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Abstract

Most question answering tasks usually focus
on predicting concrete answers, e.g., named
entities. These tasks can be normally achieved
by understanding the contexts without addi-
tional information required. In Reading Com-
prehension of Abstract Meaning (ReCAM)
task, the abstract answers are introduced. To
understand abstract meanings in the context,
additional knowledge is essential. In this pa-
per, we propose an approach that leverages
the pre-trained BERT Token embeddings as a
prior knowledge resource. According to the re-
sults, our approach using the pre-trained BERT
outperformed the baselines. It shows that the
pre-trained BERT token embeddings can be
used as additional knowledge for understand-
ing abstract meanings in question answering.

1 Introduction

Question answering (QA) is one of the machine
reading comprehension tasks. The goal is to find
an answer of a given question based on a given
context. In most QA tasks (Chen et al., 2016; Lai
et al., 2017), the answers are commonly concrete
words appearing in the contexts. Abstract words,
on the other hand, have usually been ignored in
such tasks. Unlike concrete words, these abstract
words are difficult to understand since they cannot
be perceived directly with human senses. To study
machine comprehension of abstract meaning, a task
called Reading Comprehension of Abstract Mean-
ing (ReCAM) (Zheng et al., 2021) was proposed.
Unlike other QA tasks, the answers in ReCAM are
abstract words that used to summarise the informa-
tion in the contexts.

ReCAM is divided into three subtasks. For sub-
task 1, the abstract answers are in the form of imper-
ceptible words such as ‘objective’, ‘chance’, and
‘prospective’. Subtask 2 is about nonspecificity.
The answers in this subtask are abstract words that

represent nonspecific or general concepts such as
‘vertebrate’. Subtask 3 focuses on generality of the
models developed in the first two subtasks. In this
subtask, the model in subtask 1 must be evaluated
on subtask 2 data and vice versa. Based on these
abstract answers, a machine has to understand the
abstract meaning of certain words. This requires an
additional knowledge to fulfill the lack of abstract
concept information (Bi et al., 2019). For example,
given a context which is a passage and a question
shown in Table 1. In the example of Table 1, the
context contains a passage and a question. The
answer ‘neglected’ does not appear anywhere in
the given passage. However, the sentence, ‘it grad-
ually fell into disrepair in the late 1980s’, provides
a clue to answer the question. If the model has a
prior knowledge that the word ‘disrepair’ have a
connection with ‘neglect’, then the correct answer
will be chosen.

In this work, we propose to use a pre-trained
word/token embedding model to provide exter-
nal knowledge for abstract meaning understanding.
The pre-trained BERT token embedding is chosen
in this work due to its good performance in various
natural language processing tasks. In our approach,
the token embeddings are firstly extracted by the
pre-trained BERT model. Presumably, these em-
beddings are enriched with additional information
for understanding the abstract meanings. These
embeddings are used as inputs in our approach to
predict answers. In this way, the prior knowledge
from the pre-trained model can be leveraged in the
task of abstract answer prediction.

2 Related Work

A QA task usually requires a machine to under-
stand a context to answer a question. Typically,
a context is a passage and an answer usually ap-
pear somewhere in a given passage. Several ap-
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proaches have been proposed to compute a com-
bined passage-question representation and then use
it to find an answer. The DeepLSTM Reader (Her-
mann et al., 2015) uses a deep long-term short-term
memory (LSTM) encoder to find a representation
of a concatenated passage-question text. The At-
tentive Reader (Hermann et al., 2015) attentively
aggregates words to compute a passage representa-
tion based on a question. The Attentive Reader was
modified in (Chen et al., 2016) where a deep LSTM
module with the dot product attention function
were replaced by a shallow bi-directional LSTM
module with the bi-linear attention function. Re-
cently, Dhingra et al. (2017) proposed a model
called Gated-Attention (GA) Reader. It combines a
multi-hop architecture and a novel attention mech-
anism to learn the representations. These models
have shown good performances in question answer-
ing when answers are concrete words. However,
in ReCAM task, the answers are abstract. Only
the given contexts may not suffice to answer the
questions.

Recently, word/token embeddings from pre-
trained models have been popularly used in many
applications. They are capable of providing ad-
ditional knowledge from the resources they were
pre-trained. Several pre-trained models have been
proposed in the past few years such as GloVe (Pen-
nington et al., 2014) and ELMo (Peters et al., 2018).
Many models have also been developed from the
transformer architecture (Vaswani et al., 2017), e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and DistilBERT (Sanh et al., 2020). They
have been highly successful in pre-training token
embeddings for various downstream tasks includ-
ing QA. However, there has been no work where
such models are applied in a QA task that focuses
on imperceptibility and nonspecificity abstractness.

3 Using pre-trained token embeddings
for a QA task

Each sample in the dataset of both subtasks con-
sists of three components: passage, question and
options. Each passage is a long text that is used
to provide context for answering a question. Each
question is a passage-summarized text containing
one special token, @placeholder. This token is a
representative of a word (an answer) that should
be filled to complete the text. The correct answer
must be selected from five possible options pro-
vided in each sample. Table 1 shows one exam-

ple in subtask 1. In the table, the first row is the
passage providing a context for this sample. The
second row is the question, which is a sentence
that summarises the given passage. It contains one
placeholder indicated by @placeholder token. This
placeholder should be replaced by an abstract word
corresponding to the passage. The third row is the
list of options that can be selected to replace the
placeholder in the question. The correct options is
marked in bold which is ‘neglected’ in this case.
The last row is the label indicates the answer of this
example ranging from 0 (the first option) to 4 (the
last option).

Given a context (a passage and a question con-
taining a placeholder token), a placeholder embed-
ding extracted from the pre-trained BERT model
should be able to guide an answer. Due to the fact
that the BERT model considers token contexts to
learn token embeddings, a placeholder embedding
should comprise information of its context. That
means any word or token with a similar embedding
should also be in the same context as a placeholder
as well. Thus, to find the correct answer from a list
of options, every option embedding extracted from
the pre-trained BERT model is compared with a
placeholder embedding. Then, any option with the
most similar embedding compared to a placeholder
embedding should be an answer. Accordingly, we
propose an approach that considers similarity be-
tween placeholder and option embeddings to pre-
dict answers. Several metrics such as dot product,
cosine similarity and euclidean distance can be
considered to measure the similarity. The selected
metric in this work is described in Section 4.

To extract placeholder and option embeddings
in each sample, a question and a passage are firstly
concatenated in the following form:

[CLS] + Question + [SEP] + Passage + [SEP]

This form is conventional in BERT framework.
Normally, a ‘[CLS]’ token is added for a classifica-
tion purpose. It is usually represented a sentence
level embedding. However, it is not utilized in our
approach since we utilized embeddings in a token
level. Two ‘[SEP]’ tokens in the form are used
to separate a question and a passage. Similarly,
for every option in each sample, both ‘[CLS]’ and
‘[SEP]’ tokens are added as follows:

[CLS] + Option + [SEP]

Then, the pre-trained BERT model is used to
extract embeddings from these prepared inputs.
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Passage The Trainspotting author has agreed to become patron of The Leith Theatre and
launch a new fundraising drive. The Leith Theatre Trust took over the lease
of the art deco venue from City of Edinburgh Council last year ... However, it
gradually fell into disrepair in the late 1980s and eventually had to be closed
down by the council ...

Question Irvine Welsh is to spearhead a campaign aimed at reviving a @placeholder
theatre in Leith 30 years after its last show.

Options (A) neglected, (B) renewed, (C) lavish, (D) revised, (E) proposed
Label 0

Table 1: An example of a passage, a question, and five options. The task is to select the correct answer (bold) for
replacing @placeholder

The placeholder embedding is extracted from the
question-passage concatenated input and each op-
tion embedding is extracted from each option input.
These embeddings are used as inputs of the pro-
posed approach. As for targets, all labels given
are converted to one-hot vectors. With the place-
holder and options embeddings as inputs and the
one-hot vectors as targets, our proposed approach
learn how to predict the probabilities that each op-
tion is an answer for each sample. Figure 1 shows
the input and target generated from an example
shown in Table 1. The pre-trained BERT model
is used to extract embeddings of the placeholder
and option tokens in the prepared format. The
embeddings are the hidden weights of the given
tokens from the last hidden layer of the pre-trained
BERT model. The label 0 is converted to a one-hot
vector [1, 0, 0, 0, 0]. These embeddings are then
passed through the prediction model. This predic-
tion model consists of six learning modules for
learning placeholder and five option embeddings
in each sample. These modules consist of a dense
layer with an output size 768 and a tanh activa-
tion function. They take a 768-dimensional pre-
trained BERT token embedding and outputs the
fine-tuned embedding with the same size. For each
placeholder embedding, the fine-tuned embedding
is produced by the placeholder embedding mod-
ule. Similarly, for each option embedding, the
fine-tuned option embedding is also obtained from
the corresponding option learning module. How-
ever, using separate option learning module for
each option may cause a bias in selecting some
options at the end. We therefore propose to use
shared-weight modules for learning all fine-tuned
option embeddings simultaneously. In other words,
all options in each sample are learned by the mod-
ules that share the same weights. After that, for

each option, the similarity between the fined-tuned
placeholder and the fine-tuned option embedding is
computed. All of the similarities from all options
are then concatenated to form a vector with the
size 5. A softmax activation function is applied on
the concatenated vector to produce the final output
with the same size. This output vector represent
the probabilities that each option is an answer of
a given sample. The entire proposed approach is
illustrated in Figure 2. In the figure, p denotes
the fine-tuned placeholder embedding while o0, o1
and o4 denote the first, the second and the last op-
tion embedding respectively. s denotes a similarity
function. s(p, oi) is the similarity between p and
any oi.

4 Experimental setup

The pre-trained BERT model used in this work is
BERT-Base-Uncased 1 (Turc et al., 2019). All in-
puts were converted to lower case and tokenized by
BERT-Uncased tokenizer. The prediction model
was trained using RMSprop optimizer for 100
epochs with the learning rate set to 0.001. A cate-
gorical cross entropy was used as a loss function.
To avoid over-fitting, both L1 and L2 regularizers
were added at the dense layer in both placeholder
and option learning modules. The regularization
factors were set to 0.001. To select the similar-
ity metric, we examined three functions, i.e., dot
product (sd), cosine similarity (sc) and euclidean-
distance-based similarity (se) computed by

sd(p, o) = p · o (1)

sc(p, o) =
p · o
||p||||o||

(2)

se(p, o) =
1

1 + ||p− o||
(3)

1https://github.com/google-research/bert
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Figure 1: The input and target generated from an example shown in Table 1

Figure 2: The proposed approach framework

where p denotes a placeholder embedding and o
denotes an option embedding. We applied these
metrics in the proposed approach and performed
experiments on the development sets provided. The
results are shown in Table 2. As in the table, the
proposed approach using a dot product performed
best compared to the others. Hence, a dot product
was used in the proposed approach when it was
applied on the trial and test sets

Similarity metric Accuracy
Subtask 1 Subtask 2

sd 0.48 0.46
sc 0.34 0.31
se 0.33 0.31

Table 2: Evaluation results of the proposed approach
using different similarity metrics on the development
sets

4.1 baselines
We compared the proposed approach named as
BERT-S with other three baselines as follows:

• MLP: a multilayer perceptron (MLP) binary
classifier. It consists of two hidden layers with
the size 512 and 128 with a rectified linear
unit (ReLU) activation function. The output
is produced by an output layer with the size
1 and a sigmoid activation function. Each in-
put is a concatenated placeholder-option em-
bedding and its label is 1 if the option is an
answer and 0 otherwise. For every sample,
an answer is chosen from the concatenated
placeholder-option embedding that gives the
highest prediction value. A binary cross en-
tropy was used as a loss function. The model
was trained by RMSprop optimizer for 100
epochs with the learning rate 0.01.

• GA: the GA Reader proposed in (Dhingra
et al., 2017). It uses a novel multiplicative
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Dataset Method Accuracy
Subtask 1 Subtask 2 Subtask 3-1 Subtask 3-2

Trial

MLP 0.44 0.28 0.20 0.19
GA 0.32 0.25 0.24 0.25
BERT-C 0.26 0.14 0.21 0.21
BERT-S 0.50 0.30 0.29 0.27

Test

MLP 0.47 0.46 0.27 0.25
GA 0.19 0.21 0.20 0.19
BERT-C 0.38 0.34 0.24 0.25
BERT-S 0.50 0.49 0.34 0.39

Table 3: Evaluation results on the trial and test sets of all subtasks

gating mechanism, combined with a multi-
hop architecture to learn token embeddings
based on the given question. The GA Reader
obtains state-of-the-art results on three QA
benchmarks. However, those benchmarks
only focuses on concrete concept answering.

• BERT-C: a modified version of the proposed
approach. Instead of using similarities be-
tween the fine-tuned placeholder and option
embeddings, scalar outputs from an MLP are
used. After the fine-tuned placeholder and
option embeddings are obtained, each fine-
tuned option embedding is concatenated to
the fine-tuned placeholder embedding. Then,
the concatenated embedding is fed to a MLP
module. This MLP module consists of three
dense layers with the output size 512, 128 and
1 respectively. The scalar outputs from all op-
tions are then concatenated and proceeded as
in BERT-S. The other settings were also set
as same as the settings in BERT-S.

5 Results

The proposed approach was evaluated on the trial
and test sets of all three subtasks. The evaluation
metric is accuracy. The results of subtask 1 and
2 are shown in Table 3. There are two results of
subtask 3 shown as subtask 3-1 and subtask 3-2.
Subtask 3-1 is the proposed approach trained on
subtask 1 but evaluated on subtask 2. Similarly,
subtask 3-2 is the proposed approach trained on
subtask 2 but evaluated on subtask 1. As shown
in the table, the proposed approach performed bet-
ter in subtask 1 compared to subtask 2. It means
that the pre-trained BERT model applied in this
work is capable of understanding imperceptible
words. In contrast, it is not suitable for nonspecific

abstract words as it performed poorer in subtask
2. For subtask 3, the proposed approach is not
generalized across imperceptible and nonspecific
concepts. This can be implied by the significant
drop in accuracy in both subtask 3-1 and 3-2. How-
ever, compared with the baselines, the proposed
approach performed better in all subtasks.

6 Conclusion

In this work, we propose to use the pre-trained
BERT token embeddings for QA of abstract mean-
ing. These embeddings are additional information
that help understanding abstract meanings in the
tasks. According to the results, our approach out-
performed the baselines in every subtask. It means
that the pre-trained BERT model is effective in QA
of abstract meaning that focus on imperceptibility
and nonspecificity. For the future work, it is worth
to fine-tune the embeddings from the pre-trained
model in an end-to-end manner. Other resources,
e.g., semantic graphs, are also worth considering
to provide more information for machine compre-
hension of abstract meanings.
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