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Abstract

SemEval-2021 Task 8: MeasEval aims at im-
proving the machine understanding of mea-
surements in scientific texts through a set of en-
tity and semantic relation extraction sub-tasks
on identifying quantity spans along with vari-
ous attributes and relationships. This paper de-
scribes our system, consisting of a three-stage
pipeline, that leverages pre-trained language
models to extract the quantity spans in the text,
followed by intelligent templates to identify
units and modifiers. Finally, it identifies the
quantity attributes and their relations using lan-
guage models boosted with a feature re-using
hierarchical architecture and multi-task learn-
ing. Our submission significantly outperforms
the baseline, with the best model from the post-
evaluation phase delivering more than 100%
increase on F1 (Overall) from the baseline.

1 Introduction

Most scientific experiments are accompanied by
relevant measurements, which help researchers to
quantify their observations and qualitative argu-
ments. Measurements also play a pivotal role in
summarizing large experiments, and provide a brief
idea of the results obtained. It is customary for sci-
entists to present their research in the form of scien-
tific papers. Nowadays, with thousands of papers
being published digitally every year, it is extremely
difficult to go through every single paper in order
to get the desired data. The most popular electronic
open-access repository of e-prints, arXiv, currently
has 1,867,929 articles1. The sheer vastness of this
number suggests just how important it is for us
to automate the task of extracting measurement-
related information from research papers (Singh
et al., 2016).

∗Equal contribution.
1as of 9th April, 2021

A thorough understanding of the measurements
not only requires the numerals, but also the con-
text in which the quantities occur. Moreover, the
entities and the properties measured along with the
qualifiers that condition the measurements are cru-
cial for understanding the measurement. MeasEval
(Harper et al., 2021) is a semantic relation extrac-
tion task focused on obtaining 9 different entities
pertaining to counts, measurements and qualify-
ing attributes of these quantities in a collection of
excerpts from research papers in English. Figure
1 shows an example of a quantity along with its
attributes and relations from this dataset.

We propose a three-stage pipeline to address this
task. The first stage uses a pre-trained BERT model
(Devlin et al., 2019) to detect quantity spans from
sentences. Receiving the detected spans as inputs,
the second stage obtains the units and modifiers us-
ing extracted units and modifier keywords. Finally,
the third stage receives the quantity spans from the
first stage and uses another pre-trained language
model over each quantity-span-conditioned sen-
tence to obtain quantity-span-aware contextualized
representations for each sub-token in the sentence.
These representations are then used to detect the
measured entity corresponding to each quantity (if
any). The predictions from the measured entity task
are then fused with the individual representations
for each sub-token. These representations are used
to detect the measured property and the qualifiers
in a multi-task learning setting (Ruder, 2017).

Our submission surpassed the baseline by a sig-
nificant margin and ranked 3rd for the Unit task.
Our current best model delivers 516.7%, 436.8%,
and 296.4% F1 (Overlap) (Mei and Radev, 1979)
gains for Measured Entity, Measured Property and
Qualifier tasks respectively, over the baseline.



388

We showed that co-deposition of blended mixtures leads to 60% higher

photocurrents than in thickness-optimized Pth/C60 heterojunction counterparts [37].

                     Quantity

                     Qualifier
                     Measured Property

                     Measured Entity

HasProperty

HasQuantity
Qualifies

Figure 1: Visualization of Annotated Dataset

2 Related Works

Understanding and extracting information from
scientific documents has been receiving increas-
ing interest (Tsai et al., 2006; Nadeau and Sekine,
2007). Extracting units of measurement from scien-
tific documents was previously studied via regular
expressions and supervised classifiers (Berrahou
et al., 2013; Sevenster et al., 2015).

In the orthogonal directional, there has been
rapid progress in understanding natural language
using deep pre-trained language models (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2020;
Yang et al., 2019), which has lead to a general
improvement across multiple tasks. The sequence
labelling (Lample et al., 2016; Panchendrarajan and
Amaresan, 2018) and span prediction (Luo et al.,
2020; Pang et al., 2019) tasks for natural language
have also received great interest recently. We build
upon these systems.

3 Problem Statement

We are given a set of documents D = {(di)ni=1}.
Every document di ∈ D, consists of various Quan-
tity (Q) spans Qi = {(qji )mj=1}. Every qji ∈ Qi,
can have a Unit of measurement (e.g. cm, ml) as-
sociated with it. Also every qji ∈ Qi is associated
to some (or no) Modifiers (Mod) which provide
information about the type of Q (e.g. whether it is
a range of values, whether it denotes the Median
of a set of values, etc.)2. For every qji ∈ Qi, there
can exist a corresponding Measured Entity (ME)
eji . Some Qs do not have any ME, e.g. in ‘3413
women’, the measurement is 3413 and ‘women’
is the ‘unit’ of 3413 and not its ME (according
to “S0006322312001096-1177.tsv”). Similarly in
’three occasions’, the measurement is ’three’ and
’occasions’ is its ’unit’ and not its ME (according
to “S0165587612003680-1078.tsv”). If a qji has
a corresponding ME eji , it can also have an asso-
ciated Measured Property (MP) pji . Finally, the

2https://github.com/harperco/MeasEval/
tree/main/annotationGuidelines

Qs, MEs and MPs can have a number of Quali-
fiers (Qual) qualji providing additional information
about them.

The problem also introduces three relations,
namely Qualifies (QS), HasProperty (HP), and
HasQuantity (HQ). These relations are defined
between Qs, MEs, MPs and Quals as binary classi-
fication functions (f(x, y)→ (0, 1)):

• QS(x, a) = 1, ⇐⇒ the Qual, a, qualifies
the element x, where x is a Q, ME or MP.

• HP (p, e) = 1, ⇐⇒ the MP, p, is associated
with the ME, e.

• HQ(y, q) = 1, ⇐⇒ the Q, q, is related to
element y, where y is an ME or MP.

The problem statement consists of 5 sub-tasks.
We deal with identifying all Q spans in the doc-
uments in sub-task 1, followed by detecting the
Units and Mods for each identified Q in sub-task
2. In sub-tasks 3 and 4, we identify the ME, MP,
and Qual spans, corresponding to the extracted Qs.
Finally in sub-task 5, we identify the relationships
HQ, HP, and QS between the detected Q, ME, MP,
and Qual spans. Figure 1 shows the annotation
procedure to be followed (Stenetorp et al., 2012).

4 System Overview

We model all the previously described sub-tasks as
supervised learning problems. Firstly, we perform
a minimal pre-processing of sentence segmentation
and number normalization on the documents. Then,
Stage 1 handles sub-task 1 and the Stage 2 handles
sub-tasks 2 respectively, and the remaining ones
are handled by Stage 3 of our pipeline.

Before proceeding to describe our approach, we
describe the baseline model, provided by the task
organizers. The baseline treats the detection of Q,
ME, MP and Qual spans all as sequence labeling
problems. It uses the spaCy Entity Tagger model
(Honnibal et al., 2020) to extract all these four
spans. The Units for these Qs are obtained by

https://github.com/harperco/MeasEval/tree/main/annotationGuidelines
https://github.com/harperco/MeasEval/tree/main/annotationGuidelines
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These observations were followed by Moutou et al. (2003) who measured the transit
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Figure 2: Overview of our Pipeline

matching the largest Units in these predicted spans
with those from the train dataset.

4.1 Stage 1

Similar to the baseline, we treat the Q spans learn-
ing problem as a sequence labelling problem. This
is an intuitive step as it can detect multiple spans
within the same text segment while being signif-
icantly cheaper in terms of the computation cost.
Specifically, for a given sentence s, the input to our
model is [CLS] s [SEP ]. It is sub-word tokenized
(Wu et al., 2016) to get the one-hot sub-token se-
quence w0, w1 . . . wn. These sub-tokens are then
fed to BERT to obtain the contextualized represen-
tations x0, x1 . . . xn. as follows.

First the word vectors are obtained using the
Embedding E and Positional-Embedding Epos:

x
(0)
j = wjE + Epos

j (1)

Then these vectors are passed through L layers
of transformer encoder (Vaswani et al., 2017) to ob-
tain the contextualized representation. Each trans-
former encoder layer l receives the output vector se-
quence {(x(l−1)j )nj=0} = x

(l−1)
0 , x

(l−1)
1 . . . x

(l−1)
n

from the previous layer l − 1 and computes the

output representation {(x(l)j )nj=0} as follows:

{(z(l)j )nj=0} = LN(MSA({(x(l−1)j )nj=0}) +

{(x(l−1)j )nj=0}) (2)

{(x(l)j )nj=0} = LN( {(z(l)j )nj=0} +

{((W l
2)

T f((W l
1)

T z
(l)
j + bl1) + bl2)

n
j=0}) (3)

Here MSA is Multi-headed Self Attention and
LN denotes Layer Norm. W l

2,W
l
1, b

l
1, b

l
2 are train-

able parameters and f is the activation function.
The final contextualized representations
{(xj)nj=0} = {(x(L)j )nj=0} are the outputs of the
Lth transformer layer. Finally, these represen-
tations xj (excluding j = 0, j = n for [CLS],
[SEP ] tokens) are each classified to a binary label:

(yNQ
j , yQj ) = W T

c xj + bc (4)

Here Wc and bc are learnable parameters and
(yNQ

j , yQj ) are the logits. This formulation of our
problem can also be treated as the popular BIO
tagging scheme excluding the ‘B’ beginning tag.
This is then used to greedily match the largest con-
tiguous span of sub-tokens with positive labels.
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4.2 Stage 2

This stage receives the Q span predictions from
Stage 1 as input and uses a method similar to the
baseline, to obtain the Units. We extracted the set
of Units occurring in the annotated Qs, from the
documents in the dataset. However, in scientific
documents, often combinations of units are present
(e.g. Kgms−2 is a combination of ‘Kg’, ‘m’ and
‘s’). Our future work includes extending our ap-
proach to be exhaustive to handle such complex
combinations of units.

To obtain the keywords for modifiers, given a
Q span, we extracted the set of tokens occurring
inside the span as well as in the neighboring win-
dow of 10 characters, on either side of the actual
span. We discarded stopwords, punctuation marks
and numbers. Then, we calculated the rate of co-
occurrence between the remaining set of tokens
and the Mods in the train dataset. This helped
us to obtain keywords acting as significant cues
for the respective Mod classes. Examples include
”approximately” for IsApproximate, ”greater than”
for IsRange, etc. Another challenge with the sub-
task is the presence of similar sets of keywords
corresponding to multiple Mod types. For exam-
ple, the Mods ‘IsMean’ and ‘IsMeanHasTolerance’
are very similar with the slight difference that key-
words corresponding to the Mod ‘IsMeanHasTol-
erance’ contain the additional symbol, ‘±’. We
adopted a hierarchical approach in order to detect
such minute differences and correctly identify the
type of Mod for every Q span, e.g. IsMeanHas-
Tolerance is True when IsMean and HasTolerance
are both true. We started by detecting a general
Mod class, and gradually used extra cues to clas-
sify the span into more specific Mod classes such
as {IsMeanHasSD, IsMeanHasTolerance, IsRange-
HasTolerance, IsList}.

4.3 Stage 3

The input to this stage is the sentence-quantity tuple
〈s, q〉 and our objective is to detect the spans for
ME, MP and Qual. There could be multiple Qs
in a single sentence. We treat detecting ME, MP,
and Qual as three sequence labeling sub-tasks in a
multi-task learning setting.

We create a modified sentence s′ where the Q
span q inside the sentence is enclosed within a spe-
cial start marker 〈E〉, and a special end marker 〈/E〉
(Baldini Soares et al., 2019; Kaushal and Vaidhya,
2020; Zong et al., 2020). We additionally have

a special segment embedding for the Quantity (q)
portion of the quantity-context encoded sentence s′,
different from the remainder of the sentence. We
input s′ and corresponding segment embeddings
to BERT and obtain quantity-aware contextualized
vectors {v1, v2...vn} for each of the n sub-tokens
in s′. We then obtain the ME task logits ei, for each
sub-token vector vi:

ei = W T
e vi + be (5)

Here W T
e and be are learnable parameters. Now, as

per the annotation rules of the task, a Q will have
an associated MP only if an ME related to the given
Q exists. Hence, for predicting the MP, we extract
features from the ME task logits and concatenate
them with each sub-token vector vi as follows:

r = [maxni=1ei;meann
i=1ei] (6)

pi = W T
p [vi; r] + bp (7)

Here W T
p and bp are learnable parameters, max

and mean are element-wise operations and pi is the
logit of the ith sub-token for the MP sub-task. Here
; denotes concatenation. Similarly, we obtain the
logits qui corresponding to the Qual task, for every
sub-token vector vi of the sentence s, as follows:

qui = W T
qu[vi; r] + bqu (8)

Here W T
qu and bqu are learnable parameters. The

model is trained with the following combined multi-
task learning objective:

Loss(s, q, (yei )
n
i=1, (y

p
i )

n
i=1, (y

qu
i )ni=1) =

n∑
j=1

(L(ej , yej ) + L(pj , y
p
j ) + L(quj , y

qu
j ))

(9)

Here (yei )
n
i=1, (y

p
i )

n
i=1, (y

qu
i )ni=1 are ground truths

for each sub-token for the ME, MP and Qual sub-
tasks respectively; L is the softmax cross-entropy
loss (Dunne and Campbell, 1997).

Similar to Stage 1, we greedily match the longest
contiguous positive labeled spans for each of the
three sub-tasks and obtain the ME span e, MP span
p and Qual span qu corresponding to the input Q
span q for the sentence s. Here (q, e, p, qu) forms
an annotation set which is then post processed to
generate the relations HP, HQ and QS on this anno-
tation set as per their definitions in §3.
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Model Precision Recall F1
BERT-base 0.872 0.972 0.919
BERT-large 0.874 0.933 0.902

RoBERTa-BioMed 0.890 0.951 0.919
SciBERT 0.920 0.889 0.904
BioBERT 0.904 0.946 0.924

Table 1: Stage 1 Results

Model F1ME F1MP F1Qual

BERT Individual 0.499 0.386 0.137
BERT ME, MP 0.515 0.467 N/A
BERT MP, Qual N/A 0.433 0.166
BERT ME, Qual 0.420 N/A 0.191

BERT ME, MP, Qual 0.517 0.465 0.191
BERT X 0.459 0.330 0.125
BERT Y 0.510 0.428 0.143

Table 2: Multi-Task Results. F1ME , F1MP , and
FQual are the F1 measures on the ME, MP, and Qual
tasks respectively.

4.4 Domain Specific BERT

Domain specific language model weights lead to a
significant performance boost (Müller et al., 2020;
Nguyen et al., 2020; Lee et al., 2019; Vaidhya and
Kaushal, 2020; Beltagy et al., 2019). SciBERT
(Beltagy et al., 2019), BioBERT (Lee et al., 2019),
and RoBERTa-BioMed (Liu et al., 2020; Gururan-
gan et al., 2020) performed relatively well as they
are pre-trained on scientific documents in domains
relevant to our task.

5 Experiments and Discussion

All experiments were performed using PyTorch
(Paszke et al., 2019) and HuggingFace’s transform-
ers (Wolf et al., 2019). Optimization was done
using Adam (Kingma and Ba, 2014). We include
the complete set of experimental parameters in §D.

5.1 Development Phase

After dividing the 5 sub-tasks into 3 stages, we
worked on each stage individually. We trained the
models exclusively on the train dataset and used
the trial dataset for validation and hyperparame-
ter tuning. We used the F1, Precision and Recall
metrics for each token in the sequence labeling sub-

Model F1ME F1MP F1Qual

BERT-base 0.517 0.465 0.191
BERT-large 0.573 0.446 0.317

RoBERTa-BioMed 0.577 0.473 0.232
SciBERT 0.556 0.486 0.188
BioBERT 0.575 0.501 0.297

Table 3: Stage 3 Results

tasks, for evaluating individual components over
the validation set during the development phase.

Table 1 shows the performances of various
BERT models in Stage 1. We observe that
BioBERT delivers the best F1 score, followed by
BERT-base and RoBERTa-BioMed. Much to our
surprise, BERT-Large and SciBERT performed
worse than BERT-base despite their large size (Li
et al., 2020) and domain specificity.

In order to understand the role of each compo-
nent of our model in Stage 3, we perform various
ablation studies as shown in Table 2. First, we ex-
periment with various combinations of multi-task
learning with the three tasks - ME, MP and Qual.
We observe that multi-task learning can lead to sig-
nificant gains on all three tasks. Only the multi-task
combination of ME and Qual led to performance re-
duction. Multi-task training all three tasks together
nearly gives the best performance on all three met-
rics. We attribute this gain in performance to the
inter-related natures of the three sub-tasks.

Secondly, we study the importance of segmen-
tation and concatenation of features. We create
BERT X, which doesn’t add separate segment em-
beddings for the Q span, and BERT Y which does
not concatenate the ME logit features for predicting
MP and Qual spans. From Table 2, we observe that
BERT X has a significant reduction in performance
for all the three sub-tasks upon excluding the seg-
ment embeddings, as the model input doesn’t have
a clear demarcation between the Q span portion and
non-Q span portion of the sentences. We also ob-
serve a reduction in performance for MP and Qual
for BERT Y, showing the importance of fusing the
logits of ME for the former two sub-tasks.

Similar to Stage 1, we experiment with vari-
ous BERT models as shown in Table 3. Here
we observe that RoBERTa-BioMed, BioBERT and
BERT-large perform the best for ME, MP and Qual
respectively. BERT-Base performs the worst for all
of them. All the models except BioBERT have sig-
nificantly lower F1Qual than BERT-Large. Each
model produces an F1ME score greater than 0.5.

5.2 Post-Evaluation Phase

The evaluation was done using the official script3.
The classification and relation extraction sub-tasks
were both evaluated by a binary match score and
the span identification tasks by a SQuAD style (Ra-

3https://github.com/harperco/MeasEval/
blob/main/eval

https://github.com/harperco/MeasEval/blob/main/eval
https://github.com/harperco/MeasEval/blob/main/eval
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Model Q ME MP Qual Unit Mod HQ HP QS Overall
Evaluation Phase

Baseline 0.815 0.066 0.068 0.028 0.531 0.000 0.081 0.010 0.014 0.225
Submission 0.787 0.113 0.012 0.005 0.748 0.309 0.076 0.006 0.000 0.278

Post-Evaluation Phase
BERT-base 0.828 0.338 0.277 0.072 0.765 0.465 0.310 0.174 0.000 0.402
BERT-large 0.705 0.343 0.296 0.081 0.755 0.442 0.325 0.207 0.000 0.392

RoBERTa-BioMed 0.812 0.384 0.365 0.104 0.804 0.434 0.383 0.238 0.005 0.440
SciBERT 0.809 0.382 0.324 0.072 0.811 0.435 0.354 0.230 0.000 0.433
BioBERT 0.844 0.407 0.365 0.111 0.796 0.465 0.400 0.269 0.000 0.456

Table 4: Test Set Performance

jpurkar et al., 2016) overlap score. The leaderboard
ranking was based on a global F1 score averaged
across all sub-tasks.

For our official submission, we selected
BioBERT as it achieved the best F1 score in Stage
1 and near-best performance for the tasks in Stage
3. Minor discrepancies in the submission format in-
volving the annot-id reference, quotes, whitespace-
sensitivity and utf-8 encoding, not detected by the
evaluation script were fixed in the post-evaluation
phase. Table 4 shows the final performance of our
models. After proper conversion to the desired
format during the post-evaluation phase, we also
evaluated various other BERT models along with
our best model, BioBERT. BioBERT delivers the
best performance of 0.456 F1 (Overall) followed by
RoBERTa-BioMed and SciBERT. BioBERT also
performs best on 7 of the 9 individual tasks.

5.3 Future Work

Stage 3 of our pipeline operates at a sentence-level,
so for a given Q span, it does not capture the ME,
MP, and Qual spans occurring across sentences.
However, our approach can be easily extended to
consider the nearby sentences or even the entire
document (at the cost of computation speed).

The identification of exact word boundaries for
the span identification tasks is crucial. Treating
these tasks as sequence labeling problems and
greedily matching for spans can lead to a few prob-
lems. For example, if a sub-token occurring within
a long span is mislabeled, then the span is split
into two components. In the future, we can explore
leveraging contrastive learning (Chen et al., 2020)
to improve the predictions for exact word bound-
ary match. We can have transition based labeling
layers such as Conditional Random Fields (CRFs)
(Wallach, 2004) over the more popular BIO/BIOES
sequence tagging schemes (Yang et al., 2018).

Lastly, while the multi-staged approach is fairly
interpretable at the intermediate outputs of Q spans,

it also leads to a few issues. The predictions for
MP, ME and Qual spans in Stage 3 are heavily de-
pendent on the Q spans from Stage 1, and there
does not exist any mechanism to rectify errors in
Stage 1 later, in our approach. There is also an ex-
posure bias (Schmidt, 2019; Galloway et al., 2019)
as the model is trained on the ground truth, while
tested on the predicted Q spans. Moreover, we
believe that having common weights between the
BERT models of Stage 1 and Stage 3 will not only
make our approach faster and lighter, but also more
performant through multi-task learning.

6 Conclusion

In this paper, we present our system details for the
SemEval 2021 Task-8: MeasEval which is aimed at
extracting entity and semantic relations pertaining
to counts and measurements. We use a multi-staged
approach where we first identify the quantity spans
using BERT, then the units and modifiers for these
predicted quantity spans by intelligent templates
that leverage extracted units and modifier keywords.
Finally we input the quantity-aware sentences to
another BERT model to predict ME, MP, and Qual
in a multi-task learning settings with feature re-use.
Our submission achieved the second runner up po-
sition on the leaderboard for the Unit-identification
sub-task and it showed the highest improvement
in the post-evaluation phase, with an F1 (Over-
all) score only 0.063 lower than the highest score
across both the phases.
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. arXiv preprint arXiv:1806.04470.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32.

Shi Zong, Ashutosh Baheti, Wei Xu, and Alan Ritter.
2020. Extracting covid-19 events from twitter.

https://www.aclweb.org/anthology/Y18-1061
https://www.aclweb.org/anthology/Y18-1061
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/C16-1320
https://www.aclweb.org/anthology/C16-1320
https://doi.org/10.18653/v1/2020.wnut-1.34
https://doi.org/10.18653/v1/2020.wnut-1.34
https://doi.org/10.18653/v1/2020.wnut-1.34
https://doi.org/10.18653/v1/2020.wnut-1.34
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
http://arxiv.org/abs/2006.02567


395

Dataset Total Documents Q ME MP Qual Avg. Q Avg. ME Avg. MP Avg. Qual
Train 233 883 875 563 210 3.790 3.755 2.416 0.901
Trial 65 281 273 179 99 4.323 4.200 2.754 1.523
Eval 130 499 499 330 162 3.838 3.838 2.538 1.246

Table 5: Span Statistics. Here Avg. signifies the average number of spans present per document.

Dataset Total Documents HQ HP QS Avg. HQ Avg. HP Avg. QS
Train 233 878 560 210 3.768 2.403 0.901
Trial 65 275 177 99 4.231 2.723 1.523
Eval 130 499 330 162 3.838 2.538 1.246

Table 6: Relation Statistics. Here Avg. signifies the average number of relations present per document.

Dependency Version Usage
PyTorch 1.4 NN Layers & Autograd
Transformers 4.2 BERT Models
Scikit-learn 0.23 Metrics
SciPy 1.5 Metrics
NLTK 0.5 Sentence Tokenization
Pandas 1.2 Loading Files
Pandasql 0.7 Querying DataFrames
Vladiate 0.0.23 Validating Results
NumPy 1.18 Numerical computation

Table 7: Packages Used

Hyperparameter Value
Learning Rate 3e− 5
Stage 1 Epochs 5
Stage 3 Epochs 10

Batch Size 16
Dropout Final 0.1
BERT Dropout 0.1
Adam: (β, ε) ((0.9, 0.999), 1e− 8)
Weight Decay 0

BERT Configuration Default
BERT Embeddings Trainable

Table 8: Best Hyperparameters

A Appendices

Following is the overview of the appendix.

• §B – We provide implementation details:
codebases, trained models and detail depen-
dencies.

• §C – We provide details of the dataset in
shared task, its statistics and annotation set
for the task.

• §D – We detail the experimental settings and
hyperparameters.

B Code and Dependencies

We will make our code public 4 with instructions
to replicate our systems. We also release our pre-

4https://github.com/Ayushk4/SE-T8

trained model for our submissions 5.
All experiments were performed using PyTorch

(Paszke et al., 2019) and HuggingFace’s transform-
ers (Wolf et al., 2019) libraries. The optimization
was done using Adam optimize (Kingma and Ba,
2014). We used git for reproducibility setup. In
Table 7 we list all the dependencies used in our
codebase. We include a step-by-step guide to setup
and run the codebase in our README file present
within the code also with details to set up our envi-
ronment.

C Dataset Details

We experiment on the dataset provided by the task
organizers, consisting of gold annotations (Harper
et al., 2021) for the set of scientific documents in
English which are released here6. These scientific
documents are a subset of the Elsevier Labs OA-
STM-Corpus available publicly7.

Basic Annotation Set: The basic annotation set
consists of 4 types of spans and 3 types of rela-
tions between them. The span types are Quantity
(counts and measurements), Measured Entity (the
item whose measurement/count is provided by the
Quantity spans), Measured Property (the property
of the Measured Entity, whose measurement is pro-
vided by the Quantity spans) and Qualifier (special
circumstances which affect a particular measure-
ment). These spans are related using three types of
Relations - HasQuantity (relates a Measured Entity
or a Measured Property to a Quantity), HasProperty
(relates a Measured Entity to a Measured Property)
and Qualifies (relates a Qualifier to any Measured
Entity, Measured Property, or Quantity).

5https://github.com/Ayushk4/SE-T8/
releases

6https://github.com/harperco/MeasEval
7https://github.com/elsevierlabs/

OA-STM-Corpus

https://github.com/Ayushk4/SE-T8
https://github.com/Ayushk4/SE-T8/releases
https://github.com/Ayushk4/SE-T8/releases
https://github.com/harperco/MeasEval
https://github.com/elsevierlabs/OA-STM-Corpus
https://github.com/elsevierlabs/OA-STM-Corpus
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Model Huggingface’s Model API
BERT-base bert-base-cased
BERT-large bert-large-cased

RoBERTa-BioMed allenai/biomed roberta base
SciBERT allenai/scibert scivocab cased
BioBERT dmis-lab/biobert-v1.1

Table 9: BERT Versions

Hyperparameter Set of Values
Learning Rate {3e− 4, 3e− 5, 3e− 6, 3e− 7}

Number of Epochs {5, 10, 15, 20}
Batch Size {4, 8, 16, 24}

Table 10: Sets of Hyperparameters

Statistics: The complete dataset is divided into
three parts: train, trial and eval. We train on the
train set. Trial is used for validating and Eval is the
held-out test dataset on which the final performance
of the models are evaluated. In Table 5, we list the
dataset statistics for the spans of each type. In Table
6, we list the dataset statistics related to the various
relations - (HP, HQ, QS).

D Experimental Settings

Preprocessing: We sentence tokenize every doc-
ument using the NLTK sentence tokenizer. we
observed that phrases such as “Fig. 1”, “Table. 2”
and “et al. ”, along with a few others, caused sen-
tences to be tokenized at wrong intervals (due to
the presence of “.”). We detected and re-joined the
instances for such phrases.

Normalization: We normalized the dataset by
replacing all numerals by the same digit - 0. The
helped our model identify the Q spans better. We
observed that without normalization, the F1 (Over-
lap) Score for Q spans decreased considerably
(from 0.844 to 0.790).

Training and Hyperparameters: The model
take ≈ 20 seconds per epoch on Tesla P100. The
number of parameters are same as BERT. Table 9
lists the HuggingFace model names corresponding
to the BERT models we used. We validated our
models using F1 metrics for Stage 1 and Stage 3
over the trial dataset. In Table 10 we share the sets
of hyperparameters that we explored whereas in Ta-
ble 8 we mention the best set of hyperparameters
that we obtained.


