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Abstract

We investigate the representations learned by
vision and language models in tasks that re-
quire relational reasoning. Focusing on the
problem of assessing the relative size of ob-
jects in abstract visual contexts, we analyse
both one-step and two-step reasoning. For
the latter, we construct a new dataset of three-
image scenes and define a task that requires
reasoning at the level of the individual im-
ages and across images in a scene. We probe
the learned model representations using diag-
nostic classifiers. Our experiments show that
pretrained multimodal transformer-based ar-
chitectures can perform higher-level relational
reasoning, and are able to learn representations
for novel tasks and data that are very different
from what was seen in pretraining.

1 Introduction

Intelligence is classically described as “the ability
to see the similarities among dissimilar things and
the dissimilarities among similar things” (Thomas
Acquinas, 1225-1274, reported by Ruiz, 2011). De-
veloping systems that can reason over objects and
their relations is indeed a long-standing goal of ar-
tificial intelligence research, as argued by Johnson
et al. (2017). In recent years, huge progress toward
this goal has been made in the language and vision
community. Starting from Malinowski and Fritz
(2014) and Antol et al. (2015), a wealth of studies
have focused on language-driven visual reasoning,
namely the problem of reasoning about an image
given some linguistic input.

Generally speaking, there are two main types of
problems in visual reasoning datasets (see Santoro
et al., 2017): non-relational, requiring models to fo-
cus only on a given object (e.g., answering the ques-
tion “What material is the cube made of?”), and
relational, requiring models to pay attention to sev-
eral or even all the objects in the image (e.g., indi-

cating whether the statement “There are four cubes
that are red” is true or false). Relational problems
call for higher-level abilities, such as counting or
directly comparing objects, both of which involve
recognising the (dis)similarities among things.

In this paper, we focus on an important but under-
studied, relational reasoning task: assessing the rel-
ative size of objects in visual contexts, that is, deter-
mining whether an object counts as ‘big’ or ‘small’
in an image. We define a multi-step relational rea-
soning problem formulated as a sentence verifica-
tion task. We construct a dataset of three-image
scenes where a given target object, e.g., a blue tri-
angle, is present in each image: two images have
target objects with the same contextually-defined
size and one image stands out in this regard. The
task requires verifying whether a simple natural lan-
guage statement standing for a first-order logical
form describes a scene, e.g., “There is exactly one
blue triangle that is small in its image in this scene”
(Figure 1). Such multi-step relational reasoning is
at play in many real-life situations: e.g., the same
exact pan may count as ‘big’ in all contexts except
a restaurant kitchen.

We experiment with two types of models to solve
this task: a modular neural network (Hu et al.,
2017) and LXMERT, a pre-trained multimodal
transformer (Tan and Bansal, 2019). We probe
the learned representations of LXMERT to assess
whether, and to what extent, it has learned the un-
derlying structure of the data. By means of two
experiments with probing classifiers (Alain and
Bengio, 2017; Hupkes et al., 2018; Belinkov and
Glass, 2019), we first verify that it is able to per-
form the task at the image level (i.e., to compute the
relative size of the target object at the image level);
then, we test its ability to reason at the multi-image
level and detect the image that stands out.

The experiments show that LXMERT is able
to solve the multi-step relational reasoning task
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there is exactly one blue triangle that is small in its image in this scene

there are exactly two blue triangles that are small in their images in this scene
there are exactly two blue triangles that are big in their images in this scene

F
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there is exactly one blue triangle that is big in its image in this scene

Figure 1: One sample scene from our dataset and the
four statements it can be paired with, including cor-
responding truth values assigned as explained in Sec-
tion 4.1. For clarity, the odd-one-out image (holding
the odd size) is framed in red. Best viewed in color.

with an accuracy of 88.8%, and that the major-
ity of errors occur when the relative size of the
target object is difficult to determine. Our anal-
yses show that (i) in most cases, different atten-
tion heads in LXMERT specialise to localising the
smallest and biggest objects in the images, (ii) that
the cross-modal representations learned appear en-
code a threshold function that controls whether an
object is ‘big’ or ‘small’ in an image, and (iii) that
a simple diagnostic classifier successfully identi-
fies the instance that stands out in a three-image
scene. Taken together, these findings lend further
support to the advanced reasoning abilities of pre-
trained transformer-based architectures, showing
that they can perform higher-level relational rea-
soning and are able to deal with novel tasks and
novel data, including synthetic data not available
during pre-training.1

2 Problem Formulation

We investigate multi-step relational reasoning by
formulating the problem as a visually grounded
sentence verification task (see Figure 1). Given
a pair 〈scene,statement〉 consisting of a vi-
sual scene and a statement about such scene, the
task consists in classifying the statement as either
true or false. In our setup, a scene consists
of 3 images: 〈img1,img2,img3〉, each including
an instance of the target object (e.g., a blue tri-
angle) together with other geometrical shapes of
the same type (e.g., triangles of other colours). A
statement paired with a scene is of the follow-
ing form: “there is exactly one blue triangle that
is small in its image in this scene” or “there are
exactly two blue triangles that are big in their im-

1The code to generate the data, and to train and evalu-
ate the models, is available at https://github.com/
jig-san/multi-step-size-reasoning.

ages in this scene”. As we will explain in detail in
Sec. 4.1, the dataset is created such that the target
object counts as either ‘big’ or ‘small’ in only one
of the three images in a scene.

Arguably, solving the task requires the following
two steps of relational reasoning: (1) identifying
whether the target object counts as either ‘big’ or
‘small’ in each image, and (2) counting how many
images include a big/small target. However, in
our setup there is no direct supervision for any of
these steps. In other words, the training data does
not indicate which images contain an object that
counts as big/small nor explicitly how many images
contain a big/small target.

3 Related Work

3.1 Visual Reasoning

To evaluate reasoning abilities of multimodal mod-
els, several datasets of synthetic scenes and ques-
tions, such as CLEVR (Johnson et al., 2017),
ShapeWorld (Kuhnle and Copestake, 2017), and
MALeViC (Pezzelle and Fernández, 2019) have
been proposed in recent years. Our work di-
rectly builds on them, and particularly on ap-
proaches adopting a multi-image setting, such as
NLVR (Suhr et al., 2017) and NLVR2 (which, how-
ever, contains pairs of natural scenes; Suhr et al.,
2019). In NLVR, in particular, a crowdsourced
statement is coupled with a synthetic scene includ-
ing 3 independent images, and models must verify
whether the statement is true or false with respect to
the entire visual input. This involves handling phe-
nomena such as counting, negation or comparisons,
that require perform relational reasoning over the
entire scene, e.g.: There is a black item in every box,
There is a tower with yellow base, etc. However,
most 〈scene, statement〉 pairs do not challenge
models to do the same at the level of the single
image (or box), where a low-level understanding
of the object(s) of interest (shape, color, etc.) often
suffices. Our approach is novel since it requires
two steps of relational reasoning: at the level of
both the single image and the multi-image context.

3.2 Multi-Image Approaches

Our approach is also related to other work in lan-
guage and vision involving multiple images. One
is the spot-the-difference task: in Jhamtani and
Berg-Kirkpatrick (2018), models are fed with pairs
of video-surveillance images that only differ in
one detail, and asked to generate text which de-

https://github.com/jig-san/multi-step-size-reasoning
https://github.com/jig-san/multi-step-size-reasoning
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scribes such difference. The same task—with dif-
ferent real-scene datasets—is explored by Forbes
et al. (2019) and Su et al. (2017); others exper-
iment with pairs of similar images drawn from
CLEVR (Johnson et al., 2017) or similar synthetic
3D datasets (Park et al., 2019; Qiu et al., 2020).
This task is akin to ours since it requires a higher-
level reasoning step: systems must reason over
the two independent representations to describe
what is different. However, in practice, it does
not always require semantic understanding (Jham-
tani and Berg-Kirkpatrick, 2018); when it does,
the changes often involve one object’s fixed at-
tribute (color, shape, material, etc.) rather than
a contextually-defined property whose applicability
depends on the other objects in the image.2

A similar, partially overlapping task is discrim-
inative captioning: systems are fed with a set of
similar images and asked to provide a description
that unequivocally refers to a target one. Many
approaches have been proposed focusing on syn-
thetic (Andreas and Klein, 2016; Achlioptas et al.,
2019) or natural scenes (Vedantam et al., 2017;
Cohn-Gordon et al., 2018; Vered et al., 2019), very
often embedding pragmatic components based on
the Rational Speech Acts framework (RSA; Good-
man and Frank, 2016). Also in this case, however,
differences among images mainly involve intrin-
sic attributes of the objects rather than relational
properties defined at the level of the image.

4 Method

4.1 3POS1 Dataset

Our dataset is based on the POS1 dataset from
MALeViC (Pezzelle and Fernández, 2019), in
which images contain 4 to 9 same-shape objects,
e.g., squares. Each object is labeled with a ground-
truth relative size, indicating whether the object
counts as either big or small in that particular con-
text. The label is determined by the following
threshold function motivated by cognitive science
studies on how humans interpret relative gradable
adjectives (Schmidt et al., 2009):

T = Max− k(Max−Min) (1)

where Max and Min represent the areas of the
biggest and smallest objects in the image, and k is

2One notable exception is position (Park et al., 2019; Qiu
et al., 2020), which can involve spatial relations of objects.

a positive value < 0.5.3 Thus, an object with a cer-
tain area can count as big in one image and as small
in another one. In total, the POS1 dataset contains
20K 〈image, statement〉 datapoints (16K train,
2K val, 2K test), where statements are about the
size of a target object based on its unique color:
e.g., “the blue triangle is a small triangle”.

The dataset for the present experiments, which
we name 3POS1, is constructed as follows: For
each image in each split of POS1, we randomly
sample two images from that split with the same
target object (e.g., a blue triangle) but the opposite
ground-truth size (e.g., big). We obtain 20K sets
of three images where one size is prevalent, i.e.,
present in two images, and one is odd, i.e., held by
only one image.4 The sizes big and small are the
prevalent ones in 10K cases each, thus the dataset
is balanced. Then, for each three-image scene,
we generate four logic-based templated statements,
two of which are true and two false for the given
scene.5 The only variation in the statements is
the target object. The four types of statement are
(alongside examples with respect to Figure 1):

(i) one 〈shape, color〉 small:
“There is exactly one blue triangle that is small
in its image in this scene”→ True

(ii) one 〈shape, color〉 big:
“There is exactly one blue triangle that is big
in its image in this scene”→ False

(iii) two 〈shapes, color〉 small:
“There are exactly two blue triangles that are
small in their images in this scene”→ False

(iv) two 〈shapes, color〉 big:
“There are exactly two blue triangles that are
big in their images in this scene”→ True

4.2 Models

To tackle the visually grounded sentence verifica-
tion task, we use two models that achieve state
of the art results on the NLVR (Suhr et al., 2017)
and NLVR2 (Suhr et al., 2019) tasks, respectively:
N2NMN (Hu et al., 2017) and LXMERT (Tan and
Bansal, 2019). The End-to-End Module Network

3To account for gradable adjectives’ vagueness, for each
image k was randomly sampled from the normal distribution
centered on 0.29, the best-predictive value in Schmidt et al.
(2009). See Pezzelle and Fernández (2019) for further details.

4On average, each target image appears 2 times as a dis-
tractor in the dataset (min: 0, max: 10). The position of the
odd-one-out image in the scene is assigned randomly.

5The odd-one-out is the same for all statements; see Fig. 1.
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(N2NMN), belongs to the family of modular net-
works, which treat a sentence as a collection of
predefined subproblems (e.g., counting, localiza-
tion, conjunction, etc.), each handled by a dedi-
cated module. Compared to its direct predecessor
NMN (Andreas et al., 2016), in particular, N2NMN
does not require any external supervision (e.g., a
parser) to process the sentence into its components.
The latter, Learning Cross-Modality Encoder Rep-
resentations from Transformers (LXMERT), is
a transformer-based multimodal architecture pre-
trained on several language-and-vision tasks; as
such, it is claimed to be universal, that is, capable
of solving virtually any visual reasoning problem.
LXMERT uses BERT (Devlin et al., 2019) to en-
code the language input; as for the image, it con-
siders the sequence of N salient regions output by
Faster R-CNN (Ren et al., 2015).

To assess the suitability of these models for the
3POS1 task, we first evaluate them on the original
POS1 task where statements are evaluated against
a single image. For N2NMN, we use a public im-
plementation,6 specifically, the code developed for
training and an evaluating the model on the CLEVR
dataset (Johnson et al., 2017). For LXMERT, we
use a snapshot pre-trained on several multi-modal
tasks,7 that we fine-tune using the training set of
POS1. The ceiling performance for this task is
97% accuracy (using a fixed interpretation of the
threshold parameter k = 0.29). LXMERT achieves
93.4% accuracy, which outperforms both N2NMN
(78.1%) and the models tested by Pezzelle and
Fernández (2019). This shows the overall advan-
tage of transformer-based architectures over com-
peting methods, in line with previous findings (De-
vlin et al., 2019). Moreover, it indicates the capabil-
ity of LXMERT—which is pre-trained on natural
images and language—to deal with synthetic data
after fine-tuning (crucially, when not fine-tuned it
yields an accuracy of 50%, i.e., random). Based
on its performance, we focus on LXMERT in the
main experiments and analyses in this paper.

4.3 Experimental Setup
We fine-tune LXMERT on the 3POS1 dataset
by adapting the method applied by Suhr et al.
(2019) for the two-image scenes of NLVR2
to our three-image scenes. More concretely,
each datum in 3POS1 is composed of 3 images

6https://github.com/ronghanghu/n2nmn.
7Downloaded from http://nlp1.cs.unc.edu/

data/model_LXRT.pth

LXMERT
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there is exactly one green square that is big in its image in this scene

LXMERT

LXMERT
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Figure 2: Overview of our visually-grounded sen-
tence verification model. Given a three-image scene
and a statement, LXMERT encodes each image–
statement pair separately, from which a sin-
gle cross-modal representation is extracted from the
special [CLS] token (shown in yellow). These
[CLS] representations are concatenated and propa-
gated through a non-linear classifier to predict whether
the statement accurately describes the scene.

〈img0,img1,img2〉, a statement stat, and a
ground truth label True or False. Recall, that
the visually grounded sentence verification task is
to predict a label (True or False), given a rep-
resentation of the images and the statement. An
overview of how this is achieved with LXMERT
is shown in Figure 2. First, visual features are
extracted separately for each image with Faster
R-CNN (Ren et al., 2015). Then cross-modal rep-
resentations xi are extracted from the [CLS] from
the LXMERT encoder for each image in a scene:

x0 = lxmert encoder(img0, stat)

x1 = lxmert encoder(img1, stat)

x2 = lxmert encoder(img2, stat)

(2)

For label prediction, we train a classifier on the
concatenation of the three image–statement repre-
sentations (Eqn. 3), followed by a linear layer with
learned parameters W and a bias vector b (Eqn. 4),
followed by layer normalization (Ba et al., 2016)
and a GeLU activation (Hendrycks and Gimpel,
2016) (Eqn. 5), and finally, a sigmoid activation
function over a linear layer with learned parameters

https://github.com/ronghanghu/n2nmn
http://nlp1.cs.unc.edu/data/model_LXRT.pth
http://nlp1.cs.unc.edu/data/model_LXRT.pth
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test accuracy
statement type true false

one 〈shape, color〉 big 0.868 0.876
two 〈shapes, color〉 big 0.880 0.908
one 〈shape, color〉 small 0.872 0.900
two 〈shapes, color〉 small 0.876 0.924

overall 0.888

Table 1: LXMERT results on the test set of 3POS1 by
the best model’s run, split by statement type.

W1 and a bias vector b1 (Eqn. 6):8

c = [x0;x1;x2] (3)

z = Wc+ b (4)

z1 = LayerNorm(GeLU(z)) (5)

y = σ(W1z1 + b1) (6)

The LXMERT encoder and the classifier are fine-
tuned for 12 epochs to prevent overfitting with a
batch size 64. The learning rate of the Adam op-
timizer (Kingma and Ba, 2014) is 5e-5. The fine-
tuning is performed for 5 random seeds.

5 Results

Overall, LXMERT achieves a very high accuracy
on the task, averaged across 5 runs: 0.8909±0.004
in validation set, 0.8864± 0.005 in test set. More-
over, its performance turns out to be fairly sta-
ble across various statement types, with the best
model run’s accuracy (see Table 1) ranging from
0.868 (one 〈shape, color〉 big, true) to 0.924 (two
〈shapes, color〉 small, false). Interestingly, for
all four statement types, the model experiences a
slight advantage with false over true statements,
even though the dataset was carefully balanced.
Taken together, these results indicate that the model,
which is pre-trained on natural images, can deal
with the synthetic scenes in our dataset after fine-
tuning. This is in line with the claim that off-the-
shelf transformer-based models can be applied to
a wide range of different learning problems and
data. At the same time, the model yields random
accuracy when not fine-tuned, which reveals that
our new dataset is challenging and involves a type
of reasoning not captured during pre-training.

In Pezzelle and Fernández (2019), models were
shown to make more errors when the area of the
queried object is closer to the threshold (see Eq. 1).

8This is identical to the approach followed by Tan and
Bansal (2019) to finetune LXMERT for NLVR2 classification.

0.0387 0.3077 0.1961

there is exactly one green circle that is small in its image in this scene F

Figure 3: A sample from the test split of 3POS1, for
which LXMERT predicts the incorrect label (True, in-
stead of False). The numbers above the images are
the distances of the target object (green circle) from
the image-specific threshold. Here, the target object in
the leftmost image is very close to that image’s thresh-
old value, so it is challenging for the model to detect
whether it is big or small. The odd-one-out image is
framed in red. Best viewed in color.

We check if this is the case also for LXMERT on
our 3POS1 task. To do so, we consider the cases
where the model gives a wrong prediction. Among
the 3 images in a scene, we take the one with the
lowest distance from the threshold. We then check
whether the model makes more errors when such
distance is lower, i.e., when there is at least one im-
age in the scene with a borderline size. As reported
in Table 2, this is indeed the case: 75% of incorrect
predictions involve cases where (at least) in one
image the target object is close to the threshold
(< 0.1) (see Figure 3 , where the leftmost image is
borderline). In contrast, only around 3% of the er-
rors involve clear-cut cases, i.e., images where the
target object’s distance from threshold is≥ 0.2. As
observed by Pezzelle and Fernández (2019), this
may suggest that the model is genuinely learning to
compute the threshold function based on the areas
of the relevant objects in the scene. Further support
for this is given by the performance of the model on
the 15 cases in the test set where the target object
has the same area in the three-image scene. These
cases could be expected to act as a confound for
the model,9 but LXMERT succeeds in 14/15 cases.
Consistently with the error pattern reported above,
the missed case contains low-distance objects (the
lowest distance is equal to 0.1). In the next section,
we more extensively explore this issue.

6 Analysis at the Individual Image Level

Our results show that LXMERT achieves a high
level of accuracy on our visually-grounded sen-
tence verification task on the three-image 3POS1

9The target objects have exactly the same area in pixels
but each target object has its own context-defined size.
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(a) Target object (b) Smallest object (c) Biggest object

Figure 4: Intersection over Union Precision at K=1, per attention head (in the x-axis), for the target object in an
image (a), the smallest object in an image (b), and the largest object in an image (c).

threshold distance < 0.1 < 0.15 < 0.2 ≥ 0.2 total
% of errors 75.89 13.84 7.14 3.13 100

number of cases 170 31 16 7 224

Table 2: Analysis of LXMERT’s errors with respect to
target object’s distance from the threshold. Threshold
distance refers to the lowest value in the visual scene.

dataset. In this section, we investigate how the
model may be solving the task. Specifically, we ex-
plore what visual information the model attends to
within each image and whether the representations
learned by the model encode information about the
context-dependent threshold that determines what
counts as big or small in a given image.

6.1 Visual Attention over Key Object Types

Recall that the ground truth labels in our dataset
are assigned based on the function in Eqn. 1, which
was shown to fit well with human judgements about
relative gradable adjectives (Schmidt et al., 2009).
This function computes a threshold value taking
into account the biggest and smallest objects in
the context of an image. Thus, a possible strat-
egy adopted by the model at the level of individual
images could be to identify the target object and
reason about the context by focusing on the biggest
and smallest objects. We test this hypothesis by
checking whether the model pays particular atten-
tion to these object types (target, biggest, small-
est) or whether its attention is rather uniformly
distributed over all regions detected by Faster R-
CNN (Ren et al., 2015).

To compute which objects are the most attended,
we use the Intersection over Union (IoU) metric
(Russakovsky et al., 2015). We take the attention
weights provided by the [CLS] token represen-
tation, extracted from the final layer of the best
fine-tuned model with frozen parameters. We then
use IoU Precision @ K to find the percentage of

the labels correctly predicted by the model using
the following steps:

1. Extract top-K object proposals: For each cor-
rectly predicted label, separately for each of the
three images in a scene, we take the object pro-
posals of the image regions detected by Faster
R-CNN with K-highest scores in the [CLS]
token. We perform the procedure for each atten-
tion head of the representation, extracted from
the cross-modality encoder for the correspond-
ing visual-language input. We ignore the object
proposals related to the background areas of the
image, which we identify based on the labels
provided by Faster R-CNN.10

2. Extract ground-truth bounding boxes: We
take the ground-truth bounding boxes of the
biggest/the smallest/target objects from all three
images in the input scene.11

3. Calculate Pairwise IoU: We calculate the pair-
wise IoU between the top-K object proposals
and the ground truth bounding boxes, obtained
in Steps 1 and 2. We take the highest IoU value
calculated for all these pairs.

4. Calculate IoU Precision@K: The IoU preci-
sion @ K is the percentage of all the IoU values
obtained in Step 3 that are > 0.5.

We also compute a random baseline for all three
categories with the same steps, except in Step 1 we
randomly select K objects from the 36 detected by
Faster R-CNN, instead of using the ones with the
highest attention scores.

We use the smallest possible value for K = 1, as
the most illustrative case in which the metric only

10The attributes predicted for the regions corresponding to
the black background in our scenes could be black or dark.

11We calculate the coordinates of the boxes using objects
position and radius provided in the annotation of the POS1
dataset by Pezzelle and Fernández (2019).
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there are exactly two green circles that
are big in their images in this scene

T

Figure 5: Example of object proposals most attended to
by the 9th head of the last layer of the cross-modality
encoder. In each image, the model attends to all of
the objects except the biggest ones. Simultaneously, in
the leftmost image, it also focuses on the green circle,
which is the target object in this scene.

looks at the single object in each image to which
the model attends the most.

Figure 4 shows the results of the IoU Precision
@ K for the 12 attention heads in LXMERT. In
particular, Figure 4a shows that many of the atten-
tion heads attend to the target object that is queried
directly in the input sentence. Figures 4b and 4c
demonstrate that the model also looks at the sur-
rounding visual context, which is needed to per-
form relational reasoning. A comparison of be-
haviour across the Figures reveals that different
attention heads appear to specialise on different
object types: attention head 9 learns to attend to the
smallest objects while it pays no attention to the
biggest objects and less than random attention to
the target objects. We also highlight the observed
behaviour of attention head 11, which is the only
head that reliably attends to the biggest objects.

Figure 5 shows an example of the objects at-
tended to by attention head 9 in one sample scene.
Here, we can see that the model is primarily attend-
ing to the smallest objects in the scene.

6.2 Implicit Knowledge of the Threshold

The analysis above showed that the model, besides
the target object, also pays attention to key contex-
tual information, particularly to the smallest and
biggest objects in an image. These objects are criti-
cal to compute the threshold to determine if a target
object is big or small relative to the context of an
image. To test whether the representations learned
by the model implicitly encode information about
the context-dependent threshold, we use a diagnos-
tic classifier (Alain and Bengio, 2017; Hupkes et al.,
2018; Belinkov and Glass, 2019). Probing or diag-
nostic tests are useful tools to better understand the
inner workings of deep models. Given a hypothesis

Figure 6: Comparison of threshold values predicted by
the linear regression model (blue dots) with the actual
threshold for each of the 6000 test images (orange dots).
Here, the real target values are sorted in ascending or-
der, and the predicted values are sorted with respect
to the corresponding targets’ indices. The thresholds
are normalized by the area of the one image, with the
square root transformation. Best viewed in color.

about information that may be encoded by a trained
model, a probe checks whether such information is
accessible by a relatively simple classifier.

Concretely, in this experiment we use a linear re-
gression classifier12 to predict the threshold values
for each of the three images in a scene given the
cross-modality features learned by the LXMERT
encoder (x0, x1, x2 in Eqn. 2). The classifier uses
the same train/val/test splits of the 3POS1 dataset.
The predicted and actual values are displayed in
Figure 6, which shows that a simple linear classifier
can predict the threshold values for each image in
a scene remarkably accurately (mean squared error
on the test set is 6.64e − 05). This confirms that
the cross-modality representations learned by the
model are representing the threshold in each image.

7 Analysis at the Multi-Image Level

In the previous section, we analysed the model rep-
resentations at the level of the independent images.
Here, we probe the representations with respect to
the entire three-image scene. First, we investigate
whether the representations encode information on
the overall configuration of the scene (Sec. 7.1).
Second, we probe their effectiveness in identifying
the odd-one-out image in the scene (Sec. 7.2). In
both analyses, we use diagnostic classifiers,13 that
take as input the concatenation of the three image-
statement cross-modal representations (Eqn. 3).

12Least squares linear regression from the sklearn.
13Trained on the same splits as the main experiments.
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sentence verification
(LXMERT full model)

3 7

scene configuration
classification

(linear diagnostic)

3 85.70 2.45
7 3.10 8.75

Table 3: Confusion matrix with % of scenes in the test
set that are (in)correctly classified by the full LXMERT
model for the original sentence verification task and by
the linear SVM for the scene configuration task.

7.1 Scene Configuration Classification

We first investigate whether the representations
learned by the model encode the configuration of
the scene, that is, whether they are effective to
distinguish between scenes where 1 target object
counts as small and 2 as big (hence, 1small2big),
and vice versa (1big2small). In principle, this
counting step is necessary to solve the sentence-
verification task (see Sec. 2), and this probe deter-
mines whether the model is reasoning at the level
of the scene or exploiting other strategies, such as
capturing random correlations in the data.

We use an SVM classifier with linear ker-
nel (Boser et al., 1992)14 to probe the represen-
tations learned by the model, and find that they
are indeed useful for predicting the configurations.
Accuracy on the test set is 88.15%, which is well
above chance level (50%). As reported in Table 3,
in the large majority of cases (85.7%) a correct pre-
diction in the sentence verification task corresponds
to a correct assessment by the diagnostic classifier.
This confirms that LXMERT learns representations
that encode the configuration of the scene.

7.2 Odd-One-Out Image Identification

Our results so far show that the model is able to
perform the multi-step sentence verification task
with high accuracy and that the representations en-
code information about different configurations of
scenes. However, there is yet no guarantee that the
model is able to identify the odd-one-out image
(i.e., the image that is not prevalent; see Sec. 4.1).
We test this by means of another diagnostic classi-
fier: given a scene representation, the task is to pre-
dict the position of the odd-one-out image (hence,
OOO), namely image 0, 1, or 2.

We initially experiment with the same type of di-
agnostic classifier used in the previous analysis: an

14Implemented in linear support vector machine classifica-
tion (LinearSVC) from the sklearn.

train valid test
OOO 0.8767 0.8771 0.8659

control 0.3385 0.3386 0.3359

Table 4: Accuracy of the MLP diagnostic classifier on
the train/val/test splits of the data on both the OOO and
the control setting. Chance level is 0.33 for all splits.

SVM with a linear kernel. However, this linear clas-
sifier was only able to accurately classify the posi-
tion of odd-one-out images associated with image–
scene instances labelled True, suggesting that
the prediction of the position of the odd-one-out
cannot be solved by a linear classifier. Therefore,
we use a non-linear MLP and also report the results
of a control task, where the labels are randomly
assigned to the instances (Hewitt and Liang, 2019).
The MLP is a two-layer neural network with 128
units in each layer followed by a ReLU activation
function, and finally a learned projection into 3
output units, followed by a softmax normalisation.
We train the MLP with a cross-entropy objective
function for four epochs using the Adam optimiser
with the default learning rate.

Table 4 reports the results of the non-linear di-
agnostic classifier in both the OOO and control
settings. As can be seen, while the MLP does not
exceed chance level in the control setting, in the
OOO it achieves a striking 87.67% accuracy, a sim-
ilar performance as the one reported in Sec. 7.1.
On the one hand, this indicates that the model can-
not fit the data when the assigned labels are not
related to the actual OOO image positions. On the
other hand, these results show that the representa-
tions learned by LXMERT do encode information
regarding the odd-one-out object in the scene.

Taken together, these analyses demonstrate that
LXMERT reasons over the multi-image scene to
perform the sentence-verification task. In particu-
lar, it is able to compute the contextually-defined
size of the objects in the scene and perform higher-
level reasoning over these representations.

8 Conclusion

We performed an in-depth analysis of the repre-
sentations learned by the pretrained multimodal
transformer LXMERT when performing relational
reasoning. We proposed a multimodal reasoning
task that requires multi-step relational reasoning
and showed that LXMERT can perform the task
with high accuracy. Our analysis reveals that the
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majority of the errors arise from target objects with
contextually-defined sizes close to the threshold,
and that LXMERT solves the task by (i) encoding
information regarding the size of objects and by (ii)
reasoning over that size. Most of its errors concern
borderline cases for which the first, image-level rea-
soning step was shown to be challenging. Overall,
our results show that transformer-based architec-
tures pretrained on natural images can generalise to
synthetic datasets. We leave to future work an ex-
tensive exploration of the extent to which our find-
ings apply to similar tasks and models, for example
other vision and langauge transformers (Bugliarello
et al., 2021), as well as to natural multimodal data.
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A Computing infrastructures

We ran all the experiments with LXMERT using
Python 3.7 on a computer with Ubuntu 18.04.5
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LTS, single GPU Tesla V100-SXM2, and NVIDIA
driver 455.38, CUDA 10.1, and 24GB RAM.

For N2NMN, we used a computer cluster with
Debian 10, a single GPU GeForce 1080Ti, 11GB
GDDR5X, NVIDIA driver 450.80.02, CUDA 11.0,
260GB RAM, and Python 3.6.

B Hyperparameters and training for
N2NMN

We performed a parameter search to determine the
best values for training N2NMN15 on the training
split of the POS1 dataset16 for 3000 iterations of
batch size 64 for each combination. We experi-
mented with the following parameters: encoder
dropout (0, 0.5, 0.8), decoder dropout (0, 0.5, 0.8),
weight decay (5e-5, 5e-4), baseline decay (0.8,
0.99), lambda entropy (0.1, 0.01, 0.001). Their
best values (corresponding to the best validation ac-
curacy) are shown in Table 5. We trained the final
model using these parameters for 14,000 iterations
with batch size 64. The training took approximately
4 hours.

encoder
dropout

decoder
dropout

weight
decay

baseline
decay

lambda
entropy

0.8 0.8 5e-5 0.99 0.01

Table 5: Best parameters for N2NMN model, found
with a grid search.

C Hyperparameters and fine-tuning for
LXMERT

For the fine-tuning of LXMERT, the pre-trained
model with standard hyperparameters was used17,
with only the learning rate changed from 1e-5 to
5e-5, since even with these out-of-the-box param-
eters, it was able to achieve high performance on
the given task. We fine-tuned this model with the
POS1 training split using early stopping after 12
epochs, with the parameter number of epochs of
BertADAM optimizer set to 150, learning rate 1e-
5, and batch size 32 (the only difference in the
used hyperparameters during the fine-tuning with
3POS1 was in the batch size 64). We validated the
model after each epoch, then the best model was
selected, which showed the highest validation ac-

15https://github.com/ronghanghu/n2nmn
16https://github.com/sandropezzelle/

malevic
17https://github.com/airsplay/lxmert.

git

curacy during the 12 epochs, and further evaluated
on the test split.

The running time of each fine-tuning epoch for
the POS1 dataset was 3 minutes, while each epoch
of fine-tuning with 3POS1 took around 6 minutes.

https://github.com/ronghanghu/n2nmn
https://github.com/sandropezzelle/malevic
https://github.com/sandropezzelle/malevic
https://github.com/airsplay/lxmert.git
https://github.com/airsplay/lxmert.git

