
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 410–415
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

410

CLaC-BP at SemEval-2021 Task 8: SciBERT Plus Rules for MeasEval

Benjamin Thérien, Parsa Bagherzadeh, and Sabine Bergler
CLaC Labs, Concordia University

Montreal, Canada
{b therie, p bagher, bergler} @cse.concordia.ca

Abstract
This paper explains the design of a heteroge-
neous system that ranked eighth in competi-
tion in SemEval2021 Task 8. We analyze abla-
tion experiments and demonstrate how the sys-
tem components, namely tokenizer, unit iden-
tifier, modifier classifier, and language model,
affect the overall score. We compare our re-
sults to similar experiments from the literature
and introduce a grouping algorithm developed
in the post-evaluation phase that increased our
system’s overall score, hypothetically elevat-
ing our competition rank from eight to six.

1 Introduction

The MeasEval 2021 shared task involves identi-
fying related groups of the four annotation types
seen in Table 1, identifying relations linking the an-
notations of each group, and providing additional
information (units and modifiers) for quantities (see
(Harper et al., 2021)). Our system learns to classify
tokens, groups tokens of the same class into spans
and further groups related spans using a distance-
based heuristic, providing a baseline for systems
that attempt to learn these groupings.

2 Data

The data comprises excerpts from scientific articles
of different disciplines: Astronomy, Engineering,
Medicine, Agriculture, Biology, Chemistry, Earth
Science, Computer Science, and Mathematics. The
limited data (see Table 1), the wide range of top-
ics involved, and the idiosyncrasies of each scien-
tific field’s vocabulary make the task difficult. In
fact, the task organizers report a high degree of
inter-annotator disagreement for certain annotation
types. Krippendorff’s alpha (Hayes and Krippen-
dorff, 2007) for each annotation type is also shown
in Table 1, underlining that annotating Measured
Properties, Measured Entities, and Qualifiers poses
a substantial degree of ambiguity, even to humans.

Annotation Frequency α
Quantity (QA) 1164 .94
Unit (U) .86
MeasuredEntity (ME) 1148 .54
MeasuredProperty (MP) 742 .64
Qualifier (QL) 276 .33

Table 1: Frequency of training data annotations and
their Krippendorff’s Alpha

The training data contains a total of 298 excerpts
containing 1164 different quantities. We refer to
groupings of annotations as complete data-points
(see Figure 1).

All complete data-points contain one quantity
and at most one annotation span of each other type.
A summary of complete data-point frequencies is
provided in Table 2.

Annotations present Frequency
QA 11
ME,QA 361
ME,MP,QA 512
ME,QL,QA 50
ME,MP,QL,QA 225
MP,QA 4
MP,QL,QA 1

Table 2: Frequency of different complete data-points in
the training data

3 System

Our system is a pipeline of different machine learn-
ing and rule-based modules. We use SpaCy1 for
sentence splitting and tokenization and we fine-
tune a SciBERT model2 to classify each token into
one of Quantity (QA), Measured Entity (ME), Mea-
sured Property (MP), Qualifier (QL), or Other (O).

1https://spacy.io/
2SciBERT uses the same model architecture and pretrain-

ing objective as BERT (Devlin et al., 2019), but it is pre-trained
on a large corpus of scientific text (Beltagy et al., 2019).

https://spacy.io/

411

Model C1 assumes a constant photoelectron heating efficiency of 96%
ME MP QA

HasQuantityHasProperty

Figure 1: An example of a complete data point with corresponding annotations

During a first postprocessing phase, the token level
output of the classifier is merged into spans of ad-
jacent annotations of the same type. We feed the
spans annotated as QA to a second SciBERT clas-
sifier to determine their modifier class (see Sec-
tion 3.4). A distance-based heuristic goups the
classified spans into complete data-points.

All of the system’s deep learning components are
implemented using PyTorch (Paszke et al., 2017).
Our models use simple (linear + softmax) classifi-
cation on top of BERT’s implementation from the
HuggingFace library.3 Pre-trained weights are ob-
tained from HuggingFace’s Model Hub.4 Our com-
petition SciBERT models are optmized by Adam
(Kingma and Ba, 2015) using a constant learning
rate of 5e−6 (the rest of Adam’s parameters are set
to PyTorch’s defaults). The competition system’s
token classifier is fine-tuned on all the training data
for 5 epochs, while the modifier classifier is fine-
tuned on all the training data for 3 epochs.

3.1 Preprocessing
Tokenization We modify SpaCy’s tokenizer to
make several symbols individual tokens. As illus-
trated in Tables 3 and 4, our tokenizer separates
apart mathematical symbols as well as suffixes Rp,
Rs, mH, RRh.

Prefix = ∼ ± − ≤ > < ≥
Infix = ∼ ≈ • : % ()→ + − ± , > <
Suffix Rp Rs mH RRh

Table 3: Tokenization rules added

The tokenization rules split apart tokens that con-
tain annotations of different types (see Table 4).

Gold span to token conversion The token-level
objective used to fine-tune SciBERT requires map-
ping the gold span annotations onto tokens. How-
ever, the gold standard annotations don’t always
coincide with our token spans. Some gold annota-
tion boundaries are in error (e.g. oss rate instead

3https://huggingface.co/transformers
4The SciBERT models we refer to are fine-tuned from

‘scibert scivocab cased’ and the BERT model we refer to is
fine-tuned from ‘bert-base-cased’.

SpaCy tokens Modified tokens
∼ 2–3, mA, /, cm2 ∼, 2, –, 3, mA, /, cm2
∼ 0.40–0.45, V ∼, 0.40, –, 0.45, V
∼-27% ∼,-, 27, %
(ratio, CaP=1.67) (,ratio, CaP, =, 1.67,)

Table 4: Tokenization examples

of loss rate) and some are deliberate (e.g. beach as
the annotated part of the token beaches).

Of the 3330 gold spans that we convert to token-
level training samples, only 48 are off by one char-
acter, and 2 are off by more than one character.
The remaining token level annotations perfectly
match the gold spans in character offset. We there-
fore convert gold annotations to token annotations
naively, projecting gold span annotation onto the
token span with the least character differences and
obtain mappings as illustrated in Figure 2a.

Sentence splitting Scientific text makes frequent
use of acronyms (e.g. fig.) which confuse SpaCy’s
default sentence splitter. We use exclusion rules
for frequent abbreviations and special tokens that
end in punctuation. We also exclude symbols from
starting a sentence, as well as tokens not preceded
by a period.

3.2 Token Classification

We fine-tune SciBERT to classify tokens into the
five output categories QA, QL, MP, ME, and O,
where O indicates no annotation for a token. This
module processes one document at a time, taking
a list of sentences as input, where each sentence
is a list of tokens. The output of the classifier is
the token annotations for each of the sentences it
receives.

Input The special token [CLS] is followed by
tokenized sentences separated by [SEP].

Token classification We use a linear layer fol-
lowed by softmax for the token level multi-class
classification into the five label categories from
SciBERT output

Out of vocabulary tokens SciBERT’s Word-
Piece tokenizer (Wu et al., 2016) splits unknown

https://huggingface.co/transformers

412

tokens into subwords for which it has embeddings.
We distribute a token’s gold annotation over all
subwords within its span (see Figure 2b). To calcu-
late the loss between gold standard and predicted
tags, we use cross-entropy. Finally, to predict the
class of a token that SciBERT breaks, we take the
majority class of its subwords, breaking ties using
the class of the first subword, contrary to (Devlin
et al., 2019), who always use the class of the first
subword.

3.3 Token Span Creation
After token classification, we group any adjacent
tokens labelled with the same class into a single
span for that label. If the label for a token differs
from the label of its neighbors, it forms a span by
itself.

3.4 Modifiers
In addition to the five classes discussed so far,
MeasEval 2021 also annotates 10 modifier cate-
gories5 for quantity spans: IsApproximate, IsCount,
IsRange, IsList, IsMean, IsMedian, IsMeanHasSD,
IsMeanHasTolerance, IsRangeHasTolerance, Has-
Tolerance, or NOMOD.

For instance, the underlined quantity in Exam-
ple 1 has a modifier class of HasTolerance triggered
by ±.

(1) . . . constrain the CTB at 93.90±0.15 Ma

To determine a quantity’s modifier class, we fine-
tune a second SciBERT model. Using the [CLS]
token as a representation for a quantity’s span, the
model classifies the span into one of the 11 cate-
gories.

Our model predicts at most one modifier per
quantity span, which fails in certain examples with
more than one modifier. The training data con-
tains 552 quantities with modifiers and 37 of those
quantities have two modifiers assigned to them. In
competition, our system ranked third for the modi-
fier class.

3.5 Unit identification
We identify units in quantities using a simple rule-
based algorithm. No unit is predicted when a quan-
tity span ends in a number or when its predicted
modifier is IsCount. Otherwise, mark the unit as
the string of characters starting from the last occur-
ring numerical character in the quantity span to the

5We add an 11th NOMOD which indicates the absence of
a class.

end of that quantity span. Example1 highlights the
unit in a gray box.

3.6 Span Grouping

We present two approaches for grouping annota-
tion spans into datapoints. The first approach is our
original competition algorithm, the second is an im-
proved, post-competition version. Each approach
works from lists of token spans (as described above)
and outputs a list of groupings. Groupings approxi-
mate complete data points.

3.6.1 Original
Our competition system creates candidate group-
ings for each quantity in a first pass by adding at
most one measured entity, one measured property,
and one qualifier span to the group if they occur
within the same sentence as the group’s quantity. A
span cannot be assigned to multiple groups. Next,
we calculate the character distance between each
group’s quantity and any still unmatched annota-
tions that are at most one sentence away. The list
of distances is sorted and the closest missing anno-
tation within one sentence distance is added. While
this algorithm creates some correct complete data-
points, it has two major drawbacks: one measured
entity cannot be used for multiple groups and we do
not rank the matches to achieve the best fit for all
the quantities. When used in our competition sys-
tem, this algorithm generates 1626 True positives,
892 false positives, and 1504 false negatives.

3.6.2 Span++
In the post evaluation phase, we tested a new algo-
rithm that accounts for token distance during the
grouping process. First, the algorithm initializes
candidate groups for each quantity. Then, each
quantity span is paired with each measured entity
span and the shortest token distance between the
spans is calculated. The measured entity from the
closest pair is added to its quantity’s group and
the pair is removed from the list. This is repeated
for all measured entities that are within a 68 to-
ken distance from their quantity. Measured entities
farther away are discarded. Then, the same match-
ing process is used for measured properties and
qualifiers with cutoff distances of 26 and 25 tokens
respectively. Using identical settings to our origi-
nal submission, we evaluate the performance of our
new algorithm (called ‘span++’ in Table 5). We
obtain consistently better overlap f1-scores. While
this algorithm supersedes its predecessor, it still

413

a) Tokens: Model C1 assumes a constant photoelectron heating efficiency of 96 %
Gold tags: ME ME O O MP MP MP MP O QA QA

b) SciBERT tokens: Model C1 assumes a constant photo ##electron heating efficiency of 96 %
Expanded tags: ME ME O O MP MP MP MP MP O QA QA

Figure 2: (a) Converting span annotations of Figure 1 to token annotations. (b) If SciBERT tokenizer breaks a
token, we assign its gold tag to all of its sub-tokens

fails to account for multiple quantities having the
same measured entity. When used in our compe-
tition system, this algorithm generates 1728 True
positives, 778 false positives, and 1402 false nega-
tives.

3.7 Relations

Our system uses predefined rules to determine
the relations between annotations in a data-point.
If there is a measured entity and no measured
property, then the measured entity HasQuantity,
otherwise, when both are present, the measured
entity is assigned HasProperty and the measured
property is assigned HasQuantity. Anytime a
qualifier is added to a span, we stipulate that it
qualifies the quantity.

4 Results

Our submission ranked eighth in competition
(listed as rank 7 on the CodaLab leaderboard). Our
system is robustly above average on all categories
(see Table 5) with strong performance in quantity
overlap score (tied for 2nd), qualifier overlap score
(2nd), modifier overlap score (3rd), and qualifies
overlap score (3rd).

Table 5 shows competition and post-competition
results. Our competition system is called CLaC-
BP and the competition winner is listed under top
ranked. The first six entries of Table 5 show results
for ablation experiments.

Our competition system had a non-zero dropout
probability, therefore, we cannot recreate its exact
performance for the benchmarking of our ablations.
The system labelled Full was run with zero dropout
probability and is otherwise identical to our com-
petition system. All ablated systems are compared
to this baseline.

Noticeable differences The first comparison in
row 2 substitutes our fine-tuned SciBERT model
for a fine-tuned BERT base model for token clas-
sification. SciBERT outperforms BERT for every

category except quantity and unit.
In row 3 we assess our modified tokenizer, by

substituting it with SpaCy’s default tokenizer. The
performance is near identical to our baseline system
in every category.

The third and fourth systems were trained with-
out modifiers and without units respectively. Over-
all, the system without units performed worse than
the system without modifiers. This is, however,
to be expected as there are 905 units and only 552
modifiers, i.e. units account for more overlap score.

Finally, the last comparison showcases the im-
provements when using span++.

5 Discussion

Our system’s modular pipeline allows us to assess
the components in ablation studies and the various
experiments we perform are informative about the
task.

Compared to BERT base, SciBERT pretraining
gives a solid advantage to all categories, except
quantities and units. Not surprisingly, Table 5
shows a greater increase in precision than recall
and the exact matches (EM) and F1 overlap (O)
scores rise significantly.

Comparing SciBERT’s and BERT’s performance
on the token level objective (Table 6) used during
fine-tuning, we see that SciBERT yields greater pre-
cision for all competition categories, while BERT
yields higher recall for all but other. In addition,
the token level evaluation is not fully commen-
surate with the task evaluation, as the significant
second task of grouping different spans is not fully
assessed.

Our system might benefit from a more precise to-
ken level classifier due to its grouping algorithm: it
is reasonable to assume that it performs better when
more of the detected spans are correct (high pre-
cision system) and performs worse with a greater
number of incorrect spans (high recall system).

Substituting SpaCy’s tokenizer into our system
does not make much difference because SciBERT’s
WordPiece tokenizer will break any unknown to-

414

System LM EM P R F O QA ME MP QL Unit Mod HQA HP Quals
Full SciBERT .346 .641 .516 .572 .382 .848 .249 .308 .111 .667 .549 .296 .136 .061
Full BERTbase .311 .591 .496 .539 .349 .853 .239 .24 .063 .697 .537 .253 .107 .038
Full no M.T∗ SciBERT .341 .644 .513 .571 .381 .848 .258 .306 .103 .653 .522 .297 .148 .056
Full no Mod SciBERT .309 .63 .464 .534 .347 .848 .249 .308 .111 .667 .0 .296 .136 .061
Full no Unit SciBERT .277 .608 .422 .498 .314 .848 .249 .308 .111 .0 .567 .296 .136 .061
Full with span++ SciBERT .38 .687 .551 .612 .421 .848 .292 .367 .151 .667 .549 .371 .162 .081

CLaC-BP (rank 7) SciBERT – – – – .389 .855 .251 .318 .107 .677 .546 .308 .147 .058

top ranked – – – – – .519 .861 .437 .467 .163 .722 .642 .482 .318 .092
Compet. mean – – – – – .323 .741 .200 .196 .021 .602 .364 .205 .114 .012
Compet. median – – – – – .369 .818 .251 .245 .000 .661 .375 .308 .147 .000

∗M.T: Modified tokenizer EM: Exact match HQA: HasQuantity HP: HasProperty Quals: Qualifies

Table 5: Ablation and competition results

kens, however they are tokenized, into subwords
at inference time. Yet, because the classifier out-
put is projected onto input tokens, SpaCy’s failure
to separate certain tokens (see Table 4) might be
responsible for the very small degradation when
using the SpaCy tokenizer.

Addressing the modifier categories with a sepa-
rate SciBERT model is successful and allows our
system to benefit from several rule-based transition
phases. While the task is not well understood (see
the overall low performances and the high inter-
annotator disagreement), we believe this type of
architecture to be more beneficial than end-to-end
systems, as we can pinpoint weaknesses and ex-
periment more easily. This is demonstrated by the
sizeable improvement of results when implement-
ing a simple distance measure constraint for the
grouping step. Once such features have been iden-
tified as effective, their encoding in the classifier
becomes possible.

P R F1
Class S B S B S B support
ME .43 .33 .49 .55 .46 .41 457
MP .47 .46 .55 .61 .51 .53 300
QA .84 .81 .96 .98 .90 .88 950
QL .45 .34 .23 .32 .30 .33 240
o .98 .98 .97 .94 .97 .96 12885
Mavg .63 .59 .64 .68 .63 .62 14832

Table 6: Validation SciBERT (S) and BERT base (B)
validation set performance after 4 epochs of fine-tuning

6 Summary

Measurements are ubiquitous in scientific articles,
yet have so far not been addressed. The MeasEval
task is an opportunity to combine different subtasks
and experiment how best to combine them. Our
system approaches the MeasEval task in a modu-
lar fashion: preprocessing, two classifications, and
postprocessing. It breaks the task into two, first a

classification of the relations for measured entities,
measured properties, and qualifiers and second a
classification of modifiers. SciBERT, trained on
scientific articles, yields better performance than
BERT in our experiments, mainly due to improve-
ments in precision. The differences, however are
small. Before, between, and after the two classifi-
cation steps are a number of rule-based modules
that create the classifier input and piece together
the classifier output for submission. Several experi-
ments on variations in these rule-based accessories
suggest their usefulness and ways to improve our
results.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-

ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1.

Corey Harper, Jessica Cox, Curt Kohler, Antony Scerri,
Ron Daniel Jr., and Paul Groth. 2021. SemEval 2021
task 8: MeasEval – extracting counts and measure-
ments and their related contexts. In Proceedings
of the Fifteenth Workshop on Semantic Evaluation
(SemEval-2021).

Andrew F. Hayes and Klaus Krippendorff. 2007. An-
swering the call for a standard reliability measure
for coding data. Communication Methods and Mea-
sures, 1(1):77–89.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proceed-

https://www.aclweb.org/anthology/D19-1371
https://www.aclweb.org/anthology/D19-1371
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1080/19312450709336664

415

ings of the 3rd International Conference on Learn-
ing Representations, ICLR’15.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

