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Abstract

In this paper, we propose an RDF model for
representing embeddings for elements in lex-
ical knowledge graphs (e.g. words and con-
cepts), harmonizing two major paradigms in
computational semantics on the level of rep-
resentation, i.e., distributional semantics (us-
ing numerical vector representations), and lex-
ical semantics (employing lexical knowledge
graphs). Our model is a part of a larger ef-
fort to extend a community standard for rep-
resenting lexical resources, OntoLex-Lemon,
with the means to connect it to corpus data. By
allowing a conjoint modelling of embeddings
and lexical knowledge graphs as its part, we
hope to contribute to the further consolidation
of the field, its methodologies and the accessi-
bility of the respective resources.

1 Background

With the rise of word and concept embeddings,
lexical units at all levels of granularity have been
subject to various approaches to embed them into
numerical feature spaces, giving rise to a myriad
of datasets with pre-trained embeddings generated
with different algorithms that can be freely used
in various NLP applications. With this paper, we
present the current state of an effort to connect
these embeddings with lexical knowledge graphs.

This effort is a part of an extension of a widely
used community standard for representing, link-
ing and publishing lexical resources on the web,
OntoLex-Lemon1. Our work aims to complement
the emerging OntoLex module for representing
Frequency, Attestation and Corpus Information
(FrAC) which is currently being developed by the
W3C Community Group “Ontology-Lexica”, as
presented in [4]. There we addressed only fre-
quency and attestations, whereas core aspects of
corpus-based information such as embeddings were

1https://www.w3.org/2016/05/ontolex/

identified as a topic for future developments. Here,
we describe possible use-cases for the latter and
present our current model for this.

2 Sharing Embeddings on the Web

Although word embeddings are often calculated on
the fly, the community recognizes the importance
of pre-trained embeddings as these are readily avail-
able (it saves time), and cover large quantities of
text (their replication would be energy- and time-
intense). Finally, a benefit of re-using embeddings
is that they can be grounded in a well-defined, and,
possibly, shared feature space, whereas locally built
embeddings (whose creation involves an element
of randomness) would reside in an isolate feature
space. This is particularly important in the context
of multilingual applications, where collections of
embeddings are in a single feature space (e.g., in
MUSE [6]).

Sharing embeddings, especially if calculated
over a large amount of data, is not only an econom-
ical and ecological requirement, but unavoidable in
many cases. For these, we suggest to apply estab-
lished web standards to provide metadata about the
lexical component of such data. We are not aware
of any provider of pre-trained word embeddings
which come with machine-readable metadata. One
such example is language information: while ISO-
639 codes are sometimes being used for this pur-
pose, they are not given in a machine-readable way,
but rather documented in human-readable form or
given implicitly as part of file names.2

2.1 Concept Embeddings
It is to be noted, however, that our focus is not
so much on word embeddings, since lexical infor-
mation in this context is apparently trivial – plain

2See the ISO-639-1 code ‘en’ in FastText/MUSE files such
as https://dl.fbaipublicfiles.com/arrival/
vectors/wiki.multi.en.vec.
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tokens without any lexical information do not seem
to require a structured approach to lexical seman-
tics. This changes drastically for embeddings of
more abstract lexical entities, e.g., word senses or
concepts [17], that need to be synchronized be-
tween the embedding store and the lexical knowl-
edge graph by which they are defined. WordNet
[14] synset identifiers are a notorious example for
the instability of concepts between different ver-
sions: Synset 00019837-a means ‘incapable of
being put up with’ in WordNet 1.71, but ‘estab-
lished by authority’ in version 2.1. In WordNet
3.0, the first synset has the ID 02435671-a, the
second 00179035-s.3

The precompiled synset embeddings provided
with AutoExtend [17] illustrate the consequences:
The synset IDs seem to refer to WordNet 2.1
(wn-2.1-00001742-n), but use an ad hoc no-
tation and are not in a machine-readable format.
More importantly, however, there is no synset
00001742-n in Princeton WordNet 2.1. This
does exist in Princeton WordNet 1.71, and in fact,
it seems that the authors actually used this edition
instead of the version 2.1 they refer to in their pa-
per. Machine-readable metadata would not prevent
such mistakes, but it would facilitate their verifia-
bility. Given the current conventions in the field,
such mistakes will very likely go unnoticed, thus
leading to highly unexpected results in applications
developed on this basis. Our suggestion here is
to use resolvable URIs as concept identifiers, and
if they provide machine-readable lexical data, lex-
ical information about concept embeddings can
be more easily verified and (this is another applica-
tion) integrated with predictions from distributional
semantics. Indeed, the WordNet community has
adopted OntoLex-Lemon as an RDF-based repre-
sentation schema and developed the Collaborative
Interlingual Index (ILI or CILI) [3] to establish
sense mappings across a large number of WordNets.
Reference to ILI URIs would allow to retrieve the
lexical information behind a particular concept em-
bedding, as the WordNet can be queried for the
lexemes this concept (synset) is associated with. A
versioning mismatch can then be easily spotted by
comparing the cosine distance between the word
embeddings of these lexemes and the embedding
of the concept presumably derived from them.

3See https://github.com/globalwordnet/
ili

2.2 Organizing Contextualized Embeddings

A related challenge is the organization of contex-
tualized embeddings that are not adequately iden-
tified by a string (say, a word form), but only by
that string in a particular context. By providing
a reference vocabulary to organize contextualized
embeddings together with the respective context,
this challenge will be overcome, as well.

As a concrete use case of such information, con-
sider a classical approach to Word Sense Disam-
biguation: The Lesk algorithm [12] uses a bag-of-
words model to assess the similarity of a word in a
given context (to be classified) with example sen-
tences or definitions provided for different senses
of that word in a lexical resource (training data,
provided, for example, by resources such as Word-
Net, thesauri, or conventional dictionaries). The
approach was very influential, although it always
suffered from data sparsity issues, as it relied on
string matches between a very limited collection of
reference words and context words. With distribu-
tional semantics and word embeddings, such spar-
sity issues are easily overcome as literal matches
are no longer required.

Indeed, more recent methods such as BERT al-
low us to induce contextualized word embeddings
[20]. So, given only a single example for a partic-
ular word sense, this would be a basis for a more
informed word sense disambiguation. With more
than one example per word sense, this is becom-
ing a little bit more difficult, as these now need
to be either aggregated into a single sense vector,
or linked to the particular word sense they pertain
to (which will require a set of vectors as a data
structure rather than a vector). For data of the sec-
ond type, we suggest to follow existing models for
representing attestations (glosses, examples) for
lexical entities, and to represent contextualized em-
beddings (together with their context) as properties
of attestations.

3 Addressing the Modelling Challenge

In order to meet these requirements, we propose a
formalism that allows the conjoint publication of
lexical knowledge graphs and embedding stores.
We assume that future approaches to access and
publish embeddings on the web will be largely in
line with high-level methods that abstract from de-
tails of the actual format and provide a conceptual
view on the data set as a whole, as provided, for ex-

https://github.com/globalwordnet/ili
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Figure 1: OntoLex-Lemon core model

ample, by the torchtext package of PyTorch.4

There is no need to limit ourselves to the cur-
rently dominating tabular structure of commonly
used formats to exchange embeddings; access to
(and the complexity of) the actual data will be hid-
den from the user.

A promising framework for the conjoint publi-
cation of embeddings and lexical knowledge graph
is, for example, RDF-HDT [9], a compact binary
serialization of RDF graphs and the literal values
these comprise. We would assume it to be inte-
grated in programming workflows in a way similar
to program-specific binary formats such as Numpy
arrays in pickle [8].

3.1 Modelling Lexical Resources

Formalisms to represent lexical resources are mani-
fold and have been a topic of discussion within the
language resource community for decades, with
standards such as LMF [10], or TEI-Dict [19] de-
signed for the electronic edition and/or search in
individual dictionaries. Lexical data, however, does
not exist in isolation, and synergies can be un-
leashed if information from different dictionaries is
combined, e.g., for bootstrapping new bilingual dic-
tionaries for languages X and Z by using another
language Y and existing dictionaries for X 7→ Y
and Y 7→ Z as a pivot.

Information integration beyond the level of indi-
vidual dictionaries has thus become an important
concern in the language resource community. One
way to achieve this is to represent this data as a
knowledge graph. The primary community stan-
dard for publishing lexical knowledge graphs on
the web is OntoLex-Lemon [5].

OntoLex-Lemon defines four main classes of
lexical entities, i.e., concepts in a lexical resource:

4https://pytorch.org/text/

(1) LexicalEntry representation of a lexeme in a
lexical knowledge graph, groups together form(s)
and sense(s), resp. concept(s) of a particular expres-
sion; (2) (lexical) Form, written representation(s)
of a particular lexical entry, with (optional) gram-
matical information; (3) LexicalSense word sense
of one particular lexical entry; (4) LexicalConcept
elements of meaning with different lexicalizations,
e.g., WordNet synsets.

As the dominant vocabulary for lexical knowl-
edge graphs on the web of data, the OntoLex-
Lemon model has found wide adaptation beyond
its original focus on ontology lexicalization. In
the WordNet Collaborative Interlingual Index [3]
mentioned before, OntoLex vocabulary is used to
provide a single interlingual identifier for every con-
cept in every WordNet language as well as machine-
readable information about it (including links with
various languages).

To broaden the spectrum of possible usages of
the core model, various extensions have been de-
veloped by the community effort. This includes
the emerging module for frequency, attestation and
corpus-based information, FrAC.

The vocabulary elements introduced with FrAC
cover frequency and attestations, with other as-
pects of corpus-based information described as
prospective developments in our previous work [4].
Notable aspects of corpus information to be cov-
ered in such a module for the purpose of lexico-
graphic applications include contextual similarity,
co-occurrence information and embeddings.

Because of the enormous technical relevance
of the latter in language technology and AI, and
because of the requirements identified above for
the publication of embedding information over the
web, this paper focuses on embeddings,

3.2 OntoLex-FrAC

FrAC aims to (1) extend OntoLex with corpus in-
formation to address challenges in lexicography,
(2) model lexical and distributional-semantic re-
sources (dictionaries, embeddings) as RDF graphs,
(3) provide an abstract model of relevant concepts
in distributional semantics that facilitates applica-
tions that integrate both lexical and distributional
information. Figure 2 illustrates the FrAC concepts
and properties for frequency and attestations (gray)
along with new additions (blue) for embeddings as
a major form of corpus-based information.

Prior to the introduction of embeddings, the

https://pytorch.org/text/


Figure 2: OntoLex-FrAC overview: Extensions for em-
beddings highlighted in blue

main classes of FrAC were (1) Observable, any
unit within a lexical resource about which informa-
tion can be found in a corpus, includes all main
classes of OntoLex-Core, lexical forms, lexical en-
tries, lexical senses and concepts; (2) Corpus, a
collection of linguistic data from which empirical
evidence can be derived, including corpora in the
sense as understood in language technology; (3) At-
testation, example for a specific phenomenon, us-
age or form found in a corpus or in the literature;
(4) CorpusFrequency, absolute frequency of a
particular observation in a given corpus.

4 Modelling Embeddings in FrAC

In the context of OntoLex, word embeddings
are to be seen as a feature of individual lexical
forms. However, in many cases, word embed-
dings are not calculated from plain strings, but
from normalized strings, e.g., lemmatized text. For
such data, we model every individual lemma as
an ontolex:LexicalEntry. Moreover, as
argued in Sec. 2, embeddings are equally rele-
vant for lexical senses and lexical concepts; the
embedding property that associates a lexical en-
tity with an embedding is thus applicable to every
Observable.

4.1 Word Embeddings
Pre-trained word embeddings are often distributed
as text files consisting of the label (token) and a se-
quence of whitespace-separated numbers. E.g. the
entry for the word frak from the GloVe embeddings
[15]:

frak 0.015246 -0.30472 0.68107 ...

Since our focus on publishing and sharing embed-
dings, we propose to provide the value of an embed-

ding as a literal rdf:value. If necessary, more
elaborate representations, e.g., using rdf:List,
may subsequently be generated from these literals.

A natural and effort-less modelling choice is
to represent embedding values as string literals
with whitespace-separated numbers. For decod-
ing and verification, such a representation bene-
fits from metadata about the length of the vector.
For a fixed-size vector, this should be provided
by dc:extent. An alternative is an encoding as
JSON list. In order to support both structured and
string literals, FrAC does not restrict the type of
the rdf:value of embeddings.

Lexicalized embeddings should be published
together with their metadata, at least proce-
dure/method (dct:description with free text,
e.g., ”CBOW”, ”SKIP-GRAM”, ”collocation
counts”), data basis (frac:corpus), and dimen-
sionality (dct:extent).

We thus introduce the concept embedding, with
a designated subclass for fixed-size vectors:

Embedding (Class) is a representation of a
given Observable in a numerical feature space.
It is defined by the methodology used for creating
it (dct:description), the URI of the corpus
or language resource from which it was created
(corpus). The literal value of an Embedding is
provided by rdf:value.
Embedding v rdf:value exactly 1 u
corpus exactly 1 u dct:description
min 1

embedding (ObjectProperty) is a relation that
maps an Observable into a numerical feature
space. An embedding is a structure-preserving
mapping in the sense that it encodes and preserves
contextual features of a particular Observable
(or, an aggregation over all its attestations) in a
particular corpus.

FixedSizeVector (Class) is an Embedding
that represents a particular Observable as a list
of numerical values in a k-dimensional feature
space. The property dc:extent defines k.

For the GloVe example, a lemma (lexical entry)
embedding can be represented as follows:
: f r a k a o n t o l e x : L e x i c a l E n t r y ;

o n t o l e x : c a n o n i c a l F o r m /
o n t o l e x : w r i t t e n R e p ” f r a k ”@en ;

f r a c : embedding [
a f r a c : F i x e d S i z e V e c t o r ;

r d f : v a l u e ”0 .015246 . . . ” ;



d c t : s o u r c e
<h t t p s : / / c a t a l o g . l d c . . . . > ;

d c t : e x t e n t 5 0 ˆ ˆ ˆ xsd : i n t ;
d c t : d e s c r i p t i o n ” GloVe v . 1 . 1 ,

. . . ” @en . ] .

4.2 Contextualized Embeddings

Above, we mentioned contextualized embeddings,
and more recent methods such as ELMo [16], Flair
NLP [1], or BERT [7] have been shown to be re-
markably effective at many NLP problems.

In the context of lexical semantics, contextual
embeddings can prove beneficial for inducing or
distinguishing word senses, and in extension of
the classical Lesk algorithm, for example, a lexi-
cal sense can be described by means of the con-
textualized word embeddings for the examples
associated with that particular lexical sense, and
words for which word sense disambiguation is to
be performed can then just be compared with these.
These examples then serve a similar function as
attestations in a dictionary, and indeed, the link has
been emphasized before [11]. Within FrAC, con-
textualized embeddings are thus naturally modelled
as a property of Attestation.

instanceEmbedding (ObjectProperty) for
a given Attestation. The property
instanceEmbedding provides an embedding
of the example in its current corpus context into a
numerical feature space (see Embedding).

In this modelling, multiple contextualized em-
beddings can be associated with, say, a lexical
sense by means of an attestation that then points to
the actual string context. Considering play, multi-
ple WordNet examples (glosses) per sense can thus
be rendered by different fixed-size vectors:

wn31 : p l a y n a o n t o l e x : L e x i c a l E n t r y ;
o n t o l e x : s e n s e wn31:07032045−n ,

wn31 : p l a y n 4 , . . .
wn31:07032045−n

a o n t o l e x : L e x i c a l S e n s e ;
f r a c : a t t e s t a t i o n [

f r a c : q u o t a t i o n ” t h e p l a y
l a s t e d two h o u r s ” ;
f r a c : l o c u s wn31:07032045−n ;
f r a c : i n s t a n c e E m b e d d i n g

wn31−b e r t :07032045−n−1
] .

wn31−b e r t :07032045−n−1 a
f r a c : F i x e d S i z e V e c t o r ;
dc : e x t e n t ” 3 0 0 ” ˆ ˆ xsd : i n t ;
r d f : v a l u e ”0 .327246 0 .48170 . . . ” ;
dc : d e s c r i p t i o n ” . . . ” ;
f r a c : c o r p u s <h t t p : / / wordnet−r d f .

p r i n c e t o n . edu / s t a t i c / wordne t .
n t . gz> .

Like most RDF models, this appears to be overly
verbose, but by introducing a subclass for a set
of embeddings from which the embedding can in-
herit extent, corpus, and description information,
e.g. :WN31FixedSizeVector, the BERT em-
bedding in this example becomes much more di-
gestable – without any loss in information:

wn31−b e r t :07032045−n−1 a
: WN31FixedSizeVector ;
r d f : v a l u e ”0 .327246 0 .48170 . . . ” .

4.3 Other Types of Embeddings
FrAC is not restricted to uses in language technol-
ogy; its definition of ‘embedding’ is thus broader
than the conventional interpretation of the term
in NLP, and based on its more general usage
across multiple disciplines. In mathematics, the
embedding f of an object X in another object Y
(f : X → Y ) is defined as an injective, structure-
preserving map (morphism). Important in the con-
text of FrAC is the structure-preserving character
of the projection into numerical feature spaces, as
embeddings are most typically used to assess simi-
larity, e.g., by means of cosine measure, the entire
point being that these assessments remain stable
when cooccurrence vectors are projected into a
lower-dimensional space.

In computational lexicography, raw collocation
counts continue to be used for the same purpose. In
its classical form, these collocation counts get ag-
gregated into bags of words, sometimes augmented
with numerical weights. Bags of words are closely
related to raw collocation vectors (and thus, pro-
totypical embeddings), with the main difference
being that collocation vectors consider only a finite
set of diagnostic collocates (the reference dictio-
nary), whereas a bag of words can include any
word that occurs in the immediate context of the
target expression.

In this understanding, a bag of words can be
considered as an infinite-dimensional collocation
vector, i.e., as an embedding in the broad sense
introduced above. The practical motivation is that
applications of bag-of-words models and fixed-size
vectors are similar, and that bags of words remain
practically important to a significant group of On-
toLex or FrAC users.

A difference is that a bag of words model, if it
provides frequency information or another form of
numerical scores, must not be modelled by a plain
list, but rather, by a dictionary or a map. As a data
structure for this, we recommend JSON literals.



To represent this model, we introduce the follow-
ing Embedding subclass:

BagOfWords (Class) is an Embedding that
represents an Observable by a set of collocates
or their mapping to numerical scores.

Another type of embeddings concerns sequential
data, and one example for that are multimodal cor-
pora. In a case study with Leiden University, we
explored the encoding of dictionaries for African
sign languages. In addition to graphics and videos,
such dictionaries can also contain sensor data that
records the position of hands and digits during the
course of a sign or a full conversation. To search
in this data, conventional techniques like dynamic
time warp [2] are being applied – effectively in anal-
ogy with cosine distance among finite-size vectors.
Furthermore, such data has also been addressed in
NLP research in the context of neural time series
transformation for the sake of translation between
or from sign languages [18]. Also, in an NLP
context, time series analysis is relevant for stream
processing, so this would make this data structure
of more general interest [13] in and beyond the
language technology community.

Both from a modelling perspective and in terms
of actual uses of such forms of lexical data, it is
thus appealing to extend the concept of embeddings
to time series data. In our current use case, we
assume that time series data is mostly relevant in
relation to attestations rather than OntoLex core
concepts, but we can foresee that generalizations
over multiple attestations could be developed at
some point which would then used to extrapolate
prototypical time series information for canonical
forms, lexical entries, senses, or concepts.

To represent this, we introduce another
Embedding subclass:

TimeSeries (Class) is an Embedding that rep-
resents an Observable or its Attestation
as a sequence of a fixed number of data points
recorded over a certain period of time.

The dc:extent of a time series specifies the
number of data points per observation. The
rdf:value should be a structured JSON literal.

5 Summary and Outlook

We identified a number of shortcomings in the
(lack of) standards applied by providers of pre-
trained embeddings on the web and aim to address

them by providing a vocabulary that covers the
relevant aspects of lexical data involved in this con-
text, grounded in existing specifications for lexical
metadata and publication forms for lexical knowl-
edge graphs on the web of data. We provide an
RDF vocabulary for encoding numerical, corpus-
based information, in particular, embeddings such
as those prevalent in language technology, in con-
junction with, or as a part of lexical knowledge
graphs. We cover a broad range of applications
from NLP to computational lexicography, and a
broad range of data structures that fall under a gen-
eralized understanding of embeddings.

Notable features of our proposal include (1) the
coverage of a broad band-width of use cases, (2)
its firm grounding in commonly used community
standards for lexical knowledge graphs, (3) the pos-
sibility to provide machine-readable metadata and
machine-readable lexical data along, and even in
close integration with word, lexeme, sense or con-
cept embeddings, (4) the extension beyond fixed-
size vectors as currently dominating in language
technology applications, (5) and a designated vo-
cabulary for organizing contextualized embeddings
with explicit links to both their respective context
and the lexical entities they refer to.

At the time of writing, one dataset (AutoExtend)
has been successfully transformed from its tradi-
tional publication form and integrated with a lex-
ical knowledge graph. However, we are still in
the process of evaluating which WordNet edition
the AutoExtend data actually refers to. Another
dataset currently under construction is a dictionary
of African sign languages, where time series infor-
mation is being encoded as attestation-level embed-
dings.

We see our work as a building block for the de-
velopment of convergencies between the Linguistic
Linked Open Data and the NLP/ML community,
as a conjoint modelling – or, at least, compatible
levels of representation, allow to combine both
technology stacks to common problems. For the
NLP/ML community, machine-readable metadata
and adherence to established community standards
will facilitate the potential for verifying, enriching
and building embeddings with or against lexical
resources. For computational lexicography, closer
ties with the language technology community will
facilitate the uptake of machine-learning methods
and their evaluation, and intensify synergies be-
tween both fields.
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