence representation c, which
is used to compute the prediction score y with a
value higher than 0.5 indicating a positive class:

ai =
ãi∑N

k=1 ãk
(5)

c =

N∑

i=1

aihi (6)

d = tanh(Wdc+ bd) (7)

y = σ(Wyd+ by) (8)

where Wd ∈ Rq×n, bc ∈ Rq, Wy ∈ R1×q, and
by ∈ R. The authors used a modified loss function
to ensure that the model learns high-quality token
labels:

L =
∑

j

[(y(j) − ỹ(j))2 + λ(mini(ãi)
2+

(maxi(ãi)− ỹ(j))2)]
(9)

where y(j) is the predicted score, ỹ(j) is the
ground-truth, mini(ãi) and maxi(ãi) are the low-
est and highest attention scores respectively for the
jth sentence.

Karamanolakis et al. (2019) used a modified ver-
sion of this approach to generate segment labels for
text review classification problems. The segment
embeddings are generated by feeding the word em-
beddings into a convolutional neural network. The
output of the convolution neural network is passed
through a single layer with softmax activation to
get the segment-level prediction. Additionally, the
word embeddings are passed through a bidirec-
tional GRU network with sigmoid attention to find
the attention weights. These weights are used to ag-
gregate the segment-level predictions into a single
prediction for the entire review.

3 Methodology and Experimental Setup

In this section, we will present our two solutions.
Both of our approaches are using BERT pre-trained
language model. In the first approach, we first fine-
tune the BERT model with additional labeled data
explained in Subsection 3.1 and then perform an-
other round of fine-tuning using token classifica-
tion head with task training data. In the second
approach, we apply weak supervision to learn to-
ken labels for the additional dataset. We then use
the augmented labeled token dataset to fine-tune
the token classifier head and use it to predict labels
for the task test data set.

3.1 Datasets

As the main data source for training our models,
we used SemEval-2021 Task 5 data. Additionally,
we used five publicly available English-language
datasets for sentence classification to improve our
results.

3.1.1 Token-level Labelled Data
We used two token-level labeled datasets, the first
being the one provided by the SemEval-2021 Task
5 organizers which are composed of 9,939 English
posts along with their toxic spans. The span for
a single post is a possible-empty list of character
indices that have been marked as toxic by crowd-
annotators. The dataset has been divided into train-
ing and test sets with 2,000 samples in the latter.

The second dataset used is HateXplain (Mathew
et al., 2020) which is composed of 20,148 tweets
and Gab posts, each of which is classified as hateful,
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offensive, or normal, by three annotators. If an an-
notator masks a post as either hateful or offensive,
they are also asked to mark the span (rationale)
which influenced their decision. We considered a
token to be toxic if it was included in at least one
annotator’s rationale, and excluded all posts with
no toxic token, which left us with 11,415 posts.

3.1.2 Sentence-level Labelled Data
We used five other datasets which consisted of only
sentence-level labels:

• Jigsaw/Conversation AI toxic comment clas-
sification challenge dataset2 - Composed of
Wikipedia’s talk page edits, it labels 223,549
posts into zero or more categories of toxicity
(toxic, severely toxic, obscene, threat, insult,
and identity hate). We bundled each of them
into a single category, and 22,468 posts were
categorized as toxic.

• Hate speech and offensive language
dataset (Davidson et al., 2017) - 24,783
tweets categorized to hate speech, offensive
language, or neither. We labeled 20,620
belonging to the former two categories as
toxic.

• Online harassment dataset (Golbeck et al.,
2017) - Composed of 20,360 tweets out of
which 5,285 have been labeled as harassing.

• Impermium dataset for detecting insults in
social commentary3 - 6,594 comments from
online forums, out of which 1,742 were iden-
tified as insulting to at least one of the partici-
pants.

• OffensEval-2020 subtask-A extended test
dataset - 5,993 tweets out of which 3,002 have
been labeled as offensive.

Merging these five datasets resulted in a collec-
tion of 281,279 comments out of which 53,117
were labeled as toxic.

3.2 Approach 1: Sequential fine tuning

In approach 1, we first fine-tune the sentence clas-
sification model with additional data. The sentence
classification model is built upon the base uncased

2www.kaggle.com/c/jigsaw-toxic-commen
t-classification-challenge/data

3www.kaggle.com/c/detecting-insults-i
n-social-commentary/data

BERT model, which maps every sentence to a vec-
tor of size 768. A two-layer sentence classifier is
added to the BERT base model. The first layer of
the head is a linear layer with leaky ReLU activa-
tion (negative slope of 0.1) that maps it to a vector
of size 64. The second layer of the head is a dense
layer that maps 64 nodes to a single-valued predic-
tion score with sigmoid activation. The model is
shown in Figure 1.
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Figure 1: Model for sentence classification

We used the pre-trained BERT language model
as the starting point for the BERT model. The lay-
ers of sentence classification head were randomly
initialized. We applied the WordPiece tokenizer
and added the special BERT tokens [CLS] and
[SEP] to each sentence. We removed 5,136 sam-
ples as their number of tokens exceeded the base
BERT model’s maximum limit (512). The model
was trained for a single epoch using the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
batch size of 16.

The fine-tuned model was used to predict token
classes. To predict token classes, a token classi-
fication was used. The token classification head
architecture is similar to the sentence classification
head with two linear nodes. The first layer maps
768-dimensional inputs to 64 nodes and applies the
ReLu activation function with the negative slope of
0.1. The second layer maps input to a single token
prediction score with a sigmoid activation function.
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3.3 Approach 2 : Augmenting token labels
with weak supervision

In our second approach, we first augment our train-
ing set with imperfect labels that we learn by weak
supervision. We then use the augmented training
set to fine-tune the token classifier model and use
it to predict the labels of our test data. The model
used for augmenting token labels using sentence-
level labeled dataset described in Section 3.1.2, is
loosely based upon the solution proposed by Kara-
manolakis et al. (2019). The model is shown in
Figure 2. We first obtain the initial token embed-
dings from a pre-trained BERT model and input it
to the token augmentation network shown in Fig 2.
The input is connected on one side to token labels
as well as to sentence-level predictions through
two BiGRU layers. The GRU layers generate an
attention weight for every token. These weights are
used for finding a weighted average of the token-
level predictions, which is used to calculate the
prediction for the entire sentence.

Equation 9 is used as the loss function to train
the weights of the model. The sentence labels are
calculated from token labels following equations 5
to 8. The loss function optimizes the sentence and
token labels. first, it makes sure sentence classifi-
cations are closest to the sentence labels. Second,
it optimizes token labels by considering the min-
imum values of token labels in each sentence. It
makes sure the minimum label of the tokens in
a single sentence is zero to make sure all tokens
in a sentence do not have a positive sentiment. It
makes sure the most toxic token in the sentence
has the same label as the label for the sentence. We
trained the model for five epochs using the AdamW
optimizer with a batch size of 16.

The token labels generated by the model de-
scribed above are used as additional training data.
The BERT base model is initialized with the pub-
licly available pre-trained version. Only those
artificially-generated samples in the sentences with
the correctly predicted label (prediction score ≥
0.5) are used. We used the prediction scores as
the labels for the additional dataset instead of hav-
ing discrete values of zero and one based on some
threshold. We also subtracted the value of 0.1898
from these labels to make their mean equal to that
of the labels of the contest dataset.

For generating the character offsets, we consid-
ered an entire word as toxic if any single of its
subword tokens were identified as toxic.

Static and non-contextual BERT embeddings

Size 64

Linear layer with
tanh activation

Size 1

Linear layer with
sigmoid activation

Token-level
predictions pi

Size 64

BiGRU with leaky ReLU
activation (0.1)

Size 1

BiGRU with sigmoid
activation

Normalization

Sigmoid attention values

Attention weights ai

Sentence-level
predictions yi

Size 768

Figure 2: Model for generating token labels

4 Results

Disclaimer: The section contains offensive, ob-
scene, and hateful content; however this is neces-
sary to showcase the results of this work.

The contest organizers used the average F1 score
as the performance metric. For a sample Si, if Ỹi
and Yi are the predicted and actual set of character
offsets, then the F1 score F i

1 is calculated as

F i
1 =

2 · P i(Ỹi, Yi) ·Ri(Ỹi, Yi)

P i(Ỹi, Yi) +Ri(Ỹi, Yi)
(10)

P i(Ỹi, Yi) =
|Ỹi ∩ Yi|
|Ỹi|

(11)

Ri(Ỹi, Yi) =
|Ỹi ∩ Yi|
|Yi|

(12)

Our best-scoring solution submitted to the con-
test achieved an F1-Score of 0.6561 and a rank of
49 amongst 91 submissions. After the contest, we
excluded the HateXplain dataset from the token-
classification training process to make the model
more suited for the contest dataset and masked out
the padding tokens while calculating mini(ãi)2 in
Equation 9. We also developed a baseline model
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which does not use any additional datasets by
training the pre-trained base BERT model with
the token-level labeled dataset described in Sec-
tion 3.1.1. The training hyper-parameters were the
same as our other approaches. The F1 scores for
the baseline model and the two approaches dis-
cussed in Sections 3.2 and 3.3, namely the sequen-
tial adaptation and the weakly supervised learning
approaches have been plotted for various thresholds
in Figure 3.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

Threshold

F1
sc

or
e

Baseline
Sequential Adaptation
Weakly Supervised Learning

Figure 3: F1 score plotted against threshold

The F1 score at threshold value 0.5 and the max-
imum F1 score for each approach have been men-
tioned in Table 1.

Approach F10.5 F1max

Baseline model 0.6224 0.6289
Weakly Supervised 0.6644 0.6799

Sequential adaptation 0.6678 0.6861

Table 1: F1 score metrics for various approaches

Using sentence-level labeled data to incorpo-
rate domain-specific knowledge improves the re-
sults by a considerable margin. The increase in
performance over the baseline model is more pro-
found for the higher threshold value. This can be
attributed to the comparatively higher toxicity of
the sentence-level labeled datasets when compared
with the contest dataset, which makes the models
more expert on detecting highly toxic spans. We
observe that the sequential adaptation approach out-
performs the weakly supervised learning approach.
However the latter might be more suitable for large-

scale datasets due to less training time: the sentence
classification model has to be trained on the entire
sentence-labeled dataset in which the majority of
the samples are non-toxic, whereas the model for
generating token labels is trained only on toxic
samples. In our experiments, the former took 4.25
hours for a single epoch of training and the latter
took 1.5 hours for five epochs of training. Even
though training the token classification model takes
more time in the weakly supervised approach due
to larger volume of data samples, the training time
difference was only 48 minutes. All the models
were trained on the Kaggle Notebooks4 platform
using GPUs.

The model for generating token labels (described
in Section 3.3) did not perform as we expected. Out
of the 52,640 toxic samples, only 7,629 samples
were given a toxicity score of more than 0.5, thus
greatly reducing the size of the additional dataset
for token classification. However it was successful
in correctly identifying the toxic spans. For ex-
ample, the highlighted parts were given a toxicity
score of more than 0.9 in the following sample:

admins suck!! the fucking admins suck
ass! i fucking hate the people who
delete my fucking shit!!!!!!!!5

5 Conclusion and Future Work

In this paper, we proposed two solutions to improve
the baseline transformer model fine-tuning for the
span toxicity detection task. In the first approach,
we performed sequential fine-tuning with an ad-
ditional fine-tuning of the sentence classifier with
supplemental public data. In the second approach,
we augmented the labeled token dataset with weak
supervision and then performed the fine-tuning to-
ken classification on the augmented dataset. Our ex-
perimental results show that the first approach im-
proves the baseline fine-tuning results by a 0.0572
F1 score and the second approach improves the
baseline results by a 0.051 F1 score. An interesting
future direction is to improve the weak supervision
technique - possibly using other objective functions
for relating token labels and sentence labels - and
multi-task learning.

4https://www.kaggle.com/code
5This sample is from the Jigsaw toxic comment classifi-

cation challenge dataset (id 13913f443da71ac6) and was
labelled as toxic and insult.
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Abstract

With the rapid growth in technology, social
media activity has seen a boom across all age
groups. It is humanly impossible to check
all the tweets, comments and status manually
whether they follow proper community guide-
lines. A lot of toxicity is regularly posted on
these social media platforms. This research
aims to find toxic words in a sentence so that
a healthy social community is built across the
globe and the users receive censored content
with specific warnings and facts. To solve this
challenging problem, authors have combined
concepts of Linked List for pre-processing and
then used the idea of stacked embeddings like
BERT Embeddings, Flair Embeddings and
Word2Vec on the flairNLP framework to get
the desired results. F1 metric was used to eval-
uate the model. The authors were able to pro-
duce a 0.74 F1 score on their test set.

1 Introduction

Modernization has awarded us with the technol-
ogy capable of communicating with masses across
huge distances in an instant by the touch of a sin-
gle finger in our palms, the smartphone. With all
this innovation every day, it is now more accessi-
ble than ever, even in the most rural parts of the
world and at very reasonable costs. It has enabled
a vast population to share their thoughts and views
on popular topics in public forums. People can
express themselves in the most creative ways and
talk to each other about movies, research, politics,
the economy and much more. Some of the key
forums and platforms for such activities are Face-
book, Twitter, YouTube, Reddit. They allow users
to participate in various discussions, discussions
that at times may not be very decent. This creates
an issue for these platforms as they usually have
some of the other policies against indecent con-
tent posted by users. On average there are about

350,000 tweets, 510,000 comments, 293,000 sta-
tus updates on Facebook and Twitter in every 60
seconds (Sayce, 2020). It is humanly impossible
for these platforms to check each and everything
posted by the users for hate or toxicity. They re-
quire an automated method to flag such content.

The motivation for this research task is to
achieve some degree of automatic moderation in
the social web. It is crucial to moderate social me-
dia sites such as Facebook, Twitter and Reddit to be
healthy and inclusive. This includes filtering and
censoring toxic and hateful content posted online
on these public forums. There are automated hate
detection NLP models like (Zhang and Luo, 2018)
capable of identifying toxic content with accept-
able performance. However, they do not identify
the specific spans of text that are toxic. This task
tries to identify these spans that can be used fur-
ther to provide insights into a generic text toxicity
score. More about the study that this paper is based
on can be found from the task organizers paper
(Pavlopoulos et al., 2021).

This paper proposes linked lists for data pre-
processing and a stacked embedding approach to
training this automated system.

The authors’ experiment and code for the models
ready to be reproduced can be found using the
authors’ Github repository.

This paper is organized as follows. It starts with
a short abstract describing the paper at a very high
level. Then the first section introduces the problem
at hand and the task to accomplish. It mentions
the authors’ approach and the link to their code
and models. The second section talks about the
background research performed for the task and
explains the existing solutions and how this paper
is different from them. The third section gives an
in-depth understanding of the system approach to
solving the tasks where it talks about the embed-
dings and the stacking method. The fourth section
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tells us about the dataset, how it was presented,
what it consisted of, the data processing applied to
it, the experimental setup and the evaluation met-
rics. The fifth section is about the methodology,
followed by the results section. The seventh section
concludes the system description. Finally, we get
the references.

2 Background research and related
works

This problem tackles the challenge of accurately
identifying the parts of a toxic text and contributing
to making the complete text toxic. There, however,
exist systems that can score the toxicity of a full
text, sentence or comment like (Zhang and Luo,
2018), but they don’t identify the exact part of
that sentence that is toxic. There also are systems
that can accurately say if a statement is toxic or
not and even go on to the extent of identifying
the emotion projected by it, for example, if it is
positive, negative, humorous, sarcastic, offensive
or funny and even the level of these emotions as
seen in (Gupta et al., 2020).

A widely known methodology to identify parts
of a text is Named Entity Recognition (NER) (Ya-
mada et al., 2020) and its types like the speech
(POS) tagging method. NER is a sequence la-
belling task that recognises entities as per the types
of entities it is trained on. These are usually nouns
or particular words like names of people or places
or organisations and values like monetary numbers
and currencies. The sequence labelling task con-
siders a text sequence in which part of it needs to
be tagged differently according to the embeddings.
Long short term memory, LSTMs (Hochreiter and
Schmidhuber, 1997) are usually used for sequence
labelling. A variant of LSTMs, the bi-directional re-
current neural network-based BiLSTM, has proved
to be very successful at performing accurately at
such tasks. It is also seen to be combined with the
conditional random field(CRF) decoding layer as
seen in (Ma and Hovy, 2016) to get better results.

Open-source tool, Spacy (Honnibal et al., 2020)
is a leading tool to create effective and lightweight
NER models for datasets with such challenges.

3 System Overview

For this task, the authors have used the flairNLP
platform (Akbik et al., 2018a) to stack BERT and
flair embeddings and create a Named Entity Recog-
nition (NER) model. They have morphed the origi-

nal aim of the NER type tasks to train a model ca-
pable of identifying toxicity in a text that is already
classified as toxic as a whole. This was possible
because, finally, we were using the different embed-
dings related to toxic parts of the text. These were
the embeddings that were trained, which made the
task very similar to a NER task. The model created
also had a conditional random field layer. Its pur-
pose was to better understand the context around
the text’s selected parts by considering the neigh-
bouring words.

For this task of sequence labelling, we have
stacked embedding by concatenating BERT and
flair embedding. This helps in getting a better se-
mantic context out of the concatenated embedding
word vectors. Following is a brief about flair and
BERT embeddings.

3.1 Flair Embedding

Flair embedding (Akbik et al., 2018b) are a type
of contextual embedding in which sentences are
passed as character into a character level language
model to generate word embedding. Contextual
string embedding are generated through LSTM be-
cause of its ability to keep long term dependency
within their hidden state. In Figure 1

Figure 1: A word is passed as characters to generate
flair embedding. After that a CRF layer is used to

convert this into a NER problem.

We can see each character of the text ”you are
obviously a fool” is passed through a bidirectional
character-level neural language model, and each
word is retrieved. Then it is given to the CRF
layer(sequence labelling). Following is a brief ex-
planation of the mathematics behind generating
these embedding. In LSTM, the hidden state ht
represents the past sequence of the character. Both
forward and backward language model is used to
create these embedding. The mathematical equa-
tion of the hidden layers of the forward and back-
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Figure 2: Generating Contextual String Embeddings
for the word ”obviously”. In the forward language

model(represented in red), the output hidden state is
extracted after the last character in that word. For the
backward Language Model(represented in blue), the

output hidden state is extracted before the word’s first
letter. These two output layers are concatenated to

form the final embedding

ward model can be seen in equation 1 and 2 respec-
tively.

hft = ffh (xt−1, h
f
t−1, c

f
t−1, θ) (1)

hbt = f bh(xt+1, h
b
t+1, c

b
t+1, θ) (2)

In the above equation, f and b are the forward
and backward model’s notations. Memory cell and
parameters of the model are represented by ct and
θ, respectively. The output of the hidden state from
both the forward and backward language model are
concatenated. In the forward language model, the
hidden state output is extracted after the word’s last
character. Subsequently, for the backward language
model, the hidden state’s output is extracted before
the first character of the word. Both the language
model captures the semantic information and then
are concatenated to generate the word embedding
for that particular word. Let us suppose individual
word string begin with t1...tn then the contextual
word embedding can be seen in equation 3

wcharLM
i =

{
hfti+1−1
hbti−1

}
(3)

To better understand the concept, figure 2 explains
the process by taking an example, and the forward
language model is shown in red colour. The back-
ward language model is shown in blue colour. To
have a complete understanding of how the contex-
tual word embedding work, one can refer to the
(Akbik et al., 2018b) paper.

3.2 BERT Embedding
Unlike Flair embedding, BERT embedding (De-
vlin et al., 2019) are word-level embedding, and it

Figure 3: Example Illustrating the process of
generating BERT Embedding.

only contains the encoder part of the transformers
(Alammar, 2018). In this paper, the authors have
used 2 BERT models, i.e. BERT-base, which con-
tains 12 layers, produces an output of 768 units and
BERT-Large, which contains 24 layers, produces
an output of 1024 units. Generating word embed-
ding can also be classified as feature extraction in
which embedding are generated and are fed into the
neural network. For the BERT-base model, each
layer produces 768 units for every word. To gener-
ate BERT embedding, authors have concatenated
the last 4 hidden layers. BERT paper (Devlin et al.,
2019) also shows that concatenating the last 4 lay-
ers yield the best results. BERT has around 30,000
words vocabulary. If the word is not in the vocab-
ulary, then the BERT tokenizer converts it into a
sub-word or characters. For example - Word “un-
recognized” will be represented as [’un’, ’re’, ’co’,
’gni’, ’zed’]. The first token of a sentence is always
( [CLS]), which indicates the sentence’s starting.
Two separate sentences are separated with ([SEP)]
tokens. An example of how the BERT model works
is shown in figure 3 which is adopted from (Alam-
mar, 2019) where authors have used ”you are ob-
viously a fool” as an example sentence. We can
see first the sentence is converted into the sentence
convention used by BERT, i.e. adding the required
tokens. After adding the tokens, BERT tokeniza-
tion is used, i.e. words are converted into numbers
by referring to the BERT dictionary. BERT tok-
enization also converts any words in sub-words or
character if the required word is not present in the
vocabulary file. The ids are then fed into the BERT
model, and desired output, i.e. BERT embedding,
are generated. Each layer produces 768 units for a
single word. The last four (4) hidden layers have
been concatenated to get the word embedding in
the paper. Now we can put these words embedding
to our model to generate results. Figure 4 shows
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Figure 4: Visualization of Attention in BERT-Base model. Lighter points in the heatmap represents more
attention value

the visualization of attention using BERT. The heat
map shows how BERT correlates one word with
other.

4 Experimental Setup

This section presents a brief overview of the data,
the pre-processing it went through and challenges
faced in doing so, information about the experiment
environment and the evaluation metrics used.

4.1 Data

The data was provided to the authors by the task
organizers who had acquired it from the Civil Com-
ments Dataset (Borkan et al., 2019). The task orga-
nizers then filtered all the text level toxic-labelled
text that had been labelled toxic by more than half
the annotators, which was around 30,000 in num-
ber from a total of 1.2 million posts. Out of these
30,000 text posts, random 10,000 posts were se-
lected and given to crowd annotators to mark the
toxic spans from the text. More information about
this can be found in the task description paper
(Pavlopoulos et al., 2021). The authors finally re-
ceived a CSV file with two columns with headers
as ’spans’ and ’text’. Spans column contained a
list of character level indices of the toxic entities.
Next to it was the complete text that was found
to be toxic. For some texts, there existed a corre-
sponding list of empty spans if no toxic span was
annotated. Authors randomly collected 558 data
points from the dataset (CSV) as a testing set and
were left with 5339 data points as the training set.

4.2 Linked-list based Pre-processing

The pre-processing stage involved coming up with
a method to map the spans before and after cleaning
the text. The data provided had a column full of
rows with toxic text collected from social media
and hence it was naturally in need of cleaning as it
contained a lot of abbreviations, punctuation, some

foreign characters, numbers and special characters
that were not supposed to be present there as they
would create ambiguity to the model. Removing
these would bring some uniformity to the model
input. In this approach authors faced majorly two
(2) challenges.

1. Removing unwanted characters from the orig-
inal text will produce a cleaner text and that
text will be shorter in length as compared to
the original text. This will create discrepancy
from the spans column, as the spans are given
was according to the length of the original
sentence.

2. While pre-processing it was important to
maintain the sequence of the words in a sen-
tence. For example ”You are an Idiot”, we
have to make sure that after the first word
”You” the second word is ”are” only.

To tackle the first problem we replaced un-
wanted(punctuation, numerals etc.) characters
with whitespace character so that the length of the
sentence remains the same.

Text : You.... are, idiot !!

Pre-processed text : You are idiot

Ground spans = [12,13,14,15,16] = [’idiot’]

In the above text, we can see that the unwanted
characters are replaced by whitespace character
which solves our first problem.
For the second problem, we implemented a linked

list data structure. After tokenizing the sentence
on whitespace we stored individual word in a sin-
gle node. The head of the node is attached to the
next node which helps us to maintain the sequence
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Figure 5: Implementation of linkedlist data structure
for pre-processing

of words in a sentence, hence solving our second
problem.

This is described stepwise in figure 5

Step 1: The original sentence is tokenized on
”whitespace”. In the example, the length
of the original text is 20.

Step 2: After tokenization, each word is stored in a
node of a linked list data structure and each
word from each node is pre-processed i.e.
unwanted characters are removed.

Step 3: To maintain the sequence of words another
linked list is made but in this linked list
each word is cleaned. The unwanted char-
acters are replaced with whitespaces in the
pre-processing block.

Step 4: Words are joined back to form a proper sen-
tence, and the length of the new sentence
is 20 as it was of the original sentence.

After getting the pre-processed text, it is ready to
be fed into the model.

4.3 Experiment Environment

The experimental environment set up by the au-
thors included the use of Python, mostly for script-
ing along with some of the well known and com-
monly used python libraries like NumPy, pandas,
flair(flairNLP), re(regex). They used Jupiter note-
book for python ide along with python version 3.7.
Google Colab (GPU and TPU) was also used for
training the models.

4.4 Evaluation metrics
Authors have used F1 score (Da San Martino et al.,
2019), precision and recall (Goutte and Gaussier,
2005) in order to evaluate the performance of the
models. The task organisers also used F1 score to
evaluate and rank the challenge responses. Equa-
tion 4 represents the mathematical formula of cal-
culating the F1 score.

F1
l =

2 · P l(Xi, Y ) ·Rl(Xi, Y )

P l(Xi, Y ) +Rl(Xi, Y )
(4)

In equation 4, F l
1 represents F1 score of the system

i, which is calculated for the text l. The predicted
values are represented by Xi whereas the ground
truth is represented by Y . P and R represents Pre-
cision and Recall values with their mathematical
calculations shown in equations 5 and 6 respec-
tively where S represents the Set function.

P l(Xi, Y ) =
|St

Xi
∩ St

Y |
|St

Xi
| (5)

Rl(Xi, Y ) =
|St

Xi
∩ St

Y |
|St

Y |
(6)

Here, | · | represents Cardinality which can be in-
terpreted as the length of the finite set.

The overall F1, precision and recall of the mod-
els’ performance was obtained by calculating the
mean of individual scores of every text in our test
set of 558 data points.

5 Methodology

In this paper authors have used the concept of
stacked embeddings i.e. to generate a particular
embedding for a word, flair gives you the flexi-
bility to concatenate different word embeddings
together to get better results. Equation 7 depicts
concatenating flair and GloVe embedding.

wei =

{
weFlair

i

weGloV e
i

}
(7)

Here word embedding is denoted by we. In this
paper, the result of four (4) models have been dis-
played. Table 1 shows different parameters used
by authors in different models. The concept of
early stopping and adaptive learning rate are used
to generate these results. The learning rate would
be halved if the model does not show improvement
consecutively 4 times in a row. In this case, the
training automatically stops when the learning rate
becomes too small for example LR=6.2500e-05.
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Parameters Model 1 Model 2 Model 3 Model 4
Epochs 30 39 30 36
Learning Rate 0.001 0.001 0.001 0.001
Mini Batch Size 8 8 8 8
Embeddings Flair,BERT-

large-uncased,
CharacterEm-
beddings

Flair,BERT-
large-uncased,
CharacterEm-
beddings,GloVe

Flair,BERT-
base-uncased,
CharacterEm-
beddings,GloVe

Flair,BERT-
base-uncased,
CharacterEm-
beddings

Table 1: Parameters of different Proposed Models

6 Result

The parameter details of the 4 different models
and the embeddings used are listed in table 1. It
lists the number of epochs the model was trained
on with the initial learning rates and batch sizes.
Model 2 ran for the most epochs before being auto-
stopped as no improvements were seen in the last
4 epochs and the learning rate parameter got too
small due to the adaptive learning rate function. All
the models had Flair and Character embeddings
with the variation of GloVe and BERT-uncased
embeddings. Table 2 lists different models used

Model F1 Precision Recall
Model 1 0.748 0.971 0.929
Model 2 0.737 0.967 0.925
Model 3 0.726 0.968 0.916
Model 4 0.724 0.973 0.909

Table 2: Experimental results

and their respective F1-scores, precision and recall
values for our test set. It can be inferred that model
1 i.e. stacked embeddings with Flair, BERT-large-
uncased, CharacterEmbedding performed the best
with an F1 score of 0.748 with precision and recall
of 0.971 and 0.929 respectively. It was able to
predict toxic spans closest to the ground truth. The
other models are not too behind than this but it
seems that model 4 did not have too much of a
difference when stacked with GloVe embeddings
as seen in model 3.

Figure 6 presents the comparative analysis of
F1 scores achieved by the 4 models proposed by
the authors in table 1 and the best performing
model from the NLRG system (Chhablani et al.,
2021) and the UniParma system (Karimi et al.,
2021). The authors of NLRG have used a BERT
based RoBERTa token classification method to
reach their best F1 score of 0.689. The authors of

Figure 6: Comparative Analysis of F1 scores

UniParma have used CharacterBERT and the bag
of words(BOW) method to get their F1 score of
0.66. Proposed model 1 (highlighted in red) was
the best performing model with a 0.748 F1 score.

Text : You.... are, idiot !!

Pre-processed text : You are idiot

Ground spans=[12,13,14,15,16]=[’idiot’]

Predicted spans=[12,13,14,15,16]=[’idiot’]

The above example displays the input text, the
pre-processed clean text with the toxic word ”idiot”
highlighted in red. Below them is the ground truth
for the spans of this toxic word and then there are
the correct predicted spans for it.

7 Conclusion

We support the systematic development for iden-
tifying toxic spans. We have successfully been
able to deploy a linked list approach to prepare the
data and then train it using the stacked embeddings
method and produce empirical results. This task
can prove to be useful in providing a better analysis
in the censoring of toxic posts on the internet.
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Abstract

Toxic Spans Detection(TSD) task is defined
as highlighting spans that make a text toxic.
Many works have been done to classify a given
comment or document as toxic or non-toxic.
However, none of those proposed models work
at the token level. In this paper, we propose a
self-attention-based bidirectional gated recur-
rent unit(BiGRU) with a multi-embedding rep-
resentation of the tokens. Our proposed model
enriches the representation by a combination
of GPT-2, GloVe, and RoBERTa embeddings,
which led to promising results. Experimen-
tal results show that our proposed approach is
very effective in detecting span tokens.

1 Introduction

With the massive increase in social interactions
on online social networks, keeping discussions
fruitful is a central concern for platform providers.
Indeed, abusive (e.g., bullying, profanity, hate
speech), damaging the reputation of a platform.
Thus, it is necessary to be detected by automated
machine learning systems because of huge amount
of data. However, the previous works mostly focus
on whether the given document(e.g. comment) is
toxic or not. Detecting the span tokens in the docu-
ment may be more beneficial. For example, it can
prevent users to use span tokens before they send
their post. Also, it is useful to filter span tokens
before learning AI chatterbots instead of removing
the whole documents.

In this paper, we propose a self-attention-based
bidirectional gated recurrent unit (BiGRU) with a
multi-embedding representation of the tokens. Our
proposed model enriches representation showed
very promising results.

The rest of the paper is organized as follows.
Section 2 provides background and presents some
related works on TSD in general. Section 3 intro-

duces our BiGRUs model. Results are covered in
Section 4. In Section 5 we draw a conclusion.

2 Related Research

A toxic post (comments) is defined as a rude, dis-
respectful, or unreasonable comment that is likely
to make other users leave a discussion. A goal of
toxic comment classification is to give a right to
freedom of expression on the web.

Training complex neural networks (NN) requires
enough datasets of toxic comments. Word em-
beddings are the basis of the NNs when working
with text data. NNs for toxic comment classifica-
tion use Recurrent Neural Networks (RNN) layers
such as Long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) or Gated Recurrent
Unit (GRU) (Chung et al., 2014) layers. Similarly,
the attention mechanism for NNs has been suc-
cessfully applied to toxic comment classification
(Pavlopoulos et al., 2017; van Aken et al., 2018).
In semi-automated content-moderation, attention
can be considered as a highlighter of abusive or
toxic words.

Badjatiya et al. (2017) proposed a system for
a hate-speech task based on deep-learning with a
combination of LSTM, random embedding, and
gradient boosted decision trees as the best model.
They used random embedding, GloVe (Penning-
ton et al., 2014), and FastText (Bojanowski et al.,
2016) representation for experimentation. They
concluded that a combination of CNN and LSTM
with FastText or GloVe embedding as features for
gradient boosted decision trees can not yield better
results.

van Aken et al. (2018) held an in-depth er-
ror analysis, and based on their comparance with
different deep learning and shallow approaches;
they observed three common challenges: out-of-
vocabulary words, long-range dependencies, and
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multi-word phrases. They experimented with vari-
ous deep learning models, including CNN, LSTM,
BiLSTM, GRU, BiGRU, and Attention mechanism
with GloVe and FastText embeddings to tackle
these challenges. Their experimentation on two
datasets showed that BiGRU with Attention mech-
anism with GloVe and FastText representations
achieved promising results with respect to other
models. However, in the final, they proposed an
ensemble approach that outperforms all individual
models.

In (Pavlopoulos et al., 2017) they proposed a
deep classification-specific attention mechanism
with BiGRU to highlight suspicious words for au-
tomatic and semi-automatic content moderations.

3 Proposed Method

In this section, we describe the details of our pro-
posed neural network model. Our proposed ap-
proach aims to predict whatever the tokens of given
comments are toxic or not. Figure 1 depicts an
overview of our proposed method.

At first, in a dataset, original posts are tok-
enized and preprocessed. Each token at each post
is labeled as a toxic or not toxic token by their
spans. Then, a multi-embedding representation of
tokens is created. Next, the Bidirectional GRUs
(BiGRUs) models are applied to extract the higher-
level feature sequences with sequential information
from multi-embeddings. After that, a self-attention
mechanism computes attention weight between
each pair of elements in a single sequence. Fi-
nally, the generated output feature sequences from
self-attention-based BiGRUs are fed into the fully-
connected dense layer and then into the final pre-
diction module to determine the prediction. In
the following, we describe each component elabo-
rately.

3.1 Preprocessing

First, each comment is tokenized into words with
their spans. Next, tokens are preprocessed; the
preprocessing consists of lowercasing and remov-
ing punctuations, special characters, numbers, Uni-
codes, smileys, and emojis. After preprocessing,
empty tokens are removed (tokens which empty
spaces). Finally, for a post, toxic or not-toxic la-
bels based on grand truth assigned to preprocessed
tokens. In total, we obtained 21790 unique words.
The obtained words are used as a vocabulary. In
the next step, a multi-embedding is used to extract

Figure 1: Architecture of Proposed Model

features for unique words to create an embedding
matrix for modeling.

3.2 Multi-Embedding Layer

Toxic comments often use obfuscations, for exam-
ple, ”f**k u”, ”Son of a B****”, ”***k them.”.
Also, misspelled and abbreviation words are com-
mon in online discussions. Word2Vec (Mikolov
et al., 2013) and GloVe fail to find a good represen-
tation of these words because words never occurred
in training time. These words are out-of-vocabulary
(OOV) (Risch and Krestel, 2020). However, we
can take advantage of failing representations to
represent toxic tokens that are not in vocabulary
by setting their representations to zero. Regarding
this hypothesis, if GloVe or Word2Vec contains
OOV, we can set their token representations to zero
and use language model embeddings to find sub-
set word representation. By concatenating these
two types of representation for each token in the
sequence, we can build awareness representation
of sequences.

For this purpose, we used the multi-embedding
representation of tokens.

GloVe is a global log-bilinear regression model
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with a weighted least-square objective that com-
bines the advantages of global matrix factorization
and local context windows. It leverages statistical
information by training only on the nonzero ele-
ments in a word-word co-occurrence matrix in a
large corpus.

GPT-2 (Radford et al., 2019) is an unsupervised
transformer language model for general-purpose
learners. It is trained on WebText, which contains
over 8 million documents.

RoBERTa (Liu et al., 2019) is an optimized ver-
sion of BERT (Devlin et al., 2018) model. It builds
on BERT’s language masking strategy. RoBERTa
modifies key hyperparameters in BERT, including
removing BERT’s next sentence pretraining objec-
tive and training with much larger mini-batches and
learning rates.

To empower representation, we combined
RoBERTa and GPT-2 representations (by sum-
ming) and then concatenated them with GloVe
(840B tokens, 2.2 vocab). We achieved representa-
tion matrix with W × 1068 dimension for training
vocabs, where W is the number of vocabs in train-
ing. During analysis, we found nearly 6k OOV
words in training, which GloVe does not produce a
representation for them. It is a significant number
regarding the training vocabulary size.

3.3 Bidirectional GRUs

Bidirectional Gated Recurrent Unit (BiGRU) in the
central part of Figure 1 is a bidirectional version
of GRU. The GRU allows to adaptively capture
dependencies from large sequences of data without
discarding information from earlier parts of the se-
quence. BiGRU combines the forward hidden layer
with the backward hidden layer, which can process
each sequence in both left-to-right and right-to-left
order to embed the sequential dependencies in both
directions. The first BiGRU layer is used to pro-
cess each sequence token-by-token and produce an
intermediate representation. Then, this intermedi-
ate representation is used as input for the second
BiGRU layer.

3.4 Self-Attention Layer

The words in sequences sometimes are related to
each other, like ”Son”, ”of”, ”B***” and some-
times are not related. To determine how two tokens
are related, Self-Attention Networks (SANs) (Lu-
ong et al., 2015) produce the output with the same
size as input sequences by considering the attention

of all input tokens with each other. It learns the
important interactions between tokens.

3.5 Dense Layer
The dense layer or feed-forward layer is the most
general-purpose deep learning layer. The dense
layer consists of 50 neurons for the weighted linear
combination of inputs with the activation function
of tanh to squashes the input to the range [0, 1].

3.6 Prediction Module
The final layer of the network has three neurons,
and its returned value is a continuous numerical
value. We used the sigmoid activation function to
produce a probability vector. For loss function and
optimization, we employ Sparse Categorical Cross
entropy and RMSprop, respectively.

4 Results

4.1 Dataset
For toxic span detection tasks (Pavlopoulos et al.,
2021) posts from publicly available Civil Comment
dataset are used for annotations of particular toxic
spans in toxic comments. The task consists of
7939 annotated comments with their toxic spans
for training and 2000 for the test. However, we
treat 690 samples of trial data as a development set
for our investigations.

4.2 Evaluation
For evaluation of participating systems in the chal-
lenge, F1 score presented in (Da San Martino et al.,
2019) was used. If we consider Ai to return a set
St
Ai

of character offsets for the part of the post
found to be toxic, and similarly Gt be the character
offset of the grand truth annotation of t. We can
compute F1 score of system Ai with respect to the
G for post t as follows:

F t
1(Ai, G) =

2 · P t(Ai, G) ·Rt(Ai, G)

P t(Ai, G) +Rt(Ai, G)

P t(Ai, G) =
|St

Ai
∩ St

G|
St
Ai

Rt(Ai, G) =
|St

Ai
∪ St

G|
St
Ai

If St
G and St

Ai
are empty for some post t, then

F1 = 1, and otherwise F1 = 0. In final, to obtain
a single score for system Ai, the F1s averaged over
all the posts t of the evaluation dataset.
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Method GloVe GPT-2 RoBERTa RG GoR GoG Ensemble
Results on dev set
BiLSTM 0.619 0.580 0.634 0.647 0.627 0.621 0.655
BiGRU 0.597 0.641 0.621 0.664 0.637 0.668 0.643
BiLSTM + Attention 0.581 0.615 0.620 0.638 0.607 0.445 0.663
BiGRU + Attention 0.572 0.649 0.562 0.521 0.664 0.601 0.668
Results on Test set
BiLSTM 0.627 0.666 0.663 0.669 0.665 0.680 0.673
BiGRU 0.633 0.623 0.660 0.662 0.648 0.670 0.680
BiLSTM + Attention 0.653 0.676 0.657 0.600 0.668 0.559 0.633
BiGRU + Attention 0.639 0.659 0.644 0.627 0.640 0.678 0.677

Table 1: Experimental Results on Trial (dev) and Test sets. RG refers to the ensemble of RoBERTa and GPT-2
embeddings. Similarly, GoR, refers to the ensemble of GloVe and RoBERTa embeddings, and GoG refers to the
ensemble of GloVe and GPT-2 embeddings

4.3 Results

For all experimentation, we used Google Colab
free GPU1 to train our models with 10 epochs. We
set the batch size to 32, and we pad the comments
to the 215 sequence length. We obtained 6330
OOV out of 21790 words in the vocabulary, which
GloVe does not produce a representation for them.
For experimentation, we used BiLSTM and Bi-
GRU models with SAN followed by a dense layer.
Also, we examined representation combinations of
GloVe, GPT2, and RoBERTa and reported them
in Table 1 for dev (trial) and test sets. According
to the experimentations, all models perform well
when multi-embedding representation is utilized.

In the first part, we took GloVe representation
as our baseline representation. Regarding this rep-
resentation, in most cases, GPT-2 and RoBERTa
perform well (6 cases for GPT-2, and 7 cases for
RoBERTa). It shows how much the contextual-
ized representations are useful; however, it is hard
to tell among GPT-2 and RoBERTa which one is
performing well.

In the second part, we combined different repre-
sentations that achieved a higher averaged value of
F1 score in all cases. Except for one case, namely
BiLSTM + Attention, the differences between rep-
resentation by GPT-2 and GoR is 0.008. In general,
an ensemble of embeddings achieved a higher score
than single representations.

In the final, because of two reasons, we con-
sidered the BiGRU + Attention model with multi-
embedding representations as the final model for
this task. First, It achieved a higher averaged F1
according to the dev set, and the second higher

1https://colab.research.google.com

averaged F1 score according to the test set. The
second reason is that the margin between the Bi-
GRU+Attention model in the dev and test set was
less than the others (0.009). Submitted model to the
competition achieved averaged F1 score of 0.677
and place 23 of the competition among 91 teams.

We shared the implementation of the proposed
model in GitHub2 for the research community.

5 Conclusion

In this paper, we presented our approach for
SemEval-2021 Task 5: Toxic Span Detection. We
tried to tackle the problem by employing multi-
embedding and deep learning techniques. We con-
ducted some experiments using different models.
For example, we implemented a BiLSTM model,
BiLSTM with SA, BiGRU, and BiGRU with SA,
but the model that gave a promising result and re-
lied on BiGRU with SA model.
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Abstract
In this paper, we describe our system used
for SemEval 2021 Task 5: Toxic Spans De-
tection. Our proposed system approaches the
problem as a token classification task. We
trained our model to find toxic words and con-
catenate their spans to predict the toxic spans
within a sentence. We fine-tuned Pre-trained
Language Models (PLMs) for identifying the
toxic words. For fine-tuning, we stacked the
classification layer on top of the PLM fea-
tures of each word to classify if it is toxic or
not. PLMs are pre-trained using different ob-
jectives and their performance may differ on
downstream tasks. We, therefore, compare the
performance of BERT, ELECTRA, RoBERTa,
XLM-RoBERTa, T5, XLNet, and MPNet for
identifying toxic spans within a sentence. Our
best performing system used RoBERTa. It per-
formed well, achieving an F1 score of 0.6841
and secured a rank of 16 on the official leader-
board.

1 Introduction

Internet and social networking sites have brought
people together by providing a simple yet effec-
tive method of communication. Over the years
people used it to exchange positive ideas but re-
cently, there has been a rise in toxic content and
hate speech over the internet (Zampieri et al., 2019,
2020). Most datasets (Fortuna et al., 2020) dealing
with the problem of toxic, offensive, or hateful con-
tent aim to classify the entire text belonging to a
particular class. They do not identify the parts of
the text that make it toxic. Manual filtering of toxic
data is tough and can cause mental and emotional
stress to annotators (Zampieri et al., 2019). An
automatic system with the ability to identify toxic
text and highlighting toxic spans can be useful for
the moderators. It will help save time and prevent
stress caused by reading long texts. SemEval 2021
Task 5: Toxic Spans Detection(Pavlopoulos et al.,

2021) draws attention to the problem of identifying
toxic spans present in a sentence.

Our proposed system makes use of a word-level
classifier for detecting the offensive words present
in a sentence. The offsets of the toxic words can
then be concatenated to find the toxic spans. We
made use of pre-trained language models (PLMs)
for building our classifier. We experimented with
BERT(Devlin et al., 2019), ELECTRA(Clark et al.,
2020), RoBERTa(Liu et al., 2019b), XLNet(Yang
et al., 2020), MPNet(Song et al., 2020), T5(Raffel
et al., 2020), and XLM-RoBERTa(Conneau et al.,
2020) to compare their performance on the task of
toxic spans detection. Owing to the increase in the
number of pre-trained language models choosing
the correct model is an important decision as these
models contain millions of parameters and are ex-
pensive to train. So, we present a comprehensive
analysis of the performance of different models,
which can serve as a baseline for future work.

Our best performing system was fine-tuned using
RoBERTa and attained an F1 score of 0.6841. It
was ranked 16 on the official leader board. We used
different PLMs for fine-tuning and found exceed-
ingly small variations in their performance. Further
analyzing our model’s performance on the test set
we observed that it is essential for the model to not
only detect toxic spans but also decide if it needs
to predict toxic spans for that sample or not. Our
code is available online1 for method replicability.

2 Background

Identification of toxic/offensive content is an im-
portant task in natural language processing. It is es-
sential for the moderation of harmful content over
social media sites that might hurt the sentiments of
individuals, groups, or communities at large. Much

1https://github.com/04mayukh/YoungSheldon-at-
SemEval-2021-Task-5-Toxic-Spans-Detection
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work has been done on the identification of offen-
sive content. OffensEval 19, 20 (Zampieri et al.,
2019, 2020) provide a comprehensive analysis of
methods useful for the identification of offensive
content. SemEval 2020 Task 8: Memotion analy-
sis (Sharma et al., 2020) presented with a dataset
of internet memes with one sub-task to detect and
quantify offensive content. Work done in (Brassard-
Gourdeau and Khoury, 2019) explores different as-
pects of sentiment detection and their correlation
to toxicity. (Pavlopoulos et al., 2020) covers the ef-
fect of context on toxicity. (D’Sa et al., 2020) uses
BERT and FastText for toxicity detection. (Ku-
rita et al., 2019) covers several attacks to by-pass
toxic content filters and methods to make the fil-
ters robust to such attacks. Recent state-of-the-
art systems (Wiedemann et al., 2020; Wang et al.,
2020; Liu et al., 2019a; Nikolov and Radivchev,
2019) performed well in identifying offensive con-
tent. Work done in (Gröndahl et al., 2018) shows
that although recent systems perform well on given
datasets, very slight changes made by adversaries
may fool the models. Adding words like “love” to
offensive tweets may make it less offensive.

Identifying toxic content is an important NLP
task. It is useful in moderating online content over
the web having millions of users. Most problems
deal with labeling the entire content as toxic/non-
toxic. None of the previous work has tried to
identify spans within a text that makes it toxic.
SemEval-2021 Task 5: Toxic Spans Detection aims
to bring attention to this problem via the task de-
fined as: Given a dataset D of sentences, the objec-
tive of the task is to learn a classification function
that can predict the toxic spans T present in the
given sentence. The content of the provided dataset
D was in English.

Dataset statistics: The dataset for the task con-
sisted of character offsets for toxic spans present
for each text sample. The span consisted of single
words as well as a collection of words. Table 1
shows the count of samples having different num-
ber of toxic words.

From Table 1 we can infer that samples with
toxic words within the range of one to three form
a major component of the dataset. In the test set,
samples with no toxic words were significantly
more than the training and development set. Toxic
words with the highest frequency of occurrence
present in the training set are given in Table 2. We
observed that toxic words contained stopwords (the,

a, and, of) which are generally not toxic when used
independently. These stopwords can exist as part
of multiword toxic spans.

3 System Overview

3.1 Pre-trained Language Models

Natural language processing tasks are data inten-
sive. Training deep neural networks for NLP tasks
requires large amounts of training data that might
not always be available. To overcome this problem
researchers proposed pre-training large language
models which can be fine-tuned on various down-
stream tasks. Pre-training involves training general
representations of text to understand its syntactic
and semantic relations. The main advantage of
pre-training is that it can be done on unlabelled
text corpus allowing training on a large amount of
textual data. The pre-trained language models can
then be used across various downstream tasks by
fine-tuning them on task-specific datasets.

3.2 Brief overview of used PLMs

BERT: It is a bidirectional language model based
on the Transformer architecture(Vaswani et al.,
2017). It uses Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP) as a pre-
training objective.

ELECTRA: It is one of the most recent models
and is inspired by generative adversarial networks.
It introduces Replaced Token Detection (RTD) pre-
training objective.

RoBERTa: It is a modification of BERT pro-
posed by Facebook. It uses dynamic masking as
a part of the pre-training objective. NSP was re-
moved and the model was pre-trained on larger
data for more time.

XLNet: It is a generalized auto-regressive pre-
training method using the best of both Auto Re-
gressive(AR) and Auto Encoding(AE) modeling
techniques. It makes use of permutation language
modeling (PLM) objective for pre-training.

MPNet: It was proposed by Microsoft. It over-
comes the pre-train fine-tune discrepancy in XLNet.
It makes use of both PLM and MLM to map the
dependencies among predicted tokens as well as
use full positional information in a sentence.

T5: It was proposed by Google and aimed to re-
frame all NLP tasks into a single text-to-text format
where both inputs and outputs are always strings.
It used a masking objective similar to BERT and
used teacher forcing for pre-training.
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No. of Toxic words per sentence (N) N = 0 N>0 and N<=3 N>3 and N<=7 N>7 Total
Train 486 6216 742 495 7939
Development 43 543 72 32 690
Test 394 1541 53 12 2000

Table 1: Number of samples with different frequencies of toxic words.

Toxic Word Frequency
stupid 1237
idiot 668
the 581

idiots 428
a 383

and 350
of 288

ignorant 277
stupidity 276

Table 2: Most frequent toxic words.

XLM-RoBERTa: It is a multi-lingual model
trained by Facebook AI on more than 100 lan-
guages. It made use of the Transformer archi-
tecture(Vaswani et al., 2017) with multilingual
MLM (Devlin et al., 2019; CONNEAU and Lam-
ple, 2019) using only monolingual data as a pre-
training objective.

3.3 Modelling as Token Classification Task

The given dataset provided spans of toxic content
in a statement. Each sentence could contain mul-
tiple toxic spans. Another important thing to note
was that a toxic span could comprise more than one
word. We extracted all toxic words using the toxic
spans. If a span contains over one word, it was
further processed to extract individual words. Once
we found all the toxic words, we split the original
sentence to label the toxic/non-toxic words. Before
splitting the original sentence, we removed extra
whitespace and newline characters. We removed
any punctuation before or after the word. Punctua-
tions present within the words were not removed.
Figure 1 shows an example of the process. The
toxic spans have been highlighted in red in the orig-
inal sentence which, we convert into an array of
words labeled as toxic/non-toxic.

The next step is to prepare the data for fine-
tuning on pre-trained language models. PLMs
use tokenization to break the original words into
sub-words. Different models use different tok-
enization techniques like Byte-Pair-Encoding(BPE)

(Sennrich et al., 2016), WordPiece (Schuster and
Nakajima, 2012), and SentencePiece (Kudo and
Richardson, 2018). One advantage of using tok-
enization is that it helps to reduce the vocabulary
size. One challenge it poses for token classifica-
tion tasks is which sub-word to use for classifi-
cation. Different models also add special tokens
like [CLS], [SEP], start, end tokens which are not
required for the token classification task. In our ap-
proach, we used the first sub-word of the tokenized
word for classification. We masked the remaining
sub-words and special tokens while computing the
loss. The sub-words were masked only during loss
computation and not while being passed through
the model. This allowed all sub-words to learn de-
pendencies within the sentence. Figure 2 shows
the tokenized words and their corresponding labels
using the BERT tokenizer.

3.4 Fine-tuning

We used a simple approach for fine-tuning the
model for token classification. We used a token
classifier on top of features learned by PLMs. Our
classifier consisted of three layers on top of PLM
features. First was the batch normalization layer,
followed by a dropout layer. The final layer was a
time-distributed dense layer over features of each
tokenized word containing a single neuron and a
sigmoid activation to predict if the given token is
toxic/non-toxic.

3.5 Masked Loss

As described, we reduced the problem to a token
classification task where we predict the label for
each word. We used binary cross-entropy loss for
the fine-tuning process. In cases where the original
word is broken down into multiple sub-words, we
used only the first sub-word for calculating the loss.
We created masks for each sentence to store the
position of words/sub-words. Cross-entropy loss
was calculated for required sub-words/words using
the masks and then summed up over all tokens in
a sentence. The summed value was the loss for a
given sentence.
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Figure 1: Converting toxic spans to toxic words.

Figure 2: Tokenization for using PLMs. Sub-words(except first sub-word) and special symbols were masked.

4 Experimental Setup

4.1 Hyperparameters and Training
Our models were developed on Keras2 (Chollet
et al., 2015) using HugginFace’s 3 implementation
of transformer4 (Wolf et al., 2020) models. We
fine-tuned the models on TPU’s on Google Colab.
We fixed the sequence length of input to 150 tokens.
We padded/truncated the sequences according to
their length. Our model was fine-tuned using the
AdamW optimizer(Loshchilov and Hutter, 2019)
with a linear learning rate decay against masked
binary cross-entropy loss. We experimented with
learning rates of 1e-4, 3e-5, 4e-5, 5e-5 for each
PLM architecture. Fine-tuning was done for 4
epochs. Each PLM architecture with the best per-
formance on the development set was used for mak-
ing final predictions on the test set.

4.2 Predicting Toxic Span Offsets
Our model was trained to find the toxic words. In
case the word was tokenized into sub-words, we
used the first sub-word to determine the toxic na-
ture of the entire word. We stored flag values for
each sentence to find the correct label for each word
during prediction. Once we found the toxic words,
we searched for them in the original un-processed
sentences. We concatenated the spans for all pre-
dicted toxic words which was the final expected
output.

4.3 Evaluation Metric
The performance of the model was evaluated us-
ing the F1 score as described in (Da San Martino
et al., 2019). Let system Ai return a set St

Ai
of

character offsets found toxic for post t. Let Gt be
2https://keras.io
3https://huggingface.co/transformers
4https://huggingface.co

Model F1 Score
Dev Test

BERT-base 0.6654 0.6812
ELECTRA-base 0.6710 0.6804
RoBERTa-base 0.6676 0.6842

XLM-RoBERTa-base 0.6519 0.6775
T5-large 0.6658 0.6811

XLNet-base 0.6714 0.6817
MPNet-base 0.6750 0.6800

Table 3: Model performance on Test set.

ground truth annotation for t. F1 score of system
Ai with respect to ground truth values G for post t
is calculated as follows:

F t
1(Ai, G) =

2.P t(Ai, G).Rt(Ai, G)

P t(Ai, G) +Rt(Ai, G)

P t(Ai, G) =
|St

Ai
∩ St

G|
|St

Ai
|

Rt(Ai, G) =
|St

Ai
∩ St

G|
|St

G|

where |.| represents the cardinality of the set. If
St
G = 0 i.e no toxic spans are present in t then

F t
1(Ai, G) = 1 if |St

Ai
| = 0 else F t

1(Ai, G) =
0. Finally, F t

1(Ai, G) was averaged over all posts
t present in dataset D to obtain single score for
system Ai.

5 Results and analysis

Table 3 shows the performance of our proposed
model on different PLMs. Learning rate of 1e-
4 was used for ELECTRA, 4e-5 for MPNet, and
5e-5 for the remaining PLMs to obtain the above-
mentioned results. RoBERTa had the best perfor-
mance on the test set while MPNet had the best
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Model No. of toxic words = 0 No. of toxic words >0
F1 = 1 F1 = 0 F1 = 1 F1 = 0

RoBERTa 24 370 1061 96
BERT 24 370 1050 99

ELECTRA 22 372 1007 76
MPNet 18 376 1063 101

T5 24 370 1041 92
XLNet 32 362 1059 112

XLM-RoBERTa 19 375 1056 104

Table 4: Performance analysis on test samples containing no toxic words vs containing one or more toxic words.

Words Frequency
stupid 55

ignorant 32
idiot 27

garbage 16
fool 13

pathetic 13
moron, ass, white,

dumb, stupidity, idiots 12
racist 10

trash, crap 9

Table 5: Words predicted as toxic in Test samples con-
taining no toxic spans.

performance on the development set. Our best per-
forming model achieved a best F1 score of 0.6842
on the test set and was ranked 16 on the official
leader board.

We further analyzed the performance of our
model on the test set. We evaluated the perfor-
mance of our model on samples containing any
number of toxic words vs no toxic words. Table 4
shows the results of the analysis. We found that our
models performed significantly well for samples
having one or more toxic words present and, our
best performing model had a perfect F1 score on
66.06 % of them. Our model was unable to find
toxic words in only 5.97% of samples containing
one or more than one toxic word.

In the case of samples that had no toxic words
in a sample, our model could not perform well.
Only 6.09% of samples with no toxic words were
classified correctly. The dataset statistics for the
test set show that samples with no toxic words con-
stitute 19.7 % of the test set. The training and
development set had only 6.12% and 6.23% sam-
ples without any toxic words. We also found the
top 15 most common words which were predicted

as toxic from samples containing no toxic words in
the test set. The words are given in Table 5 along
with their frequency of occurrence.

We can observe that Table 2 and 5 has common
words. We trained our model using token classifi-
cation objective which tries to capture toxic words.
The model cannot identify if the word is part of a
toxic/non-toxic sentence. Sometimes these words
may be part of a sentence intended to present humor
or sarcasm. This may lead the model to incorrectly
identify toxic words in samples containing no toxic
spans.

6 Conclusion

In this paper, we describe our approach for Se-
mEval 2021 Task 5: Toxic Spans Detection. We
propose a word-level classifier for identifying the
toxic words in a sentence. We experimented with
different PLMs to provide a comprehensive analy-
sis of their performance for identifying toxic spans.
We performed well, getting a rank of 16 on the
leader board. Our analysis shows that a word-level
classifier performs extremely well for sentences
that contain at least one toxic word. However, it
cannot identify cases with no toxic spans efficiently.
In the future, we would like to work on solving this
problem by using a classifier to simply predict if
the sentence is toxic/non-toxic along with span de-
tection.
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Abstract

This paper presents our submission to
SemEval-2021 Task 5: Toxic Spans Detection.
The purpose of this task is to detect the spans
that make a text toxic, which is a complex
labour for several reasons. Firstly, because
of the intrinsic subjectivity of toxicity, and
secondly, due to toxicity not always coming
from single words like insults or offends, but
sometimes from whole expressions formed
by words that may not be toxic individually.
Following this idea of focusing on both single
words and multi-word expressions, we study
the impact of using a multi-depth DistilBERT
model, which uses embeddings from different
layers to estimate the final per-token toxicity.
Our quantitative results show that using
information from multiple depths boosts the
performance of the model. Finally, we also
analyze our best model qualitatively.

1 Introduction

SemEval-2021 Task 5: Toxic Spans Detection
(Pavlopoulos et al., 2021) consists in detecting
which spans make a text toxic. This is quite rele-
vant for nowadays lifestyle in which, aggravated
by the COVID-19 pandemic, online conversations
have become key to communicate with our family,
friends and job mates, or socialize through social
networks and streaming chats. Being able to mod-
erate all this digital content is crucial in order to
promote healthy online conversations and discus-
sions.

To tackle this problem, in HLE-UPC we have
used a BERT-based model with a fully-connected
layer on top to perform Named-Entity Recognition
and Classification (NERC), with the goal of tag-
ging each word as either toxic or not. Moreover,
we have studied and proved that the use of informa-
tion from different-depth layers enriches the final
classification.

Our contributions to Toxic Spans Detection are:

• The proposal of an ensemble of three different
multi-depth DistilBERTs, achieving an F1-
score of 68.54% and being ranked 14th out of
91 teams in the challenge, just 2.29% below
the best performing model.

• The study of multi-depth BERT-based models
in the task of Toxic Spans Detection, show-
ing an improvement on the performance com-
pared to non-multi-depth architectures.

• A qualitative analysis presenting some ethical
concerns regarding racial bias.

The source code for our model and pipeline
is available at https://github.com/rafelps/

HLE-UPC-SemEval-2021-ToxicSpansDetection.

2 Related work

Toxicity The task in which we are participating
is not the first one to focus on text toxicity. Without
going any farther, in last year’s edition of SemEval
we can find Task 12, also known as OffensEval
2020 (Zampieri et al., 2020), in which the goal was
to identify offensive language in multilingual social
media data. In the previous year’s competition,
SemEval 2019, Task 6 (Zampieri et al., 2019) was
also tackling the identification and categorization
of offensive language in social media.

Some of the models that solved these tasks in-
volve Convolutional Neural Networks (CNN) (Ma-
hata et al., 2019), Long Short Term Memory Net-
works (LSTM) (Pham-Hong and Chokshi, 2020)
or attention based models (Liu et al., 2019; Wiede-
mann et al., 2020) branched from the BERT family
(Devlin et al., 2019).

NERC All the mentioned models approach the
task as Sequence Classification, this is, encoding a
whole sentence and providing a unique prediction
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for it. Toxic Spans Detection, however, goes a step
further by asking participants to detect toxic spans,
the exact characters or words that make a text toxic.
For this reason, instead of modelling the task as
sentiment analysis or document/comment classi-
fication, it seems more natural to approach it as
token classification, generating an output for each
token. More specifically, this task could be seen
as a Named Entity Recognition and Classification
(NERC) task, in which the goal would be to output
the most probable sequence of labels (toxic or not)
given an input sentence.

In the field of NERC, we also find some interest-
ing models. The state-of-the-art today are attention-
based models, usually stemming from transformers
such as BERT (Devlin et al., 2019), which can be
easily converted into a token classifier by adding a
simple linear layer on top of the per-token output.
However, we can also find some other attention-
based models using CNNs (Baevski et al., 2019)
or even recurrent architectures such as Jiang et al.
(2019); Straková et al. (2019); Peters et al. (2018),
which mix BiLSTMs, CNNs or CRF layers.

3 Data and Methodology

3.1 Data Description
For this task, the organizers provide us with the
Toxic Spans Detection (TSD) dataset, also pre-
sented in Pavlopoulos et al. (2021), containing
phrases and comments that may contain toxic spans.
Together with each comment, there is the set of in-
dices of the characters that are considered toxic.

The TSD dataset is split into three subsets: trial,
train and test sets with approximately 700, 8000
and 2000 comments respectively. All the models
presented in this work have been trained exclu-
sively on the TSD training set, while the trial set
has been used to validate our systems. Finally, the
test set has served to evaluate the performance of
our final models using the available limited submis-
sions for the competition.

The TSD dataset contains very diverse com-
ments. Some of them seem quite simple, but others
may be ambiguous, require context knowledge or
an understanding of tone, which makes the task
extremely challenging. There are also some words
that have been written in an ingenious way, to avoid
naı̈ve toxic detectors, or that are bleeped or cen-
sored. Following we present a couple of examples,
where toxic characters are underlined:

• This is a stupid example, so thank you for

nothing a!@#!@.

• I bet you can’t wait to see him behind bars.

3.2 Data Cleaning
With a simple data exploration, it can be seen
that approximately 90% of the toxic spans exactly
match with word boundaries, but in the remaining
cases we find strange cases such as the following
ones:

1. You are an idiot: There is a whitespace as a
toxic span boundary.

2. You are an idiot: A random singleton charac-
ter is marked as toxic.

3. You are an idiot: “Y” is not marked as toxic
but “ou” is.

The majority of these inconsistencies are already
known by the organizers of the task and other par-
ticipants. However, they should still be tackled
to provide the best data possible to our models.
For this reason, we have cleaned the data using
three simple steps and following the idea of tox-
icity coming from complete words but not from
single characters. For each group of consecutive
annotated toxic offsets:

1. Iteratively remove the first or last toxic offset
if it belongs to a whitespace. This solves the
first type of inconsistencies.

2. Remove the toxic offset if it is a singleton: a
single consecutive character marked as toxic.
This helps in the second type of strange cases.

3. Iteratively left-expand the range of toxic off-
sets if the previous character is alphanumeric
(so it belongs to the same word). Same for
right-expansion. This solves the third prob-
lem by including the offsets of the whole word
as toxic whenever more than one character is
marked as so.1

After cleaning the data, almost the totality of the
annotations matches word boundaries. On one side
this confirms our hypothesis that toxicity comes
from words or expressions but not from characters.
On the other side, this enables a word by word
analysis in a consistent and robust manner. Nev-
ertheless, the task remains challenging given the
subjectivity of the annotations.

1The opposite strategy, discarding words if not all their
characters were marked as toxic was also studied but rejected
as performed poorer.
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3.3 Preprocessing

Once data is cleaned and before feeding it to the
models, we lower case the text and tokenize it using
WordPiece (Wu et al., 2016), the tokenizer used by
BERT-based models, which splits text into (usu-
ally) sub-word units. Each of these units has its
associated token embedding at the first layer of the
respective models.

In this step, we also use the information of the
already-cleaned toxic offsets to create a per-token
binary label regarding its toxicity.

3.4 Models

LSTM Long Short-Term Memory was intro-
duced in 1991 by Hochreiter and Schmidhuber
(1997) as an extension of recurrent neural networks
(RNNs), providing them with the ability to capture
and memorize long-term dependencies and there-
fore help prevent the vanishing/exploding problems
(Bengio et al., 1994; Pascanu et al., 2013).

We use an LSTM tagger as our baseline model
to determine the lower bound performance that we
should compare with. We use it as a first approach
to solve the task, even though we know that the
sentences of the dataset might be too long for the
network to memorize and capture all long-term
dependencies and the entire sentence context. As
input for this model, we use pre-trained word em-
beddings from GloVe (Pennington et al., 2014).

Attention-based models In 2018, Google Re-
search released Bidirectional Encoder Representa-
tion from Transformer (BERT) (Devlin et al., 2019)
which achieved many state-of-the-art results on dif-
ferent NLP tasks. This success led to the creation
of a lot of new models and improvements based
on the BERT architecture: DistilBERT, RoBERTa,
ALBERT, ... This architecture uses the same multi-
head transformer structure presented by Vaswani
et al. (2017), which is basically composed of sev-
eral stacked Transformer blocks/encoders, includ-
ing self-attention and feed-forward modules. These
help the model obtain richer word representations
by finding correlations with other tokens in the
sentence.

For our task, we use two BERT-based models,
BERT and DistilBERT, with a token classification
head –a linear layer on top of the hidden state out-
put of the last Transformer encoder–. These mod-
els are pre-trained on huge corpus from different
sources and fine-tuned for our downstream task.

Multi-depth models Based on the previously
presented BERT-like models, we implement a mod-
ification that consists in feeding the classification
layer an augmented embedding for each token.
This augmented embedding is formed by concate-
nating the hidden outputs of different Transformer
blocks, instead of using the last output directly as
done in common models for token classification.
The empirical results show that using embeddings
from different layers provides better representa-
tions and boosts the model’s performance.

3.5 Postprocessing
Once a model outputs its predictions, we loop
through them and, for those tokens predicted as
toxic, we take their offsets and add them to the
final set of toxic spans for that sentence.

Additionally, we add a postprocessing step to in-
crease the correctness of our predictions regarding
white characters. These are not returned as tokens
by the tokenizer but occupy a character offset. For
this reason, for each pair of consecutive tokens pre-
dicted as toxic, we also include to the final set the
offsets of any white characters in between.

4 Results

All the results presented in this section have been
calculated using the official metric, the F1-score on
the predicted toxic offsets. For detailed information
please refer to Pavlopoulos et al. (2021).

4.1 Model Comparison
In Table 1 we report the results for the best config-
uration of each of our models both in the official
trial and test sets. In these results, we can first note
that all the models clearly outperform our baseline.
Moreover, using the information of multiple lay-
ers is proved to be beneficial for this task, as it
improves each of the respective base models, by
0.64% - 1.42%. Finally, note that although BERT
is larger and more powerful than DistilBERT, it
performs poorer in the test set. This might be due
to the fact that we select our hyperparameters based
on the F1-score on the trial set, which is relatively
small and may not be representative of the test
data. For this reason, our submitted model is a
multi-depth DistilBERT, as it provides better gen-
eralization within this task and data.

4.2 Layer Selection
In this study, we have trained a multi-depth Distil-
BERT using the outputs of different layers or trans-
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Model F1-score (trial) F1-score (test)
LSTM (baseline) 61.36% 62.06%
DistilBERT 69.04% 67.43%
BERT 69.22% 66.45%
Multi-depth DistilBERT 69.68% 68.22%
Multi-depth BERT 70.01% 67.87%

Table 1: Performance comparison for various architectures in the official trial (used as validation) and test sets.

former blocks to study its impact on the model’s
performance.

Table 2 shows the results for different experi-
ments in which we have concatenated the outputs
of the last N layers of DistilBERT before feeding
these enlarged hidden states to the fully connected
layer that performs classification.

Results show that performance can be improved
by adding different block’s outputs, but can also
degrade when using too many. For DistilBERT,
which has 6 transformer blocks, the sweet spot
seems to be using the last 3 layers. Using all 6
also provides good results, which may imply that
the first layer’s output is also quite informative for
this task in which words themselves already help
predicting their toxicity.

Last N layers F1-score (trial)
1 69.04%
2 69.48%
3 69.68%
4 69.11%
5 68.94%
6 69.48%

Table 2: Performance comparison for multi-depth
DistilBERT in the trial set using the concatenation of
the last N layer’s outputs for the final classification.

4.3 Ablation Study

In these experiments, we took apart one compo-
nent of our system at a time to see its effect on
the system’s performance. The main components
of our method are presented in Section 3, and de-
tails about our implementation can be found in
Appendix A.

Table 3 shows the results for this study, in which
we can easily see that all components work towards
the performance of our model. Apart from the
multi-depth component, which has already been
studied, Dropout has been key for our giant model
to generalize and prevent overfitting the small data.

Using Label Smoothing has also helped, letting
the model adapt to the intrinsic subjectivity of the
annotations.

Regarding data preparation, it can be seen that
the cleaning step has been crucial for the good
performance of our system, supporting the known
quote “Garbage in, garbage out”. Finally, our sim-
ple postprocessing stage has also provided some
tenths to the final performance.

Model F1-score (trial)
Multi-depth DistilBERT 69.68%
(ours) – Multi-depth 69.04%
(ours) – Dropout 68.25%
(ours) – Label Smoothing 69.17%
(ours) – Data Cleaning 66.44%
(ours) – Postprocessing 69.38%

Table 3: Ablation study on the system’s components.
‘–’ means leaving that component out. Results for the
official trial set.

4.4 Ensemble

Given the results we obtained with single models,
we found it interesting to mix some of them to
see if they were focusing on different parts of data
and could improve the predictions while working
together.

Following this idea, we created a simple
majority-voting ensemble using the multi-depth
models with “last N layers” for N = 1, 3, 6; this is,
a base DistilBERT, a model that concatenates the
output of the last 3 transformer blocks and another
one that uses all 6 layers of DistilBERT.

The final result for this ensemble is 69.34% in
the trial set –used as validation– and 68.54% in the
test set, our best submission. Note that although
being worse than our best single model in the trial
set, it has better generalization skills and boosts the
performance in the unseen test set.
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4.5 Qualitative
Apart from the quantitative analysis done before,
we analyze in a qualitative manner the performance
and behaviour of our best model, to see how well
detects offensive and toxic words and in which
cases it fails.

Below we present some examples of sentences
in the dataset together with their ground truth
spans and the detection done by the model. The
ground truth toxic words appear underlined while
the prediction is shown in red.

Correct predictions We observe how our sys-
tem is highly capable of identifying toxic and of-
fensive words, both when they appear alone and in
multi-word expressions.

• Billy, are you a complete idiot, being thick
headed or just not reading what people...

• People insist on being dumb. No other expla-
nation.

• Could you please kill yourself?

Wrong predictions However, our system also
fails in some challenging comments. As seen below
with the word “poorly”, our method misses some
words marked as toxic which are not very offensive
or disrespectful but can become toxic due to the
context.

• People don’t buy that poorly built Russian
houses...

In other cases, our system identifies toxicity
when it is not annotated, although under our per-
spective the prediction seems correct. This could
be due to the ambiguity of the task or inconsisten-
cies in the annotations. An example of it is the
expression “freaking donkeys”:

• These freaking donkeys all need to be re-
moved from office. I’m so sick and tired of...

Finally, our model fails to detect connectors such
as “of” and “and” in between toxic words. In the
dataset there are several annotation philosophies:
some annotations tend to mark entire expressions
as toxic and some others are more word-oriented,
excluding connectors between words.

• Are these some of those Russian
pieces of crap that they seem to be building
all over Alaska.

Ethical concerns While doing the qualitative
analysis we found several examples indicating that
there could be racial bias in the predictions of our
model, and although it is beyond the scope of the
challenge, we found important to pay attention to
it. For this reason, we took some examples from
the trial set containing comments about races and
changed the words referring to races or origin by
others. Below we show an example. The first com-
ment belongs to the competition dataset, while the
other is a modification of it, with words “black”
changed for “white” and vice versa, and “Mexican”
changed for “American”.

• Black folks built this nation and got lynching
for the work. Heck, white folks can be so
mean that when they lost their slaves they in-
vited illegal Mexican immigrants to do the
work black slaves use to do.

• White folks built this nation and got lynching
for the work. Heck, black folks can be so
mean that when they lost their slaves they in-
vited illegal American immigrants to do the
work black slaves use to do.

We observe that in both cases the system identi-
fies the word “black” as toxic, but not “white”, even
when these non-toxic adjectives are the only differ-
ence between them. Furthermore, the system only
identifies “immigrants” as toxic when appearing
next to “Mexican” but not with “American”.

This undesired discrimination happens because
there are lots of racist comments in the dataset,
which are obviously annotated as toxic. Given that
it seems there are more comments against some
specific ethnic groups than others, the system as-
sociates certain racial references with racism and
thus with toxicity.

This is a problem that comes from the data, in-
cluding the one used in the pre-training phase of
BERT models. However, there are several de-bias
techniques in the literature (Manzini et al., 2019;
Sun et al., 2019; Liang et al., 2020) that could be
applied to our model to alleviate it.

5 Conclusion

In this work, we have presented a solution for the
SemEval-2021 Task 5: Toxic Spans Detection com-
petition, which is a challenging task due to the sub-
jectivity of toxicity and the requirement of context
knowledge.
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During the development of our solution, a multi-
depth DistilBERT model, we have proved the
power of pre-trained models and transfer learning
to a downstream task with limited data, at the same
time that we have demonstrated the benefits of com-
bining the outputs of multiple BERT models’ layers
for token classification.

With an F1-score of 68.54% the presented model
ranks 14 out of 91 participating teams in the com-
petition and, although it presents some racial bias
that could be corrected, from the qualitative results
we conclude that it has a very good performance,
hence being able to be used in real-life applications.
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from Barcelona Supercomputing Center (BSC) for
providing valuable insight into our project.

References
Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke

Zettlemoyer, and Michael Auli. 2019. Cloze-driven
pretraining of self-attention networks.

Y. Bengio, Patrice Simard, and Paolo Frasconi. 1994.
Learning long-term dependencies with gradient de-
scent is difficult. IEEE transactions on neural net-
works / a publication of the IEEE Neural Networks
Council, 5:157–66.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang,
and Jingbo Zhu. 2019. Improved differentiable ar-
chitecture search for language modeling and named
entity recognition. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3585–3590, Hong Kong, China. As-
sociation for Computational Linguistics.

Paul Pu Liang, Irene Mengze Li, Emily Zheng,
Yao Chong Lim, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2020. Towards debiasing sen-
tence representations.

Ping Liu, Wen Li, and Liang Zou. 2019. NULI at
SemEval-2019 task 6: Transfer learning for offen-
sive language detection using bidirectional trans-
formers. In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 87–
91, Minneapolis, Minnesota, USA. Association for
Computational Linguistics.

Debanjan Mahata, Haimin Zhang, Karan Uppal, Ya-
man Kumar, Rajiv Ratn Shah, Simra Shahid, Laiba
Mehnaz, and Sarthak Anand. 2019. MIDAS at
SemEval-2019 task 6: Identifying offensive posts
and targeted offense from Twitter. In Proceedings of
the 13th International Workshop on Semantic Eval-
uation, pages 683–690, Minneapolis, Minnesota,
USA. Association for Computational Linguistics.

Thomas Manzini, Yao Chong Lim, Yulia Tsvetkov, and
Alan W Black. 2019. Black is to criminal as cau-
casian is to police: Detecting and removing multi-
class bias in word embeddings.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks.
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A Implementation Details

We have developed this project using PyTorch2 and
the Huggingface3 implementation of transformers.
Specifically, we have used BertModel and Distil-
BertModel pre-trained models.

Although Huggingface includes models for to-
ken classification, the input dimension for their
classification layer is exactly 768 (for BERT and
DistilBERT), the dimension of the Transformer
blocks’ output. However, in our case, we are con-
catenating different outputs, so these dimensions
will vary from one experiment to another. To mimic
their token classification models, we manually add
a Dropout layer and the final classification layer
with the appropriate input dimension (in our case
768× #concat outputs).

To train the models we use Cross Entropy Loss
with Label Smoothing. This type of regularization
slightly changes the target vector, asking the model
to predict 1 − ε for the correct class and ε for the
others instead of the usual hard assignment of 1 for
the true class. As seen in Section 4.3, this technique
helps the system improve as it helps modelling
the intrinsic subjectivity of the data. For our best
models we use ε = 0.1.

We perform from 4 to 8 training epochs with
Adam optimizer, learning rate 10−5, batch size of
8 and 25% dropout rate. Finally, we select the
epoch with the best F1-score at trial set as our best
checkpoint.

We keep the default values for the rest of param-
eters.

Each model has required approximately 15 min-
utes of training time on an NVIDIA Tesla V100
GPU. With the same hardware, the inference time
is 430ms per sentence, so our system is able to
work in Near Real Time (NRT).

2https://pytorch.org/
3https://huggingface.co/transformers/
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Abstract

This paper describes our approach to the Toxic
Spans Detection problem (SemEval-2021 Task
5). We propose BERToxic, a system that
fine-tunes a pre-trained BERT model to lo-
cate toxic text spans in a given text and uti-
lizes additional post-processing steps to refine
the boundaries. The post-processing steps in-
volve (1) labeling character offsets between
consecutive toxic tokens as toxic and (2) as-
signing a toxic label to words that have at
least one token labeled as toxic. Through
experiments, we show that these two post-
processing steps improve the performance of
our model by 4.16% on the test set. We also
studied the effects of data augmentation and
ensemble modeling strategies on our system.
Our system significantly outperformed the pro-
vided baseline and achieved an F1-score of
0.683, placing Lone Pine in the 17th place out
of 91 teams in the competition. Our code
is made available at https://github.com/
Yakoob-Khan/Toxic-Spans-Detection

1 Introduction

The promotion of respectful discourse has always
been a core tenet of civilized societies. The Cam-
bridge dictionary defines hate speech as “public
speech that expresses hate or encourages violence
towards a person or group based on something such
as race, religion, sex, or sexual orientation.” Online
platforms enable malicious actors to hide behind a
cloak of anonymity and surreptitiously post toxic
comments that are a “menace to democratic values,
social stability and peace” (United Nations). To
combat this problem, such platforms often employ
human moderators to address offensive content that
goes against community standards. However, mod-
erators are unable to manually keep pace with the
large volume of user-generated content today. This
motivates the development of natural language pro-
cessing systems to automatically detect hate speech

and ensure that online platforms remain healthy and
inclusive for all.

There has been extensive research on hate speech
detection, with the creation of large datasets (Wul-
czyn et al., 2017) and the use of pre-trained text
representations (Devlin et al., 2019) for varied
modeling approaches. Competitions on offensive
language identification (Zampieri et al., 2020)
have further attracted attention to this topic. Prior
work has hitherto focused on classification at the
document-level based on various taxonomies, such
as whether a given text contains offensive language
or if it is targeted towards an individual or group.
This line of inquiry does not identify the toxic spans
that ascribe a text as hate speech. Doing so will
assist human moderators to efficiently locate of-
fensive content in long posts and elucidate further
insight into hate speech explainability.

This motivated the Toxic Spans Detection task
(Pavlopoulos et al., 2021) where systems are asked
to extract the list of toxic spans that attribute to a
text’s toxicity. Consider the following example1:

Text Because he’s a moron and bigot. It’s
not any more complicated than that.

Span [15, 16, 17, 18, 19, 27, 28, 29, 30, 31]

Table 1: A sample example from the task dataset.

As there are two toxic spans in the above text,
systems are tasked to extract the character offsets
(zero-indexed) corresponding to the sequence of
toxic words. This is a challenging task as classifi-
cation at the word-level is inherently more difficult
than at the document-level. The intentional ob-
fuscation of toxic words, use of sarcasm and the

1We caution readers that the examples included in this
work contain explicit language to illustrate the severity and
challenges of hate speech detection.
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subjective nature of hate speech further adds com-
plexity to the problem.

Our contributions to the task is threefold:

1. We propose BERToxic, a system that fine-
tunes a pre-trained BERT model with addi-
tional post-processing steps to achieve an F1-
score of 0.683, placing Lone Pine in the 17th

place out of 91 teams in the competition.

2. We study the effects of simple data augmen-
tation strategies on our system and find that
they yield no improvement in classification
performance.

3. We examine late fusion and multi-task learn-
ing neural architectures and conclude that they
under-perform compared to the standalone
BERT model for this task.

2 Our Approach

2.1 Baselines
To have a better sense of our final system’s perfor-
mance, we initially examined two baseline models.
First, we created a trivial model that randomly pre-
dicts each character offset of a text as toxic if its
ρ > 0.5, drawn from a continuous uniform proba-
bility distribution.

To have a stronger baseline model, we fine-tuned
the off-the-shelf spaCy NER model provided by
the task organizers. This model consists of a multi-
hash embedding layer (feed-forward sub-network)
that uses sub-word features and an encoding layer
consisting of a CNN and a layer-normalized max-
out activation function. The model uses a transition-
based algorithm that assumes that the “most deci-
sive information” regarding the entities “will be
close to their initial tokens”, with a loss function
that optimizes for whole-entity accuracy.

2.2 BERToxic
We framed the toxic spans detection task
as a sequence labeling problem and leverage
the Bidirectional Encoder Representation from
Transformers (Devlin et al., 2019) model to extract
rich feature representations from the input texts.

The first step in the BERToxic system pipeline
(Figure 1) was to tokenize the text inputs and gener-
ate the word embeddings using BERT’s WordPiece
tokenizer. This sub-word tokenization algorithm
(Schuster and Nakajima, 2012) tokenizes a word
like "moron" into ["mo","##ron"] and we

Figure 1: The BERToxic model architecture. Image
modified from (Devlin et al., 2019).

ensured that the ground truth labels were preserved
across all tokens of a word. As BERT uses abso-
lute position embeddings, we padded shorter se-
quences with [PAD] tokens on the right side such
that all tensor inputs are set to equal the maximum
sequence length observed for batched parallelized
training. Long sequences were truncated to 512
tokens, the maximum sequence length allowed by
BERT. As the data was obtained from online com-
ments that are generally shorter in nature, the trun-
cation procedure was not needed in this task but
nevertheless served to handle long sequences if
present. We also stored the mapping

M : ti 7→ (starti, endi)

of each token to its relative character offsets in the
original string, used for outputting the toxic span
predictions at the post-processing stage.

We performed all of our experiments using the
BERTBASE model architecture that consisted of
12 layers, 768 hidden size, 12 self-attention heads
and 109M parameters. The BERTLARGE model
was not explored in this work due to its compute-
intensive nature. Our intuition suggested that let-
ter casing could be helpful for this task as proper
nouns (e.g Muslim) can be used offensively, so we
selected the cased model for our experiments. A
token classification head containing a linear layer
was applied on top of the final hidden-states output,
with a label prediction of 1 denoting a toxic token,
0 otherwise. For each token ti labeled as toxic, we
utilized M to output all character indices in the
range of (starti, endi) inclusive as the toxic span
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of this token.
Additionally, our system performed two post-

processing steps to refine the boundary predictions.
Consider the following tokenized sequence:

t1, · · · , ti, ti+1, ti+2, · · · , tn
First, for any two consecutive tokens ti and
ti+1 whose prediction labels are toxic, we out-
put the character indices in the range of (endi +
1, starti+1 − 1) inclusive as toxic as well. This
had the effect of including the delimiter characters
between consecutive toxic words, thereby detecting
toxic phrases. Second, recall that BERT’s Word-
Piece tokenizer could split a word into multiple
tokens, say ti, ti+1 and ti+2. If at least one token
was predicted toxic by the model, our system as-
signed a toxic label to all constituent tokens of this
word. This achieved coherence in the prediction of
toxic words and phrases, thus avoiding incomplete
word piece issues.

We also attempted to vary the thresholds of the
confidence scores before SoftMax for toxic token
predictions but observed no improvement in perfor-
mance.

2.3 Data Augmentation
Data augmentation is widely used to improve the
generalization of models by acting as a regularizer
to reduce overfitting. While various sophisticated
techniques exist to artificially enhance the size and
quality of the training set without collecting ad-
ditional manually labeled examples, we chose to
apply the set of Easy Data Augmentation (EDA)
techniques (Wei and Zou, 2019) to generate syn-
thetic training data for this task.

The four operations in EDA are Synonym Re-
placement (SR) using WordNet (Miller, 1995),
Random Insertion (RI), Random Swap (RS) and
Random Deletion (RD) of words in a document.
Shorter documents are disproportionately more
affected by these operations if a fixed number
of words are modified per document. To ensure
that all documents experienced the augmentation
strength proportionately, the number of words n
modified was varied based on the document length
l using the formula n = α · l, where α is a hyper-
parameter that indicates the percentage of words
changed per document. Each operation was applied
once per document and care was taken to ensure
that the ground truth labels were preserved.

Our experiments revealed that the recommended
value of α = 0.1 was too low for this task and

we observed small but consistent improvements as
α increases. Furthermore, we noted that the SR
technique alone leads to better performance than
using all four operations to create the augmented
training set for this task.

We also attempted data augmentation using an
external dataset, HateXplain (Mathew et al., 2020),
that contains 20, 148 documents with word-level
annotations that we processed to conform to this
task’s data format. Each document consisted of 2 -
3 annotations and we used their intersection to max-
imize the inter-annotator agreement in constructing
the ground truth labels. HateXplain’s annotation
strategy appeared to be different and included label-
ing pronouns, conjunctions and stop words as toxic
when located between offensive words. We re-
moved such toxic labels so that the external dataset
annotation was more similar to this task. When our
task dataset was augmented with the full external
dataset, the model experienced underfitting, while
removing all the non-toxic labeled documents from
the external dataset alleviated the issue to some
extent.

2.4 Ensemble Modeling

Ensemble modeling is an approach where multiple
different models are trained and their predictions
are aggregated. By adding bias to counter the vari-
ance of a single model, this line of work has been
shown to improve the predictive performance of a
system (Liu et al., 2019). While numerous ensem-
ble modeling techniques like boosting, bagging, etc.
exist, we investigated two techniques of interest:
late fusion and multi-task learning.

We reframed the problem as a binary classifica-
tion task and trained a sequence classifier to predict
whether a given sentence is toxic. In the late fu-
sion approach, we utilized NLTK’s tokenizer to
split each document into sentences. If a sentence
contained a ground truth toxic span, we assigned
the toxic class label 1, 0 otherwise. In this way, a
binary classification dataset was created to sepa-
rately fine-tune a pre-trained BERT sequence clas-
sifier. We hypothesized that token labels should
be predicted toxic only if the corresponding sen-
tence was classified as toxic as well. Late fusion
was performed at the prediction phase, where both
the sequence and token classifiers voted in the pre-
dictions by having the former model filter toxic
sentences on which the latter model made final
toxic span predictions.
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Rather than fine-tuning the two models sepa-
rately, we also investigated if multi-task learning
(MTL) improved the predictive performance of the
ensemble model. We hypothesized that a train-
ing regime where the two classifiers were learned
jointly could be useful as the knowledge gained in
learning one task could benefit the other. To per-
form MTL, we fine-tuned an MT-DNN (Liu et al.,
2019) model where the text encoding lower BERT
layers are shared across the two tasks while the top
layers are task-specific.

3 Experiments

The following sections describe the experimental
set-up of our work.

3.1 Dataset
The task data was sourced from the Civil Com-
ments dataset (Borkan et al., 2019), which contains
public comments made between 2015 - 2017 that
appeared on approximately 50 English-language
news sites across the world. As the original dataset
contained only document-level class labels, the task
organizers selected a subset of the data for crowd-
sourced toxic spans annotation. For the data split,
we chose to fine-tune our models using the entire
provided training dataset (N = 7939) to maxi-
mize performance, validate using the trial dataset
(N = 690), and submit our predictions using the
test data (N = 2000). The test labels were with-
held during the evaluation phase of the competition
and were only released afterward.

3.2 Evaluation Metric
To evaluate the performance of the models, the
task organizers employed a variant of the F1-score
(Da San Martino et al., 2019). For a document
d, define Sd as the set of toxic character offsets
predicted by a system and Gd as the set of ground
truth annotations. Then the F1-score of the system
with respect to ground truth G for d is defined as

F1
d(G) =

2 · P d(G) ·Rd(G)

P d(G) +Rd(G)

where

P d(G) =
|Sd ∩Gd|
|Sd|

Rd(G) =
|Sd ∩Gd|
|Gd|

If a document has no ground truth annotation
(Gd = ∅), or the system outputs no character offset

prediction (Sd = ∅), we set

F1
d(G) =

{
1 Gd = Sd = ∅
0 otherwise

We finally take the arithmetic mean of F1
d(G) over

all the documents of an evaluation dataset to obtain
a single F1-score for the system.

3.3 Implementation Details

We utilized the PyTorch framework for the devel-
opment of our system, HuggingFace’s transform-
ers library (Wolf et al., 2020) for the BERT-based
models and Microsoft’s implementation of the MT-
DNN model. All models were trained on Google
Colab Pro’s High-RAM environment using a sin-
gle NVIDIA P100 GPU. The training policy used
the following hyper-parameters: batch size of 16,
sequence length of 512, weight decay of 0.01. For
optimization, we used Adam with a learning rate of
5e-5 and a linear warm-up schedule over 500 steps.
Except for MT-DNN2, all our models were fine-
tuned for approximately 2 epochs and we practiced
early stopping by monitoring the dev F1-score to
reduce overfitting. The EDA experiment was per-
formed with α = 0.8 using only the SR technique.
All other hyper-parameters were set to their default
values according to HuggingFace’s implementa-
tion. We set a random seed for all our experiments
and open-sourced the code for reproducibility.

4 Results

On the following page, Figure 2 visualizes the
precision-recall curves3 of all the models and Table
2 summarizes their performance metrics. Figure 3
shows the confusion matrix of our best performing
BERToxic model and Table 3 highlights selected
predictions that it made.

An interesting observation we noted from Table
2 was that the F1 scores for the test set were higher
than the dev set for many of the models. We hy-
pothesize that this is because the models have an
inductive bias to predict shorter toxic spans, evi-
denced by the average ground truth span length of
7.2 in the test set and 14.7 in the dev set.

2MT-DNN was fined-tuned for 3 epochs with a batch size
of 8.

3The curves for the spaCy and BERT multi-task model are
less detailed due to the ambiguity in obtaining the probability
scores from their respective implementations, necessitating
the use of their predicted labels instead.
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Model Dev Test
Precision Recall F1 Precision Recall F1

Random 0.143 0.463 0.175 0.089 0.413 0.122
SpaCy 0.692 0.588 0.595 0.664 0.686 0.656
BERToxic 0.781 0.678 0.681 0.683 0.732 0.683
+ EDA 0.787 0.683 0.684 0.681 0.725 0.678
+ HateXplain 0.792 0.674 0.681 0.683 0.721 0.678
BERT late fusion 0.733 0.636 0.639 0.675 0.709 0.669
BERT multi-task 0.744 0.629 0.634 0.665 0.694 0.656

Table 2: A summary of the performance of all our models, reporting the precision and recall scores along with
the F1 evaluation metric used for the competition. The BERToxic model outperformed the strong spaCy baseline
by 4.16% on the test set, placing Lone Pine in the 17th place out of 91 teams. In comparison, the top-ranked
submission achieved an F1-score of 0.708. The experiments revealed that our data augmentation and ensemble
modeling strategies did not outperform the standalone BERT model.

Our proposed system performed well at the toxic
spans detection task, showing strength in identify-
ing profanity and common toxic words like “idiot”
and “stupid”. The model identified the obfuscation
of offensive words and successfully detected hate
speech from such adversarial cases (Example 1).

1. Kill this F’n W*ore on site.

2. .. how I am an ignorant fool ..

3. Nazi boneheads deserve being punched.

4. @ remoore Shut up, racist.

5. Cruz is a piece of garbage a globalist fraud

Table 3: Selected examples obtained from the test set.
BERToxic’s predictions are shown in red while ground
truth annotations are italicized.

The error analysis revealed that the system
lacked nuance as it would sometimes classify toxic
words used in neutral contexts (Example 2). It is
also worth mentioning that there was considerable
noise in the ground truth annotations. Our manual
inspections concurred with the model’s predictions
that some words and phrases were used in offen-
sive contexts but the annotators thought they were
neutral (Example 3 and 4). Furthermore, we ob-
served some inconsistencies in the labeling scheme
as some annotations spanned entire sentences (Ex-
ample 5) while others only highlighted a few words
in the sentence. These issues point to the subjective
nature of hate speech and the challenges involved
in its fine-grained classification.

We found through our ablation studies of data
augmentation that generating synthetic data using
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Figure 2: Comparison of the precision-recall curves of
all the models at the token level on the test set. The
area under the curve is enclosed within parentheses.

Figure 3: A confusion matrix of the BERToxic system
at the token level, revealing insights about the classifi-
cation performance in each category and highlighting
the imbalance of the class labels in the test set.

971



the EDA techniques did not improve the perfor-
mance of the system. This suggested that the
dataset size does not appear to be the limiting factor
affecting the performance of BERT in this task. Us-
ing HateXplain’s external dataset, we learned that
different data sources and annotation guidelines
can introduce noise that hurts the performance of
models.

Finally, the ensemble modeling strategies we ex-
plored did not outperform the standalone BERT
model. The late fusion technique performed
slightly better than the spaCy baseline, but it
seemed that the sequence classifier made errors
on similar parts of the input space as the token
classifier. The multi-task learning approach under-
performed compared to late fusion, suggesting that
the sequence labeling and classification tasks are
not closely related enough to benefit their joint
training.

5 Conclusion and Future Work

In this work, we have proposed BERToxic, an
empirically powerful system that performed fine-
grained detection of hate speech. We found that
our exploration of data augmentation and ensemble
modeling strategies did not outperform the stan-
dalone model. The error analysis revealed that
BERT lacked nuance in understanding the use of
offensive words in neutral contexts and encoun-
tered boundary detection issues when faced with
noisy ground truth annotations.

Future avenues of work could address these lim-
itations and explore other transformer-based mod-
els to develop more robust hate speech detectors.
We hope that our findings inspire more creative
approaches towards fine-grained detection of hate
speech so that online discourse can remain healthy
and inclusive for all.
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Abstract
This paper presents a system used for
SemEval-2021 Task 5: Toxic Spans Detection.
Our system is an ensemble of BERT-based mo-
dels for binary word classification, trained on
a dataset extended by toxic comments modi-
fied and generated by two language models.
For the toxic word classification, the predic-
tion threshold value was optimized separately
for every comment, in order to maximize the
expected F1 value.

1 Introduction

Freedom of speech is one of the most important
human rights. However, because the definition of
protected speech is not precise enough, it can be
easily misinterpreted and misused. The problem
is magnified in cyberspace, where anonymity and
asynchronous communication contribute to toxic
disinhibition. As a result, the Internet has become
space where hatred, harsh criticism, rude language
and threats may grow.

Currently, identification of such harmful content
may depend mostly upon classification models that
detect abusive comments or documents. However,
SemEval-2021 Task 5: Toxic Spans Detection pro-
poses detecting fragments of text that make it toxic,
with the aim of supporting manual moderation of
oftentimes lengthy comments. A successful solu-
tion to this problem would be a crucial step towards
more constructive and inclusive online discussions.
The task focuses on English, which is the most com-
mon language used on the Internet, as of January
2020 (Johnson, 2021).

In this paper we present the model we used for
toxic span detection, the method we used to find
optimal prediction threshold values, and two me-
thods for producing new training examples with
toxic spans annotation:

• Resampling the data: new examples are ge-
nerated by substituting non-toxic words with
predictions from a language model.

• Data generation: we trained a simple language
model on existing examples, in order to gene-
rate new examples containing marked toxic
spans.

A total of 91 teams made an official submission on
the test set with the best submission achieving F1
score of 0.7083. Our approach was ranked as 11th
with 0.6865 F1 score (for details see Section A of
the Appendix).

2 Related Work

The interest in automatic identification of abusive
language has increased among researchers due to
the importance of public discussion in the Internet
and its public impact. To our mind, the domain
overlaps with other NLP tasks, such as sentiment
analysis or comment classification.

In an earlier piece of work, (Yin et al., 2009) stu-
died harassment detection on Web 2.0 datasets (i.e.
Kongregate, Slashdot and MySpace) using TFIDF
n-gram features and SVM models. In other rese-
arch, (Sood et al., 2012a,b) analysed profanity de-
tection in a community-based news site Yahoo!
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Buzz with SVM and Levenshtein distance. In later
studies, (Wulczyn et al., 2017) tried to understand
personal attacks in English Wikipedia discussion
comments using logistic regression and multilay-
er perceptron classifiers on character and word n-
grams.

In the last years there were several contests focu-
sing on various aspects of offensive language. One
of them included hate speech (Bosco et al., 2018)
and misogyny identification (Fersini et al., 2018)
for Italian data. Another workshop concerning a si-
milar topic was Multilingual Detection of Hate Spe-
ech Against Immigrants and Women in Twitter at
SemEval-2019 (Garibo i Orts, 2019). Recently, re-
search has focused mostly on deep learning classifi-
cation of cyber hate using ”accept”/”non-offensive”
or ”reject”/”offensive” classes, e.g. (Pavlopoulos
et al., 2017). However, more and more papers con-
cern explainability components and reasons. For
example, organizers of SemEval-2019 Task 6, (Za-
mpieri et al., 2019) required identification of the
offensive content type and the target of the offensi-
ve post. In another study, carried out by (Mathew
et al., 2020), aside from simple performance me-
trics, more complex bias and explainability factors
were used to evaluate various deep neural networks
models (CNN-GRU, BiRNNs and BERT). A si-
milar idea – to clarify rationales for hate speech –
comes in SemEval-2021 Task 5: Toxic Spans De-
tection (Pavlopoulos et al., 2021). Our solutions to
this challenge are presented in this paper.

3 Data

There are several abusive language detection data-
sets available (such as (Wulczyn et al., 2017; Bor-
kan et al., 2019)). However, their purpose is toxicity
detection of the whole text, so they do not contain
information about the exact spans that make a text
toxic. For such a task, the SemEval-2021 Toxic
Spans Detection dataset was created. It consists of
10,629 English texts and their relative lists of toxic
spans’ indices (7,939 train, 690 trial, and 2,000 test
texts with their respective spans). Examples from
the dataset are presented in Table 1.

The SemEval-2021 Task 5 annotated data turned
out to be a challenging material to work on in some
respects.

It results mainly from somewhat inconsistent
annotation which is visible in several dimensions,
see Appendix B.

4 System Overview

4.1 Resampled Data
The texts from train dataset were tokenized and the
tokens that were not labeled as toxic spans were
replaced with tokens suggested by a RoBERTa (Liu
et al., 2019) language model. We set the limit of
substituted words on 1/3 of all tokens outside the
toxic span, but no more than 10. The replacement
was not applied to the punctuation. Also, it was not
possible to change the word to the same one, or
to the word preceeding the token in question. The
tokens to be substituted are chosen randomly so
it was possible to obtain different outcomes while
processing the same text several times:

original text:
Uh, yes he is stupid...as his actions have proven

on countless occasions...
generated:
Uh, Donald Trump ’s stupid...as recent history

has shown in numerous occasions...
Uh, now that ’s stupid...as my students proudly

demonstrated in numerous occasions...
Uh, well that ’s stupid...as Vikings fans themse-

lves said in numerous occasions...

4.2 Generated Data
The second method of expanding the original tra-
ining dataset was inspired by the Ding et al. (2020)
data augmentation method for the POS tagging.
Firstly, the pairs of spans indices and texts from
training data were encoded in linearized form, e.g.
the original span and text pair:
"[9, 10, 11, 12, 13]", "One less idiot to worry abo-
ut."
was transformed into text
"<s> One less <toxic> idiot </toxic> to worry abo-
ut. </s>"
where <toxic>, </toxic> are special tokens which
indicate the beginning and ending of a toxic span
and <s>, </s> are special tokens indicating that this
particular example is annotated. The set of such
linearized training examples was extended by a
dataset of the same size, containing unannotated
examples from Civil Comment Dataset (Borkan
et al., 2019) (with a different special starting token
<u>). These examples were used to train a simple
language model with 300-dimensional word em-
bedding and two 256-dimensional LSTM layers.
This language model was used to generate new sen-
tences in linearized format, starting from the token
<s> and randomly sampling next words from the
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Text Toxic span
What a pile of shit. I love Bruce and I could write a
better case against Bruce than this rubbish !

[15, 16, 17, 18, 90, 91, 92, 93, 94, 95, 96]

What a jerk! [7, 8, 9, 10]
Deep ecology madness is a sad sick religion. []

Table 1: SemEval-2021 Task 5 dataset examples.

model distribution until the ending token </s> is
sampled or the generated text length exceeds 200
tokens. 10 000 of such generated examples were
converted back into the format span + text and used
for training the token classifier model.

4.3 Token Classification

To detect toxic spans within a text we use the Hug-
ging Face (Wolf et al., 2019) implementation of the
BERT model (Devlin et al., 2018). We approach
the task as token classification. Therefore, there are
additional layers on top of the model – a classifi-
cation head (a one-dimensional linear layer on top
of the hidden-states output), preceded by a 50%
dropout layer.

4.4 Character Classification

The metric used for competition ranking was the
mean value of character-level F1 score, as in
(Da San Martino et al., 2019), so the token-level
predicted probabilities from our model needed to
be converted to character-level binary labels. The
process included two stages.

• Assigning probabilities to text characters. Eve-
ry character that is a part of a token is assigned
the predicted probability of that token. All the
other characters (e.g. whitespaces) are assi-
gned 0.

• Choosing and applying the optimal threshold
value for a given text example, based on the
predicted characters probabilities. Characters
with probabilities meeting this threshold are
identified as being part of a toxic span.

The threshold value was optimized separately for
every text example to maximize the expected value
of character-level F1 score, where the F1 value for
a predicted span is a random variable with respect
to the distribution of golden spans.

Formally, for a given sentence composed of n
letters, lets denote predicted labels (0 and 1) as s =
(s1, ..., sn) and golden labels as y = (y1, ..., yn).

Then the F1 measure for such prediction is

F1(s, y) =
2
∑n

i=1 siyi∑n
i=1 si +

∑n
i=1 yi

If elements of s and y are indexed in order of de-
creasing probabilities of beeing toxic, and Si:j =∑j

k=i yk, then the expected value of F1 for the pre-
diction with k most probable letters classified as
toxic, is

f(k)=
k∑

k1=0

n−k∑

k2=0

2P (S1:k=k1)P (Sk+1:n=k2)k1
k + k1 + k2

We approximated the distribution of the golden
spans y by assuming that probabilities of charac-
ters in the golden toxic span are independent and
equal to probabilities predicted by the model. This
allowed us to use O(n2) algorithm proposed by
(Nan et al., 2012) to find the k which maximizes
the f(k).

4.5 Ensemble Models
On top of the plain prediction models we applied a
selection of ensembles (Opitz and Maclin, 1999).
Ensembles are aggregations of models solving the
same problem, built with the hope that a panel of
experts can give a better decision than a single
one. In our case, the ensemble accepted character-
level inputs from 2 to 9 participating models and
returned a single character-level output. Among the
available range, we used:

• set-theory union (i.e. at least one model decla-
red a character as toxic),

• set-theory intersection (i.e. all models decla-
red a character as toxic),

• majority voting (i.e. at least half of the models
declared a character as toxic),

• F1-weighted voting (i.e. the vote was weigh-
ted with the model’s F1 score and computed
for the evaluation set),

The output of the ensemble still needed to be post-
processed.
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5 Experimental Setup

The officially released datasets (both train and trial)
contained altogether 8,629 texts. From those data-
sets we generated nine random train/dev/test splits,
with the ratio 80/10/10%.

From the train sets in each of the splits new data
was generated using both methods described in 4.1:
resampling data outside the span, and data augmen-
tation. For resampling data, we used the BERT ba-
sed model (uncased) model with BertTokenizerFast
tokenizer or RoBERTa base model with RobertaFa-
stTokenizer. The upper limit of changes in the text
was equal to 10.

We trained the token classification model using
only the train set, as well as the train set together
with one or two sets of generated data. We used bi-
nary cross-entropy loss function and early stopping
technique, ending the training after 3 consecutive
epochs without the decrease of loss function on the
dev set.

The other hyperparameters used in the training
were: batch size: 8, dropout rate: 0.5, learning rate:
1e-05, and max token sequence length: 340. We
wanted to compare models trained on dataset with
diverse sizes and, due to resampling, a lot of similar
examples. To keep the evaluations for the early
stopping in short and uniform intervals across all
models we set a fixed number of steps per epoch:
800.

All the nine models obtained from given cross-
validation splits were used for ensemble models.
The best results were obtained via intersection
and majority voting over models trained on cross-
validation splits.

The final stage was postprocessing the spans.
Whitespaces and punctuation characters that were
the only characters separating two parts of toxic
spans were included in the toxic span, while all
the other whitespaces and punctuation characters
located at the ends of spans were removed.

6 Results

The results of the models submitted to SemEval-
2021 competition are presented in Table 2. All of
the three models were trained on the official dataset
and on data generated with resampling method. The
results shows that adding more components of our
system improves the final result. The first model
is only token classifier model trained on enlarged
dataset. When it comes to the second one, we used
models trained on 9 different train/dev splits and

aggregated their results using ensemble. The last
one was improved by the threshold optimization
and additional data generated with language model.

We checked the results of token classifier tra-
ined with data obtain with the other tokenizers ava-
ilable, see Table 3. Our best result was obtained
for XLMRobertaTokenizerFast and it exceeded our
best result in the competition.

The results of the models trained on augmented
datasets, either with or without optimization of the
prediction threshold, are presented in Table 4. It
can be observed that adding more noisy and auto-
matically generated data to the training worsened
the model results, making them more variable. The
addition of the threshold that optimized the expec-
ted value of F1 metric independently on every test
set example fixed both issues, producing models
with higher and more stable results.

7 Conclusions

In many classification tasks we can observe a di-
vergence of the objective function (e.g. F1 score),
optimized loss function (e.g. cross-entropy) and
applied prediction thresholds. Our results demon-
strate that even when the distribution of golden
classes is crudely approximated by the assumption
of independent and underperforming underlying
model, the F1-optimized threshold values perform
better than commonly used and accuracy-optimized
threshold of 0.5 in the setting with noisy and auto-
matically augmented training data.

The implemented method of data augmentations,
based on resampling non-toxic words proved to
be effective by increasing the F1 score of token
classifier.
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Model data augumentation F1 on test data
BERT resampled 0.6826
intersection ensemble over cv splits resampled 0.6847
voting ensemble over cv splits, threshold
optimization

resampled, generated 0.6865

Table 2: Results of our top models submitted to competition.

language model tokenizer F1 on trial set F1 on test set
xlm-roberta-base XLMRobertaTokenizerFast 0.6732 0.6910
facebook/bart-base BartTokenizerFast 0.6610 0.6832
bert-base-uncased BertTokenizerFast 0.6999 0.6684
bert-large-uncased BertTokenizerFast 0.7007 0.6700
google/electra-large-generator ElectraTokenizerFast 0.6984 0.6735

Table 3: Results for different tokenizers used in resampled data generation. The names of models and tokenizers
are taken from https://huggingface.co/models .

data augumentation prediction threshold F1 mean F1 std. deviation

resampled, generated
F1-optimized 0.6700 0.0115

0.5 0.6643 0.0128

resampled
F1-optimized 0.6670 0.0093

0.5 0.6644 0.0148

generated
F1-optimized 0.6643 0.0110

0.5 0.6666 0.0105

none
F1-optimized 0.6664 0.0121

0.5 0.6688 0.0107

Table 4: The results obtained using cross validation split and voting ensemble for different datasets. The token
classifier was trained with F1-optimized threshold as well as fixed treshold.
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A Our models results within
SemEval-2021 Task 5 scores

Figure 1 presents the outcome of SemEval-2021
Task 5 contest until the deadline and the green dot
shows our best result at the time of publication.

B Original Dataset Inconsistency

Firstly, there are words annotated as toxic in so-
me comments, while in the other ones they are left
out, despite the similar context of the utterance.
The words “stupidity" or “crooked" can serve as
an examples, sometimes being omitted, sometimes
being treated as full toxic spans and finally, someti-
mes being treated as parts of toxic spans, together
with their modifiers (see Table 5).

Another issue related to inconsistency is the
length of the annotated span. The majority of spans
consist of one to three words, but there are also
cases in which spans are longer, containing not
just a toxic word, but also a longer phrase inclu-
ding the toxic word (see Table 6). As previously, in
our opinion the discrepancies are not justified by
context.

Other issues we found peculiar in the provided
annotation include annotating non-toxic words whi-
le omitting toxic ones (see Table 7) and beginning
or ending the annotation in the middle of a word
(Table 8). Such cases do not appear as often as the
aforementioned discrepancies, but are also present.

Everything mentioned above might have been
introduced to the dataset on purpose, as noise, in
order to make the task more challenging to the
models. However, we found the scale of the in-
consistencies particular, the more so as it was not
mentioned in the instructions for contest partici-
pants.
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Comment text (annotated spans in bold italics)
we dont need to move from anything other than left wing stupidity like yours (no annotation)

keep living in your left wing stupidity, there will be a market for our OIL from the SANDS for
generations

oh more left wing stupidity ... colleges need to focus on educating and leave policy to the grown
ups, like trump who is not banning anyone but suspending things

Unfortunately these people refuse to stand up to oppose the crooked self and friends rulers who
don’t hesitate to kill to kill them. (no annotation)

They were just crooked liars looking out for their own interests. Trump is way beyond that.

Now we will have endless crooked honkey lawyers talking unsuspecting "useful idiots" into
filing outrageous claims.

Table 5: Examples of inconsistent annotation.

Comment text (annotated spans in bold italics)
I am watching Goodale on TV giving statements about this. He is such an ass. (17)

Saw him on the news. What an arrogant arse! (4)

Trump’s a liar (14); Trump’s lawyer is a liar (23). Get them outta there! Lock them up!

There is no indication that Trump will change from the racist (6), sexist (6), demagogue (9)
that he is.

The dotard almost forgot to sign it until his minder pulled him back (68).

Who gives a flying freak about what Kim and Park are making or not making? Really? This
is what the SA chooses to write editorials about (136)?

Trump simply does not care. "I am president, and to hell with all of you".

Table 6: Examples of inconsistency in regard to span length. The numbers in brackets indicate the number of
characters within a given toxic span.

Comment text (annotated spans in bold italics)
I am totally with you on this continued stupidity that has been US policy, and now Hawaiis
effort. I was a military officers wife expecting my second son, stationed in Germany at this
time. As I recall, Kennedy gave Kruschev an opportunity to “ save face". I doubt that Trump
has the intelligence or skill, nor has he picked an intelligent UN rep. Or cabinet. This is where
investigative journalism makes the difference. I am glad that Civil Beat is challenging the
status quo mentality.

Patriotism: the last refuge of scoundrels..

Is this important news? Is it even news? Who needs to know this crap?

Yeah John, you tell all those Chinese and Muslims you hate to get the hell out of Canada.

Table 7: Examples of annotation of non-toxic words while omitting potentially toxic ones.

Comment text (annotated spans in bold italics)
It’s so weird to have an actual stupid narcissistic childish person in the white house.

Yep you are a sore loser
The hypocrisy of the christian right is astounding.

Table 8: Examples of annotations starting or ending in the middle of a word.
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Original annotation Our re-annotation
“Watch people die from taking away their healthcare"
DING DING DING! Winner of stupid post of the
day award!

“Watch people die from taking away their
healthcare" DING DING DING! Winner
of stupid post of the day award!

They’re not patriots. They’re vandals, thieves, and
bullies. They’ve plastered a facade of patriotism over
their outrage at being expected to obey the law.

They’re not patriots. They’re vandals,
thieves, and bullies. They’ve plastered a
facade of patriotism over their outrage at
being expected to obey the law.

Rabidly anti-Canadian troll. Rabidly anti-Canadian troll.

Table 9: Examples of differences between the original annotation and our re-annotation. The annotated spans are
in bold italics.

C Re-annotation

Because of inconsistencies in the original annota-
tion, we decided to re-annotate the trial and test
datasets and compare the differences. For this task
we invited a team of 14 language experts (all of
them with a master’s degree in linguistics). They
received the same instruction as the one provided
by the contest organizers. Each text was evaluated
by three language experts, as in the original dataset
creation process.

The differences between the original annotation
and the one provided by our language experts are
quite noticeable. Firstly, we believe our annota-
tion is more coherent and involves fewer mistakes
described earlier. Moreover, our language experts
marked fragments as toxic more often: whole sen-
tences, paragraphs or even whole comments, as
well as more single words (see Table 9). The goal
of our re-annotation was to evaluate the quality of
the original datasets annotation and check if our
understanding of toxicity is equivalent to the one
of contest organizers.
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Abstract

This paper describes the participation of
SINAI team at Task 5: Toxic Spans Detec-
tion which consists of identifying spans that
make a text toxic. Although several resources
and systems have been developed so far in the
context of offensive language, both annotation
and tasks have mainly focused on classifying
whether a text is offensive or not. However,
detecting toxic spans is crucial to identify why
a text is toxic and can assist human modera-
tors to locate this type of content on social me-
dia. In order to accomplish the task, we follow
a deep learning-based approach using a Bidi-
rectional variant of a Long Short Term Mem-
ory network along with a stacked Conditional
Random Field decoding layer (BiLSTM-CRF).
Specifically, we test the performance of the
combination of different pre-trained word em-
beddings for recognizing toxic entities in text.
The results show that the combination of word
embeddings helps in detecting offensive con-
tent. Our team ranks 29th out of 91 partici-
pants.

1 Introduction

The advance of online communication has in-
creased the use of offensive or toxic language in
several websites, including social networks such
as Instagram, Twitter, or YouTube. Consequently,
this type of prejudiced communication could lead
to negative psychological effects among Internet
users, causing anxiety, harassment, and even sui-
cide in extreme cases (Hinduja and Patchin, 2010).

Moderation is essential to promote healthy on-
line communication. Therefore, governments, on-
line communities, and social media platforms are
continuously taking appropriate actions to imple-
ment laws and policies combating toxic language
on the Web. In order to help to track this type of
comments and due to the amount of data generated
every day on the Web, automatic systems based

on Natural Language Processing (NLP) techniques
are required. In particular, offensive language de-
tection and analysis has become an important area
of research in NLP, resulting in several studies that
are contributing to combating this website phe-
nomenon (Plaza-del Arco et al., 2019; Zampieri
et al., 2019a; Ranasinghe et al., 2019; Plaza del
Arco et al., 2020).

In this paper1, we present our proposal system as
part of our participation in SemEval-2021 Task 5:
Toxic Spans Detection (Pavlopoulos et al., 2021),
which aims to identify entities that refer to a toxic
language in the text. To accomplish the task, our
team focused on detecting specific types of toxic en-
tities in the text using a methodology based on the
BiLSTM-CRF model showing that the combina-
tion of different pre-trained language embeddings
succeeds in detecting toxic entities.

The rest of the paper is structured as follows. In
Section 2 some previous related studies are intro-
duced. In Section 3 we explain the data used in our
methods and we describe the architecture of our
proposed system to the Toxic Spans Detection task.
In Section 4 we discuss the analysis and evaluation
results for the experiments we performed. Finally,
we conclude in Section 5 with remarks and future
work.

2 Related work

Heretofore, several shared tasks have been orga-
nized in the NLP field to detect offensiveness on
the Web for different languages. For instance, the
well-known offensive language task OffensEval has
held two editions in the International Workshop on
Semantic Evaluation (SemEval) (Zampieri et al.,
2019b,a) introducing as the main novelty in the
second edition a multilingual dataset comprising 5

1NOTE: This paper contains examples of potentially ex-
plicit or offensive content which may be offensive to some
readers. They do not represent the views of the authors.
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languages. The GermEval shared task focused on
the identification of offensive language in German
tweets and comprised two tasks, a coarse-grained
binary classification task and a fine-grained multi-
class classification task (Wiegand and Siegel, 2018).
For Spanish, as far as we know, the first task on of-
fensive language appeared at the 3rd SEPLN Work-
shop on Evaluation of Human Language Technolo-
gies for Iberian Languages (IberEval) (Carmona
et al., 2018) whose goal was to detect aggressive-
ness Mexican Spanish Tweets.

As a result, most of the studies and resources in
offensive language research have been developed
specifically for binary and multi-class classifica-
tion tasks (Ranasinghe et al., 2019; Plaza-del Arco
et al., 2019, 2020). However, other tasks such as
Named Entity Recognition (NER) play an impor-
tant role in this research and are essential to iden-
tify the entities that make a text toxic. Highlighting
these toxic spans can help human moderators to
interpret and identify easily this type of content
on the Web instead of relying on a system that
generates a score of unexplained toxicity per post.
NER aims to identify and classify named entities
mentioned in unstructured text into predefined cate-
gories. The earliest systems developed for address-
ing this task did not use training data but worked
based on handcrafted features, heuristics, and a set
of rules (Nadeau and Sekine, 2007; Collins and
Singer, 1999; López-Ubeda et al., 2018). How-
ever, the cost of manual feature tagging and the
poor obtained results lead to deep learning-based
techniques as the most suitable choice to tackle
the task by discovering patterns and learning the
features in an end-to-end manner (López-Úbeda
et al., 2020). Existing state-of-the-art approaches
for sequence labeling have proven that Recurrent
Neural Networks (RNNs) are capable of learning
useful representations automatically as they en-
able the modeling of long-distance dependencies
between words in a sentence (Limsopatham and
Collier, 2016; Wintaka et al., 2019). Inspired by
these studies, we have developed a system based on
BiLSTM-CRF model along with the combination
of different types of word embeddings to address
the toxic spans detection task in text.

3 Named Entity Recognition
Methodology

To address the toxic detection task, we focus on rec-
ognizing and extracting specific types of toxic enti-

ties in the text. Specifically, we follow a methodol-
ogy proposed by (Huang et al., 2015) implementing
a BiLSTM-CRF model for the NER task.

3.1 Word Embeddings
As input layer of the BiLSTM-CRF neural network
we have combined the following word embeddings:

• Static Word Embedding. We use GloVe
embeddings which are static and word-level,
i.e. each distinct word gets exactly one
pre-computed embedding. This type of em-
beddings is context-independent (Pennington
et al., 2014).

• Contextual Word Embedding. For our ex-
periments, we tested two different contextual
pre-trained word embeddings: BERT (Bidi-
rectional Encoder Representations from Trans-
formers) (Devlin et al., 2018) and XLM (Lam-
ple and Conneau, 2019). Unlike the previous
ones, they are context-dependent which means
they produce word representations that are
dynamically informed by the words around
them. They are based on the well-known
Transformer (Vaswani et al., 2017), an atten-
tion mechanism that processes the entire text
input simultaneously to learn contextual rela-
tions between words (or sub-words). Specif-
ically, we used the xlm-mlm-en-2048 model
and the bert-base-cased model provided in
HuggingFace (Wolf et al., 2019).

3.2 BiLSTM-CRF architecture
We use the combination of bidirectional LSTM
and CRF to identify the toxic spans. The context
of each word in the sentence is captured by the
BiLSTM and then the predictions on the entities
are simultaneously performed in the CRF layer
(Sutton and McCallum, 2006). The architecture
of BiLSTM-CRF model is illustrated in Figure 1.
This architecture follows a sequence of layers as
follows:

• Embedding layer. Each word of the sentence
is mapped to a vector of concatenated em-
beddings. As mentioned above, in our ex-
periments, we use XLM, BERT, and GLOVE
embeddings.

• BiLSTM layer. A bidirectional LSTM recur-
rent network takes as input the embeddings.
In sequence tagging tasks, for a specific time
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Figure 1: Proposed system architecture based on a
BiLSTM-CRF neural network.

frame, this layer enables the hidden states to
capture both historical and future context in-
formation and then to label a token.

• CRF layer. It allows to use efficiently his-
torical and future tags to predict the current
tag.

4 Data and Experimental Setup

4.1 Dataset preprocessing

We use the English dataset provided by the organiz-
ers in SemEval 2020 Task 5: Toxic Spans Detec-
tion. The dataset is split into three different subsets:
train, trial, and test, consisting of 7,939, 690, and
2,000 instances, respectively.

Each instance in the dataset comprises two fields,
the text and a list of toxic spans. A toxic span is
defined as a sequence of characters in words that
attribute to the text’s toxicity. If the text does not
contain toxic spans, the span list is empty. An
example of two instances in the dataset is provided
in Table 1. In the first example, the word “crap”
is labeled as toxic in the text, which has character
offsets from 15 to 18. The second example includes
the toxic span “idiot” which has character offsets
from 4 to 8.

Text Spans

What a load of crap. [15, 16, 17, 18]
You idiot. The media went to war against truth. [4, 5, 6, 7, 8]

Table 1: Two instances in the dataset. Toxic words are
highlighted in the text.

To perform our experiments, we preprocess the
subsets of the dataset in the following way. First,

we used the nltk.tokenize package2 to tokenize the
text. Then, we generated the following features
for each text in the subset: the word, the position
of the beginning and end of the word in the text,
and the NER tag. In order to perform the NER
tagging, we follow the BIO annotation scheme to
label multi-token named entities (Ratinov and Roth,
2009), which represents that the label is the begin-
ning of a span (B-Toxic), inside the span (I-Toxic),
or belongs to no span (O). This scheme is the most
popular in the NER task. Figure 2 shows an ex-
ample of the features generated for the following
example in the training set: “How fucking stupid
are you?”, spans: [4, 5, 6, 7, 8, 9, 10, 12, 13, 14,
15, 16, 17].

How 0 3 O
fucking 4 11 B-Toxic
stupid 12 18 I-Toxic
are 19 22 O
you 23 26 O
? 26 27 O

Figure 2: Example of training set instance with gener-
ated features using BIO annotation scheme.

4.2 Experiments
During the pre-evaluation period, we trained our
models on the train set and evaluated our different
approaches on the trial set. During the evaluation
period, we trained our models on the train and trial
sets and tested the model on the test set.

Flair’s framework (Akbik et al., 2019) builds di-
rectly on Pytorch was used to design the BiLSTM-
CRF network. We used the default hyperparam-
eter setting in Flair with the following configura-
tion: learning rate as 0.1, batch size as 32, dropout
probability as 0.01, and maximum epoch as 300.
All experiments (training and evaluation) were per-
formed on a node equipped with two Intel Xeon
Silver 4208 CPU at 2.10GHz, 192GB RAM, as
main processors, and six GPUs NVIDIA GeForce
RTX 2080Ti (with 11GB each).

Our team (SINAI) submitted 4 runs for the Toxic
Spans Detection task and each run evaluates the
word embeddings as an input to the BiLSTM-CRF
network, as explained in Section 3.

Run 1. GloVe embeddings.
2https://www.nltk.org/api/nltk.

tokenize.html
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Run 2. BERT embeddings.

Run 3. XLM embeddings.

Run 4. BERT + XLM + GloVe embeddings.

5 Results

In this section, we present the results obtained by
our proposed system. In order to evaluate them, we
use the official competition metric F1-score.

The results of our participation in the Toxic
Spans Detection task during the evaluation phase
are shown in Table 2. In particular, we list the
performance of the four runs submitted using the
BiLSTM-CRF model along with the combination
of different word embeddings. If we analyze the
results of the first 3 runs (each embeddings inde-
pendently), we notice that they sightly differ, the
best result is achieved by the contextual embedding
XLM. However, training the model on the combi-
nation of static and contextual embeddings (GloVe,
BERT, and XLM) leads to enhanced performance
with a 0.6727 F1-score. Therefore, our results show
the success of the combination of embeddings we
chose to solve the task of toxic spans detection in
comments using the proposed model.

Run Word embeddings F1-score

1 GloVe 0.6618
2 BERT 0.6606
3 XLM 0.6635
4 BERT + XLM + GloVe 0.6727

Table 2: Systems test results achieved by SINAI in
SemEval Task 5: Toxic Spans Detection.

Table 3 shows the official rank in the competi-
tion. As we can see, we are ranked 29th out of 91
participating teams obtaining an F1-score of 0.6727
with our system. The best result was obtained by
the team HITSZ-HLT with an F1-score of 0.7083,
which differs from our results achieved by 3.56%.
In general, low results for the task are obtained
which shows the Toxic Spans Detection as a chal-
lenge to be addressed by the NLP community and,
therefore, further research is needed to advance on
this specific task. We also observe that the number
of participants in this task is high (91) which shows
the importance and interest of the NLP community
in contributing to addressing this challenge.

User name (ranking) F1-score

HITSZ-HLT (1) 0.7083
lmazxn (10) 0.6893
SINAI (29) 0.6727
UIT-ISE-NLP (63) 0.6223
ramya.akula01 (85) 0.1968
AmrHendy (91) 0.0675

Table 3: System Results per participating team in Task
5: Toxic Spans Detection.

6 Conclusions and Future Work

This paper presents the participation of the SINAI
research group in Task 5: Toxic Spans Detection at
SemEval 2021.

In this paper, we use a deep learning-based ap-
proach for NER to identify spans that make a text
toxic, which focuses on the use of a BiLSTM-CRF
neural network where different word embeddings
are tested. The model is trained on the dataset pro-
vided by the organizers of the task (Pavlopoulos
et al., 2021) and preprocessing techniques are car-
ried out to tokenize and tagged the dataset by using
the BIO scheme.

Our results show that the sophisticated BiLSTM-
CRF architecture which has been successfully used
for other tasks such as biomedical entity recogni-
tion or part-of-speech tagging, but also achieves
remarkable results when addressing tasks related
to the identification of offensive language in com-
ments. Besides, we find that this architecture with
our proposed combination of embeddings for word
representation provides useful insights for the learn-
ing phase of the neural network achieving better
results than training the network with a single type
of word embedding.

For future work, we plan to study the perfor-
mance of our proposed method using a variety of
linguistic features, including emotions that are in-
extricably linked to offensive language.
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López. 2019. SINAI at SemEval-2019 task 6: In-
corporating lexicon knowledge into SVM learning
to identify and categorize offensive language in
social media. In Proceedings of the 13th Inter-
national Workshop on Semantic Evaluation, pages
735–738, Minneapolis, Minnesota, USA. Associa-
tion for Computational Linguistics.

Flor Miriam Plaza del Arco, M. Dolores
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Abstract

The upsurge of prolific blogging and mi-
croblogging platforms enabled the abusers to
spread negativity and threats greater than ever.
Detecting the toxic portions substantially aids
to moderate or exclude the abusive parts for
maintaining sound online platforms. This pa-
per describes our participation in the SemEval
2021 toxic span detection task. The task re-
quires detecting spans that convey toxic re-
marks from the given text. We explore an
ensemble of sequence labeling models includ-
ing the BiLSTM-CRF, spaCy NER model with
custom toxic tags, and fine-tuned BERT model
to identify the toxic spans. Finally, a major-
ity voting based fusion method is used to de-
termine the unified toxic spans. Experimental
results depict the competitive performance of
our model among the participants.

1 Introduction

Social media being a key factor in the world dy-
namics and toxicity in user-generated contents is a
real threat. Threats and hatred instigated in posts
and blogs implants fear in users’ minds and pre-
vents them from sharing their creative thoughts,
valuable opinions to critical information. Some-
times it leads to severe mental trauma and fatalities.
Hence, it is a formidable task to precisely detect
toxicity in comments and posts to be able to mod-
erate those portions and provide the users a safe
online platform to express themselves.

Toxic span detection is a process where the spe-
cific toxic segment of a text is detected instead of
detecting the whole text as toxic. The goal of this
task is to eradicate the vagueness that is present in
simple toxic text classification models and help the
moderator to precisely moderate the toxic portions
instead of the whole post. To elucidate the task,
two examples are presented in Table 1.

The first four authors have equal contributions.

Text#1: How fucking stupid are you?
Span: [4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]

Text#2: What a sociopathic and parasitic leader we have.
Span: [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 23, 24, 25,
26, 27, 28, 29, 30, 31]

Table 1: Example of sample texts with toxic spans.

Here, the “fucking stupid” portion of Text#1 is
toxic and is attacking the personality of the second
person, so the indices of this portion are included
in the toxic span. In Text#2, the “sociopathic and
parasitic” fragment is used as a toxic adjective to
describe the leader in that context. Consequently,
the indices of this fragment are incorporated in the
span. We need to detect such spans accurately to
remove toxicity from user content and preserve the
safe and sound flow of online information.

Toxic content detection on online platforms is
a state-of-the-art notion. Numerous works have
been done on the binary and multi-label classifica-
tion of toxic texts. For instance, Georgakopou-
los et al. (Georgakopoulos et al., 2018) investi-
gated the impact of CNN in toxic comment clas-
sification against the traditional bag-of-words ap-
proaches. A multiple word embedding-based ap-
proach was adopted by Carta et al. (Carta et al.,
2019) for multi-class multi-label toxic comment
classification. Besides, the effectiveness of fea-
ture extraction in hate speech detection was ex-
plored by Schmidt et al. (Schmidt and Wiegand,
2017). Multitude of datasets on toxic comments
such as dataset based on Wikipedia discussion com-
ments (Wulczyn et al., 2017), comments on on-
line forums (Borkan et al., 2019a), and offensive
language identification dataset (OLID) (Zampieri
et al., 2019) were also introduced.

However, very few works detect the precise toxic
span from text contents. Katsiolis et al. (Katsiolis,
2020) experimented on both unsupervised and su-
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Figure 1: Overview of our proposed framework.

pervised methods to address this challenge. The
unsupervised methods include the input erasure
method and the LIME algorithm whereas the su-
pervised method implements sequence labeling
through a BERT model. The unintended bias cre-
ated in publicly used toxicity detection models due
to many reasons such as the influence of regional
culture was investigated by Borkan et al. (Borkan
et al., 2019a). John et al. (Pavlopoulos et al., 2017)
surveyed the impact of user embeddings, user type
embeddings, user biases, or user type biases on the
RNN-based moderation method.

In this paper, we portray our insights acquired
from experimenting on this task. We propose an
approach focusing on an ensemble of sequence la-
beling models including the BiLSTM-CRF, spaCy
NER model with custom toxic tags, and fine-tuned
BERT model. We procure the spans from these
models through a majority voting scheme to deter-
mine the final toxic spans.

The organization of this paper is as follows: we
elucidate our proposed framework in Section 2.
Section 3 encompasses the experimental details
and comparative performance analysis. Finally, we
conclude this paper with some future notions in
Section 5.

2 Proposed Framework

We cast the toxic span detection as a sequence
tagging task and employ an ensemble of sequence
tagging models. Our proposed system comprises
three individual models. The framework of our
system is depicted in Figure 1. The first model is a
BiLSTM-CRF model with the BIO tagging scheme.
The second model is a custom spaCy named entity

recognition (NER) model. The third model is a fine-
tuned BERT model for token classification. We
leverage these three models as sequence tagging
models. These models generate tags in token level
for a text. Subsequently, we extract span based on
the toxic tags. Finally, we apply a majority voting
based fusion scheme on these spans and determine
the final toxic spans.

2.1 BiLSTM-CRF
The BiLSTM-CRF model is well-known for
sequence-tagging tasks such as named entity recog-
nition (NER). We utilize the model implemented
by (Reimers and Gurevych, 2017). For training
purposes, the dataset needs to be in CoNLL-20032

format where two columns for tokens and BIO tags
are required. Since it requires the text to be in a
tokenized form, we tokenize the text using NLTK
TweetTokenizer (Bird et al., 2009). After tokeniza-
tion, we label the tokens with custom tags such
as B-TOX(begin), I-TOX(inside), and O(outside)
utilizing the toxic span from the training dataset.
These tokens are then sent to the embedding layer.
The embedding layer has three variants of embed-
dings: word embedding, casing feature or capi-
talization feature, and character embedding. We
employ pre-trained GloVe (6B) (Pennington et al.,
2014) word embedding and a CNN based character
embeddings (Ma and Hovy, 2016). The embedding
vectors are concatenated and the output is fed to the
BiLSTM encoder which tags tokens with the BIO
tagging scheme. The BiLSTM encoder is followed
by a CRF classifier where the tags are optimized
enforcing the intermediate logic of tags.

2https://www.clips.uantwerpen.be/conll2003/ner/
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2.2 Custom spaCy NER
We exploit the spaCy (Honnibal and Montani,
2017) to build an NER type sequence labeling
model with the custom tag “TOXIC”. We con-
vert the dataset to spaCy entity format and load a
spaCy blank English model. We append new word
vectors utilizing a pre-trained word2vec (Mikolov
et al., 2013) model. Consequently, we add NER
pipeline to the model and also a “TOXIC” label.
We disable all the pipelines except NER and loop
through the training dataset several times.

2.3 Fine-tuned BERT
We finetune the state-of-the-art bert-large-cased
model (Devlin et al., 2019) to identify the toxic
spans. We employ the BertForTokenClassifica-
tion (Wolf et al., 2019) method to perform the token
level tagging. This method classifies level for each
tokenized word in a sentence. To generate the train-
ing data, we convert the sentence into tokens and
annotate them with spans. We tag the tokens as
“non-toxic” and “toxic” whereas the tokens that are
tagged as “toxic” are in between the spans.

2.4 Fusion of Models
An ensemble approach is a simulation that con-
structs multiple models and then blends them to
bring out improved results. To obtain a more accu-
rate solution than a single model, we apply majority
voting (Rokach, 2010) on the spans generated from
three models as shown in Figure 1. The primary
idea is based on the frequency of the span elements.
If a span is predicted by at least two models, it is in-
cluded in the final predicted span. Thus, we obtain
our final toxic spans through majority voting.

3 Experiments and Evaluations

3.1 Dataset Description
For detecting toxic spans in posts, we used the Civil
Comments Dataset (Borkan et al., 2019b) which
consists of 10K toxic comments. The whole dataset
is divided into three subsets where the train, trial,
and test set comprises 7939, 690, and 2000 com-
ments, respectively. Toxic comments are mainly
divided into two portions: 1. Having no toxic spans
and 2. Having toxic spans that are identified as
spans with specific character positions. Analyzing
the ratio of empty and toxic spans in our dataset we
found that 90% of data occupies toxic spans where
only 10% data have empty spans. F1-Score is used
as the primary evaluation metric in this task.

3.2 Experimental Setup
In our CSECU-DSG system submitted to the
SemEval-2021 Task 5 (Pavlopoulos et al., 2021),
we make use of three sequence and entity tagging
models to get better predictions. We present the
configuration of our best submitted system in Ta-
ble 2. Based on the predicted spans from these
models, a majority voting has been applied.

System Settings

B
iL
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M

-C
R

F

1. dropout: (0.25, 0.25)
2. LSTM-Size: [100, 100]
3. maxCharLength: 50
4. Tokenizer: TweetTokenizer
5. Word embedding: GloVe (6B)
6. Optimizer: nadam
7. miniBatchSize: 32
8. Epochs: 25

C
us

to
m

sp
aC

y
N

E
R

1. spaCy Model: blank (‘en’)
2. Pipeline: ner
3. Word embedding: word2vec
4. Iteration: 30
5. drop: 0.5

Fi
ne

-t
un

ed
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E
R

T
M

od
el

1. Tokenizer: bert-large-cased
2. Optimizer: AdamW
3. Batch Size: 16
4. Learning rate: 2e-5
5. weight decay rate: 0.01
6. Epochs: 25

Table 2: System settings.

3.3 Results Analysis
Now, we compare the performance of our system
against other competitors’ systems. Among the 91
valid submissions, the comparative performance
with top-performing teams depicted in Table 3.

Team Name F1-Score

HITSZ-HLT9 (1st) 0.7083028253
hitmi&t (3rd) 0.6984762534
IITK@Detox (9th) 0.6895352367
CSECUDSG (21st) 0.6795264755
mnfourka (45th) 0.6581458018
ST TSResearch (64th) 0.6133591537

Table 3: Comparative performance analysis.
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It depicts that our system achieved competitive
performance compared to the participants’ systems.
It only lacks by 3% from the top-performing team
HITSZ-HLT.

4 Discussion

To estimate the impact of individual components
on the overall system’s performance, we examine
the performance of individual models on the test
set. To do this, we make use of the test set and the
findings are presented in Table 4.

Method F1-Score

CSECU-DSG 0.6795264755

Performance of Individual Model

−Fine-tuned BERT 0.6381618923
−Custom spaCy NER 0.6474175682
−BiLSTM-CRF 0.6404340000

Table 4: Performance analysis of individual models.

It shows that all three models obtained a simi-
lar kind of performance. However, employing the
majority voting based scheme on these three mod-
els improves the overall result by almost 3% which
leads to better detection of toxic spans from the text.
Thus, we demonstrate the efficacy of utilizing the
ensemble strategy to ameliorate the performance.

To qualitatively demonstrate the effectiveness of
the ensemble approach compared to the individ-
ual models an instance is illustrated in Table 5. It
clearly shows that majority voting helps to detect
the accurate span.

Text: They are more animal than the goat, disgusting.!!!!!

Gold: [36, 37, 38, 39, 40, 41, 42, 43, 44, 45]

BiLSTM-CRF: [30, 31, 32, 33, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45]

Custom spaCy NER: [36, 37, 38, 39, 40, 41, 42, 43, 44,
45]

Fine-tuned BERT: [14, 15, 16, 17, 18, 19, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45]

Majority voting: [36, 37, 38, 39, 40, 41, 42, 43, 44, 45]

Table 5: Comparative performance analysis of models
according to the predicted toxic spans.

We further investigate the reason behind the er-
roneous span detection by our proposed system. In
this regard, we articulate some examples in Table 6.

Text Predicted Span Gold Span

1. See a shrink
you pathetic troll.

[17, 18, 19, 20,
21, 22, 23, 24,
26, 27, 28, 29,
30]

[17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30]

2. ADN is endors-
ing, without of-
ficially endorsing.
Bunch of cowards
!!!

[58, 59, 60, 61,
62, 63, 64]

[49, 50, 51, 52,
53, 54, 55, 56,
57, 58, 59, 60,
61, 62, 63, 64]

3. The mascot
was a ridiculous
pick twenty years
ago, too. Did you
ever see the wel-
come sign going
into Keenesburg?
”Home to 500 peo-
ple and a few sore-
heads.”

[17, 18, 19, 20,
21, 22, 23, 24,
25, 26]

17, 18, 19, 20,
21, 22, 23, 24,
25, 26, 27, 28,
29, 30, 31]

Table 6: Examples of erroneous span detection.

We observed that our system could not detect the
in-between spaces of toxic words. Such as in the
first example, the predicted span is “pathetic” (17-
24) and “troll” (26-30). Whereas, the gold span
is “pathetic troll”(17-30). The probable reason for
this can be that our models are trained with tokens
of the training dataset. Another observation indi-
cates that our system failed to detect the phrasal
spans of some texts. In example #2 and #3, we see
that instead of capturing the toxic phrases “Bunch
of cowards” and “ridiculous pick”, it detects the
toxic words only. Since two of our models are
trained on token-level and only the BiLSTM-CRF
model follows the BIO tags convention, the ensem-
ble of models lacks in perceiving the context of the
phrasal toxic texts and sometimes fragments the
toxic sequences. Though majority voting improves
the overall score, it shrinks some important features
of the discrete models.

5 Conclusion and Future Directions

In this paper, we introduced an ensemble of three
distinct models to detect the toxic spans. Among
these models, BiLSTM-CRF and Custom spaCy
NER models are implemented as NER type se-
quence and entity tagging models whereas fine-
tuned BERT model is exploited as a token classifi-
cation model. We also leveraged a majority voting
strategy to overcome the limitations of individual
models. Our model tackles the task challenge ef-
fectively and achieved a competitive performance
compared to the participants’ systems.
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Our future plan incorporates exploring a better
sequence tagging model with an ensemble of var-
ious fine-tuned language models i.e. ALBERT,
DistilBERT, RoBERTa, and GPT.
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Abstract

Detecting which parts of a sentence contribute
to that sentence’s toxicity—rather than provid-
ing a sentence-level verdict of hatefulness—
would increase the interpretability of models
and allow human moderators to better under-
stand the outputs of the system. This pa-
per presents our team’s, UTNLP, methodol-
ogy and results in the SemEval-2021 shared
task 5 on toxic spans detection. We test mul-
tiple models and contextual embeddings and
report the best setting out of all. The exper-
iments start with keyword-based models and
are followed by attention-based, named entity-
based, transformers-based, and ensemble mod-
els. Our best approach, an ensemble model,
achieves an F1 of 0.684 in the competition’s
evaluation phase.

1 Introduction

When social media platforms were first introduced,
they allowed users to post content on any topic they
wished, without restricting the type of content they
were allowed to put out. This absence of restric-
tions, along with the anonymity of users through
these platforms (Pinsonneault and Heppel, 1997;
Mondal et al., 2017), resulted in the spread of of-
fensive language and hate speech online. While
one might think there are only a small number of
users who produce these types of hateful content,
it has been shown that if social media platforms
are left unmoderated, over time, the language of
the community as a whole will change such that it
highly correlates with the speech of hateful users
rather than non-hateful ones (Mathew et al., 2020).
Given the huge number of social media postings
every day, manual moderation of these platforms
is not a possibility. As a result, many researchers
began to study automatic hate speech detection.
Most studies on hate speech detection only pro-
vide labels at the sentence level, showing whether

the construct as a whole is toxic or not. But these
types of models, offer little explanation as to why
the class was predicted, making it hard for human
moderators to interpret the results (Pavlopoulos
et al.).
In an attempt to solve the aforementioned issue, we
took part in SemEval-2021 shared task 5 (Pavlopou-
los et al., 2021), where we aim to detect which
spans of a sentence cause it to become toxic. Our
contributions are as follows: We begin our experi-
mentation by evaluating a random baseline. Next,
we test keyword-based methods, trying to find if
toxic spans often include words that are known
as hateful or negative in available word lists. We
then test attention-based models, building on the
hypothesis that what the attention model learns
to focus on when detecting toxic speech, are the
toxic spans. Afterwards, we look at the issue as
a named entity recognition problem, by consider-
ing toxic as a named entity category. Finally, we
fine tune T5-base and explore the possibility of
looking at the task as a text-to-text problem. We
compare different neural network architectures and
embeddings, and report the model with the best per-
formance. Additionally, we experiment with some
hand-crafted features and evaluate their effective-
ness in detecting toxic spans. Our best result, an
ensemble of named-entity-based models, achieves
an F1 of 0.684.

2 Related Work

In this section we provide a brief overview of stud-
ies on hate and toxic speech detection, followed by
work on span detection in different sub-fields.

2.1 Hate Speech
Hate speech is defined as “any communication that
disparages a person or a group on the basis of some
characteristic such as race, color, ethnicity, gender,
sexual orientation, nationality, religion, or other
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characteristics” (Nockleby, 2000). However, no
clear distinction between toxic and hateful speech
has been provided in the scientific literature (D’sa
et al., 2019). There are quite a few surveys on the
topic of hate speech detection. (Schmidt and Wie-
gand, 2017), describes available methods, features,
and models for such a task. Another survey con-
ducted in 2018 (Fortuna and Nunes, 2018), offers
another view of the current state of the field, as well
as suggesting ways in which hate speech detection
could advance further. Other surveys on the topic
published in 2020 include: (Naseem et al., 2020)
which examines the impact of pre-processing on
the performance of hate speech models. Corpora
and resources for the task are studied in (Poletto
et al., 2020). Additionally, throughout the years,
many shared tasks have been organized to help pro-
pel studies in the field (Vu et al., 2020; Bosco et al.,
2018; Basile et al., 2019). In addition to the classi-
fication of hate speech, significant effort has been
put into the analysis of the target of hate (Silva
et al., 2016; ElSherief et al., 2018).
Although numerous models have been tested,
(Gröndahl et al., 2018) argues that when it comes
to hate speech detection, the model is less im-
portant than the labeling criteria and the type of
data. In confirmation of the importance of labeling,
(Arango et al., 2019) also finds that models trained
on annotations done by experts outperform systems
trained on amateur annotations.

2.2 Span Detection

Named entity recognition (NER), code-switching
detection, quotation detection, and key-phrase ex-
traction are among many tasks that involve span
identification.
(Chen et al., 2020) employs SpanBERT (Joshi et al.,
2020) accompanied by a sequence tagging model to
detect erroneous spans, proceeding to use detected
spans to perform error correction. The combina-
tion of conditional random fields (CRF) (Lafferty
et al., 2001) and attention mechanisms (Vaswani
et al., 2017) are explored in (Xu et al., 2020) to
explore aspect sentiment classification. The study
finds that the use of multiple CRFs (to some limit)
does improve performance. In (Papay et al., 2020)
the authors look into systems to predict the perfor-
mance of span identification tasks. To do so, BIO
labels are used, and it is found that BERT (Devlin
et al., 2018) helps when there is little data, while
CRF is of great help in hard cases. In addition, the

frequency of spans is found to help while length
hurts the performance of the model. Furthermore,
LSTMs (Hochreiter and Schmidhuber, 1997) are
reported to require large amounts of data to learn.
(Tang et al., 2019) explores using fine-tuned BERT
with attention models to extract keywords, showing
how such models could enable the text classifica-
tion model to be human interpretable.

3 Data

In this section, we will provide a brief description
of the datasets utilized in this study. We will begin
with our main dataset in which span-level toxic-
ity has been labeled (3.1), next we look at other
datasets that were used to better train our models,
namely the hate word list that was used (3.2.1) and
the sentence-level hate speech data (3.2.2).

3.1 Main Task Dataset: Toxic Spans

The main dataset used in this study is that of the Se-
mEval 2021, Toxic Span detection task (Pavlopou-
los et al.; Borkan et al., 2019a). In this dataset,
which was built upon Civil Comments (Borkan
et al., 2019b), toxic word sequences (for sentences
in the English language) have been labeled. In
other words, labels are indexes of characters that
are toxic in each sentence. There are a total of
8,629 sentences in the dataset, 8,101 of which in-
clude at least one annotated toxic span, and the rest
have none. Sentences are on average 35 words long.
The word-length of the toxic spans varies from one
to 176 words. Toxic spans are, on average, 2.29
words long.
There are some issues with regard to the quality of
the annotations in the dataset. Table 1 shows some
examples of annotated comments in the dataset.
While the first sentence is satisfactorily annotated,
the second and third examples display issues with
the labels in the dataset. More concretely, in the
second example we can see that the indexes result
in poorly separated and broken up words. Addition-
ally, the anotated words are not toxic. In the third
example we see that some of the words which do
have a toxic connotation are not included in the an-
notation. While these examples are not extremely
common in the dataset, these types of issues make
automatic detection of such spans much more diffi-
cult.
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Text Toxic Spans
what load you trump chumps just do not have any idea how to

deal with reality you have terrible judgment and pick exceptionally
idiotic arrogant leaders trump admitted he fired comey to stop

the russia investigation man is he stupid. [‘idiotic’, ‘man is he stupid’]
except for one thing they are liars they only care about being thugs [‘r one th’]

what harm have you ever heard of someone getting attacked
by bear while taking dump in the woods please does just

owning gun make someone paranoid and pu55y at the same time [‘harm’]

Table 1: Examples of comments and the annotated toxic spans in the dataset

3.2 Datasets Used for Training

To better train our models, we made use of several
auxiliary datasets.

3.2.1 Word-list Dataset

One of the methods tested in this study is based on
word-matching. In other words, we check whether
each word in the sentence is among hateful words
and if so predict its label to be toxic. While this
method is rather simple and we acknowledge that
not all hate words are toxic and they could simply
be used as a joke, we consider this method as a
good first step to help us better understand the task
at hand. As a result we need to use a list of hate
words. For that purpose, we used a list of 1,616
unique hate words found on Kaggle (nicapotato).

3.2.2 Hate Speech Dataset

To be able to train our attention-based models (4.1)
we needed to have sentence-level annotated data.
Thus we used the Civil Comments dataset (Jigsaw-
Conversation-AI). The fact that this dataset and
our main dataset have the same domain is the rea-
son why this specific dataset was selected. In this
dataset, each sentence is labeled with a number
between 0 and 1, representing how hateful the text
is. We consider sentences with scores above 0.5 to
be hateful, and consider the rest as non-hateful. We
then create a balanced sample of 289,298 sentences
to train our model. The average length of sentences
in this dataset is 48.12 words which is slightly
longer than the sentences in the main dataset (3.1).

4 Methodology

In this study we have tested and compared various
models to perform toxic span detection. In this
section we will go over the structure and hyperpa-
rameters of these models. The codes of all models

are publicly available on GitHub1.

4.1 Attention-based Methods
We begin with the intuition that if a model with
an attention layer is trained to detect hate speech
at the sentence-level, the words the attention layer
would learn to place importance on, would be the
hateful words and spans. Consequently, we create
a model made up of the following three layers:
(1) BERT-Base (Uncased) Layer which encodes
our input texts.
(2) Attention Layer which is meant to be used for
the aforementioned purposes
(3) Dense Layers which connect the attention out-
puts to two output nodes, detecting if the text is
hateful or not.
To train this model we have two training stages:

• Sentence-level classification of hate speech

• Span-level detection of toxic spans

First we perform pre-processing by removing all
punctuations (except those in the middle of words
such as a$$hole), and lower-casing all words.
Next, the aforementioned model is designed. The
BERT-Base (Uncased) layer has an input size of
400 tokens (clipping the input at 400 tokens and
dropping the rest). The outputs of this layer are
embedding vectors with a hidden size of 768 corre-
sponding to the 400 input tokens. The second layer
is an attention layer (attention matrix size = 4096)
with a Relu activation function. Our last layers
are two fully connected layers (4096 nodes) with
dropout of 0.1. There are two neurons in the final
layer, the objective of which is to detect whether
the sentence is an instance of hate speech or not.
The model is trained for 10 epochs with the Adam

1https://github.com/alirezasalemi7/
SemEval2021-Toxic-Spans-Detection
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optimizer and a learning rate of 0.001. We freeze
the weights of the BERT layer during this training
process as we find through experimentation that
fine-tuning BERT in this stage results in lower per-
formance of our model in the toxic span detection
task.
Once the model has been trained, we input our sen-
tence and if our sentence-level detector predicts
the sentence to be non-hateful we move on and
produce a blank output as our toxic span. If, how-
ever, the model detects the sentence to be hateful,
we extract the attention values and calculate the
attention score of each word. If a word is made
up of multiple subwords, we average the values of
all subwords. After the attention scores have been
calculated we use rule-based and machine learning
models to label spans as toxic. These models are
explained in Table 2. We begin by rule based mod-
els, selecting a percentage of spans with attention
scores above a certain threshold (shown in Figure
2). Additionally, we test different machine learning
models with various sets of features. Our results
are shown in Section 5.3.

4.2 Named Entity-based Methods
Our second intuition is to look at this problem as
one similar to NER. As such, our toxic span la-
bel can be looked at as another NER label. We
considered toxic, non-toxit and padding as labels
and applied CRF to this NER task. The padding
label was added to reduce the model bias toward
the non-toxic class.
Our model is depicted in Figure 1. We train the
model for 2 epochs with a learning rate of 3×10−5.
In contrast to the previous method, the embedding
layer is fine-tuned during our training process. Our
tests on these models are shown in Section 5.4.

4.3 Ensemble Models
Finally, we test two methods of combining the out-
puts of various models in order to achieve a better
performance on the task. As previously mentioned,
the expected outputs of the task are numerical in-
dexes of the parts of the string which are believed
to be toxic. Consequently, the first method of mix-
ing could be voting, where if the majority of the
models vote for one index, the index is included
in the final selection. The second method is based
on calculating the intersection of outputted indexes
of all three models. In other words, only adding
an index if it is detected by all three models. The
results are shown in Section 5.6.

5 Results

In this section we will report the results of the
models introduced in the previous section (4) on
the toxic span detection task. Per the competition
evaluation instructions, for all models the F1 score
is reported.

5.1 Random Baseline

To help us better understand the complexity of the
task at hand, we start with a random baseline. In
this method, we first split each sentence into words
(using NLTK’s functions) and then randomly label
each word as toxic or not. We observe that this
baseline F1-score for the task is 0.17.

5.2 Keyword-based

The second simple method we test is a word-
matching one. Our intuition is that toxic spans
will likely include hateful or negative words. Thus
we begin with a list of hate words and label any
word found on the list as toxic and label the rest
as nontoxic. This method results in an F1-score
of 0.332 which is almost twice that of the random
baseline, showing that while not all hate words are
toxic and not all toxic spans are hate words, there
is still a considerable amount of overlap. We fur-
ther test if most words in toxic spans will have a
negative sentiment value. Thus we repeat the same
method, this time labeling anything with a negative
sentiment as toxic. To detect the sentiment score
of each word we use TextBlob (Loria, 2018). We
see that this method achieves an F1 of 0.378, out-
performing the aforementioned technique. Finally
we mix the two methods (labeling both hate words
and words with negative sentiment as toxic), and
achieve an F1-score of 0.418.

5.3 Attention-based

As mentioned in Section 4, the intuition behind
the attention-based model is that the model which
learns to detect hate speech, would learn to pay
more attention to the hateful spans in the text. Con-
sequently, we test this idea in Table 2. We can see
that the rule-based attention selection method out-
performs other span selection techniques. To select
the best set of rules for the model, we test both the
percentage of top-words (with respect to attention)
which we consider for selection, and the threshold
we place on the minimum value of attention which
is considered. As shown in Figure 2, we can see
that the top 75% of attention scores with a thresh-
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Figure 1: The architecture of the named entity-based models. (a) displays a version of the model in which the two
dense layers in (b) have been replaced by an LSTM layer. The results of both versions are shown in Table 3.

old of 10−4 is the best set of hyper-parameters for
the task.

Upon analysis of the results of the attention-
based model, we find that the model performs well
on the detection of single word spans (detecting
78% of single-word spans in the evaluation dataset)
but does not detect multi-word spans well (only
detecting 16% of such spans completely). This
is because the distribution of attention scores are
observed to be such that there is a large focus on
one word and other words receive little attention
values.
We further set up another experiment where we
assumed that the true sentence-level labels were
given. The model then predicted the toxic spans
given these true labels achieving an F1 of 0.808.
This shows that if the sentence-level classifier per-
formed better, our model would have been able
to get higher performance. Thus, more focus
should be placed on obtaining higher accuracy in
the sentence-level classification task.

5.4 Named Entity-based

Table ??, displays the results of our named entity
based models. We can see that LSTM layers do
not improve performance, and among various em-
beddings, RoBERTa outperforms the others in our
5-fold cross validation testings. However, BERT
achieves better results in the competition’s evalua-
tion phase.

5.5 Google’s T5

Another model we test is Google’s T5 (Raffel et al.,
2019). To test the T5 model, we use hugging-face’s

T5-base model2 and frame our problem as one
where the context is the Tweet text and the answer
is the text of the toxic spans to be detected. Our
model achieves an F1 of 0.635 in the evaluation
phase of the competition.

5.6 Ensemble Models

As described in section 4.3, we tested intersecting
and using a voting scheme for the model outputs.
More precisely, we perform these methods on the
outputs of the following named entity based mod-
els:

(1) BERT + CRF

(2) Electra + CRF

(3) RoBERTa + CRF

We find that the competition evaluation F1 reaches
0.681 when we use voting of indexes, and 0.684
when the indexes are intersected. As can be seen
both methods outperform all individual models.

6 Conclusion

In this study we presented and compared various
methods for toxic span detection. We examined
the problem from various points of views reporting
our results using each model. Our best system, an
ensemble model, achieved an F1 of 0.684 in the
SemEval-2021 Task 5 evaluation phase. Among the
named-entity-based models, BERT+CRF performs
best achieving an F1 of 0.67. Our attention-based
model achieved an F1 of 0.609 in the competition’s

2We were not able to test a larger version of the model due
to system constraints

999



Figure 2: The effects of placing various thresholds on the minimum value of attention scores allowed to be selected
and the percentage of top scores that have been selected on the F1-score of the toxic span detection task. Each plot
displays one threshold value, and the x-axis in each plot is the percentile of scores we select and the y-axis is the
F1 value achieved by this combination of threshold and percentile.

Model Hate Speech Detection Toxic Span Detection
Span Selection Rules Accuracy Precision Recall F1 F1 F1 (Competition Evaluation)

R1 a 0.601 0.609
R2 b 0.601 -
R3 c 0.85 0.85 0.85 0.85 0.496 -

Decision Tree d 0.360 -
Neural Network e 0.354 -

a R1: selecting words with top 75% of attention scores with threshold 10−4 and then removing stop-words
b R2: R1 + removing positive sentiment words among the top 75%
c R3: R2 + adding all hate words (using the hate word list) in the sentence regardless of attention scores
d Decision Tree: the input features of the model are: 1-attention score of word, 2-part of speech of the word, 3-sentiment

of word 4-whether the word is a hate word or not (0/1)
e Neural Network: the features inputted to the model are 1-attention score of word, 2-part of speech of the word,

3-sentiment of word, 4-whether the word is a hate word or not (0/1) - categorical features (e.g. POS) are modeled as
learnable embeddings.

Table 2: Results of the attention-based models, the model structure is BERT + Attention + Dense and we have
tested out different span selection rules

Embedding Layers F1 (train) F1 (test) F1 (Competition Evaluation)
BERT CRF 0.702 0.648 0.67

RoBERTa CRF 0.682 0.652 0.66
Electra CRF 0.687 0.646 0.65
BERT LSTM + CRF 0.668 0.62 -

RoBERTa LSTM + CRF 0.669 0.647 -
Electra LSTM + CRF 0.678 0.641 -

Table 3: Results of the named-entity based models evaluated using 5-fold cross-validation

evaluation phase. Future work could focus on the
improvement of the sentence-level detection in our
attention scheme, as we showed improvement in
that regard would improve this task’s performance.
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Benevenuto. 2017. A measurement study of hate
speech in social media. In Proceedings of the
28th acm conference on hypertext and social media,
pages 85–94.

Usman Naseem, Imran Razzak, and Peter W Eklund.
2020. A survey of pre-processing techniques to im-
prove short-text quality: a case study on hate speech
detection on twitter. Multimedia Tools and Applica-
tions, pages 1–28.

nicapotato. Bad Bad Words. https://www.kaggle.
com/nicapotato/bad-bad-words.

JT Nockleby. 2000. ‘hate speech in encyclopedia of
the american constitution.

Sean Papay, Roman Klinger, and Sebastian Padó.
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Abstract

Toxic language is often present in online fo-
rums, especially when politics and other po-
larizing topics arise, and can lead to people
becoming discouraged from joining or contin-
uing conversations. In this paper, I use data
consisting of comments with the indices of
toxic text labelled to train an RNN to deter-
mine which parts of the comments make them
toxic, which could aid online moderators. I
compare results using both the original dataset
and an augmented set, as well as GRU versus
LSTM RNN models.

1 Introduction

In this digital era we live in, almost everyone
is communicating online. As of January 2021,
Facebook, YouTube, and WhatsApp each have
over 2 billion users, which means many differing
viewpoints and perspectives being shared (Statista,
2021). With such a huge exchange of ideas, there
is bound to be some toxicity within the comments.
Aside from discouraging users to continue with or
join conversations, toxic comments can also taint
users’ perceptions on news sites (Tenenboim et al.,
2019). Thus it is important to moderate online
conversations without fully censoring users.

While forums typically rely on human moder-
ators, with such vast amounts of data coming in,
it can be difficult for humans to keep up (Nobata
et al., 2016). Advances in deep learning and ma-
chine learning is making text processing a viable
option to replace, or at least assist, human mod-
erators clean up comment sections (Consultants,
2019). Some methods rely on simply classifying
whether a comment is toxic or not, but identifying
what parts of the text are actually toxic can assist
moderators and provide insight into what makes
language toxic. The SemEval task 5 aims to evalu-
ate systems that detect toxic spans wihtin text using

datasets where spans within the comments are la-
belled as toxic, differing from previously released
datasets where whole comments were labelled as
toxic or non-toxic (Pavlopoulos et al., 2021).

This is inherently a natural language processing
task, similar to text classification and sentiment
analysis. This study focuses on training a recurrent
neural network to determine the indices of a given
string that represent the toxic portions of a com-
ment. Recurrent neural networks are classically
used for natural language and sequence labelling
task, and one could view this task as a form of se-
quence labelling. The goal of sequence labelling
is, given a sequence as input, assign a sequence of
labels. Because recurrent neural networks (RNNs)
are flexible in their use of context information and
can recognize sequential patterns, they are an at-
tractive and commonly used choice in sequence
labelling (Graves, 2012). This paper approaches
the task at hand with a sequence labelling method-
ology, applying an RNN and comparing the use
of gated reccurent unit (GRU) and long-short term
memory unit (LSTM) layers in the RNN.

2 Related Work

Aggression in text is complex, often clouded by sar-
casm or including repeat words that cause a model
to incorrectly identify words as toxic. A study by
Vaidya, Mai, and Ning found that comments includ-
ing identities, such as LGBTQ+, Black, Muslim,
and/or Jewish identities, often resulted in false pos-
itives for toxic comments, so this was a bias we
wanted to be aware of in our study (Vaidya et al.,
2020).

Detecting toxic spans is not as common of a task
as toxic comment detection or sentiment analysis.
Many studies surrounding toxic comments have
been completed largely in part due to the avail-
ability of a large corpora of data released by the
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Wikimedia Foundation, as well as several Kaggle
competitions hosted by Google Jigsaw. Other stud-
ies generally take a text classification approach
similar to sentiment analysis, which as previously
mentioned, is not exactly the task at hand (Nobata
et al., 2017).

One of the comparisons made in this research is
between GRU and LSTM recurrent models. Gen-
erally, LSTM units have issues with vanishing gra-
dients when text sequences are too long, so GRUs
are used instead. GRU controls the flow of infor-
mation like the LSTM unit, but without the use
of a memory unit (Chung et al., 2014). Previous
research has shown GRU outperforms LSTM for
all depths in speech recognition. The same study
determined that bi-directional RNN models consis-
tently outperform uni-directional models and found
that models with 5 or more recurrent layers did not
improve the results (Khandelwal et al., 2016). As
a result, in our research, we compare GRU and
LSTM models to find if GRU will consistently out-
perform LSTM in a sequence labelling task, as op-
posed to speech recognition, and use bi-directional
RNN models with fewer recurrent layers, as they
were not shown to have any benefit. This paper
will also compare the results of augmented and
non-augmented datasets to determine if the use of
synonyms will improve the performance after train-
ing.

3 Methodology

3.1 Pre-Processing

Quite a bit of pre-processing was required to pre-
pare this data for training. First, we label the com-
ments using the given indices representing the toxic
spans within the comments. A word labelled with
a ”/1” is toxic and with ”/0” is not toxic. The com-
ments are then run through a function that goes
through the following text preprocessing steps:

1. Text to lowercase

2. Remove URLs

3. Remove numbers

4. Remove extra whitespace

5. Expand contractions (”it’s” to ”it is”, ”they’re”
to ”they are”, etc.)

6. Remove punctuation

7. Tokenize the strings - here one token is one
word in the comment

8. Lemmatize the tokens

9. Remove stop words (list of stop words from
nltk.corpus package)

After this text processing is completed, we use
SAS DLPy1 and SAS SWAT Python2 packages
to continue with the processing. From the SAS
SWAT package, we are able to connect to a server
where we can upload the cleaned text data into a
CASTable (similar to a Pandas DataFrame). Then
the text data needs to be converted to embeddings.
To do this, we use GLOVE 100-dimension trained
word vectors and apply the vectors to the CASTable
containing the comments. Because text data from
human sources is so varied and can often include
unknown words or misspellings, we remove any
comments that could not be converted to numeric
embeddings and place them in a separate table. In-
stead of using these unknown embeddings in train-
ing and scoring using a neural network, we will
make simple predictions based on if any common
toxic words are present in the comments. This is
not ideal but only about 2-5% of data ends up in
this separate table and saves us the trouble of deal-
ing with finding all of the words that could not be
converted to embeddings.

Ideally we would not be removing observations
from the dataset and further experimentation with
different embedding sets could lead to better out-
comes. This does affect the final results slightly
as there is both less data being used in training
and worse prediction accuracy from the comments
not used in the main prediction set contributing to
the final score, but because the percentage of data
actually removed is so low, we decided it would
not make a big enough difference to focus on. The
comments removed from the main set are predicted
using common toxic words gathered from the train-
ing set. Although misspellings are often a cause
for the embeddings failing on a comment, the mis-
spelled word may not have been part of the toxic
span, so the comment could still be predicted using
common toxic words and have a fairly acceptable
accuracy.

After the comments are converted to embed-
dings, we find the maximum column count of a

1https://sassoftware.github.io/python-dlpy/
2https://sassoftware.github.io/python-swat/
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single embedding and pad all other embeddings
to this maximum value. We then create output
columns - one column for each 100-D word vec-
tor - and fill the columns with the toxicity labels
from earlier. The final table used for training and
scoring contains columns for the original comment,
the labelled comment, the cleaned comment, 100
dimension embeddings for each word in the com-
ment and the rest of the columns zero-padded to
the longest value, and toxicity labels for each word
in the comment, also zero-padded to the longest
value.

We can then build an RNN using SAS’
deepLearn actionset3, train the model using the
dlTrain action, and score using the dlScore action.
When training, the embeddings columns are used
as input columns to the model, where each token is
100 columns for each 100 dimension embedding,
and the target columns are the label columns that
contain either a 1 for a toxic word or a 0 for a
non-toxic word, where each token is one column.

3.2 Augmented Data

The goal of using augmented data was to increase
the amount of data being used in training the mod-
els. To do this, we found every comment with only
one toxic word and created up to five new com-
ments with the toxic word replaced with a different
synonym. We were able to do this by using word-
net from the nltk Python package that finds a list
of synonyms for a given word. Figure 1 shows

Figure 1: Original toxic comments

the original comments, with comment 2 being the
example that is augmented, and figure 2 shows
the new comments created using synonyms of the

3https : //go.documentation.sas.com/doc/en/pgmsascdc/9.43.3/casdlpg/cas−
deeplearn− TblOfActions.htm

Figure 2: Augmented toxic comments

word “damn”. By augmenting only comments that
contain a single toxic comment, we are able to in-
crease the size of the data set from 7,939 comments
to 21,822 comments - almost three times as many
comments to be used in training. The idea here
was to increase the size of the training data set to
improve performance.

3.3 GRU vs LSTM

As mentioned in the introduction, we trained a bi-
directional RNN model. After comparing perfor-
mance, we found that a model with more than one
bi-directional RNN layer was not improving the
accuracy of the predictions, so we used a smaller
model with only one bi-directional layer. The input
layer connects to a fully connected layer, which
goes into the bi-directional layer, into another fully
connected layer, and finally to the output layer. Fig-
ure 3 shows the model architecture. We trained our
data on two different models, one with a GRU cell
used in the bi-directional layer and one that uses an
LSTM cell in the bi-directional layer.

4 Experimental Results

In this section, we discuss the results from the
two experiments - GRU vs LSTM models and aug-
mented vs original data used in training. We use
F1 scores to compare the two different models and
types of data sets. The F1 scores, discussed later on,
are a combination of both the predictions from the
trained models and the comments that are predicted
using common toxic words (which will henceforth
be referenced as “guessed comments” for lack of
better terms). The guessed comments do have a
slight effect on the final results which will be de-
scribed in this section
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Figure 3: RNN model architecture showing layer di-
mensions

4.1 Evaluation Metric

Each model’s performance was evaluated using an
F1 score, as described in (Martino et al., 2019). If
the system is represented by Ai, the return set from
the system is St

Ai
, t represents a post or comment,

and G represents the ground truth annotations for
post t, then F1 score of a system is defined as:

F t
1 (Ai, G) =

2 · P t (Ai, G) ·Rt (Ai, G)

P t (Ai, G) +Rt (Ai, G)
(1)

P t (Ai, G) =
|St

Ai
∩ St

G|
St
Ai

(2)

Rt(Ai, G) =
|St

Ai
∪ St

G|
St
Ai

(3)

If St
G = 0, an instance where there are no toxic

spans present, then F t
1(Ai, G) = 1 if no toxic

spans are predicted, and F t
1(Ai, G) = 0 otherwise.

To obtain the final F1 score for a particular system,
the F1 scores are averaged over all posts t.

4.2 Augmented Data

Table 1 shows comparisons between the use of
augmented and non-augmented data when training
both the GRU and LSTM. We can see in the various
hyperparameter settings, the augmented data actu-
ally performs worse than the original data. This
is interesting considering generally the more data
points used, the better the model. It is possible that

the method in which we augmented the data, only
changing one word within a comment, did not help
the model learn any of the connections between the
text but rather memorize more toxic words, many
of which are often repeated.

Table 1 also shows that the learning rate does
not affect the augmented data quite as drastically
as it does the non-augmented data, with the non-
augmented data showing much lower F1 scores
when a lower learning rate is used, such as 0.001.
It may be interesting to further explore if larger
datasets are less affected by changes to the learning
rate. The augmented dataset is almost three times
larger than the original dataset, so it is also much
more time consuming to train. With much longer
training times and worse performance, the original
dataset proves to be the more effective option. Ta-
ble 3 shows that across both dev and test datasets,
results from augmented dataset training were worse
than their non-augmented counterparts.

We also compared results from only comments
with a single toxic word present to find if these
performed better for the augmented data, since
only comments with a single toxic word were aug-
mented. Again, the original dataset outperformed
the augmented data. The differences between the
single toxic word scores and scores when all com-
ments are factored in are also very similar between
augmented and non-augmented data results, show-
ing the augmented data did not make much of a dif-
ference in predicting single toxic word comments.
Table 2 shows these results.

4.3 GRU vs LSTM
After tuning the hyperparameters for both models,
we found that the GRU model performs slightly
better than LSTM across most hyperparameter set-
tings. We were able to get the highest F1 score
using GRU as well. Even between the scores using
augmented data, GRU still performs slightly better
than LSTM. Table 1 shows these results.

4.4 Results and analysis
Table 3 shows F1 scores using the best hyperparam-
eter settings across the four methods - GRU, GRU
trained with augmented data, LSTM, and LSTM
trained with augmented data. The F1 test column
shows scores for the evaluation data given, which
was to be used for submitting a team’s results. Our
team submitted results for each of these methods in
hopes of securing a better spot on the leaderboard,
but ultimately ended up with a very low score, the
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Max
Epochs

Learn
Rate

Mini-batch
Size

GRU GRU Augmented LSTM LSTM
Augmented

10 0.1 5 0.515 0.504 0.514 0.501
10 0.05 5 0.514 0.503 0.499 0.495
10 0.001 5 0.287 0.406 0.324 0.393
10 0.1 10 0.473 0.459 0.463 0.469
50 0.1 5 0.518 0.478 0.512 0.460
20 0.1 5 0.519 0.494 0.504 0.464
20 0.05 5 0.369 0.433 0.396 0.513
20 0.001 5 0.521 0.500 0.505 0.501

Table 1: F1 scores during hyperparameter tuning for GRU and LSTM models with both original and augmented
data

Max
Epochs

Learn
Rate

Mini-Batch
Size

Single Toxic
Original

All Toxic
Original

Single Toxic
Augmented

All Toxic
Augmented

10 0.1 5 0.622 0.515 0.594 0.504
10 0.05 5 0.623 0.514 0.602 0.503
10 0.001 5 0.351 0.287 0.489 0.406
10 0.1 10 0.542 0.473 0.530 0.459
50 0.1 5 0.610 0.518 0.561 0.478
20 0.1 5 0.623 0.600 0.583 0.494
20 0.05 5 0.451 0.369 0.528 0.433
20 0.001 5 0.616 0.521 0.601 0.500

Table 2: F1 scores during hyperparameter tuning comparing performance for only single toxic comments and all
toxic comments using the GRU model

Method F1 Dev F1 Test

GRU 0.519 0.602
GRU Augmented 0.504 0.551

LSTM 0.514 0.600
LSTM Augmented 0.501 0.550

Table 3: Best F1 scores for dev and test sets

reasoning for which is described in the note below.
We were able to later calculate the F1 scores for
the evaluation data when the entire dataset was re-
leased, after the competition ended, and those are
the scores shown in Table 3.

It is interesting to note that the test data outper-
forms the dev data for every method used. This
may be due to some kind of overfitting occurring.
This is peculiar but is also likely due to the eval-
uation data containing fewer guessed comments,
or comments predicted using common toxic words
instead of predicted by the model. Because both
the predicted comments and the guessed comments
are used in calculating the F1 score, the portion

of the entire dataset that is guessed would have an
impact on the final score. The dev set had 2.5%
of guessed comments and the test set had slightly
fewer, with 2% of the entire dataset being com-
prised of guessed comments, which would explain
the better results shown.

One can also see in Table 3 that the GRU model
outperforms the LSTM model, even if just slightly,
for both the original and augmented datasets and
across both dev and test data. Other research has
noted that GRU cells may be better for specificity,
or finding true negatives, and focusing on less
prevalent content, whereas LSTM cells are better
for detecting true positives and focusing on highly
prevalent content. (Gruber and Jockisch, 2020).
Looking into the dev dataset, only 6% of the ob-
servations contain no toxic spans, but this model
is not predicting whether an entire comment con-
tains any toxic spans, it is predicting if each word
is toxic. Out of all of the text, 93% of the words
are non-toxic words, or in this case, words to be
labelled negative for toxicity. A model that can
better predict true negative outcomes would have
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the best performance with this data.

4.5 Note on Official Results Discrepancy
The official results in task 5 for the SemEval confer-
ence show this team to have an F1 score of 0.070.
This score is much lower than the values we are
presenting here because after adding the ground-
truth values for the evaluation data it was found that
the best F1 score we achieved was 0.602, as shown
in Table 3, and the results were submitted to the
competition out of order or formatted incorrectly,
producing a very low F1 score.

5 Conclusion

We experimented with several different RNN mod-
els and ultimately utilized the results from bi-
directional GRU and LSTM models. It was
found that the GRU model slightly outperforms
the LSTM model for this test case. As was found
by Gruber and Jockisch, GRU cells can be better
for detecting true negatives and since 93% of the
words in the training dataset we used were non-
toxic words, it follows that GRU cells may outper-
form LSTM cells in cases where there are more
negative instances than postive in the datasets. It
would be interesting to explore if using both a GRU
cell and an LSTM cell in a model would further
increase performance, with GRU focusing on less
prevalent content and true negatives, and LSTM fo-
cusing on high prevalent content and true positives.

In the exploration of the use of augmented data,
we found that not only did the models trained on
augmented data perform worse than those trained
on the original dataset, but they were also much
slower to train. We compared if the F1 scores for
observations with a single toxic word were higher
for the models trained with augmented data, since
only comments with a single toxic word present
were augmented, but still the original datasets out-
performed the augmented datasets. Because the
augmented data does not improve results, we can
continue to use the original dataset to cut down on
computation time. We also found that the F1 scores
resulting from the augmented data training did not
react as greatly to changes in the learning rates as
the original datasets did, which may be interesting
to explore further.
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Abstract

Recurrent Neural Networks (RNN) have been
widely used in various Natural Language Pro-
cessing (NLP) tasks such as text classification,
sequence tagging, and machine translation.
Long Short Term Memory (LSTM), a special
unit of RNN, has the advantage of memoriz-
ing past and even future information in a sen-
tence (especially for bidirectional LSTM). In
the shared task of detecting toxic spans in
texts, we first apply pretrained word embed-
ding (GloVe) to generate the word vectors after
tokenization. Then we construct Bidirectional
Long Short Term Memory-Conditional Ran-
dom Field (Bi-LSTM-CRF) model by Baidu
research to predict whether each word in the
sentence is toxic or not. We tune hyperparam-
eters of dropout rate, number of LSTM units,
embedding size with 10 epochs and choose the
epoch with best validation recall. Our model
achieves an F1 score of 66.99% on test dataset.

1 Introduction

Detecting toxic words plays a critical role in so-
cial media to ensure healthy online discussions.
In previous study, some tasks (Liu et al., 2019;
Borkan et al., 2019a) only identify offensive lan-
guage based on the whole sentence or post. Most
of them do not detect specific spans of words that
make the sentence or post offensive.

In SemEval-2021 Task 5: Toxic Spans Detection
(Pavlopoulos et al., 2021), the data was collected
from civil comments (Borkan et al., 2019b). Each
post is in string format, and a word is marked as
toxic span in the form of its characters’ offsets
in the string. The goal of the task is to classify
whether each word in a sentence is toxic or not. If
so, the indices of characters in the word should be
returned. The task is evaluated by F1 score based
on the character offsets among all posts.

The challenges of this task include:

• The small dataset makes it very difficult to
train complicated models like deep neural net-
works, since it may cause overfitting.

• We need to predict which word or phrase is
toxic given a text (many-to-many) rather than
whether the entire sentence is offensive or not
(many-to-one). This creates restrictions on
feature engineering and modeling:

– Feature Engineering: We cannot delete
or add words in the sentence.

– Modeling: Models need to be specific on
each word instead of sentiment classifi-
cation on whole sentence.

• Most of the words and phrases in sentences
are not toxic. This indicates our dataset is
imbalanced.

The models we explore in this task include word-
based Conditional Random Field (CRF), word-
based Bidirectional Long Short Term Memory (Bi-
LSTM) with and without pretrained word embed-
ding, Bidirectional LSTM-CRF with pretrained
word embedding. We choose Bi-LSTM-CRF as
final submission, since it performs the best during
our experiments.

The structure of this paper is organized as fol-
lows:

• In section 2, we review related work of ap-
plications of different models in Sequence
Tagging, Name Entity Recognition, and Senti-
ment Analysis.

• In section 3, we present the summary statis-
tics of data and how we build models with
performance evaluation.

• In section 4, we discuss our model results on
validation dataset with key findings.
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Figure 1: System Flowchart

• In section 5 and 6, we present our conclusion
based on experiment results and future work.

2 Related Work

Toxic Span Detection is a type of sequence label-
ing tasks and is similar to name entity recognition
tasks with only two categories. (Xing et al., 2010)
surveyed various sequence labeling tasks in terms
of methodologies and applications. They also re-
viewed a few extensions of sequence classification
including early classification and semi-supervised
learning on sequences. (Nguyen and Guo, 2007)
compared different learning algorithms such as
Conditional Random Fields (CRF), Support Vector
Machine (SVM), and Perceptron for sequence la-
beling tasks. (Akbik et al., 2018) proposed a new
type of embedding called contextual string embed-
ding for sequence labeling tasks. A Comparison
between multiple word embedding methods were
conducted by (Lauren et al., 2018) for sentiment
classification and sequence labeling tasks.

For name entity recognition (NER), (Mansouri
et al., 2008) presented a machine learning based
approach called Fuzzy Support Vector Machine.
Recent advanced deep learning models were sum-
marized by (Yadav and Bethard, 2019) in various
shared tasks.

Currently, models that are widely used in various
NLP tasks include CRF, LSTM, RNN, and trans-
formers. Also, word embedding such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,

Statistics Train Trial
count 7939 690
mean 43 41
std 41 40
min 1 1
25% 16 15
50% 29 28
75% 54 53
max 240 217

Table 1: Distribution of word count

Type Train Trial
Toxic 24135 1814
Non toxic 1881225 163786

Table 2: Count of toxic and non toxic words in data

2014), and ELMo (Peters et al., 2018) are preferred
before model training.

3 Data and Methodology

3.1 Data Description

Toxic Spans Detection Dataset includes trial and
training data. The training data contains 7939
records, and trial data contains 690 records. The
sentences and indices of characters in toxic span
are provided separately. To obtain if a word is
toxic or not after tokenization, we split the text
by space and punctuation and map the indices of
toxicity to corresponding words. As a result, the
word sequences in text will be marked as toxic (1)
or non-toxic (0).

The distribution of the length of text (in word
count) is summarized in Table 1. It shows that
training and trial data follow a similar distribution
in percentile, mean, and standard deviation (std).

The count of toxic and non-toxic words in texts
are concluded in Table 2. It shows the dataset is
highly imbalanced that most of words are non toxic.

3.2 Methodology

CRF Conditional Random Field (CRF) was de-
veloped in 2001 (Lafferty et al., 2001) for sequence
prediction. Given the observable sequence X and
labeling sequence Y , the objective of CRF is to con-
struct model for conditional probability P (Y | X).
An advantage of using CRF compared with other
sequential models such as Hidden Markov Model
(Rabiner and Juang, 1986) is that it does not rely
on the assumption of label independence.
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Model Precision Recall F1
CRF 0.686 0.341 0.4556
Bi-LSTM 0.6277 0.3664 0.4627
Bi-LSTM (glove-twitter-50) 0.8571 0.4884 0.6222
Bi-LSTM (glove-twitter-100) 0.8113 0.5 0.6187
Bi-LSTM-CRF (glove-twitter-100) 0.8333 0.5233 0.6429

Table 3: Model evaluations on validation data

Before fitting the model, for each word we cre-
ate binary features to check whether the word is
uppercase, lowercase, titlecase, and digit. We also
append the same features of previous and next
words. Next, we use “crfsuite” package to build
CRF model. We choose “lbfgs” as optimization
algorithm, and we set c1 and c2 equal to 0.1, max
iteration equal to 100.

Bi-LSTM Long Short Term Memory (LSTM)
is one of the most commonly used recurrent neu-
ral networks in many natural language processing
tasks (Hochreiter and Schmidhuber, 1997). It con-
sists of input gate, output gate, forget gate, and
cell. Its gate structure enables the model to memo-
rize long-term dependency and to prevent gradient
vanishing issues.

In the experiments, we use Bidirectional LSTM
(Bi-LSTM) in tensorflow.keras as second baseline.
We configure number of LSTM units to be 200,
embedding size equal to 50, and max sequence
length to be 240, which is the max sentence length
in training dataset. Thus, sentences with length of
less than 240 will be padded. To reduce overfitting
of neural networks, we set dropout rate as 0.2. Our
final output layer uses sigmoid activation function
with adam optimizer for gradient descent (Kingma
and Ba, 2014).

We set number of epochs equal to 10 and record
checkpoints. Since tensorflow package does not
contain built-in F1 score, the final model parame-
ters are loaded from the checkpoint with highest
validation recall.

Bi-LSTM with pretrained word embedding
To further improve model performance, we adopt
pretrained word embedding to generate word rep-
resentation before training Bi-LSTM. The word
embedding we use includes glove-twitter-50 and
glove-twitter-100 in gensim (Řehůřek and Sojka,
2010). This means we need to modify our embed-
ding size to 50 and 100 respectively. All other hy-
perparameters are consistent with Bi-LSTM above.

Bi-LSTM-CRF with pretrained word embed-
ding Our final model is Bidirectional LSTM-
CRF created by Baidu Research (Huang et al.,
2015). Compared with previous Bi-LSTM architec-
ture, we add an extra output layer of CRF to make
final predictions (as shown in Figure 1). Accord-
ingly, we replace the loss function of binary cross
entropy by CRF loss. We use glove-twitter-100 as
pretrained embedding layer. All other hyperparam-
eters of LSTM remain the same.

4 Experiment Results

We split proportion of training and validation
dataset into 9:1. The evaluation results on vali-
dation set are summarized in Table 3. For each
model discussed above, we list its precision, re-
call, and F1 score with default threshold. Since
the dataset is highly imbalanced, we only focus on
the evaluation metrics of toxic words. There are
several key findings:

• Models with pretrained word embedding per-
form better than those without pretrained word
embedding, since it produces higher precision
and recall (thus higher F1 score).

• The performances of pretrained word embed-
ding are close to each other regardless of em-
bedding size. We do not want to further in-
crease the embedding size, since it will in-
crease the training time but not boost the per-
formance significantly.

• As a final output layer, CRF can further im-
prove recall for Bi-LSTM while keeping the
precision in the same level. Therefore, it can
increase F1 score.

Based on the model evaluation table, we choose
Bi-LSTM-CRF with pretrained glove-twitter-100
embedding as our final model. The model achieves
an F1 score of 0.6699 in final submission.

The confusion matrix for test data can be found
in Table 5. We first flatten the sequence to a list of
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Texts Predictions Error Type
Chris Birch is a mean, self-centered, contrary ass.
... always sucks up to Big Oil. [ass, sucks] False Positive
I wish this moron would have been shot to death by
the US soldier instead of the other way around. [moron] False Positive
Lord have Mercy on us, Trump is running amok. [] False Negative
... They’re vandals, thieves, and bullies. [] False Negative

Table 4: Examples of False Positive / Negative

Actual Pos Actual Neg
Pred Pos 1747 1504
Pred Neg 736 73892

Table 5: Confusion matrix on test data

words before calculation. We define toxic words
as positive (Pos) examples and non toxic words as
negative (Neg) examples in the matrix. The table
shows there are a lot of false positives (1504) in
our model, this implies our model may be over-
sensitive to the toxic words.

To deep dive into the model performance with
specific examples, we collect a few sentences from
test data in Table 4. In false positive examples
marked as underline, the words “ass”, “sucks”, and
“moron” are predicted as toxic words where there
exists no toxicity in these sentences. In false neg-
ative examples marked as bold, the model fails to
identify toxic words like “amok”, “vandals”, and
“thieves”. The errors may come from the following
reasons:

• Incorrect labels by ground-truth spans. These
errors are unavoidable from the model due to
human mistake.

• The pre-trained word embedding from GloVe
does not reflect sentiment for those words. In
other words, these words are not marked as
positive or negative but neutral in word em-
bedding.

• The position of words in sentence was not
detected as toxicity by our Bi-LSTM-CRF
model. For example, one word could be
marked as toxic spans when it is in the be-
ginning of the sentence but not the case when
it is at the end. This will cause difficulty for
model training to detect toxicity.

5 Conclusion

Detecting toxic words in texts is critical to furnish
a healthy environment on social media. Sequence
labeling task for finding specific offensive words
is more difficult than sentiment classification on
sentence level, since it requires models to locate
the positions or indices of words in sentences. In
addition, the task also places restrictions on fea-
ture engineering, because we cannot delete or add
words in sentences.

Our experiment shows pretrained word embed-
ding can improve model performance compared
with randomized embedding weights. This verifies
the concept of transfer learning where we can bor-
row the outputs from other resources and use them
as inputs to achieve specific goals. Another finding
is the benefit of model stacking where we add an
extra layer of CRF after Bi-LSTM that further en-
hances predictability. In such case, when a single
model does not work well in NLP tasks, combining
different models with pretrained word embedding
can be a good option to explore. However, there
are still a lot of false positive examples in test set
where the model predicts toxic words that in fact
are not toxic.

6 Future Work

Further improvements can focus on feature engi-
neering and model implementation. For feature
engineering, we can conduct data augmentation
for false negative examples: We first collect the
words that are predicted as non-toxic but actually
toxic, and reconstruct sentences using those toxic
words as more training samples. This method can
increase the weights of words that were originally
omitted by the model, so that it may return better
results. Similarly, we can also collect false positive
examples and perform data augmentation to reduce
false positive rates.

In addition to data augmentation, one can per-
form word-level text normalization to transform
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words of different tenses to the same, even though
each word cannot be deleted or added in a sentence.

From the model perspective, we may consider
using more advanced classifiers with complicated
structures. Due to resource limitations, we can-
not design any large neural networks models such
as deep neural networks (DNN) or transformers.
Most of our experiments are done locally or via
Google Colab. Training large neural networks will
be very time-consuming and expensive when us-
ing tremendous amount of computing resources
including multiple GPUs, TPUs.

If we have more time and available resources,
we can experiment with more complex models
such as BERT (Devlin et al., 2018), GPT (Rad-
ford et al., 2018), and so forth. In addition, we can
deploy larger LSTM-related architecture including
Bi-LSTM-CNN-CRF for sequence labeling (Ma
and Hovy, 2016).

1013



References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence la-
beling. In Proceedings of the 27th international con-
ference on computational linguistics, pages 1638–
1649.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019a. Nuanced met-
rics for measuring unintended bias with real data for
text classification. In Companion proceedings of the
2019 world wide web conference, pages 491–500.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019b. Nuanced met-
rics for measuring unintended bias with real data for
text classification. CoRR, abs/1903.04561.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional Random Fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Paula Lauren, Guangzhi Qu, Jucheng Yang, Paul Watta,
Guang-Bin Huang, and Amaury Lendasse. 2018.
Generating word embeddings from an extreme learn-
ing machine for sentiment analysis and sequence
labeling tasks. Cognitive Computation, 10(4):625–
638.

Ping Liu, Wen Li, and Liang Zou. 2019. NULI at
SemEval-2019 task 6: Transfer learning for offen-
sive language detection using bidirectional trans-
formers. In Proceedings of the 13th international
workshop on semantic evaluation, pages 87–91.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via Bi-directional LSTM-CNNs-
CRF. arXiv preprint arXiv:1603.01354.

Alireza Mansouri, Lilly Suriani Affendey, and Ali Ma-
mat. 2008. Named entity recognition approaches.
International Journal of Computer Science and Net-
work Security, 8(2):339–344.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Nam Nguyen and Yunsong Guo. 2007. Comparisons
of sequence labeling algorithms and extensions. In
Proceedings of the 24th international conference on
Machine learning, pages 681–688.
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Abstract
We describe our approach for SemEval-2021
task 6 on detection of persuasion techniques
in multimodal content (memes). Our sys-
tem combines pretrained multimodal models
(CLIP) and chained classifiers. Also, we pro-
pose to enrich the data by a data augmentation
technique. Our submission achieves a rank of
8/16 in terms of F1-micro and 9/16 with F1-
macro on the test set.

1 Introduction

Online propaganda is potentially harmful to soci-
ety, and the task of automated propaganda detection
has been suggested to alleviate its risks (Martino
et al., 2020b). In particular, providing a justifi-
cation when performing propaganda detection is
important for acceptability and application of the
decisions. Previous challenges have focused on the
detection of propaganda techniques (Martino et al.,
2020a), based on news articles. However, many
use cases do not solely involve text, but can also
involve other modalities, notably images. Task 6 of
SemEval-2021 proposes a shared task on the detec-
tion of persuasion techniques detection in memes,
where both images and text are involved. Substasks
1 and 2 deal with text in isolation, but we focus on
subtask 3: visuolinguistic persuasion technique de-
tection.

This article presents the system behind our sub-
mission for subtask 3 (Dimitrov et al., 2021). To
handle this problem, we use a model containing
three components: data augmentation, image and
text feature extraction, and chain classifier compo-
nents. First, given a paired image-text as the input,
we paraphrase the text part using back-translation
and pair it again with the corresponding image to
enrich the data. Then, we extract visual and textual
features using the CLIP (Radford et al., 2021) im-
age encoder and text encoder, respectively. Finally,
we use a chain classifier to model the relation be-
tween labels for the final prediction. Our proposed

method, named LIIR, has achieved a competitive
performance with the best performing methods in
the competition. Also, empirical results show that
the augmentation approach is effective in improv-
ing the results.

The rest of the article is organized as follows.
The next section reviews related works. Section 3
describes the methodology of our proposed method.
We will discuss experiments and evaluation results
in Sections 4 and 5, respectively. Finally, the last
section contains the conclusion of our work.

2 Related work

This work is related to computational techniques
for automated propaganda detection (Martino et al.,
2020b) and is the continuation of a previous shared
task (Martino et al., 2020a).

Taks 11 of SemEval-2020 proposes a more fine-
graind analysis by also identifying the underly-
ing techniques behind propaganda in news text,
with annotations derived from previously proposed
propaganda techniques typologies (Miller, 1939;
Robinson, 2019).

This current iteration of the task tackles a more
challenging domain, by including multimodal con-
tent, notably memes. The subtle interaction be-
tween text and image is an open challenge for state
of the art multimodal models. For instance, the
Hateful Memes challenge (Kiela et al., 2020) was
recently proposed, as a binary task for detection of
hateful content. The recent advances in pretrain-
ing of visuolinguistic representations (Chen et al.,
2020) lead the model closer to human accuracy
(Sandulescu, 2020).

More generally, propaganda detection is at the
crossroad of many tasks, since it can be helped
by many subtasks. Fact-checking (Aho and Ull-
man, 1972; Dale, 2017) can be involved with pro-
paganda detection, alongside various social, emo-
tional and discursive aspects (Sileo et al., 2019a),
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If Trump Isn't Hitler, Then I'm a Moron

If Trump is not Hitler, Then I'm an idiot
Back-Translation

CLIP 
Text Encoder

CLIP 
Image Encoder

Estimated 
Probabilities

Chained
Classifier

Figure 1: The overall architecture of our proposed model. For each example, use Back-Translation to derive
augmentations of the text, and we compute persuasion techniques probabilities separately. Then, we average the
estimated probabilities from augmented and original examples.

including offensive language detection (Pradhan
et al., 2020; Ghadery and Moens, 2020) emotion
analysis (Dolan, 2002), computational study of
persuasiveness (Guerini et al., 2008; Carlile et al.,
2018) and argumentation (Palau and Moens, 2009;
Habernal and Gurevych, 2016).

3 Methodology

In this section, we introduce the design of our pro-
posed method. The overall architecture of our
method is depicted in figure 1. Our model con-
sists of several components: a data augmentation
component (Back-translation), a feature extraction
component(CLIP), and a chained classifier. Details
of each component are described in the following
subsections.

3.1 Augmentation Method

One of the challenges in this subtask is the low
number of training data where the organizers have
provided just 200 training samples. To enrich the
training set we propose to use the back-translation
technique (Sennrich et al., 2016) for paraphrasing a
given sentence by translating it to a specific target
language and translating back to the original lan-
guage. To this end, we use four translation models,
English-to-German, German-to-English, English-
to-Russian, and Russian-to-English provided by
(Ng et al., 2019). Therefore, for each training sen-
tence, we obtain two paraphrased version of it. In

the test time, we average the probability distribu-
tions over the original and paraphrased sentence-
image pairs.

3.2 Feature Extraction
Our system isProbabilities of a combination of pre-
trained visuolinguistic and linguistic models.

We use CLIP (Radford et al., 2021) as a pre-
trained visuolinguistic model. CLIP provides an
image encoder fi and a text encoder ft. They
were pretrained on a prediction of matching im-
age/text pairs. The training objective incentivizes
high values of fi(I).ft(T ) if I and T are match-
ing in the training corpus, and low values of they
are not matching1. Instead of using a dot prod-
uct, we create features with element-wise product
fi(I)� ft(T ) of image and text encoding. This en-
ables aspect-based representations of the matching
between image and text. We experimented with
other compositions (Sileo et al., 2019b) which did
not lead to significant improvement.

We then use a classifier C on top of fi(I)�ft(T )
to predict the labels.

3.3 Chained Classifier
In this task, we are dealing with a multilabel clas-
sification problem, which means we need to pre-
dict a subset of labels for a given paired image-
text sample as the input. We noticed that label

1They assign each image to the text associated to other
images in the current batch to generate negative examples
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Slogans
Appeal to authority

Presenting Irrelevant Data
Transfer

Flag-waving
Thought-terminating cliché

Appeal to Emotions
Appeal to fear

Bandwagon
Smears

Repetition
Black-and-white Fallacy

Exaggeration/Minimisation
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Figure 2: Probabilities of label co-occurence in the
training set. Some label pairs, for instance (SMEARS
and LOADED LANGUAGE) are frequently associated.

co-occurrences were not uniformly distributed, as
shown in figure 2. To further address the data spar-
sity, we use another inductive bias at the classifier-
level with a chained classifier (Read et al., 2009)
using scikit-learn implementation (Pedregosa et al.,
2011).

Instead of considering each classification task
independently, a chained classifier begins with the
training of one classifier for each of the L labels.
But we also sequentially train L other classifier
instances thereafter, each of them using the outputs
of the previous classifier as input. This allows our
model to model the correlations between labels. We
use a Logistic Regression with default parameter
as our base classifier.

Our chain classifier uses combined image and
text features as the input. We transfer the predicted
probabilities of the classifier via the sigmoid activa-
tion function to make the probability values more
discriminating(Ghadery et al., 2018). Then we ap-
ply thresholding on the L labels probabilities since
the task requires a discrete set of labels as output.
We predict a label when the associated probability
is above a given threshold. We optimize the thresh-
old on the validation set by a simple grid search
using values between 0.0 and 0.9 with a step of
0.005.

4 Experiments

4.1 Datasets
We use the dataset provided by SemEval-2021 orga-
nizers for task 6. The dataset consists of 687(290)
samples as the training set, 63 samples as the dev
set, and 200 samples as the test set. Each sample

Label Count

Smears 199
Loaded Language 134
Name calling/Labeling 118
Glittering generalities (Virtue) 54
Appeal to (Strong) Emotions 43
Appeal to fear/prejudice 42
Exaggeration/Minimisation 42
Transfer 41
Slogans 28
Doubt 25
Flag-waving 24
Causal Oversimplification 22
Misrepresentation of Someone’s Position 21
Whataboutism 14
Black-and-white Fallacy/Dictatorship 13
Thought-terminating cliché 10
Reductio ad hitlerum 10
Appeal to authority 10
Repetition 3
Obfuscation, Intentional vagueness, Confusion 3
Bandwagon 1
Presenting Irrelevant Data (Red Herring) 1

Table 1: Labels of persuasion techniques with associ-
ated counts in the training set

is an image and its corresponding text. We use
10% of the training set as the validation set for
hyperparameter tuning.

5 Evaluation and Results

5.1 Results

In this section, we present the results obtained by
our model on the test sets for Subtask 3. Table 2
shows the results obtained by the submitted final
model on the test set. All the results are provided in
terms of macro-F1 and Micro-F1. Furthermore, we
provide the results obtained by the random baseline,
the best performing method in the competition, and
median result for the sake of comparison. Note that,
we used the first released training set at the time
of final submission which contained just 290 train-
ing samples. Therefore, we also provide results
obtained by our model after using all the provided
687 training samples. Results show that LIIR has
achieved a good performance compared to the ma-
jority class baseline and the median result which
demonstrates that our model can effectively iden-
tify persuasion techniques in text and images. Also,
we can observe LIIR has achieved a competitive
performance compared to the best result obtained
by the best team in the competition when it uses all
the training samples.
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System Macro-F1 Micro-F1
Majority class 0.05152 0.07062
Median 0.18842 0.4896
LIIR(290 examples) 0.18807 0.49835
LIIR(687 examples) 0.21796 0.51122
Best system 0.27315 0.58109

Table 2: The results obtained by LIIR compared to
the baselines on the Test set for Subtask 3. Numbers
in parentheses show the total number of train samples
used by our model.

5.2 Ablation Analysis

In this part, we provide an ablation study on the
effect of different components of our proposed
method on the dev set. First, we show the effect
of using just visual features, just textual features,
and both. Furthermore, we examine how well the
final results of our model was influenced by the
augmentation method. Table 3 shows the ablation
study on the effect of using different features. The
first observation is that image features contain more
information compared to the textual features. Also,
we can observe that the best Micro-F1 score is ob-
tained when we combine both visual and textual
features. These results show the effectiveness of
our method in making use of both visual and textual
information.

System Macro-F1 Micro-F1
LIIR – textual features 0.32275 0.53237
LIIR – visual features 0.33347 0.52954
LIIR 0.29972 0.58312

Table 3: Ablation analysis for the effect of using differ-
ent features by our model on the dev set.

In Table 4, the effect of the augmentation tech-
nique is shown. As the results show, the augmen-
tation approach is quite effective in improving the
model performance by a high margin.

System Macro-F1 Micro-F1
LIIR w/o Augmentation 0.25090 0.54952
LIIR w Augmentation 0.29972 0.58312

Table 4: Ablation analysis for the effect of augmenta-
tion method on the dev set.

6 Negative Results

We also tried to use CLIP as a zero-shot classifier
for propaganda technique detection. To do so, we
constructed prompts such as :

(1) This image is committing [LABEL] fal-
lacy.

or

(2) Saying that [TEXT] is [LABEL] fallacy.

For each input image/text, we generated a
prompt for each labels, and used CLIP to estimate
the estimate an affinity score between the prompt
and the image. CLIP is designed to predict relat-
edness between the input image and text, and we
expected that an input text mentioning the relevant
propaganda technique should be associated with
higher probabilities that the others.

However, this method did not seem to perform
better than chance. This suggests that propaganda
detection technique task might be too abstract for
CLIP in zero-shot settings.

7 Conclusion

We described our submission for the shared task
of multimodal propaganda technique detection at
SemEval-2021. Our system performances that are
competitive with other systems even though we
used a simple architecture with no ensemble, by
leveraging non-supervised learning. We believe
that further work on zero-shot learning would be
a valuable way to improve propaganda detection
techniques for the least frequent labels.
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Abstract

This paper describes the system used by the
AIMH Team to approach the SemEval Task 6.
We propose an approach that relies on an archi-
tecture based on the transformer model to pro-
cess multimodal content (text and images) in
memes. Our architecture, called DVTT (Dou-
ble Visual Textual Transformer), approaches
Subtasks 1 and 3 of Task 6 as multi-label clas-
sification problems, where the text and/or im-
ages of the meme are processed, and the proba-
bilities of the presence of each possible persua-
sion technique are returned as a result. DVTT
uses two complete networks of transformers
that work on text and images that are mutually
conditioned. One of the two modalities acts
as the main one and the second one intervenes
to enrich the first one, thus obtaining two dis-
tinct ways of operation. The two transformers
outputs are merged by averaging the inferred
probabilities for each possible label, and the
overall network is trained end-to-end with a bi-
nary cross-entropy loss.

1 Introduction

Social networks play a critical role in our society.
Nowadays, most of the ideas, thoughts, and polit-
ical beliefs are shared through the internet using
social platforms like Twitter, Facebook, or Insta-
gram. Although these online services enable infor-
mation to be spread efficiently and effectively, it is
non-trivial to understand if the shared contents are
free of subtle meanings altering people’s judgment
abilities.

Among all the types of content living in a social
network, memes acquire a significant role. Memes
are small yet effective units of information able
to spread cultural ideas, symbols, or practices and
usually exist under the form of pictures, possibly
with overlayed text. Memes are created so that they
can propagate rapidly and reach a large number
of users; for this reason, they are one of the most

popular types of content used in an online disinfor-
mation campaign, influencing the users through
several rhetorical and psychological techniques,
such as causal oversimplification, name-calling, or
smear. The automatic detection of these memes
and the disinformation techniques they are possibly
employing is a challenging yet crucial task for the
proper management of a social network.

In the last few years, machine learning and deep
learning have defined remarkable milestones in au-
tomatic content extraction and reasoning from mul-
timedia data. All these breakthroughs acquire a
fundamental role in large-scale analysis of multi-
media content from social networks.

In this work, we tackle the problem of recog-
nizing which kind of disinformation technique is
used to forge memes for a disinformation cam-
paign. In particular, we propose an architecture
based on the well-established transformer architec-
ture model (Vaswani et al., 2017) for processing
both the textual and visual inputs from the meme.
This architecture, which we call DVTT (Double
Visual Textual Transformer), comprises two full
transformer networks working respectively on im-
ages and texts; however, each of these transformers
is conditioned on the other modality. We consider
this task as a multi-label classification problem,
where text and/or images from the meme are pro-
cessed, and probabilities of presence of each possi-
ble persuasion technique are returned as a result.

In this paper, we tackle subtasks 1 and 3 of the
SemEval 2021 Task 6 challenge 1 (Dimitrov et al.,
2021). Subtask 1 consists of identifying which of
20 possible persuasion techniques are used in it
given only the textual content; subtask 3 is very
similar to subtask 1, but both textual and visual
contents of the meme are used, and there are 22 pos-
sible persuasion techniques. Our proposed models

1https://propaganda.math.unipd.it/
semeval2021task6/index.html
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could reach the 5th position for subtask 1 and the
4th position for subtask 3 on the publicly available
leaderboard. The code for replicating our results is
available on GitHub2.

2 Background

Recently, machine learning, and deep learning in
particular, defined astonishing milestones in auto-
matic content extraction and reasoning from mul-
timedia data. In particular, concerning joint vi-
sual and textual analysis, many state-of-the-art ap-
proaches succeeded in tasks like visual question
answering (Hu et al., 2017; Anderson et al., 2018;
Teney et al., 2017), image captioning (Zhou et al.,
2020; Rennie et al., 2017; Huang et al., 2019; Cor-
nia et al., 2019), and image-text matching (Chen
et al., 2019; Lu et al., 2019; Faghri et al., 2018; Lee
et al., 2018; Messina et al., 2020), often using struc-
tured reasoning using graph networks and graph
convolutions.

In the last few years, a graph-network related
model, the transformer network (Vaswani et al.,
2017), acquired increasing attention on the joint
processing of images and texts. Many works, in-
spired by the BERT model (Devlin et al., 2019),
obtained remarkable results on word region align-
ments, visual-question answering, and image-text
matching using transformer encoders (Lu et al.,
2019; Qi et al., 2020; Su et al., 2020).

Recently, the authors in (Carion et al., 2020)
used the full transformer stack to construct a pow-
erful object detector, demonstrating these models’
potential in pure visual contexts.

Given the enormous flexibility of the transformer
architecture, in this work, we consider images and
texts respectively as sets and sequences of vec-
tors, and we ask the transformer to process them to
produce probabilities of presence of each possible
persuasion technique.

3 System Overview

In this section, we first give a brief overview of the
Transformer architecture on which our proposal is
based; then, we present in detail our system pro-
posals for solving subtasks 1 and 3.

3.1 Review of the Transformer Architecture
In the original transformer formulation for lan-
guage translation, the source sequence is processed

2https://github.com/mesnico/
MemePersuasionDetection
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Figure 1: The transformer network. Encoder and De-
coder modules are replicated N times.

using the transformer encoder model, which cre-
ates a suitable set of contextualized vectors encod-
ing the input sequence. Using the representations
created by the encoder, the transformer decoder
module is trained to predict the words for the target
sentence one at a time. During the decoding pro-
cess, the decoder is conditioned, at each time step,
by the vectors generated by the encoder.

Both the encoder and the decoder modules lever-
age the power of the multi-head attention mech-
anism. This mechanism transforms every word
representation from a target sentence to a new rep-
resentation space conditioned on the words from a
source sentence.

The multi-head attention associates to the source
sequence vectors {si} a key Ki and to the target
vectors {tj} a query Qj and a value Vj ; the target
values are transformed using the scaled dot-product
attention as follows:

Att(Q,K, V ) = softmax
(
QKT

√
dk

)
V. (1)

This is the core of the multi-head attention mecha-
nism, which is the fundamental building block in
the transformer architecture for both the encoder
and the decoder modules (Figure 1).

3.2 A Transformer Encoder Baseline

Although the transformer architecture was origi-
nally designed to handle sentences (sequences of
words), the model in itself can effectively process
an arbitrary set of vectors possibly coming from
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Figure 2: The proposed architectures: (a) the Visual-Textual Transformer Encoder model (VTTE) used as a
baseline, and (b) the novel Double Visual Textual Transformer model (DVTT). The shown meme is taken from
https://engineermemes.blogspot.com, and it is licensed under the Creative Common license.

other modalities (e.g., different chunks of an im-
age).

For this reason, many works (Lu et al., 2019; Qi
et al., 2020; Su et al., 2020) recently proposed ar-
chitectures based on the transformer encoder model
to jointly reason on images and texts for solving
tasks like visual question answering or image-text
matching.

Inspired by these works, we defined a baseline
for inferring probabilities over the possible persua-
sion techniques by feeding images and texts to a
transformer encoder, using the first output token
as the input to the multi-label classifier head. The
transformer encoder visual and textual input fea-
tures are pre-extracted respectively from a CNN
and a pre-trained BERT model, as explained in Sec-
tion 4. Like in BERT, where different sentences are
encoded by separating them using a special token,
the textual and the visual inputs are separated by
the SEP embedding. An overview of this approach
is presented in Figure 2a. We refer to this baseline
as VTTE (Visual-Textual Transformer Encoder).

3.3 Double Visual-Textual Transformer
In this work, instead, we propose an architecture
that can exploit the full Transformer architecture
to jointly reason on visual and texts and producing
label probabilities as output. We call this model
DVTT (Double Visual Textual Transformer), and it
is outlined in Figure 2b. DVTT is composed of two

different transformer networks able to process vi-
sual and textual inputs concurrently; the important
aspect of DVTT is that each transformer is condi-
tioned on the other modality so that it is possible
for the whole architecture to jointly reason on the
two modalities following two different paths: in the
first, the text is the key aspect, and images integrate
the reasoning performed on the text; conversely, in
the second, the images are the primary modality
and the text intervene to enrich the visual features.

For each of the two transformers, the final head
is a multi-classification head constructed on the
first token of the output sequence. In particular, a
linear layer outputs the logits over each possible
persuasion technique, and the final softmax oper-
ator converts logits into probabilities, exactly like
in the VTTE baseline model. The two transform-
ers outputs are merged by averaging the inferred
probabilities for each possible label, and the overall
network is trained end-to-end with a binary cross-
entropy loss.

4 Experiments

We used the data provided by the SemEval 2021
Task 6 challenge organizers to train and validate
our model. Although we mainly concentrated on
subtask 3 (images + texts), we also tackled sub-
task 1, which is essentially equivalent to subtask 3,
except that only the text is available.
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Dataset The provided dataset comprises 687
memes for training, 63 memes for validating on
the so-called development set, and 200 memes for
the final testing. All the memes carry textual cap-
tions written in English. Note that, in the end, we
were allowed to use the annotations for the devel-
opment set, so we had at our disposal a total of 750
annotated memes to use for the training and vali-
dation phases. The annotations consist of a list of
persuasion techniques for every meme. In subtask
1 there are 20 possible persuasion techniques and
22 in subtask 3.

Metrics The official metrics for computing the
model performance are the Micro-F1 and Macro-
F1 scores;

The F1-score is defined as the harmonic mean
of precision and recall:

F1 =
2

recall−1 + precision−1
(2)

The F1-score gives values in the interval [0, 1],
hence it is often a good way of summarizing the
performance of binary classifiers.

The difference between Micro-F1 and Macro-F1

scores lies in the way precision and recall are com-
puted: in Micro-F1, they are computed from all the
true positives, false positives, and false negatives
over all the labels; for this reason, Micro-F1 gives
each sample the same weight, thus giving more
emphasis to the most frequent labels. On the other
hand, Macro-F1 is computed as the mean value
among the F1-scores computed on the different
labels: Macro-F1 = 1

N

∑N
1 F i

1, where N is the
number of labels and F i

1 is the F1-score computed
among the samples having label i. In this case, all
the classes contribute equally regardless of how
often they appear in the dataset.

Model Setup For subtask 3, we used the pro-
posed DVTT model (Figure 2b). We used a learn-
ing rate of 5 ·10−5 and a batch size of 8. We trained
the models for 40 epochs in all the experiments, de-
creasing the learning rate after 30 epochs to 5·10−6.
The transformer is composed of 4 encoder layers
and 4 decoder layers, with 1024-dimensional feed-
forward networks for producing queries, keys, and
values.

As a baseline for subtask 3, we used the VTTE
architecture (shown in Figure 2a), composed of a
4-layer transformer encoder module, with a multi-
label classification head on top, exactly like the one

in DVTT. For subtask 1, instead, we used the VTTE
architecture (Figure 2a) with the same setup used
for the subtask 3 baseline, except that the visual
input is not fed to the network.

Features Extraction For all the conducted ex-
periments, we obtained suitable visual and tex-
tual features from pre-trained state-of-the-art net-
works. Concerning images, we re-scaled them to
256 × 256, and we took a 224 × 224 crop (a ran-
dom crop during training and a center crop during
inference). We also normalized the images using
the pixels mean and standard deviation computed
on the whole dataset.

In order to input an image to the transformer, we
had to encode it as a set of features. We used a
ResNet50 pre-trained on image classification, as it
is characterized by a good performance at low com-
putational costs compared to deeper backbones;
we down-sampled the features maps from the last
convolutional layer to a 7× 7 spatial grid of 2048-
dimensional features. The resulting flattened 49
visual features were then augmented with their spa-
tial positions by appending the normalized coordi-
nates of the chunk to the 2048-dimensional visual
feature. Another possibility consisted of using vi-
sual features extracted from state-of-the-art object
detectors, like Faster-RCNN. However, images car-
ried in memes are not homogeneous: they show
possible stacked scenes and overlayed text, making
it very difficult for an object detector to identify the
most critical regions.

Concerning text processing, we used a pre-
trained BERT model (Devlin et al., 2019) for ex-
tracting word embeddings. BERT embeddings are
trained on some generic language processing tasks
such as sentence prediction or sentence classifi-
cation and demonstrated state-of-the-art results in
many downstream tasks. Every meme can carry
one or more sentences, encoded in the same string
and separated by ”\n\n”. For this reason, during
the string tokenization phase, we simply replaced
”\n\n” with the SEP token. In the basic DVTT
model, we trained only the transformer models,
leaving the feature extractor fixed. In the Exper-
iments section, we also report the results from a
fine-tuning of the feature extractors.

Validation The test-set annotations were hidden
to the participants, so the model should be validated
using a split of the available annotated data. Given
that the available annotated memes are relatively
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Predicted: Appeal to fear/prejudice, 
Exaggeration/Minimisation, Loaded Language, Name 
calling/Labeling, Smears

GT: Glittering generalities (Virtue), Loaded Language, 
Name Calling/Labeling, Smears, Transfer,
Whataboutism

Predicted: Flag-waving, Name calling/Labeling, Smears, 
Transfer

GT: Smears, Appeal to (Strong) Emotions, Name 
calling/Labeling, Flag-waving, Transfer

Figure 3: Example of predictions from the DVTT model for subtask 3. In green, the true positives labels; in
red, the false positives labels. Images obey to the Creative Common license and they are searched on the Bing
image-search engine using ”free to modify, share and use” license filtering.

Model Macro-F1 Micro-F1

VTTE (Baseline) 0.327 0.596
DVTT 0.336 0.601
DVTT - Balanced 0.300 0.489
DVTT - Finetuned 0.341 0.592

DVTT - 2 layers 0.310 0.596
DVTT - 6 layers 0.325 0.583

Table 1: Ablation results on subtask 3

Model Macro-F1 Micro-F1

VTTE 0.372 0.566
VTTE - Balanced 0.361 0.490
VTTE - Finetuned 0.386 0.581

VTTE - 2 layers 0.365 0.565
VTTE - 6 layers 0.389 0.569

Table 2: Ablation results on subtask 1. Note that VTTE
in this case does not receive the images in input.

few, we validated our model using cross-validation.
In particular, we split the training data into six dif-
ferent folds, training six different models by using
five out of six data folds and validating them using
the remaining fold. We selected the model having
the best sum of Micro-F1 and Macro-F1 scores on
the validation fold. All the performance measures
reported in the Results section are an average of
the metrics from this 6-fold validation procedure.

For participating in the final competition on the
test set, we prepared an ensemble model composed
of all the six trained models, and we produced the
final probabilities by soft-voting.

We used a final binary-classification threshold
of 0.3 over the label probabilities.

5 Results

Concerning subtask 3, we studied the performance
of our DVTT model by comparing the F1-scores
against the VTTE baseline; furthermore, we tried
also to train the model using a balanced sampling
of the labels and to fine-tune the feature extractors
(BERT and the ResNet-50), using a learning rate of
1/10 with respect to the one used for training the
transformer models. Using a lower learning rate
during the fine-tuning process is a common proce-
dure to avoid model overfitting. We also report the
results of slightly different variants of the DVTT
model obtained by increasing and decreasing the
number of the transformer’s encoder / decoder lay-
ers: the base architecture contains four layers; we
also experimented with two and six. The results of
these experiments are reported in Table 1.

For subtask 1, instead, we used the VTTE model
without visual input, trying out the same experi-
ments performed for subtask 3. In this case, when
varying the number of layers, we only considered
the transformer encoder ones (there is no decoder
in the VTTE model). The ablation results on sub-
task 1 are reported in Table 2.
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6 Discussion

Looking at the subtask 3 results in Table 1, we can
notice that the proposed DVTT model can achieve
slightly better results than the VTTE baseline. In
particular, the DVTT with fine-tuned BERT and
ResNet50 modules achieve the best results on the
Macro-F1 metric. Also, the choice of using four
encoder and decoder layers seems to lead to the
best compromise on both the metrics. Concerning
the results of subtask 1 in Table 2, fine-tuning the
BERT model is even in this case a good choice.
Fine-tuning the feature extractors, in fact, enables
the model to slightly adjust the weights of the back-
bones pre-trained on generic tasks to align them to
the specific domain.

Figure 3 reports some examples of predictions
from our model for subtask 3. We evidenced in
green the true positives and in red the false posi-
tives. The model can correctly identify most of
the persuasion techniques. However, there are
cases where it is probably necessary to access more
contextual information to solve the most complex
labels. For example, in the second meme from
the left, the model outputs the label Exaggera-
tion/Minimisation probably due to the presence of
vague quantities (Killed thousands of innocents).
It would be necessary to access external data to
effectively reason on the complex common sense
and historical facts hidden behind these complex
memes.

7 Conclusions

In this work, we proposed transformer-based mod-
els for tackling subtasks 1 and 3 of the SemEval-
2021 Task 6, concerning the identification of per-
suasion techniques in memes. In particular, for
subtask 3 which involves both images and texts
from the meme, we proposed a Double Visual Tex-
tual Transformer (DVTT) model. This model uses
the full power of the transformer architecture; it
demonstrated better results than the baseline, which
is composed of a single transformer encoder mod-
ule fed with both images and text. On the public
leaderboard, we reached 4th place on subtask 3.
Using the baseline model, which can process text
alone without images, we also tackled subtask 1,
reaching 5th place on the public leaderboard.

In the future, we plan to improve our visual fea-
ture extraction pipeline, using face expression de-
tection and classification and possibly employing
ad-hoc trained object detectors suitable for meme

images. Also, it would be interesting to study the
effective reasoning abilities of the proposed mod-
els, by leveraging the attention mechanisms of the
transformer, possibly integrating the data with a
knowledge base of historical facts that helps to
create a more suitable context.
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Abstract
Among the tasks motivated by the prolifera-
tion of misinformation, propaganda detection
is particularly challenging due to the deficit
of fine-grained manual annotations required
to train machine learning models. Here we
show how data from other related tasks, includ-
ing credibility assessment, can be leveraged in
multi-task learning (MTL) framework to accel-
erate the training process. To that end, we de-
sign a BERT-based model with multiple output
layers, train it in several MTL scenarios and
perform evaluation against the SemEval gold
standard.

1 Introduction

Fine-grained propaganda detection is a new ap-
proach to tackling online misinformation, highlight-
ing instances of propaganda techniques on the word
level. These techniques are used in textual com-
munication in order to encourage certain beliefs,
but instead of straightforward presentation of ar-
guments, they rely on psychological manipulation,
logical fallacies or emotion elicitation.

There are general-purpose natural language pro-
cessing (NLP) methods that could be used for auto-
matic detection of such text fragments. The chal-
lenge here is that they require large amounts of
training data, which are laborious to produce. How-
ever, propaganda techniques are often related to
other misinformation challenges, for which large
datasets do exist, e.g. credibility assessment or fake
news detection.

In the present study we aim to investigate how
this connection can be used in the multi-task learn-
ing (MTL) framework. We show how the per-
formance of multi-label token-level propaganda
detection within shared task 6 at SemEval-2021
can be improved by building neural architectures
that are also trained to solve other tasks: single-
label propaganda detection from SemEval-2020

and document-level credibility assessment based
on a fake news corpus. We check different MTL
scenarios (parallel and sequential) and show which
aspects of the model benefit the most from this
approach.

2 Problem Statement

We participate in SemEval-2021 Task 6 (,,Detec-
tion of Persuasion Techniques in Texts and Im-
ages”), subtask 2 (Dimitrov et al., 2021), where
the goal is to identify all propaganda techniques
within a provided fragment of text. Specifi-
cally, given a character sequence 〈c0, c1, . . . , cN 〉,
we aim to produce a set of annotations
{(b0, e0, t0), (b1, e1, t1), . . . , (bk, ek, tk)}, where
each triple consists of the character offsets of the
span it covers (0 ≤ bi < ei ≤ N ) and an indi-
cation which one from the set of 20 known tech-
niques is detected there (ti ∈ T ). We can see it
as a multi-label sequence classification task (Read
et al., 2009), where each character (or token) can
be assigned from 0 to 20 labels.

3 Related Work

Propaganda has been observed in text for a long
time, but the problem of automatic detection of
such techniques was posed just recently. Initially,
a lack of word-level datasets confined the analy-
sis to document-level classification, e.g. based on
stylometric features (Rashkin et al., 2017; Barrón-
Cedeño et al., 2019). Classification on the word
level became possible with the dataset (Da San Mar-
tino et al., 2019b) released for the ,,Fine-Grained
Propaganda Detection” shared task at the NLP4IF
2019 workshop (Da San Martino et al., 2019a). The
corpus includes 550 news articles annotated with
propaganda techniques on the word level. Among
the submissions, the best performing models were
based on word embeddings and pretrained lan-
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guage models, such as BERT (Devlin et al., 2018).
To tackle the data sparsity problem, participants em-
ployed various over-sampling methods or trained
their models on auxiliary data. Similar objectives
were pursued at SemEval 2020 Task 11, consist-
ing of two subtasks: binary sequence tagging task
and multi-class classification task. The majority
of tasks’ participants based their solutions on the
Transformers architecture (Vaswani et al., 2017)
and word embeddings, combining them with other
neural architectures (e.g. CNNs or LSTMs) or mod-
els such as CRF and logistic regression. Ensemble
models were able to achieve satisfactory results
when performing both tasks jointly.

4 Methods

4.1 Data Description

We make use of three datasets in English. In all the
following approaches, the main focus is on the cor-
pus released for SemEval-2021 Task 6 (Dimitrov
et al., 2021) (S21). Additionally, we utilise the cor-
pora from SemEval-2020 Task 11 (S20) (Da San
Martino et al., 2020) and news credibility research
(FN) (Przybyła, 2020).

S21 consists of text of 870 memes (607, 63
and 200 in the training, development and test sub-
sets, respectively) annotated with 1550 spans a few
words long (40 characters on average), each from
one of 20 propaganda techniques. Most commonly
occurring techniques are Loaded language (35%),
Name Calling/Labelling (19%) and Smears (12%).

S20 corpus consists of 446 press articles (371
and 75 in the training and development subsets,
respectively) annotated with 14 propaganda cate-
gories on a word level. Among the 7192 anno-
tated spans, Loaded language (34%), Name Call-
ing/Labelling (17%) and Repetion (12%) are most
common categories. Given that very few spans
overlap (8%), we represent the task as single-label
classification by merging these spans according to
their order in corresponding label files. Finally, we
exclude sentences that do not contain any propa-
ganda annotations.

To obtain the FN data, from the original corpus
of 103,219 news articles classified as either credible
or non-credible based on their source, we randomly
select a sample of fifty thousand sentences with a
binary credibility label.

4.2 Multi-Task Architecture
Figure 1 shows the architecture designed to fulfil
the MTL objectives. A text document (usually
one sentence) is first processed by BERT, resulting
in 768-dimensional vectors: hi for the i-th token
and h0 for the whole document, using the [CLS]
token. These vectors are processed by classification
modulesDx, each consisting of a linear dense layer
and a softmax activation function. Three types of
such operations are considered:

• d0 = Dd(h0): document-level representation
is used to produce 2-dimensional score vector
(d0), indicating class probabilities in binary
single-label classification,

• si = Ds(hi): token-level representation is
used to produce k-dimensional score vector
(si), indicating class probabilities in multi-
class single-label classification,

• mi = Dm(hi): token-level representation is
used to produce l×2-dimensional score vector
(mi), indicating class probabilities in multi-
class multi-label classification.

The following subsections describe several scenar-
ios of using these three output types to improve the
accuracy of propaganda detection.

4.3 Single Task
In the primary method we use BERT-Base-Uncased
with the token-level multi-label classification layer,
trained using only S21 data (SINGLE S21). The
output for the i-token, denoted by mi, is a 20× 2
matrix, in which the j-th row reflects the probabil-
ity of the j-th propaganda technique being present
in this token. If the token does not participate in
any propaganda techniques, the first column of the
matrix will be filled with ones and the second one
with zeros. Since the S21 corpus is annotated at the
character level, during preprocessing we map the
initial annotation into tokens obtained via Word-
Piece tokenisation.

4.4 Sequential Multi-Task Learning
In case of sequential MTL, the main training de-
scribed in previous section is preceded with train-
ing for one of two auxiliary tasks:

• single-label classification task on S20 corpus
(MULTI-S S20-S21).

• document-level classification task with FN
corpus (MULTI-S FN-S21).
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Figure 1: Multi-task architecture of our solution

For MULTI-S S20-S21, we involve the token-
level single-label classification layer to produce 16-
dimensional si vector. This allows to classify each
token in S20 corpus into one of 16 categories (14
propaganda + non-propaganda + padding). MULTI-
S FN-S21 uses the document-level single-label
classification output (d0) layer for classifying sen-
tences from FN corpus as coming from credible
(d0 = (0, 1)) or non-credible (d0 = (1, 0)) articles.

For each model the learning procedure is the
same: first, during an auxiliary task, only the ad-
ditional classification layer is trained using cross-
entropy loss and the auxiliary data. In the sec-
ond phase, the training continues as a regular task
on S21 data, as described in the previous section.
Weights of all trainable variables are being updated
in both phases.

4.5 Parallel Multi-Task Learning
In the parallel MTL objective, the auxiliary task
and the target task are learnt jointly. Similarly
to sequential MTL, we devise two models, each
consisting of BERT with two separate classification
layers on top:

• single-label and multi-label classification on
S20 and S21 corpora (MULTI-P S20-S21),

• document-level and multi-label classification
tasks on FN and S21 corpora (MULTI-P FN-
S21).

Every batch of data consists of sentences coming
from both datasets: four sentences from S20 or
FN and four sentences from S21 are sent through
their corresponding classification layers to produce

outputs, and then count losses and update weights
based on appropriate losses.

5 Evaluation

5.1 Experimental setup
We train our models according to multi-task scenar-
ios, and use development subset of S21 to choose
optimal number of training epochs of the final
phase. The model trained up to this point is ap-
plied to test data to produce final predictions. In
case of sequential MTL scenarios, this is preceded
by training on additional corpora: on S20 for 10
epochs or on FN for 1 epoch. In case of parallel
multi-task scenarios, the difference of training set
sizes requires a special approach. For S20-S21,
one epoch of training covers the whole S21 and 1/9
of S20. For FN-S21, we choose a balanced sub-
sample of 18 thousand sentences and each training
epoch covers the whole S21 and 1/30 of this sub-
sample.

We use cross-entropy as the loss function, and
compute it only for for non-padding tokens. For all
experiments we use a maximum sequence length
of 210 tokens, Adam optimizer (Kingma and Ba,
2015) with the learning rate of 3× 10−5 and batch
size of four sentences. We use the L1 regularisation
(Ng, 2004) with α = 0.01. During fine-tuning of
the model, weights of all trainable variables, in-
cluding those in BERT, are being updated. During
inference, we translate token-level labels back to
character-level labels, including spaces and punctu-
ation marks between adjacent tokens with identical
labels. All experiments are conducted within the
TensorFlow framework.

1029



Dev Test
Approach F1 Precision Recall F1 Precision Recall

SINGLE S21 0.5412 0.5798 0.5075 0.4571 0.4752 0.4403
MULTI-S S20-S21 0.5084 0.5181 0.4990 0.4444 0.4500 0.4390
MULTI-S FN-S21 0.4581 0.4836 0.4351 0.4185 0.4778 0.3723

MULTI-M S20-S21 0.5455 0.5747 0.5191 0.4074 0.4121 0.4028
MULTI-M FN-S21 0.5291 0.6429 0.4496 0.4381 0.5307 0.3730

Table 1: Propaganda detection performance on the development and test set for different evaluated approaches.
The best F1 scores are highlighted. The run submitted to the shared task is underlined.

5.2 Evaluation measures

To evaluate our results we use character-level F1
measure prepared for the shared task (Dimitrov
et al., 2021). It compares model’s results with the
golden annotations, accounting for the imbalance
of categories and partial overlaps between frag-
ments with the same label.

6 Results

Table 1 shows the performance of the considered
approaches on the development and test set. The
highest F1 score on the development set was ob-
tained by the MULTI-P S20-S21 model. Hence,
this model was used to generate the predictions
on the test set submitted to the shared task (under-
lined). However, we can see that the single task
approach is not far behind on the development set
and actually provides the best performance on the
test set. The differences between approaches are
relatively modest and no single model outperforms
others on each set and metric. This is mostly due to
the small size of the propaganda datasets. Specifi-
cally, choosing the approach and number of train-
ing epochs based on the development set, which
contains just 63 documents, may lead to overfitting.

In order to better understand how the introduc-
tion of MTL influences the models, we perform
additional experiments. Firstly, in Table 2 we show
F1 score for the recognition of each technique in
single task and sequential MTL scenarios using
both auxiliary datasets. One could expect the usage
of S20, annotated with a similar set of propaganda
techniques, to improve performance for overlap-
ping labels, but the data do not confirm this. For
example, the performance for the relatively large
(12.7%) Smears (Smr) category improves notice-
ably, even though it was not present in S20. At
the same time, we see F1 drop in case of some
techniques present in both datasets, such as Appeal
to authority (AtA) or Slogans (Slg). Clearly, the

Technique S21 M-S S20 M-S FN
AtA 0.6316 0.0000 0.7273
Atfp 0.0000 0.3966 0.0000
Bwf\D 0.6292 0.5824 0.0000
CO 0.0000 0.1667 0.0000
Dbt 0.0000 0.4578 0.1778
Ex-Min 0.4957 0.3221 0.5041
FW 0.3333 0.5397 0.0000
Gg 0.2222 0.0000 0.0000
LL 0.7038 0.6385 0.7135
NC-L 0.6136 0.6159 0.6830
Slg 0.3448 0.0000 0.3750
Smr 0.3839 0.5756 0.4743
Whtb 0.3830 0.0000 0.2222

Table 2: Per-technique F1 score on test set for dif-
ferent auxiliary datasets: S20 propaganda (S20) and
fake news (FN) used in sequential multi-task scenario
(techniques with no performance differences omitted
for brevity).

language constructions covered by these labels in
case of press articles and memes are too different
to offer clear advantage of MTL. The relationship
with fake news detection is even weaker, resulting
in many techniques not being recognised.

Secondly, in Figure 2 we show how F1 on test
set changes during training on S21 for the single
task configuration and two scenarios based on S20
data: sequential and parallel. As expected, we see
that pre-training allows our model to obtain good
performance much faster, e.g. reaching F1=0.4 af-
ter 7 epochs instead of 14. But after longer training,
the single-task approach catches up and beyond
20th epoch, when all version reach stable results, it
outperforms the MTL variants.

7 Conclusion

In this work we explore how detection of propa-
ganda techniques in text of memes can be facil-
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Figure 2: F1 scores during training for single task ap-
proach and multi-task learning using S20 data.

itated using external data in multi-task learning
framework. The results show that the auxiliary
tasks indeed influence the results, both in terms of
accelerating the learning process and changing the
set of recognised techniques. Nevertheless, these
modifications do not offer clear advantages over
the basic BERT-based solution.

We hypothesise this is because the link between
main and auxiliary tasks is not strong enough to
deliver benefits through multi-task learning. Ad-
ditionally, propaganda is rarely a straightforward
phenomenon and different techniques may require
tailored approaches. We treat this effort as a prelim-
inary study and aim to further investigate MTL’s
relevance in detecting propaganda by extending
the auxiliary tasks portfolio with corpora reflecting
other related issues, such as hate speech or hyper-
partisan language.
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Abstract

This paper presents the solution proposed by
the 1213Li team for subtask 3 in SemEval-
2021 Task 6: identifying the multiple persua-
sion techniques used in the multi-modal con-
tent of the meme. We explored various ap-
proaches in feature extraction and the detec-
tion of persuasion labels. Our final model em-
ploys pre-trained models including RoBERTa
and ResNet-50 as a feature extractor for texts
and images, respectively, and adopts a label
embedding layer with multi-modal attention
mechanism to measure the similarity of la-
bels with the multi-modal information and
fuse features for label prediction. Our pro-
posed method outperforms the provided base-
line method and achieves 3rd out of 16 partic-
ipants with 0.54860/0.22830 for Micro/Macro
F1 scores.

1 Introduction

The development of the Internet and Information
Technology promotes the generation and dissemi-
nation of information, but also fuels the prolifera-
tion of disinformation. As one of the most popular
types of content in disinformation, memes attract
readers easily and brought further challenges to the
detection of disinformation (Martino et al., 2020;
Dimitrov et al., 2021).

Specifically, memes employ a number of tech-
niques to influence users, which can be divided
into the use of logical fallacies and appealing to the
emotions of the audience (Dimitrov et al., 2021).
In practice, the former misuses logical rules to dis-
guise wrong conclusions as correct and objective,
∗Co-author.
†Corresponding author.
‡https://www.163.com/dy/article/

F0HKK63D0511EPAO.html
§http://www.zhujia120.com/fenxi/

202103/318716.html
¶https://www.163.com/dy/article/

G56M8U7R05521HYB.html

Figure 1: Examples of multi-modal samples, we re-
write the sentences on our own and collect the images
from‡, §, ¶, respectively. The first two rows illustrate
the visual and the textual content, and in the last row,
each line reveals the label (techniques) of the sample.

while the latter utilizes emotional language to in-
duce the audience to agree with the speaker emo-
tionally and prevent their rational analysis of the
argumentation.

Identifying the techniques used in memes con-
tributes to the understanding of user-generated con-
tent and further helps to the detection of disinforma-
tion. The subtask 3 of SemEval-2021 Task 6 (Dim-
itrov et al., 2021) is organized to stimulate the study
of computational methods to detect persuasion tech-
niques in memes that inhere in texts and images.

As shown in Figure 1, each sample consists of
a set of textual sentences and an attached image.
According to the task description (Dimitrov et al.,
2021), the image and the sentence could convey the
modality-specific persuasion techniques, respec-
tively, and at the same time, images can be com-
bined with sentence to express some techniques,
which we named global techniques. Based on the
understanding of the task, we attribute the main
challenges of subtask 3 to the following three as-
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Figure 2: Overview of our proposed method. Our method takes the textual sentences and image as inputs and
predicts a binary result for each label. Notably, “LE” in the figure denotes the label embedding module, and this
figure illustrates the prediction for the label highlighted in red.

pects: 1) extracting essential features from each
modality to predict modality-specific labels, 2) fus-
ing multi-modal features to understand the content
fully for predicting global labels, and 3) capturing
the connections among multi labels.

Correspondingly, we present the methods to han-
dle these challenges. Specifically, our method em-
ploys the powerful feature extractor including the
pre-trained RoBERTa (Liu et al., 2019) and ResNet-
50 (He et al., 2016) to extract textual and visual
features, respectively. Besides, inspired by the
work Augenstein et al. (2019), our method adopts
a label embedding layer to learn how semantically
close the labels are to one another implicitly, and
the embedding layer maps each label to a learn-
able fixed-size vector. Before the label prediction,
multi-modal features are fused according to their
relevance with each label useing attention mecha-
nism (Bahdanau et al., 2015), and the final predic-
tion is based on the fused features.

2 Related Work

Subtask 3 is a multi-label classification task based
on multi-modal data. As for the multi-label classi-
fication tasks, it was earlier handled by many ma-
chine learning methods. Zhang et al. (Zhang and
Zhou, 2005) used a k-nearest neighbor-based algo-
rithm to conduct experiments on real-world multi-
label bioinformatic data. Vens et al. (Vens et al.,
2008) proposed a hierarchical multi-label classifica-
tion method based on Decision trees. With the rapid
development of deep learning, multi-label classi-
fication methods based on deep neural networks
have become mainstream. Wang et al. (Wang et al.,
2016) introduced and multi-label image classifica-
tion network with the fusion of CNN and RNN.

Chernyavskiy et al. (Chernyavskiy et al., 2020)
used a RoBERTa-based network combined with ad-
ditional CRF (Lafferty et al., 2001) layers and trans-
fer learning mechanism (Pan and Yang, 2010) to
address a multi-label classification task in SemEval-
2020. However, these previous multi-label classi-
fication tasks were often based on single modality
data. These approaches fall short when the task
requires the use of multiple modal data.

Moreover, in the field of multi-modal tasks, we
focus on task of multi-modal fake news detection.
Recent work (Jin et al., 2017; Wang et al., 2018;
Khattar et al., 2019) mainly concern the fusion of
multi-modal features and adopt a binary classifier,
which is not applicable to current multi-label clas-
sification scenarios.

3 Methodology

3.1 Task Formulation

The task of identifying the techniques used in
memes is defined as a multi-label classification
problem of given multi-modal sample. We refer
the textual sentences as S and the attached image
as I, and useM to denote the multi-modal model
which map inputs S and I into a set of N binary
values that represent the corresponding label. The
task is formulated as follows:

M(F(φ(S), φ(I))) −→ {0, 1, . . . , 1} (1)

In the Equation 1, φ denotes the multi-modal
feature extractor for textual and visual content, re-
spectively, and F denotes the fusion of the multi-
modal features. The length of predicted results is
the same as the number of labels and 1 indicates
the corresponding label is predicted.

1033



3.2 Method

In this section, we demonstrate the method used by
our team for subtask 3. As shown in Figure 2, our
method consists of three main layers: Extraction
Layer, Fusion Layer, and the final Classifier. In the
rest of this subsection, we describe each layer in
detail.

3.2.1 Extraction Layer
In the Extraction Layer, the pre-trained RoBERTa
is used to extract textual features. Specifically,
given that RoBERTa receives at most two sentences
as input while some samples may contain multiple
pieces of sentences, we splice all sentences into a
single sentence and retain the character “\n\n” as
the separator. As for the outputs of RoBERTa, we
merely reserve the representation of each token as
sequential features T for the post-processing.

For the image input, we use the ResNet-50 pre-
trained on ImageNet to extract visual features.
Before the image is input to the ResNet-50 net-
work, it needs to be normalized and cropped into
3*224*224. Afterward, we select the last convo-
lution layer’s feature maps with size 2048*7*7 as
visual features and transform it into a sequential
features V with size of 49 * 2048.

3.2.2 Fusion Layer
The Fusion Layer aims to select the features for
the label prediction. As mentioned earlier, the la-
bels implied in the memes include both modality-
specific labels and global labels. To promote the
prediction of modality-specific labels, we perform
the average-pooling on both textual and visual fea-
tures to extract the modality-specific features Tavg

and Vavg (“avg” in Figure 2).

Tavg = AvgPooling(T) (2)

Vavg = AvgPooling(V) (3)

Meanwhile, to promote global labels’ predic-
tion, we adopt the attention mechanism to fuse
multi-modal features. Particularly, As depicted in
Equation 4-6, we first calculate the similarity be-
tween ith label embeddings and textual features.
We then weighted-sum the textual features accord-
ing to the similarity scores and obtain label-related
representation Ti,att (“att” in Figure 2). The simi-
lar operation is applied to the Visual and produce
Vi,att.

Si,j = Li ·TT
j ,∀j ∈ [1, . . . , `T ] (4)

αi = Softmax [Si,1, . . . , Si,n] (5)

Ti,att =

`T∑

j=1

αi,j Tj (6)

Finally, we concatenate the features obtained
above as the final representation of the input and
pass it into the Classifier.

Ri = [Tavg;Vavg;Ti,att;Vi,att] (7)

3.2.3 Classifier
We adopt a three-layers fully connected network
as the classifier, which maps the final represen-
tation Ri obtained ahead into a scalar. Then we
employ a sigmoid function to squeeze the scalar to
the interval of 0-1. Notably, for each label, the pro-
cess mentioned above is required and performed
synchronously. Hence our model finally outputs a
vector whose length is consistent with the number
of labels.

4 Experimental Setup

4.1 Dataset

The dataset was provided by SemEval2021 Task6
subtask3, and the training set, development set, and
test set contain 687, 63, and 200 samples, respec-
tively. Each sample is combined with an image-text
pair, id, and labels.

4.2 Evaluation Measures

The official evaluation measure for this technique
classification is Micro-F1. The Macro-F1 is also re-
ported, and we will consider both the performance
of Micro-F1 and Macro-F1 during the experiment.

4.3 Parameter Settings

To train the model, we adopt the binary cross-
entropy loss as the objective function and employ
the Adam method(Kingma and Ba, 2015) with a
learning rate of 0.0001 to optimize it. We set the
minibatch size at 64 and the dimensions of label
embeddings at 256. Based on experimental verifi-
cation, we fixed the parameters of ResNet-50 while
fine-tuning the parameters of RoBERTa during the
training. Our methods are implemented with Py-
Torch and run on a single Nvidia 1080ti graphic
card.
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Model Macro F1 Micro F1
RoBERTa+ ResNet-50 0.0812 0.1333
+ visual att 0.1155 0.4140
+ textual att 0.0814 0.5256
+ full att 0.2040 0.5680

Table 1: Ablation results on validation set.

Rank Team Macro F1 Micro F1
1 Alpha 0.27315 0.58109
2 MinD 0.24389 0.56623
3 1213Li 0.22830 0.54860
4 AIMH 0.20729 0.53994
5 Volta 0.18877 0.52070
... ... ... ...
16 Baseline 0.05152 0.07062

Table 2: Evaluation results of top 5 teams on blind test
set that reported on the official website.

4.4 Ensemble

We use an ensemble of 5 models with different de-
velopment set to predict the training set. Among
the five ensembled models, one model uses the orig-
inal training set and development set, and the re-
maining four models use the 64 samples randomly
divided from the combined data of the training set
and development set as the new development set,
and use the rest as the training set.

5 Results and Discussion

The result of the ablation study is shown in Table 1.
As we can see, the baseline method is very ineffec-
tive since it utilizes only the average-pooling fea-
tures of visual and textual information, indicating
that the lack of the interaction between modality-
specific features and label information hinder the
model to select vital features for prediction and
leads to poor performance.

So we introduce the attention mechanism to se-
lectively choose valid information from visual fea-
tures and textual features, respectively. As shown
in the second group of Table 1, the use of the atten-
tion mechanism significantly improves the model’s
performance, especially the Micro F1 score.

Finally, the model that uses both visual features
and textual features in combination with the at-
tention mechanism has the optimal performance.
During the test stage, we chose the model that per-
formed best on the development set and got the

final result through the ensemble. The final evalua-
tion results are reported in Table 2.

6 Conclusion

This paper demonstrates the method that we pro-
posed for subtask 3 in SemEval-2021 Task 6, which
aims to identify which of 22 persuasion techniques
are used in the textual and visual content of the
specific meme. Our method uses RoBERTa and
ResNet-50 to extract multi-modal features, intro-
duces the attention mechanism to fuse multi-modal
features, and adopts the label embeddings to learn
the representation of labels. Our proposed model
achieves noticeable improvements over the base-
line method, and the official evaluation ranked our
submission 3rd out of 16 teams.
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Abstract
The following system description presents our
approach to the detection of persuasion tech-
niques in texts and images. The given task
has been framed as a multi-label classification
problem with the different techniques serving
as class labels. The multi-label classification
problem is one in which a list of target vari-
ables such as our class labels is associated with
every input chunk and assumes that a docu-
ment can simultaneously and independently be
assigned to multiple labels or classes.

In order to assign class labels to the given
memes, we opted for RoBERTa (A Robustly
Optimized BERT Pretraining Approach) as a
neural network architecture for token and se-
quence classification. Starting off with a pre-
trained model for language representation we
fine-tuned this model on the given classifica-
tion task with the provided annotated data in
supervised training steps. To incorporate im-
age features in the multi-modal setting, we
rely on the pre-trained VGG-16 model archi-
tecture.

1 Introduction

Social networks provide opportunities to conduct
disinformation campaigns for organizations as well
as individual actors. The proliferation of disinfor-
mation online, has given rise to a lot of research
on automatic fake news detection. SemEval-2021
Task 6 considers disinformation as a communica-
tion phenomenon. By detecting the use of various
persuasion techniques in communication, it takes
into account not only the content but also how a
subject matter is communicated.

The goal of the shared task is to build models for
identifying such techniques in the textual content
of a meme only (two subtasks) and in a multimodal
setting in which both the textual and the visual
content are to be analysed together (one subtask).

The shared task defines the following subtasks:

Subtask 1
Given only the “textual content” of a
meme, identify which of the 20 tech-
niques are used in it. This is a multil-
abel classification problem.

Subtask 2
Given only the “textual content” of a
meme, identify which of the 20 tech-
niques are used in it together with the
span(s) of text covered by each tech-
nique. This is a multilabel sequence
tagging task. The task is the combina-
tion of the two subtasks of the SemEval
2020 task 11 on ”detecting propaganda
techniques in news articles”. Note that
subtask 1 is a simplified version of sub-
task 2 in which the spans covered by
each technique is not supposed to be
provided.

Subtask 3
Given a meme, identify which of the 22
techniques are used both in the textual
and visual content of the meme (multi-
modal task). This is a multilabel classi-
fication problem.

In this work, we covered our approach on both
technique classification (TC) tasks (Subtask 1 and
Subtask 3) detecting the type of communication
technique used in a given message. To build mod-
els, the first subtask assumes purely textual content
as inputs, whereas the third is designed in multi-
modal setting in which both the textual and the
visual content are to be analysed together. Below,
we describe the systems built for these two sub-
tasks. At the core of our systems is RoBERTa
(Liu et al., 2019), a pre-trained model based on the
Transformer architecture (Vaswani et al., 2017).

Although we did not manage to participate in
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the second subtask, we will describe our solution
below for the sake of completeness.

Finally, we will address some limitation of the
general settings of this shared task.

2 Related Work

The goal of the shared task is to investigate auto-
matic techniques for identifying various rhetorical
and psychological techniques in online disinforma-
tion campaigns. A comprehensive survey on fake
news has been presented by Zhou and Zafarani
(2018). Based on the structure of data reflecting
different aspects of communication, they identified
four different perspectives on fake news: (1) the
false knowledge it carries, (2) its writing style, (3)
its propagation patterns, and (4) the credibility of
its creators and spreaders.

The shared task emphasizes communicative
styles that systematically co-occur with persuasive
intentions of (political) media actors. Similar to
de Vreese et al. (2018), propaganda and persuasion
is considered as an expression of political com-
munication content and style. Hence, beyond the
actual subject of communication, the way it is com-
municated is gaining importance.

We build our work on top of this foundation by
first investigating content-based approaches for in-
formation discovery and then open up our focus
to dissemination mechanisms. Traditional infor-
mation discovery methods are based on content:
documents, terms, and the relationships between
them (Leskovec and Lang, 2008). They can be
considered as a general Information Extraction (IE)
methods, automatically deriving structured infor-
mation from unstructured and/or semi-structured
machine-readable documents. Communities of re-
searchers contributed various techniques from ma-
chine learning, information retrieval, and compu-
tational linguistics to the different aspects of the
information extraction problem. From a computer
science perspective, existing approaches can be
roughly divided into the following categories: rule-
based, supervised, and semi-supervised. In our
case, we followed the supervised approach by re-
framing the complex language understanding task
as a simple classification problem. Text classifi-
cation also known as text tagging or text catego-
rization is the process of categorizing text into or-
ganized groups. By using Natural Language Pro-
cessing (NLP), text classifiers can automatically
analyze human language texts and then assign a set

of predefined tags or categories based on their con-
tent. Historically, the evolution of text classifiers
can be divided into three stages: (1) simple lexicon-
or keyword-based classifiers, (2) classifiers using
distributed semantics, and (3) deep learning classi-
fiers with advanced linguistic features.

2.1 Deep Learning for IE
Recent work on text classification uses neural net-
works, particularly Deep Learning (DL). Badjatiya
et al. (2017) demonstrated that these architectures,
including variants of recurrent neural networks
(RNN) (Gao and Huang, 2017; Pavlopoulos et al.,
2017; Pitsilis et al., 2018), convolutional neural net-
works (CNN) Zhang et al. (2018), or their combina-
tion (CharCNN, WordCNN, and HybridCNN), pro-
duce state-of-the-art results and outperform base-
line methods (character n-grams, TF-IDF or bag-
of-words representations).

2.2 Deep Learning architectures
Until recently, the dominant paradigm in approach-
ing NLP tasks has been focused on the design of
neural architectures, using only task-specific data
and word embeddings such as those mentioned
above. This led to the development of models,
such as Long Short Term Memory (LSTM) net-
works or Convolution Neural Networks (CNN),
that achieve significantly better results in a range
of NLP tasks than less complex classifiers, such
as Support Vector Machines, Logistic Regression
or Decision Tree Models. Badjatiya et al. (2017)
demonstrated that these approaches outperform
models based on char and word n-gram representa-
tions. In the same paradigm of pre-trained models,
methods like BERT (Devlin et al., 2018) and XL-
Net (Yang et al., 2019) have been shown to achieve
the state of the art in a variety of tasks.

2.3 Pre-trained Deep Language
Representation Model

Indeed, the usage of a pre-trained word embedding
layer to map the text into vector space which is
then passed through a neural network, marked a
significant step forward in text classification. The
potential of pre-trained language models, as e.g.
Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), fastText (Joulin et al., 2017), or
ELMo (Peters et al., 2018) to capture the local pat-
terns of features to benefit text classification, has
been described by Castelle (2019). Modern pre-
trained language models use unsupervised learning
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techniques such as creating RNNs embeddings on
large texts corpora to gain some primal “knowl-
edge” of the language structures before a more
specific supervised training steps in.

2.4 About BERT and RoBERTa
BERT stands for Bidirectional Encoder Represen-
tations from Transformers. It is based on the Trans-
former model architectures introduced by Vaswani
et al. (2017). The general approach consists of two
stages: first, BERT is pre-trained on vast amounts
of text, with an unsupervised objective of masked
language modeling and next-sentence prediction.
Second, this pre-trained network is then fine-tuned
on task specific, labeled data. The Transformer
architecture is composed of two parts, an Encoder
and a Decoder, for each of the two stages. The
Encoder used in BERT is an attention-based archi-
tecture for NLP. It works by performing a small,
constant number of steps. In each step, it applies
an attention mechanism to understand relationships
between all words in a sentence, regardless of their
respective position. By pre-training language rep-
resentations, the Encoder yields models that can
either be used to extract high quality language
features from text data, or fine-tune these mod-
els on specific NLP tasks (classification, entity
recognition, question answering, etc.). We rely
on RoBERTa (Liu et al., 2019), a pre-trained En-
coder model which builds on BERT’s language
masking strategy. However, it modifies key hy-
perparameters in BERT such as removing BERT’s
next-sentence pre-training objective, and training
with much larger mini-batches and learning rates.
Furthermore, RoBERTa was also trained on an or-
der of magnitude more data than BERT, for a longer
amount of time. This allows RoBERTa representa-
tions to generalize even better to downstream tasks
compared to BERT. In this study, RoBERTa is at
the core of each solution of the given subtasks.

2.5 Image Feature Extraction using
Pre-trained Models

Convolutional neural network (CNN) visual fea-
tures have demonstrated their powerful ability as
a universal representation for various recognition
tasks. In this study we rely on the extraction of
visual features on state of the art convolutional neu-
ral network architectures. From the most popular
architectures such as VGG (Simonyan and Zisser-
man, 2015), ResNet (He et al., 2016), AlexNet
(Krizhevsky et al., 2017), GoogLeNet (Szegedy

et al., 2015) we initially generated the image fea-
tures using a pre-trained VGG-16 model architec-
ture.

2.6 Multimodal Deep Learning

Multimodal deep learning involves multiple modal-
ities used together to predict some output. The
different modalities present in a particular piece of
content are extracted and fused early in the classifi-
cation process. In this study, we concatenated the
features extracted from images and text sequences
using a Convolutional Neural Network (CNN) and
RoBERTa encodings (Liu et al., 2019), respectively.
These features were used to try and predict persua-
sive techniques.

3 Dataset

The dataset to this task is provided by Dimitrov
et al. (2021). Furthermore, there is a related shared
task “SemEval 2020 task 11 on Detecting propa-
ganda techniques in news articles” (Martino et al.,
2020) since it serves as the basis for the second
sub-task. In particular, the second subtask is the
combination of the two subtasks of the previous
task. Finally, there is a recent survey on compu-
tational propaganda detection by da San Martino
et al. (2019).

4 Our approach

In this section, we provide a general overview of
our approaches to the three subtasks. Subtasks 1
and 3 are both given as multilabel classification
problems, whereas subtaks 2 is given as a multi-
label sequence tagging task.

4.1 Experimental setup: Subtask 1

Model Architecture This subtask is a multi-
class multi-label problem, as one or more labels
have to be assigned to each sample. Our model for
this subtask is based on RoBERTa.

Input Embeddings The input embedding layer
converts the inputs (memes text) into sequences of
features: word-level sentence embeddings. These
embedding features will be further processed by
the latter encoding layers.

Word-Level Sentence Embeddings A sentence
is split into wordsw1, ..., wn with length of n by the
WordPiece tokenizer (Wu et al., 2016). The word
wi and its index i (wi’s absolute position in the
sentence) are projected to vectors by embedding
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sub-layers, and then added to the index-aware word
embeddings:

ŵi = WordEmbed(wi)

ûi = IdxEmbed(i)

hi = LayerNorm(ŵi + ûi)

Target Encoding We encode the target labels us-
ing a multi-label binarizer as an analog of one-hot
aka one-of-K scheme to multiple labels.

4.2 Experimental setup: Subtask 2

This subtask is given as a multilabel sequence tag-
ging problem.

Tagging format We transformed the initial span
markup into a IOB tagging format (Inside, Outside,
Begin). As we have 20 possible entity classes, each
token can be assigned one of the 41 tags given by
an O-tag, and the I-tag and B-tag of the various
techniques, respectively.

Model Architecture We fine-tuned a RoBERTa
model to predict the above IOB tags for each token
in the input sentence. One problem with the above
setup is that each token is classified independently
of the surrounding tokens: while these surrounding
tokens are taken into account in the contextualized
embeddings that RoBERTa produces, there is no
modeling of the dependency between the predicted
labels: for example, logically an I-tag should not
follow O. Since RoBERTa does not model the de-
pendencies between the predicted token, we further
added a linear-chain Conditional Random Field
(CRF) model (Lafferty et al., 2001) as an additional
layer, in order to model the dependency between
the predicted labels of individual tokens. Since the
sequence of an O-tag following an I-tag does not ap-
pear in the training set, it assigns by observation a
very low probability to the transition from an O-tag
to an I-tag. We trained the resulting RoBERTa-CRF
model as shown in Figure 1. The CRF receives the
logits for each input token, and makes a prediction
for the entire input sequence, taking into account
the dependencies between the labels, similarly to
(Lample et al., 2016). Note that RoBERTa works
with byte pair encoding (BPE) units, while for the
CRF it makes more sense to work with complete
words. Thus, only head tokens were used as input
to the CRF, and skipping any word continuation
tokens.

the riot ##ing mob

CRF

O B-TAG I-TAG

Figure 1: RoBERTa-CRF model with IOB-encoded tar-
get. The CRF model ignores non-starting word pieces
such as the depicted ##ing token.

4.3 Experimental setup: Subtask 3

Model Architecture We build our cross-
modality model with self-attention and cross-
attention layers following the recent progress in
designing natural language processing models (e.g.,
transformers (Vaswani et al., 2017)). Our model
takes two inputs as part of a meme: an image and
its related text. Each image is represented as a
feature vector, and each sentence is represented as
a sequence of words. As depicted in Figure 2, via
design and combination of the self-attention and
cross-attention layers, our model is able to generate
language representations, image representations,
and cross-modality representations from the inputs.
Next, we describe the components of this model in
detail.

Input Embeddings The input embedding layers
convert the inputs (i.e., an image and a short text)
into two sequences of features: word-level sentence
embeddings and image embeddings. These embed-
ding features will be further processed by the latter
encoding layers.

Word-Level Sentence Embeddings A sentence
is split into wordsw1, ..., wn with length of n by the
WordPiece tokenizer (Wu et al., 2016). The word
wi and its index i (wi’s absolute position in the
sentence) are projected to vectors by embedding
sub-layers, and then added to the index-aware word
embeddings:

ŵi = WordEmbed(wi)

ûi = IdxEmbed(i)

hi = LayerNorm(ŵi + ûi)
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Cross-modality Encoder ClassifierConcat Prediction

Image Representation

(VGG-16)

Word Emb

Idx Emb

+

ATTENTION

 

IS ALL HE NEEDS!

Figure 2: Multimodal model configuration for learning imaage-and-text cross-modality representations. ’Self’ and
’Cross’ are abbreviations for self-attention sublayers and cross-attention sublayers, respectively.

Visual features In this study we rely on the ex-
traction of visual features on state of the art convo-
lutional neural network architectures by generating
the image features using a pre-trained VGG-16
model.

Encoders We build our encoders, i.e., the lan-
guage encoder, and the cross-modality encoder, on
the basis of two kinds of attention layers: self-
attention layers and crossattention layers. We first
review the definition and notations of attention lay-
ers and then discuss how they form our encoders.

Attention Layers Attention layers (Bahdanau
et al., 2015; Xu et al., 2015) aim to retrieve in-
formation from a set of context vectors yj related
to a query vector x. An attention layer first cal-
culates the matching score aj between the query
vector x and each context vector yj . Scores are
then normalized by softmax:

aj = score(x, yj)

αj = exp(aj)/Σkexp(ak)

The output of an attention layer is the weighted sum
of the context vectors w.r.t. the softmax normalized
score: AttX→Y (x, {yj}) = Σjαjyj . An attention
layer is called self-attention when the query vector
x is in the set of context vectors yj . Specifically, we
use the multi-head attention following Transformer
(Vaswani et al., 2017).

Single-Modality Encoders After the embed-
ding layers, we apply a temporal convolutional
layer to each single modality. The result of this
projection is a uniform feature space with defined

dimensions as the input to the cross-modality en-
coder.

Cross-Modality Encoder Each cross-modality
layer in the cross-modality encoder consists of two
self-attention sub-layers, one bi-directional cross-
attention sublayer, and a feed-forward sub-layer.
We stack (i.e., using the output of k-th layer as the
input of (k+1)-th layer) N× these cross-modality
layers in our encoder implementation. Inside the
k-th layer, the bi-directional cross-attention sub-
layer (‘Cross’) is first applied, which contains two
unidirectional cross-attention sub-layers: one from
text to image and one from image to text. The
query and context vectors are the outputs of the
(k-1)-th layer (i.e., text features {tk−1i } and image
features {ik−1j }):

t̂ki = CrossAttT→I(tk−1i , {ik−11 , ..., ik−1m })

îkj = CrossAttI→T (ik−1j , {tk−11 , ..., tk−1n }
The cross-attention sub-layer is used to exchange
the information and align the entities between
the two modalities in order to learn joint cross-
modality representations. For further building in-
ternal connections, the self-attention sub-layers
(‘Self’) are then applied to the output of the crossat-
tention sub-layer:

t̃ki = SelfAttT→T (t̂ki , {t̂k1, ..., t̂km})

ĩkj = SelfAttI→I (̂ikj , {̂ik1, ..., îkn}
We add a residual connection and layer normaliza-
tion (annotated by the ‘+’ sign in Fig. 1) after each
sublayer as in Vaswani et al. (2017).
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Classification At the core of the classifier we use
a residual block as introduced by He et al. (2016).
The input to the residual block is given by concate-
nation of the output of the cross-modality encoder.
The input and output size of the residual block
corresponds to the sum of the output size of the
cross-modality encoder. Lastly, in order to obtain
the desired one-hot encoding as the output of the
classsifier, a linear transformation is applied.

Target Encoding We encode the target labels us-
ing a multi-label binarizer as an analog of one-hot
aka one-of-K scheme to multiple labels.

4.4 Results and Discussion

We participated in both techniques classification
tasks (subtask 1 and 3). The official evaluation
ranked our system 9th and 13th out of 16 and 15
teams, respectively. In this study, we focused on
suitable combinations deep learning methods as
well as their hyperparameter settings. Finetun-
ing pre-trained language models like RoBERTa
on downstream tasks has become ubiquitous in
NLP research and applied NLP. Even without ex-
tensive pre-processing of the training data, we al-
ready achieve competitive results and can serve as
strong baseline models which, when fine-tuned, sig-
nificantly outperform training models from scratch.
When improving on these baseline models, data
scarcity appears to be an immense challenge. This
is especially evident in the ratio of the given train-
ing samples to the number of possible target classes.
We expected better results with the multimodal so-
lution. The causes of the problem will be investi-
gated in more detail in the future.

5 Conclusion and Future work

We described our approach for the SemEval-2021
Task 6 on Detection of Persuasion Techniques in
Text and Images. We employed RoBERTa-based
neural architectures, additional CRF layers, and
a cross-modality framework for learning the con-
nections between image and text in a multi-modal
transformer architecture.

In future work, we plan to investigate more re-
cent neural architectures for language representa-
tion such as T5 (Raffel et al., 2019) and GPT-3
(Brown et al., 2020). In case of the multimodal
setting, it might also be useful to evaluate alterna-
tive model architectures such as ResNet (He et al.,
2016) to improve image representation.

Furthermore, we expect great opportunities for
transfer learning from the areas such as argumenta-
tion mining (Stede, 2020) and offensive language
detection (Zampieri et al., 2019). To deal with data
scarcity as a general challenge in natural language
processing, we examine the application of concepts
such as active learning, semi-supervised learning
(Ruder and Plank, 2018) as well as weak supervi-
sion (Ratner et al., 2020).
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Abstract

In recent years, memes combining image and
text have been widely used in social media,
and memes are one of the most popular types
of content used in online disinformation cam-
paigns. In this paper, our study on the detec-
tion of persuasion techniques in texts and im-
ages in SemEval-2021 Task 6 is summarized.
For propaganda technology detection in text,
we propose a combination model of both AL-
BERT and Text-CNN for text classification, as
well as a BERT-based multi-task sequence la-
beling model for propaganda technology cov-
erage span detection. For the meme classifi-
cation task involved in text understanding and
visual feature extraction, we designed a paral-
lel channel model divided into text and image
channels. Our method1 achieved a good per-
formance on subtasks 1 and 3. The micro F1-
scores of 0.492, 0.091, and 0.446 achieved on
the test sets of the three subtasks ranked 12th,
7th, and 11th, respectively, and all are higher
than the baseline model.

1 Introduction

The intentional shaping of information to promote a
predetermined agenda is called propaganda. Propa-
ganda uses psychological and rhetorical techniques
to achieve its purpose. Propaganda techniques gen-
erally include the use of logical fallacies and ap-
peal to the emotions of the audience. In recent
years, memes combining images and text have been
widely used in social media, and the use of memes
can easily and effectively attract a large number
of users on social platforms. Memes are one of
the most popular types of content used in online
disinformation campaigns (Martino et al., 2020) ,
and memes applied in a disinformation campaign
achieve their purpose of influencing users through

1The code of this paper is availabled at: https://
github.com/zxyqujing/SemEval-2021-task6

rhetorical and psychological techniques. Therefore,
it is meaningful to research computational tech-
niques for automatically detecting propaganda in
particular content.

The SemEval 2021 Task 6 (Dimitrov et al., 2021)
consists of three subtasks:

• Subtask 1 - Given only the “textual content” of
a meme, identify which of the 20 techniques
are used. The 20 techniques include appeal to
authority, loaded language, and name calling
or labeling.

• Subtask 2: Given only the “textual content” of
a meme, identify which of the 20 techniques
are used along with the span(s) of the text
covered by each technique.

• Subtask 3: Given a meme, identify which of
the 22 techniques are used for both the tex-
tual and visual content of the meme. These
22 technologies include the 20 technologies
in subtasks 1 and 2, and 2 technologies, i.e.,
transfer and appeal to (strong) emotions, are
added.

The detection of propaganda techniques in texts
is similar to a text sentiment analysis, and both
can be attributed to text classification tasks. In a
previous study, Peng et al. (2020) used the adver-
sarial learning of sentiment word representations
for a sentiment analysis. A tree-structured regional
CNN-LSTM (Wang et al., 2020) and dynamic rout-
ing in a tree-structured LSTM (Wang et al., 2019)
were used for a dimensional sentiment analysis. In
previous SemEval competitions, Dao et al. (2020)
used GloVe-LSTM and BERT-LSTM models, and
Paraschiv et al. (2020) used an ensemble model
containing BERT and BiLSTM to detect both spans
and categories of propaganda techniques in news
articles (Da San Martino et al., 2020) . In addi-
tion, in multimodal analysis combining images and
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Figure 1: ALBERT-Text-CNN model architecture.

text, Yuan et al. (2020) proposed a parallel chan-
nel ensemble model combining BERT embedding,
BiLSTM, attention and CNN, and ResNet for a sen-
timent analysis of memes. Li et al. (2019) proposed
a Visual BERT model that aligns and fuses text and
image information using transformers (Vaswani
et al., 2017) .

In this paper, we propose three different systems
for the three subtasks in SemEval-2021 Task 6. For
subtask 1, we added a Text-CNN layer after the
pre-trained model ALBERT to fine-tune it for a
multi-label classification of text. For subtask 2, we
used the idea of partitioning to transform the prob-
lem into the detection of 20 techniques for each
text separately. BERT was used in the model for
text feature extraction followed by multi-task se-
quence labeling, and the results of each task were
combined to obtain the final results. For subtask 3,
we built the system using a parallel channel model
containing text and image channels. The text chan-
nel used both the ALBERT and Text-CNN models
to extract features of text in the meme, and the
image channel used ResNet and VGGNet for im-
age feature extraction. The information extracted
by the two parallel channels was then combined
through a fully connected layer after concatenation.
Using micro F1-scores as metrics, the results of the
proposed model in subtasks 1, 2, and 3 were 0.625,
0.215, and 0.636, respectively, on the dev set.

The remainder of this paper is organized as fol-
lows. First, section 2 describes the details of the
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Figure 2: Architecture of multi-task sequence labeling
model.

ALBERT and Text-CNN used in our system. Sec-
tion 3 then presents the experimental results. Fi-
nally, some concluding remarks are presented in
section 4.

2 System Overview

2.1 Subtask 1

Subtask 1 requires a detection model that uses only
the textual features of the meme content and detects
which of the 20 propaganda techniques were used.
This is a multi-label classification problem for text,
based on the pre-trained ALBERT model and added
a Text-CNN layer. As illustrated in Figure 2, the
proposed model includes an ALBERT layer, a Text-
CNN layer, a fully connected layer, and an output
layer.

• ALBERT (Lan et al., 2020) is a lite BERT for
self-supervised learning of language represen-
tations, which uses layer-to-layer parameter
sharing to reduce the number of parameters
of the model, which not only speeds up the
model training but also outperforms BERT
on certain datasets. With our model, the pre-
trained ALBERT model is fine-tuned to obtain
a 512 × 768 hidden representation matrix for
subsequent multi-label classification of text.

• Text-CNN (Kim, 2014) is a convolutional neu-
ral network applied to a text classification task,
using multiple kernels of different sizes to ex-
tract key information in sentences, and is thus
able to better capture the local relevance. In
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Figure 3: Architecture of parallel channel model.

this layer, we used three different sizes of one-
dimensional convolution kernels, i.e., 3, 4, and
5, to extract information from the hidden rep-
resentation matrix output from the ALBERT
layer for the final multi-label text classifica-
tion.

2.2 Subtask 2

Subtask 2 was a multi-label sequence-labeling task.
We built the model by converting the problem
to detect the coverage of each propagation tech-
nique separately for the input sequence, and built
a multi-task sequence labeling model based on a
fine-tuning of BERT.

As illustrated in Figure 3, the input sequence was
first obtained using the pre-trained BERT (Devlin
et al., 2019) model with a hidden representation ma-
trix with dimensions of 512 × 768. Subsequently,
20 parallel fully connected layers were input sep-
arately for the detection of each propaganda tech-
nique coverage span (For each propagation tech-
nique, the sequence labeling task is performed sep-
arately for the input text) . For each technique,
the intermediate result of each parallel channel out-
put is a 512 × 41 matrix, and the ensemble layer
represents the stacking of 20 matrices from 20 par-
allel channels, the dimensions of the final output
were 20 × 512 × 41, which denote the propaganda
technique category, maximum sentence length, and
code corresponding to each technique, respectively.

2.3 Subtask 3

For subtask 3, we modeled the problem as a multi-
label classification task of the meme text and image
content. We used a parallel channel model of text
and image channels, and then concatenated the text
and image features extracted by the two parallel
channels to apply multi-label meme classification.
The architecture of the proposed model is shown in
Figure 4.

Text Channel. In the text channel, we used the
ALBERT–Text-CNN model used in subtask 1, tak-
ing the text part of the meme content as an input to
obtain a 768-dimensional text feature vector as the
output.

Image Channel. In the image channel, we used
ResNet and VGGNet, taking the image part of the
meme content as input to obtain a 512-dimensional
image feature vector as the output. The ResNet
model (He et al., 2016) is a deep residual learning
model for image recognition, and presents the inter-
layer residual jump connection and solves the deep
vanishing gradient problem. VGGNet (Simonyan
and Zisserman, 2015) is a deep convolutional neu-
ral network with small-sized convolutional kernels
and a regular network structure, in which the size
of the convolution kernels used in VGG16 in our
experiment is 3 × 3, and the pooling kernels is 2 ×
2. Furthermore, only the structures of the ResNet
and VGGNet were used in our experiment, and the
pre-training weights were not applied.
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3 Experimental Results

3.1 Dataset
The organizer provided a dataset containing 687
memes for the training set, 63 memes for the de-
velopment set, and 200 memes for the test set. The
dataset of subtask 1 provides the ID, text of the
meme, and the corresponding propaganda tech-
niques used, and the dataset of subtask 3 also con-
tains the corresponding meme image. The dataset
of subtask 2 provides the ID, text of the meme, and
the corresponding propaganda techniques used in a
certain text fragment, in which the scope covered
by the propaganda technology in the text is marked
as “start,” “end,” and “text fragment,” respectively.

The datasets were preprocessed using the follow-
ing procedures before model training:

• In subtasks 1 and 3, we first used one-hot
encoding to encode the label into a vector
whose length is the total number of technology
categories.

• In subtask 2, we labeled each token in the
text as “I-technique” and “O-technique” based
on the 20 propaganda technology terms. “I-
technique” indicates that the publicity tech-
nique was used and “O-technique” indicates
that it was not, e.g., O-Smears and I-Smears.
For 20 different propaganda techniques there
are 40 different codes, and then add another
padding code, so the label code length is 41.

• In subtask 3, we normalized the meme image
size to 224 × 224 × 3.

3.2 Evaluation Metrics
The official evaluation measure for all subtasks is
the micro F1-score, which is defined as follows:

F1 − score = 2 ∗ Prec ∗Rec

Prec+Rec
(1)

where Prec and Rec denote the precision and re-
call scores of all samples, respectively. For subtask
2, the standard micro F1-score was slightly modi-
fied to account for partial matching between spans
(Dimitrov et al., 2021). In addition, the macro
F1-score was also reported for each type of propa-
ganda.

3.3 Implementation Details
All models used the TensorFlow2 backend, and
all BERT-based models were implemented using

the HuggingFace Transformers toolkit(Wolf et al.,
2020). The Adam optimizer (Ba and Kingma,
2015) was used to update all trainable parameters.
The loss functions in subtasks 1 and 3 were bi-
nary cross-entropy, and subtask 2 was categorical
cross-entropy. The hyper-parameters in the model
training process were obtained using a grid-search
strategy, as shown in Table 1. Once the optimal
settings of the parameters were obtained, they were
used for classification on the test sets of different
corpora.

Hyper-parameter Values
Learning rate 5e-6
Adam epsilon 1e-8
Text-CNN dropout 0.3
Text-CNN filters 64
Classifier dropout 0.3
Batch size 16

Table 1: Hyper-parameters in our models.

3.4 Results

Table 2 presents the results of Subtask 1. We con-
ducted experiments on several pre-trained models
including BERT, RoBERTa(Liu et al., 2019), and
ALBERT combined with the Text-CNN layer, and
observed that the ALBERT and Text-CNN mod-
els achieved the best performance, the reason for
which may be that the training datasets are small,
and a serious overfitting will occur by directly fine-
tuning BERT. Furthermore, the experiments show
that the ALBERT model has fewer parameters and
performs better on small datasets. Adding a Text-
CNN layer after the BERT-based model can better
extract the local relevance information of the text,
which not only effectively alleviates the overfitting
phenomenon it also effectively improves the model
performance.

In subtask 2, the results of our proposed multi-
task sequence labeling model on the dev set are
F1-score of 0.215, Precision of 0.378, and Recall
of 0.151. The results on the test set are F1-score of
0.091, Precision of 0.186, and Recall of 0.061.

Table 3 shows the results of Subtask 3. It can be
observed that ResNet18 works better than VGG16
when using both ALBERT and ALBERT-Text-
CNN models. The performance was improved
by adding a Text-CNN layer to the text channel.
Considering that the micro F1-scores are relatively
close, we selected the models with the top-three F1-
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Model F1-Macro F1-Micro
BERT 0.302 0.509
RoBERTa-Text-CNN 0.385 0.500
BERT-Text-CNN 0.414 0.560
ALBERT-Text-CNN 0.472 0.625

Table 2: Scores of different models for subtask 1 on dev set.

Model F1-Macro F1-Micro
ALBERT-VGG16 0.240 0.577
ALBERT-ResNet18 0.272 0.605
ALBERT-Text-CNN+VGG16 0.346 0.606
ALBERT-Text-CNN+ResNet18 0.247 0.636
Hard Voting 0.245 0.625

Table 3: Experimental results of different models for subtask 3 on dev set.

scores and used hard voting to generate the results
for comparison.

For all three subtasks, the proposed systems
achieved micro F1-scores of 0.492, 0.091, and
0.446 on the test set, respectively. The results of
all models exceeded the baseline. However, there
is a considerable decrease compared to the scores
of 0.625, 0.215, and 0.636 achieved on the dev set.

4 Conclusions

In this paper, we presented our system for the
SemEval-2021 Task 6, the experimental results in
subtasks 1 and 3 show that our proposed ALBERT-
Text-CNN model and the parallel channel model
achieved a good performance in the detection of
persuasion techniques in texts and images.

We participated in all three subtasks and
achieved the 12th, 7th, and 11th places in the test
set, respectively. In a future study, to improve the
generalization ability of the model, we will focus
on how to deal with the problems caused by unbal-
anced training data.
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Abstract
Internet memes have become ubiquitous in so-
cial media networks today. Due to their popu-
larity, they are also a widely used mode of ex-
pression to spread disinformation online. As
memes consist of a mixture of text and im-
age, they require a multi-modal approach for
automatic analysis. In this paper, we describe
our contribution to the SemEval-2021 Detec-
tion of Persuasian Techniques in Texts and Im-
ages Task. We propose a Multi-Modal learning
system, which incorporates “memebeddings”,
viz. joint text and vision features by combin-
ing them with compact bilinear pooling, to
automatically identify rhetorical and psycho-
logical disinformation techniques. The exper-
imental results show that the proposed system
constantly outperforms the competition’s base-
line, and achieves the 2nd best Macro F1-score
and 14th best Micro F1-score out of all partic-
ipants.

1 Introduction

Propaganda is a mode of communication by which
the interested party pursues the aim of influenc-
ing public opinion in favour of a specific agenda
or ideas. This is achieved by disseminating one-
sided, biased or even fake news. With the advent
of social media networks, propagandist text can
reach an enormous audience. Given the overload
of online text produced on a daily basis, it is not
feasible to monitor this manually and researchers
have started to investigate automatic methods to
detect propaganda in text.

In the SemEval-2020 Task 11 on Detec-
tion of Propaganda Techniques in News Arti-
cles (Da San Martino et al., 2020), participants
were asked to identify 14 different propagandist
techniques in news articles. The task attracted a
large interest, with 44 teams participating in the
task. The best systems all used pre-trained trans-
formers and ensemble techniques. We further refer

to Da San Martino et al. (2020b) for a comprehen-
sive review of computational propaganda detection
techniques.

More recently, internet memes have emerged as
a very popular mode of expression on social net-
works. While memes initially seemed to be used
by users of specific online communities, they have
gained popularity very rapidly and are today used
by a very large and varied user base. Memes can be
used for very different purposes: they can be used
as a form of visual rhetoric (Huntington, 2013),
for online bullying or trolling (Leaver, 2013), but
they can also function as a kind of persuasive de-
vice, while the intended message is wrapped in
humour (Shifman, 2013). As a result, they form an
interesting object of study for automatically detect-
ing propaganda techniques.

The goal of the SemEval-2021 shared task on the
detection of persuasion techniques (Dimitrov et al.,
2021) is to build models for identifying rhetori-
cal and psychological techniques that are used to
influence social media users in online disinforma-
tion campaigns. This paper reports on our partic-
ipation in Subtask 3, which is a multi-modal task
conceived as a multi-label classification problem:
given a meme, the system has to identify which of
the 22 techniques are used both in the textual and
visual content of the meme. To solve subtask 3, we
propose a multi-modal multi-task learning system,
which incorporates “memebeddings”, viz. joint text
and vision features combined by means of compact
bilinear pooling, to automatically identify rhetori-
cal and psychological disinformation techniques in
memes.

2 System Architecture

2.1 Task Overview

The SemEval 2021 Task 6 for detection of per-
suasion techniques in texts and images revolved
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(a)

(b)

Figure 1: Examples of memes where the analysis of only the text (a) or both the text and image (b) are required to
automatically detect the correct persuasion technique.

around identifying 22 rhetorical and psychologi-
cal disinformation techniques in internet memes.
These techniques cover a wide array of phe-
nomenons like Causal Oversimplification, Exag-
geration/Minimisation, Name Calling/labeling or
Presenting irrelevant data (red herring). For a full
list of all categories, we refer to the task description
paper (Dimitrov et al., 2021).

While some techniques in certain contexts may
be accurately found just by processing the textual
modality, it is very difficult to consistently identify
all of the techniques without complete visual and
textual context. Figure 1 shows examples of the
two different cases, where in the first image, it is
fairly obvious that the text contains all necessary
information to predict the propaganda techniques
accurately, whereas in the second meme, the textual
modality is not sufficient to provide all information
required to correctly predict the label. To tackle
the task at hand, our approach incorporates infor-
mation from both domain-related text and visual
pre-training, and finally combines the two modali-
ties using Multi-modal Compact Bilinear (MCB)
Pooling (Fukui et al., 2016).

2.2 Proposed Models
Our multi-modal system is composed of three sub-
modules:

1. The visual pre-processor: the visual mod-
ule uses a ResNet-51 architecture (He et al.,
2016) which is pre-trained to identify sub-
reddits (E.g. /r/motivation, /r/pets /r/politics)
from around 6200 Reddit memes.

2. The text pre-processor: the text module uses
a pre-trained BERT-large-uncased model (De-

vlin et al., 2019), fine-tuned on the PTC Cor-
pus (Martino et al., 2020a) from the SemEval
2020 Shared Task.

3. Integration Network: the two sets of embed-
dings from the first two modules are combined
with MCB pooling.

2.2.1 Visual Embeddings
We decided to use the Resnet-51 architecture for
the Visual pre-processor. This model was trained to
predict one of the 18 sub-reddits the memes were
scraped from. We hypothesized that the learned em-
beddings are able to distinguish certain elements of
the meme, since the model is forced to encode the
sub-reddit it comes from, and the sub-reddits repre-
sent the genre (E.g. /r/politics, /r/sports) or the emo-
tion associated with the meme (E.g. /r/motivation,
/r/dankmemes).

2.2.2 Textual Embeddings
For the text pre-processor we used a pre-trained
bert-large-uncased model from the HuggingFace
transformers package1. We fine-tuned the model
with additional linear layers for the multi-label task
of predicting propaganda techniques in the PTC
Corpus. BERT based fine-tuned models are of-
ten used for a lot of text classification tasks and
obtain state-of-the-art performances in a large num-
ber of NLP tasks like GLUE (Wang et al., 2018)
and SQuAD (Rajpurkar et al., 2016).

2.2.3 Combined Embeddings
We train the final model with the combined em-
beddings from the visual and text pre-processor,

1https://huggingface.co/transformers/
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for the final task of multi-label prediction of the
22 propaganda techniques. While the visual pre-
processor and textual pre-processor become excel-
lent feature generators individually, combining the
embeddings from two modalities with different di-
mensions (768d for text and 1024d for images)
becomes very complicated.

While a dot product will be simple and efficient
to compute, it will only encode a linear mapping
of features, i.e first order interactions where every
visual feature only interacts with just one textual
feature and not multiple features. In addition, a dot
product cannot be computed with two vectors hav-
ing different dimensions. A cross product on the
other hand, computes the relation of every feature
from one modality to every feature from the second
modality. While this is closer to the representation
we need, the cross product of two vectors, with 768
and 1024 dimensions respectively, will be 786,432
dimensional. To use this large a vector, the classi-
fication model would need billions of parameters,
making it almost impossible to train such a model
in practice.

MCB Pooling combines the computation effi-
ciency of the dot product with the higher order
representation of the cross product. It was first
implemented for the task of Visual Question An-
swering (Antol et al., 2015), which also focuses on
jointly encoding textual and visual content. It cen-
ters around constructing count sketch projections of
the vectors by means of the Fast Fourier Transform
(FFT) to reduce them to lower-dimensional vectors
without loosing a lot of information. Once the vec-
tors are projected to lower-dimensions, computing
the cross-product becomes feasible again. Pham
et al. (2013) demonstrated, though, that the count
sketch of the outer product of two count sketch
projections is the same as the convolution of the
two count sketch projections, as shown in Equation
1:

Ψ(x⊗ q, h, s) = Ψ(x, h, s) ∗Ψ(q, h, s) (1)

where x and q are the embeddings from the textual
and visual modality respectively, Ψ(x, h, s) rep-
resents the count sketch projection of a vector x,
and ∗ represents the convolution operator. Figure 2
summarizes the proposed system architecture.

2.3 Experimental Setup

The ResNet-51 model for the visual pre-processor
was trained with Stochastic Gradient Descent and

penalized with the cross-entropy loss. For the ini-
tial state we used the model pre-trained on Ima-
geNet, and fine-tuned by replacing the classifica-
tion layer.

The BERT model for the text embeddings was
fine-tuned by freezing the pre-trained model and
adding a linear layer as well as a classification layer.
The model was trained with the AdamW optimizer,
with a rate decay of 0.01, and penalized with cross-
entropy as well.

The final MCB model uses embeddings from
both models and combines them into a single vector
of 8000 dimensions with MCB, then passes them
through two linear layers of sizes 2048 and 1024
respectively, followed by a classification layer for
the multi-label output for the 22 techniques. This
final model is optimized with Adam and penalized
with cross-entropy as well. We used the train set
released by the task organizers for training, and the
development set as a validation set for optimizing
hyper-parameters.

3 Results

Table 1 summarizes the key results of our multi-
modal approach. While combining the visual and
textual embeddings with a simple weighted aver-
aging consistently beats the task baselines by a
significant margin, using MCB Pooling results in a
considerable performance increase over weighted
averaging, both for Macro and Micro F1-scores.
In addition, when analyzing samples that are mis-
classified by the weighted averaging approach, but
correctly predicted by MCB Pooling, we noticed
around 40 percent of the examples required com-
bining information from both the visual and textual
modalities like Figure 1(b).

While the MCB model is able to better pool
the understanding of both modalities, it still fails
when a complex concept or inference is involved.
Figure 3a represents a common meme format fre-
quently found in the memes we were able to ob-
tain from Reddit. Consequently, we expect the
model has sufficiently learnt the corresponding vi-
sual features to come to a correct prediction. Fig-
ure 3b, however, requires some complex visual
ideas the model has to infer in combination with
the text, which it fails to do frequently. We be-
lieve that jointly training visual and textual em-
beddings (making the learning more coherent and
not disjointed between the two modalities), instead
of simply attempting to combine independent vi-
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Figure 2: Conceptual overview of the system architecture

Macro-F1 Micro-F1
Baseline 0.051 0.070
Feature Combination with Weighted Averaging 0.112 0.248
Multi-modal Compact Bilinear Pooling (our system) 0.263 0.331

Table 1: Final Micro and Macro F1-scores for SemEval 2021 Task 6 sub-task 3

(a) (b)

Figure 3: Examples of failed and successful classification by the MCB Pooling model. The model succeeds for
standard meme templates and basic visual ideas (example a) but fails to understand complex visual ideas that
require a joint inference from the text (example b)

sual and textual information, would solve this issue.
However, joint training can get computationally
expensive and would require a much larger dataset.

4 Conclusion and Future Work

This paper presents the multi-modal approach we
proposed for automatically detecting persuasion
techniques in memes. As memes combine text
and images to obtain the desired effect, we built a
system where visual and textual embeddings are
combined to classify 22 different propaganda tech-
niques. The experimental results show that com-
bining textual and visual embeddings by weighted
averaging already beats the baseline. These results,
however, are considerably improved by combining
both embedding sets by means of MCB Pooling.

In future work, we will investigate how we can
incorporate additional semantic information in our
model. A first step could consist of integrating
more explicit argumentation information into our

model. As these propaganda techniques use psy-
chological and rhetorical techniques, we believe it
might be interesting to include argumentation struc-
tures such as logical fallacies, where the reasoning
is flawed, and by consequence the conclusion can-
not be drawn from the premise(s) in the text. To this
end, we will build on recent work on automatic fal-
lacy detection (Habernal et al., 2017). In addition,
we also aim to include automatic emotion detec-
tion features, as writers of propagandist text often
use emotional language to convince their readers.
Finally, we will investigate an approach to jointly
train visual and textual embeddings, rather then
combining separate embedding sets, as our error
analysis showed that efficient analysis of memes
often requires a combined approach.
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Abstract

The objective of subtask 2 of SemEval-2021
Task 6 is to identify techniques used together
with the span(s) of text covered by each tech-
nique. This paper describes the system and
model we developed for the task. We first
propose a pipeline system to identify spans,
then to classify the technique in the input se-
quence. But it severely suffers from handling
the overlapping in nested span. Then we pro-
pose to formulize the task as a question an-
swering task by machine reading comprehen-
sion (MRC) framework which achieves a bet-
ter result compared to the pipeline method.
Moreover, data augmentation and loss design
techniques are also explored to alleviate the
problem of data sparsity and imbalance. Fi-
nally, we attain the 3rd place in the final evalu-
ation phase.

1 Introduction

Fake news detection has attracted the attention of
many researchers. But most of the conventional
fake news detection methods focuse on long-form
journalism, and little attention has been paid to the
propaganda techniques. Memes have become the
most popular type of content on social media plat-
forms, and it can easily mislead the audience to
agree with the speaker through propaganda tech-
niques. The SemEval-2021 Task 6 focuses on de-
tecting the use of rhetorical and psychological tech-
niques in memes without (subtask 1, subtask 2) and
with (subtask 3) visual content.

We first adopted a model to identify the span and
techniques sequentially, and made many attempts
to optimize the model, but the results were not sat-
isfactory. Then we tried some end-to-end method,
e.g. MRC framework.

∗These authors contributed equally to this work This work
is licensed under a Creative Commons Attribution 4.0 In-
ternational License. License details: http:// creativecom-
mons.org/licenses/by/4.0/

We found that the pipeline model can’t handle
the span overlapping issue effectively, but the MRC
framework with an informative query is well per-
forming in this scenario. In addition, the data aug-
mentation and a carefully designed loss can allevi-
ate the impact of data sparsity and imbalance. We
attain an F1 score of 0.3974 and the 3rd place in
the final evaluation phase

2 Related Work

There was also a related previous task on fine-
grained propaganda detection (Da San Mar-
tino et al., 2019), where the participants used
Transformer-style models, LSTMs and ensembles
(Fadel et al.,2019;Hou and Chen,2019;Hua,2019).
Some approaches further used non-contextualized
word embeddings, e.g., based on FastText and
GloVe (Gupta et al.,2019; Al-Omari et al., 2019),
or handcrafted features such as LIWC, quotes and
questions (Alhindi et al., 2019). Moreover, Mar-
tino et al.2020 analysed computational propaganda
detection from Text Perspective and Network Per-
spective, argued for the need of combined efforts
blending Natural Language Processing, Network
Analysis, and Machine Learning.

3 System Description

3.1 Pipeline model for Span and Technique
Detection

Inspired by the method (Chernyavskiy et al., 2020)
proposed for NER task, we construct a pipeline
model with RoBERTa(Liu et al., 2019) as the back-
bone to identify spans and techniques in input se-
quence. Figure 1 depicts our proposed pipeline
model.

3.1.1 Span Identification
We treat the span identification as a binary se-
quence tagging task. The span identification model
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Figure 1: Pipeline Model for Span and Technique De-
tection

is fed with chunks of sentences encoded by Byte-
Pair-Encoding (BPE) and the Conditional Random
Field (CRF) layer (Lafferty et al., 2001) receives
the logits for each input token, and makes a BIO
prediction for the entire input sequence, finally got
the spans in input sequence.

3.1.2 Technique Classification
We take the result of span identification model as
a part of the input: [CLS]<context>[SEP]<span>,
where <context> is the sentence from which the
span is extracted. The input of softmax layer in-
cludes three parts, (i) context embedding, is ex-
tracted from the last two layers of RoBERTa model;
(ii) span embedding, is the average of span tokens
embedding; (iii) span length embedding, is con-
structed with the length of the span, as different
propaganda techniques have significant differences
in span length. Finally, the model output the tech-
nique category for the given input sequence.

As the pipeline model suffers from incapable of
handling overlapping issue in nested span, signif-
icantly inspired by (Li et al., 2019), we proposed
to utilize the MRC framework to identify the span
and corresponding techniques.

3.2 Span Detection as MRC

We formulize the task as a question answering task.
Each span is characterized by a query, and span
are extracted by answering these queries given the
context. For example, the task of assigning the
Name calling/Labeling to ”CALM DOWN
[LITTLE TRUMP HATER]\nI FOUND YOUR
BINKY\n ” is formalized as answering the question

”Find the words and phrases with strong emotional
implications (either positive or negative) that in-

fluence an audience”. This strategy naturally tack-
les the span overlapping issue in nested span: the
detection of different spans that overlap requires
answering different independent questions.

Figure 2: BERT-MRC Span Detection Model

3.2.1 BERT Encoder
Given the question qy, we need to extract the text
span xstart,end from input text sequence X =
{x1, x2, ...xn} given qy using MRC frameworks.
We use BERT as encoder with the concatenated in-
formative query qy and input sequence X as input
by adding special token [CLS] and [SEP], and get
the whole representation matrix H from BERT.

H = BERT ([qy, X]) (1)

3.2.2 START-Predictor
The START-Predictor output the probability of
each token being a start token of a span, and Estart
is the parameter to learn:

Pstart = softmax(H · Estart) (2)

3.2.3 END-Predictor
The END-Predictor output the probability of each
token being an end token of a span, Eend is the
parameter to learn:

Pend = softmax(H · Eend) (3)

3.2.4 SPAN-Predictor
As there could exist more than one span in given
input sequence, we need to predict multiple start
token and end token. Deciding which start-end pair
that consist of continuous token sequence between
start token and end token. We get the possible start
token indexes Istart and end token indexes Iend by
applying argmax on Pstart and Pend. Each i in
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Istart and j in Iend construct a continuous token
sequences xi,j with constriction i ≤ j. A binary
classifier is used to compute the probability of xi,j
as a valid span, and Espan is the parameter to learn:

Istart = argmax(Pstart) (4)

Iend = argmax(Pend) (5)

pi,j = sigmoid(Espan · [Ei;Ej ]) (6)

3.2.5 Train
During the training stage, input sequence X is with
two label sequence Ystart and Yend, representing
the ground-truth label of each token xi being the
start index and end index. Ystart,end the ground-
truth span. And the loss for each predictor as fol-
lows:

Lstart = CrossEntropy(Pstart, Ystart) (7)

Lend = CrossEntropy(Pend, Yend) (8)

Lspan = CrossEntropy(Pspan, Yspan) (9)

The model is end-to-end fine-tuned by minimizing
the loss as follows:

L = Lstart + Lend + Lspan (10)

3.2.6 Predict
For every example to be predicted, we duplicate
the example 20 times and pair each example with
one technique description as model input. The
model output spans detected for each example, and
techniques can be mapped from those examples
with spans detected.

4 Experiment and Result

We use the provided training dataset for training,
and evaluate the model on the development dataset
during evaluation phase. We implemented several
experiments to explore the effect of different meth-
ods. The following is the detail for each experi-
ment.

4.1 Data augmentation

As there are only 290 records in the training dataset,
we explored two data augmentation methods to
increase the amount of relevant data. We did the
data augmentation based on PTC corpus1. And
Enlarge Training Dataset get a better result.

1https://propaganda.qcri.org/
semeval2020-task11/

Data augmentation F1
Two-Stage Fine-Tune 0.19322
Enlarge Training Dataset 0.21053
Train Dataset 0.19073

Table 1: Result for Data Augmentation.

4.1.1 Two-Stage Fine-Tune

Train a best-performing model using BERT as back-
bone with PTC corpus, then finetune the trained
model on the training dataset. Table 1 shows the
result of this method.

4.1.2 Enlarge Training Dataset

Train a best-performing model using BERT as back-
bone with training dataset and annotate PTC corpus
automatically. After that we train the second model
using the filtered samples according to annotated
labels and training dataset. Table 1 shows the result
of this method.

4.2 Loss setup

This task is faced with serve data imbalance issue:
the top 6 technique category examples account for
78%, which is significantly outnumber the reset of
14 technique category examples, leading to huge
number of top 6 examples overwhelms training. In
order to remit the impact of imbalance issue, we
tried different loss functions. Table 2 shows the
result of different loss function. From the result we
can see that Asymmetric Loss improved the result
over other loss function.

4.2.1 Focal Loss

By setting γ ≥ 0 in Eq.12, the contribution of easy
samples can be down-weighted in the loss function,
enabling to focus more on harder samples during
training(Lin et al., 2018).

L = −yL+ − (1− y)L− (11)
{
L+ = (1− p)γ log p
L− = pγ log (1− p)

(12)

4.2.2 Asymmetric Loss

Asymmetric loss can perform hard thresholding of
very easy samples, meaning fully discard negative
samples when their probability is low enough(Ben-
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Loss Function F1
CrossEntropy 0.19073
Focal Loss 0.20453
Asymmetric Loss 0.20817

Table 2: Result for Different Loss.

Model F1
BERT-MRCneg=2 0.2986
BERT-MRCneg=4 0.3665
BERT-MRCneg=10 0.3463
BERT-MRCneg=4 DA 0.3779
BERT-MRC 0.2815

Table 3: Results for MRC-BERT.

Baruch et al., 2020).

L = −yL+ − (1− y)L− (13)

pm = max (p−m, 0) (14)

ASL =

{
L+ = (1− p)γ+ log p

L− = p
γ−
m log (1− pm)

(15)

Where the probability margin m ≥ 0 is a tunable
hyperparameter.

4.3 BERT-MRC Span Detection

In the training dataset, some examples do not con-
tain any technology. We duplicate each example 20
times and pair same example with different tech-
nique description as model input. The example
paired with the technique it contained is treated as
positive examples and others as negative examples.
We also tried to sample different number of nega-
tive examples. Table 3 shows the result of different
sampling strategy. When sample 4 negative exam-
ples, the model BERT-MRCneg=4 DA achieve the
best result. The performance decrease when sam-
ple more negative examples, which may be caused
by introducing too much noise into the model. The
model is trained with hyperparameter learning rate
5e-5, batch size 8, max sequence length 128, and
bert-base-cased as the backbone.

5 Conclusion

We create a pipeline model and an end-to-end MRC
model to identify the span and techniques. We at-
tain an F1 score of 0.3974 and the 3rd place at in
final evaluation phase with BERT-MRCneg=4 DA

model. Our implementation shows that 1) refor-
mulating the task into an MRC task to detect the

overlapping span is effective; 2) data augmenta-
tion is about to increase model generalization ; 3)
careful loss design can alleviate the effect of data
imbalance.
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Abstract

This paper describes and examines different
systems to address Task 6 of SemEval-2021:
Detection of Persuasion Techniques In Texts
And Images, Subtask 1. The task aims to build
a model for identifying rhetorical and psycho-
logical techniques (such as causal oversimplifi-
cation, name-calling, smear) in the textual con-
tent of a meme which is often used in a dis-
information campaign to influence the users.
The paper provides an extensive comparison
among various machine learning systems as
a solution to the task. We elaborate on the
pre-processing of the text data in favor of the
task and present ways to overcome the class
imbalance. The results show that fine-tuning
a RoBERTa model gave the best results with
an F1-Micro score of 0.51 on the development
set.

1 Introduction

The purpose of this task was to identify propaganda
in electoral campaigns where memes are one of the
most popular types of content used to carry out
disinformation campaigns. They are most effec-
tive on social media platforms since they can easily
reach many users. SemEval-2021 task 6 (Dimitrov
et al., 2021) refers to propaganda whenever infor-
mation is purposefully shaped to foster a predeter-
mined plan. Propaganda uses psychological and
rhetorical techniques to achieve its objectives. Such
techniques include the use of logical fallacies and
appealing to the emotions of the audience. Logical
fallacies are usually hard to spot since the argu-
mentation, at first sight, might seem correct and
objective. However, a careful analysis shows that
the conclusion cannot be drawn from the premise
without the misuse of logical rules. Another set of
techniques uses emotional language to induce the
audience to agree with the speaker only based on
the emotional bond that is being created, provok-

ing the suspension of any rational analysis of the
argumentation.

The Oxford dictionary defines a meme as ‘An
image, video, piece of text, etc., typically humor-
ous in nature, that is copied and spread rapidly by
internet users, often with slight variations’. They
generally consist of an image superimposed with
text. The role of the image in a deceptive meme
is either to reinforce/complement a technique in
the text or to convey one or more persuasion tech-
niques. A total of 3 subtasks were defined: For
subtasks 1 and 2, only the meme’s textual content
was given. The former was a multilabel classifi-
cation problem while the latter was a multilabel
sequence tagging problem, each with 20 labels of
techniques. For subtask 3, both textual and visual
content of the memes were given. The goal was
to identify which of the techniques are used for
a given text/image. In this paper, we describe a
system to address the subtask 1 for which, a train-
ing dataset of 600 sentences with their labels was
given. The test set consists of over 200 sentences.
We evaluated the performance of all the models
using the Micro and Macro F1 scores.

We make use of 13 different models to approach
the problem at hand, experimenting with different
data preprocessing techniques to finally document
23 sets of results. We found that strong results can
be achieved by fine-tuning a pre-trained RoBERTa
language model. However, we also discovered that
some other models, when used as part of a vot-
ing classifier, gave decent results without requiring
resources and time needed to train a RoBERTa
model.
The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 talks
about the methodology. Section 4 describes the
dataset for the task. Section 5 provides the ex-
perimental setup. Section 6 presents the systems
implemented to address the task. Section 7 shows
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the results and Section 8 concludes the paper.

2 Related Work

The closest research to persuasion detection in
Computer Science is perspective detection. Lin
et al., (2006) discussed different types of machine-
learning classifiers such as Naı̈ve Bayes and Sup-
port Vector Machines for the perspective detection.
Another topic, closely knitted with the detection
of persuasion techniques is hate speech detection.
Sood et al., (2012) worked on detecting personal
insults, profanity, and user posts characterized by
malicious intent. Xiang et al., (2012) focused on
vulgar language and profanity-related offensive
content. Xu et al., (2012) further look into jok-
ingly formulated teasing in messages that represent
bullying episodes.

Burnap and Williams, (2014) specifically looked
into othering language, characterized by an ‘us’
and ‘them’ dichotomy in racist communication.
Approaches to detecting hate speech on Twitter us-
ing convolutional neural networks and convolution-
GRU-based deep neural networks are discussed
in Gamback and Sikdar, (2017) and Zhang et al.,
(2018) respectively.

Persuasion technique detection is a multi-label
classification problem. Many attempts have been
made in the literature to make a multi-label classi-
fication system (Spyromitros et al., 2008; Elisseeff
et al., 2001; Zhang and Zhou, 2006; Curram and
Mingers, 1994; Huang, 1988; Crammer and Singer,
2003).

3 Method

In this paper, we make use of a one-versus-rest
strategy to split a multi-label classification dataset
into binary classification problems, splitting the
data into one binary dataset for each class (Hastie
et al., 1998), called ‘pairwise coupling’. We present
results with various approaches for the persuasion
techniques detection in the text data. We make use
of pre-defined language models and tune the hyper-
parameter for best performance on the dataset. Soft
voting classifier and hard voting classifier (Zhou
et al., 2002) are deployed to use traditional machine
learning models for the task. A soft voting classifier
uses the average of probabilities for each class to
classify the test instance, whereas, in hard voting,
the classifier assigns the class that was voted by a
majority of the classifiers. In our case, since we
implemented our own voting classifier, we did not

always go with the majority but experimented with
different threshold values. In some cases, we gave
more weightage to the models which gave more
promising results. Various models, such as Logistic
Regression, Naive Bayes, SVM, RNN, BiLSTM,
BERT, naming a few, were implemented, which are
discussed in the later sections. RoBERTa model
performed the best for the persuasion techniques
detection task on the text data (Section 7).

4 Dataset

In this paper, we provide systems to address
subtask-1. The input data for subtask-1 is the text
extracted from the memes. The training, the de-
velopment, and the test sets for subtask-1 were
distributed as JSON files.
An object of the JSON has the following type:
{

“id”: ”125”
“labels”: [
“Loaded Language”,
“Name calling/Labeling”
]
“text”: “I HATE TRUMP \n\nMOST TERROR-

IST DO”
}
where

• id is the unique identifier of the example
across all three tasks

• text is the textual content of the meme, as a
single UTF-8 string.

• labels is a list of techniques used in the text
(Written below). In this case, two techniques
were spotted: Loaded Language and Name
calling/Labeling.

Below are the technique names with their frequency
in the training dataset.

• Appeal to authority: 13
• Appeal to fear/prejudice: 43
• Black-and-white Fallacy/Dictatorship: 18
• Causal Oversimplification: 27
• Doubt: 34
• Exaggeration/Minimisation: 52
• Flag-waving: 27
• Glittering generalities (Virtue): 32
• Loaded Language: 313
• Misrepresentation of Someone’s Position: 3
• Name calling/Labeling: 188
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Number of labels Number of sentences
0 161
2 119
3 90
4 47
5 11
6 2
8 1

Table 1: Number of labels for number of sentences

• Obfuscation, Intentional Vagueness,
Confusion: 4

• Presenting Irrelevant Data (Red Herring): 3
• Reductio ad hitlerum: 9
• Repetition: 8
• Slogans: 84
• Smears: 168
• Thought-terminating cliché: 20
• Whataboutism: 40
• Bandwagon: 2

Table 1 reports the number of sentences with multi-
ple (or no) labels. For example, the first row sug-
gests that there were 161 sentences in the dataset
with no labels.

5 Experimental Setup

We train a wide range of different models for the
task. As discussed in Section 3, we used both a soft
voting classifier and a hard voting classifier on the
traditional machine learning models for better per-
formance. However, it should be noted that a soft
voting classifier cannot be used in all the models,
and accordingly, models were categorized. In order
to assign different weights to different models, as
per the individual performance, we used our own
version of the hard voting classifier by scikit-learn
(Pedregosa et al., 2011). Most of the models that
we implemented support a multi-class classification
where one assumes that each sample is assigned to
one and only one label. However, since we were
in a multi-label classification scenario, where we
were required to assign a set of target labels, we
wrapped these models in a OneVsRestClassifier.
We converted the multi-label classification prob-
lem into a series of binary classification problems
assuming that there was not any underlying correla-
tion between any two labels and they were mutually

exclusive. Below is the list of the machine learning
and deep learning approaches that we implemented
to build the systems to identify persuasive tech-
niques.

• Logistic Regression (LR), a meta-model
trained using the stochastic average gradient
solver.

• Standard Naive Bayes (NB) and Support Vec-
tor Machine (SVM) from scikit-learn library
in python.

• Linear Support Vector Classification (SVC)
to return a best fit hyperplane that divides, or
categorizes the data.

• Bernoulli Naive Bayes, a variant of Naive
Bayes, using learning rate of 0.12.

• Ridge classifier with 0.01 as the tolerance for
the stopping criteria.

• SGDClassifier (SDGC) with added L2 regu-
larization to prevent overfitting and the hinge
loss function.

• Passive Aggressive Classifier (PAC) with 50
as the cap for the number of iterations the
model makes over the data.

• Random Forest Classifier (RFC) which cre-
ates a set of decision trees from a randomly
selected subset of the training set.

• Multi-layer Perceptron (MLP) regressor with
1 hidden layer of size 8, followed by 2 of size
16 and finally another of size 4.

• Long Short-Term Memory Network (LSTM)
(Hochreiter and Schmidhuber, 1997).

• Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018).

• A Robustly Optimized BERT Pretraining Ap-
proach (RoBERTa) (Liu et al., 2019).

• A Deep Neural Network model that used a
vocabulary size of 10, 000; a batch size of 32;
and was trained over 6 epochs. The system
consisted of an embedding layer of size 128,
followed by a 1D Convolution layer with 32
filters and same padding. Further, we used a
max pooling layer of pool size 2 and an LSTM
layer with 64 units and Dropout regularization
of 0.2. Finally, 2 dense layers with 64 units
and 1 unit respectively and activations ReLU
and sigmoid were used.
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Evaluation Measures: The given evaluation mea-
sure for the task was Micro-F1. We also report
Macro-F1 in this paper as it is more favorable for
multi-class classification problems.
F1-score is the harmonic mean of Precision and
Recall
Precision: It is the fraction of relevant instances
among all retrieved instances
Recall: It is the fraction of retrieved instances
among all relevant instances
First, we independently find the F1 Score for each
label, and then, to aggregate these F1-scores into a
single F1-score, two ways can be used.

• Macro F1-Score: Simply average all the F1-
Scores and calculate a mean F1-Score.

• Micro F1-Score: Instead of calculating each
label’s F1-Score, derive the F1-Score by cal-
culating Precision and Recall by summing all
the true positives, false positives, and false
negatives of the system for different labels.

6 System Description

We split the training data into a training and valida-
tion set in the ratio 9 : 1, i.e., 90% of the corpus was
used for training while the remaining 10% was part
of the validation set. The preprocessing (Section
6.3) for all the models was the same and once the
best model was found, it was retrained including
the validation set for training as well. The trained
model was then used to predict labels for the Devel-
opment set. The model yielding the best accuracy
on the earlier chosen validation set was used for the
submission of the Development set. We followed a
similar approach for the submission of the results
in the task on the test set using RoBERTa model.
We secured 15th rank in the task.

6.1 Initial Setup
The labels were in the form of a string under the col-
umn ‘labels’. For easier manipulation, these were
first one hot encoded into multiple labels using ‘,’
as a separator. It should be noted that multiple
columns for the same label (Owing to white space
before the comma in a few cases) had to be merged.

6.2 Data Augmentation
We observed a lack of data along with an internal
data bias. To overcome this issue, we incorporated
different data augmentation techniques. While a
few of the techniques we employed for data aug-
mentation boosted the performance, many of them

just confused the model and decreased the vali-
dation set accuracy. The techniques which were
discarded for making no significant improvement
on the results are as follows:

• Random Swap: Choose two words in the sen-
tence at random, and swap their positions.

• Synonym Replacement: Choose a few words
from the sentence at random, and replace them
with their synonyms.

• Random Deletion: Randomly delete a word if
a uniformly generated number between 0 and
1 is smaller than a pre-defined threshold.

• Random Insertion: Find a synonym of a word
chosen at random from the sentence and insert
it into a random position in the sentence.

However, Back Translation which is a classic data
augmentation technique gave positive results. This
method translates the text data to some language
and then translates it back to the original language.
This can help to generate textual data with differ-
ent words while preserving the context of the text
data. In our model, we made use of the Language
translation API provided by Google Translate. We
ran each text sentence through 5 different trans-
lations. Each series consisted of translation from
English to another language of the similar scripts
followed by another language that required translit-
eration and then back to English. We used this
with 10 different languages (other than English) to
create maximum diversity in the corpus. After we
had generated a much larger corpus than before,
there was still a serious problem of data bias in
most labels since there were more zeroes (in one
hot encoding) than ones. For that, apart from the
original corpus, we only took those text samples
out of the augmented data, in which that label was
present. Compared to the previous training dataset,
upon using this dataset, the performance (Micro F1
score) of the model on the development set rose
for a few models while it fell for others. For the
latter, we believe that the decrease in data-size was
under-compensated by the decrease in the problem
of bias.

6.3 Preprocessing
Since the corpus sentences were texts extracted
from memes, we expected them to contain some
patois and other contractions. Consequently, we
started our preprocessing by substituting conjunc-
tions with the complete words, and some of the
more commonly used lingos with their literal and
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System Name Drop Threshold Aug F1-Micro F1-Micro Aug F1-Macro F1-Macro
RoBERTa × 0.50909 0.34419 -
(Dev Set)

All models × 0 0.44118 0.38450 0.20520 0.18398
together × 1 0.40495 0.34520 0.18473 0.15812

× 2 0.37919 0.30891 0.17666 0.12938
× 3 0.35689 0.26981 0.16338 0.11112
× 4 0.33835 0.26818 0.13557 0.10442

All models X 0 0.34404 − 0.20039 −
together X 1 0.39575 − 0.21937 −

X 2 0.41728 − 0.22840 −
X 3 0.43426 − 0.23603 −
X 4 0.44021 − 0.23809 −

Ridge Classifier × − 0.38983 0.29870 0.14469 0.12775
Rand Forest Clf × − 0.37209 0.17021 0.15921 0.07692
Naive Bayes Clf × − 0.35805 0.27189 0.11108 0.08185
Logit Regr Clf × − 0.35448 0.27865 0.12454 0.07897
SGDC Classifier × − 0.34752 0.32150 0.17489 0.14933
BNB Classifier × − 0.34520 0.26957 0.15900 0.11105
SVM Classifier × − 0.34409 0.29857 0.17228 0.13124
PAC Classifier × − 0.34295 0.30435 0.17311 0.15109
MLP Regressor × − 0.32975 0.28200 0.14570 0.14747

Deep Neural × 0.2 0.31390 0.32819 0.14713 0.12470
Network × 0.3 0.32049 0.32283 0.14894 0.12299

× 0.4 0.32137 0.31855 0.14894 0.11849
× 0.5 0.31360 0.31919 0.13993 0.11866

Table 2: Results with various systems

legal English counterparts.
After that, we proceeded by using custom made
functions for subjecting the sentences to lowercas-
ing and removing most punctuation marks or any
kind of special character which do not include any
valuable information for text classification.
Next, we take care of the stopwords, which are a
set of frequently used words (often short) and their
removal is critical because, in their absence, we
can focus on the essential words to the context of
the sentence more. Therefore, we remove all the
stop-words present in the text sentences using the
default set of stop-words that can be downloaded
from the NLTK library (Bird et al., 2009).
Next, we moved to Lemmatization. Stemming is
another widely used technique for a similar pur-
pose where one chops off its inflections and keeps
what hopefully represents the main essence of the
word. However, we observed that lemmatization
gave better results on the provided data. Instead of
chopping words off (truncating the word), lemma-
tization relies on a linguistic knowledge base like

WordNet (An extensive database of English which
superficially resembles a thesaurus, in that it groups
words based on their meanings) to obtain the cor-
rect base forms of words.

7 Results and Analysis

Table 2 presents the F1-Micro and F1-Macro ob-
tained with various systems on the test data for the
subtask-1 of Task-6 after training on both the aug-
mented data and just the original base data. The
scores for the models trained on the augmented data
use the prefix Aug in the column name. The models
with the Drop column marked X , were trained on
the complete augmented data. In contrast, while
training the ones containing a X, we took only
those augmented sentences that contained the label
we were training the model for. This was done
to cope with the data bias problem as discussed
in Section 6. In the machine learning models, the
Threshold column contains an integer value which
is the threshold for the hard voting classifier i.e., the
minimum number of models predicting a technique
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to be associated with a sentence. However, in the
case of the Deep Neural Network, the Threshold
column contains the probability of the prediction
of a particular technique.

The system ‘All models together’ deployed an
ensemble of traditional machine learning models,
as listed in the Section 5. From table 2, we unsur-
prisingly infer that RoBERTa gave the best results
for the persuasion techniques classification on the
text data. Even so, there are quite a few takeaway
points one can conclude from the same.

Firstly, even though there is a visible gap be-
tween RoBERTa and the rest of the models, the en-
semble of models was almost 200 times faster on a
CPU compared to RoBERTa, which was trained on
a GPU. This indicates that the former is a superior
choice when quick NLP predictions are required
using low-end systems.

Next, we observe the effect of tackling the data
bias technique by choosing some specific aug-
mented sentences for the training corpus. In ‘All
models together’, even though a better result was
reported by the system without the drop and the
threshold value 0, overall, dropping the sentences
gave better performance for different threshold val-
ues. One can note that the latter system even gave
better F1-Macro score universally for all thresh-
olds.

Finally, we adjudge a rather interesting observa-
tion. Most of the systems comprehensively work
far better with the augmented data, but the Deep
Neural Network, which contained 1.5 Million train-
able parameters, showed a startling outcome. The
score obtained after training on the base corpus was
better than the one obtained after training on much
larger augmented data. Repeated back-translation
might be the reason that we fed the similar type
of data instances to the system. Thus, the model
was not able to learn enough, giving poor accuracy
and faulty predictions. We didn’t see the similar
observation in traditional machine learning models
or even MLP regressors because these models use
fewer parameters.

8 Conclusion

Persuasion techniques detection is a multi-label
classification problem. This paper presents and
analyzes 13 machine learning and deep learning-
based systems for persuasion techniques detection
in the text data. Persuasion data has an extensive
range of techniques as labels (20 in our case) with

high-class imbalance. We observe that the data aug-
mentation technique, i.e., Back Translation, helps
overcome class imbalance and produces more ro-
bust systems. Besides, we present the essential
data preprocessing for the task. Results show that
RoBERTa, a deep neural language model, outper-
formed other systems by a significant margin. Fine
tuning the RoBERTa model on the training data
captures the sensitive features for persuasion tech-
niques identification.
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Abstract

This paper presents one of the top systems
for the SemEval-2021 task 6 (Dimitrov et al.,
2021), “detection of persuasion techniques in
text and images”. The proposed system, Le-
Cun, targets subtask-1 for detecting propa-
ganda techniques based on the textual con-
tent of a meme. We have used an exter-
nal dataset from a previous relevant SemEval
competition (Martino et al., 2020). We also
have articulated another dataset using data-
augmentation techniques. The final proposed
model consisted of 5 ensemble transformers
(four RoBERTa models and one DeBERTa),
each trained on either a different dataset or pre-
processing. Apparently, ensembling models
trained on different datasets improve perfor-
mance more than ensembling models trained
on the same dataset/preprocessing. Also, it is
obvious, fine-tuning the model on the Compe-
tition dataset after training it for a few epochs
on the other datasets would improve the f1-
micro up to 0.1 additional scores. The final
model achieved an f1-micro score of 0.512 on
the test dataset and an f1-micro of 0.647 on the
development dataset.

1 Introduction

The definition of Memes was constantly changing
since it was first conceived. But, Memes eventu-
ally got an academic definition, called an “Internet
Meme”. As Davison (2012) Internet Meme can
roughly be defined as “a piece of culture, typically
a joke, which gains influence through online trans-
mission”. But what makes Internet memes unique
is the speed of their transmission and the fidelity of
their form. Therefore the Internet meme can act as
a powerful medium for persuasion techniques that
preach an ideology or way of thinking. (Moody-
Ramirez and Church, 2019)

On the other hand, the term ”propaganda” is de-
fined as a form of communication that employs

persuasive strategies and attempts to achieve a re-
sponse that furthers the desired intent of the pro-
pagandist (Jowett and O’donnell, 2018). With the
rise of social media, a new form of propaganda
rises called “Computational Propaganda.” The au-
thor in (Woolley and Howard, 2017) defined Com-
putational Propaganda as “The use of algorithms,
automation, and human curation to purposefully
distribute misleading information over social me-
dia networks”.

Task 6 at SemEval-2021 (Dimitrov et al., 2021),
detection of persuasion techniques in text and im-
ages, defined three subtasks. The first two subtasks
deal with the textual contents of memes that ask the
participants to identify which of the 20 propaganda
techniques are in the text. While the third subtask
encourages the participants to determine which of
the 22 techniques are in the meme’s textual and
visual content. This paper proposes a solution for
subtask1 that uses pre-trained language models to
detect propaganda and possibly even identify the
persuasion strategy that the propaganda sample em-
ploys.

The rest of the paper is broken down as fol-
lows. Section 2 discusses related-work to the task
of propaganda identification. Section 3 provides
a description of the data and the pre-processing
techniques used. Section 4 describes the proposed
system and architecture. Section 5 presents system
analysis. Finally, the conclusion and future work
are provided in Section 6.

2 Related Work

There have been efforts in persuasion techniques
identification and classification using machine and
deep learning-based approaches. The authors in
(Al-Omari et al., 2019) used word embeddings with
BERT (Devlin et al., 2019) and BiLSTM (Schuster

* Equal Contribution
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and Paliwal, 1997) for binary detection of propa-
ganda spans. Authors in (Altiti et al., 2020) experi-
mented with a CNN (LeCun et al., 1999), BiLSTM
and BERT and showed BERT to have the best accu-
racy on classifying persuasion techniques in propa-
ganda spans. Also, the authors in (Jurkiewicz et al.,
2020) used a RoBERTa model (Liu et al., 2019), a
class-dependent re-weighting method and used a
semi-supervised learning technique of self-training
and demonstrated the effects of these techniques in
an ablation study. A group of researchers (Morio
et al., 2020) experimented with a variety of PLMs
(pre-trained language models), including BERT,
GPT-2 (Radford et al., 2019), RoBERTa, XLM-
RoBERTa (Conneau et al., 2019), XLNet (Yang
et al., 2019) and XLM (CONNEAU and Lample,
2019). And have demonstrated that RoBERTa and
XLNet generally perform better for propaganda
detection.

3 Data Description

In this section, we describe the data and the task
and the preprocessing step

3.1 Data

The dataset used during our experiments has been
provided by the SemEval-2021 Task 6 (Dimitrov
et al., 2021). The dataset, “Competition dataset”,
consists of short text samples that were extracted
from Memes. We have also resorted to using an ex-
ternal dataset (Da San Martino et al., 2019) that is
comprised of news articles with propaganda spans,
“External Dataset”. To use the External dataset ef-
fectively, we needed to chop down the news articles
closer to the text’s length in the current dataset and
take only the text fragment that contained the pro-
paganda and the corresponding label representing
the propaganda technique in that text fragment.

3.2 Data Preprocessing

Our data preprocessing pipeline consists of two
components, 1) Data cleaning 2) Data augmenta-
tion. In this section, we will describe the techniques
we used in each component.

3.2.1 Data Cleaning
To increase performance accuracy, some data pre-
processing techniques have been tested. We have

See https://github.com/jasonwei20/eda_
nlp for the data augmentation code

experimented with typical pre-processing tech-
niques, such as “Stop-Words Removal”, which
refers to removing commonly used words (such
as “the”, “a”, “an”, “in”) to eliminate noise that
may otherwise hinder the model’s ability to learn
and predict sequences. We have also experimented
with “Stemming” which refers to the process of
reducing inflection in words (e.g., connect, con-
nected, connection) to their root form (e.g., con-
nect). The specific Stemming algorithm that was
used is Porters Algorithm (Porter, 1980).

3.2.2 Data Augmentation
We experimented with Data Augmentation (Wei
and Zou, 2019). This is the process of using the
original given data to produce more data to increase
the given dataset size. Data Augmentation has
been proved to be useful when dealing with small
datasets. Although this technique is more prevalent
in computer vision tasks, there are some versions of
the technique that are specifically tailored to work
with text data as described at (Wei and Zou, 2019).
These techniques include Synonym Replacement,
Random Insertion, Random Swap, Random Dele-
tion, Back-translation. Table 1 shows examples
on generating data using data-augmentation. This
was done by using the “Easy Data Augmentation”
library (Wei and Zou, 2019).

Back-translation was only applied on the Com-
petition dataset and the other four techniques on
the External dataset. For each sentence in the Exter-
nal dataset, 0.1 percent of Synonym Replacement,
Random Insertion, Random Swap, and Random
deletion was applied. We did that nine times per
sentence for each sample. In the Back-translation,
AWS API was used to translate the text from En-
glish to Dutch back to English. Also, from English
to Dutch to Russian, back to English. For each sam-
ple, we generate two additional samples. The Com-
petition dataset has a size of 487. After merging the
External dataset and the Competition dataset, we
ended up with a dataset of size 18,571. This data
will be referred to as the “Competition + External
Dataset”. After applying data augmentation on the
Competition + External dataset, we ended up with
a dataset of size 52,966. This data will be referred
to as the “Augmented Dataset.”

4 System Description

Different model architectures have experimented
with different pre-processing techniques. The fi-
nal system ended up ensembling five models, each
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Original This paper will describe our system in detecting propaganda in memes

Synonym Replacement This theme will describe our arrangement in detecting propaganda in memes

Random Insertion This key out paper will describe our system meme in detecting propaganda in memes

Random Swap This paper in describe our system in detecting propaganda will memes

Random Deletion This paper will describe system in detecting propaganda in memes

Back-translation This document describes our Memorandum Propaganda Detection System

Table 1: Generated Samples using Data-augmentation

Figure 1: Approach 2 Training Schema

trained on a different approach. The ensemble
model consists of 1 DeBERTa (He et al., 2021)
model and 4 RoBERTa models each trained in a dif-
ferent approach or data pre-processing technique.
We have two training approaches we used in train-
ing our models. The first one is a typical fine-
tuning. The second approach consists of two iter-
ations. In the first iteration, the model is trained
on the pre-processed dataset. In the second itera-
tion, the model from the first iteration is fine-tuned
on the Competition dataset exclusively. Figure 1
demonstrates the second approach.

4.1 Proposed System

The system is an ensemble model of 5 classifiers.
One of them is using the DeBERTa large classifier,
and the rest are RoBERTa large classifiers. Each
classifier is trained on a different approach/pre-
processing. For the DeBERTa large classify, the
Augmented dataset was used with the stop words re-
moved and lowered text case. Then we trained it on
the first approach for six epochs. It achieved F1 mi-
cro of 0.554 on the development set. As mentioned
earlier, there are 4 RoBERTa large classifiers; the
first classifier is trained on the Competition dataset
and the External dataset without augmentation. We
dropped samples that do not have any propaganda
technique and trained the model on the first ap-
proach for four epochs. It achieved an F1 micro
score of 0.550. The second RoBERTa classifier

has the same pre-processing as the first RoBERTa
classifier but is trained on the second approach. It
achieved an F1 micro score of 0.602 on the de-
velopment set. The third RoBERTa classifier is
trained on the Augmented dataset with the stop
words and trained using the first approach with
four epochs. It achieved F1 micro of 0.54. The
fourth RoBERTa classifier is the same as the third
model but fine-tuned on the Competition dataset
and achieved an f1 score of 0.62. Table 2 summa-
rizes the performance of the classifiers of LeCun’s
ensemble model.

5 System Analysis

5.1 Ensemble Analysis
This section will be analyzing different combina-
tions of the models that lead to the final proposed
system. In the second approach, we noticed that
fine-tuning the classifiers from the first iteration
on the Competition dataset will always boost the
performance up to 0.1 additional f1 micro scores
on the development set. However, when it came to
the ensemble model, it turned out that the ensem-
ble model with classifiers from the second training
approach doesn’t increase the overall performance,
and sometimes it decreased it. Table 3 demon-
strates the performance of different classifiers com-
binations. Ensemble (A) consists of classifier (3)
with f1 micro of 0.602 and classifier (5) with f1 mi-
cro of 0.62. After the ensemble, the overall score

1070



# Model Type Epochs LR SQM BS Dataset Approach F1-Macro F1-Micro
1 DeBERTa Large 3 2e-06 164 8 Augmented 1 0.430 0.554
2 RoBERTa Large 2 2e-05 64 8 Competition + External 1 0.340 0.550
3 RoBERTa Large 3 2e-05 64 8 Competition + External 2 0.388 0.602
4 RoBERTa Large 4 2e-05 128 16 Augmented 1 0.358 0.540
5 RoBERTa Large 2 2e-05 128 16 Augmented 2 0.430 0.622

Table 2: Models Hyper-parmeters. LR (Learning Rate), SQM (Sequence Max Length), BS (Batch Size)

Ensemble Combination F1 Micro F1 Macro
A (3)(5) 0.58 0.40
B (4)(5) 0.59 0.40
C (3)(4)(5) 0.62 0.41
D (2)(3)(4)(5) 0.60 0.37
E (1)(2)(3) 0.56 0.39
F (1)(2)(3)(4) 0.59 0.40
G (1)(2)(3)(4)(5) 0.64 0.44

Table 3: Performance on Different Ensemble Combina-
tions

dropped to 0.58. However, Ensemble (A) suggests
that ensembling classifier (3) and classifier (5) isn’t
optimal. In the final ensemble model (G), we no-
ticed that the overall score would decrease if we
removed one of these models. For example, in en-
semble (F), classifier (5) was dropped, and both f1
micro and macro decreased.

5.2 Error Analysis

This section examines the ensemble model weak-
nesses to give insight on what to do next to improve
the model performance. We have generated the con-
fusion matrix and scores for each class for the test
set (see Appendix). In the confusion matrices, the
”None” class indicates that either the model pre-
dicted an incorrect class (not in the ground-truth
labels set) or it didn’t predict the correct class (in
the ground-truth labels set but not in the predicted
labels set). It is worth noting that the correctly
classified ”None” (not in the predicted labels set
and not in the ground-truth labels set) is not pro-
vided in the model evaluation confusion matrix.
We noticed that the model performs poorly at de-
tecting the classes (last column) in the input test
(see Figure A2). One possible explanation for this
is that the model is trained on data that has a lot
of samples without propaganda (count of labels
= 0) (see Figure A1). In addition to that, the la-
bel matrix is sparse (zero is the dominant label
in a one-hot vector). One possible solution is to
remove samples with zero labels and rely on the

sparsity of vectors in detecting samples without
propaganda. Another possible solution is to train
a Two-Stage model, where the first stage filters
out non-propaganda samples and the second stage
classify the propaganda samples.

6 Conclusion and Future Work

In this paper, we presented our proposed system,
LeCun, for detecting propaganda in contextual con-
tent. We have used an external dataset from a
previous SemEval competition and performed a
data-augmentation on the external dataset to ex-
pand the dataset size. We have also investigated
different ensemble combinations for state-of-the-
art pre-trained language models. However, there
are many questions we got throughout our partici-
pation in this competition which made us curious
to investigate. These questions are:- What is the
influence of the data augmentation on the model
performance? What is the influence of using an
external dataset? How can the model weaknesses
be improved? How can span identification help in
improving the score of technique classification?

For future work, we will be working on answer-
ing these questions. We plan to do more in-depth
experimenting with different augmentation tech-
niques and different model architectures. We will
also investigate the influence of the external dataset
by training models on the competition dataset, ex-
ternal dataset separately and compare the final re-
sults of each.
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Label F1-score Precision Recall Support
Appeal to authority 0.0 0.0 0.0 7

Appeal to fear/prejudice 0.57 0.40 0.47 10
Black-and-white Fallacy/Dictatorship 1.0 0.29 0.44 77

Causal Oversimplification 0.0 0.0 0.0 3
Exaggeration/Minimisation 0.60 0.47 0.53 19

Flag-waving 0.40 0.33 0.36 6
Name calling/Labeling 0.64 0.55 0.59 53

Loaded Language 0.80 0.74 0.77 100
Presenting Irrelevant Data (Red Herring) 0.0 0.0 0.0 4

Reductio ad hitlerum 1.0 0.33 0.50 3
Misrepresentation of Someone’s Position (Straw Man) 0.0 0.0 0.0 1

Thought-terminating cliché 0.0 0.0 0.0 6
Bandwagon 0.0 0.0 0.0 1

Doubt 0.67 0.21 0.32 28
Repetition 0.0 0.0 0.0 1

Slogans 0.2 0.05 0.08 19
Whataboutism 1.0 0.1 0.18 10

Smears 0.67 0.18 0.28 45
Glittering generalities (Virtue) 0.0 0.0 0.0 11

Obfuscation, Intentional vagueness, Confusion 0.0 0.0 0.0 1

Table 1: Classification report of the submitted system on the test set

Figure A1: Labels count per sample distribution of Competition + official dataset
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Figure A2: Confusion matrix of the submitted system on the test set - i-th row and j-th column entry indicates the
number of samples with true label being i-th class and predicted label being j-th class
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Abstract

Memes are one of the most popular types
of content used to spread information online.
They can influence a large number of peo-
ple through rhetorical and psychological tech-
niques. The task, Detection of Persuasion
Techniques in Texts and Images, is to detect
these persuasive techniques in memes. It con-
sists of three subtasks: (A) Multi-label classi-
fication using textual content, (B) Multi-label
classification and span identification using tex-
tual content, and (C) Multi-label classification
using visual and textual content. In this pa-
per, we propose a transfer learning approach
to fine-tune BERT-based models in different
modalities. We also explore the effectiveness
of ensembles of models trained in different
modalities. We achieve an F1-score of 57.0,
48.2, and 52.1 in the corresponding subtasks.

1 Introduction

Memes are text superimposed on graphics that con-
vey messages in the form of jokes, sarcasm, etc.
In the current era of the internet and social media,
they are very quick to spread. If used as a part of a
disinformation campaign, it can be quite tricky to
notice the agenda behind them and has the potential
to influence a large mass of people without them
realizing it (Muller, 2018; Tardáguila et al., 2018;
Glowacki et al., 2018).

To this end, SemEval 2021 Task 6 (Dimitrov
et al., 2021) focuses on identifying such persuasive
techniques (Miller, 1939) in a multimodal (visual-
linguistic) setting. It consists of three subtasks that
enable the participants to study the problem in each
modality. Only the English textual cues are used
in tasks A and B, while the visual cues are also
used in task C. Task B is a modification of task A
which further requires predicting the spans for each
identified technique as well.

∗The authors have contributed equally.

Figure 1: Sample memes demonstrating the multi-
modal setting

Meme classification is a multimodal problem
that often requires visual and textual cues to con-
vey a message. Memes can convey very different
meanings if either of the cues is removed. A few
samples are shown in figure 1 to demonstrate the
importance of visual and textual cues for classifica-
tion.

We experiment with BERT (Devlin et al., 2019)
based unimodal models for tasks A and B. Since
they are state-of-the-art models for natural lan-
guage understanding, they are a good choice for
understanding the complex propaganda techniques
in texts. Transformers (Vaswani et al., 2017) have
limited sequence length, which limits their perfor-
mance on longer data, but in the case of memes,
the textual content is also very limited.

For task C, we experiment with Visual-
Linguistic (VL) models like UNITER (Chen
et al., 2020), VisualBERT (Li et al., 2019),
LXMERT (Tan and Bansal, 2019) for the cross-
modal understanding of memes. We further explore
the effectiveness of ensembling models trained in
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different modalities.
The code for all subtasks is avail-

able at http://github.com/kshitij98/

multimodal-propaganda.git

2 Background

Propaganda aims to push biased agendas to influ-
ence people’s mindsets. It is successful in achiev-
ing its goal by hiding its way through any of the
numerous media platforms available in the current
world. A major factor behind the success of such
campaigns is the boom of the internet and social
media in recent years. Another factor being the dif-
ficulty to spot such techniques manually because of
the high volume of text produced and the unnotice-
able nature of such content. With the recent interest
of the research community in ”fake news,” the de-
tection of persuasive techniques or highly biased
texts has emerged as an active research area. Some
of the previous work in this direction analyzes the
general pattern of propaganda (Garimella et al.,
2018; Chatfield et al., 2015), performs analysis at
a document level (Rashkin et al., 2017; Barrón-
Cedeño et al., 2019) and a fine-grained analysis of
the text (Da San Martino et al., 2019, 2020). How-
ever, most previous work analyses the techniques
in a textual unimodal setting only. This work stud-
ies propaganda techniques in a new age domain
like memes.

Meme classification task can be considered a
combined VL multimodal problem. It is similar
to the currently popular VL problems like Visual
Question Answering (Antol et al., 2015), Visual
Commonsense Reasoning (Zellers et al., 2019) and
Visual Entailment (Xie et al., 2019), as we have
to classify semantically correlated text with that
of the visual content in the image. Hence a cross-
modal approach under vision and text should per-
form better than unimodal architectures. Basic VL
approaches are based on simple fusion techniques
in the form of early or late fusion to correlate uni-
modally trained visual and textual models. How-
ever, in an ideal scenario, a multimodally trained
model should be more effective in detecting persua-
sive techniques in memes. With the rising interest
in VL problems, recent work attempts to study sim-
ilar problems in a VL multimodal setting (Gomez
et al., 2020; Kiela et al., 2020; Suryawanshi et al.,
2020).

Data Description The dataset consists of 951
memes in total, which is further divided into train/

Figure 2: Data Distribution of the labels in the training
set

dev/ test splits. All the tasks have the same set of
memes in their training sets, but the labeling differs
for each of them. For task A, only the textual cues
were used to identify the techniques. For task B,
the spans of each technique were further detected.
For task C, more techniques were identified using
visual cues.

The distribution of the labels is illustrated in
figure 2. Detailed information of the dataset can be
found in the task description paper (Dimitrov et al.,
2021).

3 System Overview

Systems proposed for all the tasks use BERT-based
models with task-specific modifications.

The proposed systems are explained in detail
below:

3.1 Task A - Text Classification

We use transfer learning to fine-tune BERT-based
models for this task. To fine-tune the models,
we experiment with BASE and LARGE variants of
BERT and RoBERTa. We attach a feed-forward
network on the [CLS] token embedding with two
linear layers having the model’s default dropout
and Tanh activation layer in between. The model
architecture is illustrated in figure 3a. We apply
a standard Binary Cross Entropy loss to train this
model with the hyperparameters mentioned in table
1. Since there is a substantial class imbalance in the
dataset, we add weights to the positive samples in
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Figure 3: Proposed architectures for the given subtasks

the loss function by using the following equation:

`(x,y) = − 1

Nd

N∑

n=1

d∑

k=1

[pkykn log x
k
n + (1− ykn) log(1− xkn)]

pk =
1

fk
(|K|−fk)

(1)

Where N is the batch size, n index denotes nth

batch element, d is the number of classes, f stands
for a vector of class absolute frequencies calculated
on the train set, x is the output vector from the last
Sigmoid layer, y is a vector of multi-hot encoded
ground truth labels and |K| is the size of the train
set.

We finally use the standard Sigmoid activation
function to compute probabilities for each label.

3.2 Task B - Span Identification and Text
Classification

We experiment with the same BERT-based en-
coders for this task.

Pre Processing Since the spans are given on
character-level in the dataset and the transformer
models run on token-level, we transform all the
spans to token-level by taking the intersection with
the tokenized input. Further, we train the model
with the obtained token-level labels as targets.

Model We model the problem statement as a
token-level multi-label classification problem for
span identification. The model architecture is illus-
trated in figure 3b. We use the same classifier to
classify all token embeddings. To handle class im-
balance, we apply weighted Binary Cross-Entropy
loss with class weights as mentioned in equation 1

Post Processing Since all tokens of a word
should belong to the same set of classes, we merge
all the tokens of each word and assign a union of
those classes to the chosen word.

Finally, all the words are classified using the
following equation where Wi is the set of labels of
the ith word, Li,j is the set of labels of the jth token
of the ith word and Ni is the number of tokens of
the ith word:

Wi =

Ni⋃

j=1

Li,j

We do not apply loss on special tokens so that
the classifier is not misled while training.

3.3 Task C - Visual-Linguistic Classification

We experiment with Visual-Linguistic (VL) models
for this task. Since meme classification is a multi-
modal task, a multimodal transformer architecture
should be a good choice.

Pre Processing The image tokens used in the
VL models are extracted using Faster R-CNN (Ren
et al., 2015) and a fixed number of image tokens
are created by extracting the features of the top 36
regions of interest.

Model We first experiment with training the VL
models directly. Although the VL models should
perform better in the presence of extra cues for clas-
sification, poor performance is observed compared
to the powerful textual-only models.

On further analyzing the problem, we observe
that propaganda detection is a complex semantic
problem, and often the classes can be detected by
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Parameter Task A Task B Task C

VL Ensemble

Dropout 0.1 - - -
Max Sequence Length 128 512 128 128
Batch Size 8 8 16 32
warmup - - 0.1 0.1
Learning Rate 1e-05 1e-05 1e-05 1e-05
patience 50 50 50 50
Weight Decay - 0.01 0.01 0.01
Optimizer Adam AdamW BertAdam BertAdam

Table 1: Hyperparameters

using just the text. So, we experiment with the
textual models and ignore the visual cues in the
data. Surprisingly, the textual model outperforms
the VL model when trained to learn multimodal
labels using just the textual cues. We further study
both models to better understand the learnings of
each of them (see Section 5) and continue experi-
mentation with ensembling both models.

We propose an ensemble of multimodal trans-
formers like UNITER, VisualBERT, LXMERT
with unimodal transformers like BERT and
RoBERTa to help the classification model as each
architecture can focus on their domains and later
merge those embeddings. Rather than using a naive
average ensembling method, we propose our own
model, illustrated in figure 3c. Our model con-
catenates the [CLS] token embeddings from trans-
formers in each modality and then applies classi-
fication on top of the concatenated vector. The
base encoders are fine-tuned unimodally and then
frozen while training the ensemble classifier. To
train the textual model unimodally, we train the tex-
tual model with textual labels only to learn relevant
features.

4 Experimental Setup

4.1 Implementation

We use HuggingFace 1 library (Wolf et al., 2020) to
experiment with textual models, and use the official
implementations of the multimodal transformers in
PyTorch2 (Paszke et al., 2019). The models were
trained with the default hyperparameters with an
exception for the parameters mentioned in table
1. All experiments were conducted using Nvidia
GeForce RTX 2080 Ti GPU.

For training the models, we use the same train/
dev/ test split as mentioned in the task, which is

1 Transformers, v4.2.0, https://huggingface.
co/transformers/

2PyTorch, v1.7.1, https://pytorch.org/

in the ratio 10:1:3 with 951 samples in total. We
use the best-performing model by comparing the
F1-micro scores on the validation set for all our
experiments.

4.2 Evaluation Metrics

For tasks A and C, the F1-micro score is used as
the main performance metric. Due to various low
resource classes in the dataset, F1-macro was also
used to give weight to the smaller classes in the
performance metric, but it was revealed to be highly
impacted by small variations in the model.

For task B, we use the official evaluation metric
as defined in the task. As the task is a multi-label
sequence tagging task, the standard micro-averaged
F1 is modified to account for partial matching be-
tween the spans.

5 Results

We conduct several experiments to compare the per-
formance of models on each of the tasks. Detailed
information can be seen in table 2.

For task A, RoBERTa LARGE is the best perform-
ing model on the task. Although the average per-
formance of the model is worse than BERT LARGE
on the test set, the maximum performance is still
better.

Similarly, for task B, RoBERTa LARGE outper-
forms other models by a large margin.

For task C, we trained the textual models on
visual-linguistic labels for a fair comparison with
the other VL models. Unexpectedly, they also show
decent performance and surprisingly perform better
than the multimodal transformers. Finally, the en-
semble models are trained with their textual model
trained on textual labels and the VL model trained
on VL labels. They outperform their unimodal
components and end up with a fair performance
increase in each of the cases.

During the post-evaluation phase, we conduct
more experiments and report the corresponding
performances on the test set for the best-validated
models on the dev set. We realize that our submit-
ted model performed worse on the test set in task C
because the checkpoint used for test set predictions
was different from the best validation checkpoint.

The final values we achieve on the test set
by using the best validation set checkpoints are
57.56, 48.23, and 55.68 by using RoBERTa LARGE,
RoBERTa LARGE and RoBERTa LARGE + UNITER,
respectively on all the subtasks.
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Model Task A Task B Task C
Dev Set Test Set Dev Set Test Set Dev Set Test Set

BERT BASE 64 ±0.7 52.2 ±2.5 53.1 ±1 45.6 ±1.5 63.3 ±1.2 51.9 ±1
BERT LARGE 62.8 ±0.8 54.8 ±1.5 53.5 ±2.1 44.7 ±2.5 62.7 ±1.4 52.5 ±0.9
RoBERTa BASE 61 ±0.8 51.2 ±1.2 53.2 ±0.6 43.9 ±0.9 61.5 ±1.1 49.8 ±1.2
RoBERTa LARGE 64.7 ±1.1 53.2 ±3.9 58.5 ±2.1 47.6 ±1.5 63.9 ±1.1 54.2 ±1

UNITER 64.9 ±0.2 49.2 ±0.6
VisualBERT 57.8 ±0.6 45.8 ±0.7
LXMERT 54.5 ±0.3 44.4 ±0.0

BERT BASE + UNITER 66.1 ±0.2 52.9 ±0.8
RoBERTa LARGE + UNITER 67.3 ±0.9 54.9 ±0.6
BERT BASE + VisualBERT 63.1 ±0.3 53.1 ±0.5
RoBERTa LARGE + VisualBERT 64.4 ±0.5 52.7 ±1.9

Table 2: Mean and std of F1-micro scores computed from 10 runs of the mentioned models. Test set values are
reported after choosing the best model for the dev set using early stopping.

Figure 4: Comparison of different models in the 3 most
occurring classes. F1-micro scores of 10 runs are com-
puted on the dev set.

We observe that all BERT-based models give a
decent performance for all tasks. An interesting
insight we get from the visual-linguistic task is that
the problem is not completely multimodal. Sev-
eral of the persuasive techniques can be identified
by using just the textual cues, which is evident
from figure 2 as well. While textual models like
RoBERTa are pretrained on a much larger textual
dataset and are able to learn more complex seman-
tics from the data, VL models suffer when used in
textual-only domains. We carry out experiments to
further study the differences in these models with
different types of labels and propose an architecture
that benefits from both models.

A class-wise comparison is carried out for all
models. Since several of the classes have very low
positive samples, it is difficult to draw conclusions

because of the high variance in performance due
to different model initializations, so we compare
the most frequently occurring labels only. The dif-
ference in the performance of different models is
illustrated in figure 4. For this comparison, we
train the textual model on multimodal and textual
labels to compare the capability of the models. Ide-
ally, the textual models should be trained on textual
labels only to learn more relevant features. The
ensemble is trained with a textual model trained
on textual labels and a VL model trained on VL
labels. The comparison shows that the multimodal
models are performing much better for detecting
Smears, which has various samples which require
visual cues as well. Another observation is that
RoBERTa is performing better on Loaded Lan-
guage and Name calling / Labelling. Training an
ensemble of the textual model and the multimodal
is helping the model perform better in all classes.

To further study the models, we report the per-
formance for each of them in different modalities.
To measure the textual performance of the models,
we compare the sets of labels in task A and C to
shortlist labels which were identified only after the
presence of visual cues. We do not consider those
predictions and calculate the F1-micro score for the
remaining subset of the predictions. Similarly, for
measuring the visual performance, we do not con-
sider the labels which were identified by just using
the textual cues. The performance of several runs
of the models is compared in figure 5. The compari-
son also supports the claim that ensembling models
trained in different modalities help to learn from

1079



Figure 5: Comparison of different models in different
modes. F1-micro scores of 10 runs are computed on
the dev set.

the best of both worlds.

6 Conclusion

Although detecting persuasive techniques in
memes is a multimodal problem, often, most of
the techniques can be identified by just using the
textual cues from the meme. Since VL models are
still in their nascent stages, powerful textual models
help with solving the problem at hand. Future work
can be done to improve these kinds of problems
that are not multimodal in the truest sense. The en-
sembling method used in our model is very basic;
better architectures can be explored to continue this
line of work.
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Cristina Tardáguila, Fabrı́cio Benevenuto, and Pablo
Ortellado. 2018. Fake News Is Poisoning Brazil-
ian Politics. WhatsApp Can Stop It. https:
//www.nytimes.com/2018/10/17/opinion/
brazil-election-fake-news-whatsapp.
html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Ning Xie, Farley Lai, Derek Doran, and Asim Ka-
dav. 2019. Visual entailment: A novel task for
fine-grained image understanding. arXiv preprint
arXiv:1901.06706.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. From recognition to cognition: Vi-
sual commonsense reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

1081



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 1082–1087
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

MinD at SemEval-2021 Task 6: Propaganda Detection using Transfer
Learning and Multimodal Fusion

Junfeng Tian, Min Gui, Chenliang Li, Ming Yan, Wenming Xiao
Alibaba Group, China

{tjf141457, guimin.gm, lcl193798, ym119608, wenming.xiaowm}@alibaba-inc.com

Abstract
We describe our systems of subtask1 and sub-
task3 for SemEval-2021 Task 6 on Detection
of Persuasion Techniques in Texts and Im-
ages. The purpose of subtask1 is to iden-
tify propaganda techniques given textual con-
tent, and the goal of subtask3 is to detect
them given both textual and visual content.
For subtask1, we investigate transfer learning
based on pre-trained language models (PLMs)
such as BERT, RoBERTa to solve data spar-
sity problems. For subtask3, we extract hetero-
geneous visual representations (i.e., face fea-
tures, OCR features, and multimodal represen-
tations) and explore various multimodal fusion
strategies to combine the textual and visual
representations. The official evaluation shows
our ensemble model ranks 1st for subtask1 and
2nd for subtask3.

1 Introduction

With the recent interest in “fake news”, the de-
tection of propaganda or highly biased texts has
emerged as an active research area (Da San Mar-
tino et al., 2020, 2019; Chernyavskiy et al., 2020).

SemEval-2021 Task 6 (Dimitrov et al., 2021)
provides three subtasks aiming to detect persuasion
techniques in texts and images. We participate
in subtask1 and subtask3, which are defined as
follows:

• subtask1: Given only the “textual content” of
a meme, identify which of the 20 techniques
are used in it. This is a multilabel classifica-
tion problem.

• subtask3: Given a meme, identify which of
the 22 techniques are used both in the textual
and visual content of the meme (multimodal
task).

For subtask1, we focus on using transfer learn-
ing to tackle problems related to the scarcity of data

since deep learning models require a whole lot of
data while it is difficult to obtain vast amount of
the labeled data. Especially, we first fine-tune the
pre-trained language models on an external dataset
from SemEval-2020 Task 11 (Da San Martino et al.,
2020) and then continue to fine-tune them on the
training dataset of SemEval-2021 Task 6. The
probabilities of these tuned models are averaged to
make the final prediction.

For subtask3, we concentrate on multimodal fu-
sion to combine textual and visual representation.
Heterogeneous visual representations are extracted,
including face, OCR and multimodal representa-
tions. Face representation consists of recognized
human faces and facial expressions. OCR represen-
tation can capture the relations among snippets in
an image. Multimodal pre-trained model is capable
of simultaneously processing multimodality inputs
for joint visual and textual understanding. After
that, we explore three multimodal fusion strategies
(i.e., Average, Concat and MLP) to combine the
textual and visual representations.

The experimental results show that transfer learn-
ing can leverage knowledge from source data to
tackle problems related to the scarcity of data,
and heterogeneous visual representation (i.e., face,
OCR, and multimodal representation) can be used
as complementary features to better detect persua-
sion techniques. Our ensemble model ranks 1st for
subtask1 and 2nd for subtask3.

2 System Overview

In this section, we provide a general overview of
our systems for the two subtasks. We consider
the propaganda detection task as multimodal multi-
class multi-label classification task, predicting one
or more labels given an input text and an input
image.

1082



2.1 Model
Various pre-trained models are explored to extract
textual and visual features, and these textual and
visual features are fused to predict labels.

Textual Representation In this paper, five pre-
trained language models (PLMs) are used. Repre-
sentations of the special token [CLS] are passed
to the classification layer. We briefly describe each
PLM:

• BERT (Devlin et al., 2019) is a powerful
transformer-based PLM and enables bidirec-
tional training using a “masked language
model” (MLM) pre-training objective. The
masked language model randomly masks
some input tokens and aims to predict the
masked tokens. BERT also use next sentence
prediction (NSP) objective during pretraining,
which is a binary classification loss for predict-
ing whether two segments follow each other
in the original text. With tailored finetune ob-
jectives, BERT can improve performance on
downstream tasks such as classification tasks.

• RoBERTa (Liu et al., 2019) proposes an
improved recipe for training BERT models
and boosts the performance on GLUE(Wang
et al., 2019), RACE(Lai et al., 2017) and
SQuAD(Rajpurkar et al., 2016). It shares
the same model architecture with BERT, and
mainly improves BERT by dynamic masking
and a larger byte-level Byte-Pair Encoding
(BPE)(Sennrich et al., 2016).

• XLNet (Yang et al., 2019) integrates the seg-
ment recurrence mechanism and relative en-
coding scheme of Transformer-XL(Dai et al.,
2019) into pretraining with reparameteriz-
ing. It can capture the dependency between
the masked positions and alleviate a pretrain-
finetune discrepancy.

• DeBERTa (He et al., 2020) disentangles atten-
tion mechanism and encodes each word with
two vectors representing content and position,
respectively. An enhanced mask decoder is
also used to incorporate absolute positions in
the decoding layer to predict the masked to-
kens in model pre-training. These methods
enables DeBERTa to obtain competitive per-
formance of both natural language understand
(NLU) and natural language generation (NLG)
downstream tasks.

• ALBERT (Lan et al., 2019) replaces the next
sentence prediction (NSP) loss with a sen-
tence order prediction (SOP) loss to better
model inter-sentence coherence. Besides, it
equips two parameter reduction techniques
to lower memory consumption and increase
the training speed of BERT. With fewer pa-
rameters compared to BERT-large, ALBERT
establishes new state-of-the-art results on the
GLUE, RACE, and SQuAD benchmarks.

Visual Representation Three visual representa-
tions are adopted, including face representation,
OCR representation and single-stream multimodal
representation.

• Face Representation It is important to rec-
ognize faces and facial expressions for pro-
paganda detection. We use a state-of-the-art
face recognition model, which is a ResNet-34
network (He et al., 2016) with 29 conv lay-
ers. In an image, each face is encoded as a
128 dimensional vector using the published
toolkit1 and adopt mean pooling for the final
face representation.

• OCR Representation For text in an image,
the 2-D position of the text can capture the
font size and the relationship among tokens
within the image. Therefore, we use a 2-D po-
sition embedding to jointly model interactions
between text and layout information across
the image. We extract the bounding box 2-D
position using the Microsoft OCR2.

• Multimodal Representation Recent studies
on vision-language pre-training have pushed
the limits of a variety of Vision-and-Language
(V+L) tasks, and both the image and text con-
tent can help understand the semantics of the
meme for propaganda detection. Therefore,
we also extract a region-based image features
with Faster R-CNN (Ren et al., 2015) to rep-
resent the image. Then, we follow (Li et al.,
2021) and use a pre-trained multi-modality
model SemVLP to better learn the multi-
modal fusion between the image and text.

Multimodal Fusion For multimodal propaganda
detection, we employ 3 fusing methods to combine
the textual and visual features.

1https://github.com/ageitgey/face recognition
2https://docs.microsoft.com/en-us/azure/cognitive-

services/computer-vision/concept-recognizing-text
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• Average The predicted probabilities of text
and image features are averaged for predic-
tion:

ŷc =(sigmoid(W1(tanh(W
tht) + b1)

+ sigmoid(W2(tanh(W
vhv) + b2))/2

where ht and hv stand for textual and visual
representations, respectively.

• Concat The text and image features is con-
catenated to predict probabilities:

ŷc = sigmoid(W [ht, hv] + b)

• MLP Before making prediction, we map text
and image features to the same semantic
space:

ŷc = sigmoid(W (tanh(W tht +W vhv) + b))

2.2 Training
Multilabel Classifier We provide an additional
label-wise feed-forward network(FFN) and a linear
layer to extract label. At training time, we propose
to minimize the binary cross-entropy (BCE) ob-
jective L as follows: LBCE(ŷc, yc) = −yc log ŷc −
(1 − yc) log (1− ŷc) where yc is the ground truth
of class c and ŷc is the predicted value. At test time,
we predict the label as ỹc = I(ŷc > T ) where
T is a probability threshold and I is the indicator
function.

As for label imbalance problem, focal loss (FL)
(Lin et al., 2017), which down-weights easy ex-
amples and focus training on hard negatives, is
adopted during training.

Transfer Learning It is difficult to get vast
amounts of labeled data for supervised models.
Transfer Learning enables us to utilize knowledge
from previously learned tasks and apply them to
newer, related ones. We use transfer learning from
the news articles domain: we first train the model
using the news data, and then we continue training
for this task. In preliminary experiments, we find
that fine-tuning layers in the process is better than
freezing them as feature extractors.

3 Experimental Setup

3.1 Dataset
We conduct experiments with the train, the dev and
the test datasets provided by SemEval-2021 Task 6
(Dimitrov et al., 2021), which contains 687, 63 and
200 memes for subtask1 and subtask3, respectively.

External Resources We use the annotations of
the PTC corpus (more than 20,000 sentences) from
SemEval-2020 task 11 (Da San Martino et al.,
2020) as external resource. Although its domain is
news articles and fewer techniques are considered,
the annotations are made using the same guidelines
as SemEval-2021 task 6.

3.2 Evaluation Measures
Subtask1 and subtask3 are multi-label classification
tasks. The official evaluation measure for both
tasks is micro-F1. We also report macro-F1.

3.3 Parameter Settings
We adopt the large models and select hyper-
parameters using validation on a subsample of the
training data. The cased models are used because
that upper cases contain strong emotion signals in
this task. We use adamW optimizer(Loshchilov
and Hutter, 2019) with 500 warm-up steps and
train for 10 epochs with a 2e-5 learning rate and
a 8 batch size. The last checkpoint is used for
evaluation.

3.4 Submitted Systems
Post-processing Repetition means repeating the
same message over and over again so that the audi-
ence will eventually accept it. Therefore, we assign
a Repetition label in case if there exists a bigram
appears more than 3 times.

Ensemble We use model ensemble for final sub-
mission. In particular, for subtask1 we explore 5
pre-trained models (using BCE Loss, Focal Loss
and Transfer Learning, respectively), and for sub-
task3 we additionally explore face, OCR, multi-
modal representations and the fusion strategies. We
take the probabilities of these settings and average
them to make the final prediction.

3.5 Test Results
Table 1 and Table 2 list the results of the top-
performing teams for subtask1 and subtask3. We
can see that our proposed model is ranked 1st for
subtask1 and 2nd for subtask3 among all teams.

4 Discussion

More thorough studies and analyses are conducted
in this section, trying to answer two questions: (1)
How is the performance of transfer learning on less
data? (2) How is the performance of multimodal
fusion on multimodal data? Moreover, we give
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Rank Team F1-Macro F1-Micro
1 MinD 0.28993 0.59331
2 Alpha 0.26218 0.57187
3 Volta 0.26621 0.56958

Baseline 0.04427 0.06439

Table 1: Results of top 3 teams for subtask1 (test).

Rank Team F1-Macro F1-Micro
1 Alpha 0.27315 0.58109
2 MinD 0.24389 0.56623
3 1213Li 0.22830 0.54860

Baseline 0.05152 0.07062

Table 2: Results of top 3 teams for subtask3 (test).

error analyses on the test dataset to provide an
overview of problematic labels.

4.1 Transfer Learning

We perform ablation study for each PLM (row)
and each learning method (column) in Table 3 for
subtask1. It shows that:

First, RoBERTa and DeBERTa were generally
the best performing models. Given that RoBERTa
and DeBERTa are carefully tuned models base on
BERT, this result is reasonable.

Second, both Focal Loss and Transfer Learning
help to alleviate data sparsity problems. Focal Loss
help DeBERTa and ALBERT improve 0.7 and 0.6
points. Because Focal Loss assigns higher weights
to sparse samples and reduces the weights to fre-
quent samples. Transfer Learning helps BERT,
RoBERTa, XLNet improve 1.0, 4.0, 5.7 points,
respectively. RoBERTa with Transfer Learning
achieves the best single model score. Transfer
Learning help transfer the parameters trained on
related data or task to the newer model. Instead of
learning from scratch, the newer model can lever-
age knowledge to tackle problems related to the
scarcity of data.

4.2 Multimodal Fusion

For subtask3, we compare different multimodal
representations in Table 4 and fusion strategies in
Table 5. We find that:

(1) both OCR Representation and Multimodal
Representation models outperform the Text Repre-
sentation model. OCR Representation can addition-
ally capture the relative space relationship instead
of sequential information among texts in an image.

PLM
Training

BCE FL Transfer

BERT 0.5833 0.5552 0.5941
RoBERTa 0.6070 0.5950 0.6478
XLNet 0.5573 0.5418 0.6148
DeBERTa 0.6307 0.6378 0.6230
ALBERT 0.5251 0.5319 0.5081

Table 3: Results (F1-Micro) for subtask1 (dev). BCE,
FL, Transfer stand for models training using BCE
Loss, Focal Loss and Transfer Learning, respectively.

Model F1-Macro F1-Micro
Text Representation 0.2481 0.5012
Face Representation 0.1956 0.2332
OCR Representation 0.2722 0.5208
Multimodal Representation 0.2355 0.5876

Table 4: Results for subtask3 (dev). We explore vari-
ous multimodal representations.

(2) Multimodal Representation model achieves
the best single model performance since it jointly
aligns the semantics between image and text and
thus is effective for the vision-language understand-
ing task.

(3) Table 5 lists the results of different fusion
strategy. We combine the text and face representa-
tions since they are the minimal semantic elements
in the image. Concat obtains the best result on both
Macro-F1 and Micro-F1 metrics, though it is the
simplest strategy for fusion.

4.3 Error Analysis

To provide an overview of problematic labels, We
give error analysis in Table 6 and Table 7 . We
find that: (1) Loaded Language and Name Call-
ing, which are the most frequent labels, show rea-
sonably good performance (0.8190 and 0.6667 F1
score).

(2) On the other hand, as to labels with fewer
training samples (less than 20), the system tends
not to predict. Additionally, we find rules for Rep-
etition do not work and all the predicted label are
wrongly classified.

(3) Slogans, Glittering generalities and Smears
are relative hard to identify. Meanwhile, Recall val-
ues of Transfer and Strong Emotions for subtask3
are less than 0.1. It lacks enough training samples
to well fit the network parameters.
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Fusion F1-Macro F1-Micro
Average 0.3673 0.6114
MLP 0.3947 0.6094
Concat 0.4218 0.6114

Table 5: Results for subtask3 (dev). We explore vari-
ous multimodal representations.

Label Precision Recall F1 #
Appeal to authority - - - 13
Appeal to fear 0.4615 0.6000 0.5217 43
B&W 0.6667 0.2857 0.4000 18
Oversimplification 0.4000 0.6667 0.5000 27
Doubt 0.5294 0.3214 0.4000 48
Exaggeration 0.5238 0.5789 0.5500 52
Flag-waving 0.5714 0.6667 0.6154 27
Glittering generalities 0.6667 0.1818 0.2857 32
Loaded Language 0.7197 0.9500 0.8190 358
Straw Man - - - 20
Name calling 0.5658 0.8113 0.6667 218
Obfuscation - - - 4
Red Herring - - - 1
Reductio ad hitlerum - - - 9
Repetition - - - 8
Slogans 0.2857 0.1053 0.1538 44
Smears 0.3864 0.7556 0.5113 200
Cliché - - - 20
Whataboutism 0.5000 0.3000 0.3750 40
Bandwagon - - - 2

Table 6: Precision, Recall and F1 of each label for sub-
task1 (test). The last column (#) stands for the number
of training samples.

5 Conclusion

In this paper, we adopt transfer learning to han-
dle data sparsity problems for subtask1, and fuse
heterogeneous multimodal representation for sub-
task3. The experimental results show that transfer
learning can leverage knowledge from source data
to tackle problems related to the scarcity of data,
and heterogeneous visual representation (i.e., face,
OCR, and multimodal representation) can extract
complementary features.

In future work, we plan to explore fine-grained
multimodal fusion with token representations in
text and object features in images.
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Abstract

Inscribing persuasion techniques in memes is
the most impactful way to influence peoples’
mindsets. People are more inclined to memes
as they are more stimulating and convincing
and hence memes are often exploited by tact-
fully engraving propaganda in its context with
the intent of attaining specific agenda. This
paper describes our participation in the three
subtasks featured by SemEval 2021 task 6 on
the detection of persuasion techniques in texts
and images. We utilize a fusion of logistic re-
gression, decision tree, and fine-tuned Distil-
BERT for tackling subtask 1. As for subtask 2,
we propose a system that consolidates a span
identification model and a multi-label classifi-
cation model based on pre-trained BERT. We
address the multi-modal multi-label classifica-
tion of memes defined in subtask 3 by uti-
lizing a ResNet50 based image model, Distil-
BERT based text model, and a multi-modal ar-
chitecture based on multikernel CNN+LSTM
and MLP model. The outcomes illustrated the
competitive performance of our systems.

Keywords: persuasion techniques, transfer learn-
ing, multimodal neural architecture.

1 Introduction

Persuasion techniques are quite recurrent in so-
cial media contents as it reaches a vast community.
Proselytizing contents are adroitly implanted in
posts and blogs which influence people’s thoughts
unconsciously. Nowadays such techniques are also
being instilled in memes as people’s attention is
easily captured through illustration rather than nar-
ration. Manipulators often use this as a tool to
promote their own deceitful agenda which can be
political or anything else. Fake news is also spread
through these disguised duplicitous contents which

The first four authors have equal contributions.

cause a lot of casualties. Therefore, it is an indis-
pensable task to detect these techniques in multi-
modal contents to protect the users from deception.

The objective of SemEval 2021 task 6 (Dimitrov
et al., 2021) is to detect the persuasion techniques
in textual and multi-modal contents. This task in-
cludes three subtasks where the first two are based
on textual contents only. More precisely, the first
subtask requires us to detect which persuasion tech-
niques among the given 20 techniques are inscribed
in the textual content whereas the second subtask
requires us to not only find which techniques are
used but also to find the specific span of the text
each technique corresponds to. The third subtask
is a multi-modal multi-label classification problem
where we need to identify which of the given 22
techniques are engraved both in the textual and vi-
sual content of the meme. An example from the
provided dataset along with the desired output for
three subtasks is depicted in Figure 1.

Numerous works have been done on the multi-
label classification of text contents. (Chalkidis
et al., 2019) depicted the pre-eminent impact
of bidirectional GRU with label-wise attention
in the legal domain. A consolidation of latent
emotion memory (LEM) network and Bi-GRU
was exploited for multilabel emotion classifica-
tion (Fei et al., 2020). Besides, SemEval 2020
task 11 (Da San Martino et al., 2020) introduced
two subtasks including span identification of propa-
gandistic fragments in text content and technique
classification of propagandistic fragments. The top-
performing team (Morio et al., 2020) in the span
identification subtask utilized several pre-trained
language models for both subtasks. They also pro-
posed an effective ensemble method with stacked
generalization. The winning team (Jurkiewicz
et al., 2020) of the technique classification sub-
task approached with an ensemble of RoBERTa
based models and utilized RoBERTa-CRF archi-
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Tasks Input Output (Persuasion Techniques)

Subtask #1

ELEGANT AT LYING\n\nBRUTAL

WITH THE TRUTH\n

• Loaded Language

• Exaggeration / Minimisation

Subtask #2
BRUTAL: Loaded Language

BRUTAL WITH THE TRUTH: Exaggeration / Minimisation

Subtask #3

ELEGANT AT LYING\n\nBRUTAL

WITH THE TRUTH\n

+
Meme:113_image.png

• Exaggeration / Minimisation

• Glittering Generalities (Virtue)

• Loaded Language

• Smears

Figure 1: An illustration of the different subtasks.

tecture for the span identification subtask. (Wen
et al., 2020) addressed a multi-label image clas-
sification problem by following human behavior
pattern where labels and image features extracted
by the ConvNet were projected to a common latent
vector space to capture label correlation. (Song
et al., 2018) used a deep multi-modal CNN method
for multi-instance multi-label image classification.

In this paper, we present our approaches to ad-
dress the challenges of identifying persuasion tech-
niques in the textual and multimodal contents as
defined in SemEval 2021 task 6. We exploit various
kinds of approaches ranging from traditional statis-
tical classifiers to the state-of-the-art deep learning
architecture (e.g. multi-kernel CNN+LSTM, MLP,
and ResNet50) and transformer models (e.g. BERT,
DistilBERT, and FastBERT) in our proposed uni-
fied architecture.

We arrange the rest of the paper as follows: we
explicate our proposed framework in Section 2.
Section 3 enfolds the experimental details and com-
parative performance analysis. We analyze the per-
formance of our models and also portray an analy-
sis of erroneous detection in Section 3.4. Finally,
we conclude this paper with some future prospects
in Section 4.

2 Proposed Architecture

2.1 Subtask 1: Multi-label Persuasion
Techniques Classification

In subtask 1, we need to design a method to identify
the persuasive techniques used in textual content
of a meme. The overview of our proposed system
is depicted in Figure 2. In our proposed system, we
combine three different models: 1) Logistic regres-
sion classifier, 2) Decision tree classifier, and 3)

Text

Predicted Persuasion Techniques

Predicted Labels

Decision

Tree

Fusion of Models

Fine-tuned

DistilBERT

Logistic

Regression

Preprocessing

Predicted Labels Predicted Labels

Figure 2: Proposed framework of Subtask 1.

Fine-tuned DistilBERT model. We apply some pre-
processing techniques including removing punc-
tuations, numbers, special and single characters,
multi-space, text lower-casing, word contradiction,
and lemmatizing (Loper and Bird, 2002). Using
our proposed models, we get different probabil-
ity values for corresponding labels. Comparing
our threshold score against the probability values,
we find multi-label predictions from the individual
models and employ the majority voting scheme to
obtain our final multi-label predictions.

2.1.1 Logistic Regression
Logistic regression (Cheng and Hüllermeier, 2009)
is a machine learning model using probability con-
cepts. It exploits some set of discrete values and
the result is converted into a probability score by
using a logistic sigmoid function. In our system,
we employ a Tf-Idf vectorizer scheme for effective
feature representation. We fix our threshold score
to 0.05 for converting the probability score into a
specific label category. If the probability score is
greater than threshold values, it returns 1 as a true
value for a specific label and vice versa.
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2.1.2 Decision Tree

The decision tree (Safavian and Landgrebe, 1991)
is a supervised learning classifier where values are
divided ceaselessly following some specific param-
eters. We divide the decision tree into two sub-
components, one is decision nodes which split our
values and another is leaves which are considered
as final decided outcomes. For multi-label classi-
fication, we get different probabilities for all the
class labels and set the threshold value to select
labels following the same process as employed in
the logistic regression.

2.1.3 Fine-tuned DistilBERT

DistilBERT (Sanh et al., 2019) is a transformer
model that has 40% fewer parameters than BERT-
base and works 60% faster. We fine-tuned Distil-
BERT model using the training dataset. For train-
ing purposes, we format the pre-processed data
into two columns. One column contains the pre-
processed text, and the other column carries labels.
We convert the labels using scikit-learn(Pedregosa
et al., 2011) MultiLabelBinarizer. We construct a
neural network named DistilBERTClass involving
the DistilBERT model along with the dropout and
linear layer on top of it. The dimension of the linear
layer is 20 which is the number of labels given in
our subtask. We train the model a couple of times
by feeding our dataset and we get the probability
of each label. We use a random threshold to select
the final labels.

2.1.4 Fusion of Models

We assemble our three individual models through
a majority voting scheme. In majority voting, we
count the occurrences of labels from three distinct
models. We append the labels with the frequency
of 2 or more to the final list of labels. Therefore,
we obtain our final list of persuasive techniques for
a given meme text.

2.2 Subtask 2: Span Identification of
Persuasive Techniques

We propose a system that integrates a span identifi-
cation model and a multi-label classification model
for this subtask. We exploit an approach based on
pre-trained BERT (bert-base-uncased). We employ
SemEval 2020 Task 11’s (Da San Martino et al.,
2020) propaganda dataset as an external corpus.
The overview of our proposed model is depicted in
Figure 3.

Text

All possible phrases 

in the text

SemEval 2021: Task 6

dataset
SemEval 2020: Task 11

SI dataset

Prediction(0,1) on 

phrases

Phrases with 

prediction “1”

SemEval 2020: Task 11

TC dataset

Phrases with 

labels and spans
1

0

Persuasive

Not-Persuasive

Pretrained BERTPretrained BERT

Binary Classification Multi-label Classification

Figure 3: Proposed framework of Subtask 2.

2.2.1 Span Identification

We accumulate the sentences extracted from the
articles of SemEval 2020 Task 11’s SI dataset,
SemEval 2021 Task 6’s train, and development
dataset. We derive all possible phrases from these
sentences. Phrases with their indices included
in span are labeled as 1 (Persuasive) while oth-
ers are labeled as 0 (Not persuasive). This cus-
tomized dataset is then sent to the pre-trained BERT
model (Devlin et al., 2019) for training. We also
extract all possible phrases from the test dataset.
The pre-trained BERT model conducts binary clas-
sification on this test set. Here, the phrases are
considered as sentences, so this process can be
comprehended as a binary sentence classification
task. After classifying the phrases derived from the
test dataset, the indices of the phrases classified as
1 (Persuasive) are included in the spans and further
processed for technique classification.

2.2.2 Technique Classification

The phrases of the test data that are predicted as
persuasive in the previous segment are used as the
test dataset of this segment. In this portion, we
congregate SemEval 2020 Task 11’s technique clas-
sification dataset, SemEval 2021 Task 6’s train, and
development dataset. In the case of the last two
of them, we only include the text fragments, the
indices of which are included in the provided spans
instead of the whole text. We then send this con-
trived trainset to another pretrained BERT model
with the same configuration as before and operate
multi-label classification on the test set which gen-
erates predicted labels among the given 20 labels
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Figure 4: Proposed framework of Subtask 3.

per phrase. The phrases, their start index, end in-
dex, and their corresponding labels are then reinte-
grated as text fragments, start index, end index, and
technique accordingly with their original text and
converted into a suitable format for submission.

2.3 Subtask 3: Multi-modal Multi-label
Classification

For this multi-modal subtask, we propose a major-
ity voting based architecture as illustrated in Fig-
ure 4. We exploit a fine-tuned DistilBERT model,
an ensemble of multi-kernel CNN with LSTM mod-
ule and MLP module, and a fine-tuned ResNet50
model. These three models produce a list of persua-
sive techniques singularly and these lists are passed
to the majority voting module to obtain the final
list of persuasive techniques.

2.3.1 Fine-tuned DistilBERT
We use the same process of training described in
Section 2.1.3. We accumulate the training and
development dataset in a single corpus. Later, we
use the 90% percent of the data for training and the
rest of used as the validation set for finetuning.

2.3.2 Fine-tuned ResNet50
We perform fine-tuning on the residual neural net-
work (He et al., 2016) having 50 layers. We convert
our meme dataset as the format of the iMet Col-
lection 2019 - FGVC6 dataset (Zhang et al., 2019).

For training purposes, we include an additional la-
bel for the memes which have no labels assigned.
We utilize the “ResNet50” pre-trained model, hav-
ing “imagenet” as weights and 1000 classes. We
interchange the Average pool layer with the Adap-
tiveAvgPool2d layer. We attach some batch nor-
malization layers, dropout, and a linear layer. In the
linear layer, the BatchNorm1d takes 2048 features
as input. In the output layer, we return 23 output
features where we add one additional label with the
number of labels given in our problem. We train
two layers such as layer4 and the last linear layer
with the corresponding learning rate 1e-5 and 5e-3.
We train the model numerous times and then get
the model predictions. Finally, we set a random
threshold to get the final predicted labels.

2.3.3 Ensemble of Multi-kernel CNN +
LSTM and MLP Model

To address the challenge of the multimodal sub-
task, a combination of high-level features in a
neural architecture is conventional. Our proposed
model suggests a fusion of features extracted from
multi-kernel CNN on top of the LSTM model
and MLP (multi-layer perceptron) model. We
exploit two kinds of word embeddings including
word2vec (Mikolov et al., 2013) and fine-tuned
FastBERT (Liu et al., 2020) models which are sent
to the convolutional model of kernel size (2, 3) and
subsequently to the LSTM model.
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Besides, we also explore a multi-layer percep-
tron model for one-dimensional image features,
sentence embeddings, and multi-modal features.

• Image Features: The image features
are extracted from YouTube-8M (Abu-El-
Haija et al., 2016) image feature extractor
model(1024-dimension).

• Sentence Embeddings: These are ex-
tracted from the fine-tuned FastBERT (768-
dimension) model and pre-trained RoBERTa
(768-dimension) (Liu et al., 2019) model.

• Multi-modal Features: VisualBERT (Li
et al., 2019) is exploited to blend image fea-
tures along with text features. We imple-
ment the model proposed by (Li et al., 2020).
We extract the image features utilizing De-
tectron2 (Wu et al., 2019) and the text fea-
tures are encoded from a pre-trained BERT
model. Both features are then merged inside
VisualBERT. The dimension of the features is
(164,768) and we flatten these features for our
MLP module.

The output from two multi-kernel CNN+LSTM
(MKCNN+LSTM) modules and four MLP mod-
ules are concatenated and further transmitted to the
fully connected layer.

2.3.4 Fusion of Models
The list of predicted labels from the above three
models are subsequently passed to a majority vot-
ing module. The primary idea behind majority
voting is based on the frequency of the labels. If
a label exists in the majority of the models, it is
appended in the final list of labels.

3 Experiments and Evaluations

3.1 Dataset Description

In SemEval-2021 task 6 (Dimitrov et al., 2021),
overall 950 data has been provided for subtask 1,
2, and 3. In the case of subtask 1 and 2, training,
development, and test set contain 687, 63, and 200
textual data respectively. For subtask 3, the same
amount of textual and meme data has been accom-
modated since it is a multi-modal subtask. Dataset
for subtask 1 and 3 is annotated with 20 and 22 per-
suasive techniques correspondingly while subtask
2 dataset provides spans of 20 techniques used all
together in the text.

3.2 Experimental Setup
In this section, we illustrate our submitted systems
in SemEval-2021 Task 6. In case of subtask 1, we
use three differents models i.e. logistic regression,
decision tree classifier, and fine-tuned DistilBERT
model. The system configuration of these three
individual models are given in Table 1.

System Settings

L
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io
n 1. max iter: 2000

2. C: 20
3. penalty: l2
4. tol: 0.001

D
ec

is
io

n
Tr

ee

1. min samples split: 2
2. min samples leaf : 1
3. criterion: gini
4. splitter: best

Fi
ne

-t
un

ed
D

is
til

B
E

R
T

1. Tokenizer: distilbert-base-uncased
2. Dropout: 0.2
3. Learning rate: 2e-5
4. Batch size: 16
5. num workers: 4
6. Maximum length: 60
7. Epochs: 10

Table 1: System settings for Subtask 1.

We used the same system configuration of pre-
trained BERT model for two segments i.e. span
identification and multi-label technique classifica-
tion in the subtask 2. The system settings are de-
picted in Table 2.

System Settings

Pr
e-

tr
ai

ne
d

B
E

R
T

1. max seq length: 128
2. Epochs: 1
3. train batch size: 8
4. eval batch size: 8
5. Weight decay: 0.5
6. Learning rate: 4e-5
7. adam epsilon: 1e-8
8. warmup ratio: 0.06
9. max grad norm: 1.0

10. gradient accumulation steps: 1
11. logging steps: 50
12. save steps: 2000

Table 2: System settings for Subtask 2.
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For subtask 3, we used three types of models.
One is a fine-tuned DistilBERT model which is
trained using the text written in a meme. The other
model is a fine-tuned ResNet50 model, and the last
one is multi-kernel CNN+LSTM and MLP model.
These three models trained with the given dataset
using different parameter settings. The system set-
tings for each model are represented in Table 3. As
meme is a combination of text and image, therefore
we consider the majority voting based predictions
as the final predictions for subtask 3.

System Settings

M
ul
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ne
l

L
ST

M
w
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M

L
P 1. nb filters: 200

2. nb rnnoutdim: 600
3. rnn dropout: 0.5
4. optimizer: adam
5. Threshold: 0.3
6. Epochs: 600

Fi
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ed
D
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til

B
E

R
T

1. Tokenizer: distilbert-base-uncased
2. Dropout: 0.25
3. Learning rate: 1e-4
4. Batch size: 16
5. maximum length: 60
6. Epochs: 30

Fi
ne

-t
un

ed
R

es
N

et
50

1. Image Size: (224,224,3)
2. Train Batch Size: 32
3. Test Batch Size: 16
4. Optimizer: Adam
5. Optimizer Learning rate: 2e-4
6. Epochs: 900

Table 3: System settings for Subtask 3.

3.3 Results and Analysis
We now compare our proposed CSECUDSG sys-
tem’s performance with other participants systems
in three subtasks as shown in Table 4, Table 5, and
Table 6, respectively. In all the subtasks, the base-
line system is set to random. The organizers used
the F1-Micro as the primary evaluation measure
for all the subtasks.

The overall scores of the three subtasks por-
tray that our system acquired competitive perfor-
mance. However, in all the subtasks, our system
has some shortcomings with respect to the top per-
forming teams. MinD, Volta, and Alpha are the
top-performing teams in corresponding subtasks.
We further analyze the performance of our systems
in the subsequent section.

Team Name F1-Macro F1-Micro

MinD 0.28993 0.59331
Alpha 0.26218 0.57187
Volta 0.26621 0.56958
CSECUDSG 0.18454 0.48894
NLPIITR 0.12590 0.37917
TriHeadAttention 0.02397 0.18373
Baseline 0.04427 0.06439

Table 4: Comparative performance analysis on test set
for Subtask 1.

Team Name F1-Score Precision Recall

Volta 0.48166 0.50061 0.46409
HOMADOS 0.40737 0.41206 0.40278
WVOQ 0.26787 0.24265 0.29894
CSECUDSG 0.11983 0.07952 0.24303
YNUHPCC 0.09111 0.18583 0.06035
Baseline 0.00952 0.03368 0.00554

Table 5: Comparative performance analysis on test set
for Subtask 2.

Team Name F1-Macro F1-Micro

Alpha 0.27315 0.58109
MinD 0.24389 0.56623
1213Li 0.22830 0.54860
CSECUDSG 0.12117 0.51312
LIIR 0.18807 0.49835
WVOQ 0.23957 0.47779
Baseline 0.05152 0.07062

Table 6: Comparative performance analysis on test set
for Subtask 3.

3.4 Discussion

In this section, we discuss the contribution of each
model’s performance against the combined system.
For subtask 1, we showed the individual model’s
performance on the test set in Table 7. From the
table, we can see that the decision tree classifier
achieved a score of 0.335 where the score is 0.426
and 0.480 in the case of the logistic regression clas-
sifier and DistilBERT model respectively. Analyz-
ing this individual model’s score, we can say that
we achieved the highest score from the DistilBERT
model. After applying majority voting, our score
increased to 0.008% and the final score is 0.48894
which means that the ensemble of three individual
models can detect better than individual models.

In subtask 3, from the Table 8 we observe that
the fine-tuned DistilBERT model provides a little
better score than the majority voting based model.
However, for the multi-modal task, both text and
image contexts are important, therefore we con-
sider the majority voting based model.
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Tasks Text/Image Predicted labels Gold labels
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[  ]
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Figure 5: Erroneous detection of persuasive techniques.

Method F1-Score

CSECUDSG 0.48894

Performance of Individual Models

−Logistic Regression 0.33585
−Decision Tree 0.42685
−Fine-tuned DistilBERT model 0.48064

Table 7: Individual model’s performance for Subtask 1.

Further, we look into the reason behind the inac-
curacy of multiple labels detected by our systems in
all the subtasks. For this purpose, we have shown
some examples in Figure 5. We noticed that due to
the imbalance of labels in the dataset, our systems
could not detect the labels which are present in less
amount. As the percentage of these three labels
i.e. ‘Loaded Language’, ‘Smears’, and ‘Name call-
ing/Labeling’ are higher than the other labels, our
system detects these three labels considerably but
overlooks other labels.

4 Conclusion and Future Directions

In this paper, we traversed different classification
approaches along with a rich set of transfer learn-
ing features to tackle the challenges of the task. To
predict the multiple labels in subtask 1 and 3, we ex-
ploited a unified architecture based on three differ-
ent models. However, for span and technique classi-
fication in subtask 2, we used the pre-trained BERT
model where the SemEval-2020 task 11 dataset is
used to ameliorate the performance.

Method F1-Score

CSECUDSG 0.51312

Performance of Individual Models

−MKCNN+LSTM and MLP model 0.36836
−Fine-tuned ResNet50 model 0.46449
−Fine-tuned DistilBERT model 0.52899

Table 8: Individual model’s performance for Subtask 3.

In the future, for subtask 1 and subtask 2, we
have a plan to employ more pre-processing tech-
niques and to conduct our experiment on efficient
classifiers. Besides, we want to use deep learning
models as well as other transfer learning fine-tuned
models i.e. RoBERTa, BERT, GPT. For subtask 3,
we plan to incorporate various image datasets to
get more efficacious features.
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Universidad de Murcia,

Campus de Espinardo, 30100
Murcia, Spain

joseantonio.garcia8@um.es

Rafael Valencia-Garcı́a
Facultad de Informática,
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Abstract
In writing, humor is mainly based on figura-
tive language in which words and expressions
change their conventional meaning to refer to
something without saying it directly. This flip
in the meaning of the words prevents Natu-
ral Language Processing from revealing the
real intention of a communication and, there-
fore, reduces the effectiveness of tasks such
as Sentiment Analysis or Emotion Detection.
In this manuscript we describe the participa-
tion of the UMUTeam in HaHackathon 2021,
whose objective is to detect and rate humor-
ous and controversial content. Our proposal is
based on the combination of linguistic features
with contextual and non-contextual word em-
beddings. We participate in all the proposed
subtasks achieving our best result in the con-
troversial humor subtask.

1 Introduction

In this manuscript we describe our participation in
the shared task HaHackathon 2021 (Meaney et al.,
2021), proposed in the Forum for Information Re-
trieval Evaluation (IberEval’2021) whose objective
is the identification and evaluation of humorous
and offensive texts written in English. Humor al-
lows you to present the reality by highlighting the
comic and ridiculous side of life. Humor is hard
to identify, even for humans (Vrticka et al., 2013).
On the one hand, there are many forms of humor:
from mild forms, such as jokes or puns, that result
in better and safer social environments, to biting
forms, like sarcasm, which is used as a rhetorical
device. Humor can also have a constructive end,
as happens in satire, where irony, double meaning,
and sharp analogies are used to ridicule someone or
something. On the other hand, the sharper the hu-
mor, the more effort it takes to understand it. When
humor is misunderstood, or when humor itself has
a transgressive purpose, it can lead to controver-
sies and confrontations. Furthermore, an added

difficulty is that humor is highly subjective and
context dependent, making it even more difficult to
understand (Jiang et al., 2019). Nevertheless, the
benefits of endowing to a machine basic notions
about humor and figurative language understand-
ing outweigh the challenges they pose, because
they lead to natural language-based interfaces to
feel more naturally, such as chat-bots and virtual
assistants (Ritschel et al., 2019) and more reliable
results in tasks such as opinion mining.

We participate in all the proposed subtasks of
HaHackathon’2021 with two systems that com-
bines linguistic features (LF) extracted with a tool
developed by our research group with (1) pre-
trained word embeddings (PWE) from fastText
(Mikolov et al., 2017) and GloVe (Pennington et al.,
2014), and (2) contextual word embeddings from
BERT (Devlin et al., 2018) (CWE). Our best re-
sult was achieved in task 1c (controversial hu-
mor), in which we trained a classification neu-
ral network that distinguishes between non-humor,
humor, and offensive but outputs a binary pre-
diction which indicates whether a text is contro-
versial or not. The code is available at https:

//github.com/Smolky/hahackathon-2021.

2 Background

The HaHackathon 2021 challenge consists in two
binary classification problems of humorous content
and controversial tweets and two regression prob-
lems to identify how humorous and controversial
the annotators considered the texts. We only used
the dataset given by the organizers, two pretrained
word embeddings models, and the contextual word
embeddings from BERT.

The dataset provided consisted in 10k tweets
written in English and posted in three subsets,
namely training, development, and testing, with
a ratio of 80-10-10. All tweets were annotated by
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US English-speaking annotators of different gen-
ders and age groups with the following questions:
(1) Is the intention of this text to be funny?, (2)
[If so] How humorous do you find the text? (on
a scale of 1 to 5), (3) Is this text generally offen-
sive?, and (4) [If so] How generally offensive is
the text? (on a scale of 1 to 5). Based on the data
we had during the competition, we observed that
the training dataset was imbalanced for subtask 1a,
with a predominance of humorous tweets (61.65%)
and almost balanced for subtask 2a. For regression
subtasks, the average rating was 2.26 (σ of 0.5670)
for subtask 1b and 0.58 (σ of 0.98) for subtask 2a.

Most of the literature found on the detection of
humor highlights the importance of figurative lan-
guage in which, contrary to the literal sense of lan-
guage, words and expressions change their conven-
tional meaning to refer to something without say-
ing it directly (del Pilar Salas-Zárate et al., 2020).
The reader can find in that work a compendium
of works that analyze sarcasm, irony, and satire in
English. Modern approaches rely on novel deep-
learning transformers, such as the work described
in Javdan et al. (2020), focused on sarcasm from a
figurative language perspective, and in which the
authors used BERT to build an aspect-based sen-
timent analysis system to determine whether the
response is sarcastic. Other works, such as the one
described in del Pilar Salas-Zárate et al. (2017), ex-
plores the differences and similarities in how satire
is perceived in countries that share the language,
but not the cultural background. To do this, they
compare the use of linguistic characteristics with
a corpus of satirical news written in Spanish from
Spain and another written in Spanish from Mexico.

3 System overview

Our proposal is based on the usage of LF, PWE, and
CWE to detect humor and controversial content.
CWE have outperformed previously state of the art
results regarding text classification tasks. However,
we state that both PWE and CWE ignore relevant
clues that are present in writings. For example, we
observed in the dataset provided, the presence of
capital letters (commonly used when shutting or to
raise the voice), quoted sentences or dialogues that
reproduce real or figurative conversations that are
not captured with any of the above techniques.

To obtain the LF, we use a subset of the fea-
tures extracted with UMUTextStats (Garcı́a-Dı́az
et al., 2020, 2021). This tool is inspired in LIWC

(Tausczik and Pennebaker, 2010) but designed by
our research group from scratch for the Spanish
language. As the HaHackathon 2021 dataset only
deals with English, we only extract statistical fea-
tures discarding all features that we had that work
with Spanish lexicons. Specifically, we select:

• Expressive lengthening, drawing out or em-
phasizing a verbalized word, giving it charac-
ter.

• Common typing mistakes, such as starting
sentences in lowercase, numbers, consecutive
repetitions of the same word, and incorrect
use of punctuation.

• Corpus statistics, such as the standard
type/token ratio (TTR), the number of words,
syllables, sentences, quoted sentences, inter-
rogative and exclamatory sentences, and the
average length of the words.

• Punctuation symbols and emoticons.

• Common traits used in social media com-
munication, such as the presence of hyper-
links, hashtags or jargon.

The next step was to obtain the best deep-
learning architecture for each subtask. We evaluate
two main approaches. On the one hand, we com-
bine the LF with PWE and different deep-learning
architectures. On the other, we combine the LF
with CWE from BERT (bert-base-uncased) using
HuggingFace1. After performing these two models,
we sent our results to the platform to evaluate them
with the development dataset, achieving our best
result with BERT for subtask 1a and RNNs for sub-
tasks 1b, 1c, and 2a. After performing these two
models, we sent our results to the platform to eval-
uate them with the development dataset, achieving
our best result with BERT for subtask 1a and RNNs
for subtasks 1b, 1c, and 2a.

4 Experimental setup

Our experimental setup is depicted in Figure 1 and,
in a nutshell, we can described as follows.

First, we perform a preprocessing stage that con-
sist of:

1. Removing social media language, such as hy-
perlinks or mentions.

1https://huggingface.co/ (v3.4.0)

1097



(4) Official results per subtask

(1) Preprocessing

(2) Hyper-parameters

Feature extraction

Training

Testing

HaHackathon dataset

Validation

Training (hyper)

Validation (hyper)

BERT PWEText preprocessing

(3) Re-fit best model per subtask

subtask 1a subtask 1b subtask 1c subtask 2a

Figure 1: Pipeline of the participation of UMUTeam at HaHackathon’2021.

2. Removing digits.

3. Removing word elongations.

4. Transforming the tweets into their lowercase
form.

5. Removing punctuation symbols.

Second, as the organizers of the shared task re-
leased the labels of the development dataset in the
last stage of the competition, we begun the compe-
tition by dividing the 8K tweets of the training data
into two folds in a ratio of 80-20. Third, two main
approaches were evaluated. On the one hand, we
use Talos2 to evaluate different pretrained word em-
beddings models (FastText, GloVe, and word2vec)
and several neural networks architectures (MLP,
CNN, LSTM, BiLSTM, GRU, and BiGRU). On
the other, we evaluate contextual word embeddings
from BERT. These two processes are described in
detail in the next paragraph. Finally, the classifica-
tion subtasks (1a and 1c), the results are evaluated
with the Accuracy and the F1-measure whereas the
regression subtasks (1b and 2a) are evaluated with
the Root Mean Squared Error (RMSE).

In case of BERT, we proceed as follows: we
fine tune BERT with the training split of the Ha-

2https://github.com/autonomio/talos
(v0.6.6)

hackathon 2021 dataset for 2 epochs and a batch
size of 64. Then, we freeze the resulting model
and concatenate it to the LF in a new model com-
posed of two hidden layers of 32 and 16 neurons
respectively and trained for 10 epochs. In case of
PWE, we evaluate word embeddings from fastText
and GloVe but also we evaluate that the weights
of the embeddings were learned from scratch in
the embedding layer. Next, the LF and the word
embeddings are concatenated, and used as input to
a MLP, in which we evaluated (1) the number of
hidden layers (between 1 and 8), (2) the number
of neurons (8, 16, 48, 64, 128, 256), and (3) the
shape of the network (funnel, rhombus, long funnel,
brick, diamond, and triangle). We also evaluate the
dropout rate to avoid overfitting (0, 0.2, 0.5, and
0.8), the activation function of the hidden layers
(relu, sigmoid, tanh, selu, and elu), the learning
rate, and the batch size (16, 32, and 64). Each
combination of parameters was evaluated during
1000 epochs with an early stopping mechanism.
Due to time constraints, we evaluated only 1000
combinations of these hyperparameters randomly
selected.

5 Results

First, the best hyper-parameter combinations (vali-
dation set) are shown in Table 1.
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Subtask 1a
ACC architecture features shape # layers 1st neuron dropout PWE
83.926 MLP lf+we triangle 7 48 - none
83.828 MLP lf+we long funnel 7 16 - fastText
83.809 CNN lf+we diamond 7 256 0.2 fastText
83.633 MLP lf+we brick 4 256 - none
83.613 MLP lf+we rhombus 5 48 - fastText

Subtask 1b
RMSE architecture features shape # layers 1st neuron dropout PWE
0.79820 CNN lf+we funnel 2 256 - gloVe
0.81080 BIGRU lf+we brick 5 64 0.5 fastText
0.81272 BILSTM lf+we brick 2 128 0.2 glove
0.81958 BILSTM we brick 3 48 0.2 glove
0.82004 LSTM we triangle 4 128 0.5 fastText

Subtask 1c
ACC architecture features shape # layers 1st neuron dropout PWE
61.125 BILSTM lf+we triangle 1 48 0.5 gloVe
60.688 CNN we brick 2 48 - gloVe
59.625 BILSTM lf+we triangle 4 48 0.2 gloVe
59.125 LSTM we triangle 3 256 0.5 fastText
59.000 LSTM we brick 5 8 0.5 none

Subtask 2a
RMSE architecture features shape # layers 1st neuron dropout PWE
0.68037 CNN we triangle 4 128 0.5 fastText
0.68085 BIGRU we triangle 7 48 - fastText
0.68399 LSTM we triangle 4 128 0.5 fastText
0.70100 CNN lf+we diamond 8 48 - gloVe
0.70353 CNN lf+we funnel 2 256 - gloVe

Table 1: Results of the best five hyperparameter combination for each subtask trained and evaluated with the
training dataset with a ratio of 80-20.
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We can observe that MLP and CNN perform
better for subtask 1a, whereas recurrent neural net-
works achieve better results in subtasks 1b, 1c, and
2a. Regarding the feature sets, we observe that
for subtasks 1a, 1b, and 1c, the combination of LF
and WE achieved better results whereas only word
embeddings achieved better results in subtask 2a.
It draw our attention that the shape of the neural
network (shape, # layers, and 1st neuron) and the
dropout rate vary according to the subtask. For
example, in subtask 1a, four of the fifth best re-
sults were achieved without dropout, whereas for
subtask 1b and 2a, a high dropout (0.5) resulted in
better results.

Next, we compare our results with the rest of the
participants and the baselines (see Table 2) with
the test dataset. The organizers of the task pro-
vided two baselines based on a Naive Bayes for
the classification subtasks (1a, 1c) and a Support
Vector Regression for the regression subtasks (1b,
2a); both trained with a bag of words. In subtask 1a
we achieve an F1-score of 91.6% and an accuracy
of 93.25% reaching position 45. The best result is
for PALI with an F1-score of 98.54% and an accu-
racy of 98.2%. In subtask 1b, we achieve an RMSE
of 0.8847, reaching position 47 and falling below
the baseline. The best result is for abcbpc, with
an RMSE of 0.4959. For subtask 1c, we achieve
an F1-score of 57.22% and an accuracy of 46.5%,
reaching position 14. The best result is for PALI,
with an F1-Score of 63.02% and an accuracy of
49.43%. In subtask 2a we achieved an RMSE of
0.8740, reaching position 46 and falling below the
baseline. The best result was for DeepBlueAI with
an RMSE of 0.412.

During the hyper parameter tuning stage, we
evaluated the reliability of the PWE without the LF
with our custom training and evaluating splits. The
results in our development dataset were slightly
better with the combination of both feature sets in
three subtasks: 83.516% (LF+PWE) vs 83.379%
(PWE) of accuracy in subtask 1a, 0.79820 vs
0.81958 of RMSE in subtask 1b, and 61.125%
(LF+PWE) vs 60.688% (PWE) of accuracy in sub-
task 1c. However, in subtask 2a, PWE performed
better without LF: 0.68037 (PWE) vs 0.70100
(LF+PWE).

6 Conclusions

While we are pleased with our participation since it
has given us the opportunity to evaluate novel tech-

Subtask 1a
# Team F1 Accuracy
1 PALI 98.54 98.20
2 stce 98.54 98.20
3 DeepBlueAI 96.76 96.00
4 SarcasmDet 96.75 96.00
45 UMUTeam 91.60 93.25
53 baseline 88.40 88.57

Subtask 1b
# Team RMSE
1 abcbpc 0.4959
2 mmmm 0.4977
3 Humor@IITK 0.5210
4 YoungSheldon 0.5257
46 baseline 0.8609
47 UMUTeam 0.8847

Subtask 1c
# Team F1 Accuracy
1 PALI 63.02 49.43
2 mmmm 62.79 46.99
3 SarcasmDet 62.70 46.99
4 ThisIstheEnd 62.61 46.02
14 UMUTeam 57.22 46.50
31 baseline 46.24 43.74

Subtask 2a
# Team RMSE
1 DeepBlueAI 0.4120
2 mmmm 0.4190
3 HumorHunter 0.4230
4 abcbpc 0.4275
42 baseline 0.6415
46 UMUTeam 0.8740

Table 2: Comparison of our results with other partici-
pants and the baseline for each subtask

niques and to improve our methods, we consider
our results to be far from competitive. It should
be noted that, for reasons unrelated to this compe-
tition, we did not have time to do all the tests we
wanted. On the one hand, the final labels of the de-
velopment dataset were published before the final
stage, but we did not fit the models with this new
information. On the other hand, we only submit
one run in the final stage. Compared with the rest
of the participants, we observe they submitted an
average of 7.5737 runs (σ of 8.1720). However,
although we believe that our results could have
been somewhat better, there is still a long way to
go. First, it caught our attention that BERT does
not outperform the results achieved with dense,
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recurrent, and convolutional neural networks for
subtasks 1b, 1c, and 2a. At this respect, we will
review our pipeline to detect weakness. It also
draw our attention that our results did not beat the
baselines in the regression tasks which indicates
some kind of implementation or conceptualization
error. Second, we only evaluated a subset of the
LF that we had for Spanish. Accordingly, we will
adapt UMUTextStats to English and compare their
reliability with de-facto tools like LIWC. Third,
we will focus on the interpretability of the models,
as we believe that LF result in more interpretable
models. Finally, we will evaluate machine learning
ensembles as a mean of combining the LF.
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Abstract

This research presents the work of the team’s
ES-JUST at semEval-2021 task 7 for detect-
ing and rating humor and offensive text us-
ing deep learning. The team evaluates sev-
eral approaches (i.e.BERT (Devlin et al., 2018),
Roberta (Liu et al., 2019), XLM-Roberta (Con-
neau et al., 2019), and BERT embedding + Bi-
LSTM) that employ in four sub-tasks. The first
sub-task deal with whether the text is humor-
ous or not. The second sub-task is the degree
of humor in the text if the first sub-task is hu-
morous. The third sub-task represents the text
is controversial or not if it is humorous. While
in the last task is the degree of an offensive in
the text. However, Roberta pre-trained model
outperforms other approaches and score the
highest in all sub-tasks. We rank on the leader
board at the evaluation phase are 26, 26, 25,
and 9 through 0.9564 F-score, 0.5709 RMSE,
0.4888 F-score, and 0.4467 RMSE results, re-
spectively, for each of the first, second, third,
and fourth sub-task, respectively.

1 Introduction

Dealing with natural languages has long been a
challenge and an interesting topic for researchers
(Chowdhury, 2003). Understanding and generat-
ing languages is part of natural language process-
ing (NLP) (Nadkarni et al., 2011). Recently, the
language model is able to deal with sequence-to-
sequence problems such as question and answer,
translation, multiple choice. In addition, it is able to
capture complex relationships, semantic meaning,
word meaning disambiguation, and word aspect-
based (Deng and Liu, 2018). Humorous text is one
of the important things we watched every day. It is
commonly used to express an opinion on issues (so-
cietal, political, sports, and economic), whether in
posts on social media platforms, or as advertising
for a specific product (Kramer, 2011). In addition,
the humor in the text makes the text complex in

terms of interpretation and understanding of the
text. Because of the manipulation of the meaning
of words and the way the text is written to express
the sense of humor in the words. On the other hand,
understanding the humorous in the text varies ac-
cording to the age or gender of the person, or even
according to the culture, social status and mentality
of the person(Goel and Dolan, 2007). In this task,
a dataset was collected in the English language that
represents humor and joke in the text and words.
We participated in this task to build an approach
capable of distinguishing a text that is humorous
or not. Here we have explicitly used pre-trained
models that deal with the concept of contextual
text such as Bert (Devlin et al., 2018), Roberta (Liu
et al., 2019), and XLM-Roberta (Conneau et al.,
2019). In addition, as a baseline we worked on
training the dataset by the Bert embedding layer
and extracting weights to feed it into the Bi-LSTM
and Dense layers.

In all sub-tasks we used as a baseline BiL-
STM (Graves and Schmidhuber, 2005) layer with
a BERT embedding layer, as well as, pre-trained
models such as Bert (Devlin et al., 2018), Roberta
(Liu et al., 2019), and XLM-Roberta (Conneau
et al., 2019).

In all sub-tasks, Roberta model showed superi-
ority compared to other approaches. We ordered
according to the official results among 36 partic-
ipating teams. In the first sub-task, we achieved
26th rank with an 0.9564 F-score result. On the sec-
ond sub-task, ranked 26th with a score of 0.5709
RMSE. A third sub-task placed 25th with 0.4888 F-
score (Sokolova et al., 2006). The last sub-mission
we took the 9th rank with a score of 0.4467 RMSR
(Chai and Draxler, 2014). The remainder of this
paper is organized as follows: Background in Sec-
tion 2. The properties of the dataset and the system
in section 3. Section 4 explains the experiment
and analyzing results. The last section 5 shows
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conclusions and future work.

2 Background

In (Hossain et al., 2019) developed a new humor
corpus, which consist of 15,095 news headlines in
English. They substituted the headlines with few
words to be funny. Also, (Li et al., 2020) used
attention-based with bi-directional long short-term
memory (AttBiLSTM) to classify slang language
into negative humor or positive humor. In (An-
namoradnejad, 2020) utilized a BERT embedding
layer with several parallel hidden layer to catego-
rize 200K humorous sentences whether (positive or
negative). While (Fan et al., 2020) used two kinds
of attention mechanisms (internal and external) to
capture sense of humor in words. Most of the pre-
vious works came to predict the humor polarity
(positive, negative) or the humor rating (range val-
ues) in the text. However, this research addressing
the humor and offensive score detection.

3 Methodology

3.1 Task Description
We worked with four sub-tasks provided by
SemEval-2021 1, in task-1 divided into (a, b and
c sub-tasks). Each sub-task related to the other.
Moreover in task-2 has one sub-task (a). In general,
Sub-task-1a will predict whether the text expresses
a humorous or not (binary classification problem
1, 0). Sub-task-1b if the text is considered a hu-
morous, will predict how humorous it is from 0
to 5 values (regression problem). Sub-task-1c If
the text is a humorous, we would predict if it is
controversial or not (binary classification problem
1, 0). Sub-task-2a will predict the offense.

3.2 Data-set
A dataset consists of a set of texts and each text has
four categories (is-humor, humor-rating, humor-
controversy, offense-rating) in English language
(Meaney et al., 2021). Each text asked by 20 an-
notators to label each category of the text. As well
as, the annotators come from different gender and
age groups. For is-humor and humor-controversy
categories were taken the majority of the classes
by 20 annotators as label for each text. Whereas,
humor-rating and offense-rating categories take the
average of rating classes between range 1 and 5
over 20 annotators as a label for each text.Table 2

1https://competitions.codalab.org/
competitions/27446#learn_the_details

shows examples of the training dataset per text with
the four classifications for each category. More-
over, in humor-rating and humor-controversy, we
noted the categories have many NaN values, be-
cause if is-humor the majority of the classes were
not classified as humor which means 0 label, so
the remaining categories of humor are NaN values.
Therefore, we need to remove the NaN values from
each category as pre-processing the dataset before
training the models. Table 1 shows the total num-
ber in the training, development and testing dataset
for each category.

Dataset Is-H H-R H-C O-R
Training 8000 4932 4932 8000
Development 1000 632 632 1000
Testing 1000 615 615 1000

Table 1: The total number for each category (is-humor,
humor-rating, humor-controversy, offense-rating) after
removing NaN values.

3.3 System overview
The proposed system focused on pre-trained trans-
former models, we Moreover applied some tech-
niques that represent embedding words and feeding
them into long short-term memory (LSTM) layers
to train the data-set. Through all of the sub-tasks,
the highest score was via the Roberta model. It is
one of the powerful models pre-trained on a huge
data-set and complex architecture. As well, it was
released by Facebook and designed base on the
BERT model that was released by Google. All
pre-trained models are capable of handling long
text dependencies and capturing features and rela-
tionships. Furthermore, the structure of pre-trained
models that involve encoder-decoder (Cho et al.,
2014) is enabled to deal with sequence-to-sequence
(Sutskever et al., 2014) tasks. In addition, BERT-
Large (Devlin et al., 2018) and Roberta-Large (Liu
et al., 2019) models consisted of 24 layers, 1024
hidden units of output word embedding, and 16
head attention layers, where both models have the
same layered structure but differ in the method of
approach to training and the volume of data used
to train each model.

There are two approaches used to train a BERT
model 1- Masked Language Model (MLM) is mask-
ing some tokens of the training dataset with a
[mask] symbol and try to predict the token. 2
- Next Sentence Prediction (NSP) is training the
dataset by assigning 1’s for neighboring sentences
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Text Is-H H-R H-C O-R
TENNESSEE: We’re the best state. Nobody even comes close.
*Elevennessee walks into the room* TENNESSEE: Oh shit

1 2.42 1 0.2

I got REALLY angry today and it wasn’t about nothing, but you’re
going to have to take my word for that.

0 Nan Nan 0.15

Told my mom I hit 1200 Twitter followers. She pointed out how
my brother owns a house and I’m wanted by several collection
agencies. Oh ma!

1 2.11 1 0

Table 2: An example illustrating the features of a training dataset whether a humor or offense. If Is-humor class is
0 then the Humor-rating and Humor-controversy classes are Nan values.

and 0’s for randomly chosen sentences. In contrast,
Roberta used the MLM model approach for the
training phase, as well as trained on a huge dataset
compared to the BERT model.

Moreover, we tried the XLM-Roberta-Large pre-
trained model (Conneau et al., 2019), which has
550M parameters with 24-layers of architecture. In
addition, it consists of 1024 of the output hidden-
state embedding, 4096 of feed-forward hidden-
state, and 16 of head attentions. The model has
Trained on 2.5 TB of newly created clean Com-
monCrawl data that supports 100 languages.

On the other hand, this research exploits BERT
embedding to represent text. Where the weights
were extracted by training the dataset on the BERT
embedding layer and then feeding them into a BI-
LSTM layer of 128 units (Graves and Schmidhu-
ber, 2005). Moreover, We used the dropout layer
with 0.3 ratios, the max-pool layer, then passing
the information into a dense layer with 64 units.
In the last layer for classification tasks, the final
dense layer is 2 hidden output units with a sigmoid
activation function, and for regression, one unit
output in the final dense layer. The Figure 1 shows
the model architecture used for prediction label on
classification and regression tasks.

4 Experimental and Results

In the experimental phase, the dataset was divided
into three parts (training, development, and testing).
We used the training dataset to train the model, and
the development dataset to fine-tune the model to
capture the best hyper-parameters without occur-
ring over-fitting or under-fitting the model. More-
over, we used the test data set to check the perfor-
mance of the model with an unseen dataset and to
ensure the generalizability of the model. However,
to perform the experiments we used collaborative
google Colab as a platform, which provides a num-

Figure 1: An illustration of the proposed model archi-
tecture.

ber of GPUs available for use with modest memory
size 2. In addition, in our experiments with pre-
trained models, we used the transformers library
that is based on the PyTorch language and allows
you to fine-tune the models and train them on your
own dataset 3. In training the model, we did not use
any pre-processing technique in the entered dataset.
Although, there are some symbols, upper and lower
case letters, misspellings, and some abbreviations
in the dataset. However, We did not treat these
issues in dataset, where the dataset is trained as it
is. In order, for the model to be more realistic and
robust in dealing with the real dataset. As well as,
the model might deal with those cases as features
for each case in the dataset for the model learning
phase. Just in pre-processing phase, we needed to
remove NaN values in both sub-task (1B and 1C ).
In order to test the performance of the approaches
used in this task, where each sub-task has a metric
that meets the type of output of each sub-task such
as regression metric or classification metric. Ac-
curacy and F-score metrics were a measure of the

2https://colab.research.google.com
3https://huggingface.co/transformers/
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performance in sub-task-1a and sub-task-1c. Like-
wise, the RMSE metric was a measure of outcome
performance in both sub-task-1b and sub-task-2c.
In the process of model tuning, we tried several
hyper-parameters, where the batch size was fixed
8, and the Adam optimizer function was used on
all experiments. Furthermore, we applied several
learning-rates in the range 1e-5, 4e-5, 1e-6, 3e-6
and a different number of epoch 2, 4, 8, 12 epochs.
The table 3 shows the main experiments among
many models with different LRs and Epochs for
each sub-task.

Sub-
task

Model Epo-
ch

LR

1-A

Roberta-Large 4 1e-6
Roberta-Large 4 3e-6
Roberta-Large 8 1e-6
XLM-Roberta-Large 8 1e-6
BERT-Large-Cased 8 1e-6
BERT embedding + BiLSTM ES 2e-5

1-B

Roberta-Large 8 1e-6
Roberta-Large 8 1e-5
Roberta-Large 12 1e-5
Roberta-Large 2 3e-5
BERT-Large-Cased 8 3e-5
BERT embedding + BiLSTM ES 2e-5

1-C

Roberta-Large 8 1e-6
Roberta-Large 8 1e-5
Roberta-Large 8 8e-5
XLM-Roberta-Large 8 8e-5
BERT-Large-Cased 8 8e-5
BERT embedding + BiLSTM ES 2e-5

2-A

Roberta-Large 8 1e-5
Roberta-Large 8 3e-5
Roberta-Large 4 1e-5
Roberta-Large 12 1e-5
BERT-Large-Cased 8 1e-5
BERT embedding + BiLSTM ES 2e-5

Table 3: The models applied and hyper-parameters
used. (ES denotes to early-stopping technique)

4.1 Result

Roberta achieved high-performance results com-
pared to other approaches, that exhibit his ability to
capture traits and distinguish between labels. The
table 4 presents the best results for both develop-
ment and evaluation level results, as well as the best
hyper-parameters selected based on the experimen-
tal phase for each sub-task. In sub-task-1A Roberta-

Large achieved high scores in a binary classifica-
tion problem compared to the other models, where
we scored 26 at F-score metrics in the evaluation
phase for our ranking on the leader-board. While in
the sub-task-2B also Roberta achieved acceptable
results in the regression problem and outperformed
the other models, as we ranked on the Leader Board
26 at RMSR metric. For the rest of the other sub-
tasks, sub-task -3C is treated as a binary classifi-
cation, which we achieved 25 rank in evaluation
phase by F-score. In the last sub-task, our rank was
9 for an RMSR metric at the evaluation phase on
the leader board.

4.1.1 Error Analysis
This section presents some analyzes to clarify the
outcomes and limitations model of each sub-task.
Figure 2 represents the confusion matrix for each
label is given in sub-task-1A which is a classifi-
cation problem. The figure shows the number of
cases which the actual label matches the predicted
label (y = ŷ) which is 946 in total. While the num-
ber of labels that differ (y != ŷ) that the model
could not predict the label, it is 54. In the square
that represents 31 false positives, we can see that
it is a little more than the square that represents 23
false positives. This is because the training dataset
is slightly biased towards label 1, which is 4,932
out of 8,000, while label 0 makes up 3,068 of the
training data set.

Figure 2: An illustration of the confusion matrix for
sub-task-1A.

Moreover, the sub-task-1B represented in figure
3. We applied the round function to obtain integer
numbers and categories of labels to display, which
shows four values existing in this task as continu-
ous labels in range 0 - 4. In the figure, the label
shows a label 2 obtained the highest match in the
model between the actual labels and the predicted
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Sub-task Model Epoch LR Development result Evaluation result
1-A Roberta-L 8 1e-6 0.9426-F1 & 0.9270-Acc. 0.9564-F1 & 0.9460-Acc.
1-B Roberta-L 2 3e-5 0.518-RMSE 0.5709-RMSE
1-C Roberta-L 8 8e-5 0.5493-F1 & 0.5585-Acc. 0.4888-F1 & 0.5545-Acc.
2-A Roberta-L 12 1e-5 0.5209-RMSE 0.4467-RMSE

Table 4: The best results gained for both development and evaluation level with hyper-parameters chosen.

labels, while the labels 0, 1, 4, the model could
not recognize them in the prediction phase. This
is due to the size of the training dataset is a little
for each label compared to 2, 3 labels. The size
of the dataset in 0, 1, and 4 labels in the training
dataset are 16, 410, and 47 respectively. On the
other hand, label 2 is repeated 2835 times and 3 is
repeated 1624 times in the training dataset.

Figure 3: An illustration of the discretization confusion
matrix for sub-task-1B.

A third sub-task, which is a binary classification
problem. The figure 4 shows the model is able to
recognize label 0 a little more than label 1, but in
general, the model is not learned well (high biased).
The number of cases for both (0 and 1) labels in the
training dataset were 2467 and 2465 almost equal,
respectively.

Finally, in the last sub-task-2C, we needed to
use a round function to approximate continuous
values to discrete values. However, the diameter
of the figure 5 clearly shows the highest label to
the lowest label distinguished by the model. Where
the values are logically acceptable compared to
the number of cases for each label in the training
dataset, which are 5737, 1043, 623, 364, 214, and
19 frequency for each of 0, 1, 2, 3, 4, 5 labels
respectively.

5 Conclusion

In this paper, we presented several approaches that
addressed four sub-tasks. We obtained high scores

Figure 4: An illustration of the confusion matrix for
sub-task-1C.

Figure 5: An illustration of the discretization confusion
matrix for sub-task-2A.

using a pre-trained Roberta model for each sub-
task. In the first sub-task, predicting if the text
is humorous or not, we gained a 0.9564 F-score.
While in the second sub-task, finding a humorous
text representation rate from 0 to 5, that was got
a 0.5709 RMSE. A third sub-task, verification of
the text is controversial or not, obtained a 0.4888 F-
score. The last sub-task is to find the offensive rate
in the text for the range of 0 to 5, which achieved
0.4467 RMSE. For future works, we are going to do
more experiments and using ensemble technique to
enhance the results. Moreover, adding more dataset
with the original to treat the biased label.
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Abstract

This paper describes our contribution to
SemEval-2021 Task 7:Detecting and Rat-
ing Humor and Offense.This task contains
two sub-tasks, sub-task 1 and sub-task 2.
Among them, sub-task 1 contains three
sub-tasks, sub-task 1a ,sub-task 1b and
sub-task 1c.Sub-task 1a is to predict if the
text would be considered humorous.Sub-
task 1c is described as follows: if the text
is classed as humorous, predict if the hu-
mor rating would be considered controver-
sial, i.e. the variance of the rating between
annotators is higher than the median.we
combined three pre-trained model with
CNN to complete these two classification
sub-tasks.Sub-task 1b is to judge the de-
gree of humor.Sub-task 2 aims to predict
how offensive a text would be with values
between 0 and 5.We use the idea of regres-
sion to deal with these two sub-tasks.We
analyze the performance of our method
and demonstrate the contribution of each
component of our architecture.We have
achieved good results under the combina-
tion of multiple pre-training models and
optimization methods.

1 Introduction

Humor is an intellectual activity that can cause cer-
tain emotions in human thinking. Humor is not
only very important but also very common in daily
life. People’s research on humor has involved many
fields such as psychology, sociology, linguistics
and so on.Of course, it also has special value for
the research of computing languages.Because of
its complexity and inherent subjectivity, the de-
velopment of automatic humor recognition and
assessment poses a great challenge in Computa-
tional Linguistics, and therefore is a popular sub-
ject in various shared task competitions.(Dick et al.,
2020)However, we must also recognize the difficul-
ties of humor research.First of all, although humans
can easily judge whether a sentence is humorous

in daily life, but due to humor is restricted by geog-
raphy, environment, social background and other
aspects, we usually not only pay attention to this
sentence or whether the matter is humorous, We
have to figure out how humorous or funny this con-
text is? In other words, we pay more attention
to its degree of humor which is not so easy for
computers.And because humor is affected by the
environment, different people have different under-
standing of humor. Just like sometimes your humor
is based on the suffering of others. Things you find
funny, but others don’t necessarily find them funny.
In other words, humor is controversial. So we have
to determine the specific humor rate. This task is
to take a median as the criterion for humor. It is
also difficult to judge the humor of this dispute by
computer language.

More recently, some humorous sentences can
also have derogatory and offensive elements.
Whether humor can cause offense is also one of the
researches in this thesis. I believe that the study of
humor not only helps to improve the computer’s
understanding of humor in certain aspects, but also
purifies our network environment.

The four sub-tasks of SemEval-2021 task7 are
designed to solve the above problems. For deep
learning, the computer must not only judge whether
a sentence is humorous.It is more important to un-
derstand this humorous sentence.In our paper, we
designed two effective systems to solve the above
four sub-tasks. For Sub-task 1a and Sub-task 1c,
We take them as a binary classification task.we de-
signed an efficient system using the idea of BERT-
CNN.This is not a new idea because people have
tried in the past.We also use the other popular pre-
training models,including the derived ALBERT
and RoBERTa.For sub-task 1a, we need to judge
whether a sentence is humorous.We predict a Label
L: where L ∈ {is humor − 1, not is humor −
0}.For sub-task 1c, we also need to judge
whether a sentence is controversial and predict
a Label L: where L∈ {humor controversy −
1, not humor controversy − 0}.For sub-task 1b,
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we combined regression ideas with the current pop-
ular pre-training model to complete these two sub-
tasks.The two input sentences were split into two
lists and fed into the Regression Model, which
made a prediction about the funniness of each sen-
tence.Then we compared the results of the pre-
diction to determine the funnier of the two sen-
tences.We compare the humor between each sen-
tence and finally return a humor value. (Ammer
and Grüner, 2020)Finally, the humor rate and the
level of controversy are mapped to the range from
0 to 5.We use mean square error to measure these
two tasks.

2 Background

The judgment of humor is the same as other text
classification problems in natural language process-
ing.The most important thing is to find suitable
features to represent sentences.The task is to as-
sign predefined categories to a given text sequence.
many work has shown that pre-trained models on
large corpora are beneficial for text classification
and other NLP tasks, which can avoid training new
models from scratch.Since 2013,people have pro-
posed some word embedding approaches such as
word2vec (Mikolov et al., 2013) and glove (Pen-
nington et al., 2014).However,because their word
embeddings are all in the same space, they cannot
express the role of polysemy.In other words,they
are non-contextual embedding, they cannot capture
the high-level concepts of sentences, such as se-
mantics and context (Sun et al., 2020).Later, some-
one proposed the ELMo model to solve this prob-
lem.Compared with word2vec and glove, ELMo
captures contextual information and not just in-
dividual information of words. In word2vec, the
vector representations of words are completely con-
sistent in different contexts, and ELMo is optimized
for this (Zhang et al., 2017). More recently, pre-
trained language models have shown to be useful
in learning common language representations by
utilizing a large amount of unlabeled data: such as
OpenAI GPT (Brown et al., 2020) and BERT (De-
vlin et al., 2018). BERT is based on a multi-layer
bidirectional Transformer (Vaswani et al., 2017)
and is trained on plain text for masked word predic-
tion and next sentence prediction tasks.This paper
tried other two new pre-training models of AL-
BERT (Lan et al., 2019) and RoBERTa (Liu et al.,
2019) based on BERT. And we fine-tuned down-

stream tasks for a variety of pre-trained models.
Finally,We completed these four sub-tasks effec-
tively.

3 System overview

3.1 Data

The data of the four sub-tasks are all provided by
SemEval(Meaney et al., 2021).The official orga-
nizer provides the same training set and test set for
all sub-tasks. We split the training set into a new
training set and a test set by using the stratified
5-fold cross-validation.BERT uses the wordpiece
tool for word segmentation and inserts special sep-
arators( [CLS]which are used to separate each
sample) and separator( [SEP ] which are used to
separate different sentences in the sample). For
each fold of the data set, the input data format is
as follows: [CLS]+ [sentence]+ [SEP ](Bai and
Zhou, 2020).There are a total of 8000 data in the
training set and 1000 data in the test set.In addi-
tion,the training set was split into 85% and 15% for
training and development set respectively(Note:We
did not include the use of the development dataset
which was given by the task organizers).They are
all English sentences. Each sentence of the data in
the training set can be regarded as a combination of
{id,text} and one of {is humor,humor rating, hu-
mor controversy,offense rating}.For the data we
did a simple pre-processing.We first remove the
characters specified at the beginning and end of the
string.(the default is a space or a newline.)

3.2 Methodology

Text classification technology is an efficient infor-
mation retrieval and data mining information tech-
nology.The classification method based on machine
learning trains a classification model by learning a
given training set, and then uses the training model
to classify text. Traditional machine learning clas-
sification methods include: random forest (RF),
naive Bayes (NB), logic Regression (LR) and Sup-
port Vector Machine (SVM), etc.However, with the
development of deep learning, many NLP tasks
can adopt a pre-training + fine-tuning structure.The
most typical is the BERT pre-training model.We
propose two architectures to solve four sub-tasks.
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Figure 1: Model for Sub-task 1a and Sub-task 1c

3.2.1 Method A

Method A is designed to solve sub-task 1a and
sub-task 1c.CNN for textual tasks by Kim (Kim,
2014) showed superiority in text classification tasks.
CNN can be used with learned vector representa-
tions of the text (embeddings). These embeddings
may either be initialized randomly and trained
along with the model, or can be pre-trained vectors.

The proposed model maximizes the utilization
of knowledge embedded in pre-trained BERT lan-
guage models by feeding the outputted contex-
tualized embeddings of its last four hidden lay-
ers into a several filters and convolution layers
of the CNN. Finally, the output of the CNN was
passed to a dense layer and the predictions were
obtaineds(Safaya et al., 2020).

As shown in Figure 1, we use BERT-base as
a pre-training model to build the model and other
pre-training models are similar. BERT is a model
built based on Transformer Encoder. Its entire ar-
chitecture is actually based on DAE (Denoising
Autoencoder).This part is called Masked Lanauge
Model (MLM) in the BERT (Devlin et al., 2018)
article. MLM is not strictly a language model,
because the entire training process is not trained
using a language model. BERT randomly replaces
some words with the MASK tag, and then predicts
the word masked. The process is actually the pro-
cess of DAE. BERT has two main trained models,
namely BERT-Small and BERT-large. BERT-large
uses a 12-layer encoder structure, that is, twelve

Figure 2: Model for Sub-task 1b and Sub-task 2

hidden layers. The whole model has a lot of param-
eters. For sub-task 1a and sub-task 1c, we tried a
variety of methods based on BERT-base, including
BERT+LSTM and other pre-trained models AL-
BERT and RoBERTa(add a linear layer). The last
method to try is after BERT pre-training model, we
use one or two layers of CNN to perform feature
extraction. Finally, we input into a linear classifier
to classify English sentences (humorous or contro-
versial).

3.2.2 Method B

Method B is used to solve sub-task 1b and sub-
task 2(Regression tasks). Since the values we want
to output (values between 0 and 5) are continu-
ous.We pre-trained through the input of two En-
glish sentences and then made a humorous (contro-
versial) comparison. Since the effect of CNN on
the regression task is not very useful, we mainly
tried and improved on the pre-training model.We
mainly use BERT, ALBERT and RoBERTa for
word embedding. as shown in Figure 2. RoBERTa
works best. BERT has the worst effect. Because
RoBERTa is trained with dynamic masking, FULL
SENTENCES without NSP loss,large mini-batches
and a larger byte-level BPE(Liu et al., 2019).In
addition, it adjusted the parameters of the Adam
algorithm. From 16G data to 160G. ROBERTa
uses a larger batch size, and the number of train-
ing is more. The network structure is complex, so
the fitting effect is better. Finally, we throw the
trained model into a regression model to calculate
the humor rate and controversial rate.
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4 Experimental setup

The code this time is mainly based on Transformers
under Hugging Face. The neural network tool we
use is PyTorch.For sub-task 1a and sub-task 1c,we
use the same method A(the same structure).We just
read different id of training set.Sub-task 1b and
sub-task 2 used the other method B.

4.1 Hyper-parameters

In this work, because our models are implemented
based on PyTorch. We use the BERT-base+CNN as
our sub-task1a and sub-task 1c’s pre-trained model.
For all models, in order to save GPU memory, the
batch size parameter of GPU in fine-tuning is set
to 8 and the gradient accumulation steps(gas) is
set to 1, so that each time a sample is an input,the
gradient is accumulated 1 times, and then the back-
propagation update parameters are performed. The
memory is saved by sacrificing a certain training
speed;learning rate is 5e-5. we use the triangular
learning rate. First, the learning rate is gradually
increased through warm up, and then the linear
learning rate is gradually reduced through linear
learn rete decay, which effectively improves the
training effect.(Bai and Zhou, 2020) The hyper-
parameters of each model and the results on the
test set are shown in Table 1.

Tasks Hyperparameters
lr=5e-5
output hidden states=True
epoches=5
per gpu train batch size=8
gas=1

Sub-task 1a and sub-task 1c filt size=(3,4,5)
num filter=(3,4,5)
hidden size=68
dropout=0.2
output hidden states =True
dropout=0.1

Sub-task 1b and sub-task 2 lr=5e-5
epochs=10
per gpu train batch size=8
gas=1

Table 1: Hyperparameters of the used model

4.2 Prediction module

For sub-task 1a and sub-task 1c, we mainly use Pre-
cision and F1-score to evaluate our model A.The

criteria evaluation of F1-score is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
Precision ∗Recall ∗ 2
Precision+Recall

For task 1b and task 2,we use RMSE to evaluate
our model. RMSE is as follows:

RMSE =

√∑N
i=1(yi − ŷi)2

N

5 Results

For sub-task 1a and sub-task 1c, we first tried
BERT-base as our word embedding model. On
this basis, we added LSTM (Wang et al., 2018) to
further extract the features of words. Long-term
short-term memory (LSTM) network has the abil-
ity to maintain long-term memory. The ability of
has proven to be particularly useful for learning se-
quences containing long-term patterns of unknown
length.We also tried two other pre-training mod-
els (ALBERT and RoBERTa) as a comparative ex-
periment. These two new language models have
made some improvements on the basis of BERT,
but they have different effects on different data
sets. RoBERTa is suitable for complex neural net-
work architecture, ALBERT architecture is rela-
tively streamlined. From the data in Table 2 , it can
be seen that they are almost the same as BERT in
extracting word features.Finally, we chose to add
CNN on the basis of BERT to extract the features
of words, and found that the effect is better than
LSTM and other pre-training models.

Since CNN is not very effective in dealing with
regression problems, we mainly use RoBERTa as
our system architecture.From Table 3, we can find
that compared to BERT, RoBERTa’s RMSE is far
better than BERT-base under the same training
epochs.

6 Conclusion

In this paper,we gave a description of the
BERT+CNN architecture and the popular
RoBERTa pre-training model architecture, and
finally solved four sub-tasks. The best F1 for
Sub-task 1a is 0.9206 and the best F1 for Sub-task
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1c is 0.6744. The best root mean square errors
of Sub-task 1b and Sub-task 2 are 0.6510 and
0.5588. Our four sub-tasks all appeared on the
leaderboard(Note: The data from our computer
is a little different from the official evaluation
results.The results of the final four sub-tasks in
the leadboard are shown in Table 4.).Experiments
have shown that CNN has a certain effect on
text classification, but this time only one layer
of CNN was added to the Classifier. In addition,
the experiment also shows that RoBERTa has a
better effect than BERT in dealing with regression
problems.In the future, we will try to integrate
and distill the model and process the data.we
consider to introduce external knowledge to model
headlines and improve the humor recognition
performance.

Method Task 1a Task 1c
F1 Acc F1 Acc

BERT 0.9175 0.9310 0.6659 0.6835
ALBERT 0.9162 0.9210 0.6576 0.6911
RoBERTa 0.9176 0.9320 0.6488 0.7300
BERT+LSTM 0.9054 0.9120 0.6519 0.6806
BERT+CNN 0.9206 0.9250 0.6744 0.7025

Table 2: the Table for Sub-task 1a and Sub-task 1c

Method Sub-task 1b Sub-task 2
RMSE RMSE

BERT 1.7161 1.826
ALBERT 0.6700 0.6576
RoBERTa 0.6510 0.5588

Table 3: the Table for Sub-task 1b and Sub-task 2

Task Best Result
sub-task 1a 0.9205(F1)
sub-task 1b 0.7010(RMSE)
sub-task 1c 0.4271(F1)
sub-task 2 0.5419(RMSE)

Table 4: Final Result on the Leaderboard
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Abstract

Humor detection and rating poses interest-
ing linguistic challenges to NLP; it is highly
subjective depending on the perceptions of
a joke and the context in which it is used.
This paper utilizes and compares transform-
ers models; BERT base and Large, BERTweet,
RoBERTa base and Large, and RoBERTa base
irony, for detecting and rating humor and of-
fense. The proposed models, where given a
text in cased and uncased type obtained from
SemEval-2021 Task7: HaHackathon: Link-
ing Humor and Offense Across Different Age
Groups. The highest scored model for the
first subtask: Humor Detection, is BERTweet
base cased model with 0.9540 F1-score, for
the second subtask: Average Humor Rating
Score, it is BERT Large cased with the min-
imum RMSE of 0.5555, for the fourth sub-
task: Average Offensiveness Rating Score, it
is BERTweet base cased model with minimum
RMSE of 0.4822.

1 Introduction

SemEval 2021 Task7 is constructed to detect and
rate the humor and offense inside jokes in the En-
glish language (Meaney et al., 2021). Humor is an
essential aspect of strengthening human communi-
cation and relations. However, the interpretation of
humor differs based on the perceptions of a joke
and the context in which it is used. In 2012, the Hu-
man Rights Commission found the most commonly
reported form of harassment in Australia was sexist
or offensive jokes(the, 2012), humor appreciation;
is a highly subjective phenomenon as a sense of
humor varies from person to person depending on
factors such as age, gender, and socio-economic
status. In this task, data labels and ratings were
collected from a balanced set of age groups from
18-70. Moreover, annotators represent a variety of
genders, political stances, and income levels.
The automatic detection of linguistic elements

in natural language texts such as aggression, hu-
mor, irony, and sarcasm has drawn attention
to research communities (Davidov et al., 2010).
Several studies and experiments have been per-
formed to develop and improve humor detection
systems(Annamoradnejad, 2021)(Winters and De-
lobelle, 2020)(Sane et al., 2019)(Mao and Liu,
2019)(Chen and Soo, 2018). BERT language
model(Annamoradnejad, 2021)(Devlin et al., 2019)
showcase the highest results compared to all other
works. This paper aims to utilize the Transformers
models; BERT base and Large (Devlin et al., 2019),
BERTweet (Nguyen et al., 2020), RoBERTa base
and Large (Liu et al., 2019), and RoBERTa base
irony (Barbieri et al., 2020) for humor detection,
humor rating, and offense rating using the dataset
obtained from SemEval-2021 Task7 that contains
training, development, and test data. Our contri-
butions are: Prepossessing text techniques for text
tokenization, word segmentation, spell correction,
removing the punctuation, encoding, and extracting
embeddings. Furthermore, training six state-of-the-
art Transformers Models and compare its results
against the Base-line Model. We have achieved
a 0.9540 F1-score for Subtask1-A Humor Detec-
tion using BERTweet cased model compared to the
first place score, which is 0.9820 F1-score. For
Subtask1-B Average Humor Score, our RMSE re-
sult is 0.5555 using BERT Large cased model, the
first place RMSE is 0.4959. Finally, for Subtask2
Average Offensiveness Score, our RMSE results
is 0.4822 using BERTweet cased model, while the
first place RMSE is 0.4120.
This paper’s structure is as follows: Section 2 re-
views related works focused on Humor detection
in SemEval-2020. Section 3 presents data explo-
ration, prepossessing, training models, and evalua-
tion metrics. Section 4 introduces the experiments
and results. Section 5 remarks the conclusion and
proposes future works.
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2 Related Work

The previous Humor Detection task on Se-
mEval2020 Task7 was focused on humor rating
only without considering if it is offensive or not.
However, in SemEval2021 Task7, the task requires
detecting the hidden offense inside jokes. Rozen-
tal et al., 2020 (Rozental et al., 2020) presented
a novel L2-Regularization approach with freezing
the weights for the first epoch to train and fine-tune
the word embedding model, ensemble different
language models - BERT, XL-NET, and Roberta,
and duplication from each language models, with
a weighted average between them. Their approach
ranked second place in SemEval-2020 Task 7: ”As-
sessing Humor in Edited News Headlines”, sub-
tasks 1 and 2.
Shatnawi et al., 2020 (Shatnawi et al., 2020) also
proposed the BERT-Flair-based Humor Detection
Model (BFHumor) that combined the BERT regres-
sor and Flair library to predict the funniest values
of edited headlines for the same Task 7 of SemEval
2020; the mode ranked 4th in subtask1 and 12th in
the subtask2. Meanwhile, Pramodith Ballapuram
2020 (Ballapuram, 2020) participated in the same
task using a non-ensemble model; he proposed
a Siamese Transformer based approach, coupled
with an Attention mechanism to make use of con-
textual embeddings and focus words and their im-
pact against other tokens on generating important
features and rating the funniness of the edited head-
line, he scored fifth place in subtask1 and fourth
place in subtask2.

3 Methodology

Our methodology of tackling the humor detection
problem consists of four phases: Data exploration
and Visualization, Data Pre-Processing, Learning
Models, and Evaluation Criteria.

3.1 Data Exploration
The dataset from SemEval-2021 Task7: Ha-
Hackathon: Detecting and Rating Humor and Of-
fense, consists of five columns as table 1 shows;
col-1 is the id of the text, col-2 ”text” is the raw text
for a joke to process, col-3 ”is-humor” is a binary
classification for the text, 1 means it is humor and
0 means it is not humor, col-4 ”humor-rating” is
a numerical representation for how much humor-
ous is the text if it is labeled as humor from col-2,
col-5 ”humor-controversy” is binary classification
to represent the subjectivity of humor appreciation

with a controversy score, 1 means the humor of the
text is controversial and 0 is not, col-6 ”offense-
rating” is a numerical representation for how much
offensive is the text. The competition consists of
two subtasks: subtask1 is divided into three parts
A,B and C and predicts is-humor, humor-rating,
and humor-controversy respectively. Subtask2 is
to predict the offense-rating.

Data sections are described separately, starting
with subtask1-A; it is a binary classification prob-
lem to detect whether the text is humor or not.
The distribution between its classes is balanced,
so no need for data upsampling or downsampling.
Subtask1-B is dependent on subtask1-A; if the text
is labeled as humorous, a value will be provided
to humor rating, and if it is not, the rating will be
none. For this task, we dropped records that are
labeled as not humorous. Humor rating is a regres-
sion problem since the rating is a continuous value
between zero and five, the values are distributed
normally which helps the model to generalize bet-
ter. Subtask1-C also depends on subtask1-A; if the
text is classified as humorous, then predict if the
humor rating would be considered controversial.
It is a binary classification task, and the distribu-
tion between its classes is balanced. Table 2 shows
the number of instances per each class for both
”is humor” and ”humor controversy”. Subtask2
is a regression problem to predict how offensive
a text would be, the target value is between zero
and five. After checking the target distribution, it is
skewed to the left, which indicates the model will
have difficulty in training, reducing the chances of
predicting the values above 3.

We explored the number of the words distribu-
tion per instance and the number of unique words;
where we do not count the same words. Both distri-
butions were similar in density, that indicated most
of the text content are unique and non-repetitive
words. the maximum number of words within in-
stances is 70 words for the whole data set and the
average number of words is around 20 words. We
choose to define the input sequence length equal to
128 as through tokenization, some words will be
divided to multiple tokens. To check odd or very
long words that need to be handled, we visualize
the mean word length for each instance in the data
set, and the word length is in the average mean.
Finally, we checked the number of punctuations in
the text since it affects the model as it affects the
text in the encoding phase, especially when it is
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id text is humor humor rating humor controversy offense rating
1 TENNESSEE: We’re the best state. Nobody even comes close. *Elevennessee walks into the room* TENNESSEE: Oh shit... 1 2.42 1 0.2

297 I met a vaping vampire from Romania. He called himself Vlad the Inhaler. 1 2.05 0 0
4698 What’s the difference between black people and cancer? Cancer got Jobs. 1 1.75 0 4.2
5231 Fellas: Don’t be mad when someone else starts to appreciate the woman you took for granted. What you won’t do, someone else will. 0 0.3
5300 Black people love boom boxes .. I hate to generalize, but it’s their stereotype ;-) 1 1.54 0 2.9

Table 1: Train dataset

feature name negative positive
is humor 3068 4932
humor controversy 2467 2465

Table 2: Number of instances that belong to each class
for ”is humor” and ”humor controversy”

attached with a word (e.g., animals do not encode
the same as animal’s). We handle the punctuation
in the preprocessing part, which will be described
in the next section.

3.2 Data Pre-Processing

In this phase, we apply enhancement techniques to
the text. Removing duplicate sentences, repetitive
characters, spilling mistakes, and stop words. Also,
it includes encoding methodology to transform text
from its original form to a vector that makes the
computer understands it. We used Ekphrasis (Bazi-
otis et al., 2017) for spell correction, remove con-
traction words, and annotate caps text as it is crucial
to know the speaker’s tone, capital letters indicate
a level of aggression. We used GloVe (Pennington
et al., 2014) vocabulary to find the out of vocabu-
lary words that Ekphrasis did not fix, applied some
spell correction manually, and removed the punctu-
ation that has been attached to some words using
regular expressions. We applied the tokenization
technique. For GloVe embeddings, using Keras
tokenization tool that splits the tokens based on the
space. For example [”We went to Aqaba.”] will
be tokenized as the following: [’We’, ’went’,’ to’,’
Aqaba.’], and each token gets encoded. On the
other hand, the BERT model uses a WordPiece tok-
enizer that depends on its own vocabulary, and if it
faces an out-of-vocabulary word, it will be split into
sub tokens that starts with ##token. For example,
[’tokenization’] become [’token’,’##ization’], and
for the RoBERTa model, it uses byte pair encoding
(BPE) word pieces. RoBERTa handles the out-of-
vocabulary words the same way as the BERT model
but with some modification on the algorithm. For
example: [’tokenization’] become [’token’,’ iza-
tion’]. We encoded the text using GloVe and trans-
formers; Glove considers frequency when building

the embeddings, unlike word2vec.

3.3 Learning Models

This section will describe the models we have used;
it will be divided into two sub-sections: Baseline
Model, and Transformers Models.

3.3.1 Base Line Model
The baseline model is BiLSTM model. It takes an
encoded sentience with 100 token sequence size
as input, each encoded using GloVe embeddings
that have been fed into the embedding layer; which
considered to be as a lookup table which consists
of 300-dimensional pretrained GloVe embeddings,
and each row in the table is considered a represen-
tation of the word. Next is two BiLSTM models
that consist of 128 nodes, 0.2 dropouts to avoid
overfitting, and He uniforms weight initializer (He
et al., 2015). Output passes through a feed-forward
network which consist of four hidden layers of 512,
256, 128 and 64 neurons respectively, for each layer
we use ReLU activation function, 0.4 dropouts, and
He uniforms weight initializer. Finally, the output
layer consists of the Sigmoid activation function in
binary classification and linear layer for the Regres-
sion task. We used Stochastic Gradient Descent
(SGD) with a 0.01 learning rate, 0.99 momentum,
and Nesterov implementation (Nesterov, 2003). It
is worth mentioning that we used the early stopping
technique to avoid overfitting with five patience.

3.3.2 Transformers Models
We have applied different type of pretrained mod-
els using Simple Transformers library (Rajapakse)
which is an API built above Hugging Face library
(Wolf et al., 2019). In this section, we generally
describe the models that we used. Bidirectional En-
coder Representation from Transformers (BERT)
is a pretrained model which uses attention models
to learn the contextual relation between the words
in the sentence, consisting of two main parts: an
encoder and a decoder: an encoder that encodes
the text, and a decoder for the output result based
on the task. We used Bert cased and uncased mod-
els, which both have been trained on BookCoupus
(Zhu et al., 2015) with 800 million words and En-
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glish Wikipedia with 2,500 million words. We
trained the model using this hyperparameter: 128
sequence length, three epochs, 32 batch size, 4e-5
learning rate, and AdamW as an optimizer. Then
we used the BERTweet model trained on BERT
architecture using 850 million English tweets. We
trained this model using almost the same hyperpa-
rameters, except that we used eight as batch size.
We have used, too, Robustly Optimized BERT pre-
trained approach (RoBERTa). It is a fine-tuned
version of the BERT model with some changes on
the data size and input representation. Training
the model on larger data set significantly improves
the model performance using BookCurpus, English
Wikipedia, CC-news with 63 million English news
articles, OpenWebText, and Stories; which is a sub-
set of CommonCrawl data. Model developers use
dynamic masking instead of static masking that
has been used in the BERT model, this technique
allows to improve the model performance. Fur-
thermore, they have used the full sentence without
using the next sentence prediction loss. We trained
both RoBERTa base and large models using the
following hyperparameters: for the base three 128
sequence length, three epochs, 32 batch size, 4e-5
learning rate, and AdamW optimizer, and the large
model, we kept everything the same as the base
model but change the batch size to 16. Moreover,
we have used the RoBERTa irony model that has
been fine-tuned using 58 million tweets for irony
detection on TweetEval benchmark; also, we used
everything as the base and large model. We have
also used XLM-RoBERTa (Conneau et al., 2020),
and XLNet (Yang et al., 2019) as a black box, we
did not go into the model’s detail, but in general,
it is an improved version model from BERT. We
applied them using the following hyperparameters:
128 sequence length, three epochs, 16 batch size,
4e-5 learning rate, and AdamW optimizer.

3.4 Evaluation Criteria

F1 score criteria was used for the binary classifica-
tion task and the second criteria is RMSE for the re-
gression task. We used the 8-Fold Cross-validation
method to determine the best model since we only
have an 8k data instances for training. We trained
our models using seven folds, kept the last fold un-
seen for validation in each iteration, and used every
model from each iteration to predict the develop-
ment and testing data and combine all the results
to obtain the final result.

4 Experimentation and Results

4.0.1 Task 1-A Is-Humor:
We constructed a baseline model and fine-tuned it
using different approaches and prepossessing tech-
niques. We tested our model using four types of pre-
processing techniques (None, Ekphrasis, Ekphrasis
with removing stop words, and Ekphrasis with ap-
plying Custom Spell Correction). After that, we
tested Adam and SGD as opimizers, SGD performs
better on this model. After comparison, the best
parameters for the models are described in the fifth
row of table 3; we applied the early stopping tech-
nique to reduce the overfitting with 0.4 dropout. We
test Transformers models, refer to the table 4. In
general, we fine-tuned all the models in two ways,
the Cased model, which means that the text is kept
in its original form without lowering the charac-
ters’ case. Uncased means that lower-case all the
characters in the text. By experiment, cased mod-
els performed better than uncased since it captures
more aggressive behaviors from the writer. More-
over, BERTweet performs well using the Cased
model on this task. Since the model has already
been trained on Twitter data, it captures all the
slang, acronyms, and abbreviations.

4.0.2 Task 1-B: Humor Rating
We used the experiments from the previous task
since they are dependent if humor equals zero; we
do not need to predict the humor rating. If it is one,
we have to predict the humor rating value between
zero and five. We first used the best model from the
baseline by changing the last layer to a linear layer
to predict continuous values since it is a regression
task. Same hyperparameters from model 5 from
table 3 we got 0.8651 RMSE, and we consider
it as our baseline. After that, we tested the best
transformer models from the previous task, refer
to table 5. We found out that the best model is the
BERT large case model, which seems unexpected
since most of the other models perform almost the
same, around 0.54.

4.0.3 Task 2 Offensiveness Score:
We have used the same methodology from the
Subtask1-B; we first constructed a baseline for this
task, which is the best model from the Subtask 1-A
hyperparameters model 5 from table 3, and we got
0.86783 RMSE. After that, we tested the best mod-
els from the previous task’s transformers, refer to
table 6. We found out that the best model is BERT

1117



Pre-Processing learning rate # epochs dropout batch size optimizer features Accuracy Precision Recall F1-score
1 None 0.0001 50 .4 128 Adam GloVe 0.8594 0.8778 0.8968 0.8872
2 Ekph + remove stopwords 0.0001 50 .4 128 Adam GloVe 0.8535 0.8804 0.8821 0.8813
3 Ekph 0.0001 50 .4 128 Adam GloVe 0.875 0.9083 0.8867 0.8974
4 Ekph + Custom Spell-Correction 0.0001 50 .4 128 Adam Glove .88062 0.9066 .8990 0.9028
5 Ekph + Custom Spell-Correction 0.0001 50 .4 128 SGD Glove 0.8806 0.9003 0.9067 0.9035

Table 3: Baseline model experiments on is-humor task

Model Text Type # epochs batch size Accuracy Precision Recall F1-score
1 BERT base uncased Uncased 3 32 0.9424 0.9515 0.9552 0.9533
2 BERT Large uncased Uncased 3 32 0.9455 0.9582 0.9532 0.9556
3 BERTweet uncased Uncased 3 8 0.9561 0.9679 0.9607 0.9643
4 RoBERTa base Uncased 3 32 0.9448 0.9593 0.9548 0.9570
5 RoBERTa Large Uncased 3 16 0.8366 0.8366 0.9686 0.8978
6 RoBERTa base irony Uncased 3 32 0.9494 0.9574 0.9607 0.9590
7 XLM-RoBERTa large Uncased 3 16 0.7408 0.7087 0.9837 0.8239
8 XLNet base Uncased 3 16 0.9449 0.9572 0.9531 0.9551
9 XLNet large Uncased 3 16 0.8030 0.7750 0.9588 0.8571
10 BERT base cased Cased 3 32 0.9440 0.9558 0.9532 0.9545
11 BERT Large cased Cased 3 32 0.9505 0.9597 0.9600 0.9599
12 BERTweet cased Cased 3 32 0.9589 0.9704 0.9627 0.9665
13 RoBERTa base Cased 3 32 0.9494 0.9615 0.95612 0.9588
14 RoBERTa Large Cased 3 32 0.9563 0.9702 0.9584 0.9643
15 RoBERTa base irony Cased 3 16 0.9543 0.9633 0.9625 0.9629

Table 4: Transformers models on is-humor task

Model Text Type # epochs batchsize RMSE
BERTweet Uncased 3 8 0.5479

RoBERTa base Uncased 3 32 0.5417
BERT base Cased 3 32 0.5360

BERT Large Cased 3 32 0.5296
BERTweet Cased 3 32 0.54585

RoBERTa base Cased 3 32 0.54272
RoBERTa Large Cased 3 32 0.54548
RoBERTa irony Cased 3 16 0.54585

Table 5: Transformers models on humor rating

Large model and it performs well on regression
tasks since it performs well on the two tasks related
to regression. All the previous experiments applied
the cross-validation method on the training data.
Since we decided that we do not want to overfit the
development and test dataset, we will use the best
models that perform well on the cross-validation
phase to predict the development and test dataset’s
output. We changed the threshold point for the is-
humor task; using the ROC curve, and the best split
is 0.233357 since it improves the model by 0.04
percent on the development phase, so we apply it to
the testing phase. The best model for the is humor
task is BERTweet cased base model that scored a
0.9540 F1 score on the testing phase; for the humor
rating task, we used BERT large cased model that
scored 0.5555 RMSE on the testing phase, and for

the offensive score, we used BERTweet large cased
model that scored 0.4822 RMSE on testing phase.

Model Text Type # epochs batchsize RMSE
BERTweet Uncased 3 8 0.5304

RoBERTa base Uncased 3 32 0.5734
RoBERTa Large Uncased 3 32 0.5494

BERT base Cased 3 32 0.5516
BERT Large Cased 3 32 0.5247

BERTweet Cased 3 32 0.5302
RoBERTa base Cased 3 32 0.5522

RoBERTa Large Cased 3 32 0.7190
RoBERTa irony Cased 3 16 0.8501

Table 6: Transformers models on offensiveness score

5 Conclusion and Future Work

In this paper, we experimented with a set of state-
of-the-art Transformers and contextual models for
detecting and rating humor and offense in text. Our
experimental results show that the BERTweet Large
model is the best model for humor binary clas-
sification task with a 0.9540 F1 score and offen-
sive rating with 0.4822 RMSE, and BERT Large
cased model is the best for humor rating task scored
0.5555 RMSE. We plan to enhance the top models
using ensemble learning methodology and test out
more novel methods.
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Abstract

Humor recognition is a challenging task in
natural language processing. This document
presents my approaches to detect and rate hu-
mor and offense from the given English text.
This task includes 2 tasks: task 1 which con-
tains 3 subtasks (1a, 1b, and 1c), and task 2.
Subtask 1a and 1c can be regarded as classifi-
cation problems and take ALBERT as the ba-
sic model. Subtask 1b and 2 can be viewed
as regression issues and take RoBERTa as the
basic model. And finally, team-Gulu scores in
subtask 1a with a weighted average F1 score
of 0.9190, in subtask 1b with an RMSE score
of 0.7405, in subtask 1c with a weighted aver-
age F1 score of 0.5561, and in subtask 2 with
an RMSE score of 0.5807 on the private leader
board.

1 Introduction

For social animals like humans, humor is an ef-
fective bonus. From the perspective of evolution-
ary psychology, “humorous” often means superior
creativity, in other words, a smarter mind. There-
fore, it is important to recognize whether a sen-
tence is humorous and how humorous the sentence
is. It is a bit impractical to recognize such a huge
data set by humans, so it becomes necessary for
us to develop a system to automatically detect hu-
mor. In this task, the organizer collects labels and
ratings from a balanced age group of 18-70. An-
notators also represent various genders, political
positions, and income levels. Therefore, for some
texts classified as humorous, we should once again
prove whether they are controversial and predict
the offensiveness of the text. For more specific
content, please refer to the official website of the
competition 1.

1https://competitions.codalab.org/
competitions/27446

Because the pre-trained and deep learning mod-
els have shown excellent performance in many
NLP problems such as classification and topic
extraction(Zampieri et al., 2019), so I use deep
learning methods to deal with those four tasks.
According to the latest related research progress,
the transformer-based language model has become
my favorite model. In order to facilitate the un-
derstanding of the corresponding model of each
subtask, I made it into a table shown as Table
1. I choose A Lite BERT (ALBERT)(Lan et al.,
2019) as my basic model in subtask 1a. In subtask
1b and subtask 2, I choose Bidirectional Encoder
Representations for Transformers (BERT)(Devlin
et al., 2018) model as my basic model. In subtask
1c, A Robustly Optimized BERT (RoBERTa)(Liu
et al., 2019) has been chosen. To get a more ef-
fective and higher accuracy model in subtask 1a,
BiGRU combined with attention. To prove the ef-
fectiveness of this model, there are also compar-
ative experiments with other neural networks for
task 1c. To obtain as much effective information
as possible from the limited data, the 5-fold cross-
validation method has been used.

2 Related Work

Automatic humor recognition is a very challeng-
ing research topic in natural language processing.
A person’s degree of humor is largely determined
by his educational knowledge and common sense
of life. In addition, many types of humor require a
lot of external knowledge, such as irony, metaphor
and satire.

Yang et al. (2015) first determined the seman-
tic structure behind each structure of the humor
and design feature set, and then used a calculation
method to identify the humor and their humor rec-
ognizer was very effective in automatic distinction
humorous and non-humorous text.
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subtask 1a 1b 1c 2
category classification reg classification reg
model ALBERT+BiGRU BERT RoBERTa+BiLSTM+BiGRU BERT

Table 1: The category and model used for each subtask, where the reg stands for regression

Morales and Zhai (2017) proposed a generative
language model based on the inconsistency the-
ory to model humorous text, so that they can use
background text sources such as Wikipedia item
descriptions, and can build multiple functions for
recognizing humorous comments. Using super-
vised learning to classify reviews into humorous
reviews and non-humorous reviews, these func-
tions showed that the features constructed based
on the proposed generative model were more ef-
fective than the main features proposed in the ex-
isting literature.

Liu et al. (2018) found that certain grammati-
cal structural features are consistently related to
humor. Both experimental results and analysis
showed that humor can be regarded as a style,
and the content-independent syntactic structure
can help identify humor and had good explanatory
power. Therefore, they proposed to use syntac-
tic structure features to enhance humor recogni-
tion ability. Compared with the baseline driven by
humor theory, their method had achieved a signif-
icant improvement.

And subtask 1b and 2 are regression problems.
We need to predict the humor of a sentence, and
because the implicit meaning of the sentence may
be offensive for someone, we also need to detect
the degree of attack on each sentence. Tradition-
ally, text regression is solved using linear models.
Bitvai and Cohn (2013) proposed a method based
on a deep convolutional neural network (CNN).
Yang et al. (2015) recommended using copula:
a powerful statistical framework. Their model
clearly outperformed a strong linear and nonlin-
ear discrimination baseline. Subramanian et al.
(2018) used CNN regression with auxiliary ordi-
nal regression objective to predict the popularity
of petitions in their work. A regression task is ac-
tually a special form of the classification task. The
final output is a value rather than the probability
of a specific category. Therefore, the BERT model
can achieve good results.

3 Materials and Methods

3.1 Preprocessing
The given data(Meaney et al., 2021) contains the
tasks required by each subtask, but some corre-
sponding data are missing. For example, if a sen-
tence is judged as not humorous in 1a, there will be
no data in the column (the fourth and fifth column)
corresponding to subtask 1b and 1c. To facilitate
the experiment, I added 0 to all missing values.

3.2 Data set
Given a sentence, for 1a, the system must assign
the label to 1 if it is recognized as is humor,
otherwise, assign it to 0. And if there is a
humor controversy in 1c, the corresponding la-
bel is 1. For this task, the available sentences
including 6948 training sentences, 1052 develop-
ment sentences, and 1000 testing sentences. The
label distribution in the training set is almost bal-
anced for 1c, but for 1a, label 1 accounts for only
38.1% of the total after assigning all missing val-
ues to 0. The number of sentences for each label
is listed in Table 2.

task label 0 label 1
subtask 1a 2652 4296
subtask 1c 2149 2147

Table 2: The distribution of training set

I divide all the data of subtask 1b and 2 into 5
intervals (take 1 as the step size) and count the to-
tal of each interval. It can be seen from Figure
1 that most of the data of humor rating are be-
tween 1 and 2 (1361 sentences), and there is no
data between 4 and 5. The label offense rating
scores of 0 accounted for the majority (2913 data
in total).

3.3 Classification
Text classification is the most basic and very nec-
essary task in natural language processing (NLP).
Two of this task belongs to classification prob-
lems. In subtask 1a, I combine ALBERT with
BiGRU-Attention. In subtask 1c, I combined
RoBERTa with BiLSTM+BiGRU.
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Figure 1: The data distribution of subtask 1b and 2

3.3.1 ALBERT + BiGRU-Attention

The ALBERT model is an improvement based on
the BERT model. The ALBERT model2 has de-
signed parameter reduction by changing the result
of the original embedding parameter P (the prod-
uct of the vocabulary size V and the hidden layer
size H).

V ∗H = P → V ∗ E + E ∗H = P (1)

Where E represents the size of the low-
dimensional embedding space. In ALBERT,
H >> E. The self-supervised loss is used to fo-
cus on the internal coherence in the construction
of sentences3.

The BiGRU-Attention model4 is divided into
three parts: text vector input layer, hidden layer,
and output layer. Among them, the hidden layer
consists of three layers: the BiGRU layer, the at-
tention layer, and the Dense layer (fully connected
layer). The output of the ALBERT model will be
used as the input. After receiving the input, the Bi-
GRU neural network layer will extract features of
the deep-level information of the text firstly. Sec-
ondly, it uses the attention layer to assign corre-
sponding weights to the deep-level information of
the extracted text. Finally, the text feature infor-
mation with different weights is put into the soft-
max function layer for classification.

In order to improve the classification ability
of the model, I combined ALBERT and BiGRU-
Attention. The model diagram is shown in Figure
2.

2https://huggingface.co/albert-base-v2
3https://zhuanlan.zhihu.com/p/

162275803
4https://blog.csdn.net/qq_40900196/

article/details/88998290

3.3.2 RoBERTa + BiLSTM + BiGRU
RoBERTa5 mainly made several adjustments
based on BERT: 1) Longer training time, larger
batch size, more training data; 2) Removed next
predict loss; 3) Longer training sequence; 4) Dy-
namic adjustment Masking mechanism.

Using the BiLSTM model can better capture the
two-way semantic dependence. Because LSTM
can learn what information to remember and what
information to forget during the training process.
BiGRU is a unidirectional, opposite direction,
and outputs a neural network model composed
of GRUs determined by the states of these two
GRUs. At each moment, the input will provide
two GRUs in opposite directions at the same time,
and the output will be jointly determined by the
two unidirectional GRUs.

In order to improve the ability of the model, I
combined RoBERTa and BiLSTM+BiGRU. The
model diagram is shown in Figure 3.

3.4 Regression

What regression predictive modeling needs to ac-
complish is to approximate a mapping function
from an input variable to a continuous output vari-
able. Both regression subtasks use the BERT
model.

The BERT model implements three embedding
layers: position embedding, word embedding, and
segment embedding. BERT uses two training
strategies: the masked language model and the
next sentence prediction. The language model
trained in this way usually has a deeper sense of
language context and can be further applied to pro-
cess various NLP tasks( classification et.), with an
additional output layer(Fan et al., 2019).

3.5 Evaluation

The main metric for the classification tasks will be
f1-measure(wei et al., 2020).

precision =
true positive

true positive+ false positive
(2)

recall =
true positive

true positive+ false negative
(3)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(4)

5https://huggingface.co/roberta-base
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Figure 2: ALBERT+BiGRU-Attention for task 1a, where the E[CLS] and E[SEP ] are added at the beginning
and end of each instance respectively

Figure 3: The model for task 1c

Model step batch size lr epoch
BERT 500 32 2e-5 2
ALBERT 2500 32 2e-5 10
RoBERTa 5000 16 2e-5 10

Table 3: The parameters, where the lr stands for
learningrate

The metric for the regression tasks will be the
root mean squared error (RMSE). Below x and y
are D dimensional vectors, and xi represents the
value of x in the ith dimension.

RMSE =

√√√√
D∑

i=1

(xi − yi)2 (5)

4 Results

In this task, I used ALBERT, RoBERTa, and
BERT models for the training task. For these mod-
els, the main hyperparameters I want to pay atten-
tion to are the training step size, batch size learn-
ing rate, and epoch. The parameters of my model
are shown in Table 3.

4.1 Classification results
For task 1c, several sets of comparative experi-
ments were carried out. The comparison results
are listed in Table 4, and the cross-validation re-
sults are 0.92, 0.94, 0.94, 0.93, and 0.67 respec-
tively.

All results are the results of the evaluation set.
The output of the classification result is shown in
Table 5. We can see that the number of label 1 is
close to twice the number of label 0.

Task 1a scores 0.9190 but 1c scores 0.5561.
From the distribution of their data, this may be be-
cause the data of task 1c is not balanced. More-
over, because task 1c has a dependency on task 1a,
only filling in missing values with 0 may affect the
judgment of the system.

Model F1-Score
RoBERTa 0.80
RoBERTa+BiGRU 0.86
RoBERTa+BiGRU+BiLSTM 0.88

Table 4: The comparative results of task 1c, and the
model is the base version.

task label 0 label 1
subtask 1a 386 614
subtask 1c 331 669

Table 5: The result distribution of task 1b and 2

4.2 Regression results
The output of the regression result is shown in Fig-
ure 4. In subtask 1b, all predicted values are be-
tween 0 and 3. Most of the values are in the range
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of 2 to 3 (412 sentences). In subtask 2, all pre-
dicted values are also between 0 and 3 (442 sen-
tences score 0). Comparing with the data distribu-
tion in the training set, we find that the distribution
of the predicted value is consistent with the distri-
bution of the training data.

Figure 4: The predicting result of humor rating

5 Conclusion and Future Work

In this work, I present my result on HaHackathon:
Detecting and Rating Humor and Offense which
includes four subtasks. For tasks 1a and 1c, I
use the BiGRU-Attention based on the ALBERT
model to complete subtask 1a, and 1c is completed
by RoBERTa combine with BiLSTM+BiGRU and
this model works well. I also summarized the pos-
sible reasons for the low score in task 1c.

From a theoretical and computational point of
view, it is difficult to establish a mechanism for
computers to understand humor like humans. The
reason is as follows. 1) The definition of humor
is loose. It is almost impossible to identify humor
by establishing rules. 2) Humor is related to con-
text and background. Humor expects to break the
common sense of readers in a specific situation. In
the future, we should design features that are in-
terpretable, calculable, and easy to implement that
conform to humor theory.
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Abstract

This paper describes the approach that was
developed for SemEval 2021 Task 7 Ha-
hackathon: Incorporating Demographic Fac-
tors into Shared Humor Tasks (Meaney et al.,
2021) by the DUTH Team. We used and com-
pared a variety of preprocessing techniques,
vectorization methods, and numerous conven-
tional machine learning algorithms, in order
to construct classification and regression mod-
els for the given tasks. We used majority vot-
ing to combine the models’ outputs with small
Neural Networks (NN) for classification tasks
and their mean for regression for improving
our system’s performance. While these meth-
ods proved weaker than modern, deep learning
models, they are still relevant in research tasks
because of their low requirements on computa-
tional power and faster training.

1 Introduction

The underpinnings of humor have proven far more
vexing than those of other emotional experiences.
It is a highly subjective topic that various schol-
ars have attempted to construct theories for under-
standing its fundamental elements in the studies
of philosophy, linguistics, psychology and soci-
ology. Some theories, e.g. the Benign Violation
Theory (Warren and McGraw, 2015), suggest that
humor can be described as linguistic violations that
still make grammatical sense. The aforementioned
theory supports that for a joke to be classified as
humorous, it needs to avoid being too harmless or
too offensive.

There are numerous studies in humor sentiment
analysis in the last decade. In microblogging,
Reyes et al. (2012) considered extracting linguistic
devices from tweets to be used as features for clas-
sifying these tweets as humorous or ironic, while
Raz (2012) approached the classification of humor-
ous tweets as a multi-class problem of 11 types of

humor, in his attempts to better attribute the real
sentiment of a tweet. Recent attempts on humor
detection on SemEval’s 2020 Task 7 indicate that
transformer models like BERT (Mahurkar and Patil,
2020) far outperform traditional machine learning
algorithms (S et al., 2020).

This paper describes our submissions to Se-
mEval 2021 task 7 and is structured as follows.
Section 2 describes the tasks, training data, and
evaluation measures. Section 3 describes key meth-
ods and algorithms used. Section 4 describes our
proposed system while Section 5 analyzes our re-
sults. Finally, we draw our conclusions in Section 6,
where we also propose directions for future work.

2 Background

In this section we describe each subtask’s objective,
the given data, and evaluation measures.

2.1 Subtasks

The main objectives of SemEval 2021 Task 7 were
split into 4 subtasks. Subtask 1a required us to clas-
sify short texts as humorous or not, while Subtasks
1b and 1c required us to rate the text’s humor and
further classify it as controversial or not respec-
tively. Finally, in Subtask 2, we had to rate how
offensive each text was—humorus or not. All texts
were in English.

2.2 Dataset

The organizers released the full training data in
three parts: trial, development, and evaluation. Our
final training dataset consisted of 9,000 different
texts annotated with labels regarding each subtask
in csv file format, while our test set consisted of
1,000 texts. Statistics for the training dataset are
presented in Table 1 and Figure 1.
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Is humorous? Is controversial?

Yes 5,564 2,773
No 3,436 2,791

Table 1: Humor and controversiality labels in the train-
ing set

2.3 Evaluation Measures
For the classification Subtasks 1a and 1c, we use
the F1 measure. For the regression Subtasks 1b
and 2, we use the root mean squared error (RMSE).

3 Experimental Setup

In this section we describe the preprocessing and
vectorization methods as well as the machine learn-
ing algorithms used.

3.1 Preprocessing
Text preprocessing is the backbone of every text
classification task. We applied the following tech-
niques:

1. Tokenizing and Lowercasing words: We
lower-cased the words in the texts and split
them into tokens.

2. Stemming or Lemmatisation: Reducing noise
from texts while (generally) improving system
performance.

3. Removing Stopwords: Stopwords do not add
much meaning to a sentence, so removing
them helps in reducing the number of features
and improving results.

4. Tagging words with capital letters: Tagging
each word containing a capital letter that is not
the first word in a sentence. Applied (when
used) prior to word lowercasing.

5. Replacing Emojis: Very few emojis were
found in texts, so we replaced them with their
corresponding sentiment.

6. Replacing Contractions: We replace contrac-
tions into their full forms using a dictionary.

7. Removing integers: Numbers have no emo-
tional value, so we remove them.

8. Part-of-Speech (POS) tagging: We used POS
tagging of words for preprocessing the texts,
following two different approaches.

Figure 1: Humor and Offense Rating density plot

(a) Appending POS tags in words: Aims to
incorporate part-of-speech information
in our features.

(b) Removing words based on their POS tag:
Aims to remove words with low senti-
mental value from the data by targeting
specific tags.

9. Numeric Feature Extraction: We extracted
counts of characters, words, exclamation
points, and numbers, as well as the num-
bers of declarative, interrogative, and impera-
tive/exclamative sentences in a text. Finally,
we extracted the counts of verbs, nouns, and
adjectives, for each text.

The performance comparison of each prepro-
cessing method is shown in Section 5. Stemming,
lemmatisation, POS tagging, and most of numeric
feature extractions were achieved by using tools
from the well established NLTK (Elhadad, 2010),
while we were guided by the survey of Ravi and
Ravi (2015) of the most commonly used techniques
in text preprocessing for sentiment analysis and
by our previous works (Effrosynidis et al., 2017;
Symeonidis et al., 2018) on this subject.

3.2 Machine Learning
The training of our classification and regression
models aimed to improve the evaluation measure
used for the corresponding task. Many probabilis-
tic, linear and tree-based algorithms were used, as
well as small neural network architectures.

The algorithms/Neural Networks (NN) that per-
formed the best were used in our systems and are
listed below:

• Linear Models: Linear SVM, Bayesian Ridge
Regression and LASSO

• Non-Linear Models: Naive Bayes, Light
GBM (Ke et al., 2017) and XGBoost (Chen
and Guestrin, 2016)
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• NN Models: Dense and Long Short-Term
Memory Networks (using the Keras API1)

Linear SVM models were excluded from our
final systems mainly due to our better tuning of the
LGBM and XGB models during the last phase.

3.3 Vectorization and Embedding

We used the following scikit-learn toolkit’s vector-
izers to extract features from the preprocessed data
using word unigrams or bigrams:

• Tf-idf Vectorizer: translates the word counts
matrix to a matrix of tf-idf features.

• Delta tf-idf Vectorizer: proposed by Mar-
tineau and Finin (2009), it creates tf-idf fea-
tures similarly to tf-idf vectorizer but applies a
weighting scheme reflecting the difference of
tf-idf value of each word between the texts of
two classes. We used the subtask’s 1a labels
for weighting tf-idf values in every subtask.

In order to create features for the LSTM mod-
els, we translate the words of each text into word
vectors. This translation is achieved through the
use of a well-known, pre-trained model: GloVe
(Pennington et al., 2014).

4 System Overview

In this section we describe the proposed system for
each subtask.

4.1 Proposed System

We trained each model with all possible combina-
tions of preprocessing and vectorization. During
the development phase, we evaluated these models
using 10-fold cross validation on the training data.
These evaluations guided us through hyperparame-
ter tuning and model selection.

During the evaluation phase, we combined the
outputs of these models in order to produce our
system’s predictions (Figure 2). The system’s per-
formance was evaluated using the test data from
the development phase. That data was also used
as validation data for training and tuning the dense
and LSTM networks.

Model selection for our final systems was a repet-
itive but simple process. We selected the best
performing model per algorithm and vectorization
method, some weaker models whose outputs had

1https://github.com/fchollet/keras

Figure 2: System Architecture

lower correlation than the outputs of the best per-
forming models and all the NN models that we
had trained. We then combined (Symeonidis et al.,
2017) all selected model outputs in all possible
combinations consisting of at least 3 models and
picked the best performing one as our final system
for task prediction.

This process was repeated for each subtask. Af-
ter finding the combination that produced the best
results for the development’s phase test data, we
re-trained the system’s models by appending that
test data on the training data.

4.1.1 Subtask 1a: Humour Classification
In Subtask 1a, each text needs to be classified as
humorous or not. Table 2 showcases the various
preprocessing methods, vectorization tools and ML
algorithms that comprised our final system. Since
the number of models is even, majority voting fa-
vors the ‘non-humorous’ label in case of a tie, i.e.
the less represented tag in the dataset.

Preprocessing Vectorizer ML

1,2,5,8a and 9 Delta tf-idf unigrams Shallow NN
1,2 and 9 Tf-idf unigrams LGBM

1,2,8a and 9 Delta tf-idf bigrams Naive Bayes
1,2,6,7,8a and 9 Delta tf-idf bigrams Naive Bayes

1,7 and 9 Tf-idf bigrams XGB
1 Word2vec embedings LSTM

Table 2: Subtask 1a system composition

4.1.2 Subtask 1b: Humor Rating
In Subtask 1b, each humorous text needs to be rated
in a range of 0–5 on how much humorous it is. For
this subtask, the best combination found amounted
to 13 models. Thus, we will not include a table for
this task. All proposed preprocessing techniques
were used but 3 and 8b as well as every vectorizer.
Interestingly, NN models were ruled out in this
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subtask since a LGBM, XGB and Bayesian Ridge
combination produced the best outcome.

4.1.3 Subtask 1c: Controversial Humor
Classification

In Subtask 1c, each humorous text has to be clas-
sified as controversial or not. This is the only task
that a single model outperformed any combination
of models we tried to assemble. A preprocess of
extracting numeric features (9), appending POS
tags (8a), lowercasing and tokenization (1), a delta
tf-idf vectorizer extracting bigrams and an LGBM
model outperformed every other combination.

4.1.4 Subtask 2: Offense Rating
Finally, in Subtask 2 each text is rated in the range
of 0–5 on how offensive it is. The final system is
the average of the 7 individual models described in
Table 3.

Preprocessing Vectorizer ML

1,2 and 9 delta tf-idf unigrams XGB
1,2,3 and 9 tf-idf biwords XGB

1 word2vec embedings LSTM
1 and 2 word2vec embedings LSTM
1 and 3 word2vec embedings LSTM
1 and 5 word2vec embedings LSTM
1 and 7 word2vec embedings LSTM

Table 3: Subask 2 system composition

5 Results

Each preprocessing method had an impact on
model performance, as it is shown in Table 4 for
each task.

The results for each task/subtask are shown in
Table 5. We present the scores of our best per-
forming single models and combination of models
respectively on the development test set as well as
our submissions for the evaluation test data.

We can detect a pattern in the difference between
the winning team’s submissions and our submis-
sions, and between the performance of our NN
and non-NN models. It would be an indication—
for Subtask 1a—that our conventional machine
learning models, while achieving a respectable
performance, cannot handle some outliers. This
can be also observed through the results of Sub-
task 2, where outliers have a greater impact on
the RMSE metric. Our false negative results on
humor are mostly ironic, reference-based jokes or
highly controversial ones, and our false positive

Preprocessing Subtask 1a Subtask 1b Subtask 1c Subtask 2

None 0.8325 0.5501 0.6299 0.8431
Stemming 0.8372 0.5500 0.6266 0.8560

Lemmatization 0.8361 0.5535 0.6130 0.8504
Stopwords 0.8206 0.5465 0.6379 0.8623

Capital Tagging 0.8284 0.5550 0.6099 0.8790
Emoji Replace 0.8332 0.5501 0.6299 0.8492

Contraction Replace 0.8345 0.5471 0.6253 0.8587
Integers Remove 0.8357 0.5567 0.6176 0.8664
POS Tag Append 0.8331 0.5459 0.6455 0.8620
POS Tag Filter 0.8170 0.5558 0.6214 1.0022

Feature Creation 0.8457 0.5473 0.5298 0.8653

Table 4: F1 or RMSE of best performing model per pre-
processing method. ‘None’ stands for plain tokeniza-
tion and lowercasing. Scores in bold are better than
‘None’.

results are mostly conversational writing texts like
microbloging posts. The basic LSTM models we
created were able to slightly close the gap with the
superior, transformer models but there is still plenty
of headroom for improvement.

On the other hand, our systems on Subtasks 1b
and 1c were much closer to their superior models.
While Subtask’s 1b results could be attributed to a
large extend on the distribution of humor ratings,
Subtask 1c seems to be a much harder task regard-
less the approach. With an average accuracy of
0.5 across all submissions, humor controversiality
seems to puzzle even the most complex models;
anywise, humor controversiality is much more sub-
jective than humor itself.

Nevertheless, a great advantage of conventional
machine learning is training speed and hardware
requirements. State-of-the-art boosting models like
the ones we used (LightGBM and XGB) can be
accelerated through the use of GPUs while our
small NNs can be trained in a couple of minutes.
Training/tuning deep learning models, on the other
hand, requires expensive hardware and can be very
time-consuming.

6 Conclusions

In this report, we presented our approach on hu-
morous and offensive text classification and rating
based on the combination of outputs from differ-
ent preprocessing techniques, vectorization meth-
ods and machine learning algorithms. Our pro-
posed systems were outperformed by other teams
in the main tasks, while our conventional machine
learning models were mostly inferior to our neu-
ral networks. Our future work will focus on ex-
panding our preprocessing methods, introducing
further ensemble methods and stacking, as well as
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Development Test Evaluation Test
Best Single non-NN Model Best Single NN Model Best System Best Submission Our Position Winning Submission

Subtask 1a 0.8706 (F1) 0.8952 (F1) 0.9136 (F1) 0.8942 (F1) 52 out of 58 0.9820 (F1)
Subtask 1b 0.5411 (RMSE) 0.5492 (RMSE) 0.5411 (RMSE) 0.5507 (RMSE) 12 out of 50 0.4959 (RMSE)
Subtask 1c 0.6455 (F1) 0.6491(F1) 0.6636 (F1) 0.5990 (F1) 12 out of 36 0.6302 (F1)
Subtask 2 0.8313 (RMSE) 0.7552 (RMSE) 0.7368 (RMSE) 0.5819 (RMSE) 40 out of 48 0.4120 (RMSE)

Table 5: Model/System performance in development and evaluation test sets

transformer-based models for direct comparisons.
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Abstract
This paper describes the winning system for
SemEval-2021 Task 7: Detecting and Rating
Humor and Offense. Our strategy is stacking
diverse pre-trained language models (PLMs)
such as RoBERTa and ALBERT. We first per-
form fine-tuning on these two PLMs with var-
ious hyperparameters and different training
strategies. Then a valid stacking mechanism
is applied on top of the fine-tuned PLMs to get
the final prediction. Experimental results on
the dataset released by the organizer of the task
show the validity of our method and we win
first place and third place for subtask 2 and 1a.

1 Introduction

Humor and offense detection continue to be chal-
lenging AI problems since humor and offense in-
volve in-depth world-knowledge, common sense,
and the ability to perceive relationships across enti-
ties and objects at various levels of understanding
(Hossain et al., 2019). The recognition of humor
and offense in the text has been receiving much
attention (Zampieri et al., 2019; Hossain et al.,
2020). Accordingly, SemEval-2021 Task 7, De-
tecting and Rating Humor and Offense, which
aims to automatically recognize humor in English
jokes was held (Meaney et al., 2021).

In this paper, we introduce our system for accom-
plishing the above task by leveraging pre-trained
models (PLMs). There are two main steps for
our system, i) fine-tuning two kinds of PLMs, in-
cluding ALBERT (Lan et al., 2019) and RoBERTa
(Liu et al., 2019) with various hyperparameters and
training strategies, achieving diverse models; ii)
applying a validity stacking mechanism on top of
these PLMs to do the final predictions.

Our experimental results show that merging
PLMs with different training strategies together
can achieve great improvement which verifies the
effectiveness of increasing model diversity. As a

Tags No. of is humor Percentage
train 4932 61.65%
dev 632 63.20%
test 615 61.50%

Table 1: The number and percentage of humor samples
in training set, validation set and test set respectively.
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Figure 1: The distributions of offense rating for training
set, validation set and test set.

result, our system achieves the F1-score of 96.76%
in subtask 1a and the RMSE of 41.2% in subtask
2, which ranks third and first among all the partici-
pated teams respectively.

2 Background

2.1 Task Definition

The “Detecting and Rating Humor and Offense”
task, shared by SemEval-2021, consists of two sub-
tasks. Subtask 1 includes three parts, a) A binary
task to predict if the text would be considered hu-
morous; b) A regression task to predict how hu-
morous a text is if it is classed as humorous; c) A
binary task to predict if the humor rating would be
considered controversial when the text is classed as
humorous. Subtask 2 aims to predict how offensive
a text would be with values between 0 and 5. This
score can be calculated regardless of whether the
text is classed as humorous or not. In this paper,
we mainly focus on subtask 1a and subtask 2.
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Figure 2: The overall architecture for detecting and rat-
ing humor and offense.

2.2 Dataset

Humor and Offense appreciation is a highly sub-
jective phenomenon, with age, gender, race, and
socioeconomic status are known to have an impact
on the perception of a joke. The labels and ratings
of the English dataset in this task are collected from
a balanced set of age groups from 18-70 and are
various in genders, political stances, and income
levels. The dataset has a total of 10,000 samples,
which are divided into training set, validation set,
and test set according to 8:1:1. Table 1 shows the
number and percentage of humor samples in the
three datasets and we can find that their distribu-
tions are very similar with nearly 60% are humor
ones. Figure 1 demonstrates the distribution of
offense ratings in three datasets. Samples with of-
fense ratings between (0,1) are the most and the
three datasets have the same distribution of offense
ratings as well.

3 System Overview

3.1 PLMs-based Method

Architecture In our method, we have the same
architecture for dealing with subtask 1a and sub-
task 2. As shown in Figure 2, we utilize several
pre-trained language models (e.g., RoBERTa) as
the encoder and segment different texts with special
tokens [CLS] and [SEP]. After the tokenization,
we can get the embedding of [CLS], which can be
seen as the representation for the whole input text.
We pass it through a dense layer and obtain the final
prediction through the Multi-Sample Dropout (In-
oue, 2019). The output of dense layer x is depicted
as below,

x = ReLU(W0dropout(x[CLS]) (1)

where W0 ∈ Rd×k is the learning weight, k is
the dimension of e[CLS] and d is a hyperparameter

which we set as 256 and the dropout rate here we
set as 0.2 or 0.5.

Multi-Sample Dropout Dropout is a simple but
efficient regularization technique for achieving bet-
ter generalization of deep neural networks. Dur-
ing training, dropout randomly discards a portion
of the neurons to avoid overfitting. The original
dropout creates a randomly selected subset (called
a dropout sample) from the input in each training
iteration while the multi-sample dropout creates
multiple dropout samples. The loss is calculated
for each sample, and the sample losses are averaged
to obtain the final loss.

Thus, the final prediction of both subtask 1a and
2 can be computed as follows,

ŷ =
1

N

N∑

i=1

Sigmoid(Widropouti(x)) (2)

where Wi ∈ R1×d is the learning weights, N is
the number of dropout values which we set as 5.
By using this training mechanism, we can acceler-
ate training and achieve lower error rates as well.
Since the Sigmoid function used here is the logistic
function which maps any real value to the range
(0,1), we preprocess the rating of offense in subtask
2 from (0,5) to (0,1).

Loss function As mentioned above, subtask 1a
is a binary task and subtask 2 is a regression task,
thus we choose Binary Cross Entropy (BCE) and
Mean Square Error (MSE) as the loss function re-
spectively.

3.2 Training strategies
To further improve the diversity and accuracy of
trained models, we incorporate three training strate-
gies as depicted below.

Task-Adaptive Pre-training Task-adaptive pre-
training (TAPT) is an effective method to improve
model performance (Gururangan et al., 2020). The
data used in general pre-training usually vary from
task-specific data. Thus we do task-adaptive by
pre-training the masked language model task on
the given Humor and Offense dataset.

Pseudo-Labelling Pseudo labeling (PL) is the
process of using a labeled data model to predict
labels for unlabeled data. We predict the unlabeled
test dataset and mix these pseudo labels with the
training set together to train the new model. For
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Subtask 1a Subtask 2
Model F1 Model RMSE
ALBERTBASE 0.9635 - -
ALBERTBASE+AT 0.9662 - -
RoBERTaLARGE 0.9685 RoBERTaLARGE 0.4846
RoBERTaLARGE+AT 0.9694 RoBERTaLARGE+AT 0.4713
RoBERTaLARGE+TAPT 0.9724 RoBERTaLARGE+TPAT 0.4621
RoBERTaLARGE+TAPT+AT 0.9727 RoBERTaLARGE+TAPT+AT 0.4607
RoBERTaLARGE+TAPT+KD 0.9714 RoBERTaLARGE+TAPT+KD 0.4633
RoBERTaLARGE+TAPT+KD+AT 0.9726 RoBERTaLARGE+TAPT+KD+AT 0.4605
RoBERTaLARGE+TAPT+PL 0.9728 RoBERTaLARGE+TAPT+PL 0.4571
RoBERTaLARGE+TAPT+PL+AT 0.9738 RoBERTaLARGE+TAPT+PL+AT 0.456

Table 2: Comparison of pre-trained language models with different training strategies of Subtask 1a and 2.

subtask 1a, we set the threshold as 0.8 which means
samples with predicted scores higher than 0.8 are
treated as the humor ones.

0.9728

0.9733

0.9738

0.9743

0.9748

Base-model +TAPT +TAPT, PL +TAPT, KD +TAPT, KD,PL

Figure 3: The comparison of F1 scores for stacking
different models in subtask 1a.

Knowledge Distillation Inspired by (Hinton
et al., 2015), we adopt the knowledge distillation
(KD) mechanism into our system. The whole pro-
cedure consists of three steps. First, we train the
original big model using a hard target, which is the
true label given in the dataset. Next, we use the
trained model to predict the soft target, which is
the probability for each sample being humorous
and offense. After this, we train a small model by
minimizing the loss between the scores predicted
by the small model and the soft target. The loss
functions are still BCE and MSE. At last, we use
the small model to predict the final results.

Adversarial Training Adversarial training (AT)
is a popular approach to increasing the robustness
of neural networks and has good regularization
performance (Miyato et al., 2016). By adding per-
turbations to the embedding layer, we can get more
stable word representations and a more general-
ized model, which significantly improves model
performance on unseen data.

3.3 Stacking Trained Models
Model stacking is an efficient ensemble method
to improve model accuracy. The main procedure

of stacking trained models in our method includ-
ing five steps. First, we use two different PLMs
including RoBERTa and ALBERT. Second, we do
TAPT on these PLMs to achieve new pre-trained
models. Third, we perform 7-fold cross-validation
on the whole training process to avoid overfitting
or selection bias. Fourth, we train various mod-
els with different hyperparameters and different
training strategies to improve the model diversity.
Ultimately, we average all the predictions from
different models to get the final prediction.

4 Experiments

Evaluation Metrics As mentioned in the official
evaluation procedure of SemEval-2021 task 7, the
main evaluation metrics for the binary classification
tasks is f1-measure and the metric for the regres-
sion tasks is Root Mean Squared Error (RMSE).

Parameter settings All models are implemented
based on the open-source transformers library of
hugging face (Wolf et al., 2020), which provides
thousands of pre-trained models that can be quickly
downloaded and fine-tuned on specific tasks. To
do better performance estimation, We gather the
training set and validation set together as the new
training set and then do 7-fold cross-validation on it.
We set batch size as 16 and run 10 epochs for each
fold. The learning rate is 1e-5. For RoBERTaLARGE

and ALBERTBASE, the k is set as 1024 and 128
respectively.

5 Results

5.1 Ablation Studies

PLMs with Training Strategies For subtask 1a,
we use two types of PLMs including ALBERTBASE

and RoBERTaLARGE. As shown in Table 2. We set
five groups of models and each group is the same
models with or without adversarial training (AD).
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The models of the first and second groups are the
base ones and we add training strategies includ-
ing task-adapative pre-training (TAPT), knowledge
distillation (KD), and pseudo-labeling (PL) to the
other three groups.

The results are the average scores from mod-
els with different hyperparameters (e.g. differ-
ent dropout) by doing 7-fold cross-validation on
the new training dataset depicted above. Since
RoBERTaLARGE performs better on this task, AL-
BERT is not used in subtask 2 anymore. From
Table 2, we find that for both subtask 1a and sub-
task 2, all the training strategies can improve the
performance. Besides, models with AD achieve
better scores than the ones without AD. The mod-
els adding TAPT, PL and AT together are the best
ones.

0.44

0.445

0.45

0.455

0.46

0.465

0.47

Base-model +TAPT +TAPT, KD +TAPT, PL +TAPT, PL, KD

Figure 4: The comparison of RMSE for stacking differ-
ent models in subtask 2.

Stacking trained models To stack the trained
models, we use a simple method which averaging
predictions from different models. Figure 3 and 4
show the comparison for stacking different models
of subtask 1a and 2. We find that all scores of
the ensemble ones are better than the best score in
Table 2 which from a single model. This verifies
the effectiveness of stacking different models.

However, both Figure 3 and 4 demonstrate that
the best score is not to stacking models of all the
groups in Table 2 but to stack part of the models.
This indicates that combining the least correlated
results is more efficient than combining them all.

Subtask 1a Subtask 2
System F1 System RMSE
endworld 0.9854 DeepBlueAI 0.412
stce 0.9797 mmmm 0.419
DeepBlueAI 0.9676 calamity link 0.423
baseline 0.9283 baseline 0.5770

Table 3: Leaderboard

5.2 Official Ranking
We submitted the scores predicted by the ensemble
method introduced above. The official ranking is
presented in Table 3. We rank third in subtask 1a
and first in subtask 2, which verifies the validity of
our system.

6 Conclusion

In this paper, we propose a top-performing ap-
proach for the task of Detecting and Rating Hu-
mor and Offense. We fine-tune two kinds of pre-
trained language models including ALBERT and
RoBERTa with different training strategies such as
pseudo labeling and knowledge distillation. Then,
we stack them with a simple linear regression
model. Experimental results show the effectiveness
of this ensemble method and we win first place and
third place for subtask 2 and 1a. For future work, it
would be interesting to test the performance of our
best-performing system on other humor detection
datasets to validate its portability and robustness.
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Abstract

Humor detection has become a topic of inter-
est for several research teams, especially those
involved in socio-psychological studies, with
the aim to detect the humor and the temper of
a targeted population (e.g. a community, a city,
a country, the employees of a given company).
Most of the existing studies have formulated
the humor detection problem as a binary classi-
fication task, whereas it revolves around learn-
ing the sense of humor by evaluating its dif-
ferent degrees. In this paper, we propose an
end-to-end deep Multi-Task Learning (MTL)
model to detect and rate humor and offense. It
consists of a pre-trained transformer encoder
and task-specific attention layers. The model
is trained using MTL uncertainty loss weight-
ing to adaptively combine all sub-tasks objec-
tive functions. Our MTL model tackles all sub-
tasks of the SemEval-2021 Task-7 in one end-
to-end deep learning system and shows very
promising results.

1 Introduction

Humor is a human trait that defines the emotional
and behavioral characteristics of an individual. It
refers to the quality of being amusing, comic, sar-
castic, etc. Most dictionaries define humor also
as a message, whose ingenuity or verbal skill, or
incongruity, that has the power to make individual
laughing.

Humor and offensive language detection tasks
are increasingly becoming hot research topics in
Natural Language Processing (NLP) (Zampieri
et al., 2019; Reyes et al., 2012; Gleason et al.,
2019; van den Beukel and Aroyo, 2018; Cattle and
Ma, 2018; Singh et al., 2020). Existing research
works have tackled humor detection as either a
binary classification problem (Weller and Seppi,
2019; Annamoradnejad, 2020) or a ranking task
(Potash et al., 2017; Hossain et al., 2020; Zhang

et al., 2019). Similarly, most research works on
offensive language detection have proposed meth-
ods and approaches to discriminate between offen-
sive and not-offensive texts (Zampieri et al., 2019,
2020), whereas, other research works have classi-
fied offensive content into more fine-grained levels
(Wiegand et al., 2018; Kumar et al., 2018; Risch
et al., 2020).

Fine-tuning pre-trained transformer-based lan-
guage models on the target task data has shown
state-of-the-art (SOTA) results in many NLP ap-
plications (Devlin et al., 2019; Liu et al., 2019).
For instance, several research works on humor and
offensive language detection have achieved SOTA
performances using pre-trained transformer-based
language models (Zampieri et al., 2019; Weller and
Seppi, 2019; Zampieri et al., 2020).

In this paper, we describe our system submit-
ted to the SemEval-2021 Task-7 (Sub-Tasks 1 and
2) (Meaney et al., 2021). We propose an end-to-
end deep Multi-Task Learning (MTL) model based
on RoBERTa Encoder (Liu et al., 2019) and task-
specific attention layers. The attention mechanism
is applied on top of the encoder’s contextualized
word embedding to extract task-specific features.
The classification and regression modules are fed
with their task-specific attention output and the
shared pooled output of the encoder. In order
to adaptively combine all tasks’ losses, we em-
ployed the MTL uncertainty loss weighting method
(Kendall et al., 2017). We also investigate the base
and the large variants of BERT (Devlin et al., 2019)
and RoBERTa encoders for both single-task and
MTL. The obtained results show that our MTL
model outperforms its single-task counterparts on
both Task 1 and Task2. The best performances are
obtained using RoBERTa-large encoder. Our sys-
tem is ranked 18th, 9th, 7th and 20th on Sub-Tasks
1a, 1b, 1c and 2a, respectively.

The remainder of this paper is organized as fol-
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lows. Section 2 describes the SemEval-2021 task-7
and the provided data. Section 3 presents our MTL
system. Section 4 summarizes the obtained results.
Section 5 concludes the paper.

2 Task description

The SemEval-2021 Task 7 consists of two main
tasks: the first task seeks recognizing and rating
humor while the second task aims to rate offense
(Meaney et al., 2021). To this end, the organizers
have provided 8000 sentences for the training, and
1000 sentences for the validation and test. All train-
ing and validation sentences are labeled for humor
detection and offense rating, while only humorous
sentences are labeled for humor and controversy
rating. The dataset is labeled by 20 annotators.
They have a balanced set of age groups from 18 to
70.

2.1 Task 1: Humor detection
The aim is to predict four target values for the
following sub-tasks:

• Task 1a: This sub-task is a binary classifica-
tion task where the aim is to classify texts as
humorous or not.

• Task 1b: This sub-task consists of predicting
the humor degree of a text. The degree is
based on the average rating (from 0 to 5) given
by the annotators.

• Task 1c: This sub-task consists of predicting
whether the humor rating would be considered
controversial or not: i.e. whether or not the
variance between the annotators’ ratings is
higher than the median rating.

2.2 Task 2: Offensive rating
This task has one sub-task for offense rating:

• Task 2a: This task predicts the degree of of-
fense conveyed in a text regardless of its hu-
mor label. The offense degree varies from 0
(not offensive) to 5 (very offensive).

3 System description

We propose an end-to-end deep MTL model based
on pre-trained transformer-based language model
(Devlin et al., 2019; Liu et al., 2019) and task-
specific attention layers. First, we apply the en-
coder to the input text in order to obtain its Con-
textual Word Embedding (CWE). The task-specific

attention layers are applied on the CWE. The clas-
sifier (Task 1a, Task 1c) or the regressor (Task 1b,
Task 2a) is fed with the concatenation of its task-
specific attention output and the encoder’s pooled
output. The model is then trained to minimize
the binary cross-entropy loss and the RMSE loss
for the classification and regression tasks, respec-
tively. Finally, these losses are combined using
uncertainty loss weighting for MTL.

3.1 Transformer encoder
In order to recognize the most important patterns
in an input text, we encode its using the state-of-
art pre-trained transformer encoder. We compare
four transformer encoders, namely BERT, BERT-
Large, RoBERTa and RoBERTa-Large (Devlin
et al., 2019; Liu et al., 2019).

The tokenizer of the encoder splits the input sen-
tence into wordpeices [T1, T2, ..., Tn] and encodes
them using its vocabulary. The transformer encoder
is fed with the encoded input and outputs the pooled
embedding hpooled ∈ R1×d (embedding of [CLS]
(resp. < s >) token of BERT (resp. roBBERTa))
and the CWE H = [h1, h2, ..., hn] ∈ Rn×d (d is
the embedding dimension).

3.2 Task-specific attention layer
We use one task-specific attention layer for each
task. Using H , the CWE of the input sentence, the
attention mechanism (Bahdanau et al., 2015; Yang
et al., 2016) extracts the task-specific representa-
tion s∗ (∗ denotes the task) as follows:

U = tanh(WaH))

α = softmax(UTWα)

s∗ = α ·HT

where Wa ∈ Rd×1 and Wα ∈ Rn×n are the train-
able parameters of the attention layer, U ∈ Rn×1
is the attention mechanism’s context vector, and
α ∈ [0, 1]n weights h1, h2, ..., hn according to
their contribution to the task objective.

3.3 Task Classification/Regression module
As the SemEval-2021 Task-7 consists of two classi-
fication tasks (1a and 1c) and two regression tasks
(1b and 2), we employ two classification modules
and two regression modules. Each of these task-
specific module is composed of one hidden layer
and one output layer, and takes as input the concate-
nation [hpooled, s∗] of the pooled output (hpooled)
and its task-specific attention output (s∗).
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3.4 MTL objective

Our MTL model is trained to minimize the losses of
the four tasks. Specifically, it minimizes the binary
cross-entropy loss and the RMSE loss for classi-
fication and regression tasks, respectively. These
losses are expressed as follows:

• Binary cross-entropy loss for humor classifi-
cation

L1(ŷ, y) = −
N∑

i=1

2∑

j=1

yji log(ŷ
j
i )

• RMSE loss for Humor rating

L2(ŷ, y) =

√√√√ 1

N

N∑

i=1

(yi − ŷj)2

• Binary cross-entropy loss for Controversy
classification

L3(ŷ, y) = −
N∑

i=1

2∑

j=1

yji log(ŷ
j
i )

• RMSE loss for offense rating

L4(ŷ, y) =

√√√√ 1

N

N∑

i=1

(yi − ŷj)2

where y and ŷ are the ground-truth and the pre-
dicted values, respectively. In order to adap-
tively weight the losses of the four tasks, we com-
bine them using MTL uncertainty loss weighting
(Kendall et al., 2017), given by:

Ltotal(ŷ, y) =
1

2σ21
L1(ŷ, y) +

1

2σ22
L2(ŷ, y)

+
1

2σ23
L3(ŷ, y) +

1

2σ24
L4(ŷ, y)

+ log(σ1σ2σ3σ4)

where σi (i = 1..4) captures the amount of noise
that exists in the output of each task, and used to
tune the impact of each loss in MTL optimization.
Finally, the MTL model is trained to minimize
the overall loss Ltotal with respect to the network
parameters as well as the noise parameters σi.

4 Results

4.1 Experiment Settings
We have evaluated the performance of our model
and it single-task counterparts using both the base
and the large models of BERT and RoBERTa:

• BERT-base: 12 transformer blocks, d = 768,
12 attention heads, and 110M parameters.

• BERT-large: 24 transformer blocks, d =
1024, 16 attention heads, and 336M param-
eters.

• RoBERTa-base: 12 transformer blocks, d =
768, 12 attention heads, and 125M parame-
ters.

• RoBERTa-large: 24 transformer blocks, d =
1024, 16 attention heads, and 355M parame-
ters.

For text preprocessing, we have implemented a
simple pipeline that normalizes contractions. All
evaluated models are trained using Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
1×10−5. The batch size and the number of epochs
are fixed to 16 and 5, respectively. We have inves-
tigated both single-task training and MTL for all
tasks. It is worth mentioning that, for single-task
learning, we also apply an attention layer on top
of the contextualized word embedding. This has
improved single-task models as well. All models
are trained on the full train sets, validated on the
validation set, and evaluated on the test set of each
task. For evaluation purpose, we have used the
shared task’s evaluation metrics, namely the F1-
score, the Accuracy, and the Root Mean Squared
Error RMSE. It is worth mentioning that models’
validation is preformed using the development set,
while the presented results are obtained employing
the test set.

4.2 Experiment Results
Table 1 presents the obtained results for all tasks
using single-task and MTL models. The results
show that our MTL model surpasses its single-task
counterparts on all tasks. The large variants of
BERT and RoBERTa encoders offer better perfor-
mance compared to their base variants. The best
performance is obtained using our MTL model on
top of RoBERTa large encoder. These results can
be explained by the fact that deep encoders can
capture more complex pattern from the input text.
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Task 1a Task 1c Task 1b Task 2

Accuracy F1-score Accuracy F1-score RMSE RMSE

Single-Task

BERT 0.9171 0.9318 0.4216 0.6023 0.5852 0.5649

BERT-large 0.9372 0.9425 0.4296 0.6122 0.5748 0.5571

RoBERTa 0.9408 0.9433 0.4302 0.6035 0.5711 0.5556

RoBERTa-large 0.9422 0.9531 0.4415 0.6183 0.5688 0.5079

MTL

BERT 0.93 0.9361 0.4296 0.6032 0.5756 0.5511

BERT-large 0.9421 0.9442 0.4316 0.6054 0.552 0.5533

RoBERTa 0.945 0.9587 0.4423 0.6152 0.5578 0.5218

RoBERTa-large‡ 0.951 0.9606 0.4537 0.6242 0.5401 0.4696

Table 1: The obtained results using our MTL model and its single-task counterparts, with different encoders. The
subscript ‡ denotes our official submission to SemEval-2021 Task-7. Results are obtained employing the test set.

Task 1a Task 1c Task 1b Task 2

Accuracy F-score Accuracy F-score RMSE RMSE

w/o task-attention 0.9335 0.9472 0.4456 0.6122 0.5636 0.4891

w/o uncertainty loss weighting 0.9498 0.9582 0.4516 0.6198 0.5516 0.4722

MTL RoBERTa-large 0.951 0.9606 0.4537 0.6242 0.5401 0.4696

Table 2: Ablation study of our MTL model using MTL RoBERTa-large encoder (w/o denotes without the corre-
sponding component). Results are obtained using the test set.

Besides, MTL leverages useful signals from the
related tasks.

To investigate the effectiveness of the task-
specific attention layers and the uncertainty loss
weighting on the performance of our MTL model,
we have performed an ablation study. Table 2
presents the results of our model without these
components. The results show that both compo-
nents improve the performance of our MTL model.
We achieve the most performance gain by incor-
porating the task-specific attention layers into our
model. Besides, the adaptive losses weighting com-
ponent outperforms the simple combination of task
losses (Ltotal = l1 + l2 + l3 + l4).

5 Conclusion

In this paper, we have presented our system for
humor and offense detection and rating. Our sys-
tem consists of an end-to-end MTL model based
on the state-of-art pre-trained transformer encoder
and task-specific attention layers. The latter lay-
ers are applied on top of the contextualized word
embedding to extract task-discriminative features.
We have employed two classification and regres-
sion modules to tackle the four tasks. Our MTL
model is trained to minimize the four tasks losses,

while weighting them adaptively using the MTL
uncertainty loss weighting. We have also inves-
tigated the performance of our MTL model as
well as its single-task counterparts using four pre-
trained transformer-based encoders. The best per-
formances are obtained using our MTL model
while employing RoBERTa-large encoder.

In future work, we would like to improve our
model, by considering the relationship between the
different tasks. Besides, we want to use our model
not only to detect humorous and offensive content,
but also to perform other related tasks.
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Abstract

This paper introduces the system description
of the hub team, which explains the related
work and experimental results of our team’s
participation in SemEval 2021 Task 7: Ha-
Hackathon: Detecting and Rating Humor and
Offense. We successfully submitted the test
set prediction results of the two subtasks in the
task. The goal of the task is to perform hu-
mor detection, grade evaluation, and offensive
evaluation on each English text data in the data
set. Tasks can be divided into two types of sub-
tasks. One is a text classification task, and the
other is a text regression task. What we need
to do is to use our method to detect the humor
and offensive information of the sentence as
accurately as possible. The methods used in
the results submitted by our team are mainly
composed of ALBERT, CNN, and Tf-Idf algo-
rithms. The result evaluation indicators sub-
mitted by the classification task are F1 score
and Accuracy. The result evaluation index of
the regression task submission is the RMSE.
The final scores of the prediction results of the
two subtask test sets submitted by our team
are task1a 0.921 (F1), task1a 0.9364 (Accu-
racy), task1b 0.6288 (RMSE), task1c 0.5333
(F1), task1c 0.0.5591 (Accuracy), and task2
0.5027 (RMSE) respectively.

1 Introduction and Background

Perceiving humor has always been a unique ability
of human beings. So what is the use of humor?
The research results of Martin and Kuiper on hu-
mor show us the influence of humor on a person’s
physical and mental health (Martin, 2004; Kuiper
et al., 2004). In recent years, the use of automated
methods to detect humorous information in text
has attracted widespread attention (Barbieri and
Saggion, 2014; Reyes et al., 2012).

SemEval 2021 Task 7: Ha-Hackathon: Detect-
ing and Rating Humor and Offense’s task goal is to

use automated techniques and methods to automat-
ically detect humor and grade in the text. Besides,
this task also needs to evaluate the offensive level
of the text data. The task is divided into two parts,
one part is the detection and evaluation related to
humor. There are three subtasks in this part of the
task. It involves text classification and regression.
The other part is to assess the offensive level of the
text data. This is a separate text regression task.
The purpose is to predict how offensive the text
will be to ordinary users. This task is an interest-
ing challenge for the machine. Humor is a very
subjective emotion. People with different cultural
backgrounds and life experiences have different
feelings about the same sentence. This task is to de-
tect and score humor on the English data set. There
are similar tasks and studies in other languages,
such as humor scores on Spanish data from tweets
(Castro et al., 2018; Chiruzzo et al., 2019).

In text detection and classification tasks, semi-
supervised and supervised methods are widely used.
Davidov et al. use a semi-supervised method to de-
tect text from social media. The purpose is to detect
whether the text data contains ironic information
(Davidov et al., 2010). But these methods alone are
not enough to make humor ratings on text data. We
need to combine semantic information in context.
The ELMo (Peters et al., 2018) method based on
LSTM (Olah, 2015) overcomes the difficulty that
the model cannot learn the context. In the follow-
up work, an improved method of ELMo feature
extractor appeared. The BERT (Devlin et al., 2018)
model based on Transformer Encoder (Vaswani
et al., 2017) achieved the best results in many NLP
tasks.

2 Data and Methods

In this section, we will introduce the data we use
in the task and the models and methods we use.
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ID Text Is humor Humor rating Humor controversy Offense rating
35 Learn from the

scars of others
0 0 0 0.05

119 What do you
call a sad terror-
ist? A crisis

1 2.16 1 0.85

Table 1: The training set sample data we used in the task.

(a) The training data (b) The test data

Figure 1: The word cloud diagram of the training and test data provided by the task organizer team. The result
shown in the figure is the data after removing the stop words.

2.1 Data Description

The task organizer team provides each team with
training data sets, validation data sets and test data
sets related to the “Detecting and Rating Humor
and Offense” task (Meaney et al., 2021). We an-
alyze the structure and characteristics of the data
sets. The training data set includes ID, Text, Is Hu-
mor, Humor Rating, Humor Controversy, Offense
Rating. Among them, Is Humor, Humor Rating,
Humor Controversy 3 tags are the three subtasks
a, b, and c of task 1. Is Humor and Humor Contro-
versy are two binary classification labels, consist-
ing of 0 or 1. Humor Rating is a continuous value
between 0-5. Offense Rating is the label of task 2.
It is a continuous value between 0-5. The sentence
length in the Text is different. Compared with the
training data set, the test set only contains the above
ID and Text parts. During the development phase,
the task organizer also provides a test set. But we
did not use this test set in our system, so we do not
analyze the test set. We need to use our method
to predict the values of Is Humor, Humor Rating,
Humor Controversy and Offense Rating labels in
the test set. Table 1 shows a sample of the data we
used in the task.

8000 and 1000 different sample data constitute
the training set and the validation set. The numbers
of labels belonging to 1 and 0 in the training set
Is Humor label are 4932 and 3068, respectively.

The numbers of labels belonging to 1 and 0 in the
training set Humor Controversy label are 2465 and
5535, respectively. The test set consists of 1000
different sample data. We use word cloud graphs to
visualize text data. Text data in the training set and
test set. The word cloud image clearly shows us
the characteristics of word frequency distribution
in the text data set. The figure shows the text data
after the stop words are deleted. Figure 1 shows
word frequency information in the training set and
the test set.

2.2 Methods

Combined with the analysis and understanding of
task description and task data set, we chose to de-
velop an artificial neural network system based
on the combination of ALBERT, Tf-Idf and CNN.
We also tried to use the combination of BERT
and Tf-Idf to verify its impact on the verification
set. Both BERT and ALBERT (Lan et al., 2019)
are pre-trained language models that are imple-
mented based on the ideas and structure of Trans-
former. Compared with BERT, ALBERT not only
has fewer parameters but also has the characteris-
tics of parameter sharing between different layers.
The pre-trained language model also occupies less
memory space. Therefore, ALBERT is better than
BERT in training effect. The CNN block we use in
the system is mainly composed of two-dimensional
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Figure 2: The model structure and data flow we used in
the task.

convolution and two-dimensional maximum pool-
ing. The convolution kernel has three (3, 4, 5)
different sizes. The processed results of three con-
volution kernels of different sizes are connected as
the output result of the CNN block.

In the system we use to predict the results of
the test set. The first step is to input the prepro-
cessed text data into the ALBERT model. At the
same time, the text is processed with Tf-Idf to get
Tf-Idf output. In the ALBERT model, we will
get two output values. One is [CLS] (the shape is
[batch size, hidden size]) that contains the entire
sentence information. The other is the last layer
output of the ALBERT model last layer output
(the shape is [batch size, seq length, hidden size]).
In the second step, we use Tf-Idf output to per-
form a weighted operation on last layer output
to get weighted output (the shape is [batch size,
seq length, hidden size]). In the third step, we use
weighted output and last layer output respectively
as the input of the CNN block. The two output
results have the same shape as [CLS]. In the fourth
step, we stitch together the results of the two CNN
blocks obtained in the previous step and the results
of [CLS] to obtain Concatenate output (the shape
is [batch size, hidden size*3]). In the fifth step, we
use Concatenate output as the input value of the
classifier for the classification or regression task to
obtain the predicted output result. Figure 2 shows
our model structure and data flow.

3 Experiment and Results

In this section, we will introduce the data prepro-
cessing methods and experimental settings we used
in the task and the final results.

3.1 Data Preprocessing
Combining our understanding of tasks and data,
we removed the stop words in the text data. For
the stop word list, we use the stop word package
provided by NLTK. Besides, to use the Tf-Idf al-
gorithm to obtain a weighted output, and to ensure
that the shape of the text code processed by the
Tf-Idf algorithm is consistent with the shape of
the ALBERT output, we removed the text code
that exceeded the maximum sentence length. For
those texts that are less than the maximum sen-
tence length. For text encoding, we perform zero
padding.

The validation set we get is unlabeled data, so the
validation set we use in the training phase comes
from part of the data in the training set. Randomly
extract 20% from the training set as the validation
set data we will use next.

3.2 Experiment setting
To test the influence of different systems on the pre-
diction results of the task data set. We design sev-
eral different models and observe the result scores
of different models on the validation set. We ad-
just the parameters as much as possible to obtain
the best results for each different model, so dif-
ferent models use different parameter combination
settings.

The difference between BERT+Tf-Idf+CNN and
the system we introduced above is only to re-
place the ALBERT model. BERT+Tf-Idf and
ALBERT+Tf-Idf directly splice the output results
of BERT and ALBERT with the weighted result of
Tf-Idf. The other parts are the same as we intro-
duced in section 2.2. BERT and ALBERT directly
use their [CLS] output results. The task of classifi-
cation uses the BCEWithLogitsLoss loss function.
The regression task uses the MSELoss loss func-
tion.

• ALBERT+Tf-Idf+CNN: The epoch, batch
size, maximum sequence length, and learn-
ing rate for the model are 5, 32, 70, and 3e-5,
respectively.

• BERT+Tf-Idf+CNN: The epoch, batch size,
maximum sequence length, and learning rate
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Method task1a task1 task1b task1c task1c task2
F1 Acc RMSE F1 Acc RMSE

ALBERT+Tf-Idf+CNN 0.945 0.943 0.605 0.522 0.574 0.492
BERT+Tf-Idf+CNN 0.930 0.944 0.620 0.532 0.561 0.502
ALBERT+Tf-Idf 0.921 0.929 0.617 0.545 0.554 0.490
BERT+Tf-Idf 0.925 0.932 0.627 0.528 0.564 0.491
ALBERT 0.915 0.927 0.634 0.532 0.544 0.510
BERT 0.917 0.923 0.625 0.542 0.551 0.497

Table 2: We use different strategies to get the scores on the validation set.

Method task1a task1a task1b task1c task1c task2
F1 Acc RMSE F1 Acc RMSE

Top1 0.982 0.985 0.496 0.494 0.630 0.412
Top2 0.975 0.980 0.498 0.470 0.628 0.419
Top3 0.960 0.968 0.521 0.470 0.627 0.423
Our team 0.921 0.936 0.629 0.533 0.559 0.503

Table 3: Part of the results in the leaderboard announced by the task organizer team. Among them, the results of
Top1-Top3 are the combination of the scores of the top three in each subtask, not the scores of a team. The total
number of participating teams in each of the four subtasks is 58, 50, 36, 48.

for the model are 4, 32, 70, and 4e-5, respec-
tively.

• ALBERT+Tf-Idf: The epoch, batch size, max-
imum sequence length, and learning rate for
the model are 5, 32, 70, and 3e-5, respectively.

• BERT+Tf-Idf: The epoch, batch size, maxi-
mum sequence length, and learning rate for
the model are 4, 32, 70, and 4e-5, respectively.

• ALBERT: The epoch, batch size, maximum
sequence length, and learning rate for the
model are 4, 32, 70, and 3e-5, respectively.

• BERT: The epoch, batch size, maximum se-
quence length, and learning rate for the model
are 4, 32, 70, and 3e-5, respectively.

4 Results and Analysis

The evaluation indicators announced by the task
organizer team in this task are divided into clas-
sification tasks and regression tasks. The classi-
fication task uses F1 scores and accuracy scores.
The regression task uses root mean squared error
(RMSE).

We compare the results obtained by several dif-
ferent methods proposed in the experimental part.
The scores of different systems on the same val-
idation set are shown in Table 2. We have the
following conclusions:

• Conclusion 1: Introducing additional word
frequency information as part of the input in-
formation of the model will improve the score
of our validation set.

• Conclusion 2: The score difference between
ALBERT and BERT on our validation set is
not large. But in the same parameters and data
set, the training time of ALBERT is shorter
than BERT.

• Conclusion 3: Adding a CNN block improves
the result score. And the result scores of the
two methods based on ALBERT and BERT
have their advantages.

The ranking of the test set prediction results an-
nounced by the task organizer team uses accuracy
scores and RMSE scores respectively. Classifica-
tion tasks are ranked according to accuracy scores.
Regression tasks are ranked according to RMSE
scores. We finally submitted the test set prediction
result score from the ALBERT+Tf-Idf+CNN sys-
tem. Because its combined result in training time
and score is better than the BERT+Tf-Idf+CNN
system. The prediction result scores of the test set
we submitted can be seen in Table 3. The scores of
our system on the test set are lower than the scores
of the top three. But the results of the test set prove
that our system and method are feasible.
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5 Conclusion

In this task related to humor detection and offen-
sive evaluation, we propose an artificial neural net-
work system that combines a pre-trained language
model with Tf-Idf and CNN. Although our sys-
tem is only in the middle of the ranking, we still
successfully use our system to predict humor and
offensive scores. We studied the contributions of
6 different systems and found that the combina-
tion of Tf-Idf and CNN improved the prediction
scores of BERT and ALBERT. At the same time,
the ALBERT-based system is superior to the BERT-
based system in terms of time efficiency. In future
work, based on the model we use in the task, we
can try to fuse other types of word embedding infor-
mation, and replace the CNN block with an LSTM
block or other artificial neural networks.
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Abstract

In this paper, we describe our system used for
SemEval 2021 Task 7: HaHackathon: Detect-
ing and Rating Humor and Offense. We used
a simple fine-tuning approach using different
Pre-trained Language Models (PLMs) to eval-
uate their performance for humor and offense
detection. For regression tasks, we averaged
the scores of different models leading to bet-
ter performance than the original models. We
participated in all SubTasks. Our best perform-
ing system was ranked 4 in SubTask 1-b, 8 in
SubTask 1-c, 12 in SubTask 2, and performed
well in SubTask 1-a. We further show compre-
hensive results using different pre-trained lan-
guage models which will help as baselines for
future work.

1 Introduction

Humor is an intelligent form of communication
with the capability of providing amusement and
provoking laughter (Chen and Soo, 2018). It helps
in bridging the gap between various languages, cul-
tures, and demographics. Humor is a very sub-
jective phenomenon. It can have different intensi-
ties, and people may find some jokes funnier than
others. In certain situations, some jokes may be
offensive to a certain group of people. All these
characteristics of humor pose an interesting linguis-
tic challenge to NLP systems. SemEval 2021 Task
7: HaHackathon: Detecting and Rating Humor
and Offense (Meaney et al., 2021) aims to draw
attention to these challenges in humor detection.
The task provides a dataset of humorous content
annotated using people representing different age
groups, gender, political stances, and income levels.
The content of the provided dataset was in English.

Participating in all SubTasks, we propose a fine-
tuning based approach on pre-trained language
models. Pre-trained Language Models learn syn-
tactic and semantic representations by training on

large amounts of unsupervised data. Recently
there has been a lot of interest in PLMs. Re-
searchers have come up with different pre-training
methods using Auto Encoding(AE) and Auto-
Regressive(AR) language modeling techniques. Of-
ten these pre-trained models contain millions of pa-
rameters and are computationally expensive. Fine-
tuning different models may lead to different re-
sults on downstream tasks. This makes the choice
of PLM an important factor. We present a com-
parative study of different PLM models and their
performance in all SubTasks of SemEval 2021 Task
7: HaHackathon.

Our proposed fine-tuning approach for each
PLM made use of a single layer of one neuron
stacked on the PLM features. We performed exper-
iments using BERT(Devlin et al., 2019), ELEC-
TRA(Clark et al., 2020), RoBERTa(Liu et al.,
2019), XLNet(Yang et al., 2019), MPNet(Song
et al., 2020), and ALBERT(Lan et al., 2020). For
regression tasks, we also used averaging technique,
which we describe later in the paper. Our model
performed well in SubTask 1-b and 1-c, achieving
a rank of 4 and 8 respectively on the official leader
board. For SubTask 2, our proposed averaging tech-
nique outperformed individual fine-tuned models
by a good margin and was ranked 12. Our code is
available online1 for method replicability.

2 Background

The task of automatic humor recognition refers
to deciding whether a given sentence expresses
humor. The problem of humor recognition is of-
ten formulated as a binary classification problem
aiming to identify if the given text is humorous.
(Weller and Seppi, 2019) performed a study to iden-
tify if a joke is humorous or not using transformers

1https://github.com/04mayukh/YoungSheldon-at-
SemEval-2021-Task-7-HaHackathon
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(Vaswani et al., 2017). They used the body of
the joke, the punchline exclusively, and both parts
together. Combining both parts lead to better per-
formance and it was found that a punchline carries
more weight than the body of a joke for humor
identification. (de Oliveira and Rodrigo, 2015) ex-
perimented with SVM’s, RNN’s, and CNN’s for
identifying humor in Yelp reviews using a bag
of words and mean word vector representations.
(Chen and Soo, 2018) used CNN-based models
for identifying humor content. (Annamoradnejad,
2021) uses a neural network built on BERT embed-
dings learning features for sentences and whole text
separately and then combining them for prediction
on 200k Short Texts for Humor Detection dataset
on Kaggle2. Binary classification tasks help us to
separate humorous content but are unable to quan-
tify the degree of humor. SemEval-2017 Task 6:
#HashtagWars (Potash et al., 2017) aimed to study
the relative humor content of funny tweets by ei-
ther generating the correct pairwise comparisons of
tweets (SubTask A) or finding the correct ranking
of the tweets (SubTask B) based on their degree of
humor content. SemEval-2020 Task 7: Assessing
Humor in Edited News Headlines (Hossain et al.,
2020) presented a study on editing news headlines
to make them humorous. The task involved quanti-
fying the humor of the edited headline on a scale
of (0-3) as well as comparing the humor content
of the original and edited headline. SemEval-2020
Task 8: Memotion Analysis- The Visuo-Lingual
Metaphor! (Sharma et al., 2020) provides details
on humor classification as well as predicting its
semantic scale on internet memes using both im-
ages and text. OffensEval (Zampieri et al., 2020)
(Zampieri et al., 2019) provides insights for identi-
fying offensive content on social media.

Humor is an intelligent way of communication in
our daily lives. It helps bridge the gap between peo-
ple from various cultures, ages, gender, languages,
and socioeconomic status making it a powerful tool
to connect with the audience. Humor is a highly
subjective phenomenon. People from different de-
mographics may have a different perception of hu-
mor, and some may even find it offensive. This
makes identifying humor a tough task. SemEval
2021 Task 7: Hahackathon: Linking humor and
offense across different age groups aims to study
this subjective nature of humor, which has two Sub-

2https://www.kaggle.com/moradnejad/200k-short-texts-
for-humor-detection

Tasks which we describe as:
SubTask 1: Given a labeled dataset D of texts,

the task aims to learn a function that can:

• SubTask 1-a: predict if a text is humorous or
not.

• SubTask 1-b: quantify humor present in a hu-
morous text within a range of (0-5).

• SubTask 1-c: predict if the humor rating
would be controversial for a humorous text,
i.e., the variance of the rating between annota-
tors is higher than the median.

SubTask 2: Given a labeled dataset D of texts,
the task aims to learn a regression function that can
quantify how offensive a text is for general users
within a range of (0-5).

Dataset Statistics: Table 1 represents the dataset
statistics for classification tasks. For SubTask 1-a
we can see there is a slight class imbalance between
humorous and non-humorous labels. We overcome
the problem of class imbalance using class weights
which we define as: Let X be the vector containing
counts of each class Xi where i ∈ X. Then the
weights for each class were given as:

weighti =
max(X)

Xi +max(X)

For SubTask 1-c the label distribution was balanced.
Table 2 represents the statistics for the regression
tasks. Another observation on the training set for
SubTask 2 was that 3388 samples had an offensive
rating of 0 and nearly 80% of samples had offense
rating in the range 0-1.

3 System Overview

3.1 Pre-trained Language Models
NLP being a diverse field contains many tasks, but
most task-specific datasets contain only a few hun-
dred or a thousand human-labeled samples. To
overcome this problem, researchers have come up
with a method called pre-training (Qiu et al., 2020)
which involves training general-purpose language
representation using enormous amounts of unan-
notated textual data. These language models can
then be fine-tuned on various downstream tasks
and have shown promising results in many natural
processing tasks (Dai and Le, 2015; Peters et al.,
2018; Radford and Narasimhan, 2018). Next, we
briefly discuss some pre-trained language models
we used for the task.
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Humorous Non-humorous Total

Task 1-a
Train 4932 3068 8000

Validation 632 368 1000
Test 615 385 1000

Controversial Non-controversial Total

Task 1-c
Train 2465 2467 4932

Validation 308 324 632
Test 279 336 615

Table 1: Dataset statistics for classification tasks.

Mean Standard Deviation Count

Task 1-b
Train 2.260 0.566 4932

Validation 2.269 0.572 632
Test 2.119 0.546 615

Mean Standard Deviation Count

Task 2
Train 1.393 1.185 8000

Validation 0.706 1.190 1000
Test 0.480 0.830 1000

Table 2: Dataset statistics for regression tasks.

3.2 Brief overview of used Pre-trained
Models

BERT: Bidirectional Encoder Representations from
Transformers is a bi-directional language model
that uses Transformer (Vaswani et al., 2017) archi-
tecture to learn contextual relations between differ-
ent words in a text sequence (Devlin et al., 2019).
It makes use of two training strategies i.e., Masked
Language Modelling (MLM) and Next Sentence
Prediction (NSP).

ELECTRA: It introduces a new pre-training ob-
jective called Replaced Token Detection (RTD)
(Clark et al., 2020). Unlike BERT which intro-
duces <MASK> tokens, Electra replaces certain
tokens with plausible fakes. The pre-training task
then requires the model to determine if the input
tokens are the same or have been replaced. This
binary classification task is applied to all tokens
unlike the small number of masked tokens making
RTD more efficient than MLM.

RoBERTa: A Robustly Optimized BERT Pre-
training Approach (Liu et al., 2019) was developed
by Facebook. They made use of the BERT architec-
ture with modifications to improve the performance
on downstream tasks. They made use of dynamic
masking in the pre-training objective and removed

the NSP objective. They also trained the model
for a longer duration with more data and a larger
batch size. They outperformed BERT on several
downstream tasks.

XLNet: XLNet (Yang et al., 2019) is a general-
ized autoregressive pre-training method that takes
the best of both AR language modeling and AE
modeling techniques. It proposed a permutation
language modeling objective for pre-training that
helps learn bidirectional contexts. It also helps
overcome the pretrain-finetune (Yang et al., 2019)
discrepancy present in BERT due to its autoregres-
sive formulation.

MPNet: MPNet (Song et al., 2020) was pro-
posed by Microsoft. It overcomes the positional
discrepancy between pre-training and fine-tuning
in XLNet which does not use the full position in-
formation of a sentence. It proposes a unified view
of masked language modeling and permuted lan-
guage modeling by rearranging and splitting the to-
kens into predicted and non-predicted parts. It uses
MLM and PLM to model the dependency among
predicted tokens and see the position information
of the full sentence.

ALBERT: A Lite BERT for self-supervised
learning of language representations (Lan et al.,
2020) is a modification of BERT aiming to effi-

1148



ciently allocate the model capacity to help reduce
training time and reduce memory consumption.
ALBERT decomposes the embedding matrix into
a lower dimension which is then projected to the
hidden space. This is called factorized embedding
parameterization and helps in reducing the param-
eters. It also makes use of layer sharing across all
layers which helps remove redundancy. Addition-
ally, it uses inter-sentence coherence loss based on
Sentence Order Prediction (SOP) (Lan et al., 2020).

3.3 Fine-tuning

We fine-tuned the pre-trained language models for
each SubTask by stacking a dropout layer followed
by a single neuron dense layer on top of PLM fea-
tures. We used the features of [CLS] token in the
case of ALBERT, BERT, XLNet, ELECTRA, and
start token (<s>) features in the case of RoBERTa,
and MPNet. For the classification task, sigmoid
activation was used in the final layer. For the regres-
sion task, we did not use any activation. Negative
values were converted to zero in regression tasks.

3.4 Averaging for Regression tasks

For regression tasks, we combined all fine-tuned
models by averaging their predictions. For SubTask
1-b, we averaged the predictions of all models. For
SubTask 2 as stated earlier, there were many zero
values in the training set therefore, we averaged the
predictions only when all models predicted a non-
zero value. If any of the models predicted zero for a
given sample, we took zero as the final prediction.

4 Experimental Setup

We used ekphrasis (Baziotis et al., 2017) library for
pre-processing the text inputs. It normalized date,
time, numbers to a standard format and also per-
formed spelling correction. For tokenization, we
used Hugging Face’s (Wolf et al., 2020) implemen-
tation of fast tokenizers for each pre-trained model.
We fixed the sequence length of samples to 150
tokens. Models were developed on Keras3 (Chollet
et al., 2015) using the transformers4 (Wolf et al.,
2020) library by Hugging Face. We used Adam
(Kingma and Ba, 2017) optimizer for fine-tuning.
Learning rate of 1e-4 was used for ELECTRA. For
other models, we experimented with 1e-5, 2e-5,
and 3e-5. We used binary cross-entropy loss for
classification tasks and logCosh loss for regression

3https://keras.io
4https://huggingface.co/transformers

Figure 1: Confusion matrix for SubTask 1-a.

tasks. Batch size of 16 was used for all models.
Fine-tuning was performed on TPU’s on Google
Colab. We fine-tuned for four epochs on SubTask
1 and 8 epochs on SubTask 2. F1 score and RMSE
were used as an evaluation metric for classifica-
tion and regression tasks. Weights with the best
performance on the development set were used for
making predictions on the test set.

5 Results and analysis

Table 3 shows the results of our proposed fine-
tuning approach for different pre-trained models.
Our simple averaging technique worked quite well
for regression tasks. Our model was ranked 4 in
SubTask 1-b and ranked 12 in SubTask 2. The
averaging method proposed by us for SubTask 2
provided a significant improvement in the RMSE
score against the individually pre-trained models.
Upon examination of the test set, we found 40.8%
of samples were given zero offense rating. Thus,
our decision to predict zero if any of the model
predicted zero helped in improving scores against
individual models. For classification tasks, our
model was ranked 8 in SubTask 1-c and performed
well for SubTask 1-a.

Figure 1 and Figure 2 show plots of confusion
matrices for our best performing model fine-tuned
on BERT. For Subtask 1-a, our model was efficient
in separating the humorous and non-humorous con-
tent as false positives are low for each class. For
SubTask 1-c, our model performed well in iden-
tifying the controversial text but did not perform
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Model Precision Recall F1 Accuracy
Subtask 1-a 1-c 1-a 1-c 1-a 1-c 1-a 1-c
BERT-base .9254 .4630 .9691 .9426 .9467 .6210 .9330 .4780
ELECTRA-base .9269 .4747 .9073 .7419 .9170 .5790 .8990 .5105
RoBERTa-base .9518 .4708 .8991 .8960 .9247 .6172 .9100 .4959
MPNet-base .9658 .4879 .9203 .7275 .9425 .5841 .9310 .5300
XLNet-base .9489 .4812 .9365 .6881 .9427 .5663 .9300 .5219
ALBERT-large .9632 .4666 .8943 .8530 .9274 .6032 .9140 .4910

Table 3: Test set results for SubTask 1-a and SubTask 1-c.

Figure 2: Confusion matrix for SubTask 1-c.

very well for non-controversial text. The model
has a very high recall but low precision due to high
false positives for the controversial class which is
evident from the confusion matrix. BERT, MPNet,
and XLNet performed better than other PLMs for
SubTask 1-a. For SubTask 1-b individual models
had a similar performance. Averaging helped in
improving the performance. BERT, ELECTRA,
and ALBERT had the best performance on the test
set for SubTask 1-c.

6 Conclusion

The paper describes our system used for compet-
ing in all SubTasks of SemEval 2021 Task 7: Ha-
Hackathon: Detecting and Rating Humor and Of-
fense. We used a simple fine-tuning approach for
analyzing the performance of various pre-trained
language models for the task of humor detection.
We performed well in all SubTasks except Sub-
Task 1-a. A lot of research is happening around

Model RMSE
SubTask Task 1-b Task 2
BERT-base .5380 .5066
ELECTRA-base .5418 .6071
RoBERTa-base .5428 .5046
MPNet-base .5401 .5142
XLNet-base .5380 .5298
ALBERT-large .5307 .5004
PLM Average .5257 .4499

Table 4: Test set results for SubTask 1-b and SubTask
2.

pre-trained language models with new and better
models coming up. These models are large and
computationally expensive. Choosing a model be-
comes a difficult task as they may have different
results on downstream tasks. We, therefore, per-
formed experiments with the recent state-of-the-art
models and provide a comparative analysis of their
performance. In the future, we would like to work
on the effect of pre-training PLMs with additional
task-specific data and then fine-tuning to see their
performance on downstream tasks.
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Abstract

This paper describes MagicPai’s system for Se-
mEval 2021 Task 7, HaHackathon: Detecting
and Rating Humor and Offense. This task
aims to detect whether the text is humorous
and how humorous it is. There are four sub-
tasks in the competition. In this paper, we
mainly present our solution, a multi-task learn-
ing model based on adversarial examples, for
task 1a and 1b. More specifically, we first vec-
torize the cleaned dataset and add the pertur-
bation to obtain more robust embedding rep-
resentations. We then correct the loss via the
confidence level. Finally, we perform interac-
tive joint learning on multiple tasks to capture
the relationship between whether the text is hu-
morous and how humorous it is. The final re-
sult shows the effectiveness of our system.

1 Introduction

Humor is the tendency of experiences to provoke
laughter and provide amusement. Regardless of
gender, age or cultural background, it is a special
way of language expression to provide an active
atmosphere or resolve embarrassment in life while
being an important medium for maintaining mental
health (Lefcourt and Martin, 1986). Recently, with
the rapid development of artificial intelligence, it
becomes one of the most hot research topics in nat-
ural language processing to recognize humor (Ni-
jholt et al., 2003). The task of humor recognition
consists of two subtasks: whether the text contains
humorous and what level of the humor it is. Early
humor recognition methods tackle this task mainly
by designing heuristic humor-specific features on
classification models (Khodak et al., 2018) and
have proved that this automatic way can attain sat-
isfactory performance. Nowadays, researchers try
to resolve this task by statistical machine learning
or deep learning technologies.

The SemEval 2021 Task 7, HaHackathon: De-
tecting and Rating Humor and Offense, consists of
four subtasks: Subtask 1 simulates the previous hu-
mor detection task, in which all scores are averaged
to provide an average classification score. Subtask
1a is a binary classification task to detect whether
the text is humorous. Subtask 1b is a regression
task to predict how humorous it is for ordinary
users in a value range from 0 to 5. Subtask 1c is
also a binary classification task to predict whether
the humor grade causes controversy if the text is
classified as humorous. Subtask 2 aims to predict
how offensive text for an ordinary user is in an
integral value range from 0 and 5.

Due to the highly subjective nature of humor
detection, the data is labeled by people with differ-
ent profile in gender, age group, political position,
income level, social status, etc. The tasks are ex-
tremely challenging because they lack a unified
standard to define humor.

To tackle the tasks, we first preprocess the text,
including stemming, acronym reduction, etc. We
then apply the pre-trained language model to get
the representation of each subword in the text as
the model input. Meanwhile, we add a perturbation
to the embedding layer and design an optimization
goal that maximizes the perturbation of the loss
function. After that, we perform interactive multi-
task learning on judging whether humor exists and
predicting how humorous it is. That is, based on
maximizing the likelihood estimation under the
Gaussian distribution with the same variance, we
construct a multi-task loss function and automati-
cally select different loss weights in the learning to
improve the accuracy of each task.

2 Related Work

The early stages of humor recognition are based on
statistical machine learning methods. For example,
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Taylor and Mazlack (2004) try to learn statistical
patterns of text in N-grams and provide a heuris-
tic focus for a location of where wordplay may or
may not occur. Mihalcea and Strapparava (2005)
show that automatic classification techniques can
be effectively deploy to distinguish between humor-
ous and non-humorous texts and obtain significant
improvement over the Apriori algorithm, a well-
known baseline. In addition, three human-centric
features are designed for recognizing humor in the
curated one-liner dataset. Mikolov et al. (2011) ap-
ply SVM models for humor recognition as a binary
classification task and prove that the technique of
metaphorical mapping can be generalized to iden-
tify other types of double entendre and other forms
of humor. Kiddon and Brun (2011) present sev-
eral modifications of the original recurrent neural
network language model to solve the humor recog-
nition task. Castro et al. (2016) collect a crowd-
sourced corpus for humor classification from Span-
ish tweets and conduct extensive experiments to
compare various machine learning models, such
as Support Vector Machine (SVM), a Multinomial
version of Naı̈ve Bayes (MNB), Decision Trees
(DT), k Nearest Neighbors (kNN), and a Gaussian
version of Naı̈ve Bayes (GNB). Yan and Peder-
sen (2017) observe that bigram language models
performed slightly better than trigram models and
there is some evidence that neural network models
can outperform standard back-off N-gram mod-
els. Chen and Soo (2018) extend the techniques
of automatic humor recognition to different types
of humor as well as different languages in both
English and Chinese and proposed a deep learning
CNN architecture with high way networks that can
learn to distinguish between humorous and nonhu-
morous texts based on a large scale of balanced
positive and negative dataset.

With the rapid development of deep learning
technology, various pre-training models have made
great progress in the field of natural language pro-
cessing (Yang and Shen, 2021; Wang et al., 2021;
Yang et al., 2021). Liu et al. (2018) propose to
model sentiment association between elementary
discourse units and compare various CNN methods
of humor recognition. Weller and Seppi (2019) em-
ploy a Transformer architecture for its advantages
in learning from sentence context and demonstrate
the effectiveness of this approach and show results
that are comparable to human performance. Ma
et al. (2020) propose a new algorithm Enhance-

ment Inference BERT (EI-BERT) that performs
well in sentence classification. Fan et al. (2020)
propose an internal and external attention neural
network (IEANN) Attention mechanism (Fan et al.,
2020; Jiao et al., 2019) has been applied and show
good model performance. The existing work can
be borrowed or inspired our proposal in this paper.

3 Overview

In the following, we present the implementation of
our system for the competition.

3.1 Virtual Adversarial Training Based on
Loss Correction

Recently, adversarial examples (Szegedy et al.,
2014) have been generated to increase the robust-
ness of training deep learning models (Pan et al.,
2019; Lei et al., 2020). This work is motivated
by the significant discontinuities between the input-
output mappings of deep neural networks. When an
imperceptible perturbation is added to the input, it
may make the original normal network misclassify
the result. The characteristics of these perturbations
are not random artifacts of learning generated by
the network during the learning process, because
the same perturbation will cause different networks
trained on different data sets to produce the same
classification errors. Adversarial examples are sam-
ples that significantly improve the loss of the model
by adding small perturbations to the input samples.

The adversarial training (Miyato et al., 2017) is
a training process that can effectively identify the
original sample and the adversarial sample model.
Usually, the adversarial training requires labeled
samples to provide supervision loss because the
perturbation is designed to increase the model loss
function. Virtual adversarial training (Liu et al.,
2020) extends the adversarial training to semi-
supervised mode by adding regularization to the
model so that the output distribution of a sample
is the same as the output distribution after pertur-
bation while attaining good performance in both
supervised and unsupervised tasks. When the train-
ing sample is mixed with noise, it is easy to overfit
the model and learn wrong information. Therefore,
it is necessary to interfere to control the influence
of noise.

Figure 1(a) illustrates the perturbation in our im-
plementation. For a word with a sequence length
of n, we let wi denote the i-th subword, where
i = 1, . . . , n. The representation of wi is then
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(a) Perturbation embeddings (b) Interactive multi-task learning

Figure 1: The main implementation of our proposed system.

computed by the sum of token embedding, seg-
mentation embedding, position embedding, and
perturbation embedding, an additional embedding.
This makes it slightly different from the existing
pre-trained language models, e.g., BERT.

The virtual adversarial training can be unified by
the following objective:

min
θ

E(x,y)∼D[αmax
β
L(f(x+ β; θ), f(x; θ))

+ L(f(x; θ), y)], (1)

where D is a training dataset consisting of input-
output pairs (x, y), α is a hyperparameter to con-
trol the trade-off between the standard error and
the robust error. β is the adversarial perturbation,
y represents the true label, θ is the model param-
eter, L is the loss function. x + β quantifies the
perturbation β injecting into x. The goal of β is
to maximize the difference between the two deci-
sion function values, f(x+ β; θ) and f(x; θ), i.e.,
to make the prediction of the existing model as
incorrect as possible. To make β meet a certain
constraint, a conventional setting is to let ‖β‖ ≤ ε,
where ε is a constant. After constructing an adver-
sarial sample x+ β for each sample, Eq. (1) tries
to seek the model parameter θ by minimizing the
prediction loss.

Since the training samples are mixed with noise,
it is easy for the model to overfit and learn wrong
information (Reed et al., 2015), interference is
adopted to control the influence of noise. The loss

function is defined as follows:

L = −
N∑

i=1

((1− wi)yi + wiỹi) log(li) (2)

where yi is the true label, ỹi is the predicted label,
and li is the predicted probability distribution. wi is
a hyperparameter to control the trade-off between
true label and predicted label. By minimizing the
loss defined in Eq. (2), we can reduce the attention
to noise points by adding the model’s own predic-
tions to the true labels and the prediction to the
noise point.

3.2 Interactive Multi-task Training
According to the description of the first two tasks,
task 1a is a binary classification task to predict
if the text would be considered humorous for an
average user while task 1b is a regression task to
determine how humorous it is for an average user
when the text is classed as humorous, where the
values vary between 0 and 5. In order to capture the
relationship between whether text is humorous and
how humorous it is, we designed the network struc-
ture shown in Fig. 1(b). The input, as illustrated
in Fig. 1(a), is the sum of the token embedding,
position embedding, segment embedding, and per-
turbation embedding. The sum of four embeddings
is sent to a pre=trained language model (PLM) to
yield an input for a BiLSTM model. After that, a
Softmax layer is placed to recognize whether the
text is humor. Meanwhile, the output of the PLM
and the output of the Softmax layer are concate-
nated together and sent to another BiSLTM model
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to predict how humorous it is. In Fig. 1(b), the
notation ⊕ represents the concatenation operation.
Because two tasks have different noise patterns,
learning two tasks simultaneously can make fea-
tures interact in the tasks. For task 1a, it is easy to
learn some important features while for task 1b, it
is difficult to extract them. The reason may come
from the following facts: the interaction between
task 1b and the features may be too complicated,
or some other features may hinder the learning pro-
cedure (Xia and Ding, 2019). Hence, by deploying
interactive multi-task learning, we can get a more
generalized representation.

Since different loss functions have different
scales, loss functions with a larger scale will signif-
icantly dominate the loss functions with a smaller
scale (Liang et al., 2020; Zhang et al., 2020). There-
fore, a weighted summation of the loss function is
required to make balance on the loss functions.
Motivating by (Kendall et al., 2017) that model-
ing is based on task-dependent and homoscedastic
aleatoric uncertainty, i.e., for a certain sample, the
model not only predicting its label but also estimat-
ing the task-dependent homoscedastic uncertainty,
we present a multi-task loss function derived by
maximizing the Gaussian likelihood of the same
variance uncertainty. Suppose the input is X , the
parameter matrix W is the model parameter for the
output, fW (x). For the classification in task 1a,
the Softmax likelihood can be defined by:

p(y1|fW (x)) = Softmax(fW (x), σ1), (3)

where σ1 is the observed noise scalar for the classi-
fication model.

For the regression task in task 1b, we can define
its probability as the Gaussian likelihood by:

p(y2|fW (x)) = G(fW (x), σ2), (4)

where σ2 is the observed noise scalar for the regres-
sion model.

Here, to learn the models in the multi-task mode,
we define the multivariate probability by

p(y1, y2|fW (x)) (5)

=p(y1|fW (x)) · p(y2|fW (x))

=Softmax(fW (x), σ1) ·G(fW (x), σ2).

Maximizing the probability defined in Eq. (5) is

equivalent to minimizing the following objective:

L(W,σ1, σ2) (6)

=− log p(y1, y2|fW (x))

=− logSoftmax(fW (x), σ1) ·G(fW (x), σ2)

∝ 1

σ21
L1(W ) +

1

2σ22
L2(W ) + log σ1 + log σ2

where L1 = − logSoftmax(fW (x), y1) defines
the cross entropy loss between the prediction and
y1. L2 = ‖y2 − fW (x)‖2 defines the Euclidean
loss between the prediction and y2. By minimizing
the above objective, we can learn the parameters of
W , σ1, and σ2 accordingly.

Train Dev Test
No. R. L. No. R. L. No. R. L.

1a 8000 7:3 20 1000 5:3 19 1000 * 23
1b 4935 * 19 1000 * 19 1000 * 23
1c 4935 1:1 19 1000 1:1 19 1000 * 23
2 8000 * 20 1000 * 19 1000 * 23

Table 1: Data Statistics. R.: The ratio of positive and
negative samples. L.: the average length. * indicates
the data is unavailable.

BERT RoBERTa XLNet ERNIE
lr 2e-5 5e-6 5e-6 3e-5

nte 5 10 10 15
bs 64 32 32 32

msl 128 100 80 80
wp 0.05 0.1 0.05 0.05

Table 2: Parameters for different pre-trained language
models. lr: learning rate. nte: no. of training epochs.
bs: batch size. msl: max. sequence length. wp:
warmup proportion.

4 Experiments

In the following, we present the data, experimental
setup and analyze the results.

4.1 Data and Experimental Setup
The data is collected from the official release
in (Meaney et al., 2021). We preprocess the data
by spelling correction, stemming, handling special
symbols, and converting all letters to lowercase, etc.
Finally, we obtain the data and report the statistics
in Table 1.

In the experiment, we choose the large version
of four popular pre-training language models, i.e.,
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BERT, XLNet, RoBERTa, and ERNIE. The hyper-
parameters of each model are tuned based on our
experience and shown in Table 2. To train a good
classifier, we deliver the following procedure: 1)
conducting five-fold cross-validation on the train-
ing set and obtaining 20 models; 2) applying the
20 models to get the pseudo-labels of the data in
the test set and extracting the data with high con-
fidence, i.e., the predicted label score greater than
0.95 or smaller than 0.05, as new training data; 3)
the pseudo label data from the test set are mixed
with the original training set to train new models.
Finally, 892 pseudo label data are selected and
mixed with the training set to train the final models.
The regression model is jointly trained with the
classification models. The models that performed
well in cross-validation are selected and averaged
by the weighted fusion based on the confidence.

Models AT LC AT + LC
BERT 0.9459 0.9490 0.9534

RoBERTa 0.9480 0.9482 0.9569
XLNet 0.9462 0.9487 0.9470
ERNIE 0.9491 0.9499 0.9512

Table 3: The performance (accuracy) of task 1a with
different training strategies.

Models 1a (Acc.) 1a (F1) 1b (RMSE)
ST 0.9569 0.9470 0.6059
MT 0.9577 0.9480 0.5823

MT+WL 0.9637 0.9550 0.5701

Table 4: Comparison of different strategies. ST: single
task. MT: multi-task. WL: weigh loss.

4.2 Results

In order to prove the effectiveness of adversarial
training (AT) and loss correction (LC), we verify
task 1a on four pre-training models. AT denotes
the models through adversarial training by adding
perturbations in the embedding layer. LC denotes
the strategy to make correction on the classifica-
tion cross entropy to interfere with the influence of
noise on the model. AT+LC means to apply both
strategies in the training. Results reported in Ta-
ble 4 show that by employing individual strategy,
the models can attain good performance on task
1a while employing both strategies can gain better
accuracy in BERT, RoBERTa, and ERNIE.

Moreover, we verify the effectiveness of the in-

teractive multi-task training strategy on RoBERTa.
MT+WL denotes that the weighted hyperparam-
eters in the loss function are adjusted based on
uncertainty, determined by the learned σ1’s and
σ2, during interactive multi-task training to scale
the output the loss function of each task in a sim-
ilar range. Results reported Table 4 show that the
multi-task joint training mechanism can reduce the
RMSE of the regression task (i.e., 1b) significantly
while adjusting the loss weight can further decrease
the error.

Finally, we attain the F1 score of 0.9570 and the
accuracy of 0.9653 on task 1a, respectively. The
RMSE on task 1b is 0.5572. The RMSE on task 2
is 0.446.

5 Conclusion and Future Work

This paper presents our system for SemEval-2021
task 7. Several techniques, such as interactive
multi-task joint training, adversarial training, and
loss correction, are applied to tackle the task. More
specifically, the perturbation is first added to the
input embedding layer and the predicted labels are
also added with the real labels to reduce the loss
of the noise point data. Next, the output of task 1a
by the Softmax is concatenated with the input of
the task 1b to perform joint training on both tasks.
Meanwhile, the uncertainty weighting scheme on
the loss allows the simple task to have a higher
weight. Finally, multiple models are ensembled
to yield the final prediction results. Our system
attains the first place in the competition.

In the future, we can explore and verify three
other effective strategies. The first strategy is the
task-adaptive funetuning on the pre-trained lan-
guage models. Relevant sentences can be contin-
uously fed into the pre-trained language models
to improve the model performance. The second
strategy is to build a graph neural network (GNN)
model to exploit all vocabulary for text classifica-
tion. Because BERT is relatively limited to cap-
ture the global information from a larger language
vocabulary, it is promising to facilitate the GNN,
which captures the global information, with the in-
depth interaction of BERT’s middle layers, which
embed sufficient local information. We will further
investigate discourse structures (Lei et al., 2017,
2018) for humor detection. Because, both BERT
and GNN models information from word relations,
it is necessary to involve the study of discourse
structures, which describe how two sentences are
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logically connected to one another. By such novel
design, we can attain better representations and
improve the classification performance.
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Abstract

Detecting humor is a challenging task since
words might share multiple valences and, de-
pending on the context, the same words can
be even used in offensive expressions. Neural
network architectures based on Transformer
obtain state-of-the-art results on several Natu-
ral Language Processing tasks, especially text
classification. Adversarial learning, combined
with other techniques such as multi-task learn-
ing, aids neural models learn the intrinsic prop-
erties of data. In this work, we describe
our adversarial multi-task network, AMTL-
Humor, used to detect and rate humor and of-
fensive texts from Task 7 at SemEval-2021.
Each branch from the model is focused on
solving a related task, and consists of a BiL-
STM layer followed by Capsule layers, on top
of BERTweet used for generating contextual-
ized embeddings. Our best model consists of
an ensemble of all tested configurations, and
achieves a 95.66% F1-score and 94.70% accu-
racy for Task 1a, while obtaining RMSE scores
of 0.6200 and 0.5318 for Tasks 1b and 2, re-
spectively.

1 Introduction

Sentiment analysis studies expressed opinions and
feelings, affective states, and subjective informa-
tion introduced while conveying ideas to others. In
recent years, social media has encountered a major
change in ways of interaction and in the freedom of
expressing moods to others. For example, individ-
uals frequently use emojis, or even abbreviations,
to emphasize their feelings. Therefore, new ma-
chine learning systems are developed to predict
sentiment valences; however, this task is not triv-
ial, as the detection of sentiments is challenging
even for humans. This is mainly generated by the
diversity of contexts and differences among people,
such as socio-cultural status, age, or gender. For
example, certain jokes might be confusing due to

past experiences or the current mood while reading
the joke. Similarly, language ambiguity can intro-
duce difficulties in understanding the text and in
altering the perceived emotions.

Moreover, individuals express a wide range of
sentiments, such as happiness, humor, or anger.
Words that are used to express such feelings, might
share multiple valences and meanings, depending
on the context. Therefore, a sequence of words that
is, for example, humorous in a certain context, can
be considered offensive in another situation. Such
examples can rely on bad jokes regarding a person’s
position in society, ethnicity, or political ideology.
Another characteristic that impacts a text’s level
of humor is how clear the idea is conveyed to the
reader.

In this regard, SemEval-2021 Task 7 - Ha-
Hackathon: Detecting and Rating Humor and Of-
fense (Meaney et al., 2021) introduced four sub-
tasks: Task 1a (classification) includes the class
of the text, which can be either humorous or not;
Task 1b (regression) presents the level of humor as
a value between 0 and 5; Task 1c (classification)
covers the rating of the class of being controver-
sial (i.e., some annotators considered a text to be
humorous, while others considered the opposite);
Task 2 (regression) contains the level of offensive-
ness from the text (i.e., how offensive is the text as
an aggregate score agreed by all annotators).

Each example in the dataset contains four labels,
one for each task. The labels for Tasks 1b and 1c
depend on whether the text contains humor or not.
Task 2 is independent of Task 1 and all examples
from the dataset have assigned scores correspond-
ing to their level of offensiveness.

In this work, we introduce an adversarial multi-
task learning (Liu et al., 2017) architecture to detect
humor in texts, as well as other related sub-tasks.
We focus on Tasks 1a, 1b, and 2, while using the
data for all tasks during training. Our model con-
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siders BERTweet (Nguyen et al., 2020) for con-
textualized embeddings, followed by Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) and Capsule layers (Sabour et al., 2017)
as feature extractors. We observe that adversarial
learning increases performance for certain choices
of hyper-parameters. Moreover, training the branch
for Task 1c on the data for Task 1a improves the
performance for Task 1a. In addition, an ensemble
method increases the overall performance on all
tasks.

The paper is organized as follows. Section 2
presents related work associated with the provided
tasks. Section 3 describes our method, followed
by details on the experimental setups and results.
Finally, Section 5 provides conclusions and future
research paths.

2 Related Work

Several studies (Roberts et al., 2012; Marasović
and Frank, 2018; Zaharia et al., 2020) address the
problem of detecting sentiments from texts by us-
ing multiple related tasks to further improve the
performance of the model. Adversarial multi-task
learning was introduced by Liu et al. (2017) and
consists of using multiple branches for each in-
dividual task (i.e., private branches), and another
branch shared among all tasks (i.e., shared branch).
A discriminator trained to distinguish between fea-
tures from multiple tasks is used to separate shared
and task-related features in the latent representa-
tion from each branch. This is the Adversarial
Shared-Private Multi-Task Learning (ASP-MTL)
framework that was also employed in other works
such as (Marasović and Frank, 2018), where the
goal was to label opinions and the associated se-
mantics from texts. Results showed that ASP-MTL
might not achieve better results when compared
to classical MTL, and there are other factors that
should be taken into consideration, such as dataset
split and hyper-parameters.

Other works (Zhou et al., 2019; Spiliopoulou
et al., 2020) used the multi-task technique along-
side adversarial learning, but in other configura-
tions than ASP-MTL. For example, Zhou et al.
(2019) employed a model that has a shared feature
extractor, and then it is followed by branches for
each task with an attention mechanism for the first
layer from each branch. By adding new branches
to the model, as well as adversarial learning, the
F1-score increased when compared to the baseline

model. Spiliopoulou et al. (2020) adopted domain
adaptation to improve the performance of a clas-
sifier. Their idea was to add a discriminator after
the feature extractor, as a separate branch, that is
used to distinguish between different domains. The
experiments showed that adversarial learning aided
in reducing the bias found in the dataset, thus in-
creasing the model’s capability to generalize.

There are multiple Natural Language Processing
(NLP) techniques that can be effectively employed
to perform text classification in general, as well
as sentiment analysis as a specific task (Paraschiv
and Cercel, 2019; Tanase et al., 2020b,a; Paraschiv
et al., 2020). For example, neural network methods
can be used to detect propaganda in articles by pre-
training models on related tasks (Vlad et al., 2019)
or emotions in memes using multimodal multi-task
learning (Vlad et al., 2020a,b). Other methods rely
on classical machine learning methods (e.g., Sup-
port Vector Machine, Naive Bayes, or Random For-
est classifiers) and can be successfully used for re-
lated tasks, such as fake news detection, obtaining
accuracies over 90% on specific datasets (Dumitru
and Rebedea, 2019; Busioc et al., 2020).

3 Method

3.1 Corpus

The provided dataset for SemEval-2021 Task
7 (Meaney et al., 2021) consists of 10,000 texts
(6,179 texts are considered to have humor, while
the rest do not present humor), written in English,
with different degrees of humor, and labeled by dif-
ferent categories of people; therefore the labeling
is highly subjective. Given the texts with humor,
the scores for the Task 1b follow a Gaussian dis-
tribution, with the mean of 2.24 (out of 5) and the
standard deviation of 0.56. Also, approximately
46.39% of the texts for Task 1c were labeled as
controversial. Furthermore, 42.46% of the texts
were rated as not being offensive at all for the last
task, while the 75th percentile is 1.55 (out of 5) for
the offensive samples. This means that the data is
biased towards not being offensive for the Task 2.

The dataset was already split into train/dev/test
sets, such that 8,000 samples were used for train-
ing, 1,000 for development, and 1,000 for testing,
following similar distributions. Only the entries
from training and development sets were provided
with annotations during the competition. The an-
notations for the test set were provided after the
evaluation phase ended.
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3.2 Neural Architecture

An increasing trend of applying adversarial learn-
ing alongside MTL leads to improvements in base-
line models (Liu et al., 2017; Marasović and Frank,
2018; Srivastava et al., 2020). The underlying intu-
ition for this setting is to concurrently use potential
information hidden in the correlation between mul-
tiple tasks through MTL, while storing this repre-
sentation in a shared-private architecture.

Inspired by the three previously mentioned
works, Figure 1 shows an overview of our proposed
adversarial multi-task learning architecture, namely
AMTL-Humor. Blue denotes the shared branch
among all tasks, whereas task-specific branches are
in white. The discriminative part from the network
is represented in green.

Figure 1: Overview of the AMTL-Humor architecture.

We employ a pre-trained Transformer-based
model (Vaswani et al., 2017) for generating con-
textualized embeddings, namely BERTweet, which
was trained on 850M tweets written in English. The
input is preprocessed in the same way as the input
on which the Transformer was trained on, by using
the TweetTokenizer from NLTK toolkit (Bird et al.,
2009). The representation of the input text given
by the BERTweet is further fed into five branches.
One branch is shared among all other tasks and
learns information that is non-task-specific. The
output of this branch is concatenated with each

private branch, which is then fed to a linear classi-
fier responsible for outputting the final results. A
discriminator classifier takes as input the outputs
from all branches before the concatenation, having
as goal to learn which representation is from what
task. In this scenario, labels concerning the branch
from which the discriminator took the values are
known.

Each branch is composed of five layers, based on
a Recurrent Neural Network (Cho et al., 2014) and
Capsule layers (Lei et al., 2019; Srivastava et al.,
2020). First, the Bidirectional LSTM (BiLSTM)
layer acts as a feature extractor and encodes the
high-level features. It is used to provide a latent
representation of the input space that captures the
dependencies from both left-to-right and right-to-
left. Second, the Primary Capsule layer captures
the local order of words in the latent space of the
BiLSTM output. It encodes the hidden properties,
such as positional information for words and the
relations between words, from the latent represen-
tation into a vector. Third, the Convolutional 1D
Capsule layer learns the child-parent relationships
and predicts the parent Capsules in the next layer by
using a dynamic routing algorithm (Sabour et al.,
2017). Fourth, the Dense (Fully Connected) Cap-
sule layer takes the output of the previous layer,
flattens it into a list of Capsules, and then a Cap-
sule is produced to encode the features and their
probability by using routing-by-agreement. Fifth,
the Dense (Fully Connected) layer is the classical
Perceptron that takes as input the representation
from the last Capsule layer and computes the fi-
nal output for that branch (which can be for either
classification or regression task).

The idea of using Capsule layers was first intro-
duced in Computer Vision by Sabour et al. (2017)
and was studied in various NLP tasks (Yang et al.,
2018; Xiao et al., 2018; Wang, 2019; Lei et al.,
2019; Srivastava et al., 2020; Zaharia et al., 2020).
Capsule networks are based on how human vision
works - i.e., Capsules create groups of neurons that
are specialized in recognizing certain properties of
the input (Sabour et al., 2017).

3.3 Optimization Problem

Binary cross-entropy loss is used for the classifica-
tion problems (i.e., humor classification and humor
controversy tasks), while the mean squared error
loss function is used for regression tasks (i.e., tasks
for predicting humor and offensive scores). Thus,
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the loss associated with the tasks is computed as
follows:

Ltasks =
4∑

i=1

αiLi (1)

where αi represents the weight associated with the
task i and Li is the loss value for the task i.

A problem arises when employing standard
MTL, namely, there is a high possibility that part of
the shared information may arrive inside the task-
related space and vice-versa. This problem can be
alleviated by using adversarial learning to enforce
the network to make the separation between the
private and shared representations. Also, a gen-
eralization of the loss function (Liu et al., 2017)
for training the Generative Adversarial Networks
(Goodfellow et al., 2014) is used because we are
dealing with multiple tasks, thus multiple classes
for the discriminator:

LAdv = min
θS

(
λmax

θD
(

5∑

k=1

Nk∑

i=1

dki log[D(E(xk)))]

)

(2)
In order to further ensure the separation between

the shared and private branches, we add an orthog-
onality constraint function (Bousmalis et al., 2016)
to the objective function during the training, which
is defined as:

LDiff =
4∑

k=1

∣∣∣
∣∣∣Sk>Hk

∣∣∣
∣∣∣
2

F
(3)

where Sk and Hk are the outputs of the from each
branch, before the final classification layer, and
||·||F is the Frobenius norm.

The total loss for the optimization problem is the
sum of all three losses, parametrized by λ and γ,
which control the importance for the adversarial
and orthogonality losses, respectively:

LTotal = LTasks + λLAdv + γLDiff (4)

3.4 Experimental Settings
3.4.1 Text Preprocessing
The texts were not cleared; as such emojis were
transformed into text to be further considered as to-
kens. The TweetTokenizer applies a normalization
step to change noise constructs from the text (e.g.,
URLs) into special tokens. Missing values were
replaced with 0 instead of NaN for Tasks 1b and
1c that depend on whether the text was considered
to be humorous or not in Task 1a.

3.4.2 Implementation Details
A public implementation of the Capsule layer1

was converted from TensorFlow 1.x to TensorFlow
2.4; this updated version was also publicly2. Also,
the gradient reversal layer (Ganin and Lempitsky,
2015) was used for implementing the adversarial
learning between the discriminator and the shared
branch, which negates the gradient for the adver-
sarial loss during back-propagation.

The Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.001 was considered for
training the networks between 10 and 20 epochs,
while the batch size was set between 8 and 16. The
size of the hidden state for BiLSTMs was set to
128, with a dropout rate of 0.5, as suggested by
Srivastava et al. (2014). The number of filters in
the Primary Capsule layer was set to 8 and the size
of the kernel was set to 3x1. Also, the number of
filters in the Convolutional 1D Capsule layer was
set to 4 and the size of the kernel was set to 3x1.
Moreover, the output size was set to 4x1 for all
used Capsules, running the routing-by-agreement
algorithm for 3 iterations.

During the experiments, different AMTL-Humor
configurations were considered by enabling or dis-
abling adversarial learning, the orthogonality con-
straints, and different parts of the architecture. Ta-
ble 1 introduces our configurations, with values
lower than 0.5 for hyper-parameters λ and γ, and
with conditions concerning adversarial loss being
prioritized over the orthogonality loss.

3.4.3 Baseline Models
Two configurations were used as baseline, namely:
a) a larger network (i.e., MTL-Large) with 512 hid-
den states for LSTM cells, 16 primary Capsule
filters, and 8 filters for the convolutional Capsule
layer with 5x1 filters, and b) a smaller model (i.e.,
MTL-Small) with the previously introduced param-
eters, sharing the same configurations as the other
networks we have tested that use adversarial learn-
ing. The optimization step does not involve adver-
sarial learning, nor the orthogonality constraints.

3.4.4 AMTL-Humor Variants
Different models based on the ASP-MTL architec-
ture were tested on the provided dataset. Our base
model AMTL-Humor has two variants (i.e. AMTL-

1https://github.com/naturomics/
CapsLayer

2https://github.com/razvanalex/
CapsLayer
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Model Adversarial
Training

Orthogonality
Constraints

Capsule
Layers λ γ

MTL-Large - - - 0 0
MTL-Small - - - 0 0
AMTL-LSTM X X - 0.1 0.01
AMTL-Adv X - X 0.1 0
AMTL-Humor-1 X X X 0.1 0.01
AMTL-Humor-2 X X X 0.5 0.1
AMTL-T1a-Twice∗ X X X 0.05 0.01

Table 1: The settings for each configuration. The star (*) indicates that the model uses the third branch (i.e., for
Task 1c) to solve Task 1a instead. Note that two branches are used for solving Task 1a.

Humor-1 and AMTL-Humor-2), as presented in Ta-
ble 1. The only difference between these is the
choice for the λ and γ parameters. Also, AMTL-
Adv is a model without orthogonality constraints,
whereas AMTL-LSTM does not contain the Cap-
sule layers in the architecture. Throughout our
experiments, we observed that the network always
outputs 0 on Task 1c for all inputs; therefore, the
model does not manage to learn anything. As such,
the AMTL-T1a-Twice configuration uses the Task
1a branch twice for both the first and third branches.

3.4.5 Ensembles
Ensemble learning was also considered; the modal
value (i.e., the most frequent class) is taken for clas-
sification tasks, while the average of scores is used
for regression tasks. Ensemble-1 combines the re-
sults obtained by MTL-Large, AMTL-Humor-1,
AMTL-T1a-Twice, and AMTL-Adv respectively,
while Ensemble-2 adds to the previous list the
models MTL-Small, AMTL-LSTM, and AMTL-
Humor-2.

3.4.6 Evaluation Metrics
F1-score and accuracy were used to evaluate the
classification tasks, whereas root mean squared
error (RMSE) was used to assess performance on
the regression tasks from the SemEval-2021 Task
7 competition.

4 Results

Table 2 presents the results obtained on both devel-
opment and test sets. On the development set, we
observe that increasing the values of the parame-
ters impacts more the regression tasks (i.e., higher
RMSE values). Using only adversarial learning,
without orthogonality constraints seems to add a
small improvement in our case. Removing the ad-

versarial learning has a very small negative impact
on Task 1a, and a decrease of RMSE for the re-
gression tasks. Removing only the Capsule layers
seems to generate an improvement for this devel-
opment set. The AMTL-T1a-Twice configuration
achieves the highest F1-score due to the symmetry
of our architecture. The increase in performance is
notable, more than 2% when compared to AMTL-
Humor-1.

We observe that our baseline models achieve on
the test set similar scores for Task 1a, whereas dif-
ferences exist for the other two tasks, with no clear
better configuration. The larger network tends to
learn better on Task 1b, whereas RMSE is worse on
Task 2 when compared to MTL-Small. All models
that use our adversarial multi-task framework show
a small improvement over the baselines on Task
2; nevertheless, almost all models perform worse
on Task 1b, especially our system (i.e., AMTL-
Humor-1) that registers the highest RMSE scores.
All adversarial models achieve or the Task 1a sim-
ilar results, or even better when compared to the
baseline models, and this was our main focus dur-
ing the training.

The AMTL-T1a-Twice model manages to obtain
the highest F1-score on one of the two branches
for Task 1a. However, accuracy and F1 scores
were low when making predictions for Task 1.c
(46.34% and 61.18%, respectively). These low
performance values may be indicative of bias in the
dataset towards either 0 or missing values for this
task.

Ensemble models complement the inner con-
figurations and provide more stable predictions.
Ensemble-1 was the model submitted during the
competition for evaluation. The differences be-
tween our Ensemble-1 configuration and the best
models reported for each task were the following:
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Model
Development Set Test Set

Task 1a Task 1b Task 2 Task 1a Task 1b Task 2
F1 (%) Acc. (%) RMSE RMSE F1 (%) Acc. (%) RMSE RMSE

MTL-Large∗ 94.80 93.40 0.6434 0.7390 95.05 93.90 0.6359 0.5891
MTL-Small 93.08 90.90 0.6747 0.6649 95.07 93.80 0.6699 0.5796
AMTL-LSTM 94.12 92.50 0.6939 0.6738 95.39 94.30 0.6569 0.5552
AMTL-Adv∗ 93.52 92.10 0.6979 0.7053 93.61 92.40 0.6882 0.5631
AMTL-Humor-1∗ 93.27 91.40 0.7294 0.7294 94.93 93.80 0.7116 0.5616
AMTL-Humor-2 93.75 92.10 0.7426 0.6759 95.32 94.30 0.7151 0.5680
AMTL-T1a-Twice 95.88 92.09 0.6977 0.6881 96.29 92.85 0.6774 0.5772
Ensemble-1∗ 94.05 92.50 0.6361 0.6656 95.66 94.70 0.6200 0.5318
Ensemble-2 94.54 93.10 0.6383 0.6497 95.82 94.90 0.6164 0.5270

Table 2: The results obtained on both development set (left) and test set (right). The best scores are marked in
bold. The star (∗) indicates the models we used for the submissions during the evaluation phase.

2.88% less F1-score and 3.5% less accuracy for
Task 1a, 0.124 higher RMSE for Task 1b, and
0.119 higher RMSE for Task 2. During the post-
evaluation phase, we assessed the Ensemble-2 con-
figuration that performs better than Ensemble-1 on
all tasks by a small margin (i.e., less than 1%).

4.1 Visualizations
t-SNE visualizations (Van der Maaten and Hinton,
2008) were considered to better grasp the adequacy
of our model. t-SNE is an algorithm used to visual-
ize high-dimensional data into a two-dimensional
representation by minimizing the Kullback-Leibler
divergence between the joint probability distri-
butions for both lower-dimensional and higher-
dimensional data from the input. Since the output
from BERTweet has 59,904 dimensions (i.e., 78 to-
kens in a sequence, each having 768 features given
by the hidden units), we first reduced the represen-
tation to 100 dimension by applying a Principal
Component Analysis (Jolliffe and Cadima, 2016).
This way, t-SNE runs faster, without losing too
much information when considering the principal
components.

The results using the Ensemble-2 configuration
are shown in Figure 2 for Tasks 1a, 1b, and 2. Each
point represents the embedding of the input sam-
ple, while the colors represent the classes or the
values for each sample. Based on the ground-truth
visualizations (left side), we can observe that the
points are not linearly separable. Our best configu-
ration was capable to learn the inner representation
of the input data. For the offensive rating task, the
examples with higher scores are in the middle of
the manifold. We can also observe for the offensive

rating task that the majority of classes are biased
towards lower rather than higher values.

5 Conclusions and Future Work

In this work, we present AMTL-Humor, an adver-
sarial multi-task learning method to deal with the
problem of detecting and rating humor and offense
for SemEval-2021 Task 7. More specifically, our
model is inspired by the ASP-MTL framework and
considers BiLSTM and Capsule layers as feature
extractors on top of the BERT layer that provides
contextualized embeddings.

Two ensemble models were created using vari-
ations of our AMTL-Humor architecture. These
configurations were trained either on different set-
tings (such as adversarial learning) or by modifying
the structure of the branches. We observed that ad-
versarial learning might perform better than other
architectures with similar structures, while consid-
ering specific configurations and tasks. Another
improvement was observed when the model was
trained on two tasks using the same branch, namely
the AMTL-T1a-Twice model. This approach of du-
plicating branches may be used in other context as
it adds redundancy to the network and supports gen-
eralization. Finally, the best results were obtained
by using an ensemble over all trained models.

In the future, we aim to study how perfor-
mance can be improved, especially on Task 1c,
by adapting the hierarchical multi-task learning
technique (Søgaard and Goldberg, 2016) to the
AMTL-Humor architecture.
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Figure 2: t-SNE projection for the development set data on the output of the BERTweet layer. On left are the plots
for predicted outputs, whereas on right are the corresponding plots for ground-truth. Best viewed in color.
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Abstract

This paper describes the system submitted to
SemEval-2021 Task-7 for all four subtasks.
Two subtasks focus on detecting humor and of-
fense from the text (binary classification). On
the other hand, the other two subtasks predict
humor and offense ratings of the text (linear
regression). In this paper, we present two dif-
ferent types of fine-tuning methods by using
linear layers and bi-LSTM layers on top of
the pre-trained BERT model. Results show
that our system is able to outperform baseline
models by a significant margin. We report F1
scores of 0.90 for the first subtask and 0.53 for
the third subtask, while we report an RMSE of
0.57 and 0.58 for the second and fourth sub-
tasks, respectively.

1 Introduction

Automatic humor and offense detection have con-
siderable importance in the modern age, especially
in chatbots and virtual assistants (Augello et al.,
2008). Detection of humor and offense in the
text is a highly subjective phenomenon that varies
with age, gender, race, socio-economic status, etc.
Therefore, it is one of the most challenging re-
search fields in Natural Language Processing (Tay-
lor, 2009).

Task-7 of SemEval 2021 (Meaney et al., 2021)
is concerned with humor detection (binary classi-
fication) primarily. The first subtask is to check
if a text is humorous, another subtask follows up:
how humorous is the text (rated from 0-5). We also
have to predict whether the text is generally offen-
sive (binary classification task). The last subtask
predicts how generally offensive a text is (rated
from 0-5), regardless of whether it is classed as
humorous or offensive overall. The dataset consists
entirely of English texts.

The traditional methods deployed earlier for hu-
mor detection include Support Vector Machine

(SVM) with RBF kernel, Random Forest Classi-
fier, and SGD with Logical Classifier, all of which
provide modest results (de Oliveira and Rodrigo,
2015). Recently more state-of-the-art transform-
ers have provided better results (Weller and Seppi,
2019). The system presented in this paper is fine-
tuning one of the best and most popular state-of-the-
art models, Bidirectional Encoder Representations
from Transformers (BERT). We have used pre-
trained BERT embeddings to represent the words
and used the features of the last layer of the 12-
layers BERT Model to detect and rate both humor
and offense. BERT can model complex interactions
between different levels of hierarchical information
(Tenney et al., 2019). This task is perhaps the first
task that focuses on the humor and offense ratings
and combines humor and offense detection.

Our model obtained an F1 score of 0.92 and 0.56
for the first and the third subtasks, respectively, on
the test data. We obtained an RMSE of 0.57 and
0.58 for the second and fourth subtasks, respec-
tively, on the test data.

The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3 de-
scribes the dataset for the task. Section 4 provides
the experimental setup and evaluation metric. Sec-
tion 5 presents the systems implemented to address
the task. Section 6 shows the results and Section 7
concludes the paper.

2 Related Work

We found the following works very relevant for
the task to be addressed, i.e., humor and offense
detection.

Lexical Syntactic Feature (LSF): This archi-
tecture (Chen et al., 2012) was used to detect of-
fensive language in social media. It bridges the
gap between message-level and user-level offen-
sive language detection. In particular, this paper
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incorporates a user’s writing style, structure, and
specific cyberbullying content as features to predict
the user’s potentiality to send out offensive content.

Netflix-style collaborative filtering: This
method (Gultchin et al., 2019) identifies a mean hu-
mor direction, analyses sense-of-humor word em-
beddings to predict individual differences in word
humor. It proposes Netflix-style collaborative fil-
tering to predict humor ratings.

BERT-base and BERT-large: BERT models
have been used previously for automatic humor
detection and scoring (Mao and Liu, 2019). The
pre-trained model is fine-tuned on the available
data, producing appreciable results.

Our system lies in close proximity to the last
work. We have fine-tuned a pre-trained BERT
model as well. The difference lies in the fine-tuning
process. Different approaches have been used to
building the neural network, varying from linear
layer approach to bi-LSTM approach, for both the
classification and regression tasks.

3 Dataset

The dataset used in this paper is obtained from Task
7 of SemEval 2021. In this task, the organizers
collected labels and ratings from a balanced set
of age groups from 18 to 70. The annotators also
represented a variety of genders, political stances,
and income levels. The training set consists of
8000 texts, and the development and test datasets
consist of 1000 texts each. The variation of the
number of texts vs. word length of texts is shown
in Figure 1.

Figure 1: The distribution of lengths of the texts from
the training set.

Each text is represented by a unique ID, and each
subtask has a separate column for each text. The
annotators were asked:

1. Is the intention of this text to be humorous?

2. (If it is intended to be humorous according to
the rater) How humorous do you find it? (1-5)

The annotators could also give a rating of 0 to
the second question if they do not get it due to
the text’s structure or content. The label of the
first task is is humor and is based on the majority
class given by 20 annotators. In case of a tie, the
humor label was selected. The humor rating is
based on the annotators’ average rating, under the
label humor rating.

Table 1 gives an insight into the distribution of
is humor label. The distribution of humor rating
is shown in Figure 2.

is humor No. of texts
0 4932
1 3068

Table 1: The distribution of texts considered either hu-
morous (1) or not (0).

Figure 2: The distribution of humor rating of the texts
from the training set.

The annotators were further asked:

3. Is this text generally offensive? (0 or 1)

4. (If the rater considers the text to be generally
offensive) How generally offensive is the text?
(1-5)

By generally offensive, the organizers mean that
the text targets a person or group for merely belong-
ing to a specific group and ask users if they think
that a significant number of people would find this
offensive. If the variance of a text was higher than
the median variance of all texts, the humor of the
text was labeled as controversial under the label hu-
mor controversy. It is a binary classification task.
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In the last question, we consider the ratings 1-5
and also consider a no rating to be 0. This score
(average of all the ratings) was calculated regard-
less of whether the text is classed as humorous or
offensive overall, under the label offense rating.

Table 2 gives an insight into the distribution of
humor controversy label. The distribution of of-
fense rating is shown in Figure 3.

humor controversy No. of texts
0 2467
1 2465

Table 2: The distribution of texts considered either of-
fensive (1) or not (0).

Figure 3: The distribution of offense rating of the texts
from the training set.

4 Experimental Setup and Evaluation
Metric

Preprocessing: A data pipeline preprocesses the
raw data to remove irrelevant features. The stop-
words and emojis (if any) are removed from the
data, and the output of the pipeline is lower-case
stemmed word sequences. The stop-words are se-
lected from the NLTK stop-words list (Sarica and
Luo, 2020).

Max Sequence Length: From Figure 1, we ob-
serve that there is no sequence having a length
greater than 70 words. So, we restrict our
max seq length parameter of the BERT Tokenizer
to 70. We pad the sentences to the maximum se-
quence length.

Adam Optimizer: For optimizing the model,
we use Adam Optimizer. Adam combines the
best properties of the AdaGrad and RMSProp al-
gorithms to provide an optimization algorithm that
can handle sparse gradients on noisy problems and

works well on deep neural networks (Zhang, 2018).
For subtasks-1 and 3, we used a learning rate of
2e-5, and for subtasks-2 and 4, a learning rate of
1e-5 was used.

Experimental Tools: We used Google Colab to
run the experiments, which provided us GPU to
run our model. The external libraries used are pub-
licly available Transformers (version 3.0.0) from
the PyTorch HuggingFace API 1 and Python-based
Scikit-learn package.

Evaluation Metric The metric for the classifi-
cation tasks (subtask 1 and 3) is F1 score.

F1 =
2 · Precision ·Recall

Precision+Recall
(1)

For the regression tasks (subtask 2 and 4), the met-
ric is Root Mean Square Error (RMSE).

RMSE =

√√√√
N∑

i=1

(Predictedi −Actuali)2

N
(2)

5 System

The task organizers suggested the following base-
line models:

1. Classification task: For the classification tasks,
the baseline strategy is a Naive Bayes model
with bag of words features.

2. Regression task: The baseline strategy pro-
posed for the regressions tasks is the Support
Vector Regression (SVR) model.

BERT has proven promising for many NLP tasks
(Devlin et al., 2019). Our system implements fine-
tuning strategies on pre-trained BERT architecture.
It is a bidirectional transformer pre-trained using
a combination of masked language modeling ob-
jective and next sentence prediction on a large
corpus comprising the Toronto Book Corpus and
Wikipedia.

5.1 BERT base model
We have experimented with the BERT-base model
from PyTorch HuggingFace API. It is the bare
BERT Model (BertModel) transformer outputting
raw hidden-states without any specific head on top.
The 768 hidden features are extracted from the last
layer of the 12-layered BertModel.

1https://huggingface.co/.

1171



Figure 4: The proposed model architecture for the clas-
sification subtasks

5.1.1 Classification Tasks
We have experimented with two independent ap-
proaches.

• Linear approach: After experimenting with
single and double layers, we decided to use
three linear layers on top of the features, as it
produced better results. The layers are of the
dimensions 768×512, 512×256, and 256×2
respectively. Rectified linear unit (ReLU) is
used as the nonlinear activation function at the
first two layers’ output, followed by a dropout
regularization of 0.1.

• Bi-LSTM approach: We use one bi-LSTM
(Bi-directional long short term memory) layer
of 512 dimensions at first instead of the initial
linear layer. We keep the rest of the archi-
tecture the same (including the activation and
regularization), altering the dimensions as re-
quired.

The output layer is a softmax layer for the clas-
sification job (for both approaches). The rea-
son behind experimenting with the Bi-LSTM
model is that it fully considers the context
information and can better obtain the text rep-
resentation of the comments (Xu et al., 2019).

In the BERT training process, the model receives
pairs of sentences as input in a specific format. A
[CLS] token is inserted at the beginning of the first
sentence and a [SEP] token is inserted at the end of
each sentence, with the words in the middle being
converted to tokens, as shown in Figure 4.

5.1.2 Regression Tasks
Three neural network architectures have been tried
on top of the BERT features enumerated below for
the regression tasks.

• 3 linear layers: The same linear layer archi-
tecture used for the classification tasks is im-
plemented here; only the dimensions of the
last layer are altered appropriately. 3 linear
layers of dimensions 768 × 512, 512 × 256,
and 256× 1 respectively are used.

ReLU is applied as the activation function at
the output of the first two layers, followed
by a dropout regularization of 0.1. The loss
function used for this regression task is the
mean squared error (MSE) loss function.

• One linear layer: Only one linear layer is
used in this approach of the dimension 768×
1. MSE loss function is used for the cross-
entropy loss.

• Bi-LSTM layers: One bi-LSTM layer of 512
dimensions is applied on top of the extracted
features from BertModel. On top of that, a
linear layer is used to predict the ratings. The
same loss function as used in the first two
approaches is applied here.

6 Results and Analysis

For each subtask, we trained our data on the entire
training set of 8000 texts. We used the develop-
ment set of 1000 texts as cross-validation data. The
results tabulated in this section are reported on the
gold test set of 1000 texts.

Each proposed model for all the subtasks was
run for 10 epochs with a batch size of 32. Hyper-
parameters are discussed in Section 5.

Method Accuracy F1 score
Linear approach 0.9030 0.9233
bi-LSTM approach 0.8970 0.9177
Naive Bayes 0.8570 0.8840

Table 3: Accuracy and F1 score for the models trained
on the humor classification task

The results of the considered BertModel and
baseline methods for the is humor subtask-1 are
summarized in Table 3 in terms of the F1 score
and accuracy. Table 4 shows the results of the
humor controversy subtask-3. We observe that the
linear approach works better than the bi-LSTM
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Method Accuracy F1 score
Linear approach 0.5301 0.5628
bi-LSTM approach 0.5203 0.5455
Naive Bayes 0.4374 0.4624

Table 4: Accuracy and F1 score for the models trained
on the humor controversy task

approach in both cases. On the other hand, both the
proposed models perform better than the baseline
model (Naive Bayes with bag of words features).

Method RMSE
3 linear layers approach 0.5741
Single linear layer approach 0.5847
Bi-LSTM layer approach 0.5694
SVR 0.8609

Table 5: RMSE for the models trained on the humor
rating task

Method RMSE
3 linear layers approach 0.5936
Single linear layer approach 0.6082
Bi-LSTM layer approach 0.5800
SVR 0.6415

Table 6: RMSE for the models trained on the offense
rating task

Tables 5 and 6 represent the results of all the
three approaches along with the given baseline
(SVR) for the regression subtasks in terms of
RMSE. Results show that the 3-layered method
works better than the single-layer method. We ob-
serve that among all three methods, the bi-LSTM
approach works the best for both the subtasks. Our
proposed methods have significantly lower RMSEs
than the baseline SVR model.

In the humor detection subtask, we ranked 48th
with the leaders achieving an F1 score of 0.98. We
achieved a rank of 23 in the humor rating subtask,
leaders getting an RMSE of 0.49. In the humor
controversy subtask, the leaders got an F1 score of
0.63, giving us a rank of 15. In the last subtask of
offense rating, we achieved a rank of 38, with the
leaders getting an RMSE of 0.41.

The section where our model struggles the most
is detecting underlying sarcasm in sentences, espe-
cially where the context is explored for the first
time. For example, in the text: “I asked my

North Korean friend how it was there... he said
he couldn’t complain.”, our model classifies the
text as not humorous however in the gold set the
text has been classified as humorous. This is one of
several examples where our classifier mislabeled
the text. The same problem exists with other sub-
tasks too.

7 Conclusion

In this paper, we describe a system developed to
address the SemEavl Task-7. The task has four
subtasks, viz., detecting humor, detecting offense,
predicting humor rating, and predicting offense rat-
ing. Our system is able to perform all four subtasks
with varying levels of performance for each task.
Our system deploys linear layers and bi-LSTM lay-
ers independently to process the features produced
by the BERT model. Results show that our sys-
tem using BERT with Linear layers outperforms
the baseline model by a significant margin for the
first and the third subtasks. On the other hand,
the bi-LSTM layers-based system gives the best
performance for the other two fine-grained rating
prediction tasks.
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Abstract

Although humorous language can bring joy to
people, it is also easy to cause offense. There-
fore, in order to effectively identify whether
a sentence is humorous or offensive, the sys-
tem needs to obtain abundant semantic infor-
mation. This article introduces the submission
of subtask 1 and subtask 2 that we participate
in SemEval-2021 Task 7: HaHackathon: De-
tecting and Rating Humor and Offense, we use
a model based on ALBERT that uses ALBERT
as the module for extracting text features. We
modify the upper layer structure by adding spe-
cific networks to better summarize the seman-
tic information. Finally, our system achieves
an F-Score of 0.9348 in subtask 1a, RMSE of
0.7214 in subtask 1b, F-Score of 0.4603 in sub-
task 1c, and RMSE of 0.5204 in subtask 2.

1 Introduction

A sense of humor is a positive psychological quality
that can make people feel better about themselves,
relieve stress, and gain a sense of connection with
others. Humor can help bring about happiness
experiences and optimism. Humor, by its nature,
stirs up emotions. The speaker presents the audi-
ence with an unexpected conflict. The audience
feels nervous and anticipatory, and at the same
time feels pleased and released. Humor is also a
highly subjective phenomenon, with age, gender,
and socioeconomic status is known to influence
the perception of jokes. That’s why some things
make people laugh and others don’t. When the
brain lacks the cognitive resources to accurately
understand the context in which a joke takes place,
it generalizes it into an everyday behavior, and the
benign offense becomes hostile aggression. Like
most metaphorical languages, humor emphasizes
multiple word meanings, cultural knowledge, and
pragmatic capabilities, making it a challenging task
to detect humor and offense in a sentence.

SemEval-2021 Shared Task 7: HaHackathon:
Detecting and Rating Humor and Offense (Meaney
et al., 2021) shared task has two subtasks. Sub-
task 1 emulates previous humor detection tasks in
which all ratings were averaged to provide mean
classification and rating scores. Subtask 1a: pre-
dict if the text would be considered humorous (for
an average user). This is a binary task. Subtask
1b: if the text is classed as humorous, predict how
humorous it is (for an average user). The values
vary between 0 and 5. Subtask 1c: if the text is
classed as humorous, predict if the humor rating
would be considered controversial, i.e. the variance
of the rating between annotators is higher than the
median. This is a binary task. Subtask 2 aims
to predict how offensive a text would be (for an
average user) with values between 0 and 5. This
score was calculated regardless of whether the text
is classed as humorous or offensive overall.

In this paper, we use ALBERT: A Lite BERT for
self-supervised Learning of Language (Lan et al.,
2019) as the module for extracting sentence seman-
tic information. The features extracted by ALBERT
are then further processed through a specific struc-
ture. Besides, for subtasks 1a and 1c, since it is a
binary classification problem, we use k-fold strati-
fied sampling to reinforce the training process. The
rest of the paper is organized as follows. Part 2
gives a brief introduction to the relevant work. Part
3 describes the dataset and our approach. Part 4
describes the hyperparameters of the study method
used and our results. Finally, the fifth part summa-
rizes our work.

2 Related Work

Computational research in the field of humor de-
tection has been going on for some time, and the
diversity of tasks allows for different analyses ac-
cording to the type and expression of humor. In
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previous shared tasks, T3 team (Vanroy et al., 2020)
used the pre-trained language model Roberta in the
SemEval-2020 shared task7 on Assessing the Fun-
ninness of Edited News Headlines (Hossain et al.,
2020) to learn the latent features in news headlines
and predict how funny each headline is. UniTue-
bingenCL team (Ammer and Grüner, 2020) used
a Ridge Regression model using Elmo and Glove
embeddings as well as Truncated Singular Value
Decomposition at SemEval-2020 Task 7: Humor
Detection in News Headlines. Humor and emotions
such as offense and hatred are not only different but
also related to one another. It is often challenging
to classify them accurately. Badlani et al. (2019)
proposed a composite two-step model. In the first
step, features related to irony, humor, hate speech,
and emotion are extracted, and in the second step,
these features are combined to classify emotions.
This multi-step method is better than a single step.
Models that predict sentiment have better empirical
performance in sentiment classification.

Sentiment analysis of humor data requires a
deep semantic understanding of the text, and sig-
nals of nuances in the language may enhance or
completely change the sentiment of the sentence.
Morales and Zhai (2017) proposed a generative lan-
guage model based on incongruity theory to model
humorous text, using background text sources, such
as Wikipedia entry descriptions, and being able to
construct multiple features to identify humorous
comments. Besides, Deep Learning (DL) (Good-
fellow et al., 2016) methods of multi-layer Neural
Networks (NN) (Mikolov et al., 2011) stacked was
also a common method. Ortega-Bueno et al. (2018)
used a recurrent neural network(RNN) (Mikolov
et al., 2010) that combines language features and
attention-based to classify Spanish tweets as hu-
morous or not and predict how funny they are. The
attention (Vaswani et al., 2017) layer helps calcu-
late the contribution of each term to the target hu-
mor category. In recent years, various pre-training
models based on Transformer have shown outstand-
ing performance, and some researchers have also
applied them in the field of humor detection. Weller
and Seppi (2019) used a Transformer framework
to evaluate whether a joke was humorous, and per-
formed well on the short joke and pun datasets.

Figure 1: K-fold stratified sampling to the training set

3 Methodology and Data

3.1 Data description

The organizer of Semeval-2021 Shared Task 7 pro-
vided a complete training data set for our system,
including 8000 pieces of data for the training set,
1000 for the validation set, and 1000 for the test set.
Each piece of data has four tags.

In our experiment, for subtasks 1a and 1c, we
use a Stratified-K-fold technique to randomly seg-
ment all combined training datasets. As shown
in Figure 1, we use the Stratified-K-fold cross-
validation instead of the ordinary K-fold cross-
validation. Stratified-K-fold can ensure that the
proportion of each class in the generated training
set and validation set is consistent with the origi-
nal training set, thus avoiding the generated data
distribution disorder. In this experiment, we set the
value of K as 5.

3.2 Description of the system

Our model is one based on ALBERT, which is
shown in Figure 2. BERT (Devlin et al., 2018)
has good performance, but too many parameters
and long training time are also its disadvantages.
ALBERT is designed by Google mainly to solve
the problem of BERT, which is a simplified model
based on BERT. ALBERT solves these problems
by using two parameter reduction techniques, one
of them is cross-layer parameter sharing, in order
to avoid quantity increases along with the network
depth; factorized embedding parameterization is
another approach, by putting a big word embedded
matrix is decomposed into two small matrix makes
the relationship between the size of the hidden layer
and dictionary apart, thus, when the size of the
hidden layer is increased, the parameter size of
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Figure 2: Schematic overview of the architecture of our
model

the vocabulary embedding will not be significantly
increased.

We input the preprocessed text into the model
through the input layer, and then carry out vector
representation. Position vector representation, text
vector representation, and word vector represen-
tation make up the vector representation. Then
the ALBERT model takes the sum of the input
embedding, position encoding, and token type em-
bedding as input, which is further processed by the
Transformer Encoder module. After that, we input
the output of the last ALBERT hidden layers into
BiLSTM. Then, through the Relu function, the vec-
tor is nonlinearly mapped to the lower dimension.
After average pooling and maximum pooling are
achieved to obtain the feature vector, we concate-
nate the average pooling and maximum pooling
output. Finally, the feature vector will concatenate
with the original output of ALBERT, the classifica-
tion or regression task is then performed.

4 Experiment and results

4.1 Experiment setting

In this experiment, albert base v2 is used. After
adding a new module based on ALBERT, the whole
model is fine-tuned. The main hyper-parameters
we adjust are the maximum sequence length, the
learning rate, the gradient accumulation steps, and
batch size. As is shown in Table 1.

maximum sequence length learning rate
128 2e-5

gradient accumulation steps batch size
4 4

Table 1: Details of the hyper-parameters.

Team Name: ZYJ

Task 1a Humor Detection

F-Score Rank
0.9348 41

Task 1b Average Humor Score

RMSE Rank
0.7214 43

Task 1c Humor Controversy

F-Score Rank
0.4603 33

Task 2 Average Offensiveness Score

RMSE Rank
0.5204 31

Table 2: The results of our methods.

4.2 Results
According to the leaderboard provided by the or-
ganizer, our team’s F-score is 0.9348, ranking 41st
place in subtask 1a Humor Detection. RMSE is
0.7214, ranking 43rd place in subtask 1b Average
Humor Score. F-Score is 0.4603, ranking 33rd
place in subtask 1c Humor Controversy. RMSE is
0.5204, ranking 31st place in subtask 2 Average
Offensiveness Score. As shown in Table 2.

5 Conclusion

In this task, we detect and rate humor and offense
using a deep-learning-based model. In the construc-
tion of the model, we use ALBERT as a module
of the model and add a custom network structure
to further process the extracted feature vector. As
for the classification task, we perform Stratified-
K-Fold cross-validation based on the model and
get the optimal value through the voting mecha-
nism. Although our system has fewer parameters
and is easier to train, the performance needs to be
improved. In future work, we will further optimize
the system structure, so that the model can obtain
rich semantic information characteristics.
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Abstract

Humor detection is an interesting but difficult
task in NLP. Humor might not be obvious in
text because it may be embedded into con-
text, hide behind the literal meaning of the
phrase and require prior knowledge to under-
stand. We explored different shallow and deep
methods to create a humour detection classi-
fier for task 7-1a. Models like Logistic Re-
gression, LSTM, MLP, CNN were used, and
pre-trained models like DistilBERT were in-
troduced to generate accurate vector represen-
tation for textual data. We focused on apply-
ing a multi-scale strategy on modelling, and
compared different models. Our best model is
the DistilBERT+MultiScale CNN which used
different sizes of CNN kernel to get multi-
ple scales of features. This method achieved
93.7% F1-score and 92.1% accuracy on the
test set.

1 Introduction

Humor detection is an interesting but difficult task
in Natural language processing (NLP) and requires
various techniques to understand the meaning of a
sentence and identify humor. For example, humour
by sarcasm can mean that a piece of text can have
two very different meanings and the NLP algorithm
needs to be able to understand which meaning is
intended.

The aim of task 7-1a of SemEval 2021 (Meaney
et al., 2021) was to address the challenge of clas-
sifying humour in text. Provided for this task was
a dataset constructed of short phrases in English
along with a label classifying whether or not each
phrase is intended to be humorous. The labels have
been obtained by surveying a group of people that
represent a variety of genders, political stances and
income levels. The given dataset includes training
set with 8000 labeled sentences, a development set
of 1000 sentences and a test set of 1000 sentences.

The dataset was made up of English phrases that
were labeled by their intent to be humorous. This
means the label annotators were not saying whether
or not they found the text funny but whether the
writer of the text intended it to be funny. The
texts were predominantly one sentence long with
a small proportion being two or three sentences.
Each phrase was labeled for humour intent and,
if humour was intended, then a rating was given
for how funny it is. Also of the texts intended to
be humorous, a label was given for whether it is
offensive, and if so, how offensive it is.

The texts covered a range of types of jokes such
as puns, sarcasm, dark jokes and “Dad” jokes. One
example is “I never finish anything. I have a black
belt in partial arts.” which contains a pun and is
labeled as humorous.

Our best approach is DistilBERT+MultiScale
CNN. It introduced a pre-trained DistilBERT
model to extract textual features, and created a
multi-scale CNN model for humour classification.
First, the DistilBERT tokenizer generated a word
token vector and an attention mask vector for each
sentence. Then, we fed these vectors into a pre-
trained DistilBERT model to get hidden features.
After that, five CNN layers with different kernel
sizes were used to get features of different scales.
Each feature vector was subsequently concatenated
together. Finally, the fused features were fed into
dense layers in order to classify text into humorous
or not humorous classes. It achieved 93.66% of F1
score and 92.10% of accuracy in using test set.

2 Related Work

We used four shallow models as a benchmark for
our main approach. The first method was K-nearest
neightbors (KNN) (Fix, 1951) in which an unla-
beled query point is given the label of the majority
of the K neighboring points. The second method
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Figure 1: Pipeline of our experimental process

is Naive Bayes (Sammut C., 2011a) which uti-
lizes Bayes rule together with a strong assumption
that the attributes are conditionally independent.
The third is a random forest (Sammut C., 2011b)
which is an ensemble of decision trees trained on
a bootstrap sample from the original dataset. The
fourth method is the support vector machine (SVM)
(Burges, 1998) which transforms the input data to
a higher dimensional space and seeks to define a
hyper-plane separating the classes. We also imple-
mented voting to combine these methods where the
prediction of the voting is simply the majority label
predicted by the shallow models.

We also tried deep models. Long short-term
memory (LSTM) is a very effective Recurrent neu-
ral networks for processing sequence data, which
considers long and short term memory over time
(Hochreiter and Schmidhuber, 1997). Convolu-
tional Neural Network (CNN) uses a convolution
kernel to extract hidden features from input, which
is widely used in the field of computer vision (Le-
Cun et al., 2010). 1-dimension CNN layer can fit
with sequence data, so it can be used to extract
textual features.

Transfer learning methods are widely used in
the field of NLP. Pre-trained word embeddings
are usually trained on unlabelled dataset and maps
each word token into a fixed vector representing
the meaning of the word in a hidden space. For
example, Global Vectors for Word Representation
(GloVe) is trained on a 6 billion word corpus using
an unsupervised learning method in order to find
word co-occurrence (Pennington et al., 2014).

Unlike conventional embeddings, contextualized
embeddings dynamically map a word token into
vectors based on the context using a pre-trained en-
coder. By extracting the features and adapting new
data to the model, we can implement general down-

stream tasks based on the pre-trained model. BERT
uses a deep Transformer as its encoder, and trains
on language modelling tasks and next sentence pre-
diction, which is often used in NLP with excellent
performance (Tenney et al., 2019). DistilBERT
uses knowledge distillation method to compress
the model, which retains 97% of the performance
of original BERT but is 60% faster (Sanh et al.,
2020).

3 System Overview

In our BERT-based models, we used DistilBERT
which is a light version of BERT to extract textual
features. The BERT model is a transformer-based
model, which is pretrained on vast amounts of tex-
tual data in language modelling tasks (Sanh et al.,
2020). Therefore, the weights in the BERT model,
which contains semantic information, can be used
as contextualized embedding for general purposes.
It can better represent textual data than a random
tokenizer. Due to hardware limits, we only used
the DistilBERT uncased base model in our system.
It retains 97% performance of the original BERT
but is 60% faster (Sanh et al., 2020). For compari-
son, we also used GloVe pretrained embedding to
represent text and created a 2-layer LSTM model
as our baseline. Shallow machine learning models
were also explored for comparison. Figure 1 shows
the pipeline of our experimental process.

Regarding feature extraction, we first used the
DistilBERT tokenizer to vectorize the textual data
then padded them into the same size. An attention
mask was built to use binary vectors to differentiate
padded zeros and word tokens. The vectors and
mask were fed into the BERT model, and we stored
the output of the last layer as the representation
of text. Because the task was a text classification
problem, we only used the “[CLS]” value in the text
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representation for Logistic Regression (LR) and
LSTM model, which was the first vector of each
row. The length of each text representation was 768.
For example, the sentence ”Told my mom I hit 1200
Twitter...” was firstly tokenized into vectors ”[101,
2409, 2026, 3566, 1045, 2718, 14840, 10474...]”,
and the [CLS] vector of DistilBERT output of this
sentence was ”[6.7492e-02, -1.6599e-01, 1.0417e-
01, ...]”, which had length of 768. For the Fully
Connected (FC) model and all CNN models, we
used the full output of the DistilBERT model as
features, which were in shape of 136 x 768.

After extracting the features, we applied differ-
ent models to predict the humor class. First, we
implemented the LR model with default parame-
ters. The package scikit-learn was used to build
and train linear shallow models, such as LR, KNN,
naive Bayes, random forest, and SVM. And then,
we created a LSTM model. It consisted of two 32-
node LSTM layers and a 32-node fully-connected
layer. Also, we built a fully connected network,
which had a 128-node dense layer and 64-node
dense layer. In addition, we tried a CNN model
which contained 2 64-node CNN-1D layer and a
128-node dense layer. For each network, we took
the extracted features as input, and used a 1-node
dense layer with sigmoid activation to collect out-
put. In addition, dropout layers were used in each
model to handle over-fitting problems.

For comparison, we also implemented a GloVe
based LSTM. NLTK module was used to tokenize
sentences and remove stop words and special char-
acters. GloVe (Pennington et al., 2014) is pre-
trained word vectors representation, which was
used as the initial weights of the embedding layer.
The GloVe+LSTM model used 50-dim embedding
which connected to two 32-node LSTM layers. The
output of LSTM was flattened and then fed into 16-
node fully connected layer. And a 1-node dense
layer with sigmoid activation was used to output
probability of humorous class. It used the same
model compiling parameters as the DistilBERT-
based models.

Moreover, previous research proved that multi-
ple scale of CNN layers can capture hidden features
in different granularity, which improves perfor-
mance (Cui et al., 2016; Yuan et al., 2018). There-
fore, we build two multi-scale CNN models. The
first model is DistilBERT+MultiScale CNN, Figure
2 shows its structure. It used five 64-node CNN-1D
layers with different kernel size of [1, 2, 3, 4, 5].

These 5 layers could extract hidden information
from the features in various granularity. Each CNN
layer was then connected to a GlobalMaxPool1D
layer to get a down-sampled representation in the
shape of (batch size, 64). Also, dropout layers were
applied on each output, and the 5 outputs were con-
catenated to a single vector in the shape of (batch
size, 320). Subsequently, the combined vector was
fed into a 512-node fully-connected layer. Rec-
tify Linear Unit (ReLu) activation functions were
applied to all CNN and fully-connected layers. Fi-
nally, a 1-node fully-connected layer with sigmoid
activation function was added at the end of the net-
work to collect the output value. We used 0.5 as
a threshold to categorise the probability value into
0 (not humorous) and 1 (humorous) categories. In
addition, we used “rmsprop” optimizer and binary
cross entropy loss for stochastic gradient descent
optimization.

In addition, we tried other multi-scale strategies,
inspired by the deep multi-scale fusion hashing
model (Nie et al., 2021). To differentiate two multi-
scale models, we called this one MultiPool CNN.
It used 5 different kernel size of MaxPooling lay-
ers to scale input features into different resolution.
For each Maxpooling layer we set strides to 1 and
used ”valid” padding methods, and it connected
to a 64-node CNN-1D layer with a kernel size of
1 and ReLu activation. Therefore, 5 CNN layers
can extract features from different resolution of in-
put. Similar to the multi-scale CNN, each output
subsequently connected to a GlobalMaxPool1D
layer and dropout layer. Finally, 5 different outputs
were concatenated together and fed into a 512-node
fully-connected layer. The output layer and com-
piling method are the same as the multi-scale CNN
model.

Figure 2: Structure of DistilBERT+Multi-Scale CNN
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Model F1@Dev Accuracy@Dev F1@Test Accuracy@Test
Official Baseline - - 0.857 0.884
KNN 0.808 0.774 0.775 0.742
Naive Bayes 0.831 0.798 0.834 0.758
Random Forest 0.860 0.821 0.836 0.791
SVM 0.870 0.846 0.850 0.817
Voting Ensemble 0.853 0.821 0.817 0.774
GloVe+LSTM 0.888 0.850 0.885 0.853
DistilBERT+LSTM 0.884 0.842 0.896 0.862
DistilBERT+LR 0.898 0.867 0.904 0.880
DistilBERT+FC 0.904 0.877 0.925 0.907
DistilBERT+CNN 0.907 0.883 0.907 0.888
DistilBERT+MultiPool CNN 0.911 0.885 0.931 0.914
DistilBERT+MultiScale CNN 0.913 0.890 0.937 0.921

Table 1: Evaluation results of various implemented models on the dev set and test set (the gold data)

4 Experimental setup

We implemented our experiments on the univer-
sity’s virtual machine, which has a python envi-
ronment with a shared 16 GB Tesla v100 GPU.
Tensorflow 2.0 and Keras were used to build neural
networks. Python ”transformers” module was used
to import the DistilBERT model. ”Pandas” and
”Numpy” modules were utilised to manipulate data,
and we used ”scikit-learn” to import basic machine
learning models and evaluation metrics.

Moreover, we used the training set to train our
models and took 20% split of training set as vali-
dation set to tune hyper-parameter in development
stage. The dev set was used to assess performance
of models in evaluation stage, and we applied our
models on test set in order to submit results. In data
preprocessing, we load the data into a pandas data
frame, and tried to remove all the tags and special
characters in the text. After that, we used the Dis-
tilBERT tokenizer to vectorise and encode the text
into the format that the DistilBERT model required.
In all the models, we set 1 and 2 as random seeds
for Numpy and TensorFlow respectively. Also, we
used early stopping strategy when training models.
All DistilBERT based nerual network models were
stopped at 23 epochs. Also, the batch size was set
to 64.

Regarding evaluation, we evaluated our model
on dev set and test set (gold data). F1 score and
accuracy were used to evaluate performance. The
accuracy score shows the ratio of correct prediction.
Since the F1 score considers both precision and
recall, which would be more informative metric,
we selected our model based on the F1 score.

5 Results

We found that the features extracted by DistilBERT
boosts the model performance significantly and
it is difficult to generate a good results without
using a pre-trained embedding or model. Due
to hardware limits, we only tried the light ver-
sion of BERT, and only implemented shallow
layer models. Our official submission used Dis-
tilBERT+FC model, which achieved 92.41% F1-
score and ranked 47th in task 7-1a. We modified
our model in post-evaluation stage, and our best
model is DistilBERT+Multi-scale CNN, which had
93.66% of F1 score and 92.10% of accuracy in us-
ing test set. The given official baseline is 85.7% of
F1 score and 88.4% of accuracy. All of our Dis-
tilBERT based models and one GloVe embedding
based model had better performance than the base-
line. Detailed evaluation scores on dev set and test
set were included in Table 1.

In comparison, the SVM model achieved an F1-
score of 85.04% and an accuracy 81.70% on the
test set, which is our best shallow model. However,
all of these model generated scores lower than the
given baseline.

Also, our GloVe-based LSTM model achieved
88.5% F1-score, and DistilBERT-based LSTM
achieved 89.6%. It makes sense that transformer-
based pretrained representation is better than tradi-
tional pretrained embedding. Due to efficiency con-
siderations, we only used 32 nodes in the LSTM
layer. So, these two models have poorer perfor-
mance than other models using more nodes. Even
the DistilBERT+LR model has higher F1 score
(90.4%) and accuracy (88.0%). Surprisingly, a
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Not Humorous Humorous
Not Humorous 337 48
Humorous 31 584

Table 2: Confusion matrix of DistilBERT+MultiScale
CNN’s result

simple 2-layer fully connected network achieved
92.5% F1 on test set. But in the dev set, Dis-
tilBERT+CNN outperformed the DistilBERT+FC
model. The CNN model had more stable perfor-
mance, which achieved 90.7% F1 in both dev and
test set. Because we used the same epochs for all
models, CNN may converge better than the fully-
connected model. The multi-scale strategy fur-
ther improved the performance of the CNN model,
which is our best model.

However, our best model still made mistakes on
predicting humorous classes of a few sentences. An
error analysis is helpful to understand the wrong
predictions. In the prediction results of the Dis-
tilBERT+MultiScale CNN model, 79 out of 1000
sentences are incorrectly predicted. The Table 2 is
a confusion matrix of the result. It shows that 48
predictions were false positive, which assigned a
Not-Humorous sentence into the Humorous class.
For example, ”I think in order to have a great busi-
ness you have to like the product you’re selling
more than the money you get.”, this sentence is
misclassified as humorous. Also, 31 sentences are
false negatives. Those sentences are labeled as hu-
morous but ignored by our model. For example, ”If
alcohol influences short-term memory, what does
alcohol do?”, and ”And then there’s my dad...????”.
Those sentences hide the humor within the con-
text, which is hard for a model to detect. Some
of sentences are also difficult for us to understand
why they are humorous. Since the humor labels
were created based on subjective judgement, even
human beings would have diverse opinions and
understanding.

6 Conclusions

To conclude, we explored various methods to build
humour detection classifiers for task 7-1a. Models
like Logistic Regression, LSTM, FC, CNN were
used, and pre-trained models like DistilBERT were
introduced to generate an accurate vector represen-
tation for textual data. Our best model is the Dis-
tilBERT+MultiScale CNN, which achieved 93.7%
F1-score and 92.1% accuracy on the test set. We

focused on applying multi-scale strategy on mod-
elling, and compared different models. And our re-
sults shows that CNN are more suitable for this task
than LSTM FC and other shallow models. Also, we
found that pre-trained embeddings, weights or rep-
resentations are crucial for our model performance.
We only explored multi-scale from the wide di-
mension, this strategy can also be used in deep
dimension. In the future, a deeper network with
more nodes can be explored and the full version of
BERT model can be exploited.
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Abstract

This paper describes the system used for de-
tecting humor in text. The system developed
by the team TECHSSN uses binary classifi-
cation techniques to classify the text. The
data undergoes preprocessing and is given
to ColBERT (Contextualized Late Interaction
over BERT), a modification of Bidirectional
Encoder Representations from Transformers
(BERT). The model is re-trained and the
weights are learned for the dataset. This sys-
tem was developed for the task 7 of the compe-
tition, SemEval 2021.

1 Introduction

Natural language processing faces the chal-
lenges working with humor as it is a highly
subjective phenomena and the age, gender and
socio-economic status are known to have an
impact on the perception of the joke. It usu-
ally involves multiple word senses and cul-
tural knowledge to appreciate humor to its best.
Now a days chatbots and virtual assistants re-
quire automated humor detection systems for a
better interaction with the user by understand-
ing what a human-like approach to humor is. It
is crucial to understand the real motive of the
user and provide appropriate answer to have a
better experience of the user with the virtual
assistants (Chen and Soo, 2018). Based on the
general linguistic structure of humor, we pro-
pose an approach for detecting humor in short
texts using ColBERT in this paper.

We have developed a system in the name of
TechSSN for previous SemEval tasks (Sivana-
iah et al., 2020; Logesh et al., 2019) for offen-
sive language detection using various machine
learning and deep learning networks. In Se-
mEval 2021, we participated in subtask-1a and

1c of humor and offensiveness detection in task
7- HaHackathon (Meaney et al., 2021).

2 Related Work

Continuous research is going on in this field
of humor detection and the systems are getting
better every year. De Oliveira and Rodrigo
(2015) developed a model for humor detection
in Yelp reviews and used convolutional net-
works with a maximum of 81.57% accuracy.

The system developed by Ortega-Bueno
et al. (2018) used UO UPV, a Attention-based
Long Short-Term Memory Network. The
model consists of a Bidirectional LSTM neural
network with an attention mechanism that al-
lows to estimate the importance of each word
and then, this context vector is used with an-
other LSTM model to estimate whether the
tweet is humorous or not. The F1 score for this
system is approximately 0.78 with accuracy,
0.84.

Mao and Liu (2019) developed a system
with BERT, a multi-layer bidirectional trans-
former encoder which can help to learn deep bi-
directional representations, and the pretrained
model is fine-tuned on training data. Their best
F1 Score on the test set is 0.784.

Risch et al. (2020) explained the need and
various methods used for offensive language
detection. BERT model is used with trans-
fer learning for the offensiveness detection by
(Liu et al., 2019) with F1 score as 0.8286 and
accuracy as 0.8628.

3 Methodology

ColBERT base model is chosen for humor text
classification which has 8 layers with the last
layer’s activation function as the sigmoid func-
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tion, as it is performing binary classification.
The remaining layers have ReLu activation
function.

3.1 Model Architecture

This classification model uses a separate line
of hidden layers especially designed to extract
features from each sentence. The used model
is a neural network that includes two parallel
lines of hidden layers: One to view text as
a whole and another to view each sentence
separately. Figure 1 displays the architecture
of the proposed method.

First, to assess each sentence separately and
extract numerical features, the sentences are
separated and are tokenized individually. To
prepare these textual parts as proper numerical
inputs for the neural network, they are encoded
using BERT sentence embedding (Devlin et al.,
2018). This step is performed individually
on each sentence and also on the whole text
(shown in Figure 1). As we get the BERT sen-
tence embedding for each sentence, they are
fed into the parallel hidden layers of the neural
network to extract mid-level features for each
sentence (could be related to context, type of
sentence, etc). The vector size obtained from
this layer for each sentence is 20.

While the main idea is to detect rela-
tionships between sentences (especially with
punchline), it is also essential to find out the
word-level connections in the whole text (such
as synonyms and antonyms). Identifying this
relation will have meaningful impacts in de-
termining congruity of the text. Similar to the
previous step, we feed BERT sentence embed-
ding for the whole text into hidden layers of
the neural network. The vector size is 60. Fi-
nally, there are three sequential layers in the
neural network model. These final layers com-
bine the output of all previous lines of hidden
layers in order to return the final output. These
final layers are used to determine the congruity
of sentences and detect the transformation of
reader’s viewpoint after reading the punchline.

Input Text

Concatenation Layer

Partial Hidden Layers

BERT embedding

Individual sentences

Partial Hidden Layers

Final Layers
Final Layers

Partial Hidden Layers

Final Layers

Figure 1: Model Architecture

3.2 Dataset Collection
For building the model we have used the train-
ing dataset provided by the organizers of the
Hahackathon - (Meaney et al., 2021). This
dataset has 8000 instances of which 4932 be-
long to humor class and 3068 belong to non-
humor class. Out of the 4932 humor instances,
2465 are controversial and 2467 are not con-
troversial. Each instance in the dataset has
four features: is humor, humor rating, hu-
mor controversy and offense rating. We have
trained our model for the classification features
only; is humor and humor controversy. Both
features have binary values.

3.3 Data Preprocessing and Tokenization
For data preprocessing the function con-
vert to transformer inputs is used to convert
the tokenized input into ids, masks and seg-
ments for the transformer. The tokenization of
the dataframe columns is done by the function
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compute input arrays. BERT Tokenizer pre
trained on the ‘BERT-base-uncased’ model is
used for tokenization. The maximum sequence
length for reading the data is set as 200 that
will be used as the input to BERT.

3.4 Model Creation
For the model we have used BERT-base. We
use a function create model that has the ar-
chitecture which is used to fine tune BERT to
our chosen dataset, and we compute the com-
petition metric for the validation set with the
help of the function spearman rank correlation
coefficient.

3.5 Training, Cross Validation and
Testing

The model is trained with cross validation for
3 epochs with a learning rate of 3e-5 and the
size of each batch is 6. As we have performed
binary classification for the humor detection
task, we have set the loss function as a simple
binary crossentropy.

4 Results and Discussion

The test dataset given by SemEval organisers
(gold-test-27446.csv) was tested on different
models and the F1 score for all these models
are discussed in the following sections.

4.1 ColBERT
We have used Contextualized Late Interaction
over BERT (ColBERT) (Khattab and Zaharia,
2020). ColBERT differs by providing a late
interaction architecture that independently en-
codes the query and the document using BERT.
It then uses a powerful interaction step that
analyze their similarity in a fine grained mode.
Eventhough the interaction learning is delayed
it also maintains this fine-granular interaction
in a better manner. ColBERT can leverage
the expressiveness of deep language models
and simultaneously gaining the ability to pre-
compute document representations in an of-
fline structure. This will speed up query pro-
cessing since the representations are learnt in
offline. Beyond reducing the cost of re-ranking
the documents retrieved by a traditional model,

ColBERT’s pruning-friendly interaction mech-
anism enables leveraging vector-similarity in-
dexes for end-to-end retrieval directly from a
large document collection.

4.2 Decision Tree

Decision tree (DT) is a popular supervised
technique used for classification problems. It
identifies the relation between the features and
form the set of rules that can be used to classify
the given data into any one of the class labels.
The method uses the train dataset to generate
branch-like segments that construct an inverted
tree with a root node, internal nodes, and leaf
nodes.

4.3 SVM

Support Vector Machine (SVM) is a super-
vised machine learning technique used for
both classification or regression problems. It
uses the concepts of separating the classes us-
ing maximal margin hyperplane. We fed pre-
processed data into Support Vector Classifier
(SVC) with Gaussian Radial Basis (RBF) ker-
nel for training and testing.

Table 1 shows the F1 score and accuracy for
the best, baseline and our approach.

No. System F1 Accuracy
1 Best Approach 0.982 0.9854
2 Baseline 0.857 0.848
3 Our Approach 0.884 0.9081

Table 1: Official results of the humor detection task

Figure 2 shows the F1 score and the accu-
racy for the various models we tested for hu-
mor detection. ColBERT model provides bet-
ter accuracy when compared to decision tree
and support vector machine models.

No. Model F1 Accuracy
1 ColBERT 0.884 0.9081
2 SVM 0.747 0.617
3 Decision Tree 0.736 0.62

Table 2: Results for various models used for humor de-
tection
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The humor testset contains 1000 instances
of which 615 are humorous and 385 are not.
The confusion matrix for ColBERT model is
given in Table 3.

Actual
Humor Not

Predicted
Humor 553 30
Not 62 355
Total 615 385

Table 3: Confusion matrix of ColBERT for humor de-
tection

There are 279 offensive texts and 336 non
offensive texts in 615 humor instances. Table
4 shows the results for ColBERT and SVM
model used for humor controversy or offen-
siveness detection.

No. Model F1 Accuracy
1 ColBERT 0.53 0.56
2 SVM 0.487 0.530

Table 4: Results for various models used for humor con-
troversy detection

5 Conclusion

There is a lot of demand for automatic hu-
mor detecting systems in the market as it
can be used in chatbots and AI assistants to
achieve human-like experience while talking
to a machine. SemEval-2021 task 7 involves
a subtask-1a as identifying humor in text. A
modification of the BERT called ColBERT is
used to classify such text sentences into hu-
morous or not. ColBERT is a 8-layer model
with 110M parameters outperforms the ma-
chine learning models we tested with a large
margin, showing the importance of utilizing
linguistic structure. The preprocessing tech-
niques can be enhanced to getter better accu-
racy.
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Abstract

This paper describes our submission to the
SemEval’21: Task 7- HaHackathon: Detect-
ing and Rating Humor and Offense. In this
challenge, we explore intermediate finetun-
ing, backtranslation augmentation, multitask
learning, and ensembling of different language
models. Curiously, intermediate finetuning
and backtranslation do not improve perfor-
mance, while multitask learning and ensem-
bling do improve performance. We explore
why intermediate finetuning and backtransla-
tion do not provide the same benefit as on other
natural language processing tasks and offer in-
sight into the errors that our model makes. Our
best performing system ranks 7th on Task 1b
with an RMSE of 0.5339.

1 Introduction

With the advancement in deep learning methods,
NLP tasks like sentiment analysis and opinion min-
ing have achieved high accuracy, however detection
of some salient forms of figurative language such
as humor remain difficult tasks.

Being able to infer humor and offense with a
high accuracy can help improve and lead to better
performance on downstream applications, such as
content moderation, sentiment analysis, etc. This
would be useful for various downstream applica-
tions, such as understanding tweets, reviews and
feedback. However, humor detection is not trivial.

What makes identifying humor hard? Humor
can consist of styles ranging from sarcastic to slap-
stick comedy, and it factors in both individual pref-
erences and underlying cultures. Context, sounds,
and vision or any combination of these can be key
in building to a punchline (Cai, 2019). Humor ap-
preciation is also highly subjective, as age, gender,
and socio-economic status often impact the percep-
tion of a joke. Meaney (2020) identify 3 ways that
classification of humor is difficult:

(1) Humor can differ between cultures,
(2) Humor can also differ within cultures, and
(3) Humor differs within the same person.

Our contributions are as follows: (1) we explore
whether intermediate finetuning on other humor
and offense datasets is helpful for this task, (2) we
seek to identify if backtranslation augmentation
is useful for humor detection, (3) we show that
multitask learning is helpful when classifying and
scoring both humor and offense, and (4) we find
that ensembling different language models leads to
improved results on some tasks. The code for our
experiments is available at our Github repository1.

2 Related Work

The challenge of humor detection has gained trac-
tion since 2017. Meaney (2020), explains in their
proposal that prior work has explored humor detec-
tion as an objective task, averaging all annotations
for a joke, to produce a single classification or rat-
ing. This treats humor as an objective concept,
which is not the case. This motivated their chal-
lenge for SemEval’21 (Meaney et al., 2021) to ex-
plore these dimensions of humor and offense. We
discuss some of the previous efforts to explore hu-
mor and offensiveness in the following paragraphs.

Badlani et al. (2019) explains how text in reviews
is quite complex as they can be sarcastic, humor-
ous, or hateful. An ordinary sentiment analysis
would fail to perform well in such cases. They first
extract features pertaining to sarcasm, humor, hate
speech, and sentiment, and then use these features
to inform sentiment classification. Their work is
quite sensitive to catching negative sentiment, how-
ever, it does not do as well when sentiment changes
halfway through the text. It also does not address
the subjectivity of humor.

1https://github.com/bzylich/humor-by-demographic
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ColBERT (Annamoradnejad, 2020) is among the
first to use BERT (Devlin et al., 2018) for humor
detection, reaching 98% classification accuracy and
outperforming variants using recurrent neural net-
works and convolutional neural networks. Mao
and Liu (2019) is another work that uses BERT to
classify if a tweet is a joke or not and predict how
humorous the tweet is. The work of Weller and
Seppi (2019) explores extending humor detection
capability by trying to assess whether or not a joke
is humorous. They use transformers to identify hu-
morous jokes based on ratings from Reddit pages,
reaching human-level performance.

Earlier work, like (Donahue et al., 2017), use
recurrent deep learning methods with dense em-
beddings to predict humorous tweets. In order to
factor both meaning and sound in their analysis,
they use GloVe embeddings combined with a novel
phonetic representation as input to an LSTM.

Hossain et al. (2020) hosted the SemEval’20
event for humor detection in news headlines. The
event challenged participants to classify whether an
original headline or an altered headline is funnier
and rate the funniness of the edited headline on a 0-
3 humor scale. The winning teams (Morishita et al.,
2020) combined the predictions of several models
using sentence pair regression and ensembled the
pre-trained language models BERT , GPT-2, (Rad-
ford et al., 2019) RoBERTa, (Liu et al., 2019) ,
XLNet (Yang et al., 2019) , Transformer-XL, and
XLM (Dai et al., 2019) to form the final prediction.

Similar to humor detection, there has been some
work to explore offense in text. SemEval ’19 had
a task (Zampieri et al., 2019), aimed at identifying
and categorizing offensive language in social me-
dia. The top performing teams used ensembles of
random forest, linear models, recurrent networks,
and pretrained transformer language models.

Our work is motivated by the SemEval chal-
lenges which encourage interesting techniques to
handle multiple word senses, cultural knowledge,
and pragmatic competence. Through this challenge,
we try to detect humor and explore the subjectiv-
ity of humor appreciation with a controversy score
to examine the variance in humor ratings for each
different text.

3 Dataset

3.1 Data

We use three types of datasets in this work: the
HaHackathon competition dataset(Meaney et al.,

2021), datasets for offensive text detection, and
datasets for humor detection. We describe each of
these in the following subsections.

3.1.1 HaHackathon Competition Dataset
The training dataset consists of 8000 texts (Meaney
et al., 2021) and four subtasks: humor classifica-
tion, humor rating, humor controversy, and offense
rating. For our initial experiments we created a
randomized 90-10 train-development split of 7200
training examples and 800 sentences for model de-
velopment. In addition, the competition has its own
development dataset of 1000 texts. The labels for
this dataset were released during the final stage
of the evaluation. The gold-standard test dataset
(Meaney et al., 2021) is the one we use for our
system results.

3.1.2 Humor Datasets
For the humor component of the competition, we
use two datasets for intermediate finetuning: 200k
Short Texts for Humor Detection (Annamoradne-
jad, 2020) and a self-compiled dataset of jokes and
other texts scraped from Reddit.

The 200k Short Texts for Humor Detection
dataset consists of 200,000 short text snippets,
each labeled as either humorous or not humorous,
with an even split between the two classes. The
non-humorous texts are news headlines from the
Huffington Post while the humorous texts were
taken from Reddit communities such as /r/jokes
and /r/cleanjokes.

The other dataset was one which we compiled
ourselves, consisting of 200,000 snippets of text
scraped from various reddit communities. This was
primarily to address shortcomings we noticed in the
200k Short Texts dataset; namely the limited range
of lengths for jokes and the singular source for
the negative examples. For the positive examples
of humor, we scraped the /r/jokes subreddit. For
negative examples, we scraped subreddits such as
/r/reddit.com and /r/worldnews, which offert more
variability in the types of non-humorous texts than
just news headlines from one news website.

3.1.3 Offense Datasets
The Offensive Language Identification Dataset
(OLID) (Zampieri et al., 2019) is one dataset for
identifying offensive language in texts, specifically
tweets. It contains 14,200 tweets as well as bi-
nary annotations indicating whether or not they are
offensive.
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Another similar dataset is the Hate Speech and
Offensive Language dataset (Davidson et al., 2017).
This dataset consists of 26,953 tweets as well as
labels corresponding to how many crowdflower
users labeled them as hateful and/or offensive.

Together, we experiment with intermediate fine-
tuning on both of these datasets in the hope that it
would provide some benefit for offensive language
detection in task 2.

4 System Overview

As a starting point, we use the HuggingFace Trans-
formers library2, along with their large collection
of pretrained language models. From there, we fine-
tune these transformers on the competition train-
ing dataset during development and the combined
training and development datasets for the final eval-
uation phase.

Building on this basic paradigm, we experiment
in four different ways with the goal of improving
model performance: (1) using various datasets for
intermediate finetuning, (2) using backtranslation
to expand the competition datasets, (3) training
multitask models to predict all labels simultane-
ously, and (4) ensembling predictions using differ-
ent pretrained language models as starting points.

4.1 Intermediate Finetuning

We tried using intermediate finetuning on larger
datasets for humor detection and offensive lan-
guage detection in the hope that these larger
datasets would provide a better starting point for
training on the competition data, which is relatively
small at just 8000 texts.

We perform intermediate finetuning in the same
manner as the previously described basic transfer
learning setup, and then we perform an additional
transfer from the intermediate task to the competi-
tion task. For intermediate tasks we try using the
two offensive language identification datasets pre-
viously mentioned, and for humor we tried using
the 200k humor dataset and the Reddit dataset we
collected.

We also try using ColBERT (Annamoradnejad,
2020), a pretrained BERT model that has been
finetuned for humor prediction, as a starting point
for intermediate finetuning and as a pretrained lan-
guage model for the standard transfer approach.

2https://huggingface.co/transformers

4.2 Backtranslation Augmentation

As another method of expanding the training
dataset and introducing variation, we use back-
translation to create paraphrases of the texts in the
dataset. These paraphrases are generated by first
translating the text into a different language us-
ing the Google Translate python library3, and then
translating the text back into the original language,
usually with some small variations in the wording
or sentence structure. This augmentation is useful
in other tasks, but it was not clear whether the back-
translation would preserve humor, as some humor
is generated based on the specific words or sounds
used (e.g. puns).

4.3 Multitask Models

Initially, we train one model for each task or sub-
task. We also try training one model to learn to
predict the labels associated with all four tasks or
subtasks at the same time. To accomplish this, we
attach four different heads on top of the final trans-
former outputs. Each prediction head consists of
two fully-connected feed-forward layers matching
the dimensionality of the transformer layers used
by the pretrained language model, and an output
layer that produces a single regression score or
binary probabilities depending on the task.

4.4 Ensembling Model Predictions

We did most of our development with DistilBERT
(unless otherwise specified) because it is relatively
fast to train and run, allowing us to iterate more
rapidly. We hypothesized that different pretrained
language models would have different strengths
and weaknesses when finetuned due to the different
pretraining data used and the different model ar-
chitectures. By ensembling (+Ens) many language
models together, we might then counterbalance the
weaknesses of individual models to improve overall
performance.

Ultimately, we experimented with 6 model
variants: “distilbert-base-uncased”, “distilroberta-
base”, “bert-base-uncased”, “roberta-base”, “bert-
large-uncased-whole-word-masking”, and “roberta-
large” pretrained language models from the Hug-
gingFace Transformers library. To get the predic-
tions for each model, we average together the pre-
dictions from 5 different random restarts to miti-
gate the effect of variance induced by the random
initialization. To ensemble the different models

3https://pypi.org/project/googletrans/
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together, we simply averaged the predictions from
each model together to form the final predictions,
taking the argmax of the averaged probabilities for
classification tasks.

For a slightly more advanced ensembling
method, for each task we select the models to av-
erage together by trying all possible combinations
and selecting the combination that leads to the best
performance on the development dataset (+Ens-
Best). Then, we use the same model combinations
to generate predictions to submit to the competition
leaderboard.

4.5 Experimental Setup

To facilitate transfer learning on top of the original
language model, we add two linear layers for each
task on top of the CLS token of the transformer.
The first linear layer has the same dimension as the
language model. After the first linear layer, we use
ReLU activation, and the second layer produces
the prediction (classification or regression depend-
ing on the task). For training each model we use
the same hyperparameters: a batch size of 10, a
learning rate of 5e-5, 3 epochs, 500 warmup steps,
and a weight decay of 0.014. During intermediate
finetuning, we transfer all weights from each prior
finetuning step and all weights remain trainable at
each step.

4.6 Results

We find that intermediate finetuning on other
datasets for humor and offense identification do
not improve performance. Similarly, using Col-
BERT as a starting point does not outperform other
pretrained language models. This may be due to
differences in how these datasets were sourced,
and more analysis is provided in section 5. We
also find that backtranslation augmentation is not
helpful for humor detection, likely because it does
not always preserve humor. While not beneficial, it
is noteworthy as it is not clear whether prior work
has explored backtranslation for expanding humor
datasets, and this work suggests that backtransla-
tion should not be used in contexts such as humor
which are highly dependent on the specific words
and sounds in a text.

Here, we show an example where backtransla-
tion does not preserve humor since the word imagi-
nary is a key part of the joke and it is substituted
during the translation process:

4https://github.com/bzylich/humor-by-demographic

• Original: My girlfriend is like the square root
of -100. She’s a 10 but she’s imaginary.

• Backtranslation: My girlfriend is like the
square root of -100. She is 10 but she is fan-
tastic.

While many translations do not preserve humor,
some translations do successfully preserve humor
while introducing some word variation into the text:

• Original: My father doesn’t trust anyone. In
fact he has a saying... But he won’t tell me.

• Backtranslation: My dad doesn’t trust anyone
he has a saying ... but he doesn’t tell me.

Next, multitask learning improves performance
over training models for each task individually, es-
pecially for some tasks such as humor rating pre-
diction and humor controversy prediction. Finally,
ensembling different pretrained language models
together leads to an increase in performance, sug-
gesting that these models complement each other
by mitigating other models’ weaknesses. Table 1
shows which submissions perform best on each
individual task.

5 Error analysis

One of the possible sources of confusion and bias
in our model seemed to be centered around atypical
punctuation such as question marks and exclama-
tion marks. For example, when a question mark
was placed in the middle of a sentence, the model
often erroneously labels it humorous regardless of
the actual content. When manually reviewing the
data, we found that the vast majority of texts that
contain a mid-text question mark are humorous
due to their setup and punchline structure. With-
out balancing with negative examples with similar
structures, the model can become reliant on punc-
tuation structure rather than the actual relationship
between the words.

Another driver of error seems to be the actual
source of the competition dataset. Through fur-
ther analysis, we found that the vast majority of
the negative examples seemed to be sourced from
tweets. This can be seen in the length distribution
of the dataset; there is a sharp cutoff around 140
characters, which used to be the maximum length
for a tweet. However none of the other datasets
we found or compiled ourselves (for Humor tasks)
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Approach Humor F1 / Acc Humor
RMSE

Controversy F1 / Acc Offense
RMSE

RoBERTa-Large Multitask 0.9510 / 0.9604 0.5339 0.5220 / 0.4842 0.4564
Multitask +Ens=6LM 0.9460 / 0.9565 0.5457 0.5528 / 0.4841 0.4606
Multitask +Ens-Best=6LM 0.9510 / 0.9604 0.5411 0.5415 / 0.4659 0.4530

Table 1: Competition Results

contained information from Twitter specifically, al-
most all relied heavily on news headlines instead.
When pulling individual examples, we found that
tweets tended to use more colloquial language, with
a greater variety of punctuation, vocabulary, and
capitalization when compared to news headlines.

One final potential driver of error were song
lyrics and quotes. There were a proportionally
large number of movie, song, and TV show quotes
used in the dataset, by a rough estimate based on
sampling, approximately 5% of the example fell in
one of those categories. Our model was often able
to differentiate between these quotes, though it was
not something that was found in our own custom
datasets.

After performing this deep dive analysis on our
results, and seeing the various areas of where our
model got confused, we believe that the primary
reason our models did worse with the inclusion of
extra datasets was due to the source of our data.
The wider range of punctuation, capitalization, and
vocabulary expressed in twitter posts was not well
captured by utilizing news headlines as a negative
source, and thus likely allow our model to use syn-
tax and punctuation structure as a substitute for the
actual substance of the text.

6 Conclusion

In this competition, we explored the use of inter-
mediate finetuning, backtranslation augmentation,
multitask learning, and ensembling of different pre-
trained models. Unlike in many natural language
processing tasks, intermediate finetuning on other
related datasets provided no benefit in this task,
perhaps because prior datasets used non-humorous
texts that were much easier to identify. Next, al-
though backtranslation augmentation did not im-
prove performance, this is still a noteworthy result
because it indicates that humor is likely not pre-
served through paraphrasing. Finally, multitask
learning across humor and offense detection, as
well as ensembling of different pretrained language
models improved overall performance.
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Abstract
This paper presents the DuluthNLP submis-
sion to Task 7 of the SemEval 2021 competi-
tion on Detecting and Rating Humor and Of-
fense. In it, we explain the approach used
to train the model together with the process
of fine-tuning our model in getting the results.
We focus on humor detection, rating, and of-
fense rating, representing three out of the four
subtasks that were provided. We show that
optimizing hyper-parameters for learning rate,
batch size and number of epochs can increase
the accuracy and F1 score for humor detection.

1 Introduction

Humor detection poses a challenge to humans, not
least because of the mix of irony, sarcasm, and puns
which underlie humor. To understand the funniness
of humor requires a certain grasp of context, culture
and, for some, even country.

If rating the funniness of humor is any challenge,
ranking its offensiveness is even more so, espe-
cially when doing so requires an appreciation of
the sensibilities of the humor target – whether race,
religion, and/or gender – and, in most cases, con-
text.

It is little wonder humor detection has been cen-
tral to NLP tasks in the past few years. The last
few SemEvals have featured tasks focused exclu-
sively on either detecting the funniness of humor
(Hossain et al., 2020; Van Hee et al., 2018; Potash
et al., 2017) or detecting offense (Zampieri et al.,
2019). What SemEval-2021 task 7 seeks to do is
combine the detection of both humor and offense
for a given corpus.

Our approach uses pretrained RoBERTa model
(Liu et al., 2019b) trained on a RoBERTa classifier
implemented by HuggingFace (Wolf et al., 2019).
The intuition here is that RoBERTa model achieves
state of the art performance for tasks requiring con-
textual information. Our goal is to measure the

effect of varying three hyperparameters – batch
size, learning rate, epoch size - whilst maintaining
default values for others. Our results show that
varying the three hyperparameters can increase per-
formance for humor detection, humor ranking, and
offense rating. The codebase for our participation
of this SemEval Task is available on github 1

2 Related Work

Earlier works on humor detection and rating
showed modest gains. With the advent of atten-
tion mechanism (Vaswani et al., 2017), though, and
the transformer model a few years later (Dai et al.,
2019), not only has interest in the NLP community
on humor detection has soared, but performance on
humor and offense detection has increased (Weller
and Seppi, 2019).

This has been particularly so in the last few years,
where humor detection and offense rating have
been featured in some of SemEval tasks. SemEval-
2019 Task 6 on offense rating (Zampieri et al.,
2019) attracted 800 participants and 115 submis-
sions, the interest prompting a second SemEval-
2020 Task 12 the following year (Zampieri et al.,
2020). Around the same period, humor rating have
attracted similar interest (Hossain et al., 2020) in
SemEval Tasks. To the best of our knowledge, how-
ever, SemEval-2021 Task 7 (Meaney et al., 2021) is
the first to measure humor and offense for a given
task.

Most of the winning teams (Morishita et al.,
2020; Rozental and Biton, 2019; Wiedemann et al.,
2020), for both humor and offense rating alike, im-
plemented BERT and its variants, including Albert
and RoBERTa, in their model, an approach that
tended to yield the best results. And more often
than not, the teams exploit ensembles of BERT,

1https://github.com/akrahdan/
SemEval2021

1196



GPT-2, RoBERTa and their variants (Morishita
et al., 2020), whilst others stick to a single pre-
trained model.

Our approach in this task is to use RoBERTa
model, an approach that will fine-tune a select num-
ber of hyperparameters and to measure the model
performance for every change of hyperparameter
set.

3 System overview

In this section, we review our system’s adoption of
the pretrained RoBERTa model (Liu et al., 2019a)
for SemEval tasks. We also describe the Bayesian
hyperparameter optimization technique, which we
used in our hyperparameter sweeps for selecting
optimal values for learning rate, batch size, and
epoch cycles.

3.1 Model description

Our system’s adoption of RoBERTa model is based
on its ability to achieve state-of-the-art perfor-
mance for most NLP tasks with minimal effort,
including, in our case, humor detection. The
RoBERTa model, itself a re-implementation of
BERT (Devlin et al., 2019), is first pre-trained on
unlabeled text corpus and subsequently fine-tuned
on downstream tasks with labeled data.

The RoBERTa model is a significant improve-
ment over the BERT model, and it differs from
BERT for its usage of dynamic masking for train-
ing, Next Sentence Prediction (NSP), and a larger
mini-batch size (which, it has been observed, cor-
relates with performance (Liu et al., 2019a)).

Again, the RoBERTa model outperforms BERT
for its size and diversity of data used in pretraining,
with its 160GB of training data drawn from multi-
ple sources compared to BERT’s 16GB of training
data.

Our system implements the RoBERTa model
with a classification layer on top using Hugging-
Face transformer model2.

We adopt Bayesian optimization to automate
the selection of optimal hyperparameter values for
the training and evaluation of the three Subtasks.
Details of the Bayesiann optimization method are
found in Appendix A

3.2 Sweeps

We use Bayesian optimization to run hyperparame-
ter sweeps for our model, but not before manually

2https://huggingface.co/transformers/

selecting a sensible list of hyperparameter values in
fine-tuning the RoBERTa model (Liu et al., 2019a)
on the SemEval tasks, including a learning rate
of 0.000025, a batch size of 4, all for 16 epochs.
The initial weights are based on standards followed
by BERT and RoBERTa (Devlin et al., 2019; Liu
et al., 2019a). The remaining parameters are based
on open source implementation by HuggingFace3

(Wolf et al., 2020).
Whilst the initial approach of selecting sensi-

ble defaults for hyperparameters achieved state of
the art results, the random, manual process was
painful, the results sometimes unpredictable. Ap-
plying Bayesian optimization, however, in running
a sweep over a range of hyperparameter values
helped in the selection of hyperparameters, includ-
ing epoch size, batch size, and learning rates, across
the 24 layers of RoBERTaLARGE model. Our sys-
tem’s implementation of the Bayesian Optimiza-
tion is based on the open source wandb client by
Weights & Biases4 (Biewald, 2020)

4 Experimental Setup

In this section, we present the experimental setup
for the our model and hyperparameter sweeps for
the SemEval tasks.

4.1 Implementation

For all experiments for the RoBERTa model (us-
ing RoBERTaBASE and RoBERTaLARGE varients)
, we use the PyTorch5 implementation of it in
the HuggingFace transformer open source library6

(Wolf et al., 2020) together with the simpletrans-
former7 (Rajapakse, 2019) wrapper library. We
maintain the default weights and hyperparameters
whilst only changing the learning rate, batch size
and finetuning for different values of epochs. All
experiments were run on V100 GPUs with 16GB
memory.

4.2 Data Processing

The training and evaluation data, as shown in Ta-
ble 1 is based on the training, development and
test data supplied for the SemEval-2021 Task 7
(Meaney et al., 2021). Train data for each Substask
is the same but the the number of annotations are

3https://github.com/huggingface/transformers
4https://github.com/wandb/client
5https:

pytorch.org
6https://github.com/huggingface/transformers
7https://simpletransformers.ai
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Task Type Metric Train
Task 1a Classification F1-Score 8000
Task 1b Regression RMSE 4932
Task 2a Regression RMSE 8000

Table 1: A Summary of Subtasks and dataset. Both
development and test set have the same have sizes of
1000.

different, with 8000 annotations for Subtask 1a and
2a; and 4932 annotations for Subtask 1b. Data
splits between training and evaluation is 80% and
20%.

The annotators for the dataset for the tasks were
a diverse group of individuals from differing age
group (18-70), genders, political views and income
levels – their backgrounds reflecting their percep-
tions of jokes or humor. For each text in the dataset,
annotators were asked to rank as either humorous
or not, and to rate the humor level on a scale of 1
to 5.

The subjectivity level of each text is also cap-
tured as a controversy score. Each text is labeled
as controversial if the variance of its humor rat-
ing is greater than the median variance of all texts.
Otherwise, it is labeled as not controversial.

As a way of combining humor and offense de-
tection in the same task, a first in SemEval tasks,
annotators were asked to classify humor as either
offensive or not, and, if offensive, to rate the of-
fensiveness on a a scale of 1 to 5. Non-offensive
humor received a zero rating.

Overall, the SemEval task divides into four sub-
tasks. Task 1a, a binary task, predicts if a given
text should be considered humorous. The second
Task 1b, a regression task, assigns a rating between
1 to 5 to text considered humours, and 0 otherwise.
The third Task 1c, itself a binary task, gives a con-
troversy score to a text. The fourth task predicts
the general offensiveness of a text on a scale of 0 to
5. Our system’s implementation only experiments
with three of the Subtasks, including Task 1a, Task
1b, and Task 2a.

4.3 Hyperparameter tuning
Our approach to hyperparameter tuning involves
two steps – one manual (implemented during the
evaluation phase) , the other using Bayesian opti-
mization (implemented during post-evaluation). In
the first step, though, we experiment with a range of
hyperparameter values on Task 1a, and the results
applied to train our model on the various subtasks.

But during the second step, implemented during
the post-evaluation phase, we implement hyperpa-
rameter sweeps on each task.

In the first step, we manually select from a range
of tunable hyperparameters, with batch sizes ∈
{4, 16}, learning rates ∈ {2e− 5, 4e− 5, 1e− 4}
and we fine-tune for epochs in ∈ {6, 9, 12, 16} .
The remaining hyperparameters, including dropout
rates, and the parameter weights, are based on the
default values for RoBERTa model implementation
in the HuggingFace transformer library.

Using the results of the first step as our initial
defaults for batch size and learning rate, we con-
sider a fine-grained hyperparameter sweep using
the Bayesian optimization across the 24 pretrained
layers of the RoBERTaLARGE model. We select a
range of learning rates between 0 & 1e− 3 for
the pretrained layers. We fine-tune for a range of
6 to 40 epochs, applying early stopping and using
accuracy as the evaluation metric on the valuation
set for Task 1a, and RMSE as the evaluation metric
for Task 1b and Task 2a.

Runs on hyperparameter sweeps are taken on
all the three Subtasks - Task 1a, 1b, and 2a. We
then use the results of learning rates across the
pretrained layers, together with the batch size to
train our model for the selected number of epochs
on each Subtask. Table 5 shows the results of each
hyperparameter sweep.

5 Results

In this section we present the results of our Se-
mEval tasks and our analysis for each step.We
present, in the first step, our baseline method and
results. We then follow up with the results obtained
evaluation phase; here, we analyse the impact of
the manual sweep and finetuning on the pretrained
RoBERTa model on the subtasks. In the last step,
and using the results of the codalab scores, we anal-
yse the impact of hyperparameter sweeps on the
scores during the post-evaluation phase.

Tasks Metric Scores
evaluation

Task 1a F1-Score 0.939
Accuracy 0.926

Task 1b RMSE 0.646
Task 2a RMSE 0.506

Table 2: Official evaluation scores for each task.
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Tasks Metric Scores
post-evaluation

Task 1a F1-Score 0.957
Accuracy 0.947

Task 1b RMSE 0.5802
Task 2a RMSE 0.469

Table 3: Post-evaluation scores. These were scores
generated during the post-evaluation stage after multi-
ple hyperparameter sweeps.

5.1 Baseline

For our baseline method for the regression tasks,
we use a very simple linear regression class by
scikit-learn. For the classification task, though,
we use logistic regression, also by scikit-learn, but
with binarized ngram counts, a method proposed
by Wang and Manning (2012). The baseline result
for the classification task is 89%. RMSE baseline
results for the regression tasks, for both Task 1b
and 2a, are 0.54 and 0.74 respectively.

5.2 Official Evaluation

As the evaluation results in Table 2 shows, the F1-
Score of 0.939 for Task 1a is very high, and that
is even for manual values of learning rate, epoch
and and batch size. What this shows is that using
the recommended learning rate and batch size to
fine-tune pretrained RoBERTa model on humor
classification tasks can achieve very high results.
On the the hands, the same hyperparameter values
achieved average RMSE metric score for Task 1b
and average F1 score for Task 2a, which suggest
that our approach of using the same hyperparameter
values for all subtasks is not working.

5.3 Post Evaluation

During the post-evaluation phase the team carried
out an extensive hyperparameter finetuning with
the bayesian optimization. Table 3 also shows sub-
stantial gain in the F1-score, 0.95, for Task 1a,
RMSE scores (0.5802 and 0.469) for Task 1b and
Task 2a respectively, after applying the results of
the Bayes-optimized hyperparameter sweep in Fig-
ure 5 during the second step in the post-evaluation
stage.

6 Error Analysis

In an attempt to measure our model’s predictions
against the annotations by humans, we calculate
the confusion matrix, comparing the predicted re-

Figure 1: Confusion matrix for Subtask 1a during eval-
uation phase

sults with the values in the gold test for Subtask
1a. Figure 1, the confusion matrix during the eval-
uation phase, shows comparable results for false
positives and false negatives. In Figure 2, however,
the number of false positives (34) are almost twice
the number of false negatives, which is so because
the train set has more label 1 data (4932) than la-
bel 0 data (3068), a slight difference that can lead
to the false positives. Again, the total number of
true positives (596), almost twice the number of
true negatives (351), shows the model is biazed
towards positive labels, which will make it difficult
to generalize.

Moreover, as shown in Table 4, about half of the
number of the false positive predictions are also
offensive, in part because most of the labeled texts
in the train set that are labeled as humorous are also
labeled as offensive.

The higher number of accurate predictions for
both the evaluation phase(926) and post-evaluation
phase(947) shows our model is efficient in detect-
ing humor.

However, the RMSE scores for humor rating –
that is Task 1b, including even the improved RMSE
score of 0.58 during the post evaluation phase –
still lags behind the RMSE results for Task 2a ,
the offense-rating subtask. And what this suggest
is that our model performs better with offense rat-
ing than with humor rating. And that might sug-
gest that the higher scores associated with Task 1a
are based on the model’s ability to detect offense,
which explains why most of the false positive texts
also contain offensive content.
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ID text is humor offense
9200 Black trans-masculine barbers in NY where ya at? We tryna sumn. 0 0.55
9307 What ’s a Black Competitive Swim Skills Clinic? ’ feeling moti-

vated
0 1.55

9756 Being told that because I’m a Reform Jew that I’m not actually
a Jew and that my smicha as a reform rabbi isn’t recognized is a
pretty shitty thing to hear from someone.

0 1

Table 4: Examples of gold test results wrongly labeled by our model

Figure 2: Confusion matrix for Subtask 1a during post-
evaluation phase

7 Discussions and Future Works

One major limitation of our approach was that the
hyperparameter runs, during the evaluation phase,
were experimented only on Task 1a, a binary clas-
sification task, and the results applied on the two
regression tasks to train our model, which may ex-
plain the subpar results for the Task 1b and Task 2a.
However, the steps taken during the post-evaluation
phase, by independently running the sweeps on
each Subtask, showed substantial increase in per-
formance.

In addition, the RoBERTa model, as imple-
mented by HuggingFace, is used as is, without any
modification to either the classification layer on top
of the RoBERTa model or any of the pretrained
layers. In the future, it will be worth pursuing how
modifying either of the layers will impact on humor
and offense detection.

Overall, however, our system shows that getting
optimal values for learning rate, batch and epoch
size can yield higher performance for humor detec-
tion.

8 Ethical Considerations

The training of RoBERTa, along with other lan-
guage models such as BERT and its variants, has
been shown to be costly, both for its effect on the
environment and finance (Strubell et al., 2019).
Again, the embeddings used for these language
models tend to amplify racial, sexist, and homo-
phobic biases. Mindful of these tendencies, our
model experiments included steps to minimize bias
and reduce energy cost.

What SemEval-2021 Task 7 (Meaney et al.,
2021) intends to achieve is not only to rank hu-
mor but also to rate humor offensiveness, the first
of any SemEval task. To achieve this, the dataset
contains as much as humor as hate, which covers
racial slurs, gender bias, trans/homophobic com-
ments, etc. Knowledge of what ranks as offensive
in humorous text can help our system moderate
humorous content.

To ensure that dataset used for training and de-
velopment do not over-represent hegemonic view-
points, Meaney et al. (2021), organizers for the
SemEval-2021 Task 7, employed annotators from
disparate backgrounds, in age, gender, political
views, to ensure that humor ratings and rankings, a
subjective process, reflected the varied viewpoints.

Annotators were limited to English speakers,
however, which implies that the system’s ability
to detect and identify humor is largely reflect views
inherent in the English language.

Training and testing were carried out on 1 V100
GPUs with less than 16GB of memory, a step taken
to ensure minimal, if any, impact on the environ-
ment.

The model, however, is prone to classifying of-
fensive content as humorous, which may suggest
that applications based on our model will be more
likely to rate as humorous any content that might
be deemed offensive.
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A Appendix

The Bayesian optimization is used in hyperparam-
eter optimization techniques for getting a combi-
nation of hyperparameters that returns the best per-
formance as measured by a validation set. More
formally, for an expensive function f : X → R,
hyperparameter optimization can be represented
below:

xopt = argmax
x∈X

f(x)

The objective function, f(x), represents the
score to maximize – in our case, say, the accu-
racy score – over the validation set; xopt is the set
of hyperparameters that will yield the highest value
value of the score – or, in the the case of error rate
or RMSE, the lowest value.

The Bayes optimization (or search ) is one of the
standard algorithms for hyperparameter sweeps;
the others are grid and random search (Bergstra
and Bengio, 2012). Grid search creates a grid of
hyper-parameters and runs through all the range of
hyperparameter values. Whilst the grid search is

better than manual selection, it is computationally
expensive; it is also inefficient because the choice
of the next hyper-parameter values in a cycle run is
not informed by previous values.

The Bayes search, on the other hand, keeps
record of previous results, and uses the results to
build a probabilistic model for mapping hyperpa-
rameter values to a probability of score on the ob-
jective function (Dewancker et al., 2016).

Our system implements the Sequential Model-
Based Optimization (SMBO) method, which is a
succinct formalization of Bayesian Optimization
(Hutter et al., 2011, 2013). Sequential Model-
Based Optimization technique iterates between fit-
ting a model and then using that model to determine
the next location to evaluate. The pseudocode in
Algorithm 1, adopted from SigOpt8 (Dewancker
et al., 2016), encapsulates the technique.

Algorithm 1 Sequential Model-Based Optimiza-
tion

Input:f,S,X ,M
D ← INITSAMPLES(f, X )
for i←D to T do

p (y | x,D)← FITMODEL(M,D)
xi ← argmax

x∈X
S(x, p (y | x,D))

yi ← f(xi)
D ← D ∪ (xi, yi)

end for

From a domain X of tunable hyperparameters,
the system would select a small set to initialize
a probabilistic regression modelM. Afterwards,
subsequent locations are selected sequentially from
the domain by optimizing the acquisition func-
tion S, which uses the current model – the Gaus-
sian process, in our implementation – as a sur-
rogate of the objective function f . Each sug-
gested result is then used to produce the real result
yi = f(xi), the values of which are appended to
D = {(x1, y1), . . . (xi, yi)}; the updated values are
then used by the regression during the next itera-
tion.

8https://sigopt.com
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hyperparams Task 1a

lr

layer0−5 1.556e−5

layer6−11 4.38e−6

layer12−15 4.62e−5

layer16−23 3.24e−5

epochs 9
lr 4.5e−5

(a) Task 1a
hyperparams Task 1b

lr

layer0−5 3.55e−5

layer6−11 9.38e−6

layer12−15 2.76e−5

layer16−23 2.79e−5

epochs 6
lr 2.1e−5

(b) Task 1b
hyperparams Task 2a

lr

layer0−5 7.86e−6

layer6−11 1.02e−5

layer12−15 1.38e−5

layer16−23 2.08e−5

epochs 18
lr 3.74e−5

Table 5: Hyperparameter Sweep Results for learn-
ing rates for the 24 layers of RoBERTaLARGE model,
learning rate, epoch and batch sizes of the model.
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Abstract

With the emerging trends of using online plat-
forms, peoples are increasingly interested in
express their opinion through humorous texts.
Identifying and rating humorous texts poses
unique challenges to NLP due to subjective phe-
nomena i.e. humor may vary to gender, profes-
sion, age, and classes of people. Besides, words
with multiple senses, cultural domain, and prag-
matic competence also need to be considered.
A humorous text may be offensive to others.
To address these challenges SemEval-2021 in-
troduced a HaHackathon task focusing on de-
tecting and rating humorous and offensive texts.
This paper describes our participation in this
task. We employed a stacked embedding and
fine-tuned transformer models based classifica-
tion and regression approach from the features
from GPT-2 medium, BERT, and RoBERTa
transformer models. Besides, we utilized the
fine-tuned BERT and RoBERTa models to ex-
amine the performances. Our method achieved
competitive performances in this task.

Keywords: humor and offense rating, transform-
ers, BERT, RoBERTa, stacked embedding.

1 Introduction

The exponential evolution of technologies and
social platforms increases the growth of user-
generated content. Therefore, detecting specific
information from a pile of web data is ubiquitous.
Humor, like most figurative language, poses in-
teresting linguistic challenges to NLP, due to its
emphasis on multiple word senses, cultural knowl-
edge, and pragmatic competence. The automated
humor detection and rating is one of the challeng-
ing and promising tasks for their significance in
the field of opinion mining, sentiment analysis, and
emotion intelligence domain.

The first two authors have equal contributions.

Numerous works have been done on humorous
text identification task. (Weller and Seppi, 2019)
proposed pre-trained BERT architecture to iden-
tify humorous jokes from Reddit dataset, puns, and
short jokes dataset. (Khatri and Pranav, 2020) used
BERT and GloVe embeddings with linear support
vector classifier (SVC), naive Bayes, and random
forest for predicting the final label to detect sarcasm
in tweets. (Badlani et al., 2019) extracted features
pertaining to sarcasm, humor, hate speech, as well
as sentiment and ensemble them for sentiment clas-
sification. In (Liang et al., 2020), the pre-trained
BERT is adapted to the distantly supervised NER
(named entity recognition) task with early stopping.
Some evaluation campaigns related to automatic
humor detection also has been performed. (Swamy
et al., 2020) includes a logistic regression baseline,
a BiLSTM + attention-based learner, and a transfer
learning approach with BERT to tackle the Internet
humor at SemEval-2020 Task 8.

However, most of the existing work addressed
the humorous text identification problem as a bi-
nary classification task. But the humorous rating of
a text can be varied at different scales based on its
contents. Moreover, a humorous text may portray
offensive context to other users due to a variety
of users’ perceptions. To bridge this gap (Meaney
et al., 2021) introduced a shared task at SemEval-
2021 focusing on detecting and rating humorous
and offensive texts. The task comprises of four
subtasks: Task 1a is to predict whether a text is
humorous or not, task 1b is to rate a humorous text
with a score between 0 and 5, task 1c represents the
subjectivity of humor appreciation by foretelling
a humorous text is controversial or not, and task 2
intend to rate a text with a value between 0 and 5
based on its offensiveness.

To tackle the challenges of this task, we em-
ployed a stacked embedding of various transformer
models including GPT-2 medium, BERT, and
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Figure 1: Proposed framework.

RoBERTa with a simple linear architecture. Be-
sides, we conduct experiments and examine the
individual performance of these three models. We
used transformer-based models as they can learn
the context of the sentence effectively and pushed
the state-of-the-art for a wide range of downstream
NLP tasks.

The rest of the paper is structured as follows:
Section 2 describes our proposed framework. Sec-
tion 3 illustrates our experiment and evaluation.
Finally, we come to end with some conclusion and
future research directions in Section 4.

2 Proposed Framework

In this section, we present the details of our pro-
posed approach for humorous and offensive text
identification and rating. The overview of our pro-
posed framework is depicted in Figure 1.

Given a text, we have extracted embedding
features from three state-of-the-art transformer-
based models including GPT-2 medium, BERT,
and RoBERTa. The extracted embeddings are then
unified through the stacked embedding scheme and
the unified feature vector is then passed to the sim-
ple feed-forward linear architecture to obtain the
prediction score.

2.1 Text Encoding

GPT-2: GPT-2 (Radford et al., 2019) stands
for generative pretrained transformer 2, which is
trained on eight million text documents scraped
from the web. It has an outstanding ability to gener-

ate coherent text from minimal prompts. We utilize
GPT-2 medium version to get a 1024 dimensional
feature vector from each text for sub-task 1a.

BERT: BERT (Devlin et al., 2019) stands for
bidirectional encoder representations from trans-
formers, which is a new method of pre-training
sentence representations. It is trained on a large
corpus of unlabelled text which includes the entire
Wikipedia (that’s about 2500 million words) and
a book corpus (800 million words). We deploy
BERT-base uncased version with fine-tuning to get
a 768-dimensional feature vector for a given text.
We also conduct experiments with the fine-tuned
BERT-large uncased architecture to encode each
text into a 1024-dimensional feature vector.

RoBERTa: RoBERTa (Liu et al., 2019) stands
for robustly optimized BERT pre-training approach.
An improvement on BERT which introduced as a
robustly optimized method for pre-training NLP
systems. BERT’s language masking strategy is
used in RoBERTa, wherein the system learns to pre-
dict intentionally hidden sections of text within oth-
erwise unannotated language examples. RoBERTa
modifies key hyperparameters in BERT including
removal of BERT’s next-sentence pre-training ob-
jective, training with much larger mini-batches, and
learning rates. This allows RoBERTa to improve
on the masked language modeling objective com-
pared with BERT and leads to better performance
on downstream tasks. We use the RoBERTa base
model with fine-tuning to get a 768-dimensional
feature vector.
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2.2 Stacked Embeddings

Stacked embeddings are one of the most impor-
tant concepts that combine different embeddings
to capture the benefits of different embedding mod-
els. Stacked embeddings concatenate embedding
vectors generated from various models to form the
final word vectors. The representation of stacked
embedding-based framework is depicted in Fig-
ure 1. We combine GPT-2 medium, BERT-base,
and RoBERTa-base embeddings using Flair’s (Ak-
bik et al., 2018) stacked embeddings approach. For
each text, we extract a 1024-dimensional transfer
learning feature vector from the GPT-2 medium,
a 768-dimensional feature vector from the BERT-
base uncased, a 768-dimensional feature vector
from the RoBERTa-base model. We combine these
embeddings and get a 2560-dimensional feature
vector for each text.

2.3 Classification Module

The transfer learning feature vector obtained from
the stacked embedding approach goes through a
simple feed-forward linear architecture which ap-
plies a linear transformation to the incoming feature
vectors and classifies each text either as humorous
or non-humorous. Besides, we employ the fine-
tuned BERT and RoBERTa based classifiers.

For the regression tasks, fine-tuned BERT and
RoBERTa based regression models are utilized.
We implement these models from the Huggingface
transformers library (Wolf et al., 2020).

3 Experiments and Evaluations

3.1 Dataset Description

SemEval-2021 task 7 organizers (Meaney et al.,
2021) provided a benchmark dataset to evaluate
the performance of the participant’s proposed sys-
tems. The given training set consists of 8000 texts
whereas the development set contains 1000 texts
and the test set contains 1000 texts. The data set
contains one row for each text. Each row has
a unique identifier, the text, and the values for
is humor, humor rating, humor controversy, and
offense rating. If the sentence is humorous the
value of is humor is 1 otherwise 0. The value of
humor rating and offense rating defines the level of
humor or offensiveness in the contents. The value
of humor controversy determines whether the hu-
morous text is controversial or not. The value of
humor rating and humor controversy is subject to

Parameters
List

Sub-task
1a

Other
sub-tasks

Epochs 4 20
Batch size 16 16
Learning rate 3e-5 2e-6
Maximum length default 160
Patience 3 5
Optimizer Adam AdamW
Anneal factor 0.5 –

Table 1: Optimal value of parameters used in this work.

the value of is humor. If a given text is not humor-
ous, humor rating and humor controversy contain
no value for that particular text. Therefore, we
converted all empty cells of humor rating and hu-
mor controversy to label 0. We used the train data
set to train our model. The development data was
used for hyperparameter tuning. Finally, we used
the given test dataset to evaluate our models.

3.2 Evaluation Measures

The organizers employed different strategies to
evaluate the performance of participants’ systems.
Standard evaluation measures including F1-score
and accuracy were applied to estimate the perfor-
mance for sub-tasks 1a and 1c. The regression
subtasks i.e. 1b and 2a were evaluated by the met-
ric root mean squared error (RMSE).

3.3 Experimental and Parameter Settings

We used Google Colab’s GPU for training and pa-
rameter tuning of our system. We evaluated our
system’s performances through Codalab platform.

Now, we describe the value of optimal parame-
ters that we’ve used to design our model. While
evaluating for the sub-tasks, we fine-tuned our sys-
tems based on the number of epochs, batch size,
learning rate, anneal factor, patience, and optimizer
to obtain the improved performances. We utilize
the early-stopping method to overcome the sys-
tem’s overfitting on the training dataset. We inter-
change epochs in range [4,8,15,20] with different
value of patience, batch size in range [8,16,32],
learning rate in range [2e-5, 3e-5, 4e-5, 2e-6, 3e-
6, 4e-6] with optimum max length. While eval-
uating sub-task 1a, we use Flair’s (Akbik et al.,
2018) framework and for other sub-tasks, we uti-
lize transformers from HuggingFace transformers
library (Wolf et al., 2020). We note that compared
to BERT, RoBERTa has slightly different hyper-
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parameters. In particular, RoBERTa uses weight
decay with λ = 0.1 and no gradient clipping (Mos-
bach et al., 2020). Table 1 describes the summa-
rized parameters settings used in this work. The
default settings are used for the rest of the param-
eters. In this paper, we reported the results based
on these settings. However, if the prediction for
the rating sub-tasks is less than 0.35, the value is
converted into 0.0 according to our result analysis
on the development set.

3.4 Results and Analysis
We used the full training dataset for training our
proposed model and the validation set for hyper-
parameter tuning. The comparative performance
of our method based on test data against the top-
ranked participants’ systems in individual sub-task
are presented in Table 2 and 3, respectively.

Team (Rank) Accuracy F1-Score

Comparative Performance on Subtask-1a

PALI (1st) 0.9820 0.9854
stce (2nd) 0.9750 0.9797

CSECU-DSG (34th) 0.9380 0.9496

mayukh (35th) 0.9330 0.9468

Avilshmam (56th) 0.816 0.8489

Comparative Performance on Subtask-1c

PALI (1st) 0.4943 0.6302

reynier (10th) 0.4732 0.6197

CSECU-DSG (34th) 0.5366 0.4423

GuanZhengyi (35th) 0.5593 0.4271

Table 2: Comparative results with other participants’
systems in binary classification tasks.

We now report the best performing model for
each sub-task. Stacked embeddings based method
used for sub-task 1a and BERT’s large model is
used for sub-task 1c. However, for the regression
subtasks 1b and 2a, BERT’s large and RoBERTa’s
base models are employed, respectively.

Results showed that our proposed system ob-
tained competitive results in sub-task 1a and 1c
whereas in the other sub-tasks our system lags
behind. Ensembling transformer’s embedding
achieved good performance for binary classifica-
tion. In our system, we have tuned a few hyper-
parameters and used features from all intermedi-

Team (Rank) RMSE Score ↓
Comparative Performance on Subtask-1b

abcbpc (1st) 0.4959

mayukh (4th) 0.5257

CSECU-DSG (41th) 0.6803

Maoqin (44th) 0.7405

JAGD (47th) 0.8847

Comparative Performance on Subtask-2a

DeepBlueAI (1st) 0.4120

MagicPai (8th) 0.4460

CSECU-DSG (34th) 0.5395

Anik (38th) 0.5800

MLXG (47th) 0.9587

Table 3: Comparative results with other participants’
systems in regression tasks.

ate layers of transformers. We didn’t apply any
approach to find out effective intermediate layers
combination to obtain the best performance from
transformers. Though the training set contains
8000 sentences, only 4932 sentences are humorous.
That’s why we get only 4932 perfect humor-rated
sentences to train the system which is scanty. All
these requirements limit our system performance
for regression tasks 1b and 2a.

4 Conclusion and Future Plan

In this paper, we have tackled the problem of iden-
tifying and grading humorous texts as defined in
SemEval-2021 task 7. Achieving high performance
in humor and offensive text identification or rank-
ing is hard due to its diverse contextual form. We
have presented transformer-based language models
including GPT-2 medium, BERT, and RoBERTa in
a unified architecture using a stacked embedding
scheme. Experimental results demonstrated its ef-
fectiveness for the classification tasks. However,
we have seen that finetuned transformer models
performed better in the regression task.

In the future, we have a plan to focus on direct
inducing topic information into the transformer-
based models. We also intend to explore how to
tune the parameters for regression tasks in more
efficient ways, which could yield better perfor-
mances.
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Abstract

An understanding of humor is an essential
component of human-facing NLP systems. In
this paper, we investigate several methods for
detecting humor in short statements as part of
Semeval-2021 Shared Task 7. For Task 1a, we
apply an ensemble of fine-tuned pre-trained
language models; for Tasks 1b, 1c, and 2a,
we investigate various tree-based and linear
machine learning models. Our final system
achieves an F1-score of 0.9571 (ranked 24 /
58) on Task 1a, an RMSE of 0.5580 (ranked 18
/ 50) on Task 1b, an F1-score of 0.5024 (ranked
26 / 36) on Task 1c, and an RMSE of 0.7229
(ranked 45 / 48) on Task 2a.

1 Introduction

Humor detection is the process of identifying se-
quences of text that are amusing—an important
task, as such sequences are present in most chan-
nels of communication. Although humor detection
comes naturally to humans, it is difficult for artifi-
cial systems to do the same. Part of the challenge
is that it is debatable what constitutes humor; what
one reader finds funny may be found utterly pro-
saic by the next. The problem is only complicated
when demographic factors come into play; now,
the element of offense is also a factor.

SemEval-2021 Shared Task 7 attempts to address
some of these open problems (Meaney et al., 2021).
Rather than definitively labeling text as humorous
or not, Task 1a aims to determine whether the au-
thor intended for the sentence to be humorous, Task
1b predicts its humor rating by the average user (its
first moment), and Task 1c attends to whether the
variance of its humor ratings (its second moment)
exceeds the median. Task 2a, meanwhile, considers
the text’s average offensiveness score, a metric that
often correlates with whether the author meant the
text to be humorous and—perhaps equally impor-
tantly—affects whether the joke would be consid-

ered acceptable. Overall, training models to per-
form well on these tasks is of central importance to
developing systems that are responsive to a wide
range of input, whether in complete jest or meant
to be taken at face value.

2 Dataset

We train and validate our models on the SemEval-
2021 Task 7 training set (Table 6). Each English
sentence is annotated for the following four labels,
with continuous annotations labeled using a Likert
scale from 1 to 5.

# Description Label

1a Is the intention of this text Binary
to be humorous?

1b How generally humorous is the Continuous
text for the average user?

1c If the sentence is humorous, Binary
is the the humor controversial? 1

2a How generally offensive is the text? Continuous

Table 1: Annotations/subtasks with their descriptions.
We submit separate models for each of these tasks.

2.1 Train-test split

The dataset has a total of 10000 examples, split
8000–1000–1000 between train, validation, and
test sets. However, the official development set
lacked labels until the last phase of the competi-
tion, so we created our own held-out validation
set for our experiments. Consequently, our train
set has 6,400 examples, and our validation set has
1,600 examples. In our paper, all “validation set”
performance is reported on this internal held-out
set.

1In gold standard labels, an example is deemed contro-
versial if its variance exceeded the median variance of all
examples.
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3 Methods

3.1 Task 1a: Humor Prediction

The goal of this task is to model whether a given
text is intended to be humorous. Hypothesizing
that pretrained language models could effectively
model the presence of humor in statements, we
investigate the following models:

• BERT (Devlin et al., 2019) is a pretrained
masked language model. We use BERT-Large
in our experiments (335M parameters).

• RoBERTa (Liu et al., 2019) is a robustly op-
timized BERT pre-training approach that uti-
lizes changes including a larger pre-training
dataset and a dynamic masking pattern strat-
egy. We use RoBERTa-Large (335 parame-
ters).

• ELECTRA (Clark et al., 2020) is a pretrained
model that uses a discriminative replaced-
token identification loss rather than a demask-
ing objective, resulting in greater data effi-
ciency. We use ELECTRA-Large (336M pa-
rameters).

Ensemble We also investigate an ensemble
which incorporates one BERT-large, one RoBERTa-
large, and nine ELECTRA-large models. Our mod-
els were averaged with equal weights. Each ELEC-
TRA model was trained with a different random
seed from 100 to 900; in the row corresponding to
the ELECTRA model’s performance, we have only
included the result from the best seed (200).

Pretraining details We trained with binary
cross-entropy loss for 3 epochs, using a learning
rate of 1× 10−5 and batch sizes of 16 (ELECTRA)
and 8 (BERT, RoBERTa).

3.1.1 Results

We find that all models achieve high F1 and ac-
curacy, with ELECTRA performing the best of
any individual model. However, we achieve the
highest performance using our ELECTRA + BERT
+ RoBERTa ensemble. Notably, the ensemble
achieves a slightly superior performance to each
of its individual component models. Overall, we
are ranked 24th out of 58 on this task, achieving an
F1-score of 0.9571.

Model # params F1 Accuracy

BERT 335M 0.941 0.928
RoBERTa 355M 0.952 0.940
ELECTRA 336M 0.956 0.944

Ensemble — 0.957 0.946

Table 2: Performance of our candidate models on the
official evaluation set for Task 1a (humor prediction).
Out of the individual models, ELECTRA achieves the
strongest results, and ensembling the predictions of
multiple pretrained models slightly helps both F1 and
accuracy.

3.2 Tasks 1b, 1c, and 2a: General Humor,
Controversy, and Offensiveness

3.2.1 Models
Despite their success on Task 1a, we were unable
to achieve strong results with pretrained language
models on the other tasks. Consequently, we ex-
perimented with several other machine learning
methods, using lightweight features as inputs. We
examine a number of different supervised learning
algorithms, implemented using the Scikit-learn
(Pedregosa et al., 2011) framework:

• Support Vector Machine is a lightweight
classification algorithm that employs a hyper-
plane that divides a dataset into two subsets.

• Random Forest is an supervised learning
technique that utilizes independently trained
decision trees that sample from a random se-
lection of data.

• Gradient Boosting is a technique that ensem-
bles a number of weak learners (typically de-
cision trees) and optimizes based on a differ-
entiable loss function.

• LightGBM (Ke et al., 2017) is a highly ef-
ficient gradient boosting decision tree that
takes advantage of GOSS (gradient-based one
side sampling) and EFB (exclusive feature
bundling).

• AdaBoost (Schapire, 1999) (Adaptive
Boosting) is an instance of gradient boosting
that optimizes by re-weighting weak learners
based on high-weight data points (rather than
using a differentiable loss function).

• Multilayer Perceptron is a feed-forward
deep neural network.
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Model Features F1 (1c) Accuracy (1c) RMSE (1b) RMSE (2)

AdaBoost GloVe 0.48 0.48 0.564 1.355
CatBoost GloVe 0.51 0.51 0.563 0.877
GradientBoosting GloVe 0.52 0.52 0.572 0.848
LGBM GloVe 0.50 0.50 0.552 0.808
Logistic Regression GloVe 0.52 0.52 — —
Logistic Regression Manual 0.50 0.53 — —
MLP GloVe 0.49 0.49 0.562 0.798
RandomForest GloVe 0.52 0.53 0.548 0.928
SVM GloVe 0.55 0.55 0.551 0.874
XGBoost GloVe 0.52 0.52 0.556 0.858

Table 3: Validation set performance of candidate models on Task 1b, 1c, and 2a (controversy classification). For
tasks 1b (humor rating), 1c (humor controversy), and 2a (offense rating), the highest-performing models are the
random forest model with ntrees = 1000, the support vector machine, and the LGBM, respectively. We did not
run experiments for entries marked —.

• CatBoost (Dorogush et al., 2018) is a vari-
ant of gradient boosting that prioritizes low
latency via symmetric trees.

• XGBoost (eXtreme Gradient Boosting)
(Chen and Guestrin, 2016) is an implemen-
tation of gradient boosting that efficiently
makes use of parallel computation.

3.2.2 Features

Given that the subjectivity of humor is often corre-
lated with the subject matter of the joke, we also
examine its impact on humor controversy in an
alternative approach to Task 1c. Often, a joke re-
garding a sensitive topic may be comical to one
reviewer but downright unamusing to a second,
whose sense of humor is entirely disparate from
the first’s.

In this approach, we use a suite of engineered
one-hot features with logistic regression (Table 4).
Our manual features consist of groups that are typi-
cally stereotyped: more specifically, each manual
feature consists of a set of tokens, and its value is
the number of times a token from its set appears in
the input.

In an effort to interpret the significance of these
features, we calculate logistic regression (LR) co-
efficients with respect to the controversy label. The
results show that several features were unrelated
or inversely correlated to humor controversy (most
notably the “Black” feature); they also indicate that
a few were strongly positively correlated (such as
the “White” feature).

For our final models, we use 300-dimensional
GloVe word vectors (Pennington et al., 2014) mean-
pooled over each sentence.

3.2.3 Results
The official evaluation set performances for our
Transformer-based models in Task 1a are listed in
Table 2, while the unofficial validation set perfor-
mances for our regressors and classifiers are listed
in Table 3.

For Task 1b (humor rating), we achieve the high-
est performance using our Random Forest model.
Overall, we are ranked 18th out of 50 on this task,
achieving an RMSE of 0.5580.

For Task 1c (humor controversy), we achieve
the highest performance using our SVM model.
Overall, we are ranked 26th of 36 on this task,
achieving an F1-score of 0.5024.

For Task 2a (offense rating), we achieve the high-
est performance using our LGBM model. Overall,
we are ranked 45th out of 48 on this task, achieving
an RMSE of 0.7229.

4 Conclusion

We have presented models trained to predict vari-
ous aspects of humor in text: the level of intended
humor, the level of humor for average users, and
the level of controversy and offense of a given hu-
morous statement.

We find that large pretrained models such as
ELECTRA, RoBERTa, and BERT are effective
at predicting the level of intended humor. Fur-
thermore, we note that ensembling these models
slightly improves performance. However, our ex-
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Feature Description LR Coefficient

BLACK Words referring to those of African descent. -0.508
AMERICAN The word “American.” -0.493

GENDER Words associated with women. -0.234
INTELLIGENCE Words associated with stupidity. -0.169

ISLAM Words referring to the religion or associated institutions. -0.102
RELIGION All major religions not including Islam. -0.096

RACIAL Words referring to those of Asian, Latin American, -0.062
and African descent.

SEXUALITY Words relating to sexuality. -0.051
HOUSING The word “homeless.” -0.008

BRUTALITY Words heavily connoting violence. 0.064
COUNTRIES Words relating to nationalities 0.077

not included in “Racial” or “American” features.
BLONDE The word “blonde.” 0.112

PARTNER Significant others or family members; 0.164
controversial jokes often include words regarding female partners.

SEXUAL Words relating to sexual activity. 0.171
VULGAR Profanity. 0.242

WHITE Words referring to those of Caucasian descent. 0.547

Table 4: Manual features for Task 1c (controversy classification)

periments highlight that pretrained models yield
weaker results when faced with regression tasks, as
well as when faced with the goal of trying to predict
whether a given statement’s humor rating has high
controversy. This may be due to difficulty in pre-
dicting inter-rater disagreement (i.e. if the humor
metric’s variance exceeds the median variance).

Next, we note also that our engineered one-hot
feature approach toward humor subjectivity does
not perform significantly better than the baseline
models. While our results do reveal a positive corre-
lation between certain manual features and humor
controversy—illustrating that humor subjectivity
is to some degree affected by subject matter—our
results suggest that on the whole, the effects of this
relationship are limited.

Overall, our results suggest that reasonably
lightweight models can achieve strong results in
modelling humor in human language.
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Model Hyperparameter Task 1b Task 1c Task 2a

AdaBoost learning rate 1.0 1.0 1.0
loss linear linear linear
nestimators 1500 1500 1500

GradientBoosting learning rate 0.1 0.1 0.1
max depth 3 3 3
nestimators 1000 100 500

LGBM learning rate 0.1 0.1 0.1
max depth 10 10 10
num leaves 22 22 22
nestimators 60 600 600

MLP learning rate constant constant constant
α 0.01 0.1 0.01
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999
hidden layer sizes (100, 100) (500, 500) (200, 200)
max iter 12 200 12

RandomForest nestimators 1000 100 100
criterion mse gini mse
max depth 2 2 2

SVM C 1.0 1.0 1.0
degree 3 3 3

XGBoost nestimators 100 100 100

Table 5: Hyperparameters for lightweight supervised learning models.

Sentence is humor humor rating humor controversy offense rating

When I was in college 1 2.95 0 0.25
I used to live on a houseboat
and started dating the girl next door.
Eventually we drifted apart.

Want to know why he disappeared? 0 0 0 0
These are the most common
reasons men disappear from your life.

Table 6: Examples that are intended and not intended to be humorous, respectively.
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Abstract

This paper describes Humor-BERT, a set of
BERT (Devlin et al., 2019) Large based mod-
els that we used to solve the SemEval-2021
Task 7: Detecting and Rating Humor and Of-
fense (Meaney et al., 2021). It presents pre and
post processing techniques, variable thresh-
old learning, meta learning and Ensemble ap-
proach to solve various sub-tasks that were
part of the challenge. We also present a com-
parative analysis of various models we tried.
Our method was ranked 4th in Humor Con-
troversy Detection, 8th in Humor Detection,
19th in Average Offense Score prediction and
40th in Average Humor Score prediction glob-
ally. F1 score obtained for Humor classifica-
tion was 0.9655 and for Controversy detection
it was 0.6261. Our user name on the leader
board is ThisIstheEnd and team name is End-
Times.

1 Introduction

The purpose of this paper is to present different ap-
proaches that we tried towards various sub-tasks in
SemEval-2021 Task 7 Detecting and Rating Humor
and Offense task (Meaney et al., 2021). It consists
of following sub-tasks:

• Task 1a: Classifying text based on whether
they are humorous or not.

• Task 1b: Predicting Humor rating score

• Task 1c: If the text is classed as humorous,
predict if the humor rating would be consid-
ered controversial, i.e. the variance of the
rating between annotators is higher than the
median

• Task 2a: predict how generally offensive a
text is for users. This score was calculated
regardless of whether the text is classed as
humorous or offensive overall.

We participated in all of the above sub-tasks.
Task 1a and Task 1c are classification problems
with F1 score as metric whereas, Task 1b and Task
2a are regression problems with RMS error values
as scoring criteria. All the above tasks shared the
same training, development and test set (Meaney
et al., 2021). Training set consisted of 8000 text
sentences, containing labels for all the subtasks.
Size of development and test set was 1000 text
sentences each.

Humor, is an interesting linguistic challenge.
It’s an abstract concept and depends a lot on
audience and their interpretation of the jargon used
to generate humor. Notion of humor changes from
culture to culture, age group, gender and social
status of target audience. It is a subjective and
personal phenomenon. What’s humorous to one
person could be non humorous or even offensive
to the other. In this task, labels and ratings were
collected from a balanced set of age groups from
18-70 and variety of genders, political stances
and social status (Meaney et al., 2021). Humor
detection and rating tasks have been the defined
before but the task of detecting Controversy
(Meaney et al., 2021) is new and interesting. It
captures the variance in humor rating due to
variance in age, gender and other demographic
features of the user.
This task is also unique in the way that it combines
humor and offense rating tasks for the same
dataset. What is humorous to one user could be
offensive to other depending on their demographic
characteristics.

2 Related Works

Humor and offense related tasks have been pursued
before as well. Various NLP techniques from classi-
cal N-gram techniques (Taylor and Mazlack, 2004)
to transfer learning over pre-trained language mod-
els like BERT (Devlin et al., 2019) have been tried
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for humor related tasks. (Yang et al., 2015) extract
humor anchors and use a k-NN based classifier to
detect humor. (Chen and Soo, 2018) used CNN
and highway network whereas, (Weller and Seppi,
2019) used BERT fine tuning to classify humor in
text. Apart from text, multimodal data for humor
was curated by (Hasan et al., 2019). In other works
on multimodal data (Yang et al., 2019) tag video
comments data automatically and use audio data
alone to predict humor. They used Random Forest
and CNN over MFCC features. (Chen and Lee,
2017) take transcripts from TED talk and detect
audience laughter using CNN.

3 System overview

In development phase, we split the data as train-
ing:validation :: 7200:800, but for evaluation phase
we take entire 8000 texts for training and 1000 size
development set. Later on, we also tried bagging,
which will be described later.

3.1 Models
Humor is an abstract linguistic concept, hence a
model which can understand the nuances of lan-
guage should be great for detecting and rating hu-
mor, offense and controversy in text. Naturally we
tried one of the best language model, BERT and
modified it according to the task at hand. We de-
scribe below models for each sub tasks separately.

3.1.1 Task 1a: Humor Detection
Various models that we tried for this sub-task are
following:

1. BERT-Large fine tune [BERT-L]

2. Fully connected layer over BERT-Large
[BERT-FFN]

3. BERT-Large textual entailment [BERT-ENT]

4. CNN over BERT embedding [BERT-CNN]

5. BERT-Large based Ensemble [BERT-ENS]

For BERT-Large fine tune model(BERT-L), we
used uncased BERT Large model and fine tuned
over train set. We selected the best performing
model over development data. For this we selected
COLA as task type as it is GLUE task which
models standard binary classification. It simply
uses softmax classifier over CLS token from last
layer of BERT Large model.
In the second approach (i.e. for BERT-FFN), we

tried a 128 size fully connected layer over CLS
token from last layer and then two class softmax
classifier to get humor probability scores. We also
used dropout after CLS and fully connected layer.
We also tried textual entailment kind of classi-
fication model over BERT Large (BERT-ENT),
for this task. Each of the text data is modified to
indicate whether humor is implied from any given
text. For example training example:

I’m the Michael Jordan of lazy sports analo-
gies.# 1
becomes
I’m the Michael Jordan of lazy sports analogies.
### It is humorous. # 1

Where label 1 represents the presence of humor
in original sentence whereas, in case of textual
entailment instance it represents whether ”It is
humorous” is implied by the text sentence. #
is just a separator for illustration here. We also
used entailment model to augment the dataset by
adding various paraphrases of the sentence ”It is
humorous”. For example, the original text above
can be augmented in the following way:

I’m the Michael Jordan of lazy sports analogies.
### It is humorous. # 1
I’m the Michael Jordan of lazy sports analogies.
### It is funny. # 1
I’m the Michael Jordan of lazy sports analogies.
### It is not humorous. # 0

In another approach (i.e. BERT-CNN), we
tried freezing the BERT parameters and used it
only to get the sentence embedding from the last
layer. We took word embeddings for each word
in the sentence from the last layer of BERT and
then applied a one layer 1-D CNN over those
embeddings, then a fully connected layer and
softmax layer to detect humor.

BERT-Large based Ensemble model (i.e. BERT-
ENS), is our best model which gave F-1 score of
0.9655. First thing we tried is Bagging of BERT-
large models. The base model used in bagging was
the model from approach 2. We split the train data
in 10 random datasets (i.e. bags) of size 7200(train)
and 800(validation). Train 10 base models over
each of those datasets and select the best perform-
ing model on validation set of size 800. Now com-
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bine these 10 models using soft/hard voting en-
sembling approach. We predict the labels using
best models from each of the bag and then take a
majority vote among the 10 selected models. We
tried variants of this approach where each of the 10
models had different hyper-parameter values, for
example different values of dropout and maximum
sentence length varies between 64 to 128. In an-
other approach, we sum the softmax score of each
epoch of all the 10 bags and then use argmax to
predict the labels for each bag. After that, we take a
majority vote among 10 such models created (This
was our best performing model). The development
data of size 1000 was used for hyper-parameter
tuning and selection of the final ensemble model.
We used Binary cross entropy as loss function.

3.1.2 Task 1b: Humor Rating
Taking hint from Task 1a, we tried fewer models
that we felt would perform better for this sub-task.
Following models were tried

1. Fully connected layer over BERT-Large
[BERT-FFN]

2. BERT-Large based Ensemble [BERT-ENS]

The architecture of models 1 is same as the cor-
responding models in Task 1a (3.1.1), except for
the last layer and loss function. Here instead of
two class softmax layer we used a linear regression
layer to predict the humor rating and used Mean
squared Error and Root Mean squared Error as
metric to be minimized. For model in approach 3,
we use the same setting as described in Task 1a
(3.1.1), except that instead of voting method we
used averaging of humor rating predicted by all the
base 10 models. As in Task 1a, models from each
bag are selected based on which model has least
RMS error i.e. the best model among all epochs. In
other approach, We took the average of rating pre-
dictions from all the epochs that were trained for
10 bags (This was our best model). We also tried
bagging models with different hyper-parameter val-
ues as in Task 1a. The best hyper-parameter values
are described in 4.3.

3.1.3 Task 1c: Humor Controversy
We tried models similar to the Task 1a (3.1.1) as
described below.

1. BERT-Large fine tune [BERT-L]

2. Fully connected layer over BERT-Large
[BERT-FFN]

3. BERT-Large based Ensemble [BERT-ENS]

The architecture of models 1 and 2 are same as
the corresponding models in Task 1a (3.1.1), except
for additional meta learning of softmax thresholds
to predict whether the humor is controversial or
not. There is class imbalance here and so models
were less confident in detecting controversy in hu-
mor. Also, it’s a challenging task, in the sense that
detecting controversy is not so obvious. In order
to balance the odds we tried various softmax score
threshold values to predict controversy. Instead
of taking argmax we tried different values of soft-
max probability score for Controversy class. For,
standard binary classification a threshold of 0.5 is
used to predict a particular class. We tried different
lower values of threshold in favour of Controversy
class, since model were not very confident in de-
tecting it. Threshold value 0.1 worked best for
approach 1 and 2.
In 3rd approach we use bagging ensemble setting
similar to Task 1a (3.1.1) with the difference that
we used softmax score averaging of models rather
than a voting, and thereafter we used threshold
tuning. Threshold value 0.15 worked best for our
method. All the threshold values were obtained by
fine tuning over development dataset of size 1000.

3.1.4 Task 2a: Average Offensiveness Score
This is a regression task, hence we tried models
similar to that of Task 1b (3.1.2).

1. Fully connected layer over BERT-Large
[BERT-FFN]

2. BERT-Large based Ensemble [BERT-ENS]

The architecture, loss function and all other set-
tings are same as that of corresponding models in
Task 1b (3.1.2).

4 Experiments

In this section, we describe the dataset and various
experiments performed. For classification tasks
we used Binary Cross-Entropy loss, whereas for
regression tasks we used Mean Squared Error as
metric to be minimized.

4.1 Dataset
We used the dataset provided by the SemEval-2021
Task 7 organizers (Meaney et al., 2021). Dataset
consisted of 8000 English text sentences for train-
ing and 1000 text sentences for development and
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evaluation each. We trained our model on the train-
ing dataset only, no external dataset other than that
was used. Dataset split for each model has already
been described in section 3.

4.2 Pre-processing
We removed various special characters which do
not contain any useful information. We also ex-
panded emoji symbols to their meaningful defini-
tion using existing preprocessing package spaCy
since they are really important for tasks such as
humor detection and humor rating prediction. Af-
terwards, texts were lower cased and tokenized
using Sentencepiece (Kudo and Richardson, 2018)
tokenizer.

4.3 Hyperparameters
We tried various values for the hyper-parameters.
The one that worked best for us is described in table
1.

Hyper-parameter Value

Batch Size 32
Learning rate 2e-5
Maximum Sentence length 64, 128
CLS layer Dropout 0.3
FFN layer Dropout 0.5

Number of Bags 10

Number of Epochs 25

FFN Activation tanh

FFN hidden size 128

Table 1: Hyper-parameter values

Changing Maximum sentence length didn’t
make much difference in results. Activation func-
tion tanh worked better than relu and gelu. CLS
layer dropout is dropout after last layer of BERT.
FFN layer dropout is applied after Feed forward
network layer of hidden size 128. Dropout was
required because the model was too complex for
8000 size dataset. No of Bags is the no of bags/no
of base models we trained during Bagging ensem-
ble approach. All the models were developed using
Tensorflow (Abadi et al., 2015) library. Training
was done on NVIDIA Tesla P-40 GPUs.

5 Results and Analysis

We describe the results for each of the sub-tasks
and analyse the results. Baseline for classification

task was Naive Bayes model with bag of words
features, and for the regression task, it was Support
Vector Regression.

Model F1 Score

Baseline 0.884
BERT-L 0.926
BERT-FFN 0.935
BERT-ENT 0.912
BERT-CNN 0.937
BERT-ENS 0.966

Table 2: Humor Detection Results

Model RMS Error

Baseline 0.861
BERT-FFN 0.667
BERT-ENS 0.654

Table 3: Average Humor Score Results

Model F1 Score

Baseline 0.462
BERT-L 0.567
BERT-FFN 0.586
BERT-ENS 0.626

Table 4: Humor Controversy Results

Model RMS Error

Baseline 0.642
BERT-FFN 0.522
BERT-ENS 0.469

Table 5: Average Offensiveness Score Results

We see in table 2 that applying a Feed Forward
network with dropout layer improves the result.
This is expected since a FFN layer after BERT
results in non-linear combination of BERT features.
Dropout is required because model is more com-
plex now. BERT-CNN also performs reasonably
well because of efficacy of CNN in learning and
combining N − Gram features. Not to mention,
here we have frozen the BERT layer so no of
parameters is less. Relatively poor performance
of BERT-ENT can be attributed to the fact that
this task is not suitable for Textual Entailment
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classification. BERT-ENS outperforms other
models by huge margin. Here we see the effect of
bagging as a way to reduce error due to variance.
Different base models learn different features and
peculiarities. BERT-Large is a complex and strong
classifier, so understandably, it has high variance.
Combining multiple BERT-Large models using
voting mechanism provided quite a significant
jump in F1 score.

For Average Humor score results in table 3 we
again see that a single BERT model with FFN does
perform well but bagging reduces the error caused
by high variance. We see same pattern for Average
Offensiveness score. In fact the effect of bagging
is even more prominent there.
Meta-learning in form of variable softmax thresh-
old worked really great for Humor Controversy de-
tection. Humor Controversy is even more abstract
than Humor and hence difficult to detect. There is
class imbalance as well, since, very few examples
are actually Controversial. So, we had to lower
the softmax probability threshold values for Hu-
mor Controversy class. Individual BERT model
is a weak learner in this case that’s why combin-
ing them results in a huge jump in F1 score. On
comparing our results with the baseline models we
see that even a single BERT-Large model outper-
forms the baseline by large margin. This solidifies
our notion that a great language model like BERT
will always be a top performer in NLP tasks. And,
combining the BERT with ensemble methods has
potential to outperform other competing models.

6 Conclusion and Future Work

Humor is a abstract linguistic construct. That is
why a strong language model like BERT-Large per-
forms really well on these tasks. Our models were
ranked under 10 in 2 tasks and under 20 in 1 task,
this shows that BERT based models outperform
other models. Especially, if many BERTs are com-
bined using a good ensemble technique. For future
work ensemble methods like stacking and blending
could be tried. Also, different models with differ-
ent hyper parameter values could be combined in a
more effective way to get better results.
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Abstract

This paper describes our approach (IIITH) for
SemEval-2021 Task 5: HaHackathon: Detect-
ing and Rating Humor and Offense. Our re-
sults focus on two major objectives: (i) Ef-
fect of task adaptive pretraining on the perfor-
mance of transformer based models (ii) How
does lexical and hurtlex features help in quan-
tifying humour and offense. In this paper, we
provide a detailed description of our approach
along with comparisions mentioned above.

1 Introduction

Humour is an important part of human conversa-
tion. It has a social function as well and can play
an important role in group cohesiveness(Ziv, 2010).
Hence humorous content is also found on various
social media websites. While there has always been
a fine line between funny and offensive humour,
the anonymity, distance and isolation provided by
being online can increase instances of offensive or
controversial humour being posted online. (Weitz,
2017)

In this task, we have presented a transformer
based approach combined with lexical and hurtlex
feature sets to quantify humour and offense of a
piece of text.

We achieved an F1 score of 0.959 in the humor
classification task and 0.592 in the humor contro-
versy task. For the regression tasks, we achieved
a RMSE score of 0.541 and 0.488 in the humor
regression and offense regression task respectively.

2 Related work

There have been many attempts made at compu-
tational humour detection. In this section, we
briefly describe other work in this area. In this
approach(Blinov et al., 2019), the authors have
used universal language model fine-tuning method

for humour recognition. Convolutional neural net-
works (CNN) have also been used for this task by
(Chen and Soo, 2018) whereas (Weller and Seppi,
2019) used transformers to classify humour.

There has also been a lot of shared tasks and
workshops related to computational humour. One
of them is SemEval-2020 Task 7: Assessing Humor
in Edited News Headlines(Hossain et al., 2020)
where Zhang(Zhang et al., 2020) used bidirectional
neural networks with an attention mechanism and
incorporated lexical features to assess humour in
edited news headlines.

There has been a lot of work done on hate speech
and offensive speech detection as well. CNN’s and
gated recurrent units (GRU) have been used for
this task (Zhang and Luo, 2018). Recurrent neural
networks combined with user-related information
have also been used for hate speech detection in
Twitter Data (Pitsilis et al., 2018) whereas multilin-
gual transformer architectures were leveraged by
(Ghosh Roy et al., 2021) to detect hostile content
in English, Hindi and German.

3 Task and dataset overview

The task(Meaney et al., 2021) is divided into 4
sub-tasks.

1. Humour detection: This is a binary classifi-
cation task where the model needs to predict
if the text is humorous or not where the values
are either 0 and 1.

2. Humour Rating: This is a regression task
where the model needs to rate how humorous
the text is where the value can vary between 0
to 5.

3. Controversy detection: This is a binary clas-
sification task where the model needs to clas-
sify text as controversial or not if it has been
classified as humorous. It can be either 0 or 1.
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4. Offense Rating: This is a regression task
where the model needs to rate how offensive
the text is. It can vary between 0 to 5.

The dataset for the tasks was provided by
The workshop organizers. It consisted of
10,000 sentences. 8,000 sentences were
provided for training and 1,000 for valida-
tion. The remaining 1,000 were used for test-
ing. Each row consisted of a unique identi-
fier,the text and the label values of ”is humor”,
”humor rating”,”humor controversy” and ”of-
fense rating”.

4 Methodalogy

4.1 Hurtlex features
HurtLex(Bassignana et al., 2018) is a lexicon of
offensive, aggressive, and hateful words in over
50 languages which is further categorized into 17
categories. Identifying these kinds of words can po-
tentially help in offensive content detection. Also,
in some cases, a humorous piece of text might con-
tain such a word to denote humour. We have also
experimented with this feature for humour classifi-
cation and regression task.

4.2 Lexical features
The structure of humorous and offensive texts can
be a bit different from normal texts. We have lever-
aged a lexical feature set that would help us capture
that information and distinguish humorous and of-
fensive texts. The set of lexical features are:

• Counting the total number of letters, punctu-
ation, upper case letters and numbers within
the text.

• Identifying the presence of any named entity.
For detecting named entities, we have used
the AllenNLP named entity recogniser1 which
uses pretrained GloVe vectors for token em-
beddings and a GRU encoder.(Peters et al.,
2017)

• Detecting the presence of interrogation by
identifying ’?’ symbol or any WH-word

• Detecting the number of personal pronouns
and what kind of personal pronouns they are:
first-person, second-person or third-person.

1https://demo.allennlp.org/
named-entity-recognition/
named-entity-recognition

For detecting the personal pronouns, we have
used a pre-defined list of personal pronouns.

4.3 Sentence embeddings

For generating the sentence embeddings, we
have experimented with 4 different pre-trained
transformer models: bert-base-uncased(Devlin
et al., 2018), roberta-base(Liu et al., 2019),
google/electra-base-discriminator(Clark et al.,
2020) and xlnet-base-cased(Yang et al., 2019).
Initially, we finetuned each of the pre-trained
models for each task and made predictions on the
validation set. On the basis of the performance, we
have selected one pre-trained model to proceed
to our final setup4.5. For the binary humour
classification, humour regression and offensive
regression task, we have selected roberta-base. On
the other hand, google/electra-base-discriminator
gave the best performance for humour controversy
task.

4.4 Task adaptive pretraining

In the paper (Gururangan et al., 2020), we can see
the benefits of continued pretraining of pre-trained
transformer models on unlabelled task-specific data
or Task Adaptive Pretraining (TAPT) before fine-
tuning them on a downstream task like text classi-
fication. This paper (Raha et al., 2021) showcases
the gains attributed to further pre-training of the
IndicBERT(Kakwani et al., 2020) model for hostil-
ity detection in Hindi. We have experimented with
the same approach for all our downstream tasks
where a pretrained transformer model( roberta-base
for humor classification, regression and offensive
regression) is further pretrained on training data
with the masked language modelling (MLM) objec-
tive. In our results 5, we have shown the benefits
gained from task adaptive pretraining for each task.
Note that task adaptive pretraining was not done on
google/electra-base-discriminator for the humour
controversy classification.

4.5 Final setup

In this subsection, we outline our final architec-
ture from the set of input features to the final label
generation for each task.

At first, we have generated the set of lexical fea-
tures and the hurtlex features on both training, vali-
dation and testing data. For generating the hurtlex
features, we have used the featurizer in hurtlex
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Setting Task 1a
(F1-Score)

Task 1b
(RMSE)

Task 1c
(F1-Score)

Task 2
(RMSE)

TRANS 0.944 0.572 0.592 0.522
TRANS + LEX 0.956 0.547 0.521 0.524
TRANS + HURT 0.949 0.570 0.347 0.488
TRANS + LEX + HURT 0.959 0.541 0.375 0.505

Table 1: Results on the Validation split for each task with and without hurtlex and lexical features. TRANS refer
to transformer embeddings, LEX refer to lexical features and HURT refers to hurtlex features. Task 1a refers to
humour classification, Task 1b refers to humour regression, Task 1c refers to humour controversy and Task 2 refers
to the offensive regression task. For Task 1a, 1b and 2 we have used the TAPT roberta-base and for task 1c we
have used pre-trained google/electra-base

Github repository 2. We have used Pytorch(Paszke
et al., 2019) 3 and Pytorch Lightning as our primary
deep-learning framework 4. For our pre-trained
transformer models, we chose the roberta-base 5

and google/electra-base-discriminator6 as a part of
HuggingFace’s Transformers library. For perform-
ing the task adaptive pretraining(TAPT) on down-
stream tasks, we have used AllenAI’s implemen-
tation of Task Adaptive Pretraining7. The roberta-
base model was further pretrained on MLM objec-
tive for 100 epochs with the other hyperparameters
being set to their default values. For all the trans-
former architectures, we have set the maximum
sequence length to 128. As this is a classification
task, we have used the embeddings of [CLS] as the
transformer representation of the whole sentence.

Finally, the embeddings generated from the
transformer models are concatenated with hurtlex
features and lexical features to form the final vector
representation for a particular text. For optimiza-
tion, we have used the Adam (Kingma and Ba,
2017) optimizer where the learning rate was set to
1e-5 and a dropout (Srivastava et al., 2014) with
the probability of 0.1. We updated weights based
on cross-entropy loss values for the classification
tasks and Mean Squared Error for the regression
tasks. A dense multi-layer perceptron serves as
the final binary classifier head or regression head.
The model weights were saved and evaluated on
the development set at the end of every epoch and
the finetuning continued for 10 epochs. We have

2https://github.com/valeriobasile/
hurtlex

3pytorch.org/
4https://www.pytorchlightning.ai/
5https://huggingface.co/roberta-base
6https://huggingface.co/google/

electra-base-discriminator
7github.com/allenai/

dont-stop-pretraining

Task Without
TAPT

With
TAPT

Gains

Task 1a (F1-
Score)

0.933 0.944 0.011

Task 1b (RMSE) 0.616 0.572 0.044
Task 2 (RMSE) 0.579 0.522 0.057

Table 2: Results on the Validation split for each task
with and without Task Adaptive Pretraining(without
considering the lexical and hurtlex features). Task 1a
refers to humour classification. Task 1b refers to hu-
mour regression and Task 2 refers to the offensive re-
gression task.

reported the scores of the models that yielded the
best F1 score on the development set and used them
to further predict on the test set. We have also ex-
perimented with or without considering the hurtlex
and lexical features to showcase the gains or losses
attributed to them.

5 Results

The gains attributed to task adaptive pretraining of
roberta-base on the humour classification is shown
in table 2. We can see that continued pretraining of
roberta-base has improved the model performances
significantly.

In table 1, we can see the results of inclusion
and exclusion of the lexical and hurtlex features for
each task. We notice that lexical and hurtlex fea-
tures do contribute to the performance of humour
classification. Combining hurtlex features and lex-
ical features with transformer embeddings have
improved the results of both humour classification
and humour regression task. For offensive regres-
sion, the hurtlex features played an important role
while lexical features degraded the performance.
This is probably because the lexical features were
curated for the identification of humour. For the
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Task Score Rank
Task 1a (F1-Score) 0.9616 14
Task 1b (RMSE) 0.5263 5
Task 1c (F1-Score) 0.6242 6
Task 2 (RMSE) 0.4772 23

Table 3: Results on the test split for each task and their
respective ranks on the leaderboard during the evalu-
ation phase. Task 1a refers to humour classification,
Task 1b refers to humour regression, task 1c refers to
humor controversy and Task 2 refers to the offensive
regression task.

humour controversy, excluding lexical and hurtlex
features gave the best results. This might be be-
cause textual features played much more important
role than lexical and hurtlex features.

In table 3, we report the results obtained on the
test set during the evaluation phase and the rank of
our models on the official leaderboard8. We used
the best performing models on the validation set to
achieve those results.

Overall, this work shows how task adaptive pre-
training can improve model performance for down-
stream tasks and the role of hurtlex and lexical
features for humor and offensive detection.

6 Conclusion

All the experiments performed above were done
with default hyperparameters(unless explicitly
mentioned) due to resource constraints. The model
performances could have improved if we could
search for optimal hyperparameters using cross val-
idation. Furthermore, the regression tasks could
improve if we could use an ensemble of the best
performing models for our final predictions.
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Abstract

The “HaHackathon: Detecting and Rating Hu-
mor and Offense” task at the SemEval 2021
competition focuses on detecting and rating
the humor level in sentences, as well as the
level of offensiveness contained in these texts
with humoristic tones. In this paper we present
an approach based on recent Deep Learning
techniques by both trying to train the models
based on the dataset solely and by trying to fine
tune pretrained models on gigantic corpus.

1 Introduction

The figurative language of Social Media is one of
the most challenging topics facing natural language
processing (NLP). In this study, we refer at humor
that requires a multidisciplinary approach for its de-
tection (Dan Alexandru and Daniela Gˆıfu, 2020).
Imagine, a viral topic on social media as elec-
tions (Gı̂fu, 2010) or a political crisis (Delmonte,
Rodolfo and Tripodi, Rocco and Gı̂fu, Daniela,
2013). Social media users themselves introduce
a specific language based on common practices
(e.g., humor, irony), making their message analy-
sis very challenging (Reyes, Antonio and Rosso,
Paolo and Buscaldi, Davide, 2012). The legitimate
research questions of this paper intend to answer:
Is humor an insurmountable barrier for Artificial In-
telligence (AI)? We propose an approach based on
recent DL techniques for sentiment analysis (SA).
Furthermore, we experimented with multiple types
of DL architectures ranging from Convolutional
Neural Networks (CNN) to Recurrent Neural Net-
works (RNN) which we tried to train using only
the dataset provided by the SemEval-2021 Task
7 competition, but we also used pretrained Trans-
former architectures which we fine-tuned using the
available data. The rest of the paper is organized as
follows: section 2 describes the literature related
to sentiment analysis and humor detection, section

3 presents the dataset and method of this study,
section 4 summarizes the results of the conducted
experiments, with discussions after experiments,
followed by section 5 with the conclusions.

2 Related Work

This topic has attracted significant attention in re-
cent years, evidenced by increasing number of
workshops of the same competition (e.g., SemEval-
2017 Task 6: HashtagWars: Learning a Sense of
Humor or SemEval-2020 Task 7: Assessing Humor
in Edited News Headlines). Such a competition is
attractive, especially since the problem of labeled
data is somewhat solved, considering the fact that
the automatic humor recognition depends on these.
For the binary task, as in this case, there are many
computational models to solve it or to detect the
humor intensity or humor dimension (Yang, Diyi
and Lavie, Alon and Dyer, Chris and Hovy, Ed-
uard, 2015) (Chen, Peng-Yu and Soo, Von-Wun,
2018). Thus, work on this topic was never followed
by high results, as this problem is still almost sub-
jective and text classification even for humans is
very controversial and biased. Never the less, the
task can be approached like any SA task for which
most of the authors used LSTMs (Murthy, Dr and
Allu, Shanmukha and Andhavarapu, Bhargavi and
Bagadi, Mounika, 2020) or CNNs (Ouyang, Xi
and Zhou, Pan and Li, Cheng Hua and Liu, Li-
jun, 2015). New approaches concentrate on us-
ing attention based methods (Vaswani, Ashish and
Shazeer, Noam and Parmar, Niki and Uszkoreit,
Jakob and Jones, Llion and Gomez, Aidan N and
Kaiser, Lukasz and Polosukhin, Illia, 2017), in par-
ticular transformer architectures such as BERT (De-
vlin, Jacob and Chang, Ming-Wei and Lee, Kenton
and Toutanova, Kristina, 2018), RoBERTa (Liu,
Yinhan and Ott, Myle and Goyal, Naman and Du,
Jingfei and Joshi, Mandar and Chen, Danqi and
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Figure 1: Data distributions by subtasks.

Levy, Omer and Lewis, Mike and Zettlemoyer,
Luke and Stoyanov, Veselin, 2019), ALBERT (Lan,
Zhenzhong and Chen, Mingda and Goodman, Se-
bastian and Gimpel, Kevin and Sharma, Piyush and
Soricut, Radu, 2019), and VideoBERT (Sun, Chen
and Myers, Austin and Vondrick, Carl and Mur-
phy, Kevin and Schmid, Cordelia, 2019). These
transformers are pre-trained on unlabeled data to
be later fine-tuned for a variety of tasks. For this
task we used the BERT architecture.

3 Dataset and Methods

This section contains details about the dataset built
as part of SemEval-2021 Task 7 HaHackathon: De-
tecting and Rating Humor and Offense, which was
the basis for solving the subtasks of this competi-
tion.

3.1 Dataset

The dataset (Meaney, J.A., and Wilson, Steven R.
and Chiruzzo, Luis and Lopez, Adam and Magdy,
Walid, 2021) consists of 8000 short texts that have
four labels corresponding to the four subtasks of
the competition. The first label is binary and de-
termines if the text is humorous. If this label is 1,
then it has associated two additional labels: one
for the second task which is a number from 0 to
5 representing the average humorous score of the
annotators and another denoting if the kind of hu-
mor is controversy, again a binary classification.
Regardless of the previous 3 scores, the fourth is
score from 0 to 5 denoting if the text is offensive.
Because of these conditions we used the entire
dataset only for the first and the fourth tasks, and
for the second and third we only used the texts
which were labeled to be humorous. Table 1 shows
some examples from the dataset of SemEval-2021
Task 7.

Note that for the third task, the labels seemed
to be randomly assigned, neither of our methods
succeeding in obtaining a better performance than
one we would obtain by flipping a coin. Because
of this situation we will only present the results for
the remaining three subtasks.

3.2 Method

In order to apply DL-based modeling techniques,
we first need to embed the words in a vector form
that the neural networks can work with. In order
to achieve this, we used two methods depending
on the architecture trained. For the models that
we trained from scratch we used a tokenizer imple-
mented in the Keras library 1 (TextVectorization)
which performs the following steps exemplified on
the sentence: “The quick brown fox jumps over the
lazy dog.”

1. lowercasing and punctuation stripping; “the
quick brown fox jumps over the lazy dog”

2. splitting the text into words; [“the”, “quick”,
“brown”, “fox”, “jumps”, “over”, “the”,
“lazy”, “dog”]

3. assembling tokes, assessing each token an in-
dex; “the”:1, “quick”:2, “brown”:3, “fox”:4,
“jumps”:5, “over”:6, “lazy”:7, “dog”:8

4. transforming the text into a sequence of inte-
gers. [1, 2, 3, 4, 5, 6, 1, 7, 8]

After the tokenization, we mapped these indexes
to the words from the GloVe embeddings which
contains a vocabulary size of 400k words, more
than enough for our task. We chose the predefined
embedding size of 100 and standardized the texts
to a length of 70. Figure 2 shows a histogram of the
number of words after splitting the texts by space.

We also fine-tuned a pretrained BERT model
which uses its own set of embeddings. In this
case the huggingface 2 library which also provides
the pretrained model offers the tools to embed the
words into the necessary vectors specific to the se-
lected model. After having the embeddings for
either set of methods, we further describe the ar-
chitectures used. We trained the following models
from scratch:

1https://keras.io/
2https://huggingface.co/transformers/
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id text is
humor

humor
rating

controversy offense
rating

35 Learn from the scars of others 0 0.05
119 What do you call a sad terrorist? A crisis 1 2.16 1 0.85
81 January is the Monday of months 1 2.43 0 0.00

Table 1: Examples of texts and their humor labels.

Figure 2: Histogram for the number of words in texts.

1. Convolutional Neural Networks (CNN). We
created simple sequential models with 1D con-
volutions and max pooling layers followed
by global average pooling and a few fully-
connected layers. We haven’t experimented
with more advanced architectures like ResNet
(Kaiming He and Xiangyu Zhang and Shao-
qing Ren and Jian Sun, 2015) and Inception
(Christian Szegedy and Wei Liu and Yangqing
Jia and Pierre Sermanet and Scott E. Reed and
Dragomir Anguelov and Dumitru Erhan and
Vincent Vanhoucke and Andrew Rabinovich,
2014) because we found that even the simplest
model drastically overfits the data.

2. Bidirectional LSTM and GRU cells. In order
to take advantage of the natural structure of
sentences we used the two most popular re-
current cells and we also wrapped them into
a Bidirectional wrapper. Each cell was used
in a separate architecture and we didn’t stack
more than one cell because we again found
that it tends to overfit.

3. Transformer blocks. In order to take advan-
tage of the recent developments in the NLP
tasks, we created the encoder part of the origi-
nal Attention is all you need paper. We used
six encoding blocks followed by a global av-
erage pooling layer and a few fully-connected
layers.

We employed a pretrained transformer model
(BERT) from the huggingface library which was
trained on cased datasets. We used the base model
which has around 100 million parameters and used
our dataset to only fine tune this model. Be-
cause only the first and fourth tasks used the entire
dataset, we applied all these methods only on the
first task, the classification between humorous and
non-humorous. As it can be observed from Figure
1 the dataset is imbalanced, therefore we applied
class-weight on the 0 class such that the loss from
the two classes among the entire dataset will be
equal. After experimenting with the hyperparam-
eters(mainly with the dropout rate which finally
we chose it to be 0.2) on this single task, the best
configuration was used on the other three tasks,
changing only the activation function for the regres-
sion tasks from Sigmoid to Rectified Linear Units
(ReLU). For the classification tasks, the threshold
for the prediction was 0.5 and for the regression
ones the predictions from the neural networks were
sealed to 5 in order to correspond to the competi-
tion’s requirements. A diagram summarizing the
system architecture can be seen in Figure 3.

The first step is to split randomly the available
dataset into a training set and a validation set. We
kept 10% of data for the validation set. Then, the
next step is to preprocess the data. In order to have
a good representation of the metrics on the valida-
tion set, we only computed the necessary tools for
preprocessing on the training set and then applied
these tools to the validation step. Most importantly,
the vocabulary used in the models was selected
based on the training set solely. For the pretrained
BERT model, the tokenizer already contains a large
vocabulary meant to cover most of the common
words. After preprocessing the dataset, we moved
forward to train the models with the corresponding
embeddings. As mentioned, we did all the experi-
ments on the first task and we experimented with
the hyperparameters on this set. We did not employ
a test set due to the small size of the dataset. Fi-
nally, we adapted the classification model trained

1228



Figure 3: System Architecture.

Task Name RMSE Position
Average Humor 0.5598 19 of 50
Average Offensiveness 0.4788 24 of 48

Table 2: Official scores for the regression tasks.

previously to the regression tasks and trained a sep-
arate model for each task using only the samples
that had the corresponding labels. After all the four
models have been trained, we made predictions on
the evaluation set using the tokenizer for BERT and
the corresponding model.

4 Results and Discussion

Below are presented the official results for all sub-
tasks. For the classification tasks we also report the
results in the post-evaluation phase and the rank-
ing as of March 2021. In the official competition
we accidentally performed a mistake for the Hu-
mor Detection task and reverted the labels that we
submitted. That is why we obtained such a poor
performance and this is the reason we also report
these results as it better reflect the actual perfor-
mance. We report Accuracy (Acc), F1-score (F1),
and Root Mean Square Error (RMSE). The official
results are summarized in Tables 2 and 3 and the
results in the post-evaluation phase are presented
in Table 4.

The results on our validation set for all the tech-
niques are summarized in the graphics depicting
the evolution of the metrics over the epochs (Figure
4). The test label refers to our validation set and
not the official test set from the competition.

We can easily see that all the methods overfitted
the training set. Techniques such as dropout and
regularization have been applied, but we observed
that they only delayed the moment when overfitting

occurred and did not increase the performance on
the validation set. The best accuracy on the valida-
tion set of the techniques used on the first task is
presented in Table 5.

As it can be observed from the table, the best
method turned out to be to fine tune a pretrained
BERT model, therefore we used this technique on
the rest of the tasks. Despite of its success we can
still observe that the accuracy on the validation set
(95.4%) differs from the one we obtained in the
competition (92.2%). For approaches to SA on a
small dataset, the best way is to fine tune pretrained
models, rather than trying to train a model from
scratch with the available data. The humor detec-
tion task turned out to be a very challenging one,
fact that can be best expressed by the results on the
second classification task where we assume that
the very diverse interpretations of the annotators
on what constitutes a controversy humor made the
task impossible to solve with any DL model. But
for more approachable tasks like the first classifica-
tion task or the regression tasks, probably the more
consensus among annotators made the task more
tractable to an artificial intelligence model.

5 Conclusion

According with the legitimate question, we still
consider that detecting someone’s sense of humor
is a difficult problem and identifying the level of of-
fensiveness and irony is an even harder one. In this
case, a figurative content could be consider irony,
satire, joke, and sarcasm. As with humor, all these
figures of speech depends on the listener or reader
to be in on this context. This paper presents a sys-
tem participating at SemEval 2021 Task 7 and tried
to adapt existing Deep Learning techniques to the
problem of humor detection. This approach indi-
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Task Name Acc F-Score Position
Humor Detection 7.8% 0.063 58 of 58
Humor Controversy 50.08% 0.4752 29 of 36

Table 3: Official scores for the classification tasks.

Task Name Acc F-Score Position
Humor Detection 92.2% 0.9374 27 of 39
Humor Controversy 50.08% 0.4752 24 of 41

Table 4: Scores in the post-evaluation phase for the classification tasks as of March 2021.

Figure 4: Evolution of accuracy .

Model CNN GRU LSTM Transformer BERT
Validation Acc 84.9% 90.1% 90.1% 88.6% 95.4%

Table 5: The accuracy on the validation set for the 5 techniques on the Humor detection task.

cates promising results since they offer compelling
results regarding the accuracy. We also found that
we can get the best performance by adapting pre-
trained models on other, bigger, datasets, indicating
that the internal representation of language of the
model acquired in other contexts can be extremely
helpful in trying to identify the humor of a sentence.
For further research ideas, we consider trying to
use data augmentation techniques such as replac-
ing words with synonyms, as well as using similar
datasets in order to increase the dataset and the
performance of the discussed methods.

References
Chen, Peng-Yu and Soo, Von-Wun. 2018. Humor

Recognition Using Deep Learning. pages 113–117.

Christian Szegedy and Wei Liu and Yangqing Jia and
Pierre Sermanet and Scott E. Reed and Dragomir
Anguelov and Dumitru Erhan and Vincent Van-
houcke and Andrew Rabinovich. 2014. Going
Deeper with Convolutions. CoRR, abs/1409.4842.

Dan Alexandru and Daniela Gˆıfu. 2020. Tracing Hu-
mor in Edited News Headlines. In Ludic, Co-design
and Tools Supporting Smart Learning Ecosystems
and Smart Education, pages 187–196. Springer Sin-
gapore.

1230



Delmonte, Rodolfo and Tripodi, Rocco and Gı̂fu,
Daniela. 2013. Opinion and Factivity Analysis of
Italian Political Discourse. In IIR, pages 88–99.
Citeseer.

Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton
and Toutanova, Kristina. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Kaiming He and Xiangyu Zhang and Shaoqing Ren and
Jian Sun. 2015. Deep Residual Learning for Image
Recognition. CoRR, abs/1512.03385.

Lan, Zhenzhong and Chen, Mingda and Goodman,
Sebastian and Gimpel, Kevin and Sharma, Piyush
and Soricut, Radu. 2019. Albert: A lite bert for
self-supervised learning of language representations.
arXiv preprint arXiv:1909.11942.

Liu, Yinhan and Ott, Myle and Goyal, Naman and
Du, Jingfei and Joshi, Mandar and Chen, Danqi and
Levy, Omer and Lewis, Mike and Zettlemoyer, Luke
and Stoyanov, Veselin. 2019. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Meaney, J.A., and Wilson, Steven R. and Chiruzzo,
Luis and Lopez, Adam and Magdy, Walid. 2021. Se-
mEval 2021 Task 7, HaHackathon, Detecting and
Rating Humor and Offense. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing.

Murthy, Dr and Allu, Shanmukha and Andhavarapu,
Bhargavi and Bagadi, Mounika. 2020. Text based
sentiment analysis using LSTM. Int. J. Eng. Res.
Tech. Res, 9(05).

Ouyang, Xi and Zhou, Pan and Li, Cheng Hua and Liu,
Lijun. 2015. Sentiment analysis using convolutional
neural network. In 2015 IEEE international confer-
ence on computer and information technology; ubiq-
uitous computing and communications; dependable,
autonomic and secure computing; pervasive intelli-
gence and computing, pages 2359–2364. IEEE.

Reyes, Antonio and Rosso, Paolo and Buscaldi, Davide.
2012. From humor recognition to irony detection:
The figurative language of social media. Data &
Knowledge Engineering, 74:1–12.

Sun, Chen and Myers, Austin and Vondrick, Carl
and Murphy, Kevin and Schmid, Cordelia. 2019.
Videobert: A joint model for video and language
representation learning. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 7464–7473.

Vaswani, Ashish and Shazeer, Noam and Parmar, Niki
and Uszkoreit, Jakob and Jones, Llion and Gomez,
Aidan N and Kaiser, Lukasz and Polosukhin, Illia.
2017. Attention is all you need. arXiv preprint
arXiv:1706.03762.

Yang, Diyi and Lavie, Alon and Dyer, Chris and Hovy,
Eduard. 2015. Humor recognition and humor an-
chor extraction. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2367–2376.

1231



Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 1232–1238
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

Counts@IITK at SemEval-2021 Task 8: SciBERT Based Entity And
Semantic Relation Extraction For Scientific Data

Akash Gangwar∗ Sabhay Jain∗ Shubham Sourav∗ Ashutosh Modi
Indian Institute of Technology Kanpur (IIT Kanpur)

{akashgnr, sabhayj, ssourav}@iitk.ac.in
ashutoshm@cse.iitk.ac.in

Abstract

This paper presents the system for SemEval
2021 Task 8 (MeasEval). MeasEval is a
novel span extraction, classification, and rela-
tion extraction task focused on finding quan-
tities, attributes of these quantities, and addi-
tional information, including the related mea-
sured entities, properties, and measurement
contexts. Our submitted system, which placed
fifth (team rank) on the leaderboard, consisted
of SciBERT with [CLS] token embedding and
CRF layer on top. We were also placed first
in Quantity (tied) and Unit subtasks, second
in MeasuredEntity, Modifier and Qualifies sub-
tasks, and third in Qualifier subtask.

1 Introduction

SemEval 2021 Task 8 (Harper et al. 2021) is a
task for extracting entities and semantic relations
between them from a corpus of scientific articles
coming from different domains. Instead of just
identifying quantities, the task gives more weigh-
tage to parsing and extracting important semantic
relations among the extracted entities. This is chal-
lenging because texts are ambiguous, and incon-
sistent, and extraction relies heavily on implicit
knowledge. The results of this task can also be
used for extractive scientific data summarization.

Given a scientific text, the task is to identify
the span of quantities, units, and other attributes of
those quantities and related measured entities, prop-
erties, and qualifiers, if any. The organizers have
divided the task into five subtasks and submissions
will be evaluated against all five sub-tasks1.

1. Quantity Extraction: For each paragraph of
text, identify all Quantity spans.

∗ Authors equally contributed to this work.
1https://competitions.codalab.org/

competitions/25770

Input Sentence Quantity 
Extraction Model

Unit ExtractionModifier 
classification Model

MeasuredEntity 
and HasQuantity

MeasuredProperty 
and HasProperty

Qualifier and 
Qualifies

Figure 1: Overview of our proposed approach

2. Unit Detection and Modifier Classification:
For each identified Quantity, identify the Unit
of measurement and classify additional value
Modifiers (count, range, approximate, mean,
etc.) that apply to the Quantity.

3. MeasuredEntity and MeasuredProperty
Extraction: For each identified Quantity,
identify the MeasuredEntity and Measured-
Property associated with it.

4. Qualifier Extraction: Identify and mark the
span of any Qualifier that is needed to record
additional related context.

5. HasQuantity, HasProperty and Qualifies
Extraction: Identify relationships between
Quantity, MeasureEntity, MeasuredProperty,
and Qualifier.

We consider subtask 1 as an entity extraction
task, and subtask 3, 4, and 5 are viewed as rela-
tion extraction tasks. After extracting the quan-
tities, other attributes (MeasuredEntity, Property,
and Qualifier) related to those quantities need to
be predicted. The directed graph in Figure 1 gives
an overview of our proposed approach. The set of
incoming edges to each node represents the input
to the trained model (represented by node), and the
label at each node represents the prediction made
by the model. The task data is extracted from CC-
BY ScienceDirect Articles and made available by
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the Elsevier Labs via the OA-STM-Corpus2. This
motivated the use of SciBERT (Beltagy et al. 2019)
model for various subtasks. “SciBERT leverages
unsupervised pretraining on a large multi-domain
corpus of scientific publications to improve perfor-
mance on downstream scientific NLP tasks”.

Our final submitted system consisted of SciB-
ERT with [CLS] token embedding and CRF layer
on top, and it achieved an overall F1-overlap score
of 0.432. We were ranked fifth on the global leader-
board. The top performance on the leaderboard
achieved an overall F1-overlap of 0.519. The im-
plementation of our system is made available via
Github3.

The rest of this paper is arranged as follows.
Section 2 introduces the previous work in this field
and describes the organizers’ dataset. Section 3 ex-
plains our overall approach. Section 4 contains the
experimental setup for training the model. We con-
clude with the analysis of our model performance
in section 5 and concluding remarks in section 6.

2 Background

2.1 Related work

Magge et al. 2018 attempted to recognize the Clini-
cal Entities using a LSTM CRF based architecture.
The authors used the word and character level em-
bedding obtained from word2vec (Mikolov et al.
2013). For relation extraction between these en-
tities, authors build a binary classifier using ran-
dom forest classifier. This approach has higher
time complexity as it checks for all possible rela-
tionships that could exist and classifies them. The
more recent work in entity extraction is by Lee et al.
2019, where they fine-tuned the BERT model using
the Bio-Medical data, and have shown SOTA per-
formance. Some other works in entity extraction
includes Taher et al. 2020, where they fine-tuned
BERT followed by a fully connected layer and a
CRF layer.

The work by Wu and He 2019 on Relation Ex-
traction uses BERT to identify the different types
of relations between pair of entities in the given
text. The system does not automatically recognize
the entities between which relation exists, rather
entities of interest need to be manually specified.

2https://github.com/elsevierlabs/
OA-STM-Corpus

3https://github.com/akashgnr31/
Counts-And-Measurement

2.2 Task setup
The scientific articles in the training and test corpus
are from the following sub-domains: Astronomy,
Engineering, Medicine, Materials Science, Biol-
ogy, Chemistry, Agriculture, Earth Science, and
Computer Science. These articles were manually
annotated. The inter-annotator agreements was
calculated using Krippendorff’s Alpha IAA score
(Table 1).

Class IAA Score
Quantity 0.943

MeasuredEntity 0.640
MeasuredProperty 0.545

Qualifier 0.333
Units 0.866

Table 1: IAA scores of various classes

The training dataset comprised of 298 para-
graphs containing 1164 quantities, 1148 measured
entities, 742 measured properties, and 309 quali-
fiers. The evaluation set included 135 paragraphs.

3 System overview

3.1 Pre Processing
Since we are using the SciBERT model, a maxi-
mum of 512 tokens can be passed as input to the
model. Therefore, we used SciSpaCy (Neumann
et al. 2019) to split the paragraph into sentences,
and these sentences were passed as input to the
SciBERT model.

3.2 Subtask 1 (Quantity Extraction)
Input sentences were tokenized using a SciBERT
tokenizer from HuggingFace (Wolf et al. 2020)
implementation. The Quantity span were trans-
formed into BIO / IOB format (Ramshaw and Mar-
cus 1995) and used as the true-labels for training
the model.

The tokenized sentence is passed through SciB-
ERT. Tanh activation function is applied over the
final hidden state of SciBERT i.e.

H
′
i = W1[tanh(Hi)] + b1 i = 0, 1, ..., len

Here Hi is the hidden units corresponding to
token i and len is the maximum length of the to-
kenized sentence. Similarly, [CLS] token is pro-
cessed.

H
′
cls = W0[tanh(H0)] + b0
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Finally, we get the final representation for the
sentence by concatenating H

′
cls and H

′
i and this is

used for prediction via the softmax.

H
′′
i = W2[concat(H

′
i , H

′
cls)] + b2 i = 0, 1, ..., len

H
′′
=
[
H
′′
0 , H

′′
1 , ......, H

′′
len

]T

p = softmax(H
′′
, dim = −1)

Matrices W0 and W1 have same dimension, i.e.,
W0 ∈ Rd×d,W1 ∈ Rd×d,W2 ∈ Rt×2d, where d
is the hidden state size from BERT and t represent
the number of tags, i.e., t = 3 in our case as we are
using BIO encoding..

CRF (Conditional Random Field) (Lafferty et al.
2001) is a probabilistic model that makes it possible
to extract structural dependencies among the BIO
tags. The tag probability vector for all the tokens,
i.e., p, is passed through the CRF layer to generate
the most probable output sequence.

We trained the model using CRF loss and Adam
optimizer. The overall architecture of the model is
shown in Figure 2. The tuned hyper-parameters are
reported in appendix A.1.

3.3 Subtask 2 (Unit Detection)
The Quantity phrases are tokenized using Spacy
(Honnibal et al. 2020) character-based tokenizer.
The true-label for training is formatted as a binary
vector marking one at the indices for characters in
the unit’s span in the Quantity phrases.

We trained a Character-based Bi-LSTM (Hochre-
iter and Schmidhuber 1997) model with trainable
word embeddings using BCE (Binary Cross En-
tropy) loss and Adam optimizer. The model archi-
tecture and tuned hyper-parameters are reported in
appendix A.2

3.4 Subtask 2 (Modifier Classification)
We formulated this subtask as a multi-label clas-
sification problem with 12 labels (HasTolerance,
IsApproximate, IsCount, IsList, IsMean, IsMean-
HasSD, IsMeanHasTolerance, IsMeanIsRange, Is-
Median, IsRange, IsRangeHasTolerance, None).
To enable the BERT module to capture the loca-
tion of a quantity, we insert the special symbol “$”
at the beginning and end of the Quantity span. If
there are multiple Quantities in a sentence, multiple
copies of the same sentence are generated with “$”
at different positions. Suppose Hi to Hj are the fi-
nal hidden state vector for the Quantity span. Then,
the average operation is applied to get the vector

representation of the Quantity. The averaged output
is passed through a fully connected layer followed
by softmax activation.

H
′
q = W

[
tanh

(
1

j − i+ 1

j∑

k=i

Hk

)]
+ b

pq = sigmoid(H
′
q)

Matrix W has dimension Rl×d, where l represnts
the number of classification label, i.e., l = 12 in our
case and d is the hidden state size from BERT.

The above model was trained using BCE (Binary
Cross Entropy) and Adam optimizer. The threshold
value for prediction was determined using cross-
validation. The model architecture and tuned hyper-
parameters are reported in appendix A.3.

3.5 Subtask 3 and 5 (MeasuredEntity and
HasQuantity Extraction)

As done in the previous subtask to capture the loca-
tion, we insert the special symbol “$” at the begin-
ning and end of the quantity span. The modified
sentences are tokenized using a SciBERT tokenizer.
The span of the MeasuredEntity related to Quantity
enclosed in the “$” symbol is transformed into BIO
/ IOB format and used as the true-label for training
the model.

The formatted data is used to train a model sim-
ilar to the Quantity Extraction (SciBERT + CRF
Model). The above model extracts the Measure-
dEntity associated with the Quantity enclosed in
“$”. Thus, it predicts the MeasuredEntity as well
as the HasQuantity relationship of the predicted
MeasuredEntity.

3.6 Subtask 3 and 5 (MeasuredProperty and
HasProperty Extraction)

To extract MeasuredProperty and HasProperty re-
lationship, we used a similar approach as used for
MeasuredEntity and HasQuantity. We enclosed the
Quantity span in “$” symbol and the MeasuredEn-
tity span in “#” symbol. The modified sentences
are passed through the SciBERT tokenizer. The
span of MeasuredProperty related to MeasuredEn-
tity, Quantity pair is transformed into BIO / IOB
format and used as the true-label for training the
model.

The formatted data is used to train a model simi-
lar to the Quantity Extraction (SciBERT + CRF
Model). The model trained is used to extract
MeasuredProperty linked with the MeasuredEn-
tity, Quantity pair. If the above model predicts
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Figure 2: SciBERT with [CLS] token embedding and CRF layer on top (SciBERT + CRF Model)

Measured-Property’s span, then the HasQuantity
relation is updated to MeasuredProperty, and the
HasProperty relation is added to MeasuredEntity.

3.7 Subtask 4 and 5 (Qualifier and Qualifies
Extraction)

To extract Qualifier and Qualifies’s span, two sepa-
rate models similar to Quantity Extraction (SciB-
ERT + CRF Model) were trained. While training
the first model, we insert “$” at the beginning and
end of the Quantity span because we assumed that
Qualifier Qualifies Quantity. During the second
model training, we enclosed the MeasuredProperty
span in “$” because of the assumption that Qualifier
Qualifies MeasuredProperty.

3.8 Post Processing

Once the predictions from all the models are avail-
able, we need to transform the predicted BIO/ IOB
format into entity span format. We initially map
each token’s span in the tokenized sentence and use
it to determine the predicted entity’s span. While
finding the span of the MeasuredEntity, Measured-
Property, or Qualifier, if our model predicts multi-
ple entities, then we predict the one which is closest
to the Quantity span. After that, we convert the sen-
tence span of each entity extracted to the paragraph
span.

4 Experimental Setup

The dataset is split into two parts - train set and dev
set in a ratio of 90:10. The models were trained
on the train set and were validated on the dev set.
The environment and packages used for training
and pre-processing are listed in appendix B.

4.1 Evaluation Metrics
The official metrics used by the SemEval organizer
are F1-measure, F1-overlap, and Exact Match. Ex-
act Match is a binary value of 0 or 1, while F1-
measure is a token level overlap ratio of submission
to true spans, where tokenization is done using sim-
ple white space delimiters. F1-overlap is a SQuAD
(Rajpurkar et al., 2016) style Overlap score based
on F1-measure, which penalizes the negative sub-
missions more strictly. The final evaluation is based
on a global F1-overlap score averaged across all
subtasks.

5 Results

5.1 Model Variants Used
We tried various models like BERT-Base, BERT-
Medium (Devlin et al., 2018), SciBERT, and
BioBERT (Lee et al. 2019). We could not try BERT-
Large due to computational limitations. The results
for the top two models are shown in Table 2.

We also experimented with Bi-LSTM layers on
top of BERT, but the model was overfitting due
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Model Data Set Quantity Unit Modifier MeasuredEntity MeasuredProperty
SciBERT eval 0.861 0.804 0.614 0.406 0.245
SciBERT dev 0.887 0.744 0.696 0.322 0.216

BERT-Med. eval 0.791 0.675 0.379 0.302 0.163

Table 2.A

Model Data Set Qualifier HasQuantity HasProperty Qualifies Overall F1
overlap

SciBERT eval 0.077 0.311 0.183 0.064 0.432
SciBERT dev 0.083 0.270 0.137 0.083 0.410

BERT-Med. eval 0.0 0.193 0.114 0.0 0.330

Table 2.B

Table 2: Table 2.A represents the F1-overlap score for subtask 1, 2, 3, and Table 2.B represents the F1-overlap
score for subtask 4, 5 and overall F1-overlap

Metric SciBERT + CRF Base line
Precision 0.703 -

Recall 0.560 -
F-Measure 0.623 -
F1-overlap 0.432 0.239

Exact Match 0.371 0.211

Table 3: Overall Results on evaluation set

to its high complexity. Consequently, it was not
included in the final model.

5.2 Results on evaluation set
The results achieved on the evaluation set for each
subtask are shown in Table 2, and the overall results
are shown in Table 3. Figure 3 represents the results
achieved in the various subdomains.

F1 Overlap
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 Computer Sc.
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Figure 3: F1-Overlap scores of various sub-domains

The difference between the Exact Match score
and F1-overlap score shows that the spans predicted
by our model were precisely the same as gold data
whenever they matched.

We achieved an overall fifth rank (among 19 par-
ticipating teams) in the competition. We were also
placed first in Quantity (tied) and Unit subtasks,

second in MeasuredEntity, Modifier and Qualifies
subtasks, and third in Qualifier subtask.

5.3 Error Analysis

The relation extraction subtask was challenging
because associating entities with the quantities they
are related to is context-dependent and based on
one’s understanding. This is also evident from the
IAA scores reported for the train data that even
humans can achieve deficient performance.

Some of the aspects where our model did not
work well are:

1. Our model looks for relations only within a
sentence, which may cause problems when a
relation exists outside the same sentence.

2. There is loss in reconstructing the TSV files
from entities because the neighboring data
may/maynot be part of the same entity group

3. Our model didn’t work well on MeasuredProp-
erty and Qualifiers as it did on other subtasks,
which is evident as we achieved only 0.53 and
0.35 F1-overlap on training data for these two
subtasks.

6 Conclusion

This paper proposed SciBERT + CRF Model (SciB-
ERT with [CLS] token embedding and CRF layer
on top) for span extraction, classification, and se-
mantic relation extraction. Our model shows sig-
nificant improvement in performance over the base-
line model and works equally well across all the
scientific sub-domains. In the future, we plan to ex-
plore various other pre-trained contextual models
for our approach.
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Appendix

A Model Training

A.1 SciBERT + CRF
In this section we provide hyper-parameter values
(Table 4) we used for training our final model to
facilitate reproduciblity of our results.

Hyper-parameters Value
Hidden State Dimension (d) 768

Number of tags (t) 3
Dropout 0.1

Batch Size 24
Max Length (len) 255

Learning Rate 10−5

Table 4: Hyper-parameters

A.2 Unit Detection (Character-based
Bi-LSTM)

In this section we provide model architecture (Fig-
ure 4) and hyper-parameter values (Table 5) we
used for training our final unit extraction model to
facilitate reproduciblity of our results.

9 8 c

Fully connected + Sigmoid Activation

0 0 0 1

Bi-LSTM

m

1

Figure 4: Character-based Bi-LSTM

Hyper-parameters Value
Hidden State Dimension of Bi-LSTM 32

Number of Bi-LSTM layers 1
Batch Size 38

Max Length (len) 64
Learning Rate 10−4

Table 5: Hyper-parameters

A.3 Modifier Classification (SciBERT with
embedding averaging)

In this section we provide model architecture (Fig-
ure 5) and hyper-parameter values (Table 6) we
used for training our modifier classification final
model to facilitate reproduciblity of our results.

SciBERT

[CLS]

H1 H2 H3 H4 H5

Dropout + Fully connected (W, b) 

approximately $ 5 % $

H’
q

Sigmoid Activation +Threshold

Quantity Embedding 
Averaging

IsApproximate

H0

Figure 5: SciBERT with embedding averaging

Hyper-parameters Value
Hidden State Dimension (d) 768

Number of labels (l) 12
Dropout 0.1

Batch Size 24
Max Length (len) 255

Learning Rate 10−5

Threshold 0.5

Table 6: Hyper-parameters

B Tools/Libraries used

We used Google Colab Nvidia T4 GPU (16GB)
for training purpose. Python packages (alongwith
version) used for pre-processing and training are
tabulated below:

Package Version
transformers 4.3.2

torchcrf 0.7.2
torch 1.7.0

scikit-learn 0.22.2
en core sci sm 0.3.0

Stanza 1.2
spaCy 2.3.5
NLTK 3.2.5
pandas 1.1.5
NumPy 1.19.5

Table 7: Python Packages
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Abstract

This paper presents our contribution to
SemEval 2021 Task 8: MeasEval. The
purpose of this task is identifying the counts
and measurements from clinical scientific
discourse, including quantities, entities, prop-
erties, qualifiers, units, modifiers, and their
mutual relations. This task can be induced to
a joint entity and relation extraction problem.
Accordingly, we propose CONNER, a cascade
count and measurement extraction tool that
can identify entities and the corresponding
relations in a two-step pipeline model. We
provide a detailed description of the pro-
posed model hereinafter. Furthermore, the
impact of the essential modules and our
in-process technical schemes are also investi-
gated. Our code is released and available at
https://github.com/yuejiaxiang/
CONNER.

1 Introduction

Clinicians are currently coping with a massive
amount of information, both from raw experimen-
tal data and scientific publications recording their
results. However, the ever-expanding information
sources have exceeded the ability of clinicians to
digest and utilize them properly (Botsis et al., 2011;
Cao et al., 2018; Zhou et al., 2010). Clinical
information extraction tools (Zhang et al., 2020;
De Bruijn et al., 2011; Li and Huang, 2016; Yehia
et al., 2019; Mulyar and McInnes, 2020) in the
text-mining field make an effort to alleviate the
clinician’s burden according to exploit how to bet-
ter utilize the knowledge contained in scientific
discourse, accessible in the form of natural human
language. Automating the process of understand-
ing the relevant parts of the scientific literature
allows for effective searching, and enabling infer-
ence of new information and hypothesis generation
for clinical research.

∗ Corresponding author

Counts and measurements are an important
part of information source from the scientific dis-
course (Harper et al., 2021). However, extracting
these count and measurement entities and their in-
teractions is challenging, since the way scientists
write them can be ambiguous and inconsistent, and
the location of this information relative to the mea-
surement can vary greatly.

In this paper, we focus on the SemEval 2021
MeasEval task which is composed of five sub-tasks
that cover span extraction, classification, and re-
lation extraction. As shown in Figure 1 it firstly
demands to identify all the quantity spans given
a paragraph from a scientific text. For each iden-
tified quantity, we need to extract the measured
entity, measured property and qualifier which are
corresponded to identified quantity. Besides, the
relationships between quantity, measured entity,
measured property and qualifier are also required
to be identified. Lastly, the unit and type of the
quantity is also needed to be recognized if they
exist.

However, some elements are only present for the largest bed inventory of 13 kg e.g., Ti, Cr, and Mn.

However, all elements included within Fig. 5 can be considered to be at very low concentrations of <2ppm.

MeasuredEntity Quantity

MeasuredEntity MeasuredProperty Quantity

HasQuantity

HasProperty HasQuantity

Figure 1: A sample of annotated snippet of dataset.

To tackle this challenging task aforementioned,
we propose CONNER, a cascade count and
measurement extraction tool, of which it primarily
contains four components: (1) Model encoder gains
the representation of both scientific paragraph text
and the entities. (2) Quantity tagger extracts all the
potential quantity entities within the paragraph. (3)
Relation-specific object tagger recognizes the pos-
sible measured entities, measured properties and
qualifiers, as well as their mutual relations. (4) Unit
and modifier extractor identifies units and modifier
by both rule-based approach and a simple classifier.
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The rest of the paper is organized as follows.
In Section 2, we elaborate on the whole workflow
of CONNER and a detailed analysis of our ex-
periments and results in Section 3. The paper is
summarised and concluded in Section 4.

2 Model Description

2.1 Overview

The goal of CONNER is designed to iden-
tify all possible aspects of quantity items,
including Quantity, MeasuredEntity,
MeasuredProperty, Qualifier, Unit and
Modifier, as well as their relations.

Inspired by (Wei et al., 2019), we assign a cas-
cade framework that models relations as functions
that map quantity to other objects in a sentence,
which is contrary to the conventional prospective of
relational triple extraction task (Gupta et al., 2016;
Adel and Schütze, 2017; Zeng et al., 2018; Zheng
et al., 2017) that firstly identity all the possible en-
tities, then predict their relations. Based on our
observation, there are roughly 90% entities over-
lapped in our tasks, which can be tackled smoothly
by a cascade framework. Besides, our proposed
method can just generate a limited amount of neg-
ative samples since there are only three types of
relations in our tasks, which further prevent from
the long-tail problem (Zhang et al., 2019; Li et al.,
2020).

The basic idea of CONNER is a two-step
pipeline model as shown in Figure 2. We
firstly deploy a quantity tagger to identity all
the possible Quantity from input paragraph
in Section 2.2, for each predicted Quantity,
we check all the potential relations to see if
a relation can associate MeasuredEntity,
MeasuredProperty and Qualifier with
the Quantity in Section 2.4. In contrast of uti-
lizing the proposed cascade framework, we adopt a
rule-based method and a simple classifier in terms
of extraction of unit and modifier in Section 2.5.
We describe the detailed workflow below.

2.2 Model Encoder

The model encoder aims at gaining the seman-
tic representations H of input paragraph text X ,
which will be further used in the following tagging
module. In terms of the input paragraph that ex-
ceeds our pre-defined maximum length, we split
them into pieces via full stop and encoder them
separately. We experiment both ROBERTA (Liu

et al., 2019) and BERT model (Devlin et al., 2018)
to encode the context information. We adopt
H = Encoder(X) for brevity, and L denotes the
length of the input paragraph.

2.3 Quantity Tagger

The lower level tagging model shown in Figure 2 is
designed to predict the entire potential quantities in
the input paragraph, which is an ensemble model
incorporating a CRF layer and a PointerNet Layer.
We illustrate the whole workflow as follows.

PointerNet layer. Driving from the PointerNet-
work (Vinyals et al., 2015), two identical binary
classifiers are adopted to detect the start and end
position of quantities respectively. Each token is
fed into the binary classifiers to predict whether the
current token is aligned to a start or end position
of a quantity span. Formally, given a contextual
representation hi ∈ H , we have:

pstarti = σ(Wstarthi + bstart) (1)

pendi = σ(Wendhi + bend) (2)

where b is the bias matrix and σ is the sigmoid
activation function. pstarti and pendi denotes the
probability of identifying the i-th token in the input
paragraph as the start or end position of a quantity,
respectively. We set up a threshold score as 0.7, of
which the current token will be assigned to 1 if its
probability surpasses the threshold score, otherwise
assigned to 0. The loss function of the quantity
tagger is the following:

Lqt =
1

L2

L∑

i=1

ystart,endi logP start,endi (3)

where L denotes the length of the input paragraph,
ystart,endi is the ground truth label. In terms of
multiple quantities appeared in the same paragraph,
We adopt the same strategy as (Wei et al., 2019) that
we adopt the nearest start-end pair match principle
to decide the span of any quantity based on the
results.

CRF layer. In this layer, we consider quantity
recognition as a sequence-labeling problem. We
select BIOS(Beginning, Inside, Outside, Single) as
our label schema. Accordingly, given the repre-
sentation sequence H = (h1, h2, ..., hL)we adapt
a probability-based sequence detection conditional
random field (CRF) model (Zheng et al., 2015),
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Figure 2: Overall model structure: the left dashed box corresponds to the Subsection 2.3 and 2.4, the right and
middle ones correspond to Subsection 2.5.

which defines the conditional probability distribu-
tion P (Y |H) of label sequence Y given contextual
word representation H aforementioned. We maxi-
mize the log-probability during training. In decod-
ing, we set transition costs as infinite if it is invalid.
The expected label sequence Y = (y1, y2, ..., yL)
is predicted based on maximum scores in the de-
coding.

Ensemble. The experimental results are rela-
tively comparable in terms of CRF layer and point-
erNet layer (See Table 2.3). However, an empirical
observation on the predicted results suggest that
CRF layer tends to extract shorter spans, while
PointerNet layer does the opposite. Presumably,
the ensemble model can gain better results since
the distribution of entities in the dataset exists both
long and short spans.

We deploy our model ensemble considering the
predicted quantities that are partly overlapped. To
be more specific, we firstly obtain the predicted
quantities from PointerNet as our final result, be-
sides, if a predicted quantity from CRF layer
strictly does not exist in the PointerNet result, i.e.,
there is no overlap between the two quantities, we
add it to our final result as well.

2.4 Relation-specific Object Tagger
The upper level tagging module identifies
the MeasuredEntity, MeasuredProperty
and Qualifier as well as the involved relations
with respect to the quantities obtained in the pre-
vious section. It consists of a set of relationship-
specific taggers with the same structure as the quan-
tity tagger in the lower-level for all possible rela-
tions. All object taggers identify the corresponding
object for each detected quantity simultaneously.

Distinguish from the quantity tagger using rep-
resentation vector hi as input, the relation-specific
object tagger also takes the quantity semantic fea-
tures into account. Given each contextual represen-
tation of the current token hi. The detailed tagging
operations are as follows:

p̃starti = σ(W r
start(hi + vkquantity) + brstart) (4)

p̃endi = σ(W r
end(hi + vkquantity) + brend) (5)

where p̃starti and p̃endi denotes the probability
of predicting the start and end position of current
token. vkquantity represents the representation of
k-th identified quantity via model encoder in Sec-
tion 2.3.
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We iterate all the possible relations across the
given quantities. Accordingly, given the token rep-
resentation hi and quantity k, the loss function of
relation-specific object tagger is as follows:

Lrot =
1

L2 ·R
R∑

r=1

L∑

i=1

ystart,endi,r logP start,endi,r

(6)

where r ∈ R denotes the r-th relation. The rest
of symbol keeps the same as Equation 3. Note that
tags ystart,endi = 0 if the objects are empty.

2.5 Unit and modifier extractor
Unit extraction. We design a set of rules to iden-
tify the units which are corresponding to each pre-
dicted quantity. The detailed description of schema
is presented in Algorithm 1.

Algorithm 1 Unit Method
Require: Quantity Q, which is a string of n characters.

1: The collection of all units that have appeared in train &
trial: V

2: p = n
3: for i = 1 to n do
4: if Q[i : n] ∈ V then
5: return Q[0 : i]
6: end if
7: if Q[i] is a space then
8: p = i+ 1
9: end if

10: end for
11: s = p
12: while s > 0 and Q[s− 1] is acharacter do
13: s = s− 1
14: end while
15: if s > 0 then
16: p = s
17: end if
18: return Q[p : n]

Modifier Classification. As none of the rela-
tions attached to the modifier in the input paragraph,
we can not apply the relation-specific object tagger
in terms of modifier extraction. Given a candidate
quantity token xi, we select its n-gram contextual
tokens {xi−n, xi−n+1, ..., xi, xi+1, xi+n} and con-
catenate them as model input and then simply in-
troduce a plain classifier to predict its labels:

ci = BERT([xi−n; ...;xi; ...;xi+n]) (7)

yi = argmax
θ

(softmax(ci)) (8)

where ci denotes the representation of quantity and
contextual tokens after BERT encoder and yi is
the predicted label of modifier in terms of current

token xi. The training loss is the conventional cross
entropy loss, we will not elaborate on it due to the
space limit.

3 Experimental Results

3.1 Dataset

This SemEval evaluation has released the dataset
online1, which includes a text file for each para-
graph of scientific text along with annotations. As
shown in Table 1, the overlapping entities are 9.3%,
0% and 90.7% in total of NEO, EPO and SEP in
terms of train/dev/test set, respectively, which indi-
cates the merit of applying CONNER to our tasks
since it can naturally handle the overlapping enti-
ties.

Train+Trial Test
Sentence number 647 593
Avg. Sentence length 45 39
Max. Sentence length 200 304
Triples 2199 -
Cross Sentence Triples 65 -
NEO 203 -
EPO 0 -
SEO 1996 -

Table 1: Statistics of dataset, NEO represents none en-
tity overlap, EPO represents entity pair overlap, SEP
represents single entity overlap.

3.2 Experimental Settings

We adopt mini-batch mechanism to train our model
with batch size as 8; the pretrained language model
finetuing learning rate is set to 2e-5, crf decoder
learning rate is set to 5e-3; the hyper-parameters are
determined on the validation set. We also complete
words with wrong boundaries by design rules, e.g.,
”emain mostly neutral” in the raw text is corrected
to ”remain mostly neutral”. The maximum length
of sentence is set as 350. The number of n-gram
is 0. We adopt Adam (Kingma and Ba, 2014) for
optimization.

3.3 Main Experiments

The experimental results are conducted in test set,
of which each entity category and relations are
listed in Table 2. The result of extracting quantity
outperforms the rest of entity categories by a large
margin regarding named entity recognition. While
the HasQuantity naturally achieves the best result
in relation extraction task.

1The dataset is available at
https://github.com/harperco/MeasEval
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Prec.(%) Rec.(%) F1(%) F1 Over(%)
Entities
Quantity 96.16 92.24 75.70 94.16
M.Entity 70.82 52.87 60.54 39.84
M.Prop. 72.79 56.71 63.75 43.66
Qualifier 20.00 12.32 15.25 0.0
Modifier 74.76 63.56 68.70 -
Unit 82.52 84.78 83.64 -
Relations
HasQuan. 62.85 56.52 59.52 -
HasProp. 57.37 31.72 40.85 -
Qualifies 0 0 0 -
Overall 76.09 57.53 65.52 47.30

Table 2: Experimental results on test set, F1 Over rep-
resents F1 overlap. All results are produced by the offi-
cial evaluation scripts.

3.4 Axuiliary Experiments
During the process of building our proposed sys-
tem, we tested different schemes for each module
of the our model and did relative experiments to
compare their experiment results, the scheme with
best performance is selected as our final modules
consisting of CONNER. We present the in-depth
analysis and experimental results listed below.

Model encoder. In Subsection 2.2, we separately
adopt BERT-based and ROBERTA-based our
model encoder. To examine the performance re-
garding different model encoder, we conduct exper-
iments in the quantity identification stage for both
identification of entities and relations. As we can
notice in Table 3, ROBERTA-base all outperforms
BERT-base so that it is selected as our final model
encoder.

Prec.(%) Rec.(%) F1(%)
Entities
BERT-large 58.85 56.02 57.40
ROBERTA-large 60.37 57.68 58.99
Relations
BERT-large 49.52 45.67 47.39
ROBERTA-large 49.52 52.94 51.17

Table 3: Experimental results of different model en-
coders

Settings of ensemble scheme. We tested the re-
sult of utilizing CRF layer and PointerNet layer in-
dependently, it shows comparable results as listed
in Table 4. As we mentioned in in Subsection 2.3,
combining the results of CRF and PointerNet can
make the best use of both models, and results veri-
fied our assumption that ensemble models all out-
perform the singular models.

we also carried out two different ensemble ap-
proach for quantity tagger. The first one is as il-

lustrate in Subsection 2.3. The second approach is
simpler: we take the union of the predicted quanti-
ties of CRF layer and PointerNet layer, and remove
duplicate as our final prediction result. The ex-
perimental results in Table 4 suggested the first
ensemble model achieve the best result, so that it is
selected as our final ensemble scheme.

Prec.(%) Rec.(%) F1(%)
CRF layer 60.37 57.68 58.99
PointerNet layer 59.67 56.53 58.06
Union ensemble 58.54 59.78 59.15
ensemble in Section 2.3 60.47 59.02 59.73

Table 4: Experimental results of different model en-
coders

Settings of n-gram. Different number of n-gram
can affect the model performance to some extent,
we thus tested introducing different length of con-
text regarding extraction of the modifier. As shown
in Table 5, the model achieves best performance
with 45.13% F1 score when n is 0, meanwhile,
we speculate the underlying reason is that model
is not capable of capturing valid semantics from
contextual tokens due to the limited amount of the
modifiers in the whole dataset.

n-gram F1(%)
none context 45.13
window char 5 42.22
window char 10 41.84
window word 1 44.63
window word 3 44.08

Table 5: Experimental results of different model en-
coders

4 Conclusion

We proposed CONNER, a cascade count and mea-
surement extraction tool to jointly identify the quan-
tities and their attached items, as well as the corre-
sponding relations for SemEval 2021 Task 8: Mea-
sEval. Our model extracts these entities and re-
lations in a two-step pipeline method. We also
exploited various of technical schemes during the
competition and select the one that gains the best
performance in the experiments, which help us win
second-place in the final ranking.
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Abstract

This paper presents our system for the Quan-
tity span identification, Unit of measurement
identification and Value modifier classification
subtasks of the MeasEval 2021 task. The pur-
pose of the Quantity span identification task
was to locate spans of text that contain a count
or measurement, consisting of a value, usually
followed by a unit and occasionally additional
modifiers. The goal of the modifier classifica-
tion task was to determine whether an associ-
ated text fragment served to indicate range, tol-
erance, mean value, etc. of a quantity. The de-
veloped systems used pre-trained BERT mod-
els which were fine-tuned for the task at hand.
We present our system, investigate how archi-
tectural decisions affected model predictions,
and conduct an error analysis. Overall, our sys-
tem placed 12 / 19 in the shared task and in the
2nd place for the Unit subcategory.

1 Introduction

The growing ease of access to large bodies of scien-
tific information and research has not been accom-
panied by an improvement in ease of analysis or
understanding of scientific text. While the perfor-
mance of natural language processing tasks such
as part-of-speech (POS) tagging and dependency
parsing have seen improvements, analyzing counts
and measurements in scientific texts has remained
a largely unaddressed problem, though some work
has been done by (Berrahou et al., 2013).

Measurements involve quantification (in units
such as litres or kilograms), entities and the mea-
sured properties (e.g. growth rate of a fungus) and
value modifiers (e.g. mean, range, tolerance). Ex-
tracting semantic relations between quantities, en-
tities, value modifiers, and units of measurement
and deriving meaning from those components is
challenging because scientific communication can
be ambiguous or inconsistent. In addition, the loca-

tion of this information relative to the measurement
tends to vary.

The precise extraction and contextualization of
measurements could enable accurate summariza-
tion of large bodies of scientific literature. Addi-
tionally, this could allow for unordered measure-
ment and numeric data from scientific texts to be
transformed into standardized ordered data for eas-
ier analysis.

In this paper, we describe a rapidly implemented,
lightweight model that extracts measurement con-
text in natural language. Our pipeline was imple-
mented in approximately 48 hours by the first three
authors, who had minimal formal neural NLP expe-
rience. Despite this, we were able to achieve strong
results in the two categories (Quantity and Unit)
that we entered, achieving second place in the Unit
category and 12 / 19 overall.

2 Background

2.1 MeasEval Task Setup

Data for this task is made available through the
MeasEval repository (Harper et al., 2021). Input
data are formatted as a paragraph of scientific text
in English from which measurements would be
extracted. Text annotations are provided in the
BRAT Annotation format (Stenetorp et al., 2012)
and evaluated in a tab separated value format.

These annotations are provided in four types of
spans. A Quantity contains a measurement of an
entity, such as 300 ml or 10%. Quantities are as-
sociated with their respective Unit, such as ml or %
respectively. Each Quantity can also contain ad-
ditional Modifiers which will be outlined later. A
MeasuredEntity contains the entity the Quantity
is referring to, such as a flask or other object. Sub-
tasks 3-5 also include identifying MeasuredEnti-
ties, MeasuredProperties and Qualifiers, though
due to time constraints, this paper mainly focuses
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on identifying Quantities and Units (subtasks 1
and 2).

For example, given the sentence “However, some
elements are only present for the largest bed inven-
tory of 13 kg e.g., Ti, Cr, and Mn.”, an identifiable
Quantity is 13 kg, with the Unit being kg. Each
paragraph can have multiple quantities, modifiers
and units associated with them.

2.2 Prior Work

The system this paper outlines is based on the
BERT architecture (Devlin et al., 2019). BERT,
which stands for Bidirectional Encoder Repre-
sentations from Transformers, employs the self-
attention based Transformer mechanism described
in (Vaswani et al., 2017). BERT allows for pre-
trained bidirectional representations to be used
for each word token, which can then be applied
to a wide variety of tasks. As such, only a lim-
ited amount of fine-tuning is required to model
NLP tasks including sentence classification and
sequence tagging.

One NLP task that is especially relevant for
the Unit of Measurement identification task is se-
quence tagging and Named Entity Recognition
(NER). This task involves identifying a span of text
(such as a person or location) from a given body
of text. There has been significant research in the
past dedicated towards NER (Li et al., 2018). (De-
vlin et al., 2019) also addresses sequence tagging
directly in their original paper describing BERT.
Therefore, we found that applying BERT towards
the shared task would prove transferable and effec-
tive.

3 System Overview

3.1 Quantity Identification

Since subtask 1, quantity span identification, in-
volves the classification of individual phrases, we
fine-tuned a pre-trained BERT-Large model (De-
vlin et al., 2019) to perform token-level classifica-
tion on an IO labeling strategy based on the IOB la-
beling scheme (Ramshaw and Marcus, 1995). Each
token in the training and trial sets is labeled as “I”
if it is inside a labeled quantity, and “O” if it is
outside the labeled quantity. Since consecutive en-
tities are very rare, we do not use the “B” label.
Such an encoding scheme is common for named-
entity recognition. Tokenization is implemented
using BertTokenizerFast from the Hugging Face

Transformers library. 1

As with the tokenizer, we used Hugging Face
library for a pre-trained BERT model. Instead of
using the base BERT hidden layers (BERTModel)
and manually building a few fine-tuning layers for
classification, we decided to use BERT’s built-in
BERTForTokenClassification class, which adds a
single linear layer for classification on top of the
hidden layers. This choice was made in the inter-
est of saving programming time; we did not be-
lieve that adding multiple fine-tuning layers would
cause a significant increase in accuracy to justify
the time that would be spent. The model outputs
labels for each of the tokens, labeling them with
the aforementioned IO labeling scheme. Sequences
of consecutive “I” labels are then recombined into
segments of text, which we use as our predicted
quantities.

We trained this model on a cross entropy loss
metric, with loss on “I” labels upweighted by a
factor of K to account for the low relative num-
ber of quantity tokens versus non-quantity tokens.
We optimized on minibatches using the Adam opti-
mizer (Kingma and Ba, 2015), and applied a cosine-
annealing scheduler (Loshchilov and Hutter, 2016)
to scale the down learning rate. Both of these have
been shown to be effective in fine-tuning pretrained
Transformer language models.

3.2 Unit Identification

Once a quantity had been identified, the next step
involved identifying the respective unit for each
quantity. For consistency, we once again used
a BERT tokenizer to achieve this task. Intrinsi-
cally, unit identification is considered a NER task;
therefore, by using Hugging Face Transformers and
the BERTForTokenClassification class, we imple-
mented a quick, yet robust method for identifying
units.

The Unit Identification approach is essentially
the same as the quantity identification approach:
the model labels tokens as either “I” or “O” based
on whether each token is considered to be inside or
outside a quantity. This approach proved to be ubiq-
uitous and simple to implement. We identified that
tokens for units were consecutive, so this model
was tasked with searching for a specific word or
words that could be identified as units. For exam-
ple, given the Quantity 20%, the % token would

1https://huggingface.co/transformers/
model doc/bert.html
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be labeled as an “I” while all other tokens would
be labeled as “O”. By implementing a consistent
approach, we tested the capabilities of pretrained
robust models such as BERT, which proves to be
useful for creating robust models with low compu-
tational resources.

3.3 Modifier Multilabel Classification

In the final part of subtask 2, we were tasked to
classify Quantity spans by “Modifiers.” Unlike the
previous two parts of the pipeline, we approached
this task as a multilabel classification task. Each
quantity could be associated with multiple labels,
such as IsRange and IsApproximate, or no labels at
all. This model mapped out each label as an indi-
vidual class, such that there were 10 total classes.

To predict the likelihood that a Quantity span is
associated with a class, we first tokenized each
quantity using BERT. These tokens were then
passed into a simple one layer dropout and linear
model which output 10 features. From here, each
feature was considered as an independent binary
classification problem in order to predict multiple
classes. For simplicity, any logit greater than 0.5
was predicted as a “true” value. Binary Cross En-
tropy loss was used as the criterion for training.

This is a simple, yet effective approach. As this
approach uses the same BERT models as the first
two sections, with the key difference being the
classification problem itself, we demonstrate the
versatility of BERT for these tasks. Once again, we
used the Hugging Face Transformers library for a
pre-trained BERT model, which allowed for quick
deployment. The results obtained in later sections
highlight how quick and inexpensive models can
still obtain acceptable results.

4 Experimental Setup

For all of the subtasks, we used the provided train-
trial split of 2531 annotations across 249 texts ver-
sus 832 annotations across 66 texts.

Besides tokenizing the text and applying IO la-
bels (see section 3.1) to get the data into a format
fit for the BERT token classifier, we did not prepro-
cess the data significantly. We tested filtering un-
recognizable and irrelevant characters using regex
but found no meaningful improvement in perfor-
mance. We thus decided to omit preprocessing to
keep with the simplistic theme of this paper.

During the hyperparameter tuning phase, we
compared models based on token-level F1 score,

implemented using the classification report from
the metrics module of PyTorch, yielding results
consistent with the provided testing script, which
evaluated on the F1 overlap score. Due to the
limit on the total number of iterations we could
go through due to the deadline, we tuned hyperpa-
rameters by hand. We found that out of the hyperpa-
rameters we tuned, the scheduler hyperparameters
were irrelevant because the scheduler was rarely
used at all. The number of training epochs like-
wise did not come into play so long as we let the
training continue until trial loss stopped decreas-
ing; around 15 epochs was almost always enough.
The only hyperparameters that seemed to signif-
icantly impact training results were the learning
rate and the weight difference between quantity
and non-quantity labels. After some manual tuning,
we found that a learning rate of around 10−5 and
no weight-difference adjustment performed best
on the trial set for this task, resulting in our final
token-level quantity identification F1 score of 0.85
on the trial set.

For the quantity identification subtask, several
post-processing steps were implemented to correct
simple errors in our model’s predictions, based on
common errors detected via manual error analy-
sis in the model’s predictions. First, commas and
spaces were removed from the ends of the pre-
dicted quantities to correct for potential small char-
acter offsets on the edges of predictions, from ei-
ther model error or the tokenization-detokenization
process. Furthermore, all quantities that did not
contain either numeric characters or strings that
commonly occur in numbers (such as two or -teen)
were discarded from the prediction pool. Addition-
ally, all prepositions from a hand-picked set like
beyond and at were cut from the front of each input
string in order to better isolate numeric quantities
from relational terms. The trial set results with
and without post-processing are shown in Table 1.
All the post-processing steps reduce the amount
and length of predicted quantity spans. Therefore,
the significantly higher precision score after post-
processing indicates that the base model tends to
overpredict identified quantities.

5 Results

Our model’s overall precision, recall, and F1 score
on overlap on the trial set are as shown in Table
1. The model’s performance on evaluation metrics
across the subtasks are shown in Table 2.

1247



Metric With Without

Precision 0.8153 0.564
Recall 0.2912 0.301
F1 (overlap) score 0.2615 0.211

Table 1: Trial set results with and without post-
processing

Category F1 score Ranking

Overall 0.272 12
Quantity 0.818 10
Unit 0.76 2
Modifier 0.408 8

Table 2: Evaluation set results and ranking (out of 19)

These results are promising given the speed of
implementation of our system. Across all 5 sub-
tasks, our final F1 score was 0.272. Overall, the
model ranked 12th out of 19 teams in the evaluation
phase of MeasEval: Counts and Measurements.

6 Conclusion

We propose a BERT-based model for information
extraction of measurements and their contextual
qualifiers from text. As scientific texts become in-
creasingly open for public consumption, we hope
that such systems will help present findings to
broader audiences in an accessible manner. Go-
ing forward, possible areas of exploration include
replacing BERT with more powerful models and
augmenting training data that the model frequently
makes erroneous predictions on.
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Abstract

This work describes our approach for subtasks
of SemEval-2021 Task 8: MeasEval: Counts
and Measurements which took the official first
place in the competition. To solve all sub-
tasks we use multi-task learning in a question-
answering-like manner. We also use learnable
scalar weights to weight subtasks’ contribution
to the final loss in multi-task training. We fine-
tune LUKE to extract quantity spans and we
fine-tune RoBERTa to extract everything re-
lated to found quantities, including quantities
themselves.

1 Introduction

SemEval-2021 Task 8 consisted of five subtasks
that covered span extraction, classification, and
relation extraction tasks. This paper presents so-
lutions to all five of them which showed the best
results in the competition1.

In the subtask 1(A) participants were asked to re-
trieve Quantity (Q) spans from texts. For example,
in the following text ”The soda can’s volume was
355 ml.”, the system should retrieve ”355 ml” as
Q span. The rest of the subtasks were to extract in-
formation related to retrieved Quantities (Qs) from
subtask A.

The subtask 2(B) was to extract the Unit of mea-
surement (UoM) of the extracted Q and also to
classify it into 10 classes: HasTolerance, IsAp-
proximate, IsCount, IsList, IsMean, IsMeanHas-
Tolerance, IsMeanIsRange, IsMedian, IsRange, Is-
RangeHasTolerance. It should be noted that some

1https://github.com/davletov-aa/meas-eval

Qs could be related to more than one type and there
were ones which didn’t belong to any type. The
subtask 3(C) was to extract Measured Entity (ME)
and Measured Property (MP) spans. In the sub-
task 4(D) additional Qualifier (Qlfr) spans, which
helped to validate or understand the extracted Q,
were asked to be extracted. And finally, sub-
task 5(E) was to extract relations between Qs, MEs,
MPs and Qlfrs.

More detailed information about the competition
could be found in the Harper et al. (2021)’s shared
task description paper.

2 Related Work

Span extraction and classification problems have
a long history of studies and are often studied as a
part of Named Entity Recognition (NER). For ex-
ample, the NER dataset Ontonotes v5 (Weischedel
et al., 2013) contains such entities as ”Quantity”,
which also includes measurements, and ”Money”.
However, the general NER approach used in
Ontonotes or ConLL 2003 (Sang and De Meul-
der, 2003) datasets is not so fine-grained as the one
that is used in the task under study.

Most state-of-the-art models for named en-
tity recognition and relation extraction are based
on Transformer architecture by Vaswani et al.
(2017). For example, the top three best models
for Ontonotes v5 according to paperswithcode.com
use BERT 2. BERT is a large pre-trained language
model based on Attention (Devlin et al., 2019).

2https://paperswithcode.com/task/named-entity-
recognition-ner
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Figure 1: Data example. It shows that one named entity may have several incoming and outcoming relations.

BERT has a unique training procedure where the
model is trained using Masked language objec-
tive, where some tokens are replaced with a special
’[MASK]’ token and the model should predict the
original token. BERT also had an additional train-
ing objective - the model had to predict whether a
sentence was random or it followed the first sen-
tence. However, some papers have investigated that
BERT is undertrained and that training BERT on
more data and for a longer time might increase
model performance. RoBERTa was one of the
first and more influential papers of such kind (Liu
et al., 2019). RoBERTa modifies BERT’s pretrain-
ing procedure. The RoBERTa model is trained
longer, with bigger batches over more data and
on longer sequences. RoBERTa’s authors have
also found that removing the next sentence pre-
diction objective from BERT matches or slightly
improves BERT performance. Researchers have
also suggested ways of leveraging the nature of the
task and adding some problem bias to named entity
recognition. Among such works, which is currently
the best performing for Ontonotes v5 and CoNLL
2003 according to paperswithcode.com, is LUKE
(Yamada et al., 2020). The authors of LUKE have
added a new language modeling task that consists
of predicting randomly masked words and enti-
ties in an entity-annotated corpus retrieved from
Wikipedia. The authors have also expanded the self-
attention mechanism to entity types and consider
entity types when computing attention scores. The
proposed approach allowed the authors to achieve
state-of-the-art results not only for named entity
recognition but for a bunch of other unrelated tasks
such as SQuAD1.1 question answering.

For relation extraction, Transformer-based mod-
els also outperform other approaches. A promising
approach is treating relation extraction as a ques-
tion answering problem. Among works implement-
ing this approach, we can mention (Cohen et al.,
2020) where the authors restructured relation clas-
sification as a Question answering (QA) like span

prediction problem. It allowed them to get state-
of-the-art results for TACRED and SemEval 2010
task 8 datasets.

3 System Description

3.1 Data

The data provided by the organizers contained plain
text files and their annotations in tsv format. There
were in total 248 training texts, 65 trial ones, and
135 for the evaluation phase. There were 2764,
897, and 1620 annotated entities respectively. The
files have been approximately equally distributed
among several domains: Agriculture, Astronomy,
Biology, Chemistry, Computer Science, Earth Sci-
ence, Engineering, Materials Science, Mathemat-
ics, Medicine. Entities could have been labeled
into 5 classes: Q, ME, MP, UoM or Qlfr.

As input data in the competition was in the form
of plain text extracts, we first split them into sen-
tences using PunktSentenceTokenizer and Punkt-
Trainer from NLTK library (Bird et al., 2009). We
trained PunktTrainer on texts from the training set.
We did data augmentation by including text ex-
tracts consisting of two sentences following each
other for each text document. So if we had origi-
nal sentences [s1, s2, s3, s4] we get an augmented
set of texts [s1, s2, s3, s4, s1s2, s2s3, s3s4]. Then
we split each example into tokens using Regexp-
Tokenizer from the NLTK library with the follow-
ing \w+|\(|\)|\[|\]|[-{.,]|\S+ regu-
lar expression. We used the train set for training
and the trial set for development.

Also, we relabeled Qualifier to QuantityQuali-
fier (QQ), MeasuredEntityQualifier (MEQ), and
MeasuredPropertyQualifier (MPQ). By this little
trick we solved the problem with examples having
multiple Qlfrs corresponding to either Q, ME, or
MP.
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Figure 2: Architecture of the QuAnt system. It takes tokenized text with marked MeasuredEntity as input and
predicts all needed spans and the class of the Quantity.

Hyperparam Value
dropout 0.1
weight decay 0.1
warmup proportion 0.1
lr 1e-4
lr scheduler linear warmup
optimizer Adam
epochs 50
bs 128
max seq len 128
model xlm-roberta-large
max grad norm 1.0
validate per epoch 4

Table 1: Training hyperparameters of QuAnt system,
submitted to competition

3.2 QuAnt System

The architecture of the QuAnt3 is shown in Figure 2.
As could be seen, our model uses the RoBERTa
model to extract features for each example. It
solves all subtasks of the competition in a multi-
task question answering way. We ask our model
to predict all BPE subword-level start and end po-
sitions of spans (answers) related to Q (question).
We ask the model by inserting special tokens ”•”
and ”/” around Q. Also, the model makes multi-
class multi-label predictions regarding the type of
the Quantity (QT).

It takes text extracts containing some Qs and
positions of the Q regarding which it should make
predictions.

For example, for the input text ”The soda can’s

3QuAnt - the system deals with quantities in a question-
answering-like manner

volume was 355 ml.” and for subword-level posi-
tions (6, 7) of the Q ”355 ml”, the model should
predict the following start and end positions: (6, 7)
for Q (A), (7, 7) for UoM (B), (3, 3) for ME (C),
(4, 4) for MP (C), (2, 2) for MEQ (D). Also, the
model shouldn’t predict any label for QT (B).

3.2.1 Extract Quantities

So, our approach needs quantity span information
as input. And to get that information we went with
fine-tuning the LUKE model (Yamada et al., 2020)
on the NER task to predict Q spans. We used the
code provided by the authors of the model. We
trained it on the augmented dataset in BIO format
with the following hyperparameters: maximum-
entity-length, maximum-sequence-length, learning
rate, and batch size were set to 64, 256, 1e-5, and
4 respectively. We trained two models with the
weight decay hyperparameter equal to 0.1 and 0.01
for 10 epochs. We were validating our models four
times per epoch on the development set and saving
the top 3 best checkpoints during training, resulting
in a total of 6 models.

So after two training runs, we got 6 trained mod-
els. Using the development set we chose the best
combination of them for a simple word-level voting
ensemble.

3.2.2 Extract Everything

During training and validation, we use Q spans
from the annotated set. During test prediction, we
use spans predicted by the ensemble of quantity
extractors from the previous section. Because of
our test time augmentation process, we had been
able to get up to three entries per each Q: for the
sentence containing it and for it with either its left
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or right context sentences.
We split tokenized examples into byte-pair-

encoding (BPE) subwords with RoBERTaTok-
enizer which resulted in the following RoBERTa
inputs marked by symbols ”•” and ”/” Qs:
[CLS] {Optional question prefix [EOS]} s1 ... •
w / ... sn [EOS].

To vectorize QT, we use the output from the
last layer corresponding to [CLS] token. And to
predict start and end probabilities for each subword
of each span type we use outputs from the last layer.
We feed them to linear layers to predict QTs and
span starts and span ends.

During training we optimize the following
weighted loss:

Ltotal = −
wQT

bs

bs∑

i=1

QT i
k ∗ log(Q̂T

i
k)−

∑

ST∈STs

(−wST

2bs
(
bs∑

i=1

ST i
start ∗ log(ŜT

i
start)+

+
bs∑

i=1

ST i
end ∗ log(ŜT

i
end)))

, where bs – batch size, [wQT ;wST |ST ∈
STs] = softmax([wqt;wst|st ∈ STs]) – learn-
able weights vector initialized with ones, QT i –
one-hot encoded QT of i-th example (which could
be zero vector in some cases and will not contribute
during training), Q̂T

i
– predicted QT probability

distribution, STs – set of following span types: [Q,
ME, MP, Qlfr, UoM, QQ, MEQ, MPQ], ST i

start

– one-hot encoded start position of the correspond-
ing span. ŜT

i
start – predicted start positions proba-

bility distribution. The same goes for ST i
end.

We trained our model without adding an optional
question prefix to RoBERTa inputs. We used hy-
perparameters from Table 1.

As our test predictions include duplicated pre-
dictions for the same Q due to the test time aug-
mentation, we remove identical predictions. Worth
noting, that there still might be duplicates left in
the case of different extracted values for the same
Quantity. Because of this, our submitted results
are higher than the results without test time data
augmentation.

So, our model takes Q with its context as input
and predicts its type and extracts various spans. For
all of the subtasks except the subtask E we treated
extracted answers as is. For the subtask E we used

the following rules to extract relations between Q,
MP, ME and Qlfr (QQ, MEQ, MPQ):

• (MP, HasQuantity, Q);

• if there is MP then (ME, HasProperty, MP),
otherwise (ME, HasQuantity, Q);

• (QQ, Qualifies, Q), (MEQ, Qualifies, ME),
(MPQ, Qualifies, MP);

4 Experiments and Results

In this section, we report the results of our post-
evaluation experiments.

First, we experimented with base models. We
tried different subtask weighting strategies. As we
solve the task in a multi-task way, we need to ag-
gregate the losses of each subtask to optimize the
final loss. And here, we tried to just average them
(equal) or take the weighted sum using learnable
weights (softmax, rsqr+log) vector W with the
length equal to the number of training subtasks. In
the case of softmax weighting strategy we just use
softmax over the vector W. In the case of rsqr+log,
we divide each subtask’s loss to its squared learn-
able weight and sum with the logarithm of it. This
approach of weighting subtasks in multi-task learn-
ing was introduced by Kendall et al. (2018).

We also experimented with data augmentation.
But unlike experiments we did in the evaluation
period, here we didn’t do test time data augmenta-
tion.

Also, we tried to concatenate the question prefix
to an input example. We experimented with prefix
Find measured entities and properties of marked
quantity. We hoped it could give extra information
to the model regarding the nature of the answer.

Table 2 shows the best results for the develop-
ment dataset and Table 3 shows corresponding re-
sults for the test dataset. Also, there are our official
submission results.

Table 2 shows that training time data augmen-
tation improves the overall score. Also, we could
see that including prefix question did not improve
the overall scores of the models which use data
augmentation. Yet we see the opposite picture
for the test set in Table 3. It can also be seen
that RoBERTa-large not necessarily outperforms
RoBERTa base.

We see that using just the average sum of sub-
task’s losses demonstrates the best results.

We also tried to fine-tune the large version of
XLM-R with the best hyperparameters from base
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Model Aug WSch PQ O Q ME MP Qlfr UoM M HQ HP Qlfs
post-evaluation phase results: roberta.base

QA-v1 F equal F 45.2 98.9 32.5 36.2 15.2 73.9 66.1 42.4 21.2 9.3
QA-v2 F equal T 45.6 98.9 33.2 36.1 15.7 74.3 73.0 42.9 22.6 11.3
QA-v3 F rsqr+log F 45.3 98.9 32.3 35.4 15.2 74.7 70.1 41.8 22.0 12.9
QA-v4 F rsqr+log T 45.8 98.9 33.6 37.8 13.4 73.0 67.9 46.1 22.5 9.7
QA-v5 F softmax F 45.8 98.9 33.4 36.6 13.5 74.0 72.6 42.3 20.5 11.8
QA-v6 F softmax T 45.6 98.9 32.5 37.3 16.2 75.3 75.5 45.6 21.8 11.3
QA-v7 T equal F 47.7 98.9 33.1 35.6 16.1 74.3 77.7 40.3 22.7 9.6
QA-v8 T equal T 46.1 98.9 32.8 35.5 11.1 73.7 76.4 38.9 21.2 9.3
QA-v9 T rsqr+log F 47.6 98.9 32.4 36.8 18.7 73.9 78.3 40.0 21.9 12.6
QA-v10 T rsqr+log T 46.1 98.9 33.1 36.3 14.3 73.9 78.2 42.0 22.3 10.2
QA-v11 T softmax F 47.3 98.9 32.9 37.2 16.6 73.6 78.1 41.8 23.0 10.7
QA-v12 T softmax T 46.9 98.9 34.5 35.2 13.6 73.6 76.3 39.9 24.2 10.0

post-evaluation phase results: roberta.large
QA-v1 T equal F 49.3 98.6 37.8 38.3 17.7 75.6 78.1 43.7 27.0 10.3
QA-v2 T rsqr+log F 48.8 98.5 35.0 41.3 10.7 75.3 77.7 46.0 24.5 6.9
QA-v3 T softmax F 48.9 98.5 37.9 38.1 17.8 73.7 78.4 44.4 27.2 10.3

Table 2: Best Overlap F1 scores for the dev set. Aug – augmentation, WSch – weighting Scheme, PQ – Prefix
Question, O - Overall, Q – Quantity, ME – Measured Entity, MP – Measured Property, Qlfr – Qualifier, UoM –
Unit, M – Modifier, HQ – Has Quantity, HP – Has Property, Qlfs – Qualifies.

Model Aug WSch PQ O Q ME MP Qlfr UoM M HQ HP Qlfs
evaluation phase results: roberta.large

QA-v1 T softmax F 51.9 86.1 43.7 46.7 16.3 72.2 64.2 48.2 31.8 9.2
evaluation phase results: best results of other competitors

47.3 85.5 40.6 43.7 10.7 80.4 61.4 42.4 25.7 6.4
post-evaluation phase results: roberta.base

QA-v1 F equal F 44.8 84.7 38.8 38.1 15.4 66.9 52.0 39.5 24.3 8.5
QA-v2 F equal T 43.5 84.7 36.3 34.5 12.3 66.9 57.0 37.6 21.9 5.6
QA-v3 F rsqr+log F 45.1 84.7 39.3 39.7 11.9 67.2 50.9 41.7 24.3 7.8
QA-v4 F rsqr+log T 45.2 84.7 39.3 40.1 13.8 67.0 48.8 41.7 24.8 7.1
QA-v5 F softmax F 43.6 83.8 37.5 35.9 14.9 67.9 49.5 37.9 23.3 8.3
QA-v6 F softmax T 42.7 84.7 37.6 32.5 10.2 67.0 55.9 34.4 20.4 5.8
QA-v7 T equal F 44.6 84.2 37.4 37.9 9.8 67.4 57.2 39.7 23.6 6.2
QA-v8 T equal T 45.7 84.7 39.4 38.8 12.5 66.7 58.8 41.9 24.2 7.4
QA-v9 T rsqr+log F 45.9 84.4 39.0 38.3 18.7 66.1 58.7 41.5 24.1 10.6
QA-v10 T rsqr+log T 47.1 84.7 39.9 42.0 12.5 68.2 59.6 44.4 26.6 7.4
QA-v11 T softmax F 45.8 84.5 40.0 39.9 14.3 66.8 56.1 42.2 24.7 7.7
QA-v12 T softmax T 46.0 84.7 39.9 39.3 12.3 67.4 56.2 41.9 26.3 6.6

post-evaluation phase results: roberta.large
QA-v1 T equal F 48.9 84.6 43.0 45.6 15.4 67.0 56.6 47.7 32.0 8.0
QA-v2 T rsqr+log F 47.2 83.8 41.9 42.0 9.2 66.7 58.0 44.6 29.7 6.0
QA-v3 T softmax F 47.6 84.6 41.9 41.8 15.4 66.5 59.9 44.9 29.7 8.3

Table 3: Overlap F1 scores for the test set. Aug – augmentation, WSch – weighting Scheme, PQ – Prefix Question,
O - Overall, Q – Quantity, ME – Measured Entity, MP – Measured Property, Qlfr – Qualifier, UoM – Unit, M –
Modifier, HQ – Has Quantity, HP – Has Property, Qlfs – Qualifies.

models. In the case of large models, again, equal
weighting scheme demonstrated the best result.

In all our post-evaluation experiments we used
the same settings as in Table 1. We tried learning
rates from [5e− 5, 1e− 4, 2e− 4] and batch sizes
from [32, 64, 128].

5 Conclusion

In this paper, we introduced our solution to
SemEval-2021 Task 8: MeasEval: Counts and Mea-
surements. Our approach was based on RoBERTa
and LUKE models. We show that extracting mea-

surements from a text can be treated as a question-
answering task. In this work, we tried a set of
different models, hyperparameters, and weighting
schemes and present their effect on the final result.
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Abstract

Question answering from semi-structured ta-
bles can be seen as a semantic parsing task
and is significant and practical for pushing
the boundary of natural language understand-
ing. Existing research mainly focuses on un-
derstanding contents from unstructured evi-
dence, e.g., news, natural language sentences,
and documents. The task of verification from
structured evidence, such as tables, charts, and
databases, is still less explored. This paper de-
scribes sattiy team’s system in SemEval-2021
task 9: Statement Verification and Evidence
Finding with Tables (SEM-TAB-FACT). This
competition aims to verify statements and to
find evidence from tables for scientific articles
and to promote the proper interpretation of the
surrounding article. In this paper, we exploited
ensemble models of pre-trained language mod-
els over tables, TaPas and TaBERT, for Task A
and adjust the result based on some rules ex-
tracted for Task B. Finally, in the leaderboard,
we attain the F1 scores of 0.8496 and 0.7732 in
Task A for the 2-way and 3-way evaluation, re-
spectively, and the F1 score of 0.4856 in Task
B.

1 Introduction

Semantic parsing is one of the most important tasks
in natural language processing. It not only needs to
understand the meaning of natural language state-
ments, but also needs to map them to meaningful
executable queries, such as logical forms, SQL
queries, and Python code (Pan et al., 2019; Lei
et al., 2020; Zhu et al., 2021). Question answer-
ing from semi-structured tables is usually seen as a
semantic parsing task (Pasupat and Liang, 2015),
where questions are translated into logical forms
that can be executed against the table to retrieve
the correct denotation (Zhong et al., 2017).

Practically, it is significant in natural language
understanding to verify whether a textual hypoth-

esis is entailed or refuted by evidence (Benthem,
2008; D. et al., 1978). The verification problem
has been extensively studied in different natural
language tasks, such as natural language infer-
ence (NLI) (Bowman et al., 2015), claim verifi-
cation (Hanselowski et al., 2018), recognizing of
textual entailment (RTE) (Dagan et al., 2005), and
multi-model language reasoning (NLVR/NLVR2)
(Suhr et al., 2018). However, existing research
mainly focuses on verifying hypothesis from un-
structured evidence, e.g., news, natural language
sentences and documents. Research of verification
under structured evidence, such as tables, charts,
and databases, is still in the exploratory stage.

This year, SemEval-2021 Task 9: Statement Ver-
ification and Evidence Finding with Tables (SEM-
TAB-FACT), aims to verify statements and find
evidence from tables in scientific articles (Wang
et al., 2021a). It is an important task targeting at
promoting proper interpretation of the surrounding
article.

The competition tries to explore table under-
standing from two tasks:
– Task A - Table Statement Support: The task aims

to determine whether a statement is fully sup-
ported, refuted, or unknown to a given table.

– Task B - Relevant Cell Selection: given a state-
ment and a table, the task is to determine which
cells in the table provide evidence for supporting
or refuting the statement.
The competition contains the following chal-

lenges:
– In task A, there is no training data for the “Un-

known” category and the number of tables is
small in the training set.

– The lexical expression of the table may be differ-
ent from that in the statement.

– The table structure is complex and diverse. A ta-
ble may contain missing values while the the sup-
porting evidence may be resided in cells across
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several rows or columns.
– It is difficult to understand the statements. For

example, some statements express totally differ-
ent semantics meaning with only one different
word. This difficulty makes it even harder to find
the evidence cells from tables.
To overcome these challenges, we incorporate

several key technologies in our implementation:
– developing a systematic way to generate data

from the “Unknown” category;
– including additional data corpus to enrich the

training data;
– exploiting existing state-of-the-art pre-trained

language models over tables, TaBERT (Yin et al.,
2020) and TaPas (Yin et al., 2020), and ensem-
bling them into a powerful one;

– aligning contents in tables and statements while
constructing manual rules for tackling Task B.

The test shows that our implementation can in-
crease the performance according and finally, in
the leadboard, we attain the F1 scores of 0.8496
and 0.7732 in Task A for the 2-way and 3-way eval-
uation, respectively, and the F1 score of 0.4856 in
Task B.

The rest of this paper is organized as follows:
In Sec. 2, we briefly depict related work to our
implementation. In Sec. 3, we detail our proposed
system. In Sec. 4, we present the experimental
setup and analyze the results. Finally, we conclude
our work in Sec. 5.

2 Related Work

Recently, pre-trained language models (PLMs),
e.g., BERT (Devlin et al., 2019), XLNET (Yang
et al., 2019), and RoBERTa (Liu et al., 2019), have
witnessed the burgeoning of promoting various
downstream NLP tasks, such as reading compre-
hension, named entity recognition and text classifi-
cation (Li et al., 2020; Lei et al., 2021). However,
the current pretrained language models are basi-
cally trained on the general text. They are not fit
for some tasks, e.g., Text-to-SQL, Table-to-Text,
which need to encode the structured data, because
the data in the structured table also needs to be
encoded at the same time. Directly applying the
existing PLMs may face the problem of inconsis-
tency between the encoded text from the table and
the pretrained text.

TaBERT(Yin et al., 2020) is a newly proposed
pretrained model built on top of BERT and jointly
learns contextual representations for utterances and

the structured schema of database (DB) tables. This
model views the verification task completely as an
NLI problem by linearizing a table as a premise
sentence and applies PLMs to encode both the ta-
ble and statements into distributed representation
for classification. This model excels at linguistic
reasoning like paraphrasing and inference but lacks
symbolic reasoning skills. Intuitively, encoding
more table contents, e.g., type information and con-
tent snapshots, relevant to the input utterance could
potentially help answer questions that involve rea-
soning over information across multiple rows in the
table because they can provide more hints about
the meaning of a column. TaPas (Herzig et al.,
2020) is another newly proposed pretrained ques-
tion answering model over tables implemented on
BERT to avoid generating the logical forms. The
model can fine-tune on semantic parsing datasets,
only using weak supervision, with an end-to-end
differentiable recipe.

Another stream of work on evidence finding with
table is the rule-based approaches. Most evidence
cells can be extracted by rules. For example, if a
row head or column head appears in the statement,
we infer this row or col support this statement. Al-
though rule-based approaches suffer from the low
recall issue, they exhibit high precision and can be
applied to adjust the result for ensemble.

3 System Overview

We elaborate the task and present our system in the
following.

3.1 Data Description and Tasks

In Task A, the original dataset is a set of XML
files, where each XML file represents a table and
contains multiple sections:
– document section represents the whole docu-

ment;
– table section determines the unique ID of the

document;
– caption section is a brief description of the table;
– legend section is a detailed description of the

table;
– multiple row sections describe the contents of

each row of the table; and
– statements section provides several factual state-

ments.
This task aims to determine if a statement is en-
tailed or refuted by the given table, or whether, as
is in some cases, this cannot be determined from
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Tables
Label Distribution Tokens in Statements Tokens in Tables

Entailed/Refuted/Unknown Max./Min./Avg. Max./Min./Avg.

Train
Task 9 981 2,818/1,688/0 88/3/11 302/1/10
Tabfact 16,573 63,962/54,313/0 57/4/14 127/5/13
Augm. 17,554 66,780/56,001/61,436 88/3/12 302/1/11

Dev. − 52 250/213/93 53/4/13 115/2/11
Test − 52 − 82/4/12 69/2/11

Table 1: Data statistics.

the table. The competition also provides two kinds
of evaluations for the task:

• 3-way F1 score evaluation: a standard preci-
sion/recall evaluation (3-way) is computed to
evaluates whether each table is correctly clas-
sified into one of the three types in {Entailed,
Refuted, Unknown}. It is to test whether
the classification algorithm understands cases
where there is insufficient information to make
a determination.

• 2-way F1 score evaluation: the F1 score is
computed to evaluate the performance when
the statements with the “unknown” ground
truth label are removed. The metric will
also penalize misclassifying Refuted/Entailed
statement as unknown.

In the evaluation, the score for all statements in
each table is first averaged and then averaged across
all tables to get the final F1 score.

In Task B, the raw dataset is a subset of task A,
where unknown statements are excluded. The goal
is to determine for each cell and each statement, if
the cell is within the minimum set of cells needed
to provide evidence for the statement “relevant”
or “irrelevant”. For some statements, there may
be multiple minimal sets of cells that can be used
to determine statement entailment or refusal. In
such cases, the ground truth will contain all of the
versions. The evaluation will calculate the recall
and precision for each cell, with “relevant” cells as
the positive category. The evaluation is conducted
similarly as that in Task A.

3.2 Data Augmentation

There are mainly two critical issues in Task A. First,
the number of the tables is small. We then include
more external data, the TabFact dataset (Chen et al.,
2020) to improve the generalization of our pro-
posed system. Second and more critically, “un-
known” statements do not exist in the training set
but may appear in the test set. To allow our sys-

tem to output the “unknown” category, we con-
struct additional “unknown” statements to enrich
the training set. More specifically, we randomly se-
lect some statements from other tables and assign
them to the “unknown” category for the current
table. In order to keep balance on the labels, the
number of selected statements from other tables
is set to half of the statements in the current table.
Details about the data statistics can be referred to
Table 1.

3.3 Model Ensemble for Task A

Figure 1 outlines the overall structure of our sys-
tem, which is an ensemble of two main pretrained
models on table-based data, TaBERT and TaPas,
or two variants of TaBERT and four variants of
TaPas. It is worth noting that the input of all mod-
els are the same. That is, given a statement and a
table, the input is started with the sentence token,
[CLS], followed by the sequence of the tokens in
the statement, the segmentation token ([SEP]), and
the sequence of the tokens in the flattened table.
All the tokens in the statement and the table are ex-
tracted by wordpiece as in BERT and related NLP
tasks (Devlin et al., 2019; Yang, 2019; Yang et al.,
2021; Yang and Shen, 2021; Wang et al., 2021b).
The flattened table means that we borrow the imple-
mentation in TaBERT by only extracting the most
likely content snapshot as detailed in Sec. 3.4. The
obtained tokens’ embeddings are then fed into six
strong baselines, i.e., two variants of TaBERT and
four variants of TaPas, to attain the classification
scores for the corresponding labels. The classifi-
cation scores are then concatenated and fed into a
vote layer, i.e., a fully-connected network, to yield
the final prediction.

3.4 Content Snapshot

In order to pin point the important rows and avoid
excessively encode input from the table, we borrow
the idea of content snapshot in TaBERT (Yin et al.,
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Figure 1: Ensemble architecture

Models Original data +TabFact +Augm.
TaBERT 1 0.7446/0.6580 0.7634/0.6837 0.8003/0.7502
TaBERT 3 0.7689/0.6792 0.7952/0.7008 0.8241/0.7653

TaPas TFIMLR 0.7502/0.6637 0.7859/0.6799 0.8102/0.7649
TaPas WSIMLR 0.7498/0.6522 0.7852/0.7005 0.8024/0.7577

TaPas IMLR 0.7538/0.6358 0.7799/0.6890 0.7908/0.7396
TaPas WSMLR 0.7695/0.6875 0.7904/0.7058 0.8156/0.7609

Table 2: Comparison of strong baselines in Task A for 2-way and 3-way evaluation.

Models +TabFact +Augm. +Rule
TaBERT 1 0.4025 0.4159 0.4605
TaBERT 3 0.4158 0.4305 0.4685

TaPas TFIMLR 0.4253 0.4299 0.4597
TaPas WSIMLR 0.4199 0.4208 0.4682

TaPas IMLR 0.4006 0.4102 0.4467
TaPas WSMLR 0.4258 0.4386 0.4708

Table 3: Comparison of strong baselines in Task B.

2020) to encode only a few rows that are most
relevant to the statement. We create the content

snapshot of K rows based on the following simple
strategy. First, we count the number of rows of each
table and find their median, say R. If the number
of rows in the current table is less than or equal
to R, then K is set to the total number of rows in
the current table and the content snapshot is the
entire content of the current table. If the number of
rows in the current table is greater than R, we set
K = R and select the top-K row with the highest
overlap rate between the statement and each row of
n-grams as the candidate rows.
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3.5 Rule Construction for Task B

For Task B, we apply the same model trained in
Task A to find whether the current table supports
the statement. If yes, we label all cells as entailed.
Otherwise, we first align the word expression in ta-
bles and statements while building the correspond-
ing rules to adjust the model prediction. That is,
we change uppercase to lowercase and transform
all abbreviations into the full name in statements,
cells, col heads and row heads. We also conduct
stemming on all words. For example, “definition”
and “defined” is transformed to “define”. After
that, we collect all words in a statement into a word
bag and determine the supporting relation based on
the following rules: 1) If a word in the word bag
appears in a row head, we then infer that cells in
the whole column supports the statement; 2)If a
word appears in the first column of the table, we
then infer that cells in the whole row supports the
statement; 3) If a word appears in both a row head
and a cell in the first column of a table, we then
infer that the cell corresponding to the row and col-
umn supports the statement; 4) If a word appears
in a cell, we then infer that this cell supports the
statement.

4 Experiments

In the following, we present the strong baselines
and the results with analysis.

We have tried different combinations of
TaBERT and TaPas pre-trained models and
choose the following 6 best baselines: 1)
TaBERT 1: the pre-trained TaBERT with
K = 1; 2) TaBERT 3: the pre-trained
TaBERT with K = 3; 3) TaPas TFIMLR:
the pre-trained large TaPas downloaded from
tapas tabfact inter masklm large reset.zip;
4) TaPas WSIMLR: the pre-trained
large TaPas downloaded from
tapas wikisql sqa inter masklm large reset.zip;
5) TaPas IMLR: the pre-trained large TaPas down-
loaded from tapas inter masklm large reset.zip;
6) TaPas WSMLR: the pre-trained
large TaPas downloaded from
tapas wikisql sqa masklm large reset.zip. Our
proposed system is funetuned on the above models
for the original training data, the original data with
the TabFact data, and the augmentation data. We
also tune the hyper parameters to fit a better result
in the local test dataset.

Table 2 reports the evaluation results of Task

A on the development set when funetuning the
above six strong baselines on different training data.
The results show that the TaPas WSMLR attains
the best performance on the original data. The
best performance is further improved from 0.7695
to 0.7952 for 2-way evaluation and from 0.6875
to 0.7058 for 3-way evaluation, respectively, by
including the TabFact data. The performance is
further improved to 0.8241 for 2-way evaluation
and 0.7653 for 3-way evaluation, respectively, by
adding the augmentation data. Finally, we apply
the voting mechanism to ensemble the results and
achieve the F1 scores of 0.8496 and 0.7732 on the
test set, respectively.

Table 3 reports the results of Task B on the devel-
opment set when funetuning the above six strong
baselines on different training data. The results
show that the TaPas WSMLR attains the best per-
formance among all six strong baselines and the
perform increases from 0.4258 after adding the Tab-
Fact data, to 0.4386 after adding the augmentation
data, and to 0.4708, additional 7.3% improvement
after adding the manual rules. We conjecture that
TaPas WSMLR can provide more complementary
information for solving the task. Finally, we en-
semble the results by the voting mechanism and
achieve the F1 score of 0.4856 on the test set.

In sum, results in Table 2 and Table 3 confirm the
effectiveness of our proposed system by including
more training data and the manual rules.

5 Conclusion

In this paper, we present the implementation of our
ensemble system to solve the problem of SemEval
2021 Task 9. To include more training data and re-
solve the issue of lacking data from the “Unknown”
category in the training set, we include external
corpus, the TabFact dataset, and specially construct
the augmented data for the “Unknown” category.
Content snapshot is also applied to reduce the en-
coding effort. Six pre-trained language models over
tables are funetuned on the TabFact dataset and the
augmented data with content snapshot tables to
evaluate the corresponding performance. An en-
semble mechanism is applied to get the final result.
Moreover, data alignment and manual rule deter-
mination are applied to solve Task B. Finally, our
system attains the F1 score of 0.8496 and 0.7732
in Task A for 2-way and 3-way evaluation, respec-
tively, while getting the F1 score of 0.4856 in Task
B.
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Abstract

Tables are widely used in various kinds of doc-
uments to present information concisely. Un-
derstanding tables is a challenging problem
that requires an understanding of language and
table structure, along with numerical and logi-
cal reasoning. In this paper, we present our sys-
tems to solve Task 9 of SemEval-2021: State-
ment Verification and Evidence Finding with
Tables (SEM-TAB-FACTS). The task con-
sists of two subtasks: (A) Given a table and
a statement, predicting whether the table sup-
ports the statement and (B) Predicting which
cells in the table provide evidence for/against
the statement. We fine-tune TAPAS (a model
which extends BERT’s architecture to capture
tabular structure) for both the subtasks as it has
shown state-of-the-art performance in various
table understanding tasks. In subtask A, we
evaluate how transfer learning and standard-
izing tables to have a single header row im-
proves TAPAS’ performance. In subtask B,
we evaluate how different fine-tuning strate-
gies can improve TAPAS’ performance. Our
systems achieve an F1 score of 67.34 in sub-
task A three-way classification, 72.89 in sub-
task A two-way classification, and 62.95 in
subtask B.

1 Introduction

There has been extensive work on verifying if a
given textual context supports a given statement.
Even though tables are also widely used to con-
vey information, especially in scientific texts, there
has been comparatively less work on verifying if a
given table supports a statement. To this end, Se-
mEval 2021 Task 9 (Wang et al., 2021) focuses on
statement verification and evidence finding for ta-
bles from scientific articles in the English language.
The task is divided into two subtasks - A and B.
The aim of subtask A is to classify whether a given

∗The authors have contributed equally.

statement is entailed or refuted according to the
given table and associated table metadata (such as
captions and legends) or whether the statement’s
truth is unknown as it cannot be determined from
the table. The aim of subtask B is to classify each
cell in the table as relevant or irrelevant in deter-
mining whether the statement is entailed or refuted
from the tabular evidence (the truth value of the
statement is also provided).

Our systems use TAPAS (Herzig et al., 2020)
trained with intermediate pre-training (Eisenschlos
et al., 2020) for both the subtasks. For subtask A,
we fine-tune TAPAS after adding a three-way clas-
sification head on top for classifying the statement
as entailed/refuted/unknown. We also evaluate how
transfer learning and standardizing tables to have
a single header row can improve TAPAS’ perfor-
mance. Due to the similarity between subtask B
and table question-answering (which involves cell
selection or cell selection followed by aggregation),
we use the TAPAS architecture previously used for
table question-answering and fine-tune it to select
the relevant cells. We also evaluate how different
fine-tuning strategies can improve TAPAS’ perfor-
mance on evidence finding.

Our systems achieve an F1-micro score of 67.34
in subtask A and 72.89 in subtask A if the unknown
statements are not considered while calculating the
metrics (however, classifying entailed/refuted state-
ments as unknown is still penalized). Our submit-
ted system achieves an F1 score of 62.95 in subtask
B. During the post-evaluation phase, we modified
our system and achieved an F1-score of 65.48 in
subtask B.

The code for our systems is available at https:
//github.com/devanshg27/sem-tab-fact.
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Frequency Percent Frequency Percent
AQA 241539 61.6 84742 55.7
WJEC 83219 21.2 39650 26.1
Pearson 37194 9.5 18815 12.4
OCR 30061 7.7 8818 5.8
Total 392015 152025

EnglishEnglish Language
(4)(3)(2)(1) Caption: Number of GCSE Full Course entries by Awarding

Body (KS4 Results tables, 2014)

Legend: Note. Number of GCSE Full Course entries in the
summer season of the academic year 2012-2013. AQA (The
Assessment and Qualifications Alliance); WJEC (Welsh Joint
Education Committee); OCR (Oxford, Cambridge and RSA
Examinations); CCEA (Council for the Curriculum, Examina-
tions and Assessment). We do not show the information of an
additional awarding body that accounts for almost no entries.

Entailed: 1. The highest Frequency, not counting the Total, is 84742.

2. The highest English Percent is for AQA

Refuted: 1. The highest Percent value for OCR is 5.8

2. The lowest total is 392015

Unknown: 1. First, this is due to technical problems in providing Unique

Candidate Numbers (UPN) for all candidates.

2. This is for four main reasons.

Figure 1: An example from the SEM-TAB-FACTS dataset: Table A1 From 10262.xml along with its caption
and legend. Some example statements of each class associated with this table are also shown. The highlighted
cells are the relevant cells for entailed statement 2.

2 Background

Verifying if the given textual evidence supports
a given statement is a fundamental natural lan-
guage processing problem. It has been extensively
studied under different tasks such as RTE (Recog-
nizing Textual Entailment) (Dagan et al., 2006),
NLI (Natural Language Inference) (Bowman et al.,
2015), FEVER (Fact Extraction and VERifica-
tion) (Thorne et al., 2018). In recent years, large-
scale pre-trained models (Devlin et al., 2019; Peters
et al., 2018; Yang et al., 2019; Liu et al., 2019) have
dominated these tasks and have achieved close-to-
human performance. NLVR (Suhr et al., 2017)
and NLVR2 (Suhr et al., 2019) focus on verify-
ing a statement given an image as evidence. TAB-
FACT (Chen et al., 2020) focuses on verifying a
statement given a table from Wikipedia1 as evi-
dence.

Along with releasing TABFACT, Chen et al.
(2020) also discuss two promising approaches for
tabular fact verification, Latent Program Algo-
rithm(LPA) and Table-BERT. LPA is a semantic
parsing approach that parses statements into pro-
grams (logical forms) and executes the programs
against the table to predict the entailment decision.
Most of the current models (Zhong et al., 2020;
Shi et al., 2020; Yang et al., 2020) for TABFACT

are semantic parsing approaches similar to LPA.
Table-BERT encodes the linearized tables and state-
ments using BERT-based models and directly pre-

1https://www.wikipedia.org/

dicts the entailment decision. Zhang et al. (2020)
inject table structural information into the mask
of the self-attention layer of BERT-based mod-
els, which helps the model learn better table repre-
sentations. TAPAS (Herzig et al., 2020) extends
BERT’s architecture to capture the tabular struc-
ture, and it showed competitive performance on var-
ious table question answering datasets: SQA (Iyyer
et al., 2017), WTQ (Pasupat and Liang, 2015) and
WikiSQL (Zhong et al., 2017). Eisenschlos et al.
(2020) add an intermediate pre-training step before
the fine-tuning step to TAPAS and show that it
achieves state-of-the-art results on TABFACT and
SQA (Iyyer et al., 2017). Their model is still 8
points behind human performance on TABFACT

since tabular fact verification involves table under-
standing and complex reasoning.

While TABFACT also focuses on fact verifica-
tion using tables as evidence, it focuses on tables
from Wikipedia, whereas SemEval-2021 Task 9
(SEM-TAB-FACTS) instead focuses on tables
from scientific articles and has a subtask related to
evidence finding. Also, TABFACT did not have a
neutral/unknown class, which they left out because
of low inter-worker agreement due to confusion
with refuted class. Figure 1 shows an example of a
table from the SEM-TAB-FACTS dataset and the
labels for the two subtasks.
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Train (Auto) Set Train (Manual) Set Dev Set

Total number of tables with <thead> tag 1977 980 52
Number of tables with correct header prediction 1855(93.83%) 918(93.67%) 51(98.08%)
Number of tables with header prediction error is ≤ 1 1966(99.44%) 972(99.18%) 52(100%)

Table 1: Header Prediction Statistics

(1) (2) (3) (4)
English Language English Language English English
Frequency Percent Frequency Percent

AQA 241539 61.6 84742 55.7
WJEC 83219 21.2 39650 26.1
Pearson 37194 9.5 18815 12.4
OCR 30061 7.7 8818 5.8
Total 392015 152025

(a) Converting multi-row/multi-column cells to single cells

(1)
English Language
Frequency

(2)
English Language
Percent

(3)
English
Frequency

(4)
English
Percent

AQA 241539 61.6 84742 55.7
WJEC 83219 21.2 39650 26.1
Pearson 37194 9.5 18815 12.4
OCR 30061 7.7 8818 5.8
Total 392015 152025

(b) Standardizing the header rows of the table with single cells

Figure 2: Pre-processing and header standardization ap-
plied to the table shown in Figure 1.

3 System Overview

In this section, we provide a general overview of
our systems for the two subtasks. We use TAPAS
for both subtasks.

3.1 Subtask A: Statement Verification

Pre-processing Since TAPAS only works on ta-
bles with single cells (cells which do not span mul-
tiple columns/rows) only, we first convert the tables
with multi-row/multi-column cells to tables with
only single cells by duplicating the value of the cell
in every single cell the multi-row/multi-column cell
spans. An example of the pre-processing is shown
in Figure 2a.

Header Standardization We experiment with
standardizing the pre-processed tables with multi-
row headers to tables with a single header row since
TAPAS was pre-trained on single header tables
and TABFACT (which we want to use for transfer
learning) also contains single header tables. We
first predict the number of header rows using the
following rules:

1. In many pre-processed tables, we found that
the left-most column contained row names,

and either (a) all the header cells in the left-
most column were empty, or (b) the cell value
at the top-left corner was repeated in all the
header cells below it, or (c) the cell at the top-
left corner was not empty, but the header cells
below it were empty. Based on these cases, we
initially estimate the number of header rows
as the number of rows at the top, such that all
cells in the left-most column in those rows are
either empty or have the same value as the cell
at the top-left corner.

2. We also found that in many cases, there were
multi-column cells in the header, which had
more specific sub-headers in the rows below.
To handle these cases, we increment the es-
timate of header rows until no two adjacent
columns have the same header cell values.

We merge the predicted header rows into a single
row by joining each column’s header cell values
into a single cell with a newline as a separator.
An example of header standardization is shown in
Figure 2b. We were provided with HTML versions
of the tables in the training and development set.
We compare our predictions against the <thead>
tags in the HTML tables to analyze our header
prediction system’s performance. The results are
shown in Table 1. We also find that in almost all of
the cases, the predictions are either correct or have
an error of ±1.

To study the effect of header standardization, we
will train all our systems with and without header
standardization.

Model Our model takes the following
input: [CLS] <statement> [SEP]
<flattened table>, which is tokenized
using the standard BERT tokenizer. We compute
the class probabilities using a linear layer with a
softmax activation function on top of the output
of the [CLS] token, as shown in Figure 3a. We
use the weighted cross-entropy loss, which helps
in handling imbalance in the class sizes:
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TAPAS

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M... ...

... ...E[CLS] E1 E’ME[SEP] E’1

... ...T[CLS] T1 T’MT[SEP] T’1

EN

TN

Class 
Prediction

Statement Flattened Table

(a) Subtask A

TAPAS

[CLS] Tok 1 Tok N [SEP] Tok 1 Tok M... ...

... ...E[CLS] E1 E’ME[SEP] E’1

... ...T[CLS] T1 T’MT[SEP] T’1

EN

TN

Cell Selection

Statement Flattened Table

(b) Subtask B

Figure 3: The architecture of our models

Hy(y
′) = −

∑

i

K∑

k=1

wkyik · log(y′ik)

Where yik denotes the ground truth label, it is
1 if k is the true class label of the ith token, and 0
otherwise, y′ik is the corresponding model proba-
bility prediction and wk is the weight for class k.
We set wk as the size of the biggest class divided
by the size of class k.

To analyze how transfer learning can im-
prove performance, we compare the following ap-
proaches:

• TAPAS-stf: We use the publicly available
TAPAS checkpoint which has been pre-
trained with a masked language modeling ob-
jective and fine-tune it on the SEM-TAB-
FACTS dataset provided by the task organiz-
ers.

• TAPAS-tf: As a baseline, we directly use the
publicly available TAPAS checkpoint, which
had been fine-tuned on TABFACT without any
further fine-tuning on SEM-TAB-FACTS.
Since TABFACT has only entailed/refuted la-
bels, this model is a binary classifier and does
not predict the unknown class’s probabilities.

• TAPAS-tf-stf: We use the publicly avail-
able TAPAS checkpoint, which had been fine-
tuned on TABFACT and further fine-tune it
on the SEM-TAB-FACTS dataset released
by the task organizers. This is our submitted
model for subtask A.

3.2 Subtask B: Evidence Finding
Pre-processing and Header Standardization
We convert the multi-row/multi-column cells and
standardize the header rows as discussed in Sec-
tion 3.1. The relevant/irrelevant labels of the
multi-row/multi-column cells are duplicated to all
the single cells they span. We consider the rele-
vant/irrelevant labels only for the cells of the non-
header rows as TAPAS does not make predictions
for header cells. Based on the performance of
header standardization in subtask A (which we will
discuss in Section 5), we standardize headers for
all our models in this subtask.

Model Our model takes the following
input: [CLS] <statement> [SEP]
<flattened table>, which is tokenized
using the standard BERT tokenizer. We show the
architecture of our model in Figure 3b. Our model
computes token-level logits using a linear layer on
top of each token’s last hidden state output, which
are used to compute cell-level logits by averaging
the logits of the tokens in each cell. The probability
of selection for each cell is calculated from the
cell-level logits using the sigmoid function. We
use the weighted binary cross-entropy loss which
helps in handling class imbalance:

Hy(y
′) = −

∑

i

wpyi · log y′i + (1− yi) · log
(
1− y′i

)

Where yi denotes the ground-truth label, it is 1
if the ith token is part of any relevant cell, and 0
otherwise, y′i is the corresponding model probabil-
ity prediction, and wp denotes the weight of the
positive (relevant) class. We set wp to 10.
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#Tables #Entailed statements #Refuted statements #Unknown statements

Train (Auto-generated) 1980 92136 87209 0
Train (Manually annotated) 981 2818 1688 0
Train (with unknown statements) 981 2818 1688 4506
Validation 52 250 213 93
Test 52 274 248 131

(a) Subtask A

#Tables #Entailed statements #Refuted statements #Relevant cells #Irrelevant cells

Train (auto-generated) 1980 92136 87209 1039058 15467957
Validation 51 233 191 3048 28495
Test 52 251 219 3458 26724

(b) Subtask B

Table 2: Dataset Statistics for each subtask

Due to the similarity of evidence finding with
table question-answering, we use the publicly avail-
able TAPAS checkpoint, which was fine-tuned in
a chain on SQA, WikiSQL, and finally WTQ. We
compare the following fine-tuning strategies:

• WTQ-base: As a baseline, we fine-tune our
model directly for relevant cell selection on
SEM-TAB-FACTS.

• WTQ-statement: We again fine-tune the
model for relevant cell selection on SEM-
TAB-FACTS, but we try to include the in-
formation on whether the statement was en-
tailed/refuted by modelling the statement as
‘Which cells entail “<statement>”?’ or
‘Which cells refute “<statement>”?’. <state-
ment> denotes the original statement.

• WTQ-separate: We fine-tune two separate
models, one which predicts the relevant cells
for entailed statements and another one for re-
futed statements. This is our submitted system
for subtask B.

During the post-evaluation phase, we experi-
mented with the publicly available TAPAS check-
point, which was fine-tuned on TABFACT. Similar
to the systems described above, we compare three
systems based on this checkpoint: TABFACT-base,
TABFACT-statement, and TABFACT-separate.

Post-Processing We further apply post-
processing steps to obtain the final prediction from
the cell classification. To predict the header’s
relevant cells, we select the header cells for any
column with cells selected as a relevant cell. We
label multi-row/multi-column cells as relevant if

any of the single cells they span are predicted as
relevant.

4 Experimental Setup

4.1 Data Description

We used the dataset provided by the task organizers
for both subtasks. We did not use the table metadata
in our systems.

For subtask A, dataset statistics and the official
splits are shown in Table 2a. The provided training
sets do not have any statements of the unknown
class. So, we used the manually annotated training
set to create a training set with unknown statements.
Each statement of the manually annotated training
set was added as an unknown statement to a differ-
ent table chosen randomly. We used this dataset for
training all our models for subtask A.

For subtask B, dataset statistics and the official
splits are shown in Table 2b. We use the auto-
generated training set for training all our models in
subtask B.

4.2 Implementation

For the implementation of our systems, we used
the HuggingFace Transformers2 library(Wolf et al.,
2020) and we used the AdamW optimizer avail-
able in PyTorch3 (Paszke et al., 2019) with the
default parameters (learning rates are specified be-
low). All models were fine-tuned using a single
Nvidia GeForce RTX 2080 Ti GPU.

We used the base variant of TAPAS, which has a
hidden dimension of 768 in all our models. All the

2 Transformers, v4.2.0, https://huggingface.
co/transformers/

3PyTorch, v1.7.1, https://pytorch.org/
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F1 Score
Validation Set Test Set

TAPAS-stf TAPAS-tf TAPAS-tf-stf TAPAS-stf TAPAS-tf TAPAS-tf-stf

Without header standardization

2-way micro 72.1 ±0.43 69.42 71.01 ±0.99 68.01 ±0.28 70.97 72.97 ±1.37
3-way micro 66.41 ±0.48 58.97 65.76 ±0.37 61.59 ±0.02 57 65.15 ±0.81
Refuted 67.95 ±0.98 64.31 70.32 ±0.91 62.04 ±0.45 64.05 69.13 ±0.74
Entailed 67.8 ±0.36 58.94 68.09 ±1.24 64.89 ±0.49 61.9 67.23 ±1.18
Unknown 49.76 ±0.73 0 47.52 ±3.52 47.58 ±0.8 0 46.43 ±1.88

With header standardization

2-way micro 71.34 ±0.96 72.78 74.35 ±1.14 68.67 ±0.9 73.79 73.87 ±0.87
3-way micro 66.16 ±0.64 61.11 69.16 ±0.58 61.99 ±0.8 59.32 66.95 ±0.27
Refuted 68.22 ±0.29 65.98 73.2 ±0.83 61.42 ±1.9 65.7 70.39 ±0.44
Entailed 67.98 ±0.43 63.67 70 ±1.69 65.67 ±0.21 65.38 68.9 ±0.48
Unknown 49.9 ±3.07 0 50.91 ±3.99 48.27 ±1.55 0 50.89 ±3.93

Table 3: Performance on subtask A: Mean and standard deviation of the metrics from 3 independent runs. In
the case of TAPAS-tf, we calculate the metrics using the publicly available TAPAS checkpoint fine-tuned on
TABFACT.

Model
Validation Set Test Set

F1 F1entailed F1refuted F1 F1entailed F1refuted

WTQ-base 55.39 ±0.53 64.07 ±0.65 48.66 ±0.47 61.36 ±1.47 68.47 ±2.49 52.75 ±1.15
WTQ-statement 55.18 ±1.78 63.36 ±3.16 48.45 ±0.8 58.93 ±2.49 65.22 ±4.38 51.27 ±0.54
WTQ-separate 56.46 ±0.43 66.91 ±0.3 48.74 ±1.01 62.26 ±0.79 71.87 ±1.2 50.79 ±1.86

During Post-Evaluation Phase

TABFACT-base 58.41 ±0.84 64.88 ±1.37 54.02 ±0.91 61.46 ±0.33 67.32 ±1.01 54.47 ±0.55
TABFACT-statement 58.92 ±1.69 65.41 ±1.95 54.18 ±1.69 62.78 ±1.71 68.44 ±2.34 55.8 ±1.36
TABFACT-separate 59.47 ±0.23 68.06 ±0.79 53.16 ±1.18 65.01 ±0.6 74.18 ±0.6 54.48 ±0.58

Table 4: Performance on subtask B: Mean and standard deviation of the metrics from 3 independent runs

TAPAS checkpoints we used had been trained with
intermediate pre-training and used relative position
embeddings (the position index reset when a new
cell starts).

For subtask A, we first fine-tuned the classifier
head with the TAPAS layers frozen for 3 epochs
with a learning rate of 1−5 and then fine-tuned the
whole model for 10 epochs with a learning rate of
1−6. We used a batch size of 8. We saved a check-
point every 100 steps and selected the best check-
point based on the validation set performance.

For subtask B, we fine-tuned the whole model
for 5000 steps with a learning rate of 1−6. We used
a batch size of 8. We saved a checkpoint every 50
steps and selected the best checkpoint based on the
validation set performance.

4.3 Evaluation Metrics

In subtask A, two evaluation metrics are used. The
first evaluation metric used is the standard F1-micro
score for three-way classification. The second met-
ric again calculates the F1-micro score but does not
consider statements with their ground truth label as
the unknown class for evaluation; however, classi-
fying the entailed/refuted statements as unknown
is penalized.

In subtask B, the evaluation metric used is the
standard F1 score with relevant cells as the positive
class. If multiple minimal sets of cells can be used
to determine the statement’s truth value, the dataset
contains all of these versions. The score for that
statement is calculated by comparing the prediction
against each ground truth version and considering
the highest score.
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Validation Set Test Set

Length(≤ 512) Length(> 512) Length(≤ 512) Length(> 512)

Distribution - Number of samples

Subtask A 431(77.52%) 125(22.48%) 616(94.33%) 37(5.67%)
Subtask B 345(81.37%) 79(18.63%) 442(94.04%) 28(5.96%)

Performance of each task’s best model

Subtask A 2-way F1-micro 77.83 ±0.57 65.49 ±3.13 73.83 ±0.83 74.44 ±1.57
Subtask A 3-way F1-micro 73.13 ±1.13 55.53 ±1.4 66.71 ±0.35 54.74 ±1.12
Subtask B F1 62.79 ±0.39 45.91 ±0.68 65.38 ±0.63 58.98 ±1.22

Table 5: Results on long sequences

5 Results

Subtask A The performance of the various sys-
tems we considered in subtask A is shown in Ta-
ble 3. Header standardization improves the perfor-
mance of all the systems we compared. Transfer
learning from TABFACT also improves the perfor-
mance of our systems. Surprisingly, TAPAS-tf
without any fine-tuning on SEM-TAB-FACTS
has a better two-way F1-micro score than TAPAS-
stf. This shows us the potential of transfer learning
from TABFACT in subtask A.

From the confusion matrix shown in Figure 4a,
we observe that our model struggles with the un-
known class and often misclassifies it as refuted.

Subtask B The performance of the various sys-
tems we considered in subtask A is shown in Ta-
ble 4. Modifying the statement to include en-
tailed/refuted class information leads to a small
drop in performance for the models fine-tuned on
question-answering earlier and led to a small in-
crease in performance in models fine-tuned on TAB-
FACT. Separate models for entailed/refuted state-
ments perform the best among the systems we con-
sidered. It significantly improves the performance
on entailed statements, with a little drop in per-
formance on refuted statements. Surprisingly, we
observe that transfer learning from TABFACT per-
forms better than transfer learning from WTQ, even
though it is a cell selection task. We believe this
is because the model has to predict the cells that
can be used as evidence for table entailment. The
token-level embeddings of the model fine-tuned on
TABFACT are better for this task than the model
fine-tuned on WTQ, which is instead a question-
answering dataset.
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Figure 4: Confusion matrices of the test set predictions
by our best model for each subtask. The percentages
show the ratio of the target class, which was predicted
as that class.

Long Inputs The maximum number of tokens
supported by our system is 512. In sequences
longer than 512 tokens, the tables are truncated
row by row to fit in 512 tokens. We compare our
system’s performance on these long sequences and
sequences that fit within 512 tokens. The results
are shown in Table 5. We find a significant drop in
performance on sequences longer than 512 tokens
which had to be truncated.

6 Conclusion

In this paper, we presented our approach for fact
verification and evidence finding for tabular data
in scientific documents. We show that transfer
learning from TABFACT and standardization of
the tables to have a single header helps improve
our system’s performance. We also show that
having separate evidence finding models for en-
tailed/refuted statements helps improve our sys-
tem’s performance in the second subtask.

We also find that our model has a significant
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drop in performance on large tables since they are
truncated to fit in the 512 tokens, the maximum
number of tokens supported by TAPAS.

In future work, we would like to experiment
with table pruning methods like Heuristic entity
linking (Chen et al., 2020) or Heuristic exact match
(Eisenschlos et al., 2020) so that the statement and
table can fit in 512 tokens. Our systems did not use
the table metadata while making the predictions. In
the future, we would also like to explore extending
the model to encode table metadata along with the
table.
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Abstract

This paper describes the system submitted in
the SemEval-2021 Statement Verification and
Evidence Finding with Tables task. The sys-
tem relies on candidate generation for logical
forms on the table based on keyword match-
ing and dependency parsing on the claim state-
ments.

1 Introduction

Tables convey important information in a concise
manner. This is true in many domains, scientific
documents being one of them. Truth verification
tasks in past(e.g. SemEval-2019 Fact Checking
Task) have focused on written text without consid-
ering the tables. The current shared task (Wang
et al., 2021) focuses on tables written in English
language. It requires participants to develop sys-
tems to predict

• veracity of textual claims (statement verifi-
cation)

• identify table cells forming relevant evi-
dence for the claim (evidence finding)

The shared task 1 comprised of two sub-tasks:

1. Subtask A: Table Statement Support

2. Subtask B: Relevant Cell Selection

Subtask A is a classification problem in which
the system needs to assign one of the following
labels for the claim statement:

• Entailed: Table supports the statement.

• Refuted: Statement is contradicted by the ta-
ble.

• Unknown: Not enough information available
in the table to assess statement’s veracity.

Figure 1: Example table showing Networks across East
Asia.

id Claim statement
1 The n value is same for Hong Kong and

Malaysia.
2 There are 9 different types country in the

given table.

Table 1: Statement claims of table in Figure 1

Subtask B requires finding evidence(table cells)
which are minimally required to either support or
refute the claim statement. This is not applicable
for the statements whose veracity is unknown.

These tables were sourced from scientific articles
belonging to journals published by Elsevier and
available on ScienceDirect. For details related to
web scraping of the articles, selection criteria for
choosing the tables, creating statement claims and
assigning table cell evidence for the claim, please
refer to the task description paper (Wang et al.,
2021). An example table is shown in Fig. 1 with
corresponding claims mentioned in Table 1.

System described in this paper generates logical
form candidates on the table data frame based on
the claim statement. It executes the most probable
candidate and verifies the output to check whether
it matches with the one mentioned in the statement.
Averaged F1 score over the tables are shown in

1https://competitions.codalab.org/
competitions/27748
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Table 4. Source code has been released on github 2.

2 Related Work

Thorne et al. (2018) had conducted Fact Extraction
and VERification (FEVER) Shared Task3 to build
systems to verify claims based on evidence from
Wikipedia. Similar to the current shared task, sys-
tems had to label claim as Supported, Refuted or
NotEnoughInfo (if there isn’t sufficient evidence
to either support or refute it). Along with that,
system must extract textual evidence (sets of sen-
tences) that support or refute the claim.

Pasupat and Liang (2015) had created question
answering dataset (WikiTableQuestions) 4 from
Wikipedia tables. Using question-answer pairs as
supervision, they developed a logical-form driven
parsing algorithm.

Herzig et al. (2020) build a question answering
model over tables without generating logical forms
by extending BERT’s architecture (Devlin et al.,
2019) with additional positional embeddings to
encode tabular structure.

3 Model Description

3.1 XML Data

Input xml documents were parsed using the Ele-
mentTree XML API 5. Each document is composed
of table element(s). Table element is composed of
row elements and statements. The row elements
describe the rows and columns of the table and con-
tains the text of each table cell. Optionally, legend
and caption texts were also provided for a portion
of tables.

3.2 Loading table

Table element was parsed and loaded into pandas
dataframe 6. The challenging part was in identify-
ing column labels having hierarchical indexing 7.
An example of hierarchical columns is shown in
Fig. 1, which has four columns: Broad network,

2https://github.com/kaushikacharya/
statement_verification_evidence_finding

3https://fever.ai/2018/task.html
4https://ppasupat.github.io/

WikiTableQuestions/
5https://docs.python.org/3/library/xml.

etree.elementtree.html
6https://pandas.pydata.org/

pandas-docs/stable/reference/api/pandas.
DataFrame.html

7https://pandas.pydata.org/
pandas-docs/stable/user_guide/advanced.
html

# Candidate
1 Column superlative value
2 Column values identical or unique
3 Comparison of column values for a row or

vice-versa
4 Column value range

Table 2: Partial list of Candidates

Family network and so on. All these columns have
three sub-columns: mean, SD, max. A simple
approach to identify whether multiple table rows
represent column labels was applied: Table rows
from top were considered as part of column labels
until all the columns of the table are filled. In the
example table, Broad network is mentioned in ta-
ble cell col:2 and Family network belongs to col:5
The in-between columns (i.e. 3,4) were filled in
next row. Hence the first two rows were considered
as column labels.

Figure 2: Dependency tree for statement id=2 in Ta-
ble 1

3.3 Candidate Selection
A list of candidates were defined along with pat-
tern rules to identify them and corresponding oper-
ations to execute. For instance, for the candidate
superlative(highest/lowest) of column, correspond-
ing operation on pandas dataframe gets executed.
Statements are parsed to identify the candidate and
fact verification is done in the following steps:

1. Match column and row labels (if available)
based on approximate keyword matching.

2. Candidate operation(s) are identified based on
keyword and dependency tag matching.

3. Candidate logical form is executed.

4. Output of candidate operation is matched with
the one mentioned in the statement.

Table 2 enumerates subset of candidates.
For matching columns and row labels, sliding

window over the tokens of statments are matched
using Jaro metric (Cohen et al., 2003). Number
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of tokens in column/row label is considered as the
window size. As an example, for matching the row
label Hong Kong of Figure 1 in Table 1, sliding
window of two tokens is considered. If overlapping
window match the same column/row label, the one
with maximum Jaro metric is chosen. A span of
statement tokens is considered matched if the Jaro
metric is above a threshold (value considered 0.85).

Examples: Statement id=1 in Table 1 matches
the candidate: comparison of two rows for a col-
umn value. The two rows referred by Hong Kong
and Malaysia are compared for the value corre-
sponding to the column N. Logical form: Compar-
ing whether the cell value for the matched column
corresponding the matched rows is same/different.

Statement id=2 refers to the candidate: unique
count of the values under the column Country.
Candidate is chosen based on the keyword different
and matching of a single column Country. Candi-
date value (that needs to be verified) is identified
based on the dependency tree shown in Figure 2.
The token 9 with part of speech tag NUM has the
head token of column country through dependency
tag nummod. The logical form that has been as-
signed for the candidate is unique count over the
matched column of the pandas dataframe.

4 Experimental Setup

4.1 Data

The data splits used were the same as provided
by the task organizers. Split statistics is shown in
Table 3.

split docs tables claims
train 424 981 4506
dev 21 52 556
test 36 52 653

Table 3: Data split count statistics

4.2 External libraries

• spaCy (version: 2.3.2) 8

• word2number 9

4.3 Evaluation Metrics

Task A - Fact Verification The goal of this task
is to determine whether a statement can be en-

8https://github.com/explosion/spaCy
9https://github.com/akshaynagpal/w2n

Figure 3: Distribution of number of statements per ta-
ble.

tailed/refuted by the given table, or cannot be deter-
mined from the table. The classification algorithm
is evaluated using the standard F1-score. Two dif-
ferent evaluation results were generated:

1. Two way

2. Three way

Two way is an easier evaluation in which un-
known ground truth labels were ignored. Whereas
in three way all the three labels were considered.
This tests whether the classification algorithm un-
derstands cases where there are insufficient infor-
mation to make prediction.

Task B - Evidence Finding The goal of this task
is to determine whether a table cell is needed to
entail/refute the given statement. In other words,
whether a statement can be entailed/refuted given
only the table cells marked as relevant. F1 score is
computed for each table with relevant cells as the
positive class and irrelevant cells as the negative
class.

Fig. 3 shows that unlike test data, train data has
many tables with very few statements. This indi-
cates that comparing averaged F1 score(as shown
in Table 4) between train and test data is not a good
indicator how well the model works on unseen test
data compared to its performance on train/dev data.
Instead comparing confusion matrix(as shown in
Table 5 and Table 6) is a better indicator.

5 Results

Averaged F1 score over the tables are shown in
Table 4. These are the scores at the time of writing
this paper. Train data didn’t had the ground truth
for the relevant cell selection. Hence value is non-
available for Task B on train data. Due to absence
of unknown class in train data, 2-way and 3-way
averaged F1 scores are same. Confusion matrix
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is displayed in Table 5 for train data and Table 6
for test data. Predicted claim class unknown also
contains the claim statements for which the system
failed to identify candidate. Hence this class shows
a high value.

split Task A (2 way) Task A (3 way) Task B
train 0.3669 0.3669 NA

dev 0.3804 0.4314 0.3687

test 0.4037 0.4909 0.3849

Table 4: F1 score averaged over tables

truth predicted
entailed refuted unknown

entailed 863 472 1483
refuted 49 861 778

Table 5: Confusion Matrix for Task A on train data.
Row represents truth classes and column represents the
predicted classes.

truth predicted
entailed refuted unknown

entailed 83 39 152
refuted 8 127 113
unknown 3 15 113

Table 6: Confusion Matrix for Task A on test data.
Rows and columns represents truth and predicted
classes respectively.

type # statements
Total wrongly predicted statements 2782

Neither column nor row matched 786

No column matched but row(s) matched 386

Table 7: Matching columns/rows in wrongly predicted
statements in train data.

Error Analysis: The errors can be categorized
broadly into the following categories:

1. Absence of semantic matching

2. Lack of enough candidate generation rules

3. Classifying candidate in a deterministic way

Due to keyword matching the system fails to
identify the columns which are mentioned with

different words in the statement even though se-
mantically they are same. Table 7 gives a glimpse
of probable failures under this category.

The set of candidate generation rules needs to be
extended. The current system misses out candidate
generation in several statements because of the ab-
sence of these not yet defined candidates. The high
number of unknown predictions in the confusion
matrices shown in Table 5 and 6 is a proof of this
issue. There’s a need for a scoring system which
considers multiple probable candidates for logical
forms. The current system selects a single candi-
date based on the one which matches first in the
order listed for candidate match.

6 Conclusion

I have described the system used for submission to
the Statement Verification and Evidence Finding
with Tables task. The problem has been framed
as a candidate generation for logical forms over
dataframe using keyword matching and depen-
dency parsing. Future work would include ex-
tending the defined list of candidates and usage
of scoring based system to identify the most proba-
ble candidate. This improvement would take ideas
from (Pasupat and Liang, 2015) for feature extrac-
tion and build a log-linear model to compute score
for the candidates.
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Abstract

This paper describes our approach for Task 9
of SemEval 2021: Statement Verification and
Evidence Finding with Tables. We participated
in both subtasks, namely statement verification
and evidence finding. For the subtask of state-
ment verification, we extend the TAPAS model
to adapt to the ‘unknown’ class of statements
by finetuning it on an augmented version of
the task data. For the subtask of evidence find-
ing, we finetune the DistilBERT model in a
Siamese setting.

1 Introduction

Tables provide a compact and structured way of pre-
senting information. They are easily interpretable
by humans and are widely used in scientific papers,
business articles, and even in government reports.
At the same time, it is easy to misinterpret tabular
data and even use it maliciously to spread mis-
information. Thus, systems that can verify facts
from tables and locate evidence in them can go
a long way in ameliorating issues related to table
interpretation. Such systems can also be used for
question-answering over large tables, that are dif-
ficult to analyze manually, since the task of fact
verification with evidence finding is closely related
to that of question answering (Jobanputra, 2019).

Table entailment refers to the task of finding
whether a sentence is refuted or supported by a
given table. Traditionally, it has been considered a
binary classification task. However, there could be
instances where the table is not capable enough to
either refute or accept the given statement, meaning
the statement context is “unknown” for the table.
In this paper, we have presented a table entailment
setup that extends to three classes: refuted, entailed,

and unknown, as a part of the Sem-Tab-Fact task
(Wang et al., 2021). The task could be divided into
two parts: statement verification, and evidence find-
ing. Given a table and a statement, one has to first
determine whether the table entails the statement,
refutes the statement, or has insufficient informa-
tion about it. This forms the subtask of statement
verification. If the table entails or refutes the state-
ment, one would also like to know which cells in
the table provided evidence for the same. This is
the subtask of evidence finding, that can be formu-
lated as a binary classification problem. Each cell
in the table is assigned one of the ‘relevant’ or ‘ir-
relevant’ labels depending on whether it provided
evidence for the given statement.

Recent years have seen a rise in the use of trans-
fer learning in language processing (Malte and
Ratadiya, 2019a) owing to their superior perfor-
mance. Models based on underlying concepts like
attention mechanism and transformers are seeing
widespread use across a range of tasks (Malte and
Ratadiya, 2019b; Ratadiya and Mishra, 2019). Our
findings concurred with this trend as we used simi-
lar kinds of architectures as the fundamental blocks
in the systems for both the subtasks. For the subtask
of statement verification, we modify the recently
released TAPAS model (Eisenschlos et al., 2020)
that is pre-trained on the TabFact dataset (Chen
et al., 2020). The pre-trained model is trained on
only two classes: ‘entailed’ and ‘refuted’, and is
not capable of classifying the ‘unknown’ samples.
The training data provided to us for our task also
contains the same two labels. To adapt to the ‘un-
known’ statements, we augment the given data by
including random statements from other tables as
unknown. We then fine-tune the TAPAS model by
extending it to three classes on this augmented data.
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Using this approach, we achieve a three-way F1
score of 65.59 and a two-way F1 score of 71.72 on
the test data. We ranked 8th on the official leader-
board for this subtask.

For the subtask of evidence finding, we fine-
tune the DistilBERT model (Sanh et al., 2019) in a
Siamese setup (Reimers and Gurevych, 2019). The
model is pre-trained on the SNLI dataset (Bowman
et al., 2015), the MultiNLI dataset (Williams et al.,
2018) and the STS benchmark (Cer et al., 2017).
For finetuning, we use the Contrastive loss (Hadsell
et al., 2006) as our loss function. For making a pre-
diction, we calculate the cosine similarity between
the embeddings computed by the model for both
the statement and the cell value. If the cosine simi-
larity value crosses a set threshold, we consider the
cell to be relevant to the given statement. Using
this approach, we achieve an F1-score of 43.02 on
the test data and secured the 7th rank on the official
leaderboard for this subtask.

The source code of our proposed approach for
both the subtasks has been made public1 to encour-
age usage and improve the reproducibility of the
results.

2 Related Work

Recently, the TabFact dataset was released, which
contained 118K human-annotated statements, re-
lated to about 16K Wikipedia tables. These state-
ments were annotated for only two labels, ‘entailed’
and ‘refuted’, leaving out the ‘unknown’ cases.
A system’s ability to distinguish ‘unknown’ state-
ments from ‘entailed’ and ‘refuted’ is quite critical,
as one may elusively create seemingly believable
statements that are actually ‘unknown’.

Recently, there has been work in areas related to
table fact verification, especially since the release
of the TabFact dataset. Many of these approaches
are graph-based in nature (Shi et al., 2020; Yang
et al., 2020; Zhong et al., 2020). The current state-
of-the-art on the TabFact dataset is the recently
released TAPAS model, which outperforms its pre-
decessor by approximately 6%. Unfortunately, all
of these models are quite far from human-level
performance, suggesting ample scope for improve-
ment.

Little to no work has been done previously
on the task of evidence finding, with the closest
approaches being related to table-based question

1The code is available at https://www.github.
com/vcreatek/attestable-semeval/

answering like WikiTableQuestions (Pasupat and
Liang, 2015), WikiSQL (Zhong et al., 2018) and
SQA (Iyyer et al., 2017) where getting the answer
for a question can be considered analogous to get-
ting evidence for a statement.

3 System Overview

3.1 Data and Preprocessing
The training dataset for this task contains two kinds
of data:

• Manual annotations: These are crowd-
sourced from human annotators and have been
validated by a second round of validation.

• Auto-generated annotations: These state-
ments are auto-generated using a random
paraphraser and table understanding service
(Zheng et al., 2020).

A separate development set was also provided.

3.1.1 Subtask A: Statement Verification
The provided dataset for this task is in XML format.
We use a custom parser to convert the data into CSV
format, such that each data sample is of the form
(table, statement, label), where the table is also a
CSV, extracted from the corresponding XML file.
No preprocessing is applied to the statements.

In general, the table cells can span across multi-
ple rows and columns. To simplify things, we treat
a cell spanning multiple columns/rows as multiple
cells with the same value. This preserves the log-
ical hierarchy in the table while keeping the table
structure simple. See Figure 1 for an example.

Figure 1: A cell spanning three columns is considered
as three separate cells with the same value

A table may also have additional metadata ac-
companying it, like the legend, the caption, and the
footer. Our final model does not use this metadata
since we observe in Section 5.1.2 that including the
metadata has a small negative impact on the model
performance.

After the above preprocessing, we have 179, 345
autogenerated and 4506 manual data samples.
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3.1.2 Subtask B: Evidence Finding
For this subtask, we prepare the data in the
form (cell text, statement text, label), where the la-
bel can be ‘relevant’ or ‘irrelevant’. We do not
encode the table’s structural information and fo-
cus only on the semantic similarity between the
statements and the cell texts.

An important point to note here is that only a
few of the cells in the table actually contribute to
the evidence for each statement. The average ratio
of the number of relevant samples to total samples
as observed in the development set for each state-
ment is around 0.097. This causes a substantial
class imbalance since a meager 7% of the total
samples are ‘relevant’. To attend this problem, we
undersample the ‘irrelevant’ samples by removing
some irrelevant samples for each statement from
the data. We try three ratios for undersampling and
compare the percentage of relevant statements after
undersampling in Table 1.

n′i % r nt

0.6ni 10.15 10.24
0.5(nr + ni) 11.24 9.25

0.4ni 14.54 7.15

Table 1: ni and nr stand for the number of irrelevant
and relevant samples for a statement. n′

i stands for the
no. of irrelevant samples kept for each statement after
the undersampling. %r stands for the percentage of
relevant samples after undersampling. nt stands for the
total samples after undersampling, in millions.

In the original data, the average ratio of relevant
to total samples is around 9.7%, so we would want
our data to reflect a similar ratio. Therefore, we
use the data undersampled using the first approach
for further analysis. Hence, the total number of
samples after undersampling stand at 10.24M.

3.2 Data Augmentation

The given data has no ‘unknown’ statements; thus,
we augment the data to introduce samples of this
class label. Let S denote the set of all statements
in our data. Let Se denote the set of all entailed
statements in our data. Let Sr denote the set of all
refuted statements in our data. Then S = Se ∪ Sr.

For a given table t, let St denote the set of all
statements associated with that table. We first calcu-
late ne (the number of entailed statements for that
table) and nr (the number of refuted statements for
that table). We then calculate nu (the number of

unknown statements to add) as follows:

nu = max(min(ne, nr), 1) (1)

After this, we randomly select nu statements
from S\St. This forms the set of ‘unknown’ state-
ments for the table t. We do this for all tables in
the data.

The above augmentation scheme ensures that
the resultant augmented data has an almost equal
overall distribution among the three classes. It also
ensures that evenness across tables is maintained,
as sufficient unknown statements (at least one) are
added for each table, and not just overall. After
performing the above augmentation scheme, we get
85, 296 unknown statements for the autogenerated
data and 1, 637 unknown statements for the manual
data.

3.3 Models

3.3.1 Subtask A: The TAPAS Model
TAPAS (Herzig et al., 2020) is a recently released
BERT (Devlin et al., 2019) based model that en-
codes the structural information via column, row
and rank embeddings. Eisenschlos et al. extended
TAPAS for binary entailment using the TabFact
dataset. We use the base variant (12 encoder
blocks) of this TAPAS model, which has been pre-
trained on the TabFact dataset. We use the base
variant over the large variant (24 encoder blocks)
due to limitations on computation power and due
to the superior performance of the base variant as
shown in Section 5.1.2.

For extending the TAPAS model to support the
unknown class, we replace the two-neuron linear
layer in the pre-trained model by a randomly ini-
tialized linear layer consisting of three neurons
as the output layer. We then finetune this modi-
fied model on the augmented data containing three
classes. Figure 2 shows the overview of the modi-
fied model. It consists of an embedding layer that
concatenates the positional and semantic informa-
tion of a cell value, the encoder block consisting of
transformer layers and subsequent layers that are
required for classification output. The core layers
of the modified model are in accordance with the
original TAPAS model (Herzig et al., 2020; Eisen-
schlos et al., 2020).

3.3.2 Subtask B: Siamese DistilBERT
For the evidence finding subtask, we finetune the
DistilBERT model on the undersampled data. The
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Figure 2: The modified TAPAS architecture. ‘Classi-
fier’ is just a linear layer with three neurons

model was pre-trained with mean pooling on the
SNLI dataset, the MultiNLI dataset, and the STS
benchmark. The mean pooling is applied in a
Siamese setting using the Contrastive loss as the
loss function.

Let s denote a statement, let c denote the cell, let
r denote the relevancy/label (this is either 0 or 1)
and letM(x) denote the embedding computed the
model for an input x. Then, the distance d and the
Contrastive loss L(d, r) is defined as follows:

d = COSINEDISTANCE(M(s),M(c))

L(d, r) = 1

2

(
(1− r)d2 + r(max (0,m− d))2

)

(2)
Here, m denotes the ‘margin’ value, which en-

sures that the dissimilar pairs contribute to the loss
only if their distance is within this margin. For mak-
ing inferences, we first use our finetuned model to
compute the sentence embeddings for the statement
and the cell text and then compute the cosine sim-
ilarity between the two. Hyperparameter tuning
and other details about the models are discussed in
Section 4.

4 Experimental Setup

4.1 Hyperparameters and Data Splits
4.1.1 Subtask A
For training, we first merge the autogenerated and
manual augmented data. We then perform an 80−
20 split on this merged data to get our training and

validation sets. We then fine-tune on the training
data and validate on the validation set.

The ‘TAPAS Encoder’ (Figure 2) consists of a
stack of 12 encoder blocks (similar to the BERT
Base). For finetuning, we freeze the entire model,
except the last three encoder blocks, the ‘TAPAS
Pooler’, and the final classification layer.

This leaves 22M trainable parameters and 89M
frozen (i.e. untrainable) parameters.

Categorical Cross-Entropy is used as the loss
function. We use a batch size of 32 and finetune for
3 epochs using the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 5× 10−5.

Before making the final submission, the training
and development sets are merged together and the
model is trained for one more epoch.

4.1.2 Subtask B
We take a 500K sized randomly selected sample
from the undersampled data and perform an 80−
20 split on this to get our training and validation
sets. We keep the margin m as 0.5 and finetune
the entire model, with no parameters frozen, for a
single epoch using a batch size of 64. For making
the inferences from the cosine similarity, we use an
empirically selected threshold of 0.3.

4.2 Libraries and Tools

Google Colab2 was used to perform all the exper-
iments. The time taken per epoch for any model
did not exceed 10 hours. The GPUs automati-
cally allotted by Colab kept varying between Tesla
T4, Tesla P100-PCIE-16GB, and Tesla K80. Py-
Torch3 is used as the central framework for both the
tasks. For subtask A, Huggingface’s Transformers
library4 was used to load the pre-trained TAPAS
model. For subtask B, we use the SentenceTrans-
formers framework5 to load the pretrained Siamese
DistilBERT model.

5 Results

5.1 Subtask A

5.1.1 Official Metrics
The original pre-trained TAPAS (Base) model,
without any finetuning, achieves a two-way F1
score of 62.56. Our final finetuned model achieves

2Free version
3Version 1.7.0: https://pytorch.org/docs/1.

7.0/
4Version 4.1.1: https://huggingface.co/

transformers/v4.1.1/
5Version 0.4.1: https://www.sbert.net/
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Figure 3: Confusion matrix for the submitted model

a two-way F1 score of 71.72 and a three-way F1-
score of 65.59. Figure 3 shows the corresponding
confusion matrix. We ranked 8th on the official
leaderboard for subtask-A.

From the confusion matrix, we observe that the
most confusing cases for our model are true ‘un-
known’ statements, which get classified as ‘en-
tailed’. On manual analysis of such statements, we
observe that many of these have a considerable tex-
tual overlap with the table. This misclassification
seems to be a consequence of our augmentation
scheme. The statements that we add as ‘unknown’
while augmentation have almost no textual overlap
with the table data since they were sourced from
other tables. Although, in general, as observed in
the test data, unknown statements can broadly be
classified into two kinds: ‘related’ and ‘unrelated’.
The former being unknown statements that are re-
lated in a semantic or a directly textual way to the
table’s data, and the latter are not related to the
table’s data in any way. The following example
should make this clear.

Orders Week 1 Week 2 Week 3
Order 1 Peat Straw Silage
Order 2 Straw Silage Control
Order 3 Silage Control Combo

Table 2: A table containing data about a few weekly
orders

In Table 2, a ‘related’ unknown statement will
be “A total of 10L of silage, straw, peat or combo
was distributed”. The boldfaced words overlap di-
rectly with the table’s contents
While, an ‘unrelated’ unknown statement can be
“Earth revolves around the Sun”. Thus, both of

these sub-classes of the ‘unknown’ class are im-
portant. Synthesizing ‘unrelated’ unknown state-
ments is a simple task, whereas synthesizing ‘re-
lated’ statements without any additional informa-
tion seems to be a fairly non-trivial task.

We also observe that wrongly classified state-
ments are, on average, 8.8 characters longer than
correctly classified statements. Figure 4 shows this
histogram.

Figure 4: Histogram of lengths (in characters) of
100 randomly selected correctly classified and wrongly
classified statements

5.1.2 Ablation Study
Effect of Table Metadata

A table may have additional metadata like the
caption, legend, and footer associated with it. For
simplicity, we include it directly inside the table
as rows. If the table has a caption, we add it as a
single row at the top of the table. Similarly, if it has
a legend, it goes as a single row below the caption,
and the footer is added as a row at the end of the
table. Keeping other hyperparameters the same, we
get the following results:

Included Metadata Validation Accuracy
Yes 0.92
No 0.93

Table 3: Impact of inclusion of metadata on validation
accuracy

We observe that including the metadata worsens
the accuracy. A possible reason could be our way
of including the metadata as rows. There may be
other better ways of doing this, which may further
improve the accuracy.

Effect of Model Size
We try out two variants of TAPAS: Base and Large.
The Base variant has 12 encoder blocks, and the
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Large variant has 24, similar to BERT Base and
BERT Large. On the TabFact dataset, the Base vari-
ant is only about 0.24 points behind the Large one.
The following tests are performed on the original,
unaugmented data, containing two classes6. We
merge the original manual and autogenerated state-
ments into a single dataset and perform an 80− 20
split.

Variant Validation Accuracy
Base 0.81
Large 0.71

Table 4: Effect of finetuning a larger model

5.2 Subtask B

Our final model achieves an F1 score of 43.02.
Figure 5 shows the corresponding confusion matrix.
As evident from the confusion matrix, there is a lot
of room for improvement, especially in handling
the ‘relevant’ statements. We ranked 7th on the
official leaderboard for subtask-B.

Figure 5: Confusion matrix for Subtask B

6 Conclusion

Thus we have presented a statement verification
and evidence finding setup for tables. For subtask-
A, we extended the TAPAS model to adapt to the
‘unknown’ statements. For subtask-B, we used a
semantic approach for evidence finding. Our re-
sults for subtask-A show the problems encountered
while generating and working with the ‘unknown’
statements. For subtask-B, our results show the
effect of taking only the semantic information into

6Training the Large variant on augmented data exceeds the
time limit of Google Colab (12 hours)

account. An important future prospect for subtask-
A would be to find a more effective way of gen-
erating the ‘unknown’ statements. For subtask-B,
utilizing the table’s available structural informa-
tion to improve the results seems to be a promising
prospect.
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Abstract
Due to the increasing concerns for data privacy,
source-free unsupervised domain adaptation at-
tracts more and more research attention, where
only a trained source model is assumed to be
available, while the labeled source data remains
private. To get promising adaptation results, we
need to find effective ways to transfer knowl-
edge learned in source domain and leverage
useful domain specific information from tar-
get domain at the same time. This paper de-
scribes our winning contribution to SemEval
2021 Task 10: Source-Free Domain Adapta-
tion for Semantic Processing. Our key idea is
to leverage the model trained on source domain
data to generate pseudo labels for target do-
main samples. Besides, we propose Negation-
aware Pre-training (NAP) to incorporate nega-
tion knowledge into model. Our method wins
the 1st place with F1-score of 0.822 on the offi-
cial blind test set of Negation Detection Track.

1 Introduction

The Negation Detection Track of SemEval 2021
Task 10: Source-Free Domain Adaptation for Se-
mantic Processing provides a new setting for un-
supervised domain adaptation task which ask par-
ticipants to conduct negation detection in target
domain only with model trained on source domain
(namely source model) and unlabeled target do-
main data. Negation detection is a span-in-context
classification problem, where the model will jointly
consider both the target mention to be classified and
its surrounding context. For example, in sentence
Has no <e> diarrhea <e\> and no new lumps or
masses, the target span diarrhea is negated by its
surrounding context no. This task is important for
physicians to extract key information from clinical
text. The test dataset used is based on MIMIC-
III version 1.4 (Johnson et al., 2016), which is a
large, freely-available english database comprising
de-identified health-related data.

We approach this task as a problem of learn-
ing with pseudo labels. Our main interests in-
clude 1) negation knowledge infusion through
pre-training on target domain and 2) high-quality
pseudo label generation. We divide the task into
two stages: Negation-aware Pre-training (NAP)
stage and Pseudo label Training stage. In the NAP
stage, token-level and sentence-level negation se-
mantic are embedded into model. In the pseudo
label training stage, confidence threshold search
and mean self-entropy are used to select target do-
main samples with highly confident pseudo labels.

2 Related Work

Traditional negation detection method are mostly
rule-based. These methods (Chapman et al., 2001;
Sanchez-Graillet and Poesio, 2007; Huang and
Lowe, 2007; Sohn et al., 2012) used regular ex-
pression algorithm, dependency parsing and gram-
matical parsing to perform negation cue detection
and scope resolution. Recent years, deep learning
has been applied to negation detection task. In
(Qian et al., 2016), Convolutional Neural Network
was used to recognize negation scope in the sen-
tence. (Lazib et al., 2019) and (Gautam et al.,
2018) leveraged recurrent neural network variants
to perform negation scope resolution and achieved
better performance with BiLSTM, which further
indicates the potential in deep learning-based meth-
ods. Joint model to detect negation cues and targets
simultaneously had been studied by Bhatia et al.
(2019). More recently, popular transformer-based
model (Khandelwal and Sawant, 2019) had also
been used to perform negation detection.

Due to data privacy and data transmission prob-
lem, several source-free unsupervised domain adap-
tation methods (Liang et al., 2020; Kim et al., 2020;
Yang et al., 2020) have been proposed for image
classification task. These methods mostly focus
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on generating high-quality pseudo labels for target
domain samples before or during training phase
and do not involve self-supervised pre-training.

In the natural language processing filed, pre-
training is popular. We train language models on
huge corpora and fine-tune the pre-trained architec-
tures (Devlin et al., 2018; Liu et al., 2019; Zhang
et al., 2019; Yang et al., 2019) in downstream
tasks, achieving state-of-the-art results on most
NLP tasks. Prior studies (Radford et al., 2018;
Chronopoulou et al., 2019; Gururangan et al., 2020;
Lee et al., 2020) has further shown the potential of
domain-adaptive and task-adaptive pre-training.

3 Method

We approach the task of source-free domain adap-
tation for negation detection as a problem of learn-
ing with pseudo labels. To generate high-quality
pseudo labels, we use mean self-entropy as metric
to search appropriate probability threshold, which
is inspired by (Li et al., 2020). Besides, in or-
der to learn more negation semantic knowledge
from target domain, we propose negation-aware
pre-training to incorporate negation knowledge by
self-supervised training.

3.1 Negation-aware Pre-training

In prior studies, negation cues are important for
rule-based and machine learning-based methods.
We propose Negation-Aware Pre-training NAP to
embed the knowledge of negation cues into repre-
sentation. As shown in Figure 1, common token
masking, negation cue prediction and pseudo nega-
tion detection are included in NAP. Common token
masking is conducted to capture target domain lan-
guage knowledge. Negation cue prediction could
help the model recognize token-level negation in-
formation based on collected negation cue lexicon.
Pseudo negation detection is a sequence classifica-
tion task and designed for complex sentence-level
negation knowledge. It is the same as our final
negation detection task, however, the target men-
tion and corresponding label is generated by simple
heuristic rules. Although these data is somewhat
noisy, with the help of pseudo negation detection
pre-training, more negation information could be
embedded into model.

Negation Cue Lexicon Negation cues are key
to the Negation-Aware Pre-training. Based on the
lexicon created by (Weng et al., 2020), we di-
vide negation cues into 2 categories: Pre-negation

PREN POSN
not unlikely
none be ruled out
nor be excluded
without be resolved
deny be absent
no evidence of be negative

Table 1: Examples of negation cues.

(PREN), Post-negation (POSN). Pre-negation and
Post-negation mean the negation cues locate before
or after the target mentions respectively. Table 1
shows several examples of each type of negation
cues.

Pseudo Pre-training Data Generation To per-
form pseudo negation detection task, we need a
large number of labeled data. We design simple
yet effective rules to generate training data. To
simplify the process, we assume all clinical event
mentions are single noun. For sentence without ev-
idence of diarrhea, vomit, we first locate the nega-
tion cue without. Since without is a pre-negation
cue, we take the 3 tokens behind it ( evidence of
diarrhea ) as target context. In the target context,
the furthest noun diarrhea from without is selected
as target mention. Finally, we generate a pseudo
training data: without evidence of <e> diarrhea
<e\>, vomit with negated label. For samples with
post-negation cue, the process is similar, but the
target context is before the negation cue. Gener-
ally, the selected target mentions are negated by
surrounding cues, but there is a special case: dou-
ble negative. For instance, in sentence The report
can not rule out diarrhea, diarrhea is not negated,
since rule out is negated by not. We assign non-
negated label for these double-negative cases. We
also generate more non-negated samples by ran-
domly select sentences including no negation cues.

Objectives of Pre-training As illustrated in Fig-
ure 1, there are 3 tasks included in the pre-training
stage. Common token masking is inherited from
RoBERTa (Liu et al., 2019). It is used to cap-
ture low level language information in test domain.
Specifically, during pre-training, except for the to-
kens in negation cue lexicon, about 15% of input to-
kens are random sampled and masked. The model
is trained to recover original tokens in the corrupted
input sequence. We denote the objective of com-
mon token masking task as Lmlm. Negation cue
prediction as a token classification task is import
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Figure 1: The framework of NAP, Negation-Aware Pre-training. The NAP includes 3 pre-training tasks: common
token masking, negation cue detection and pseudo negation detection. Common token masking is inherited from
prior pre-training work. Negation cue detection is a token classification task, which aims to embed negation
knowledge at token level. Pseudo negation detection is similar to final negation detection task, but the training
data is generated based on heuristic rule. Pseudo negation detection could help model capture the complex relation
between negation cue and target mention.

for negation knowledge infusion. For each token
in input sequence, the task aims to guide the model
predict its negation polarity (negation or not) based
on its representation xi output by transformer en-
coder. Through this way, the pre-trained model
could learn the negation knowledge at token level.
The objective of negation cue prediction is the same
as classical token classification task and is denoted
as Lncp. Pseudo negation detection is another cru-
cial key to negation-aware pre-training. Compared
to negation cue prediction task, this task could fur-
ther help model to capture the semantic relation
between negation cues and target mentions.The
objective Lpnd for a single sample is defined as
follows:

ŷ = sigmoid(Wx1 + b)
Lpnd = −y log ŷ − (1− y) log(1− ŷ)

Here x1 denotes the output vector of first token
from transformer encoder. All the above 3 pre-
training objectives are jointly optimized. Thus,
overall pre-training objective L is:

L = Lmlm + Lncp + Lpnd

3.2 Pseudo label Training

Although the negation knowledge is infused
through pre-training tasks, the pre-trained model
is still lack of the ability to understand compli-
cated semantic information and negation relation.
Since the training data and corresponding labels in
pre-training stage are generated by simple heuris-
tic rules, most training sample are easy to learn
and some samples with wrong labels may harm
the model. Thus, test domain samples with high-

quality labels are needed to guide the pre-trained
model learn more useful information. We leverage
the source model to predict the probability of each
test sample to be negated or non-negated. Then
inspired by Self-entropy Descent (SED) proposed
in (Li et al., 2020), we conduct Confidence Thresh-
old Search to generate high-quality test domain
samples.

Confidence Threshold Search Self-entropy
could be used as a metric to measure the predic-
tion uncertainty (Kim et al., 2020), i.e. H(x) =
−∑ p(x)log(p(x)). The lower the self-entropy
the more confident the prediction is. We set
the probability threshold to be non-negated as
0.999 empirically, then search the probability to
be negated from 0.985 to 0.975. The step size is
set to be 0.001. The generated pseudo labels are
used to fine-tune the source model and then evalu-
ate the mean self-entropy of the dataset after train-
ing. When the mean self-entropy descends and hits
the first local minimum, we take the corresponding
probability as an appropriate threshold for generat-
ing labels. Samples do not reach the threshold will
be excluded.

4 Source Model and Data

Source Domain Data The source domain data is
from SHARP Seed dataset which consists of de-
identified clinical notes from Mayo Clinic. In the
SHARP data, clinical events are marked with a
boolean polarity indicator, with values of either
asserted or negated. There are 10259 samples pro-
vided including 902 negated instances for source
model training.
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Source Model Since the data privacy limitation,
SHARP Seed dataset cannot be distributed. Thus
organizers provide a ”span-in-context” negation
detection model trained on SHARP Seed dataset as
the source model. The source model is RoBERTa-
based and could achieve promising result on the
SHARP Seed dataset.

Target Domain Data The target domain data is
from MIMIC-III version 1.4 dataset (Johnson et al.,
2016). MIMIC-III version 1.4 is a large, freely-
available database comprising de-identified health-
related data associated with over forty thousand pa-
tients who stayed in critical care units of the Beth
Israel Deaconess Medical Center between 2001
and 2012. Based on rules, we extract about 50, 000
pseudo samples from the file NOTEEVENTS.csv
to perform negation-aware pre-training. The offi-
cal test dataset including 9580 samples is also ex-
tracted from the file NOTEEVENTS.csv. To further
validate the effectiveness of the proposed method,
we further create a custom test dataset which in-
cludes 500 negated samples and 500 non-negated
samples. In the custom test dataset, various nega-
tion cues and negation style are included.

5 Experiment

5.1 Negation-aware Pre-training Stage

We leverage the source model provided by organiz-
ers as our initial model in pre-training stage. Be-
sides, several layers are added to perform masked
language modeling and negation cue prediction.
During pre-training, the learning rate is set as
0.00001, and batch size is set to be 64. We conduct
pre-training in 3 epochs.

5.2 Pseudo Label Training Stage

We assume that a sample including no negation
cue is definitely non-negated. Thus, we assign
these sample without negation cues non-negated
label. These samples will not be included in the
training phase. Since the provided test samples
are extracted directly from NOTEEVENTS.csv file,
the format of each sample is messy, we conduct
sentence split with NLTK toolkit (Loper and Bird,
2002) for each sample and only keep the sentence
with target mention.

Then confidence threshold search is conducted
to generate high-quality labels for the rest of test
data. Finally, the confidence threshold for negated
and non-negated samples are selected as 0.983 and
0.999 respectively. In other words, if a test sam-

ple assigned negated label, the probability to be
negated generated by the source model should be
higher than 0.983. Similarly, if a test sample as-
signed non-negated label, the probability to be non-
negated should be higher than 0.999.

During training stage, we use the source model
provided by organizers but initialize the trans-
former encoder with the corresponding part from
pre-training model, because the transformer en-
coder from the pre-training model could capture
various negation knowledge from input sentences.
The learning rate is kept as 0.00001, and batch size
is 32. The number of epoch is set to be 5. In the
first 2 epoch, the parameters of ClassificationHead
in model is frozen.

6 Results

The result is evaluated using the standard precision,
recall and F1 scores as used in most published
work. We achieve the best performance on the
official blind test dataset.

6.1 Result on Official Test Dataset

We compare our method with two baselines, and
the result is shown in Table 2. The result of source
model without any domain adaptation is inferior.
Masked language modeling trained on target do-
main data could improve the performance. How-
ever, its effect is not significant, because masked
language pre-training focus more on low-level lan-
guage information rather than high-level seman-
tic knowledge about negation. With the help of
NAP, the adapted model could improve the recall
score with a large margin. This indicates that our
negation-aware pre-training method could help em-
bed negation knowledge into the sequence repre-
sentation, and facilitate the domain adaptation from
source domain to target domain.

Although the proposed adaptation method
achieves superior result in the competition, there
still exists a problem which harms the recall per-
formance: the adapted model is not sensitive to
long-term negation dependency. For example, in
the case He denies chest pain, dyspnea, dizzi-
ness/lightheadedness, or <e> abdominal pain
<e\>, though the mention abdominal pain is
connected with negation cue denies via or, the
model still output non-negated prediction. This
phenomenon may be caused by pre-training, since
in pseudo negation detection pre-training task, the
training data are generated only based on simple
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Methods F1 Precision Recall
Source 0.685 0.921 0.545
Source + MLM 0.724 0.905 0.603
Source + NAP 0.822 0.902 0.756

Table 2: Results of different methods on official test set. MLM, NAP denote masked language modeling (common
token masking), negation-aware pre-training respectively. Our experiments are conducted on the data cleaned, so
the result of source model without adaptation is better than the one organizers provide.

Methods Precision Recall
Source 0.761 0.502
Source + MLM 0.783 0.526
Source + NAP 0.894 0.833

Table 3: Results of different methods on customized
test set.

rules: the clinical mention is a single noun and
the distance between mention and negation cue is
limited to no more than 3 tokens. To handle this
problem, useful and effective generation method
should be further explored. In addition, depen-
dency relation between tokens may be introduced
into both pre-training and training stage to solve
this problem in negation detection task.

6.2 Result on customized Test Dataset

Negated samples in the official test dataset only
include deny, none, no, not and without, so we
also conduct experiments on the customized test
data we manually created from test domain, which
contains various negation cues and two negation
styles (active or passive voice). As shown in Table
3, compared to the proposed method, the recall
of source model and source model with MLM is
much lower, because many negated samples with
never, resolve, free of, absent and exclude can not
be recognized correctly. Meanwhile, due to the lack
of the ability to capture double-negative semantic,
they both fail to distinguish false-positive samples
from real positive ones. However, with the negation
knowledge embedded through negation-aware pre-
training, our method could handle both scenarios
better.

7 Conclusion

In this paper, we model source-free domain adap-
tation as learning with pseudo label. We leverage
mean self-entropy of dataset to search appropriate
probability threshold for high-quality pseudo label
generation. Besides, we propose negation-aware

pre-training to integrate different types of nega-
tion knowledge to improve the generalization of
negation representation. The result shows that the
additional negation-aware pre-training is helpful
for negation detection task. In the future, we will
work towards more robust pseudo label generation
method and effective pre-training task introducing
more knowledge such as part-of-speech tag and
dependency relation.
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Abstract

Data sharing restrictions are common in
natural language processing datasets. The
aim of this study is to develop a model
that is trained in a source domain to make
predictions for a target domain with respect
to domain data. To address this problem, the
organizers provided models that fine-tuned
a large number of source domain data on
pre-trained models and dev data for partic-
ipants. However, source domain data were
not distributed. This paper describes the
model provided for the name entity recog-
nition task and ways to develop the model.
Because little data are provided, pre-trained
models are suitable for solving cross-domain
tasks. The models fine-tuned by a large
number of other domains could be effective
in the new domain because the task did not
change. The code of this paper is available at
https://github.com/windforfurture/

SemEval-2021-Task10.

1 Introduction

Data sharing constraints are common in natural
language processing (NLP) datasets. For exam-
ple, Twitter policies prohibit the sharing of tweet
text, although tweet IDs may be shared. In clini-
cal NLP, the situation is even more prevalent be-
cause information on patients’ health must be pro-
tected. Obtaining annotations about health texts
often requires the signing of complex data usage
agreements. During the competition, the organizers
provided models which fine-tuned on the annotated
source domain data, while the source domain data
could not be distributed. The organizers also pro-
vided labeled data as dev data and unlabeled target
domain data as test data.

There were two sub-tasks for SemEval Task 10:
1) to classify clinical event mentions (e.g., dis-
eases, symptoms, procedures, etc.) for whether

they are being negated by their context. This is a
text-classification task (Yuan et al., 2020). 2) to
find time expressions (Laparra et al., 2018) in text,
this is a sequence-tagging task. SemEval Task 10
was different from traditional NLP tasks, where
training and testing were in the same domain. Pre-
dictions could be out of control due to the different
target domain. The domain of the dev data is re-
lated to the source and target domains, therefore the
model can be developed. In SemEval Task 10, it is
necessary to develop an existing model along with
training the model with labeled data or unlabeled
data. Furthermore, the model can be developed by
fine-tuning it in different ways.

For certain reasons, only the results for the sec-
ond subtask were submitted, that is, time expres-
sion recognition, which can be considered as a
name entity recognition (NER) task. The partici-
pants were asked to find time expressions in the text
through the task. This is a sequence-tagging task
that uses fine-grained time expression annotations
that are a component of SemEval 2018 Task 6(La-
parra et al., 2018). To deal with this task, deep
learning models, such as long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
bidirectional LSTM with conditional random field
(BiLSTM-CRF) (Huang et al., 2015), and bidirec-
tional encoder representation from transformers
(BERT) (Dai et al., 2019) have been developed to
challenge the NER task. Owing to the lack of a
training set, pre-trained models (Qiu et al., 2020)
were considered. The NER task can become diffi-
cult as the number of classifications increase. In
this task, 33 types of entities need to be recognized,
and phrases and words may be one of the types.
For the base model, B-prefix and I-prefix were
used to discriminate the beginning of classification
and ensure the accuracy of the tokens; therefore,
65 types of entities were used in the model. In
this paper, an ensemble model is proposed for time
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expression recognition with a hard voting strategy.
Each input sample was first tokenized using the
matched model tokenizer. Base models, such as
BERT (Devlin et al., 2019) and its variants, includ-
ing RoBERTa (Liu et al., 2019), DistilBERT (Sanh
et al., 2019) and ALBERT (Lan et al., 2019), were
used to learn hidden representations for each to-
ken. Then, a fully connected dense layer with a
Softmax function was used for classification. By
using a hard voting strategy, the predictions from
different base models were merged with the final
result. Experimental results show that the proposed
ensemble models achieve a competitive result with
the official baseline model, which ranked fifth in
sub-task 2.

The remainder of this paper is organized as fol-
lows. Section 2 describes the overall structure of
the proposed ensemble model. The comparative
experimental results and discussion are presented
in Section 3. Finally, conclusions are presented in
Section 4.

2 Ensemble Model for Source-Free
Domain Adaptation

The official baseline model is a fine-tuned
RoBERTa model: clulab/roberta-timex-semeval. It
uses RoBERTa (Liu et al., 2019) for token clas-
sification architecture, which is pre-trained using
no next-sentence prediction (NSP) and dynamic
masking. The RoBERTa model achieved better per-
formance than the BERT model because it was pre-
trained by larger volume data, more steps, larger
batches, and larger vocabulary than the BERT
model. In addition, the provided baseline model
was fine-tuned with approximately 25,000 expres-
sions in de-identified clinical notes as well as the
development dataset (Sanh et al., 2019). Four other
models were also implemented using a hard vot-
ing strategy and a hard voting result for a single
submission.

2.1 Tokenization

Transforming words to vectors is a necessary
step in NLP tasks. Different word representa-
tions were used in our implementation, includ-
ing word2vec (Mikolov et al., 2013; CHURCH,
2017), GloVe (Pennington et al., 2014), ELMo
(Peters et al., 2018), and BERT (Devlin et al.,
2019). For the RoBERTa model, we used only
the matched RoBERTa tokenizer to build word vec-
tors with a length of 514. Given a sentence x =

x1

E[CLS] E1

[CLS]

t[CLS] t1

E2 EN-1

t2 tN-1

x2 xN-1... ...

... ...

... ...

... ...

... ... 
BERT

Raw Input x

Tokenization

BERT-based 
Model

y1 y2 yN-1

Output
Layer

[SEP]

E[SEP]

t[SEP]

Figure 1: Overall architecture of the base model.

[x1, x2, . . . , xM ] of length M , different lengths of
the sentence will result in different lengths of the
representation. Therefore, we considered the maxi-
mum sentence length as N − 1. If the length was
less than N − 1, then it was padded with zero val-
ues to make it equal to N − 1. For each input,
two specific tokens were added to the beginning
and end of the raw input, that is, <s> and </s>
(or [CLS] and [SEP]). The RoBERTa tokenizer
uses byte-pair encoding to obtain more relations
and meanings. Then, these are converted into a
sequence of subwords, which are then mapped into
token, position, and segment embeddings, that is,
[E[CLS], E1, . . . , EN−1, E[SEP ]] . In the proposed
model shown in Fig.1, the raw inputs were split
into one or more 514-dimensional vectors accord-
ing to the number of sentences contained in the
corresponding input.

2.2 BERT-based Model

To extract the semantic features, a pre-trained
language model(Qiu et al., 2020) was used. It
achieved impressive performance in various NLP
tasks. It contains multiple layers of bidirectional
transformer encoders(Vaswani et al., 2017) and is
then pre-trained by using unsupervised learning of
either the masked language model (with a masked
ratio of 15%) or the NSP.

The aforementioned pre-trained language model
contains 12 layers of transformers with a hidden
size of 768. Then, the embeddings of both contexts
are fed into a BERT model to obtain the semantic
representation T ∈ Rdt , denoted as

TF = [t[CLS], t1, . . . , tN−1, t[SEP ]]

= fBERT ([E[CLS], E1, . . . ,

EN−1, E[SEP ]]; θBERT ) (1)
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Figure 2: The ensemble of models.

where θBERT is the trainable parameter of the
BERT model, which is then fine-tuned during
model training, and dt = 768 is the dimension-
ality of the hidden representation.

2.3 Output Layer

The token classification in the BERT model archi-
tecture is considered as a series of binary classi-
fications. For each token, the classification was
a one-layer MLP with a Softmax function. The
loss function is a categorical cross-entropy, defined
as:

ŷcm = softmax(Wttm + bt) (2)

L = −
K∑

k=1

C∑

c=1

M∑

m=1

ym log(ŷcm) (3)

where ym and ŷcm denote the gold label and the
predicted probability of samples k, respectively, K
and C are the number of training samples and can-
didate categories, respectively; Wt and bt are the
weight and bias, respectively, which are associated
with the fully connected layer. The entire network
was trained by back-propagation (Rumelhart et al.,
1986) while the BERT model was fine-tuned with
the provided labeled data in the training phase.

2.4 Ensemble Learning

To output the final result, we used a hard vot-
ing strategy to integrate the results from different
base models, including the official baseline, BERT,
RoBERTa, DistilBERT, and ALBERT models, as
shown in Fig. 2. In hard voting, every individual
classifier votes for a class and the majority wins.

In statistical terms, the predicted target label of
the ensemble is the mode of the distribution of the
individually predicted labels.

3 Experimental Results

3.1 Datasets

The organization provided 99 news articles and
matched 99 annotated data files for subtask 2.
There were different types in these articles, such as
ABC, APW, and CNN. The dev data provided were
related to news, and the source data were related
to medical data. The test data were related to the
food security. The cross-domain task consisted of
three domains. Each raw input was divided into
sentences. The annotated data files were formed as
XML files. Every XML file contained a few enti-
ties that consisted of ids, spans, and types. Span
contains the start position, and the end positions
and types are classified. The labels should be trans-
formed because of the offset that were used as the
input data.

3.2 Evaluation Metrics

Subtask 2 was evaluated using standard precision,
recall, and mainly the F1-score. The F1-score is of-
ten used to evaluate unbalanced data, and is defined
as follows:

F1-score = 2 ∗ P ∗R
(P +R)

(4)

where P and R denote the precision and recall,
respectively. A higher F1-score indicates better
model prediction performance.
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Model Vocab Size Position Embeddings Attention Heads Hidden Layers
clulab/roberta-timex-semeval 50265 514 12 12
BERT base 30522 512 12 12
RoBERTa base 50265 514 12 12
DistilBERT base 30522 512 12 6
ALBERT base 30000 512 12 12

Table 1: Optimal parameter settings of the base models

Model R1 R2 R3 R4 R5 Avg.
clulab/roberta-timex-semeval 0.864 0.910 0.883 0.857 0.859 0.875
BERT base 0.844 0.880 0.895 0.847 0.837 0.861
RoBERTa base 0.817 0.850 0.843 0.809 0.823 0.828
DistilBERT base 0.828 0.868 0.874 0.837 0.839 0.849
ALBERT base 0.809 0.811 0.752 0.792 0.774 0.788
Hard Voting 0.856 0.889 0.900 0.866 0.860 0.874

Table 2: Empirical results of the ensemble model and the base models

3.3 Implementation Details

We fine-tuned the official baseline model
(RoBERTa) and four other models: the BERT
model (bert-base-uncased), RoBERTa model
(roberta-base), DistilBERT model (distilbert-base-
uncased), and ALBERT model (albert-base-v2).
For each model, 5-fold cross-validation was
performed. For each run, the datasets were split
into a ratio of 8:2 for the training and dev sets.

We trained the new model by adding the same
label2id and id2lable JSON as the provided model
to the original “config.json” We ran codes using the
downloaded model and the modified “config.json.”
After training, the models were used for prediction,
and the results were recorded. After comparing the
results, we observed that the model provided the
best performance. Then, we performed hard voting
that picked out one result, if three or more results
of these models were the same.

To obtain additional results, we split the pro-
vided data to obtain different dev data and test data
five times, and the test data were different every
time. In every round, the initial models were used,
and five rounds were tested. Hard voting gave the
best results, followed by the provided model. Fi-
nally, we fine-tuned these initial models with the
test data in the evaluation phase and chose the re-
sults of the provided model and the hard voting for
submissions.

3.4 Fine-tuning the Parameters

To train the proposed model, the Adam optimizer
applied a warmup strategy with a weight decay of
0.01 during training. The learning rates of all the
base models were 5e-6. For the official baseline
model, the default parameters were used in our
experiments because the initial parameters usually
performed well in other experiments. For other
models, we fine-tuned the hyperparameters using
a grid-search strategy. Once the optimal settings
of the parameters were obtained, they were used
for classification on the test sets. The details of the
hyperparameters are summarized in Table 1.

3.5 Comparative Results

Table 2 shows the results of the base models on
different folds, that is, R1–R5. The results showed
that the hard-voting ensemble model outperformed
the official baseline model with three rounds, but
the average F1-score of the ensemble model was
less than the average F1-score of the official base-
line model. Considering that the evaluation data is
in a new domain, we finally submitted the result of
the official baseline model, which was fine-tuned
by feeding numerous annotated data in the source
domain and the result of the hard voting ensemble
model. For the test set, the newly released official
baseline model, that is, Organizers (new), outper-
formed the previously released baseline model, that
is, Organizers (previous), which was only pre-
trained on the source data and achieved an F1-score
of 0.794(see Table 3). Owing to the low amount of
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Team Name F1-score
BLCUFIGHT-1 0.815
Self-Adapter-1 0.811
BLCUFIGHT-2 0.810
Baseline-2 0.804
YNU-HPCC-2 0.803
Self-Adapter-2 0.797
PTST-UoM-1 0.796
UArizona-1 0.795
UArizona-2 0.795
Boom-1 0.795
Baseline-1 0.794
KISNLP-1 0.793
KISNLP-2 0.781
YNU-HPCC-1 0.748

Table 3: All results on leaderboard for time expression
recognition.

data used for fine-tuning, the performance of the
proposed model is slightly lower than that of the
new official baseline model. However, its perfor-
mance is still competitive and finally ranked fifth
on the leaderboard.

4 Conclusions

The SemEval-2021 Task 10 framework requests
participants to develop semantic annotation sys-
tems in the face of data sharing constraints. In
this study, we fine-tuned the official baseline model
and then combined it with four other pre-trained
models with a hard voting strategy for time expres-
sion recognition. Experimental results showed that
the proposed model outperformed the previously
released baseline model, achieved a competitive re-
sult with the newly released official baseline model,
and finally ranked fifth on the leaderboard. Future
work will attempt to improve the performance of
cross-domain NER tasks.
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Abstract

This paper presents our endeavor for solving
task11, NLPContributionGraph, of SemEval-
2021. The purpose of the task is to extract
triples from a paper in the Nature Language
Processing field for constructing an Open Re-
search Knowledge Graph. The task includes
three sub-tasks: detecting the contribution sen-
tences in papers, identifying scientific terms
and predicate phrases from the contribution
sentences; and inferring triples in the form of
(subject, predicate, object) as statements for
Knowledge Graph building. In this paper, we
apply an ensemble of various fine-tuned pre-
trained language models (PLM) for tasks one
and two. In addition, the self-training meth-
ods are adopted for tackling the shortage of
annotated data. For the third task, rather than
using classic neural open information extrac-
tion (OIE) architectures, we generate poten-
tial triples via manually designed rules and de-
velop a binary classifier to differentiate posi-
tive ones from others. The quantitative results
show that we obtain the 4th, 2nd, and 2nd rank
in three evaluation phases.

1 Introduction

The notion of Open Research Knowledge Graph
(ORKG) is first proposed by (Jaradeh et al., 2019)
who take steps toward a knowledge graph based
infrastructure that acquires scholarly knowledge in
machine actionable form. In that form, researchers
can keep up with cutting edge academic achieve-
ments and eliminate cognitive overload. To ac-
celerate the construction of ORKG, an automatic
system is expected. The SemEval-21 task11 is
a triple extraction task targeted at building that
system. As shown in Table1, the task is divided
into three sub-parts corresponding to different pro-
cessing steps: Sub-task A detects contribution sen-

∗equal contribution

tences in English articles and classifies them into in-
formation units such as Approaches, Models, and
Ablation− analysis; Sub-task B extracts scien-
tific terms and relational cue phrases from contribu-
tion sentences; Sub-task C infers subject-predicate-
object triples for KG building with the results of
two previous sub-tasks.

For Sub-task A—contribution sentence detec-
tion—the evaluation data covers a larger sphere
than the training data. Additionally, the amount
of annotated samples differs among research fields.
Hence, we use self-training to generate a set of
silver samples for fields lacking gold data. An
ensemble of fine-tuned PLM based classifiers is
then deployed to categorize sentences. For sub-
task B—scientific term extraction—we compared
BERT based sequence labeling systems in detail
and chose the best architecture. For sub-task
C—triple generation—we give insight into the con-
struction of triples and designed a rule for potential
triples generation. A binary classifier is then ap-
plied to distinguish the positive triples.

Our quantitative results show data augmentation
via self-training is of paramount importance for
sub-task A. Although seldom is CRF used with
transformer-based language models together, in the
system for sub-task B, an additional CRF layer
after a RoBERTa based encoder can still boost per-
formance. In sub-task C, popular neural informa-
tion extraction models are inferior to the rule based
methods.

2 Background

2.1 Data description

The training process is developed on the dataset
provided by the SemEval21 Task11. The training
dataset involves 237 papers from 24 fields of natu-
ral language processing, organized hierarchically
with contribution sentences, info units, entities, and
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Objects to Identify Exampls

Sentence
We use the BERTBASE model pre-trained
on English Wikipedia and BooksCorpus for 1M steps.

Information Unit model

Scientific Term and Predicate Phrases
used,BERTBASE model,
pre-trained on,English Wikipedia,
BooksCorpus,for,1M steps

Triples

(Contribution, has, ExperimentalSetup),
(ExperimentalSetup, used, BERTBASE model),
(BERTBASE model, pre-trained on, English Wikipedia),
(BERTBASE model, pre-trained on, BooksCorpus),
(BERTBASE model, for, 1M steps)

Table 1: Objects need to be identified

Figure 1: Numbers of annotated sentences in each do-
main

triples. Thus, for different tasks we can use dis-
parate parts of the dataset.

Inherent challenges also come with data col-
lection. As shown in Fig 1, first, there is a dra-
matic discrepancy among the number of anno-
tated papers. The NaturalLanguageInference
field received the richest resources. A total of
over one hundred papers in this area are an-
notated. On the other hand, for the domains
with poor annotation like PhraseGrounding and
QueryWellformedness, only a single paper is pro-
vided. Moreover, a postdoctoral researcher with
a background in natural language processing is
responsible for finishing the pilot annotation task
(D’Souza and Auer, 2020). Therefore, the anno-
tated data is relatively subjective and sometimes
even inconsistent. For example, some informa-
tion units nested in Experiments actually also in-
cluded a combination of ExperimentalSetup and
Results. Alternatively, it can be combination of
Tasks and their Results.

2.2 Related Work

A vast amount of excellent work has been done in
the areas of these subtasks. Early work employing
CNNs, RNNs and attention based RNN or CNN
models has made great progress in sentence classi-
fication tasks. (Yang et al., 2017; Liu and Zhang,
2017). Tai et al. (2015) inspired innovation in tradi-
tional LSTM networks. The tree-LSTM structure
mentioned in their paper is enhanced with depen-
dency or constituency trees. Since Graph Neural
Network (GNN) is first used for sentence classifica-
tion tasks, GNN has been one of the most prevalent
encoders for Natural Language Processing(NLP)
tasks. Transformer based models are also popular
encoders. They are so powerful that they have even
been widely used in computational vision areas
(Dosovitskiy et al., 2020).

The sequence labeling task is a critical compo-
nent of NLP applications. There are two basic
approaches. In the token level approach, a se-
quence of tokens is used as an input of sequence
tagging models, and tags for each token can be out-
put. Other approaches attempt to solve problem on
the sentence level. Lu and Roth (2015) designed
a hypergraph, which provides a resolution for the
discontinuous terms.

Traditional open information extractors are
based on rules and statistical approaches, like
Stanford-IE(Angeli et al., 2015),OpenIE-5(Saha
and Mausam, 2018) and MinIE (Gashteovski et al.,
2017).These methods apply semantic parsers com-
bined with predefined rules to extract triples. Re-
cently, neural OpenIE methods dominate this re-
search field. RnnOIE (Stanovsky et al., 2018) in-
spired by the sequence labeling systems identifies
relation phrases first then combine relations with
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Figure 2: An overview of the system for sentence classification

Figure 3: An overview of the system for scientific term
extraction

arguments. IMOJIE (Kolluru et al., 2020) takes
advantage of seq2seq architectures. It is trained
on training data bootstrapped from extractions of
several tradition systems such as Stanford-IE.

3 System Description

Systems applied for contribution sentence detec-
tion and scientific term extraction are based on
the RoBERTa (Liu et al., 2019),SciBERT (Belt-
agy et al., 2019) and basic BERT model with task-
specific modifications. For triple classification
tasks, a SciBERT(Beltagy et al., 2019) based model
is used for candidate triple classification. Moreover,
self-training, ensemble and rule design enhanced
system performance in different ways.

3.1 Contribution Sentence Detection

The contribution sentence detection task is handled
as a sentence classification (SC)problem. Let U
be the union of a predefined sentence type set and
ε indicate that the sentence is not a contribution
sentence. According to the task description pro-
vided by D’Souza et al. (2021), one contribution
sentence could belong to one of eleven categories,
called info units. Hence U has twelve elements
with ε added. As shown in Fig2, the input data
consisted of four parts: the original sentence, con-
textual information, a sub-title of the paragraph and
the number of paragraph, with the separator token
([SEP]) in between. For contextual information,
we used the adjacent sentences of the original one.
We define the sub-title of a paragraph as the nearest
title found previous to the begin of this paragraph.
Besides, the paragraphs are numbered from zero
following an increasing order. We add [CLS] to-
ken at the top of the sequence and build a classifier
on top of its embedding, which is generated from
BERT based model, similar to what Devlin et al.
(2019) did for pre-training.

Inspired by incremental semi-supervised train-
ing(Rosenberg et al., 2005), we introduced the sim-
ilar training process. Prior to that, we need to pre-
pare the additional unlabeled data. Newest papers
are downloaded according to the areas then trans-
formed into Stanza version as the papers provided
in training data. The amount of additional data
for every field is about ten articles. Training pro-
cess takes the following steps: first, train BERT
based models that will be used in ensemble on gold
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sentence triples
We also apply 3 dense blocks based on char

- ResNet which we refer to as char - DenseNet,
to compare the difference between residual

connection and dense connection.

(Baselines, apply, 3 dense blocks)
(3 dense blocks, based on, char - ResNet)

(char - ResNet, refer to as, char - DenseNet)

Table 2: A sentence and triples from it

Figure 4: Model overview for triple generation

data, that is the annotated data in dataset, until pa-
rameters converged. Next, put these models in an
ensemble to tag the unlabelled data for areas suf-
fered from data insufficiency. In the rest part of
this passage, we call data labeled by our models
’silver samples’ or ’silver data’. Only the sentences
all models in the ensemble labelled unanimously
would be deemed as silver samples and used for
further training. After that, a combination of gold
and silver data is input for training another three
models with unchanged hyperparameters. Above
progress iterates until no further progress could be
achieved. That means the iteration is stopped when
loss becomes stable. Thus, three fine-tuned BERT
based models are ready for inferring and we col-

lect them in an ensemble. When inferring, with a
sentence input, each model outputs a vector V , of
twelve dimensions. We calculate a weighted sum of
three vectors and use the index of the max element
to determine the final class of a sentence. Weights
here are hyperparemeters and chosen manually.

V = 0.25∗VSciBERT+0.2∗VRoBERTa+0.1∗VBERT

3.2 Scientific Term Extraction
We consider scientific term extraction as a sequence
labeling(SL) task. Specifically,as Fig3 shows, a
RoBERTa exploiting CRF layer marks every sub-
word token of the input sentence with one of the
label in B,I,O, where ’B’ is the beginning of a term,
’I’ indicates that the token is inside the term and
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’O’ indicates that the token stands outside of the
term. In this way,one sequence of a ’B’ followed
by a continuing sequence of ’I’ is recognized as
a legal term. Input sequences are also engineered.
The sub-title information is attached to the raw sen-
tence. To facilitate triple generation, two models
are trained for labeling predicate and entity indi-
vidually. Discrimination of types of terms allows
the system to exploit the information of a predicate
more efficiently.

3.3 Triple Generation

Given the fact that the outcomes of supervised open
information extraction architectures are not as ex-
pected, we make use of the result of term extraction.
As shown in Table 2, triples from a sentence always
overlap at the head and tail. Given that fact, when
generating a candidate triple, a predicate acts as the
anchor and its neighboring entities are seen as the
subject and object, following the sentence reading
order, as demonstrated in Fig4. It is rare that the
subject appeared later than the object in a sentence.

At times, as task description paper (D’Souza
et al., 2021) mentioned, when no suitable predi-
cate phrases could be inferred from the sentence,
one candidate from a pre-defined set of predicates
could be utilized. The set including “has”, “on”,
“by”, “for”, “has value”, “has description”, “based
on”, “called”. We call these triples with predefined
predicates ”special triples”. A greedy matching
is introduced that each predefined predicate is in-
serted between every adjacent entity pair to com-
pose a potential special triple. To illustrate, take
the entity pair ”char-DenseNet” and ”dense connec-
tion” as an instance. In Fig4, as the result of term
extraction shows that there is no phrase labelled
as predicate between ”char-DenseNet” and ”dense
connection”. To form candidate triples for this en-
tity pair , each predicate in the predefined predicate
set is inserted between the entity pair . After all po-
tential triples are generated, gather unions of each
candidate triple and the sentence where the triple
came from as input data. A SciBERT based binary
classifier then judge if a union is rational. We refer
to it as the ’candidate triple judge model’ in the rest
of this article.

Additionally, another rule is designed for cross-
sentence triples, which takes up three percent of all
triples. Such amount cannot be ignored also. We
observe that when only one term can be extracted
from a sentence, it is highly possible that the term

Hparam SC TE TG
Number of epochs 8 20 10

Max length 200 128 256
Batch size 32 16 32

Learning rate 2e-5 1e-5 1e-5
Optimizer AdamW

Loss cross entropy

Table 3: Hyperparameters for models. SC means sen-
tence classification, TE stands for term extraction and
TG is the abbreviation of triple generation

is a composition of a cross-sentence triple. Such
terms adjacent to each other are integrated into
a cross-sentence triple according to the subject-
predicate-object order. From example, if there are
three adjacent contribution sentences that we can
only extract one phrase from each, and these three
phrases are predicted as entity,predicate and entity
respectively. Thus we can combine them together
as a cross-sentence triple. For these triples, we do
not apply a further filter and add them into the final
output directly.

4 Experimental Setup

In this section, we describe the models we used in
the final submission and their parameters in detail.
It should be possible to reproduce our work.

4.1 Models and Parameters

Before training, we divide papers into three groups:
train set, dev set, and test set, with a ratio of 8:1:1.
We then mix all sentences in each set together. In
this way, data leakage is prevented. Otherwise,
sentences in test set and train set could come from
the same article. The hyperparameters for training
are shown in Table3. Our implementation uses
only Pytorch for the first two sub-tasks’ models
and AllenNLP for the last candidate triple judge
model.

For Contribution Sentence Classification task,
we attempt to take advantage of diverse models.
An ensemble of BERT, SciBERT and RoBERTa
is applied. During the training process, F1 score
on dev set works as a criteria for choosing the best
epoch and model weights. Additionally, because
our model is consistently confused between the
info units of Approach and Model, we convert
sentences with the word ’approach’ to the unit
Approach after receiving predictions from a neural
network. For Scientific Term Extraction, we used
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Contribution Sentence Detection
sentence detection information unit classification

F1 of ensemble 0.3978 0.8108
F1 of SciBERT 0.3856 0.8049

Scientific Term Extraction Triple Generation
RoBERTa+CRF+BIO RoBERTa+span tagging rule based method IMOJIE

F1 0.7774 0.7567 0.4473 0.1729

Table 4: F1 scores of models. For the submitted model, the F1 scores are from the leader board , for the baseline
model the F1 scores are from results on dev set

RoBERTa as the encoder and elaborated more on
different decoders. The basic BIO tagging model
performs better than the span based one. When
training the potential triple judge model, the learn-
ing rate rises first then falls following the method
used by Vaswani et al. (2017)

4.2 Baselines
We endeavor to search for the best baselines. For
sentence classification, we use single SciBERT
model as our baseline, while for sequence tagging,
we employ RoBERTa without CRF layer and rather
using span tagging decoder as a strong baseline. In
the triple generation task, we once tried to em-
ploy neural open information extraction models, so
IMOJIE can be deemed as a baseline.

4.3 Evaluation Metric
We use F1 value as the main metric, the average
F1 is arithmetic mean value of sentence F1, terms
F1, info units F1, and triples F1. When comput-
ing triples F1, strict standard is employed. Only
when every division of a predicted triple matched
the gold answer, it can be counted as a correct in-
ference.

F1 =
2 ∗ P ∗R
P +R

(1)

where P means precision of the prediction and R
means recall.

F1avg =avg(F1sentence, F1terms,

F1infounits, F1triples)
(2)

5 Results

With the gold data of the upstream task provided,
the F1 value of sentence, info units,terms, and
triples are 0.3978, 0.8108, 0.7774, and 0.4473 re-
spectively, as shown in Table4 .

The enhancement in the sentence classification
is clear. As a prevalent technology, ensemble has
become a necessary part of algorithm competitions.

The only restriction is that all models in ensemble
should have an F1 over fifty percent. With the help
of data augmentation, the info unit classification
result occupied 2nd position in the final ranking.

It marveles us that the model with span based
tagger performed worse than the BIO tagger. Many
NER experiments shows the evidence that the span
based tagging decoder outperforms the simple BIO
tagger. We believe the main reason is that, when
exposed to the data in this task, there is no need
to discern types of entities. While the span based
decoder are equipped with the ability to infer entity
types, such design may be suboptimal and create
additional errors.

To some extent, the improvements in the triple
generation task proves that neural OIE models are
inapplicable to the task on this dataset. The main
cause may be the different definitions of ’predicate.’
In our task, prepositions always appear in the po-
sition of predicate in triples. Likewise, the subject
and object are persons or specific terms while for
sentences in science papers only scientific notions
can be found. Given so much elaboration in our
system, terms extraction and triple generation task
also achieved the second place on the leaderboard.

6 Conclusion

We engaged in SemEval-2021 task11 NLPContri-
butionGraph with models integrating features suit-
able for disparate tasks. We took insight on the
impact of different parts on the final results, fine-
tuned hyperparameters, and attempted various fea-
ture engineering methods. We ranked 4th, 2nd, and
2nd in three evaluation phases and our final model
demonstrated its superiority over several strong
baselines.
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Abstract

Crowdsourcing has been ubiquitously used
for annotating enormous collections of data.
However, the major obstacles to using crowd-
sourced labels are noise and errors from non-
expert annotations. In this work, two ap-
proaches dealing with the noise and errors
in crowd-sourced labels are proposed. The
first approach uses Sharpness-Aware Mini-
mization (SAM), an optimization technique ro-
bust to noisy labels. The other approach lever-
ages a neural network layer called softmax-
Crowdlayer specifically designed to learn from
crowd-sourced annotations. According to the
results, the proposed approaches can improve
the performance of the Wide Residual Net-
work model and Multi-layer Perception model
applied on crowd-sourced datasets in the im-
age processing domain. It also has similar and
comparable results with the majority voting
technique when applied to the sequential data
domain whereby the Bidirectional Encoder
Representations from Transformers (BERT) is
used as the base model in both instances.

1 Introduction

In recent years, there has been some major advance-
ment in the use of deep learning for solving arti-
ficial intelligence problems in different domains
such as sentiment analysis, image classification,
natural language inference, speech recognition ob-
ject detection. They have also been used in many
other numerous cases where human disagreements
are encountered such as speech recognition, visual
object recognition, object detection and machine
translation (Rodrigues and Pereira, 2018). It is
however, an essential requirement for deep learn-
ing models to utilise labelled data to undertake the
representational learning of the underlying datasets.
These labelled data are most at times not available
and hence the need for humans to manually under-
take the labelling of these data becomes a necessity.

In recent years, crowd-sourcing has been used in
the annotation of large collections of data and has
proven to be an efficient and cost-effective means
of obtaining labeled data as compared to expert
labelling (Snow et al., 2008)

It has been utilised in the generation of image an-
notations to train computer vision systems (Raykar
et al., 2010), to provide the linguistic annotations
used for Natural Language Processing (NLP) tasks
(Snow et al., 2008), and has also been used to
collect the relevant judgments needed to optimize
search engines (Alonso, 2013) .

It is a well known fact that crowd-sourced labels
are known to be associated with noise and errors as
a result of the annotations being provided by anno-
tators with uneven expertise and dedication which
can result in the compromise of practical applica-
tions that uses such data (Zhang et al., 2016). This
paper therefore seeks to apply a novel approach
to minimize and mitigate the noise and errors in
crowd sourced labels. The aim is to investigate the
use of a unified testing framework to learn from
disagreements using crowd source labels collected
from different annotators.

2 Related Work

Crowdsourcing has proven to be an inexpensive
and efficient way to collect large labels of data
and has attracted much research interest from the
machine learning community to address noise and
unreliabilities associated with them. The proposal
for using an Expected Maximization (EM) algo-
rithm to obtain density estimate rate of errors of
patients providing conflicting responses to medical
questions by Dawid and Skene (1979), is one of the
key pioneer contributions to this field. This work
served as the catalyst for many other approaches
used for the aggregation of labels from crowd an-
notators with different levels of expertise, such as
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the one proposed in Whitehill et al. (2009), which
further extends Dawid and Skene’s model by also
accounting for item difficulty in the context of im-
age classification. Similarly, Ipeirotis et al. (2010)
proposed using Dawid and Skene’s approach to
extract a single quality score for each worker that
low-quality workers to be pruned. The approach
proposed in our paper contrast with this line of
work, by allowing neural networks to be trained
directly on the softmax output of the noisy labels
of multiple annotators, thereby avoiding the need
to resort to prior label aggregation schemes. Smyth
et al. (1995) also collated the opinions of many ex-
perts to establish ground truth and there has been a
large body of research work using EM approaches
to annotate labels for datasets by many experts
(Whitehill et al., 2009; Raykar and Yu, 2012).

Rodrigues et al. (2014) also used the EM ap-
proach of labelling datasets by experts through the
use of Gaussian Process classifiers. Rodrigues and
Pereira (2018) also deployed the use of crowd layer
with a CNN model to capture the biases of differ-
ent annotators and correct them, our approach is
the first to be built on the Wide Residual Network
(WideResNet) model (Zagoruyko and Komodakis,
2017) and the Bidirectional Encoder Representa-
tions from Transformers (BERT) model (Devlin
et al., 2019). Our approach differs from the method
used by Rodrigues and Pereira (2018) because our
technique initially finds the softmax of the output
of the crowd responses before it is used for the mod-
elling whereas the Rodrigues and Pereira (2018)
approach works on the responses from the crowd
directly.

3 Systems Description

These systems are proposed for image classifica-
tion tasks and NLP tasks with sub-task-specific
modifications and training schemes applied to each
of the dataset.

3.1 softmax-Crowdlayer

A special type of network layer known as softmax-
Crowdlayer initially proposed by (Rodrigues and
Pereira, 2018), was used to train a deep neural
network directly from the noisy labels of multiple
annotators from the crowd-sourced data. It used the
output layer of a deep neural network as its input
and was trained to learn from an annotator-specific
mapping from the output layer to the labels of the
different soft-maxed crowd annotators; and by so

doing it was able to learn the reliability and biases
of each annotator in the process. As can be seen
from Figure 1, which is the generalised architec-
ture encompassing either a Multi-layer Perceptron
(MLP), WideResNet, or BERT as its’ base model,
was used together with a softmax-Crowdlayer for
the respective datasets. The output layer from the
deep neural network served as a bottleneck and in-
put for the crowd Annotators to learn from. It used
a specialised cross-entropy loss known as Masked
Multi Cross Entropy loss during training to handle
the missing answers from Annotators. After the
training of the network with the crowd layer and
the specialised loss function, the crowd layer was
removed to expose the Bottleneck layer which was
then used to make the predictions.

The intuition behind the deployment of the
crowd layer on top of the base model was that;
the softmax-Crowdlayer would adjust the gradients
from the labels of each annotator depending on
their level of expertism and adjusts their weights
and propagate the errors through the entire neural
network system.

Sections 3.2 covers the use of WideResNet
together with SAM on the CIFAR10-IC dataset
whilst sections 3.3 and 3.4 covers the use of
softmax-Crowdlayer for image classification whilst
section 3.5 explores the use of BERT and softmax-
Crowdlayer to cover the NLP aspect of the task
which has been visualised in figure 1. The motiva-
tion behind the preference of the BERT model over
the baseline models was to investigate the potential
of using BERT, which is a state-of-the-art model,
with the softmax-Crowdlayer.

3.2 WideResNet with Sharpness Aware
Minimisation (SAM) For Majority Voting

The CIFAR10 dataset had a model made with
WideResNet; first implemented by (Zagoruyko and
Komodakis, 2017). A widening factor of 12 and
convolutions of size together with 16 layers were
used. A learning rate of 0.1 with weight decay
of 0.001 and momentum of 0.8 was used with the
SAM optimiser which had schochatic Gradient De-
scent (SGD) as its base optimiser. The training
epochs for the dataset were scheduled in batches of
1000 for 60, 5, 10 and 20 respectively. The mini-
mization of the commonly used loss functions such
cross-entropy and the use of the custom Masked
loss function designed specifically for the crowd
layer on the CIFAR10-IC were not sufficient to
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achieve superior results since the training loss land-
scapes of models used for noisy labels are complex
and non-convex, with a multiplicity of local and
global minima (Foret et al., 2020).

The Sharpness-Aware Minimization (SAM)
Foret et al. (2020), was applied to the CIFAR
dataset with the use of WideResNet model gen-
eralization which aided in the simultaneous loss in
value and sharpness of the noisy labels from the
crowd annotators as it has been shown to be ro-
bust to noisy labels (Foret et al., 2020). The inner
working of the sharpness Aware Minimization is
such that rather than using a parameter value that
simply have low training loss value, a parameter
value whose entire neighborhoods have uniform
training loss value is the utilised.

The SAM optimiser technique was not applied
to the NLP tasks because, its performance on them
was not as good as that of the CIFAR-10 dataset.

3.3 WideResNet with softmax-Crowdlayer
for CIFAR10-IC Dataset

The CIFAR10-IC data was made up of transformed
Images that belonged to one of the 10 classes below:
‘plane’, ‘car’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’,
‘horse’, ‘ship’, ‘truck’.

The WideResNet described in section 3.2 was
used as the base model which had a softmax-
Crowdlayer added to the output layer and through
the action of back-propagation, it was able to cor-
rect the errors of the 2571 Annotators. A train-
ing epoch of 400 and batch size of 64 were used
for with this approach. One hot encoding, to-
gether with a specialised function were used to
generate the set of missing annotations which was
then trained using the masked multi cross-entropy
loss function for error corrections and predictions
through the weights update.

3.4 MLP with softmax-Crowdlayer for
LabelMe-IC Dataset

The LabelMe-IC data was made up of VGG16 en-
coded images that belonged to one of the 8 cate-
gories or classes below: ‘highway’, ‘inside city’,
‘tall building’, ‘street’, ‘forest’, ‘coast’, ‘mountain’
or ‘open country’

This was an image classification task that had a
standard MLP architecture together with softmax-
Crowdlayer applied to it. The MLP was made up
of 4 hidden layers with 128 Relu Units each, an
optimiser made of Adam optimizer, loss function
made of categorical cross entropy and a drop out

of 0.2. A training epoch of 400 and batch size
of 32 were used. The output layer had a softmax
activation that outputted to the 8 distinct classes
highlighted earlier. The softmax-Crowdlayer de-
scribed in section 3.1 was then connected to this
output layer where the Annotators errors and biases
were back-propagated through a training scheme
which reduced the noise in the crowd Annotators
through the use of a specialised loss function to
handle crowd annotations known as masked multi
cross entropy loss function.

3.5 BERT with softmax-Crowdlayer for
Gimpel-POS and PDIS Datasets

In Gimpel-POS dataset, each sample consisted of
a tweeted text, a specific word/token appears in a
tweeted text and a crowd label which is a list of
multiple labels from different annotators. The task
was to predict a part of speech (POS) of a given to-
ken. The POS labels include ‘ADJ’ (adjective),
‘ADP’ (adposition), ‘ADV’ (adverb), ‘CCONJ’
(coordinating conjunction), ‘DET’ (determiner),
‘NOUN’ (noun), ‘NUM’ (numeral), ‘PRON’ (pro-
noun), ‘PART’ (particle or other functional word),
‘PUNCT’ (punctuation), ‘VERB’ (verb) and ‘X’
(others). Table 1 shows an example of Gimpel-
POS dataset. In this example, ‘Texas’ is a token
needed to be tagged. It is at the beginning of the
tweeted text shown in the first row. Considering
the crowd label provided, the first and the second
annotators both labeled this token as a noun, while
the last annotator labeled this token as a pronoun.

Tweeted text Texas Rangers are in
the World Series! Go
Rangers!

Token Texas
Crowd label [NOUN,NOUN,PRON]

Table 1: An example of Gimpel-POS dataset

Considering PDIS dataset, the goal was to pre-
dict whether a given noun phrase refers to new
information or to old information in a document.
Each sample consisted of a document (tokenised
sentences), a noun phrase appear in the document,
a pre-computed syntactic feature of a given noun
phrase, and a crowd label. Table 2 shows an exam-
ple of PDIS dataset. The document and the noun
phrase are in the first and the second row of the
table respectively. The noun phrase is ‘The cat’ at
the beginning of the document. Syntactic feature
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of this noun phrase is a feature vector shown in the
third row. The fourth row shows a crowd label of
the given noun phrase. The first and the second
annotator labeled the noun phrase as 0 and 1 re-
spectively 0 means that the noun phrase refers to
new information and 1 means that it refers to old
information.

Document The cat ate the rat. There-
after the dog ate the cat.

Noun phrase The cat
Syntactic feature [0,1,0,..,0]
Crowd label [0,1]

Table 2: An example of PDIS dataset

In this work, we propose to fine-tune the pre-
trained BERT model for both Gimpel-POS task
and PDIS task based on crowd labels. To do so,
the original input format of both tasks was firstly
converted to the BERT conventional format. For
each sample in Gimpel-POS dataset, a tweeted text
and a given token were first concatenated in the
following format:

[CLS] Tweeted text [SEP] Token [SEP]

where ‘[CLS]’ token is added for classification and
two ‘[SEP]’ tokens are used to identify the bound-
ary of a tweeted text and a token. Similarly, for
PDIS dataset, a document is also concatenated with
a noun phrase as follows:

[CLS] + Document + [SEP] + Noun phrase +
[SEP]

These concatenated texts are used for fine-tuning
the pre-trained BERT model.

To fine-tune the pre-trained BERT model, a
dense layer was added at the end of the pre-trained
BERT model. This layer took a ‘[CLS]’ token em-
bedding from the pre-trained BERT model as an
input and outputted a vector with the size equal
to the number of classes in either dataset (12 for
Gimpel-POS and 2 for PDIS). A softmax activation
layer was added after the dense layer to compute
the probabilities of each class. These additional
layers can be seen as a classifier module that is
added on top of the pre-trained BERT model. This
is a common way to fine-tune the pre-trained BERT
model for a specific task with regular labels as tar-
gets (Devlin et al., 2019).

In order to deal with crowd labels in the datasets,
the softmax-Crowdlayer was added next to the clas-
sifier module. Similarly to the MLP model with

the crowd layer highlighted in 3.4, The proposed
model for fine-tuning the pre-trained BERT with
the softmax-Crowdlayer is illustrated in Figure 1.
The Gimpel-POS example in 1 is used for demon-
stration in this figure. As previously mentioned,
only the ‘[CLS]’ token is passed through the addi-
tional classifier module to predict primary classi-
fication output. This output is further used as an
input of the softmax-Crowdlayer to predict the final
output as described in the previous section. The
proposed model can be instantly applied with PDIS
dataset by changing the output size of the dense
layer in the classifier module to 2. Due to lack of
resources, the fine tuning of all the Bert model was
run for 1 epoch.

4 Results and Discussion

The results were evaluated using two metrics
known as F1 score, referred to as hard evaluation
and and cross Entropy, referred to as soft evalu-
ation. Models with Higher F1 scores and lower
cross entropy values are the desired outcomes ex-
pected from the models.

As can be seen in Table 3, The use of MLP
together with the softmax-Crowdlayer on the
LabelMe-IC dataset achieved the highest F1 score
of 0.7839, which was 0.739 greater than the ma-
jority voting model provided as the baseline model
by the task organisers and also had a comparative
lowest cross entropy value of 1.7693. The vast
difference in the performance of the majority vot-
ing and the softmax-Crowdlayer can be attributed
to the calculation of the number of missing anno-
tations together with the ability of the softmax-
Crowdlayer to learn the true labels from the crowd
labels. This leads to the correction of the errors
and mislabelling from inexperienced annotators
through the process of back-propagation. The ma-
jority voting does not have this unique ability and
therefore uses the wrong labelling without any of
such adjustments.

The use of WideResNet together with SAM re-
sulted in a superior performance with F1 score
of 0.7693 and cross entropy of 0.8274 as com-
pared to the performance WideResnet with the
softmax-Crowdlayer which had an F1 score of
0.4427 and cross entropy of 1.9286 when applied to
the CIFAR10-IC. It’s cross entropy of 1.9286 was
better than the baseline majority method which was
2.8306. The PDIS data which was fine-tuned with a
pre-trained BERT model plus softmax-crowdlayer
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Figure 1: The proposed softmax-Crowdlayer on top of the respective Base Models

had F1 score of 0.4379 and cross entropy of 0.8295.
The BERT + softmax-Crowdlayer did not perform
comparatively well when applied to the Gimpel-
POS data since it only managed to achieve an F1
score of 0.1254 and corresponding cross entropy
of 2.3318. From Table 3 it can also be seen that
the BERT + Majority voting had the same results
as the BERT + softmax-Crowdlayer model so fur-
ther investigation needs to be conducted to find
out why this was so. As can be seen in Table 3,
the use of the full base model provided for the
PDIS and Gimpel-POS by the organisers achieved
superior results and should have been used with
the softmax-crowdlayer, but it could not be done
because the full base model provided by the organ-
isers was written in Pytorch framework whilst the
softmax-crowdlawyer was written in Keras. There
should therefore have been the need to convert the
full base model to Keras before using the softmax-
crowdlayer and it’s eventual evaluation, but as a
result of the limited availability of time, it has been
reserved as part of our future work to be covered
in section 5

Refer to Appendix A for the analysis of the class
distribution of the datasets.

5 Conclusion

This paper used a softmax-Crowdlayer approach
combined with a deep neural network to train noisy
labels from multiple crowd annotators. WideRes-
Net together with softmax-Crowdlayer has been
applied on CIFAR10-IC datasets, whilst MLP com-
bined with softmax-Crowdlayer has been used on
the LabelMe-IC data and BERT combined with

softmax-Crowdlayer has been used on Gimpel-
POS and PDIS data respectively.

Future work will explore the effect of the dis-
tribution of the class annotation on the labeling
accuracy and also investigate more efficient ap-
proaches of combining the BERT model with the
softmax-Crowdlayer to further improve the results.
It will also involve the application of the softmax-
crowdlayer on the Humour dataset which was not
included in this work due to time constraint posed
as a result of the complicated data points of the
humour dataset.
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A Class label distribution analysis

The table 4, summarises the number of Annota-
tors, number of data points, and number classes
for each data set used. The Figure 2 contains the
probability density estimates of how the annotators
perceived the class labels to which each respective
item belonged to. Based on the simple majority
voting, it can be observed from Figure 2(a) that
the distribution was uniform across all classes with
the labeling ; [0:airplane, 1:automobile, 2:bird,
3:cat, 4:deer, 5:dog, 6:frog, 7:horse, 8:ship, and
9:truck ] for the CIFAR10-IC dataset.

Figure 2(b) depicting the kernel density esti-
mates of the LabelMe-IC data, captures the distri-
bution of how the annotators labelled the data into
their respective classes. Majority of the samples
were labelled as forest with the respective encod-
ing of the labels shown as; [0:highway, 1:inside
city, 2:tall building, 3:street, 4:forest, 5:coast,
6:mountain, 7:open country].

The distribution of the Gimpel-POS and PDIS
datasets are represented in figures 2(c) and (d) re-
spectively whose encoded labels have been pro-
vided earlier in section 3.5. The encoding for the
Gimpel-POS class is shown as [0:ADJ, 1:ADP,
2:ADV, 3:CCONJ, 4:DET, 5:NOUN, 6:NUM,
7:PRON, 8:PART, 9:PUNCT, 10:VERB, 11:X].

The labels of PDIS dataset are encoded as [0:
refer to new information, 1: refer to old infor-
mation].
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(a)

(b)

(c)

(d)

Figure 2: The kernel density plot of the distribution of
the crowd labels by Annotators for the (a) CIFAR10-IC,
(b) LabelMe-IC, (c) Gimpel-POS and (d) PDIS datasets

Dataset #annotators #classes size
CIFAR10-IC 2571 10 7000
LabelMe-IC 59 8 5000
Gimpel-POS 177 12 8310
PDIS 1728 2 86936

Table 4: Summary statistics for each dataset used
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