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Abstract
We present our approach to predicting lexi-
cal complexity of words in specific contexts,
as entered LCP Shared Task 1 at SemEval
2021. The approach consists of separating sen-
tences into smaller chunks, embedding them
with Sent2Vec, and reducing the embeddings
into a simpler vector used as input to a neural
network, the latter for predicting the complex-
ity of words and expressions. Results show
that the pre-trained sentence embeddings are
not able to capture lexical complexity from the
language when applied in cross-domain appli-
cations.

1 Introduction

Lexical complexity plays a crucial role in reading
comprehension. Predicting lexical complexity of
words within sentences in specific textual context
can enable systems to better perform certain NLP
tasks, such as simplifying texts, and favoring less
fortunate readers in a giving target language. The
SemEval 2021 proposes a Lexical Complexity Pre-
diction (LCP) shared task (Task 1) (Shardlow et al.,
2021) based on a new annotated English dataset
with a Likert scale (Shardlow et al., 2020).

Word embeddings (Mikolov et al., 2013; Devlin
et al., 2019) are very important resources that sup-
port several NLP tasks by providing a semantic
latent representation that heuristically captures re-
lationships in language that are very difficult to ob-
serve otherwise. Furthermore, such semantic repre-
sentation can be used to embed language structures
other than just words.

Sent2Vec (Pagliardini et al., 2018) is an unsuper-
vised model designed to compose sentence embed-
dings using word vectors along with n-gram em-
beddings, simultaneously training composition and
the embedding vectors themselves. Sent2Vec has
been used in several NLP tasks, such as analysing
semantic properties of sentences (Zhu et al., 2018),

classification of sentences in the biomedical do-
main (Agibetov et al., 2018), automatic detection
of incoherent speech (Iter et al., 2018), and measur-
ing sentence similarity (Quan et al., 2019),

In this work, we aim to test the ability of
Sent2Vec to detect the complexity of English words
and expressions in specific contexts. We evaluate
in what extent the semantic information captured
when learning the embeding representation is able
to incorporate word complexity.

Our approach uses pretrained Sent2Vec models
and aims to validate in what extent such models
are able to predict complexity of words. Results
show strong evidence that pretrained sentence em-
beddings do not capture complexity features from
language, specially when applied in cross-domain
applications.

2 Method

The proposed shared task consists of determin-
ing the complexity of token words in the con-
text of given input sentences (Lexical Complexity
Prediction-LCP). Training input sentences anno-
tated with a Likert scale corresponding to the com-
plexity score of target words are given. Sub-task 1
focus on predicting the complexity score of single
words. Meanwhile, Sub-task 2 targets multi-word
expressions.

Our overall strategy consists on generating
chunks of the sentence, embed those chunks with
Sent2Vec and then reduce those embeddings into
a simpler vector, which would then finally be used
as the neural network’s input.

Our approach uses pretrained Sent2Vec mod-
els to obtain embedding representation of multiple
parts of the input sentence split by the target token
words. For a given input sentence S, we obtain
embeddings for: a) S: the full sentence; b) S0: the
amount of text from the beginning of the sentence
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up to the target token(s) (except the latter); c) T :
the target word token(s), and d) S1: the amount of
text from the target token(s) up to the end of the
sentence (except the former). When target tokens
are in the beginning or in the end of a sentence, S0

or S1 are represented by a zero-value vector.
We reduce the vector representation of each sen-

tence constituent into distance-based arrays that
are fed into a neural network estimator. The re-
duction itself consisted of simplifying the text (us-
ing Spacy) and then feeding different chunks into
Sent2Vec. Finally, an array of the distances be-
tween the chunks’ embeddings to the token word’s
embeddings was used as input to a neural network
coming from the Scikit-Learn package.

We use the context given by the two splits of the
input sentence (S0 or S1) to measure the complex-
ity of the token word(s) (T ). Thus, our pipeline
consists of four major steps: text preprocessing,
chunking, context embedding and estimator train-
ing. The chosen estimator was a Multi-Layer Per-
ceptron (MLP).

Figure 1 illustrates this pipeline for an example
sentence and token word.

2.1 Text Preprocessing

We use a simple preprocessing step based on off-
the-shelf components from Spacy Python package
(Honnibal et al., 2020)1 that apply the following
filters in the raw input sentence:

• Turning it into only lowercase characters;

• Removing all punctuation;

• Removing all words recognized by Spacy as
stop words (unless the stop word was part of
the target token T ).

The reformatted sentences are then split into
parts S, S0, S1 and T to be fed into the next step
of the pipeline.

2.2 Context Embedding

We embed the four elements of a sentence
resulted from the previous preprocessing
step using a pretrained Sent2Vec model
(torontobooks unigrams model has
been chosen).2 As a setback, the token word was
often embedded as a null vector (consisting only

1https://spacy.io
2https://github.com/epfml/sent2vec#

downloading-sent2vec-pre-trained-models

of zeroes), as expected that such target words
from specific domains would be off the pretrained
vocabulary.

Instead of concatenating the four resulting em-
beddings into a single vector to be used as input by
our estimator, we perform a reduction that aims to
represent how close (distance) to its context a token
word is. Thus, our estimator input comprises: a)
three norm distances (NumPy’s linalg.norm
method (Harris et al., 2020)) between each sen-
tence embedding (S, S0, and S1) and the token
word’s embedding (T ), and b) a boolean value in
the set {0, 1} indicating whether the token word’s
embedding was a null vector.

2.3 Estimator Training

Finally, we use the obtained embedding re-
ductions from the previous step to train a
MLP from the Scikit-Learn Python package
(neural network.MLPRegressor) (Pe-
dregosa et al., 2011). The MLP was instantiated
with the max iter and random state argu-
ments set to 500 and 1, respectively. The estimator
was fitted to the input with its fit method, with
the X and y parameters being vectors of the
reduced embeddings (X) and corresponding given
token word complexities (y).

Our estimator is designed to predict the com-
plexity value for a given token word in context.
However, token words can be a misuse of given
information, since the complexity of a word varies
with context. Our goal with reducing embeddings
from fractions of the original sentence into a small
vector that served as input to the estimator was
similar to the Input Hypothesis, an approach to
language learning that grows in popularity.

The Input Hypothesis, also referred to as “i+1
method” and surveyed in Wang (2017), discusses a
process for acquiring languages by being exposed
to content that is slightly above the learner’s current
level. This is argued to work because the learner
is then able to understand the whole sentence (i)
and consequently annex a new word or construc-
tion (+1) to their vocabulary because of intelligible
context.

Reducing embeddings from chunks of the orig-
inal sentence into a vector of distances from the
token word can be expressed as an attempt to sym-
bolize the size (complexity) of this “+1” (the token
word) - that is, the neural network input is an obser-
vation of how obtainable from its context a given

https://spacy.io
https://github.com/epfml/sent2vec##downloading-sent2vec-pre-trained-models
https://github.com/epfml/sent2vec##downloading-sent2vec-pre-trained-models
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Figure 1: Illustrated pipeline for our approach

token word is.
We then validate the trained model us-

ing model selection.train test split
method (Scikit-Learn), setting random state
parameter set to 1. This method divides the dataset
into training and testing subsets. With the MLP
fitted with the training subset, the efficiency with
which it would handle foreign inputs is measured
with a call to its score function (using the test-
ing sets as arguments). This function returns the
coefficient of determination R2 of a prediction.

2.4 Development Environment
Our solution is made available in a Google Colab
file3. In order to execute the code, it’s necessary to
duplicate the file and change the environment vari-
ables related to file access (the Sent2Vec models
and input files). More information on this process
can be found on the file itself.

Since the Google Colab platform permits by de-
fault the use of up to a little over 12.5GB RAM, the
options of Sent2Vec pretrained models to use are
limited: the model we used for this task has only
2GB.

3 Results

The task is divided between two subtasks: single-
and multi-word tokens. Both have the same format:
each line of the input has an ID, a sentence, a cor-
pus to which it belongs, and a token. For training
data, each line also includes a complexity value.
The difference between the first and second sub-
tasks is that the first limits a token to one single

3https://colab.research.google.com/
drive/1MCNfDzM-BW9Zopxs9qFFT8sDLb6FrAM_
?usp=sharing

word, while the second doesn’t.
Tables 1 and 2 present the final results of the

competition for the two subtasks, respectively. Par-
ticipant’s performance is ranked in each subtask
separately. For the submissions without a team
name - that is, the submissions made by users not
linked to teams -, the user name is available inside
brackets. The tables also show each participant’s
scores for individual corpora. Our approach is iden-
tified as C3SL.

We believe the flaws in our approach can be
explained in two-fold: a) pretrained embeddings
are sensitive to the domain or context used during
trained, and the way semantic information is cap-
tured in a latent representation is not reflected the in
the same way in cross-domain applications; and b)
even if a latent representation of text would able to
capture semantic complexity of certain expression
in context, the same is not reflected by the norm or
cosine distances between multiple chunks and the
target expressions.

4 Related Work

Some of the previous work show that Sent2Vec is
not the best alternative to consistently achieve high
accuracy in subsequent NLP and NLU tasks based
on embedding representation of sentences, except
when training Sent2Vec with domain-specific cor-
pora.

Miftahutdinov et al. (2019) attempt to use the
Twitter unigram pretrained model from Sent2Vec in
order to improve their approach when performing
extraction of adverse drug reactions from Tweets.
However, results show that utilizing Sent2Vec as
tweet representations did not improve classification
quality.

https://colab.research.google.com/drive/1MCNfDzM-BW9Zopxs9qFFT8sDLb6FrAM_?usp=sharing
https://colab.research.google.com/drive/1MCNfDzM-BW9Zopxs9qFFT8sDLb6FrAM_?usp=sharing
https://colab.research.google.com/drive/1MCNfDzM-BW9Zopxs9qFFT8sDLb6FrAM_?usp=sharing
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Table 1: Results for Subtask 1.

# Team Name Pearson Spearman MAE MSE R2
1 JUST BLUE 0.7886 (1) 0.7369 (2) 0.0609 (61) 0.0062 (60) 0.6172 (2)
2 DeepBlueAI 0.7882 (2) 0.7425 (1) 0.0610 (60) 0.0061 (61) 0.6210 (1)
3 Alejandro Mosquera 0.7790 (3) 0.7355 (5) 0.0619 (57) 0.0064 (59) 0.6062 (3)

57 C3SL 0.4598 (57) 0.3983 (58) 0.0866 (6) 0.0130 (6) 0.1989 (56)
61 RACAI -0.0272 (61) -0.0268 (61) 0.2777 (1) 0.1270 (1) -6.8449 (61)

Table 2: Results for Subtask 2.

# Team Name Pearson Spearman MAE MSE R2
1 DeepBlueAI 0.8612 (1) 0.8526 (3) 0.0616 (38) 0.0063 (38) 0.7389 (1)
2 [rg pa] 0.8575 (2) 0.8529 (2) 0.0672 (34) 0.0072 (34) 0.7035 (5)
3 [xiang wen tian] 0.8571 (3) 0.8548 (1) 0.0675 (33) 0.0072 (32) 0.7012 (7)

35 C3SL 0.3941 (35) 0.3675 (35) 0.1145 (4) 0.0206 (4) 0.1470 (35)
38 [glitterosu] 0.1860 (38) 0.1316 (38) 0.1332 (1) 0.0255 (1) -0.0564 (38)

Cho et al. (2019) use SentVec embeddings to
propose a language scheme that generates candi-
date utterances using paraphrasing and methods
from semi-supervised learning.

An empirical study of sentence embed-
dings (Krasnowska-Kieraś and Wróblewska, 2019)
aims to analyse in what extent linguistic informa-
tion is retained in vector representations of sen-
tences by comparing ten embeddings approaches.
Results show that Sent2Vec was only able to out-
perform other approaches in only 1 out of 11 tasks
(word classification task).

Lo et al. (2018) use Sent2Vec trained on the
WMT18 news translation task parallel training
data (Koehn et al., 2018) to calculate distance of
sentence vectors aiming to improve their semantic
textual similarity approach when filtering a noisy
web crawled parallel corpus.

Iter et al. (2018) aim to automatically ex-
tract linguistic features for detecting symptoms of
schizophrenia. They compare a number of sentence
embeddings and show that, although Sent2Vec
outperforms the mean vector sentence embedding
(used as a baseline model within the experiments),
all other models perfom better when measuring
coherence using concept overlap and ambiguous
pronoun usage.

Zhu et al. (2018) evaluate semantic properties of
sentence embeddings models in five tasks: negation
detection, negation variants, clause relatedness, ar-
gument sensitivity, and fixed point reorder. Results
show that Sent2Vec is only able to outperform other
embedding models in the clause relatedness task,

which explores whether the similarity between a
sentence and its embedded clause is higher than
between a sentence and its negation. The resulting
accuracy is in the 30-35% range.

5 Conclusions

We presented an approach for the LCP Shared Task
1 at SemEval 2021 for predicting the lexical com-
plexities of words in context. We used pretrained
Sent2Vec models using a vector formed from em-
bedded chunks of sentences as input for a neural
network to perform as the final complexity esti-
mator. Implemented and executed on the Google
Colab platform, our approach used little resources.

The results show that pretrained Sent2Vec mod-
els alone cannot capture a semantic representation
that reflects a word’s or expression’s complexity
within cross-domain contexts. As a way of extend-
ing our experiments, we plan to perform further
analysis in subsequent classification tasks in the
biomedical domain using reinforcement strategies
to enrich the semantic information captured by em-
bedding representation of sentences.
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