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Abstract

Disagreement between coders is ubiquitous in
virtually all datasets annotated with human
judgements in both natural language process-
ing and computer vision. However, most su-
pervised machine learning methods assume
that a single preferred interpretation exists for
each item, which is at best an idealization.
The aim of the SemEval-2021 shared task on
Learning with Disagreements (Le-wi-Di) was
to provide a unified testing framework formeth-
ods for learning from data containing multiple
and possibly contradictory annotations cover-
ing the best-known datasets containing infor-
mation about disagreements for interpreting
language and classifying images. In this pa-
per we describe the shared task and its results.

1 Introduction

The assumption that natural language (nl) expres-
sions have a single and clearly identifiable inter-
pretation in a given context, or that images have a
preferred labels, still underlies most work in nlp
and computer vision. However, there is now plenty
of evidence that this assumption is just a conve-
nient idealization; virtually every project devoted
to large-scale annotation has found that genuine
disagreements are widespread.
In nlp, that annotator/coder disagreement can

be genuine—i.e., resulting from debatable, diffi-
cult, or linguistic ambiguity—has long been known
for anaphora and coreference (Poesio and Artstein,
2005; Versley, 2008; Recasens et al., 2011).1 But
in recent years, we have also seen evidence that
disagreements among subjects/coders are common
with virtually every aspect of language interpreta-
tion, from apparently simple aspects such as part-
of-speech tagging (Plank et al., 2014b), to more

1See also the analysis of disagreements in OntoNotes and
word senses in Pradhan et al. (2012), Passonneau et al. (2012),
and Martínez Alonso et al. (2016).

complex ones like semantic role assignment (Du-
mitrache et al., 2019), to subjective tasks such
as sentiment analysis (Kenyon-Dean et al., 2018),
and to the inferences that can be drawn from sen-
tences (Pavlick and Kwiatkowski, 2019).

In computer vision, as well, the assumption that
gold labels may be specified for items has proven
an idealization (Rodrigues and Pereira, 2018)—in
fact, possibly even more than for nlp. In many
widely used crowdsourced datasets for computer vi-
sion, different coders assign equally plausible labels
to the same items. The problem of disagreement
among coders, including experts, on the classifi-
cation of noisy image data has arisen in many cv
applications. This includes classification of astro-
nomical images (Smyth et al., 1994), medical image
classification (Raykar et al., 2010), and numerous
others (Sharmanska et al., 2016; Rodrigues and
Pereira, 2018; Firman et al., 2018).
Many ai researchers have concluded that rather

than attempting to eliminate disagreements from an-
notated corpora, we should preserve them—indeed,
some researchers have argued that corpora should
aim to collect all distinct interpretations of an ex-
pression (Smyth et al., 1994; Poesio and Artstein,
2005; Aroyo and Welty, 2015; Sharmanska et al.,
2016; Plank, 2016; Kenyon-Dean et al., 2018; Fir-
man et al., 2018; Pavlick and Kwiatkowski, 2019).
Poesio and Artstein (2005) and Recasens et al.
(2012) suggest that the best way to create resources
capturing disagreements is by preserving implicit
ambiguity—i.e., having multiple annotators label
the items, and then keeping all these annotations,
not just an aggregated ‘gold standard’. A number
of corpora with these characteristics now exist (Pas-
sonneau and Carpenter, 2014; Plank et al., 2014a;
Dumitrache et al., 2019; Poesio et al., 2019; Ro-
drigues and Pereira, 2018; Peterson et al., 2019)
Much recent research has explored the question

of whether corpora of this type, besides being more
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accurate characterizations of the linguistic reality
of language interpretation and image categoriza-
tion, are also better resources for training nlp and
computer vision models, and if so, what is the
best way for exploiting disagreements in modeling.
Beigman Klebanov and Beigman (2009) used in-
formation about disagreements to exclude items on
which judgements are unclear (‘hard’ items). In
the CrowdTruth project (Aroyo and Welty, 2015;
Dumitrache et al., 2019) information about disagree-
ment is used to weigh the items used for training.
Plank et al. (2014a) proposed to use the information
about disagreement to supplement the gold label
during training. Finally, methods were proposed for
training directly from the data with disagreements,
without first obtaining an aggregated label (Sheng
et al., 2008; Rodrigues and Pereira, 2018; Peterson
et al., 2019; Uma et al., 2020). Only limited com-
parisons of these methods have been carried out
(Jamison and Gurevych, 2015), and the sparse re-
search landscape remains fragmented; in particular,
methods applied in cv have not yet been tested in
nlp, and vice versa.

The objective of SemEval-2021 Task 12, Learn-
ing with Disagreements (Le-wi-Di), was to provide
a unified testing framework for learning from dis-
agreements in nlp and cv using datasets containing
information about disagreements for interpreting
language and classifying images. The expecta-
tion being that unifying research on disagreement
from different fields may lead to novel insights and
impact ai widely.

2 Task organization

In order to provide a thorough benchmark for meth-
ods for learning from disagreements, we identified
five well-known datasets for very different nlp and
cv tasks, all characterized by providing a multi-
plicity of labels for each instance, by having a size
sufficient to train state-of-the-art models, and by
evincing different characteristics in terms of the
crowd annotators and data collection procedure. We
found or developed near–state-of-the-art models for
the tasks represented by these datasets. Both ‘hard’
and ‘soft’ evaluation metrics were employed (Uma
et al., n.d.).
The shared task was set up on the CodaLab

Competitions platform,2 which enables training
and uniform evaluation on these datasets, such

2https://www.microsoft.com/en-us/research/project/
codalab/

that the crowd learning adaptations of the base
models proposed by participants to the task would
be directly comparable.
In this section, we briefly introduce the five

datasets included in the benchmark and our evalua-
tion criteria. We also elaborate on the setup of the
shared task.

2.1 Data

There are by now quite a few datasets preserving
disagreements, and covering many levels of lan-
guage interpretation; remarkably, none of these has
ever been used for a shared task like the one we
are proposing, and the majority of them have never
been used for a shared task at all. Our shared task
has aimed at leveraging this diversity. The datasets
included are outlined in this section and their char-
acteristics are summarized in Table 1. Figure 1
shows the observed agreement of each dataset.

Figure 1: Observed Agreement for each dataset

2.1.1 The Gimpel et al. pos corpus
One widely used resource for developing
disagreement-aware nlp models is the dataset of
Twitter posts annotated with pos tags collected by
Gimpel et al. (2011). Plank et al. (2014b) mapped
the Gimpel tags to the universal pos tag set (Petrov
et al., 2012) and collected at least five crowdsourced
labels per token from 177 annotators. This dataset
contains 14K training examples (English words/
tokens) annotated by 177 annotators. Each item
was annotated between five and 177 times, 16.38
times on average. For this shared task, we selected
8.3K, 3K, and 3.1K tokens as training, development
and test sets respectively.

2.1.2 The pdis corpus
The Phrase Detectives corpus (Poesio et al., 2019)
is a crowdsourced coreference corpus collected

https://www.microsoft.com/en-us/research/project/codalab/
https://www.microsoft.com/en-us/research/project/codalab/
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pos pdis humour ic-labelme cifar-10h

Number of items 14,000 96,305 18,002 10,000 10,000
Number of crowd workers 177 1,741 272 59 2,457
Number of categories 12 2 2 8 10
Average annotations per item 16.37 11.87 5.00 2.50 51.10

Table 1: Summary of dataset characteristics

with the Phrase Detectives gamified online plat-
form (Poesio et al., 2013).3 We use pdis, a simpli-
fied version of the corpus containing only binary
information status labels: Discourse New (the en-
tity referred to has never been mentioned before)
and Discourse Old (it has been mentioned). pdis
consists of 542 documents, for a total of 408K to-
kens and over 96K markables. These documents
were annotated by game players who produced an
average of 11.87 annotations per markable.
Forty-five of the documents (5.2K markables),

collectively called pdgold, additionally contain
expert-adjudicated gold labels. This subset of pdis
was designated as the test set. The training and
development datasets consist of 473 documents
(and 86.9K markables) and 24 documents (4.2K
markables) respectively.

2.1.3 The Humour dataset
The comprehension and appreciation of humour
is known to vary across individuals (Ruch, 2008),
making disagreement over the perceived funniness
of jokes an appealing subject of study. For our
training data, we used the corpus of Simpson et al.
(2019), which consists of 4,030 short texts (3398
jokes, mostly based on puns, and 632 non-jokes such
as proverbs and aphorisms). 28,210 unique pairings
of these texts were presented to five crowdsourcers
each, who indicated which text in the pair (if either)
they found to be funnier. The goal is to learn a
model that can predict binary pairwise labels that
can predict which of two short texts is funnier.
The 4,030 text instances were split into 60%

(2,418 texts, 9,916 unique pairs) for the training
set and 20% (806 texts, 1,086 unique pairs) for the
development set. Since this dataset has already
been published, we constructed a new test dataset
along similar lines: 1,000 short texts (all punning
jokes) were paired in 7,000 different ways, and
each of these 7,000 pairs was then presented to five
crowd workers for a preference judgement.4

3https://github.com/dali-ambiguity
4us-based workers from Amazon Mechanical Turk were

2.1.4 The LabelMe corpus
Much research on learning from disagreements
was motivated by computer vision datasets, so we
intended to include some of these, too. Possibly
the most widely used such corpus is the LabelMe
dataset5 (Russell et al., 2008). It classifies outdoor
images according to 8 categories: highway, inside
city, tall building, street, forest, coast, mountain
or open country. Using Amazon Mechanical Turk,
Rodrigues and Pereira (2018) collected an average
of 2.5 annotations per image from 59 annotators for
10K images in this dataset.

We randomly selected 5K, 2.5K, and 2.5K images
for training, development, and testing respectively,
careful to keep the label proportions in each subset
close to the proportions in the 10K dataset.

2.1.5 The cifar-10h corpus
Krizhevsky’s (2009) cifar-10 dataset consists of
60K tiny images from the web, carefully labelled
and expert-adjudicated to produce a single gold la-
bel for each image in one of 10 categories: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. Peterson et al. (2019) collected crowd
annotations for 10K images from this dataset (the
designated test portion) using Amazon Mechanical
Turk, creating the cifar-10h dataset6 which we use
for this shared task.

We randomly selected 7K, 1K, and 2K images for
training, development and testing respectively. We
kept as much data as we could for training without
jeopardizing the evaluation process, as the base
model was found to be sensitive to data size. As
with the original dataset, each subset we created
contains an equal number of images per category.

2.2 Evaluation metrics

While recent research questions the assumption that
a single ‘hard’ label (a gold label) exists for every

employed, paid in line with the federal minimum wage.
5http://labelme.csail.mit.edu/Release3.0
6https://github.com/jcpeterson/cifar-10h

https://github.com/dali-ambiguity
http://labelme.csail.mit.edu/Release3.0
https://github.com/jcpeterson/cifar-10h
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item in a dataset, the models proposed for learn-
ing from multiple interpretations are still largely
evaluated under this assumption, using ‘hard’ mea-
sures like accuracy or class-weighted F1 (Sheng
et al., 2008; Plank et al., 2014a; Martínez Alonso
et al., 2015; Sharmanska et al., 2016; Rodrigues
and Pereira, 2018). For reference and comparison
reasons, we also evaluate the models produced for
this shared task using F1.

However, a way of evaluating models as to their
ability to capture disagreement is needed, especially
for datasets with substantial extent of disagreement.
The simplest ‘soft’ metric of this type is to evaluate
ambiguity-aware models by treating the probability
distribution of labels they produce as a soft label,
and comparing that to the full distribution produced
by annotators, using, for example, cross-entropy.
This approach was adopted in, inter alia, (Peter-
son et al., 2019; Uma et al., 2020). Peterson et al.
(2019) tested this approach on image classification
tasks, generating the soft label by transforming the
item annotation distribution using standard normal-
ization. In this shared task we also use standard
normalization to produce soft labels for the humour
dataset. Uma et al. (2020) show that the choice of
soft label encoding function depends on the char-
acteristics of the dataset. For pos and ic-labelme,
they show that a softmax function over the annotator
distribution is preferable over standard normaliza-
tion. On the other end, for pdis, training a soft-loss
model using the posterior probability produced by
Hovy et al.’s (2013) mace probabilistic aggregation
model as a soft label produces predictions that a
most accurate with respect to the gold.
Therefore, in this shared task we used different

soft label encoders to generate soft labels from
annotator distributions for the test data.

2.3 Task setup
CodaLab was the designated site for hosting
SemEval-2021 competitions.7 Le-wi-Di was run
in two main phases:

Practice phase. In the practice phase, the goal
was to trainmodels for each task to learn from crowd
annotations, given (1) the training data (consisting
of raw and preprocessed input data and crowd an-
notations), (2) the development data with no labels,
and (3) the base models (discussed in Section 3).
While participants were encouraged to start with the

7Our competition can be found at https://competitions.
codalab.org/competitions/25748.

base models and extend them, we did not make this
mandatory. Participants could test the performance
of their models on the development set by making
predictions on the given development input data
and then uploading their submissions to CodaLab
for preliminary testing. We permitted up to 999
submissions in this phase. The ‘leader board’ was
made public to allow participants not only to see
how their models performed, but also to compare
the performance of their model to those submitted
by other participants.

Evaluation phase. The evaluation phase was the
official testing phase of the competition. In this
phase, we released test data (without labels) but we
also released the gold labels and crowd annotations
for the development set to facilitate quick offline
testing and refining of models and model selection.
The number of submissions for this phase was lim-
ited to ten submissions per participant to prevent
the participants from fine-tuning their models on
the test data.8 The allowed number of submissions
was later increased to 999 to more encourage sub-
mission attempts. The leader board was also kept
public in this phase. Each participant could see the
best model of each of the tasks using each of the
evaluation metrics.

Post-campaign evaluation. As our aim was to
make this benchmark available beyond the competi-
tion to researchers developing disagreement-aware
models, we included a third, post-evaluation phase
to allow lifetime access to the data. Researchers
participating in this phase will be able to access the
same data as in the evaluation phase and test their
models on the test data for the various tasks.

3 Base models and baselines

In order to encourage the participants to focus on the
development of methods for learning from disagree-
ment, as opposed to achieving higher performance
by developing better models, we provided ‘base’
models for each of the tasks represented by the
aforementioned corpora. In this section, we briefly
discuss the baselinemodels for each task that we pro-
vided. In Section 5, we report the results using these
base models and two crowd learning approaches:
majority voting and the soft loss method (Peterson
et al., 2019; Uma et al., 2020).

8This proved unnecessary as the inherent difficulty of the
shared task was enough of a deterrent.

https://competitions.codalab.org/competitions/25748
https://competitions.codalab.org/competitions/25748
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The pos tagging model. The pos tagger is a bi-
lstm (Plank et al., 2016) with additional use of
attention over the input word and character embed-
dings, as used in Uma et al. (2020).

The pdis classification model. The model for
this task was developed by comparing architectures
from two models: a state-of-the-art coreference
model and a state-of-the-art is classification model.
We combined the mention representation compo-
nent of Lee et al.’s (2018) coreference resolution
system with the mention sorting and non-syntactic
feature extraction components of the is classifica-
tion model proposed by Hou (2016)9 to create a
novel is classification model that outperforms Hou
(2016) on the pdis corpus. The training parameters
were set following Lee et al. (2018).

The humour preference learning model. We
use as base model for this task Gaussian process
preference learning (gppl) with stochastic varia-
tional inference, as described and implemented by
Simpson and Gurevych (2020). As an input vector
to gppl, we first take the mean word embedding of a
text, using 300-dimensional word2vec embeddings
trained on the Google News corpus (Mikolov et al.,
2013). Then, we compute the frequency of each
unigram in the text in a 2017 Wikipedia dump,
and each bigram in the text in a Google Books
Ngram dataset. Finally, we concatenate the mean
unigram and bigram frequencies with the mean
word embedding vector to obtain the input vector
representation for each short text. The gppl model
is trained on pairwise labels from the training set
to obtain a ranking function that can be used to
score test instances or output pairwise label proba-
bilities. As a Bayesian model, it takes into account
sparsity and noise in the crowdsourced training
labels, and moderates its confidence accordingly.
Hence, it is a strong baseline for accounting for
disagreement among annotators. This same gppl
approach set the previous state of the art on the
humour dataset (Simpson et al., 2019).

The LabelMe image classification model. For
this task, we replicated the model from Rodrigues
and Pereira (2018). The images were encoded using
pretrained cnn layers of the vgg-16 deep neural
network (Simonyan et al., 2013). This encoding
is passed into a feed-forward neural network layer

9This model was developed for fine-grained information
status classification on the isnotes corpus (Markert et al.,
2012; Hou et al., 2013).

with a relu activated hidden layer with 128 units.
A 0.2 dropout is applied to this learned represen-
tation which is then passed through a final layer
with softmax activation to produce the model’s
predictions.

The cifar-10 image classification model. The
trained model provided for this task is the ResNet-
34A model (He et al., 2016), a deep residual frame-
workwhich is one of the best performing systems for
the cifar-10 image classification. We made avail-
able to participants the publicly available Pytorch
implementation of this ResNet model.10

4 Participating systems

Unfortunately, we observed a dramatic difference
in the number of participants that signed up to
the competition (over 100 groups), the number of
groups that participated in the trial phase, and the
number of groups that submitted a run for official
evaluation.11 Only one group, uor, submitted
in the evaluation phase (Osei-Brefo et al., 2021).
However, they did submit models for each of the
tasks, and did adopt a learning from disagreements
approach.

pos tagging. For pos tagging, uor developed a
novel pos tagging model by fine-tuning the bert
language model (Devlin et al., 2019). The (tweet,
token) pairs were encoded in the form

[cls] Tweeted text [sep] Token [sep]

where the ‘[cls]’ token was added for classification
and the ‘[sep]’ token separated the tweet from the
token under consideration. To learn the class for the
token, the learned classification token was passed
through a single feed-forward neural network layer
with softmax activation. The output of this layer
represented the probabilities of the token belonging
to each of the 12 classes.
To extend this model for crowd learning, uor

added an adaptation of the crowd layer from Ro-
drigues and Pereira (2018). Rather than compute a
single loss from the crowd layer as Rodrigues and
Pereira (2018) do, uor compute a joint loss from
both the crowd layer and the base model (without
the crowd layer bottleneck).

10https://github.com/KellerJordan/ResNet-PyTorch-
CIFAR10

11Two participating groups cited an inability to come up
with a novel crowd learning paradigm as the reason they did
not submit for official evaluation.

https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10
https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10
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pdis classification. For this task, uor also used
a fine-tuned bert together with Rodrigues and
Pereira’s (2018) crowd layer. Each (document,
markable) pair was encoded as follows:

[cls] + Document + [sep] + Markable + [sep]

where the ‘[cls]’ and ‘[sep]’ tokens are used in the
same manner as in pos tagging.

Humour preference learning. For humour pref-
erence learning, the participant submitted predic-
tions using the base model without modifications.

LabelMe image classification (ic-labelme).
For this task, uor adapted the Rodrigues and Pereira
(2018) crowd layer to the base model.

cifar-10h image classification (ic-cifar10h).
For ic-cifar10h, the crowd labels were aggregated
into hard labels using majority voting. However,
uor combined Zagoruyko and Komodakis’s (2016)
WideResNet model, which has been shown to out-
perform He et al.’s (2016) ResNet with the novel
Sharpness-Aware Minimization (sam) optimization
technique, proposed by Foret et al. (2020), that has
been shown to efficiently improve model general-
ization, especially on noisy, singly labelled data.

5 Results and discussion

Table 2 contains the results of various models dis-
cussed in Sections 3 and 4 on this shared task
when evaluated based on the hard metric (i.e., the
class-weighted F1 with respect to the gold labels)
and the soft metric (the cross-entropy between the
soft labels for each task—see Section 2.2—and the
model prediction for that task). The best results for
each task are highlighted in bold.

uor concentrated their effort on the ic-cifar10h
dataset, on which they did achieve good results
and outperformed the baseline (see below). In the
other datasets, their official results at the end of the
evaluation phase were less competitive.
With the pos and pdis datasets, the model pro-

posed by uor, adding a crowd layer on top of bert,
achieved substantially worse results than training
from a label aggregated using majority voting or
training using a soft-loss function, both according
to the hard evaluation metric (F1) and the soft met-
ric (ce). The ranking between soft-loss method,
aggregation, and crowd layer with pos is consistent
with that obtained by Uma et al. (n.d.), but the
results obtained by uor are much worse for reasons
that will require further investigation. (With pdis,

Uma et al. (n.d.) obtain comparable results with
soft-loss functions and with the crowd layer.) More
generally, the results show that although the hard
label (the majority voting aggregate of the annotator
distribution) and the soft label (a probability distri-
bution encoding of the annotator distribution) were
drawn from the same annotator distribution with
this dataset, given the same base model, training by
targeting the soft label (base model + soft loss) out-
performs training using majority voting aggregates
(base model + majority voting) regardless of which
evaluation metric is used to compare the models.
For the humour preference learning task, again,

the base model outperforms uor’s submission on
both metrics, but in this case the difference in
performance between gppl and uor is much less
substantial with the hard metric, although it remains
large according to the soft metric. This large differ-
ence may be due to a technical issue that requires
further investigation, since uor’s submission was
also supposed to have been produced by the same
base system. A possible reason for poor cross-
entropy error is the use of discrete labels, which
are heavily penalized for overconfidence by cross-
entropy error. On this soft metric, the Bayesian
probabilistic approach of gpplmay have advantages
over approaches with poorer calibration, which re-
mains to be explored in future work. The gppl
approach therefore remains the state of the art with
this dataset.
For ic-labelme, again, soft-loss training

achieved better hard and soft scores than both
aggregation training with majority voting labels
and the uor extension of the base model using a
crowd layer adapted from Rodrigues and Pereira
(2018). The finding that the uor group’s adaption
of the Rodrigues and Pereira (2018) crowd layer
yielded lower F1 than training using majority voting
is unexpected, given that in Rodrigues and Pereira
(2018); Uma et al. (2020) and Uma et al. (n.d.),
the crowd layer, particularly the dl-mw variant,
was shown to be a competitive approach to learn-
ing from crowds and always outperforms majority
voting. However, uor’s crowd layer does achieve
better soft evaluation (cross-entropy) scores than
majority voting.
There is one dataset, however, on which uor

outperformed the two baselines: ic-cifar10h.
For this dataset, uor used Zagoruyko and Ko-
modakis’s (2016) WideResNet image classifier
trained using majority voting aggregated labels and
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Task Model Hard score (F1) Soft score (cross-entropy)
pos base model + majority voting 0.753 2.263
pos base model + soft loss 0.767 1.084
pos uor (bert + Crowd Layer) 0.125 2.331
pdis base model + majority voting 0.906 0.397
pdis base model + soft loss 0.928 0.273
pdis uor (bert + Crowd Layer) 0.474 0.830

humour base model (gppl) 0.557 0.728
humour uor 0.513 3.697

ic-labelme base model + majority voting 0.806 2.833
ic-labelme base model + soft loss 0.833 1.691
ic-labelme uor (base model + Crowd Layer) 0.784 1.769
ic-cifar10h base model + majority voting 0.646 2.610
ic-cifar10h base model + soft loss 0.698 1.052
ic-cifar10h uor (WideResNet + sam) 0.769 0.827

Table 2: Results on the benchmarks and participant submissions on all the tasks using F1 (higher is better) and
cross-entropy (lower is better)

Foret et al.’s (2020) sam optimization technique.
The results show that WideResNet outperforms
ResNet with this task both according to the hard
metric and the soft metric. Interestingly, this is
the one dataset in which the Deep Learning from
Crowds approach of Rodrigues and Pereira (2018)
works best according to Uma et al. (n.d.), outper-
forming both soft-loss training and majority voting
training. It would thus be interesting to understand
if the performance of uor’s model could be further
increased by adopting one of these methods.12

6 Conclusion

This shared task presented the first unified testing
framework for learning with disagreements. The
datasets include sequence labelling, three classifica-
tion tasks, and preference learning, hence provide a
testbed for a wide range of challenges when learning
from multiple annotators. We proposed to evalu-
ate not just the ‘hard’ performance against a gold
standard, but also the ability to predict the distri-
bution of different interpretations of the data—that
is, the alternative labellings provided by different
annotators. The results show the benefit of soft loss
functions that account for the distribution of labels
in the training data. However, modelling alternative

12As a postscript, we should note that after the end of the
official competition we did carry out an investigation of the
reasons for the poor performance of uor’s models on the
tasks other than ic-cifar10h. Some points emerging from
the discussion are presented in the participants’ paper for the
shared task.

interpretations of data remains an under-researched
topic in nlp and computer vision. To encourage
future work on learning with disagreements, the
shared task and datasets will remain available for
evaluating new methods.
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