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Abstract
Most current quality estimation (QE) models
for machine translation are trained and eval-
uated in a fully supervised setting requiring
significant quantities of labelled training data.
However, obtaining labelled data can be both
expensive and time-consuming. In addition,
the test data that a deployed QE model would
be exposed to may differ from its training data
in significant ways. In particular, training sam-
ples are often labelled by one or a small set
of annotators, whose perceptions of transla-
tion quality and needs may differ substantially
from those of end-users, who will employ pre-
dictions in practice. Thus, it is desirable to
be able to adapt QE models efficiently to new
user data with limited supervision data. To ad-
dress these challenges, we propose a Bayesian
meta-learning approach for adapting QE mod-
els to the needs and preferences of each user
with limited supervision. To enhance per-
formance, we further propose an extension
to a state-of-the-art Bayesian meta-learning
approach which utilizes a matrix-valued ker-
nel for Bayesian meta-learning of quality es-
timation. Experiments on data with varying
number of users and language characteristics
demonstrates that the proposed Bayesian meta-
learning approach delivers improved predic-
tive performance in both limited and full su-
pervision settings.

1 Introduction

Quality Estimation (QE) models aim to evaluate
the output of Machine Translation (MT) systems at
run-time, when no reference translations are avail-
able (Blatz et al., 2004; Specia et al., 2009). QE
models can be applied for instance to improve trans-
lation productivity by selecting high-quality trans-
lations amongst several candidates. A number of
approaches have been proposed for this task (Spe-
cia et al., 2009, 2015; Kim et al., 2017; Kepler et al.,
2019; Ranasinghe et al., 2020), and a shared task

yearly benchmarks proposed approaches (Fonseca
et al., 2019; Specia et al., 2020).

Different users of MT output have varying qual-
ity needs and standards, depending for instance
on the downstream task at hand, or the level of
their knowledge of the languages involved. Thus,
the perception of the quality of MT output can be
subjective, and therefore the quality estimates ob-
tained from a model trained on data from one set
of users may not serve the needs of a different set
of users. In order to be able to make the most of
these models, it is thus desirable to be able to effi-
ciently adapt them to the needs and preferences of
the end-user and with as little supervision as possi-
ble. However, most existing QE models are trained
and evaluated in a fully supervised setting which
assumes access to substantial quantities of labelled
supervision data, which may not be available and
can be expensive and time-consuming to obtain.

In order to endow QE models with the ability to
learn to adapt efficiently with limited supervision
data, this work proposes a Bayesian meta-learning
framework for the training and evaluation of QE
models that are able to adapt to the needs of end-
users with limited supervision data. We further im-
prove the performance of Bayesian meta-learning
for the task of quality estimation by extending the
state-of-the-art Bayesian Model-Agnostic Meta-
Learning (BMAML) approach of Kim et al. (2018)
to utilize Stein Variational Gradient Descent (Liu
and Wang, 2016) with matrix-valued kernels (Wang
et al., 2019), and demonstrate that this leads to en-
hanced predictive performance in both limited and
full supervision settings.

2 Background

2.1 Model-Agnostic Meta-Learning

The goal of meta-learning, also known as learn-
ing to learn (Schmidhuber, 1987; Thrun and Pratt,
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1998), is to develop models that can learn more
efficiently over time, by generalizing from knowl-
edge of how to solve related tasks from a given
distribution of tasks. Given a learner model fw, for
instance a neural network parametrized by w ∈ Rd,
and a distribution p(T ) over tasks T , gradient-
based model-agnostic meta-learning approaches
such as MAML (Finn et al., 2017) seek to learn
the parameters of the learner model which can be
quickly adapted to new tasks sampled from the
same distribution of tasks with limited supervision
data.

In formal terms, these approaches seek parame-
ters w that satisfy the meta-objective:

min
w

ET ∼p(T ) [LT (Uk (w;DT ))] , (1)

where LT is the loss and DT is training data from
task T , and Uk denotes k steps of a gradient descent
learning rule such as SGD.

Intuitively, the meta-objective explicitly encour-
ages the model to learn model parameters that can
be quickly adapted to achieve optimum predictive
performance across all tasks using limited supervi-
sion data and with as few gradient descent steps as
possible.

In order to account for uncertainty and improve
robustness, Bayesian approaches to meta-learning
have also been proposed (Kim et al., 2018; Finn
et al., 2018; Ravi and Beatson, 2019; Wang et al.,
2020; Nguyen et al., 2020). In contrast to their
non-Bayesian counterparts which learn point esti-
mates of the parameters, Bayesian meta-learning
approaches learn a distribution over the parameters
to further improve robustness in limited supervi-
sion settings.

2.2 Stein Variational Gradient Descent
Stein Variational Gradient Descent (SVGD)(Liu
and Wang, 2016) is a Bayesian inference method
which works by initializing a set of samples, also
known as particles, from a simple distribution and
iteratively updating the particles to match samples
from a target distribution. Because its particle up-
date rule is deterministic and differentiable, it can
be used to perform Bayesian inference in the meta-
learning inner loop, since the entire update pro-
cess can still be differentiated through for gradient-
based updates from the outer loop, for instance as
was done in Kim et al. (2018).

In order to obtain N samples from a posterior
p(w), SVGD maintains N samples of model pa-
rameters, and iteratively transports the samples to

match samples from the target distribution. Let
the samples be represented by W = {wn}Nn=1. At
each successive iteration t, SVGD updates each
sample with the following update rule:

wt+1 ← wt + αtφ (wt) , (2)

where φ (wt) =

1

N

N∑
n=1

[
k (wn

t ,wt)∇wn
t
log p (wn

t ) +∇wn
t
k (wn

t ,wt)
]
,

(3)

αt is a step-size parameter and k : Rd×Rd → R is
a scalar-valued positive-definite kernel such as the
Radial Basis Function (RBF) kernel. Intuitively,
the first term in Equation 3 implies that a particle
determines its update direction through a weighted
aggregate of the gradients from the other particles,
with the kernel distance between the particles serv-
ing as the weight. Thus, closer particles have more
weight in the aggregate. The second term of the
equation can be understood as a repulsive force that
prevents the particles from collapsing to a single
point. For the case when the number of particles is
one, the SVGD update procedure reduces to stan-
dard gradient ascent on the objective p(w) for any
kernel with the property ∇wk (w,w) = 0, such
as the RBF kernel. SVGD has been applied in
a wide range of settings, including reinforcement
learning (Liu et al., 2017; Haarnoja et al., 2017),
uncertainty quantification (Zhu and Zabaras, 2018),
and online continual learning (Obamuyide et al.,
2021).

2.3 Stein Variational Gradient Descent with
Matrix-Valued Kernels

LetHk denote a reproducing kernel Hilbert space
(RKHS) H with kernel k. Wang et al. (2019) ob-
served that the original SVGD as proposed in Liu
and Wang (2016) searches for the optimal update
direction φ in RKHS Hd

k = Hk × · · · × Hk, a
product of d copies of RKHS of scalar-valued func-
tions, which does not allow the encoding of any po-
tential correlations between different co-ordinates
of φ. Wang et al. (2019) proposed Matrix-SVGD,
which addressed this limitation by replacing Hd

k

with a more general RKHS of vector-valued func-
tions (also known as vector-valued RKHS), which
uses matrix-valued positive-definite kernels to spec-
ify rich correlation structures between the different
co-ordinates. Concretely, Equation 3 as used in
SVGD is replaced with Equation 4:
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φ (wt) =

1

N

N∑
n=1

[
K (wt,w

n
t )∇wn

t
log p (wn

t ) +K (wt,w
n
t )∇wn

t

]
,

(4)

where K : Rd × Rd → Rd×d is now a matrix-
valued kernel, and K(·,w)∇w is formally defined
as the product of matrix K(·,w) with vector∇w.
The `-th element of K(·,w)∇w is computed as:

(K(·,w)∇w)` =

d∑
m=1

∇wmK`,m(·,w), (5)

where K`,m (w,w′) represents the (`,m)-element
of matrix K (w,w′) and wm the m-element of w.

Importantly, the advantage of Matrix-SVGD over
the original SVGD algorithm is that it allows us to
pre-condition SVGD by constructing a proper ma-
trix kernel which incorporates the pre-conditioning
information, in order to accelerate exploration and
convergence.

2.4 Bayesian Model-Agnostic Meta-Learning
Kim et al. (2018) proposed a Bayesian Model-
Agnostic Meta-Learning (BMAML) algorithm
which learns a distribution over parameters which,
when given data from a new task, can be adapted
quickly to a task-specific distribution using SVGD
updates as defined in Equation 3. Thus, BMAML
as proposed in Kim et al. (2018) makes use of
scalar-valued kernels for SVGD updates, which (as
discussed earlier) does not allow the encoding of
potential correlations between different parameter
co-ordinates for effective optimization, a limitation
which we next address.

3 Bayesian Model-Agnostic
Meta-Learning with Matrix-SVGD

In this work we propose to improve the predic-
tive performance of BMAML for quality estima-
tion with the use of the Matrix-SVGD, which uses
matrix-valued kernels for more effective parameter
updates, in place of the original SVGD algorithm
used in Kim et al. (2018). As pre-conditioning
information, we use P , the average of the Fisher
information matrix of the particles:

P =
1

N

N∑
n=1

F (wn) , (6)

where F (wn) is the Fisher information matrix
for particle wn. The matrix-valued kernel is then

computed as:

KP

(
w,w′

)
= P−1 exp

(
− 1

2h

∥∥w −w′
∥∥2
P

)
, (7)

where ‖w −w′‖2P := (w −w′)
>
P (w −w′) and h

is a bandwidth parameter.
The full algorithm, which we refer to as Matrix-

BMAML, is outlined in Algorithm 1. We use ma-
chine translation quality estimation as a case study
in this work, and so assume access to a distribution
of quality estimation tasks p(T ) (each QE task can
be a QE user/annotator/post-editor with their corre-
sponding data), and a quality estimation model fW
parameterized by W , though the approach can also
be applied to other natural language processing or
computer vision tasks.

Algorithm 1 Bayesian Model-Agnostic Meta-
Learning with Matrix-SVGD
Require: Distribution of QE tasks p(T )
Require: QE model fW , Number of update steps K
Require: Learning rates α, β
1: Initialize W
2: while not done do
3: Sample batch of QE tasks Ti ∼ p(T )
4: for each Ti do
5: Sample Dtrain

Ti from T train
i

6: Sample Dval
Ti from T val

i

7: W i
0 ←W

8: for k = 1,..K do
9: W i

k =Matrix-SVGD(W i
k−1;Dtrain

Ti , α)
10: end for
11: end for
12: W ←W − β∇W

∑
Ti∼p(T ) L

(
fW i

K
;Dval
Ti

)
13: end while

We first initialize the parameters of the quality
estimation model (line 1). Then in each iteration,
we sample a batch of QE tasks (line 3), and for each
QE task, we sample instances from its training and
validation sets (lines 4-6). Thereafter, task-specific
parameters are initialized from the model’s param-
eters (line 7), and then updated with K steps of
Matrix-SVGD (using Equations (2) and (4) to (7))
(lines 8-10). At the end of each iteration, a meta-
update is performed on the model’s parameters W .

4 Experiments and Results

We conduct experiments in two settings: in a lim-
ited supervision setting, where we provide all mod-
els access to only a limited number of training
instances per QE task; and in a full-supervision
setting, where we provide the models with access
to all available training instances for each QE task.
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PE ID Train Dev Test

PE1 1440 360 200
PE2 2160 540 300
PE3 1444 361 195
PE4 1834 459 244
PE5 4866 1217 617
PE6 1677 420 203
PE7 1567 392 241

Total 14988 3749 2000

(a) QT21 en-lv (nmt)

PE ID Train Dev Test

PE1 9952 2488 559
PE2 3445 862 193
PE3 8770 2193 537
PE4 4579 1145 276
PE5 7651 1913 435

Total 34397 8601 2000

(b) QT21 en-cs (smt)

Table 1: Number of instances per QE Task/Post Editor
(PE) for the QT21 dataset.

The QT21 Dataset We evaluate our approach
with the publicly available QT21 (Specia et al.,
2017), a large-scale dataset containing translations
from both statistical (smt) and neural (nmt) ma-
chine translation systems in multiple language di-
rections 1. This is the largest dataset with annotator
information available. We make use of data from
the English-Latvian (en-lv) and English-Czech (en-
cs) language directions. The languages were cho-
sen as they contain the largest number of annotators.
Each instance in the dataset is a tuple of source sen-
tence, its machine translation, the corresponding
post-edited translation by a professional translator
(post-editor), a reference translation and other in-
formation such as (anonymized) post-editor identi-
fier. We construct a QE dataset from this corpus by
computing the HTER (Snover et al., 2006) values
between each source sentence and its post-edited
translation. We thereafter split the data into train,
dev and test splits for each post-editor, which con-
stitutes a QE task. A breakdown of the number of
train, dev and test instances per QE task/post-editor
is available in Table 1.

5 QE Model

The quality estimation model used by all meth-
ods is based on multi-lingual DistilBERT (Sanh
et al., 2019), a smaller version of multi-lingual

1http://www.qt21.eu/resources/data/

BERT (Devlin et al., 2019) trained with knowl-
edge distillation (Buciluǎ et al., 2006; Hinton et al.,
2015). It accepts as input the source and machine
translation outputs concatenated as a single text,
separated by a ‘[SEP]’ token and prepended with
a ‘[CLS]’ token. The representation of the ‘[CLS]’
token is then passed to a linear layer to predict
HTER (Snover et al., 2006) values as regression
targets.

Benchmark Approaches We compare the pro-
posed approach with the following: MTL-
PRETRAIN is a baseline trained in classic multi-
task fashion for multiple epochs using data from
all QE tasks. It is thereafter fine-tuned using
each QE task’s training data before making pre-
dictions on its test set, in a similar fashion as
the meta-learning approaches; REPTILE (Nichol
and Schulman, 2018); Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017); implicit
Model-Agnostic Meta-Learning (iMAML) (Ra-
jeswaran et al., 2019); Amortized Bayesian Meta-
Learning (ABML) (Ravi and Beatson, 2019); and
BMAML (Kim et al., 2018), a state-of-the-art
Bayesian meta-learning method.

Evaluation We report Pearson’s r correlation
scores and Mean Absolute Error (MAE) between
model output and gold labels, both standard evalu-
ation metrics in QE.

Each experiment is repeated across five (5) dif-
ferent random seeds, and we report the average.

5.1 Limited Supervision Results
Results obtained in a setting where all approaches
have access to only very limited training instances
is presented in Figure 1. As expected, train-
ing with classic multi-task learning and then fine-
tuning on the training data of each QE task (MTL-
PRETRAIN) results in very poor performance on
both datasets. This result is consistent with the
results observed in Finn et al. (2017), since clas-
sic multi-task learning does not have any explicit
objective that encourages the model to learn how
to learn with limited supervision data. In con-
trast, all meta-learning approaches obtain consis-
tent improvements over the MTL-PRETRAIN base-
line. We find that in general, our approach (Matrix-
BMAML) obtains marked performance improve-
ments over the other Bayesian and non-Bayesian
meta-learning approaches. This demonstrates the
importance of incorporating pre-conditioning infor-
mation through matrix-valued kernels for more ef-
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(a)

(b)

Figure 1: Results obtained using limited training in-
stances for each task on the (a) en-lv and (b) en-cs qual-
ity estimation datasets.

fective SVGD updates in Bayesian model-agnostic
meta-learning.

5.2 Full Supervision Results

Method
en-lv en-cs

Pearson ↑ MAE ↓ Pearson ↑ MAE ↓
MTL-PRETRAIN 0.4505 0.1936 0.4473 0.1711

MAML 0.5239 0.1590 0.4894 0.1611
REPTILE 0.5237 0.1591 0.5037 0.1605
iMAML 0.5254 0.1588 0.5036 0.1605
ABML 0.5196 0.1600 0.4807 0.1620
BMAML 0.5295 0.1585 0.4963 0.1606

Matrix-BMAML 0.5377 0.1588 0.5202 0.1566

Table 2: Comparison with existing approaches.

Table 2 presents results obtained when the ap-
proaches are given access to all available train-
ing data for each QE task. We can observe that
Matrix-BMAML obtained the best MAE on the en-
cs dataset, and the best Pearson’s correlation on
both datasets, which again demonstrates the effec-
tiveness of our approach in this setting.

6 Conclusions

We proposed a Bayesian meta-learning framework
for adapting machine translation quality estima-
tion models to the quality needs and preferences
of each user with limited supervision data. We
further extend a state-of-the-art Bayesian meta-
learning method with the use of matrix-valued
kernels, which enables the incorporation of pre-
conditioning information for more effective SVGD
updates. Using data from two language directions,
we demonstrate improved predictive performance
in both limited and full-supervision settings over
recent state-of-the-art Bayesian and non-Bayesian
meta-learning methods.
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A Additional Experimental Details

Hyper-parameter Value

Learning rate 3e-5
Mini-batch size 16

Max. sequence length 100

Table 3: Hyper-parameter values for all compared ap-
proaches

All compared approaches have a run time of
about two hours on average. Each model was im-
plemented as a linear layer on top of multilingual
DistilBERT (Sanh et al., 2019), which has a total
of 134M parameters. 2

For the evaluation metrics, Pearson r correlation
and MAE, we use open-source implementations
available in SciPy 3 and scikit-learn 4 libraries re-
spectively.

All models make use of the same values for
hyper-parameters such as learning rate and batch
size, selected by manual search in initial experi-
ments. These are provided in Table 3.

2https://huggingface.co/distilbert-base-multilingual-
cased

3https://www.scipy.org
4https://scikit-learn.org


