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Abstract 

Multiple-choice questions (MCQs) are 
widely used in knowledge assessment in 
educational institutions, during work 
interviews, in entertainment quizzes and 
games. Although the research on the 
automatic or semi-automatic generation of 
multiple-choice test items has been 
conducted since the beginning of this 
millennium, most approaches focus on 
generating questions from a single 
sentence. In this research, a state-of-the-art 
method of creating questions based on 
multiple sentences is introduced. It was 
inspired by semantic similarity matches 
used in the translation memory component 
of translation management systems. The 
performance of two deep learning 
algorithms, doc2vec and SBERT, is 
compared for the paragraph similarity task. 
The experiments are performed on the ad-
hoc corpus within the EU domain. For the 
automatic evaluation, a smaller corpus of 
manually selected matching paragraphs has 
been compiled. The results prove the good 
performance of Sentence Embeddings for 
the given task. 

1 Introduction 

The Multiple-choice test items (MCQs) are 
frequently used for knowledge assessment, e.g., 
ongoing assessment or during an examination. 
They are also used for career-significant 
assessment in medical training and certification, 
e.g., the Medical College Admission Test (MCAT) 
or the United States Medical Licensing 
Examination (USMLE) as well as in law schools 
and as a part of the Multistate Bar Examination 
(MBE). Some employers also use MCQs to 
evaluate the knowledge of candidates applying for 
a job since it is an easy and fast way to do so. Tests 

of this kind are also extremely popular in game 
shows like Who Wants to Be a Millionaire? and 
alike, in myriads of mobile apps or Facebook 
quizzes. Moreover, the Covid-19 pandemic has 
already affected significantly the way assessment 
is conducted in education institutions switching to 
extensive use of technology. MCQs are 
recommended to be used for online education, and 
many virtual learning environments offer in-built 
tools for the composition of such tests (Burnett and 
Fuentes, 2020). 

For our research, we decided to experiment with 
the EU law domain. MCQs are used to assess 
knowledge of job seekers applying for positions in 
in the European Union institutions. Furthermore, 
MCQs are frequently used during exams in law 
schools and universities. Therefore, the primary 
reason for selecting this domain is our motivation 
to assist education professionals and offer a helpful 
tool for knowledge assessment. We conduct the 
experiments on EU textbooks used in classrooms. 

Despite the popularity and extensive use of 
multiple-choice tests, their manual creation is a 
laborious and time-consuming task (Mitkov and 
Ha, 2003; Mitkov et al., 2006). Ambiguously 
worded questions, too easy or too difficult 
distractors can lead to the poor performance of test-
takers and misleading results. 

There have been several attempts to 
automatically generate multiple-choice questions 
starting from various NLP techniques, including 
the use of WordNet, shallow parsing, corpora, 
ontologies (Mitkov and Ha, 2003; Papasalouros et 
al., 2008). For the last couple of years, researchers 
have been experimenting with machine learning 
(Guo et al., 2016). In recent papers on this topic, 
deep neural networks are successfully applied for 
this task (Kumar et al., 2018; Martinez-Gil et al., 
2019). 
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Furthermore, various strategies have been used 
for choosing distractors or testing on various types 
of instructive material (such as linguistics (Mitkov 
and Ha, 2003) or medical texts (Karamanis et al., 
2006), sports domain (Majumder and Saha, 2015), 
as well as Wikipedia articles (Singh et al., 2013). 
Most research papers are based on the sentence-
based approach, where questions are generated 
from one sentence that contains a key term (Wang 
et al., 2018). In recent research, the questions are 
based on the whole paragraph with the use of deep 
neural models (Zhao et al., 2018). 

We aim to evaluate the performance of two 
existing deep neural models, doc2vec and SBERT, 
for the generation of multiple-choice test items 
based on multiple sentences. 

Our contributions are as follows: 

• Compiling a corpus of MCQs based on 
multiple sentences within the EU law 
domain. As to our knowledge, no such 
corpus exists or is publicly available. 

• Providing a state-of-the-art method for 
finding semantically similar paragraphs with 
the use of paragraph embeddings. 

The MCQ corpus is needed for the experiments. 
It should contain the question-answer (QA) pair 
and the paragraph on which the question is based. 
In addition, we aim to create the corpus that can 
be used for knowledge assessment of EU law. 
Therefore, the QAs should follow the criteria of 
MCQs used in classroom, i.e. they should not 
focus on too narrow topics or specific cases. In 
addition, we want to expand this research in the 
future by generating distractors automatically. 
That is why the answer should be concise. The 
requirements of MCQ corpus design are listed in 
Section 3.1. More detailed description of the 
corpus and experiments can be found in the 
master’s dissertation (Maslak, 2021). 

2 Related Work 

Early research was focused on the use of 
traditional natural language processing methods 
for generating questions and distractors 
automatically. For example, Mitkov and Ha 
(2003), who were the pioneers in generating MCQs 
automatically, used such NLP techniques as term 
extraction, parsing, a corpus, and WordNet. Their 
system-generated test questions and distractors 
based on a linguistics textbook. A few years later, 

Karamanis et al. (2006) generated Multiple-Choice 
Test Items from medical text using Rapid Item 
Generation (RIG) and the UMLS thesaurus. A 
medical textbook served as the source texts, while 
a much more extensive collection of MEDLINE 
texts was used as the reference corpus. In another 
research, Mitkov et al. (2006) employed various 
NLP techniques such as automatic term extraction, 
shallow parsing, sentence transformation and 
computing of semantic distance as well as corpora 
and ontologies. In contrast to the methodologies 
that highly depend on the used domain, 
Papasalouros et al.’s (2008) approach is domain-
independent as they employed specific ontology-
based strategies and OWL. 

Singh Bhatia et al. (2013) proposed selecting 
sentences using existing test items in the Web as 
well as presented a technique for creating named 
entity distractors from Wikipedia. Alsubait et al. 
(2014) used OWL ontologies to generate multiple-
choice test items and proposed a psychologically-
based theory to control the question difficulty. 

Afzal and Mitkov (2014) suggested an 
unsupervised dependency-based approach to 
identify the most important named entities and 
terms and define semantic relations between them. 
This approach did not use any prior knowledge 
about the semantic types of the relations but was 
based on a dependency tree model. The results 
were evaluated in respect of their readability, 
usefulness of semantic relations, relevance, 
acceptability of questions and distractors and 
general usability of multiple-choice test items. 

A couple of years ago, the focus of the research 
community shifted towards the use of neural 
networks for natural language processing tasks. 
For example, Liang et al. (2018) investigated how 
machine-learning models, in particular feature-
based and neural net (NN) based ranking models, 
can be used for distractor selection. Gao et al. 
(2019) proposed a hierarchical encoder-decoder 
framework to generate question items for reading 
comprehension questions from real examinations. 
Susanti et al. (2018) investigated methods for 
automatically generating distractors for multiple-
choice questions on English vocabulary and used 
semantic similarity and collocation information. 
Shin et al. (2019) used a topic modeling procedure, 
machine learning, and natural language processing 
to generate distractors based on students' 
misconceptions. 
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In the aforementioned words, various 
approaches were used to generate questions or 
distractors automatically. Mostly, the questions 
were generated on the basis of a single sentence. In 
our research, we do not create questions 
automatically. Instead, we employ the most recent 
methods of semantic textual similarity matching to 
find similar paragraphs in the reference corpus. 
The question-answer pair attached to the incoming 
paragraph that is fed to the model is transferred to 
the newly found paragraph and then post-edited to 
create a new question-answer pair. This approach 
aims at reducing the teachers’ effort to create new 
test items from scratch. 

3 Methodology 

This research was inspired by translation memory 
(TM) matching used in computer-assisted 
translation (CAT) tools. TM consists of aligned on 
the sentence level source-and-target pairs (Sikes, 
2007). These are the previous translations done by 
a human translator on the same or similar topic. 
Basically, after the source text is segmented 
according to segmentation rules, usually according 
to sentence-closing punctuation marks, the source 
sentence is searched in the translation memory. 
When a similar sentence in the source language is 
found, its translation is suggested for the target 
segment. The translation memory matches are 
retrieved according to a certain threshold chosen 
by a translator based on how similar the segments 
are. This score is normally presented in a 
percentage value. Totally exact segments constitute 
a 100% match, while exact segments within the 
same context, i.e., the same sentences or phrases 
before and after this segment, are called 101% 
matches or context-matches. The other matches 
below the 100% score are referred to as fuzzy 
matches. 

In this work, an analogous method is used for 
finding similar paragraphs. However, there are 
several differences. Firstly, only one language, 
English, is used in the experiments. Moreover, the 
segmentation rules are different. Instead of 
sentences, paragraphs are used. A paragraph is 
defined as a sequence of characters ending with 
closing punctuation marks, i.e., a full stop, 
exclamation mark, question mark, followed by a 
new line symbol. Moreover, in the case of lists, 
such as the text presented in the form of bullet 
points, additional rules apply. If colons and 
semicolons are followed by a new line symbol, the 

new line is removed so that such phrases comprise 
a part of a larger paragraph. Otherwise, if left 
unchanged, each new bullet point phrase would 
make a separate paragraph. The paragraph 
consisting of a few words is not useful for this 
research. 

To imitate the translation memory matches, two 
corpora are needed. The Paragraph cell in the 
above-mentioned MCQ corpus serves as a source 
text segmented into individual characters. A 
paragraph is searched for in the huge reference 
corpus that represents the translation memory. 
When a similar paragraph is found, it is suggested 
to a user. The question, anchor, and distractors 
attached to the source paragraph are used now for 
the target paragraph. They can be post-edited to 
reflect the contents of the new paragraph better. 
Although the reference corpus used in this research 
does not include any translations, for the simplicity 
of explaining the mechanism behind the research 
idea, it is called the translation memory, or TM 
corpus. 

3.1 MCQ Corpus Compilation 

For the purposes of this research, a corpus of 
MCQs is required. It is needed for the experiments 
to find similar paragraphs in another textbook. 
Such a corpus is manually compiled and consists 
of the following elements: 

• The paragraph from a chosen book on 
which the question is based. 

• The question referring to the 
corresponding paragraph. 

• The answer. 

Such question answering datasets as The Natural 
Questions corpus (Kwiatkowski et al., 2019), 
TriviaQA (Joshi et al., 2017), HotpotQA (Yang et 
al., 2018), QuAC (Choi et al., 2018), QASPER 
(Dasigi et al., 2021), CaseHOLD (Zheng et al., 
2021), OpenBookQA (Mihaylov et al., 2018), 
SQuAD (Rajpurkar et al., 2016), and MultiRC 
(Khashabi et al., 2018) were revised to determine 
whether they can be used in this research. Due to 
the fact that most of them contain question-
answer pairs derived from Wikipedia articles, we 
did not find them suitable. Instead, we focus on 
textbooks and other teaching materials for the 
experiments to imitate real-life in-classroom 
applications. Moreover, in some cases, it is not 
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possible to create the reference corpus for the 
above-mentioned QA pairs since it is not clear 
what materials were used for those datasets. In 
addition, in some cases, the questions were not 
based on multiple sentences. Therefore, it would 
not be reasonable to use such datasets while we 
aim to work with the European Union law domain 
and with questions based on a whole paragraph. 
Consequently, it was decided to develop a new 
corpus of multiple-choice test items that is based 
on the selected principles of design. 

The criteria for choosing a book for the MCQ 
corpus were the following: 

• The contents of the book cover general 
information about the European Union, 
particularly the history of its creation, the 
founding treaties, the four freedoms, the 
sources of law, and other basic concepts 
and legislation. The book should not 
include any specific details regarding 
specialised legislation cases. For 
instance, home affairs law, EU 
immigration and asylum law, commerce 
or terrorism are too narrow topics and 
were not touched upon in the corpus. 

• The information presented in the book 
should mostly be written in full 
paragraphs rather than in bullet points or 
stored in tables. 

• It should be possible to copy the text 
easily from the book. Otherwise, retyping 
the paragraphs would take too much time. 
Moreover, it is easier to have typos or 
other errors in this case. Thus, not being 
able to copy directly from the book 
constitutes a challenge in terms of both 
time and human effort. 

The chosen book consists of sixteen chapters and 
covers the following topics from the history and 
legislation of the European Union: the origins and 
character of EU law; the development from 
Community to Union; the political and legal 
institutions of the European Union; the sources of 
EU law; the legislative process; enforcement of 
EU law; Article 267 of the Treaty on the 
Functioning of the European Union (TFEU); the 
relationship between EU law and national law – 
supremacy; the relationship between EU law and 
national law – direct effect; the Internal Market; 
citizenship of the Union; the free movement of 

workers; freedom of establishment and the 
freedom to provide and receive services under 
Articles 49 and 56 TFEU; the free movement of 
goods and Articles 34 and 35 TFEU; Article 28 
TFEU and customs tariffs and Article 110 TFEU 
and discriminatory internal taxation; EU 
competition law; social policy; discrimination law 
and Article 157; the wider social influence of the 
EU. All of these topics are mentioned in the MCQ 
corpus. 

The following criteria for the corpus were 
selected: 

• Paragraphs have to be included for all the 
questions. Since the research is based on 
paragraph similarity matching, without 
the relevant paragraph the question 
cannot be used for the purposes of this 
task. In the context of this research, a 
paragraph refers to either an actual 
paragraph from the book or a couple of 
sentences on which the question is based. 
The Paragraph cell should contain only 
those sentences that are necessary to 
answer the question. Therefore, 
sometimes the actual paragraph from the 
book has to be cut or shortened to include 
only the sentences needed to answer the 
question. It is possible to add sentences 
from different paragraphs as long as they 
make sense and the text in the Paragraph 
cell is 2-5 sentences long. The length of 
the paragraphs may vary. It is worth 
underlying that only one sentence cannot 
constitute a paragraph for this research no 
matter its size. The number of sentences 
in the paragraph highly depends on the 
asked question and the answer. Although 
it is possible to include longer paragraphs 
in the MCQ corpus, it is rather 
challenging to make a question that is 
based on the information in all the 
sentences in a large paragraph. 

• All the questions in the MCQ corpus 
should be based on the information in all 
the sentences in the Paragraph cell. 
Yes/No or True/False questions are not 
possible. The questions should be worded 
as actual questions rather than incomplete 
statements. 

• The answer should consist of one or a few 
words rather than a long phrase. The 
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answer cannot consist of a whole 
sentence. It is of paramount importance 
for the automatic generation of 
distractors. Although the distractors are 
not generated for this study, they will be 
used in future research. In order to 
retrieve good quality distractors, the 
anchor should be concise, ideally consist 
of a couple of words or a number. 
However, the MCQ corpus is aimed to be 
easy to use in classrooms. Therefore, the 
above-mentioned rule about the length of 
the anchor can be neglected in some cases 
for the sake of a good multiple-choice test 
item that can be used unchanged. 

In total, the MCQ corpus consists of 200 
paragraphs and question-answer pairs. The corpus 
was checked with a writing tool Grammarly to 
spot grammar and spelling mistakes, typos, extra 
spaces and other issues. Furthermore, all the 
questions were revised by a native speaker of 
English who is a professional proofreader and 
qualified linguist. Unfortunately, due to the lack 
of time and resources, the MCQ corpus was not 
revised by an expert in EU law. It is an area of 
further research and developments. 

3.2 The reference corpus (TM corpus) 

The preparation of the TM corpus started with 
choosing the relevant book. A procedure similar to 
choosing the book for the MCQ corpus was used. 
Overall, the book had to cover the same topics in 
the EU law and be available in a machine-readable 
or easy-to-process format. The information should 
be presented in text in paragraphs rather than in 
diagrams, charts, tables or images. In contrast to 
the MCQ corpus, the TM corpus should be of a 
considerably larger size. While looking for such a 
book, we encountered several problems. Many 
books on the EU law are available in hard copies 
but do not have the copies in the electronic format. 
In many cases, if it is available in the PDF format, 
the printed book is scanned. Therefore, even with 
the use of the optical character recognition (OCR) 
software, the processed output would be of very 
low quality and will require a significant amount of 
time and human resources to be revised manually.  

The selected book consists of 1,198 pages and 
includes similar chapters as the one used for the 
MCQ corpus. The PDF is processed with a Python 
program in order to write the text into a text file. 
The information unrelated to the contents of the 

relevant paragraphs is omitted. For example, the 
table of contents, page numbers, headings, headers, 
footnotes, the list of references as well as any tables 
or images are not included in the TM corpus file. 

Moreover, in the original file, the words at the 
end of the line are hyphenated. It is a typographical 
hyphen that has to be removed from the corpus. If 
it is not done, a substantial amount of information 
can be lost since for the machine, the same word 
written with or without a hyphen constitutes 
different words. Besides, a new line character 
follows this typographical hyphen, so the word is 
split into two parts. The hyphens followed by a new 
line character were deleted, and the parts of the 
word were glued together. All the hyphenated 
words with a new line character inside were 
checked in the Enchant module. It is a spell-
checking library for Python. After the new line 
symbol is deleted, if a hyphenated word is found in 
the library, it is left untouched. Otherwise, it is 
glued together. 

The other issues with processing the file 
included the following ones: many chapters 
include quotes that constitute a large paragraph. 
They should not be included in the TM corpus 
since the MCQ corpus can contain the same 
quotations. For the purposes of this research, we 
want to retrieve fuzzy matches instead of the exact 
matches. Therefore, we do not want to have exactly 
the same paragraphs in both corpora. Since such 
quotes are written in a different font and size, it was 
possible for the Python program to omit them. 

3.3 Comparison of the MCQ and TM 
corpora 

As mentioned above, the method for finding 
similar paragraphs resembles the one used for 
retrieving translation memory matches in a 
translation management system. Since the MCQ 
corpus represents a source text, and the reference 
(TM) corpus embodies the translation memory, it 
is essential that those corpora have many features 
in common. Hence, a comprehensive contrastive 
analysis of both corpora was conducted. 

The corpora are compared in terms of the word 
count, the number of unique words, the average 
number of words per paragraph, most common 
words. As previously stated, the MCQ corpus 
includes 200 multiple-choice test items together 
with the referencing paragraphs. It estimates to 
12,754 words. A word in this context is a sequence 
of alphanumeric characters split by a space. 
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Conversely, the reference corpus equals to 399,196 
words. It encompasses more than a thousand pages 
of the processed text. Thus, it is more than 31 times 
larger than the multiple-choice questions corpus. 

The average number of words in a paragraph in 
the MCQ corpus is 63 words. Likewise, for the TM 
corpus the number is 57 words. 

4 Experiments 

Experimenting with semantic textual similarity has 
been within the scope of recent research in natural 
language processing. For example, Ranashinghe et 
al. (2019a) evaluated the implications contextual 
word embeddings have on unsupervised semantic 
textual similarity methods. They carried out their 
experiments with several dataset including the 
SICK dataset and bio-medical dataset for English 
as well as the dataset in Spanish. Such methods as 
cosine similarity using average vectors, Word 
Mover’s Distance and cosine similarity using 
Smooth Inverse Frequency with contextualised 
word embeddings were evaluated to calculate 
semantic similarity between pairs of texts. They 
came to a conclusion that contextual word 
embeddings can be employed for various 
languages and domains for unsupervised machine 
learning tasks. 

Ranasinghe et al. (2019b) experiment with 
Siamese neural networks (Bromley et al., 1993) for 
semantic textual similarity. They mention that 
“Siamese networks contain two or more identical 
sub-networks. The networks are identical in the 
sense that they have the same configuration with 
the same parameters and weights. In addition, 
parameter updating is mirrored across these sub-
networks”. The authors state that this type of neural 
networks performs well for finding similarity or a 
relationship between two comparable things, e.g., 
signature verification, face verification, image 
similarity as well as sentence similarity. In this 
research, we will use sentence transformers for the 
paragraph similarity tasks that also use Siamese 
and triplet network structures. 

In Ranasinghe et al. (2020), sentence encoders 
are used to improve the matching and retrieving 
process in Translation Memories systems. In our 
research, we use a similar approach while 
experimenting with paragraph encoders. 

4.1 Doc2vec model 

In our experiments, we use a similar technique as 
in Řehůřek (2014) and Shperber (2017).  We use 
Gensim, a free Python library for topic modelling 
(Rehurek and Sojka, 2010). It is helpful for training 
large-scale semantic natural language processing 
models; representing text as semantic vectors; and 
finding semantically related documents. It allows 
to train vector embeddings fast, can be run on any 
operating system as well as any other platform that 
supports Python and NumPy. The library is also 
open-source. 

For each paragraph from the MCQ corpus, we 
retrieve two similar paragraphs from the TM 
corpus. We also calculate the similarity score for 
each match.  

4.2 Sentence-BERT 

Transformer models like BERT are the state-of-
the-art nowadays in semantic textual similarity and 
are salient in natural language processing in 
general. They are widely used in machine 
translation and time series prediction; document 
summarization; document generation; named 
entity recognition; image processing; video 
understanding and other tasks. Sentence-BERT 
(SBERT) is “a modification of the pretrained 
BERT network that use Siamese and triplet 
network structures to derive semantically 
meaningful sentence embeddings that can be 
compared using cosine-similarity” (Reimers and 
Gurevych, 2019). It was presented as an 
advancement of BERT, which requires a lot of 
computational power and is very slow. For 
example, BERT needed 65 hours to find the most 
similar pair in a collection of 10,000 sentences, 
while SBERT did the same task in five seconds. 
Although the authors claim that SBERT is very fast 
and computationally efficient, such speed and 
performance requires the use of a GPU. For this 
research, the experiments were conducted on a 
regular laptop using a CPU only. Therefore, our 
results are far from such small numbers in terms of 
speed. The motivation behind the approach of 
using a CPU only for this research is explained by 
the fact that the aims of this research is to help 
education professionals and reduce the teachers’ 
effort in preparing the assessment materials. 
Therefore, if the used methods require very 
powerful computers and a lot of computational 
power with the use of a GPU, it will not be feasible 
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to replicate this method in a real-life classroom 
setting. 

The procedure for finding the similar paragraphs 
in this research is analogous to the one used with 
doc2vec. Particularly, for each paragraph from the 
small ad-hoc corpus of multiple-choice test items, 
two matching paragraphs are found in the large 
reference corpus. The similarity scores are also 
calculated for all the retrieved paragraphs. 

In this research, we took the SBERT approach 
to obtain paragraph vectors. We used the 
paraphrase-MiniLM-L12-v2 model. 

5 Evaluation 

In this study, a simple method of automatic 
evaluation is used. Specifically, the paragraphs 
from the MCQ corpus are fed to the algorithms. 
With the help of either doc2vec or SBERT, 
semantically similar paragraphs are found in the 
reference corpus. The results are written to a file 
together with the paragraphs similarity score and 
the paragraph manually found as a gold standard. 
Paragraph similarity scores resemble fuzzy 
matches in translation memory systems. After that, 
the number of identical matches, i.e., paragraphs 
produced by the algorithms and the paragraphs 
from the evaluation corpus, is calculated. The 
performance of the algorithms is presented in the 
percentage of correct matches out of 50 
paragraphs. 

For the purposes of evaluation, a small corpus 
of fifty paragraphs was made. It consists of a 
Paragraph column with the paragraphs from the 
MCQ corpus; a Question column with the 
questions attached to those paragraphs; and a 
Match column with the paragraphs similar to the 
ones in column 1. All the matches are selected 
manually. In order to do so, the reference corpus is 
searched for key words manually identified in the 
paragraph from the MCQ corpus. It is done with 
the Find option. After that, the found results are 
checked in terms of their content and size. The 
paragraph from the MCQ corpus and its match 
from the reference corpus should talk about the 
same thing and include the same key words. 
Moreover, it is important that the question from the 
MCQ corpus attached to one paragraph can be 
answered if shown only the paragraph from the 
reference corpus. In addition, the correct answer 
(anchor) for this question should also be included 
in the new match. It was required that the length of 

both paragraphs was roughly similar where 
possible. 

5.1 Evaluation Results 

It was calculated that the performance of 
doc2vec during the automatic evaluation was 0%, 
i.e. zero matches out of fifty paragraphs in the 
evaluation corpus were found. In contrast, in 44% 
of the cases, SBERT found the correct matches 
from the evaluation corpus. More rigorous human 
evaluation is required to check to what extent the 
automatically obtained paragraphs are similar to 
the ones in the MCQ corpus. It is assumed that 
some of the question answer pairs could be post-
edited and used in the in-classroom environment. 
It was also noticed that in some cases, SBERT 
outperformed human judgement and found the 
paragraphs with higher similarity scores. In terms 
of efficiency, SBERT was rather slow when used 
on a CPU, which is its main drawback. 

Table 1 below includes the paragraph similarity 
scores for both models. It is evident that the 
difference in performance of the two algorithms is 
rather significant. The highest score of doc2vec is 
roughly the same as the lowest score of SBERT. 
Moreover, the average score of SBERT is higher 
than any of the results of doc2vec. 

 
doc2vec SBERT 

10 highest scores 

0.58 0.86 

0.57 0.86 

0.57 0.85 

0.57 0.85 

0.57 0.85 

0.57 0.83 

0.57 0.83 

0.56 0.83 

0.56 0.82 

0.56 0.82 

Highest score 

0.58 0.86 

Lowest score 

0.37 0.57 

Average score 

0.51 0.70 

Table 1:  Similarity scores for doc2vec and SBERT 

Furthermore, the efficiency of both algorithms 
was compared in terms of time needed to perform 
the task. The time in seconds was recorded for each 
found match with the help of the Python module 
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Timeit(). After that, the average time needed to find 
a single match was calculated. The results for the 
two algorithms are as follows: doc2vec – 46 
seconds; SBERT – 268 seconds (4.4 minutes). 

It is worth mentioning that usually the 
experiments with SBERT are conducted on a GPU. 
It was done deliberately to check the efficiency of 
the algorithms under the typical conditions 
teachers face at schools and non-technical 
departments in universities. Therefore, although 
SBERT demonstrated impressive results and even 
outperformed human judgement, it is very slow 
without using a GPU. 

6 Conclusion and Future Work 

In this research, the ways to automatically generate 
multiple-choice test items from a whole paragraph 
are investigated. In particular, it was inspired by 
translation memory matches in modern translation 
management systems. 

The experiments are conducted within the 
European Union law domain. A small corpus of 
200 multiple-choice test items together with the 
corresponding paragraphs is manually created 
from scratch. The larger reference corpus (TM 
corpus) that consists of 1,000+ pages of processed 
text from a textbook on the same topic was also 
created. 

The performance and efficiency of two deep 
learning models, doc2vec and SBERT, was tested. 
Both algorithms provide paragraph vectors used to 
find semantically similar paragraphs. Although 
doc2vec was almost six times faster than sentence 
transformers when run on a regular computer with 
a CPU, it failed to produce the desired results. In 
fact, the performance of doc2vec was 0% when 
evaluated automatically. In contrast, SBERT 
achieved 44% performance in the same automatic 
evaluation task. Moreover, in some cases, it 
outperformed human judgement and found the 
paragraphs with higher similarity scores than those 
selected manually. Nevertheless, the fact that 
SBERT is not computationally efficient when used 
on a regular laptop remains its main drawback. 

In the future, this research can be broadened to 
include automatic generation of distractors and 
their evaluation. Moreover, the corpus of multiple-
choice test items can be extended. It would also be 
beneficial to have this corpus revised by an expert 
on the European Union law. Moreover, in-
classroom experiments with the students of law 
and teachers are needed to fully evaluate the 

quality of produced multiple-choice test items and 
to test whether the suggested method truly reduces 
the teachers’ effort in performing knowledge 
assessment. 
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