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Abstract
We describe MeasEval, a SemEval task of
extracting counts, measurements, and related
context from scientific documents, which is
of significant importance to the creation of
Knowledge Graphs that distill information
from the scientific literature. This is a new
task in 2021, for which over 75 submissions
from 25 participants were received. We ex-
pect the data developed for this task and the
findings reported to be valuable to the scien-
tific knowledge extraction, metrology, and au-
tomated knowledge base construction commu-
nities.

1 Introduction

Counts and measurements are an important part of
scientific discourse (Rijgersberg et al., 2011). It is
relatively easy to find measurements in text (Fop-
piano et al., 2019a), but a bare measurement like
17mg is not informative without knowing what it is
referring to. For example, it is important to know
whether a quantity is 17mg of a medicine dosage or
17mg of concrete additive. Only recently have at-
tempts been made to identify the named entity and
property being measured (Hundman and Maamann,
2017). Extracting such information is challenging
because the way scientists write can be ambiguous
and inconsistent. Furthermore, the location of this
information relative to the measurement can vary
greatly, and might even be in a different sentence.

Being able to extract measurement informa-
tion automatically can enable the construction of
databases of measured properties. Such databases
are important in biomedicine (Hao et al., 2016), en-
gineering (Foppiano et al., 2019a), and other scien-
tific disciplines (Bergmann et al., 2017), but the ap-
proaches used for populating these databases do not
generalize widely. Furthermore, knowledge graphs
(Hogan et al., 2021) frequently aggregate quanti-
tative data reported in the literature and are often

built through a largely manual curation process. Ex-
amples include: LITTERBASE1 (Bergmann et al.,
2017), which aggregates observations of marine
litter distribution; NeuroElectro2 (Tripathy et al.,
2014), which collects information on electrophysi-
ological properties of neurons; and various model
organism databases like the Zebrafish Information
Network3 (Sprague, 2006), which provide sum-
maries of gene information.

Beyond knowledge graphs and curated
databases, clinical health contexts often require
extraction of measured values for lab results and
patient observations. Moreover, scientific research
frequently relies on precise measurements for
reproducibility of experimental methods (Kaiser,
2018). Measured property extraction could be of
value in many other contexts, such as fact checking
and news validation or in statistical analysis for
public policy (Einav and Levin, 2014).

Research in information extraction and knowl-
edge graph creation has concentrated on forming
triples by extracting entities and relations (Kon-
stantinova, 2014). Little attention has been paid
to the extraction of measured properties, entities,
and conditions or contexts, yet these elements are
needed to place measurements into a database and
for their subsequent use in comparison and calcu-
lation. Units and measures are an important part
of the semantic web, though research has largely
been focused on ontology design (Rijgersberg et al.,
2013). There is, thus, a need for understanding the
state of the art on this important task.

The aim of this paper is to introduce the Mea-
sEval shared task for the extraction of counts,
measurements, and related context from English-
language scientific documents, as well as to present
an analysis of the results of participant systems on

1https://litterbase.awi.de/
2https://neuroelectro.org/
3http://zfin.org/

https://litterbase.awi.de/
https://neuroelectro.org/
http://zfin.org/
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the task.
The rest of this paper is organized as follows.

We begin with a description of related work. This
is followed by the description of the task itself
(Section 3) and the associated data and annotation
procedure (Section 4). The evaluation regime is
detailed in Section 5 including baselines. Subse-
quently, we present an analysis of the results of
the systems on the task. Finally, we summarize
the various participating systems approaches and
conclude.

2 Related Work

There is a substantial body of work discussing units
of measurement, ontologies to describe them, sys-
tems designed to extract them, as well as related
work on knowledge graphs of numerical attributes.
Automated extraction of measured quantities, such
as 520 +/- 8 items/kg, is straightforward and many
tools exist to perform this task (Foppiano et al.,
2019b; Deus et al., 2017; Hao et al., 2016). To build
a knowledge graph, we must put these measure-
ments in context. We need to determine the proper-
ties being measured (e.g. abundances), the entities
that exhibit those properties (e.g. the Maowei Sea),
and possible qualifying conditions under which
measurements are obtained (e.g. the date and depth
of the sampling). These properties, entities, and
conditions can then be mapped to those that are
used in the knowledge graph, so that the measure-
ments can be normalized into a common system.

There are a number of ontologies that cover units
of measurement, such as Quantities, Units, Dimen-
sions, and Types Ontologies (QUDT)4 and the On-
tology of Units of Measure and Related Concepts
(OM) (Rijgersberg et al., 2013). These and oth-
ers are discussed in a survey paper by (Steinberg
et al., 2017). Most of these ontologies focus on
conversion between different systems of measure-
ment, and on classifying types of measurement
or domain of application, but do not necessarily
address the “thing” being measured. The Joint
Committee for Guides in Metrology’s (JCGM) In-
ternational Vocabulary of Metrology covers this in
slightly more depth, discussing measurement units
and quantity values, then talking about quantities
themselves, which it defines as a “property of a phe-
nomenon, body, or substance” (Joint Committee
for Guides in Metrology, 2012). We find that this
nomenclature, while precise, is likely to be con-

4http://www.qudt.org/

fusing to non-metrologists from both an evaluation
and annotation perspective, so to support the data
annotation process for this task we use a simplified
nomenclature.

Metrology research in the Semantic Web com-
munity is often focused on ontology alignment for
Units of Measurement ontologies. Kaladevi et al.
(2016) look at aligning unit ontologies to support
merging data across many weather information sys-
tems, while Do and Pauwels (2013) more generally
look at using MathML for aligning unit ontologies.
Efforts around designing linked data models for
semantic sensor streams for the Internet of Things
also utilize the Units of Measurement ontology
for representing measurement information (Bar-
naghi et al., 2013). None of this work addresses
extraction of measurements and their contexts nor
building knowledge graphs from such information.

Other research explores creating databases of nu-
meric attributes. Kotnis and Garcıa-Duran (2019)
infer new values using linear regression for neigh-
boring entities in a knowledge graph. Gupta et al.
(2015) use a logistic regression with distributional
vectors. Davidov and Rappoport (2010) use a sys-
tem of averages and boundary values to infer an
estimated numeric attribute value. Rather than im-
puting new values from related entities, MeasEval
starts from a value and puts it into the context of
measured entities and measured properties, work-
ing toward a knowledge representation of numeric
data.

3 Task Description

MeasEval is an entity recognition and semantic re-
lation extraction task focused on finding counts and
measurements, attributes of those quantities, and
additional information including measured entities,
properties, and measurement contexts.

MeasEval is composed of five sub-tasks that
cover span extraction, classification, and rela-
tion extraction, including cross-sentence relations.
Given a paragraph from a scientific text:

• For each paragraph of text, identify all spans
containing quantities (e.g. 12 kg). Quantities
are treated as strings, and are not converted or
normalized.

• For each identified Quantity, identify the Unit
of Measurement (e.g. kg), if one exists. For
each Quantity classify additional value Mod-
ifiers (e.g. count, range, approximate, mean,

http://www.qudt.org/
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etc.) that apply to the Quantity.

• For each identified Quantity, identify the Mea-
sured Entity (e.g. bed inventory) it applies to
(if one exists) and mark its span. If an associ-
ated Measured Property (e.g. concentration)
also exists, identify it and mark its span.

• Identify and mark the span of any Qualifier
(e.g. after incubation) that is needed to record
additional related context to either validate or
understand each identified Quantity.

• Identify relationships between Quantity, Mea-
sured Entity, Measured Property, and Quali-
fier spans using the HasQuantity, HasProperty,
and Qualifies relation types.

More detailed definitions can be found be re-
viewing the MeasEval Annotation Guidelines.5 We
describe each of the elements to be extracted in
more detail in the next section.

4 Annotated Data

4.1 Data Model
As shown in Figure 1, the MeasEval annotation
model consists of Quantities, MeasuredEntities,
MeasuredProperties, and Qualifiers. A Quantity
can be either a count or a measurement, with mea-
surements being composed of a Unit and a Value.
Values also can have additional attributes such as
“isMean”, “isApproximate”, or “isRange”. Quanti-
ties can be directly related to a MeasuredEntity, or
can be indirectly related to a MeasuredEntity via
a MeasuredProperty. Qualifiers provide additional
information that is required to interpret the mea-
surement. These include things like the pressure at
which a boiling point was observed, or the depth
and location where an ocean sample was taken.
Since texts may contain different parts of this in-
formation, all relationships are optional. A Mea-
suredEntity can be related to a MeasuredProperty
or a Quantity, a MeasuredProperty can be related a
Quantity, and a Qualifier can have a relationship to
any span.

4.2 Corpus and Annotations
Annotations are drawn from 110 CC-BY licensed
articles that have been made previously available
by Elsevier Labs. 6 These articles were the ba-

5https://github.com/harperco/MeasEval/
tree/main/annotationGuidelines

6https://github.com/elsevierlabs/
OA-STM-Corpus

Figure 1: Annotation Model. All relationships are op-
tional.

sis of a previous SemEval task for SemEval 2017
(Augenstein et al., 2017). These 110 articles are
distributed evenly across 10 subject areas.

From these 110 articles, the MeasEval dataset
includes 428 paragraphs containing 1663 Quanti-
ties. These are split into a training data set of 1164
Quantities (313 paragraphs) and an evaluation set
of 499 Quantities (135 paragraphs).

All paragraphs were annotated by at least two
annotators, then reviewed and reconciled during
an adjudication meeting, often including a third
annotator. The MeasEval data release included
training data, as well as original annotations from
multiple annotators for a 248 Quantity subset of the
training data. This was to provide deep information
on inter-annotator agreement, and also to allow
participants to do their own analysis on how their
algorithms perform relative to humans.

The inter-annotator agreement (IAA) shows
some variation in interpretation when humans are
performing this task. The review process serves
to resolve much of the disagreement and to ensure
that the data is as consistent as possible given the
challenging nature of the task. For this subset of
data in this IAA set, Table 1 shows Krippendorff’s
Alpha values for each class.

Annotation Class Krippendorff’s Alpha

Quantity 0.943
MeasuredProperty 0.641
MeasuredEntity 0.546
Qualifier 0.334
Unit 0.866

Table 1: Krippendorf’s Alpha scores for subset of data
included in Inter-Annotator Agreement dataset.

4.3 Data Formats

To increase the usability of the data, multiple for-
mats are provided. The MeasEval data includes a

https://github.com/harperco/MeasEval/tree/main/annotationGuidelines
https://github.com/harperco/MeasEval/tree/main/annotationGuidelines
https://github.com/elsevierlabs/OA-STM-Corpus
https://github.com/elsevierlabs/OA-STM-Corpus
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Figure 2: BRAT Example of a Quantity with related annotations.

text file and a set of annotations for each paragraph
of scientific text. Annotations are provided in a tab-
separated value (.tsv) file format, and in the BRAT
annotation format. The BRAT format is for the
purpose of visualization and review, but the official
data format for the task is the .tsv, which is used
for submissions and evaluation. For .tsv and .txt
files, there is one file per paragraph of annotated
text, and the .tsv file contains all annotations. For
the BRAT files, there are one .ann and one .txt file
per annotated Quantity.

For example, given the BRAT annotations illus-
trated in Figure 2, the data will have a raw text file
(S0016236113008041-3153.txt), a BRAT annota-
tion file per Quantity (S0016236113008041-3153-
1.ann, and S0016236113008041-3153-2.ann), and
a tab-separated file containing all annotations from
each Quantity (S0016236113008041-3153.tsv).

More detail on each of these formats, includ-
ing examples, as well as all MeasEval training and
evaluation data, inter-annotator agreement annota-
tions, and annotation guidelines can be found on
the MeasEval Github repository. 7

5 Evaluation

Evaluation is scored by providing a single SQuAD-
style (Rajpurkar et al., 2016) F1 (Overlap) score
for each submission, averaged across all nine com-
ponents of the five subtasks. The 9 components are
the Quantity, MeasuredProperty, MeasuredEntity,
and Qualifier spans; the Modifier and Unit exten-
sions to Quantity, and the HasQuantity, HasProp-
erty, and Qualifies relationships. The evaluation
script also provides a number of other metrics, de-
scribed below.

In order to effectively evaluate all 9 components
of the sub-tasks, it is necessary to first pin all Quan-
tities in a submission to the corresponding Quanti-
ties in the gold data. As an example, consider the
sentence “The dog weighed 25 pounds, while the
average weight of the cats was 9 lbs.” We want to
avoid crediting correct MeasuredEntities if asso-

7https://github.com/harperco/MeasEval

ciated with the wrong Quantity. For example, if
a submission listed “dog” as the MeasuredEntity
associated with the average weight of 9 lbs, this
would be incorrect.

The first pass matches each submission “annot-
Set” ID to a corresponding Gold Set annotationId,
and propagates this matched identifier across all of
the data.

From there, the script calculates Precision, Re-
call, F-measure, and an Exact Match and SQuAD-
style F1 (overlap) score. Exact Match and F1
are averaged across the entire submission. Ex-
act Match is a binary value of 0 or 1, while F1
is a token level overlap ratio of submission to gold
spans, where tokenization is done using simple
white space delimiters. For components that do not
include a span, Exact Match and F1 scores are the
same. Relations are also scored with a binary Exact
Match and F1 score if the relation types match and
both endpoints match either exactly or with some
overlap.

Any span, unit, modifier, or relationship found
in the gold data, but not the submission, or found
in the submission, but not the gold data is included
as a “penalty row” with a score of 0 in order to
sufficiently penalize both false positives and false
negatives when averaging scores. This calculation
leads to very fine-grained differences in the distri-
bution of scores in the results tables.

Although not used for calculating leaderboard
rankings, the evaluation code can also provide all
the same scores micro-averaged by scoring compo-
nent, by subject area, or by paragraph for further
analysis of error. Additional documentation as well
as the evaluation code itself can be found on the
MeasEval GitHub repository. 8

5.1 Baseline Models

MeasEval also includes two very similar baseline
models. Baseline 1 is the best-performing of these,
and scores an overall F1 (Overlap) of 0.239 in the
evaluation as reported in Tables 2 and 3. Base-

8https://github.com/harperco/MeasEval/
tree/main/eval

https://github.com/harperco/MeasEval
https://github.com/harperco/MeasEval/tree/main/eval
https://github.com/harperco/MeasEval/tree/main/eval
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Team Name Overall Quantity Unit Modifier MeasuredEntity MeasuredProperty Qualifier

LIORI* 0.519 0.861 0.722 0.642 0.437 0.467 0.163
jarvis@tencent* 0.473 0.855 0.719 0.523 0.398 0.437 0.000
zyy 77 0.448 0.842 0.697 0.507 0.383 0.385 0.000
zz362 0.433 0.821 0.720 0.498 0.344 0.365 0.000
Counts@IITK* 0.432 0.861 0.406 0.245 0.077 0.804 0.614
yorkey 0.399 0.745 0.661 0.314 0.344 0.365 0.000
XMSHI 0.392 0.736 0.624 0.313 0.348 0.353 0.000
CLaC-BP* 0.389 0.855 0.677 0.546 0.251 0.318 0.107
clockwise9* 0.369 0.850 0.618 0.000 0.327 0.350 0.000
UPB* 0.369 0.742 0.533 0.277 0.331 0.374 0.040
Baseline 0.239 0.827 0.561 0.000 0.053 0.064 0.005
KGP* 0.278 0.787 0.748 0.309 0.113 0.012 0.005
Stanford MLab* 0.272 0.818 0.760 0.408 0.000 0.000 0.000
BuckschJ 0.263 0.825 0.695 0.375 0.000 0.000 0.000
CLaC-np* 0.241 0.756 0.495 0.408 0.056 0.006 0.000
FabianW 0.238 0.826 0.624 0.438 0.060 0.045 0.006
ugeijtsv 0.229 0.759 0.582 0.210 0.000 0.000 0.000
Jo 0.212 0.754 0.377 0.291 0.000 0.000 0.000
joe o123 0.185 0.376 0.383 0.242 0.000 0.000 0.000
SU-NLP 0.001 0.007 0.002 0.000 0.000 0.000 0.000

Table 2: Top result for each team/user, ordered by Overall F1 along with micro-averages for each annotation
span, for units, and for modifiers. Team Names marked with * have submitted system information for further
analysis and discussion. Top, second, and third place scores per category represented by bold, underline, and
italics respectively.

line 1 use spaCy Named Entity Recognition (NER)
models for each of the four classes independently.
Unfortunately, some training examples need to be
thrown away because spaCy’s NER functionality
does not support overlapping spans in the same
model. Since there is frequently an overlap be-
tween MeasEval spans of different types, this ne-
cessitates training each annotation type separately,
and stripping out edge cases where multiple anno-
tations of the same type intersect.

Baseline 1 generates a deduplicated list of all
units in the training data, and checks each Quantity
against this list. If there are one or more matches
in this comparison, the system returns the “longest
last matching” unit, ensuring that cm would be pre-
ferred to m in “22 cm” and that s would be preferred
to m in “approximately 22 s”. The baseline does
not attempt the Modifier component, though could
be augmented with a set of regular expressions that
search the Quantity string for key phrases and sym-
bols, including “approximately”, “between”, “>”,
and “∼”.

Once the NER models and unit matching are
completed, baseline 1 matches Quantities to Mea-
suredEntities, MeasuredProperties, and Qualifiers
using a knockout match algorithm based on proxim-
ity. So each MeasuredProperty matches the nearest
Quantity, each MeasuredEntity matches the nearest
MeasuredProperty or Quantity, and each Qualifier

matches the nearest span of any type. Baseline 2
is a variant that does much simpler matching, tak-
ing each span in the order they appear in the data.
Baseline 2 does not appear in the results tables, but
scores an overall F1 (Overlap) of 0.223. The code
for both baselines is available in a Jupyter notebook
on the MeasEval Github repository. 9

6 Results and Discussion

During the 21-day evaluation period (January 10
through 31, 2021), 26 CodaLab users submitted a
total of 89 submissions, of which 77 passed valida-
tion and were successfully scored by the evaluation
script. Given the complexity of the task, we opted
to allow for five submissions total during the evalu-
ation, although some collaboration between users
meant that some teams were able to effectively sub-
mit more than five times. We note that submissions
did not calculate scores on sub-tasks, thus mak-
ing it difficult to overly optimize models using just
the overall score. The relatively generous submis-
sion allowance does not seem to have presented too
much of an over-fitting problem, as scores remain
relatively low on all tasks, although the collabo-
ration could have given some participants a slight
advantage in the rankings.

Table 2 shows the top submission from each of

9https://github.com/harperco/MeasEval/
blob/main/baselines/first-baseline.ipynb

https://github.com/harperco/MeasEval/blob/main/baselines/first-baseline.ipynb
https://github.com/harperco/MeasEval/blob/main/baselines/first-baseline.ipynb
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the 19 teams that submitted successfully, as well
as the top performing baseline. 10 of the 19 ex-
ceed the benchmark of the baseline spaCy model.
In addition to the overall F1 scores, Table 2 shows
micro-averaged F1 across the four annotation spans
as well as Units and Modifiers. Table 3 provides
this same breakdown for each of the three relation-
ship types. Team names marked with an asterisk (*)
represent teams which have either submitted sys-
tem description papers or responded to a request
for system information.

The overall top-performing model was at least
tied for top performance in five out of 6 of the
component scores in Table 2, but interestingly, the
second best and third best performing models var-
ied across scoring component. Models that did
particularly well at Quantities, Units, or Modifiers,
may have had their overall performance reduced
by lower performance at the MeasuredEntity and
MeasuredProperty spans.

Table 3 shows the scores for the Relation Ex-
traction subtasks: HasQuantity, HasProperty, and
Qualifies. These largely align with the annotation
span components of the scoring which they are de-
pendent on. In both Table 2 and Table 3 it is worth
noting that only 7 teams attempted extraction of
Qualifiers and the Qualifies relation, as these were
the most difficult aspects of the task.

Team Name HasQuantity HasProperty Qualifies

LIORI* 0.482 0.318 0.092
jarvis@tencent* 0.424 0.257 0.000
zyy 77 0.387 0.229 0.000
zz362 0.375 0.203 0.000
Counts@IITK* 0.311 0.183 0.064
yorkey 0.375 0.203 0.000
XMSHI 0.373 0.199 0.000
CLaC-BP* 0.308 0.147 0.058
clockwise9* 0.366 0.167 0.000
UPB* 0.350 0.242 0.019
Baseline 0.075 0.007 0.000
KGP* 0.076 0.006 0.000
Stanford MLab* 0.000 0.000 0.000
BuckschJ 0.000 0.000 0.000
CLaC-np* 0.028 0.000 0.000
FabianW 0.037 0.007 0.000
ugeijtsv 0.000 0.000 0.000
Jo 0.000 0.000 0.000
joe o123 0.000 0.000 0.000
SU-NLP 0.000 0.000 0.000

Table 3: Top result for each team/user for the Rela-
tion Extraction components of the score. Team Names
marked with * have submitted system information for
further analysis and discussion. Top, second, and
third place scores per category represented by bold,
underline, and italics respectively.

Figure 3: Visualization of average scores for each scor-
ing component across top score for all participants.

Figure 3 provides a visualization of the distri-
bution of scores for each scoring component from
Tables 2 and 3. From this, it is clear that Quantity
and Unit are the easiest aspects of the shared task,
which makes intuitive sense. The relatively high
scores for Modifier is also of interest, as these are
the components of the extraction that capture uncer-
tainty and variance in value, which is an important
part of the task and not one that we expected to
see handled as well as it was. This clearly demon-
strates that the various Quantity contextualization
subtasks are far more difficult and more work is
needed in how best to handle the extraction of re-
lated MeasuredEntities, MeasuredProperties, and
Qualifiers.

Figure 4 provides a visualization of the distribu-
tion of scores for 9 of the 10 subject areas in the cor-
pus. The mathematics subject area has been omit-
ted from this graphic due to under-representation
in both the training and evaluation datasets.

6.1 Impact of Duplicates

As noted previously, the MeasEval evaluation algo-
rithm was designed toward lenience, and as a result
sometimes inflates scores if multiple submission
annotations match a single entry in the gold data.
This was done to allow submissions to get credit
for submitting multiple Quantity annotations that
partially matched a single gold data span as well as
to generally not penalize systems that might make
multiple predictions pinned to the same numeric
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Figure 4: Visualization of average scores for each sub-
ject area across top score for all participants.

value.
However, allowing duplicates can in some cases

result in inflated scores. This is especially evident
in cases where submissions contained entries that
duplicated entire annotations sets. For a small num-
ber of submissions that exhibited annotation set
level duplicates, a post-processing routine removed
all set level duplicates before final evaluation, re-
sulting in the scores in Table 2 and Table 3.

Additionally, Quantity-level duplicates can also
potentially inflate Quantity scores, but should have
a neutral impact on other components of scoring.
For example, if a system identified the same Quan-
tity two times, but found a different MeasuredEntity
for each occurrence, the submission will score extra
points associated with the Quantity, and potentially
the Unit and Modifiers if those are also correct, but
will only get points for the correct MeasuredEn-
tity while being penalized for the incorrect Mea-
suredEntity. An ablation analysis was performed
for the eight submissions covered by system pa-
pers, assessing the impact of these duplicates on
the Overall F1 (Overlap) metric.

Table 4 gives the extent of duplication for these
submissions, the initial overall score from Table
3, the overall score with exact quantity duplicates
removed, and the overall score with both exact and
overlapping duplicates removed. For example, if
the gold data includes the Quantity “approximately
23 mm”, and a submissions included annotation
sets with both “23 mm” and “approximately 23
mm”, the exact match duplicate removal would not

drop either score, whereas the overlapping match
score would drop whichever occurred last in the
submission, whether or not it is the correct answer.

Team Name F1
Count
Exact /
Overlap

F1 w/out
Exact

F1 w/out
Any

Duplicates

LIORI 0.519 125 / 32 0.499 0.487
jarvis@tencent 0.473 0 / 11 0.473 0.470
Counts@IITK 0.432 0 / 0 0.432 0.432
CLaC-BP 0.389 0 / 0 0.389 0.389
UPB 0.369 0 / 1 0.369 0.369
KGP 0.278 0 / 0 0.278 0.278
Stanford MLab 0.272 0 / 0 0.272 0.272
CLaC-np 0.241 55 / 0 0.231 0.231

Table 4: Ablation analysis of duplicates and Overall
F1 (Overlap) score for each of the eight Teams with
System Papers.

The general downward trajectory seen while re-
moving duplicates that are not at the set level is
informative. Partly this is due to declining Quan-
tity score from duplicate removal, but some effect
is attributable to the possibility that deduplication
deletes a correct MeasuredProperty or Measure-
dEntity and leaves an incorrect one, given that they
may include different values. The ablation analysis
simply removes all but the first occurrence, so there
is no control over whether removed values are a
closer match to the gold data.

6.2 Multiple Hypotheses Hypothesis

The results of de-duplication analysis, the relatively
low inter-annotator agreement scores, and deeper
consideration of the annotation guidelines present
an interesting hypothesis. It could be that the differ-
ent interpretations of the context of a measurement
are not automatically right or wrong. It could be
that different interpretations are useful in different
downstream applications. While it is out of scope
in for this task description, future work may look
more closely at categorization of the areas where
annotators disagreed and systems produced multi-
ple interpretations, to see if there is alignment in
the differences and whether there are patterns to
the variance.

7 Summary of Participating Systems

The MeasEval track at SemEval-2021 received
nine system description paper submissions, eight of
which are represented in the analysis in Table 4. A
ninth paper formulated a new task from the MeasE-
val dataset focusing on just the relation extraction
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part of the problem. One system only attempted
the Quantity, Unit, and Modifier parts of the task,
while another did not submit any Qualifier spans
or Qualifies relationships. Four of the nine systems
have released code or models.

There are several points of similarity between
the eight main submissions. All but one of the
systems are based on the BERT architecture (De-
vlin et al., 2018) or a derivative, such as SciBERT
(Beltagy et al., 2019), BioBERT (Lee et al., 2019),
or RoBERTa (Liu et al., 2019). All but one used
a pipeline architecture, starting with Quantity ex-
traction. All but one used sequence tagging with
a BIO encoding scheme, and four followed the
sequence tagger by a Conditional Random Fields
(CRF) model to assemble tokens into spans and
improve accuracy over simple token-level classi-
fiers. Unit and Modifier extraction was either done
using a character-level BiLSTMs, another BERT
model, or a rule-based approach. Finally, it was
common to see MeasuredEntity, MeasuredProperty,
and Qualifier, and sometimes the relation extrac-
tion components, stacked together in a multi-task
sequence tagging model as a final stage, taking
both the original sentences and Quantity spans as
input. One system diverged from the sequence tag-
ging tagging approach and used templated question
answering techniques to handle the relation extrac-
tion along with related spans. Table 5 provides a
high-level summary of frequency of architectures
and techniques in use by more than one system.

Technique / Model Submission Count

BERT 3
BioBERT 1
SciBERT 3
RoBERTa 1
CRF 4
BiLSTM Units / Mods 3
Rule-based Units / Mods 3
Dict-based Units / Mods 2
Question Answering 1
Sequence Tagging 7

Table 5: Summary of techniques and architectures used
in MeasEval System Description Submissions.

7.1 System Specifics
Davletov et al. (2021) (LIORI), achieve their state-
of-the-art performance using pre-trained models
RoBERTa (Liu et al., 2019) and LUKE (Yamada
et al., 2020). They use LUKE to fine-tune an NER
model for Quantity extraction, and a RoBERTa-
based multi-task model for all other spans. Mod-

ifiers are predicted as Quantity-types. All other
spans, including units, are extracted using Ques-
tion Answering style sequence tagging (start/end
logits) without question prompts for each annota-
tion type queried for each extracted Quantity.

This sequential ensemble approach of Quantity-
detection followed by either “all-in-one-multi-task”
extraction or a staged approach to one or more of
the other subtasks proved very common among the
top-performing systems.

Cao et al. (2021) (jarvis@tencent), do initial
Quantity extraction with an ensemble of a Pointer
Net (Vinyals et al., 2015) and a CRF. They use a
BERT-based classifier for Modifier tagging and a
rule-based system for Units, and then use relation-
specific taggers with the same architecgure as the
Quantity-tagger for all other task components.

Gangwar et al. (2021) (Counts@IITK) similarly
tag Quantities witha SciBERT sequence tagger and
a CRF model and SciBERT for Modifiers, but use
a Character based bidirectional LSTM for Unit tag-
ging. They then encode the Quantity into SciBERT
input when tagging MeasuredEntity and HasQuan-
tity, and iteratively mark new spans in the input
when tagging then next sub-task, using a rule-base
for assembling the necessary relationships. Their
performance on Quantity, Unit, and Modifier was
near the top performing, but they struggled with
MeasuredProperty and HasProperty.

Therien et al. (2021) (CLaC-BP) use SciBERT
in a token-level multi-class classifier across all span
classes. This is an interesting approach, given the
opportunity for joint inference between the various
types of spans. However, it penalizes them in that
each token in their model can only be one class,
while there are cases when a Quantity and Mea-
suredEntity from one set may be part of, e.g. a
Qualifier in another. Quantity spans are then fed to
another SciBERT model for Modifier typing, and
rule-based systems are used for Units and for the
Relations between spans.

Avram et al. (2021) (UPB) use RoBERTa along
with a CRF for Quantity extraction. They also
tested SciBERT and BERT. They achieved their
best results on their dev subset with SciBERT,
but their best results on evaluation set came from
RoBERTa. They use a BiLSTM to extract Units
and classifier Modifiers, and then use a templated
Question Answering system as a joint entity and
relation extraction system for the remaining sub-
tasks. Unlike LIORI, who did not use prefixes or
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suffixes in their question templates, UPB asks more
natural language questions of the form “What is
the measured property of the quantity ?”

Karia et al. (2021) (KGP) also use BioBERT af-
ter testing various BERT-based pre-trained models,
but depart from many of the other submissions by
using a binary classifier rather than BIO tags and
CRF layers for Quantity sequence tagging. Mod-
ifiers and Units are handled using keywords and
dictionary matching, while they use a multi-task
BERT model for the remaining components, first
finding MeasuredEntity based on the Quantity pre-
dictions, then fusing these results for the remaining
spans and relations. They also continued refining
their approach into the post-evaluation phase, and
reported improving their score from an Overall F1
(Overlap) of 0.278 to 0.456.

Liu et al. (2021) (Stanford MLab) only tackle
the Quantity, Unit, and Modifier subtasks. Notably,
they report building their system for these com-
ponents from inception to submission in under 48
hours. They use BERT-large for IOB sequence
tagging for Quantities, use a similar IO sequence
tagging scheme on Quantities to tag Units, and a
multi-class classifier to classify Quantities to the
appropriate Modifiers. Their system performs well
on all subtasks they attempted, even scoring second
place overall for Units.

Lathiff et al. (2021) (CLaC-np) diverge from
other submissions in their approach. They pre-
process their text using GATE and ANNIE, and use
custom rules to further clean up tokenization. They
treated Stanford Core Dependency Parse trees as
graphs to extract subgraphs starting each path query
from the CD tokens to identify MeasureEntities,
MeasuredProperties and Qualifiers with the use of
Graph CNN. They relied on the models from CLaC-
BP to map from their tokens to annotation spans
for each type in assembling their final submission.

Finally, not shown in Table 1 is Veyseh et al.
(2021). They formulated their own task based on
the MeasEval data. Although they did not sub-
mit a solution during the evaluation period, they
have submitted a system description paper describ-
ing a novel approach to relation extraction, which
they have evaluated on MeasEval sub-task 5. Using
our Gold Quantity, MeasuredEntity, MeasuredProp-
erty, and Qualifier spans as input (without annota-
tion sets), they compared their approach to two
other baseline models. They encode contextual em-
beddings, positional embeddings, and entity types

for each annotation span, and perform dependency
path reasoning along with an “Information Bottle-
neck” regularization technique to complete their
Relation Extraction task.

8 Conclusion

In this paper, we present the design, the data, the
evaluation the process, the results, and the systems
for MeasEval at SemEval 2021. The shared task is
challenging, partly due to the relatively small train-
ing data, and partly due to the inter-relationships
between many different components of the task.
Quantity and Unit identification, and to a lesser
extent Modifier typing, appear to be the simplest
parts of the task based on average performance,
with one participating system building their end-
to-end pipeline for these components in under 48
hours. The contextual elements MeasuredEntity,
MeasuredProperty, and Qualifier, and their relation-
ships, are far more difficult, which is not surprising
given that these are subject to more human anno-
tator disagreement. The challenge of context is
especially pronounced in the Qualifier span and
Qualifies relationship.

Common components shown in Table 5 include
the BERT family of pre-trained neural language
models, CRF models, BiLSTMs, and rule-based
components. In general, the task does not appear to
require whole new novel models and architectures,
but rather pipelines and cascading ensembles stitch-
ing together various existing methods. There is still
room for improvement on this task, and whether
progress will come from novel models or creative
applications of existing techniques remains to be
seen. Work also remains to be done in applying the
entities and relationships extracted for this task to
the larger end goal of scientific knowledge graph
construction and related downstream applications.
Future work could be done to further analyze ar-
eas of error and disagreement in these annotations,
and to investigate entity linking across Quantity,
MeasuredEntity, and MeasuredProperty annotation
spans to various measurement ontologies and to
domain-specific entity and property ontologies.
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