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Abstract

Machine reading comprehension (MRC) is
one of the most challenging tasks in natural
language processing domain. Recent state-of-
the-art results for MRC have been achieved
with the pre-trained language models, such as
BERT and its modifications. Despite the high
performance of these models, they still suffer
from the inability to retrieve correct answers
from the detailed and lengthy passages. In
this work, we introduce a novel scheme for in-
corporating the discourse structure of the text
into a self-attention network, and, thus, en-
rich the embedding obtained from the stan-
dard BERT encoder with the additional linguis-
tic knowledge. We also investigate the influ-
ence of different types of linguistic informa-
tion on the model’s ability to answer complex
questions that require deep understanding of
the whole text. Experiments performed on the
SQuAD benchmark and more complex ques-
tion answering datasets have shown that lin-
guistic enhancing boosts the performance of
the standard BERT model significantly.

1 Introduction

Machine reading comprehension (MRC) reflects
the ability to read and understand an unstructured
text and answer questions regarding it. Aiming to
find the relevant answer to a question in the form
of a text span, the MRC models should demon-
strate deep understanding of the language and text
organization.

Transformer models that achieve state-of-the-
art results on multiple natural language process-
ing (NLP) tasks have been successfully applied to
the MRC. However, while the ideal MRC model
should read most words superficially and pay atten-
tion only to the essential ones (Wang et al., 2017),

the attention mechanism in the standard transform-
ers attends to all words without explicit constraint
which results in inaccurate concentration on some
less important text spans. Lately, the researchers
have actively examined the ability of the deep learn-
ing (DL) models to understand language and build
accurate linguistic-enhanced internal representa-
tion.

Recent works have revealed that traditional DL
models that ignore additional linguistic knowledge,
such as syntax or semantic, achieves lower accu-
racy on such complex tasks as natural language
understanding (NLU) or MRC (Roth and Lapata,
2016; Marcheggiani and Titov, 2017; He et al.,
2018). It has been shown that incorporating explicit
syntactic (Hu et al., 2019) and semantic (Zhang
et al., 2020a) relations into the attention mecha-
nism leads to better linguistically motivated word
representations beneficial for the MRC task.

Moreover, providing exact, concise answers fre-
quently requires not just syntactic/meaning similar-
ity but an overall structure of thoughts expressed by
an author (Galitsky et al., 2013), i.e., some claims
introduced by an author and logical connections
existing among them. This information is encoded
by discourse structure of a text that, as long as syn-
tax and semantic, is believed to provide valuable
information that could help the model to capture
all the hidden dependencies existing in the text and
to pay attention only to the relevant words while
answering the corresponding question.

In this paper, we explore if and how discourse-
level features (discourse relations connecting the
text spans), fed to a neural MRC model on top of
syntactic and semantic features or independently,
can help to answer complex, long, multi-sentence
questions. We intend to develop a neural method
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that selects relevant words by only considering the
related subset of words, w.r.t. syntactic, semantic,
and discourse-level importance. To provide feature
encoding we use a self-attention network (SAN)
enriched with the discourse features (such as expla-
nation, condition, etc.) retrieved from a text and
combine it with the classical transformer encoder
to build linguistically-enhanced text representation.

Overall, the contribution of this paper is three-
fold: first, we introduce a novel discourse-aware
transformer-based model to construct the enriched
internal representation of the text. Second, we
develop an ensemble MRC model that combines
syntax, semantic, and discourse MRC components.
Third, we conduct experiments on various question-
answering (QA) datasets to assess the ability of the
linguistically enriched model to answer complex
questions and estimate the influence of each source
of linguistic information.

2 Related Work and Background

2.1 Machine Reading Comprehension

Span-based MRC, which is the main focus of this
work, is quite a challenging task, as we expect
the model not only to identify the relevant docu-
ment that contains a possible answer but to retrieve
the exact text fragment that answers the question.
There has been a lot of studies on solving this task
with attentive models (Kadlec et al., 2016; Yuan
et al., 2018; Guo et al., 2019).

Recently, the pre-trained contextual language
models (LMs) such as ELMO (Peters et al., 2018),
BERT (Devlin et al., 2019), or a series of GPTs
(Radfort et al., 2018) have shown state-of-the-art re-
sults on the number of NLU benchmarks which has
attracted the researchers’ interest toward utilizing
these models for MRC. Despite the increasing pop-
ularity of these LMs, several studies have revealed
that textual representation provided by them relies
purely on the context of each word and, generally,
neither the syntactical nor semantic organization of
the text is considered. As this information is crucial
for MRC, the novel techniques to incorporate syn-
tactic and semantic knowledge into the pre-trained
LMs have been the main focus of the latest works.

2.1.1 Syntactic-aware Models
Recent attempts to turn neural network algorithms
into more structure-aware ones have discovered the
incorporation of external memories in the context
of recurrent neural networks. The idea is to use mul-

tiple memory slots outside the recurrence to piece-
wise store representations of the input. Read and
write operations for each slot can be modeled as
an attention mechanism with a recurrent controller.
Cheng et al. (2016), for example, leverage memory
and attention to empowering a recurrent network
with stronger memorization capability and more
importantly the ability to discover relations among
tokens. This is realized by inserting a memory net-
work module in the update of a recurrent network
together with attention for memory addressing. The
attention acts as a weak inductive module discov-
ering relations between input tokens and is trained
without direct supervision. The experiments per-
formed on NLI datasets showed that the superiority
of the modified model over the vanilla LSTMs.

In more recent work (Zhang et al., 2020b), the
authors benefit from the performance of the BERT
model on span-based MRC tasks and sponsor it
with the syntax-guided SAN. They design an infor-
mative method that can selectively pick out impor-
tant words by only considering the related subset
of syntactically important context inside each input
sentence explicitly. With the guidance of syntactic
structure clues, the syntax-guided method could
give more accurate attentive signals and reduce
the impact of the noise brought about by lengthy
sentences. The authors extend the self-attention
mechanism with syntax-guided constraint, to cap-
ture syntax-related parts with each concerned word.
Specifically, they adopt a pre-trained dependency
syntactic parse tree structure to produce the related
nodes for each word in a sentence, namely syntactic
dependency of interest, by regarding each word as
a child node, and the syntactic dependency of inter-
est consists of all its ancestor nodes and itself in the
dependency parsing tree. The syntax encapsulating
into the model should provide a better understand-
ing of the long or unanswerable questions, which
is a big obstacle for the existing MRC models.

2.1.2 Semantic-aware Models
Frequently, DL models suffer from insufficient con-
textual semantic representation and learning. So,
the way of constructing semantic-aware LMs has
also attracted wide attention in research.

To provide contextual semantic representation
to the DL models, Strubell et al. (2020) pro-
pose linguistically-informed self-attention (LISA),
which is used for the semantic role labeling (SRL)
task. The model proposed by the authors is end-
to-end, and it is trained to predict part of speech
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tags, provide parsing, attend to syntactic parse de-
pendents, and, finally, assign semantic role labels
to the model. This architecture has been applied to
enlarge the contextual representation provided by
BERT with the additional semantic information.

In (Zhang et al., 2020a), the authors propose to
use SRL task to integrate the text representation
provided by BERT with the contextual explicit se-
mantic embedding, the introduced model is called
Sem-BERT. Sem-BERT is intended to handle mul-
tiple sequence inputs, the words in the input se-
quence are passed to semantic role labeling to ob-
tain multiple predicate-derived structures to form
a semantic embedding. In parallel, the input se-
quence is segmented to subwords (if any) by BERT
word-piece tokenizer, then the subword represen-
tation is transformed back to word-level via a con-
volutional layer to obtain the contextual word rep-
resentations. Finally, the word representations H
and semantic embedding H ′

sem are concatenated to
form the joint representation.

Despite there is a number of works encapsulating
the syntactic and semantic information about the
text into the DL models, there is still a lack of re-
search that considers discourse organization, which
also introduces relevant linguistic knowledge es-
sential for MRC, and other downstream challenges.
In this work, we propose a way to encode the dis-
course structure of the text by neural network and
enrich the text embeddings constructed by BERT
with this information. Then, we aim to assess the
influence of discourse, semantic, and syntactic fea-
tures on the MRC task.

2.2 Discourse Structure

In this section, we introduce the definition of dis-
course structure that we propose to integrate into
the MRC model. Any coherent text is structured
so that we can derive and interpret the informa-
tion. This structure shows how discourse units (text
spans such as sentences or clauses) are connected
and relate to each other. Discourse analysis reveals
this structure and describes the relations that hold
between text units in the document. Several the-
ories have been proposed in the past to describe
the discourse structure, among which the Rhetori-
cal Structure Theory (RST) (Mann and Thompson,
1988) is one of the most popular. RST divides a
text into minimal atomic units, called Elementary
Discourse Units (EDUs). It then forms a tree rep-
resentation of discourse called a Discourse Tree

(DT) using rhetorical relations (Elaboration, Expla-
nation, etc.) as edges, and EDUs as leaves. EDUs
linked by a rhetorical relation are also distinguished
based on their relative importance in conveying the
author’s message: the nucleus is the central part,
whereas the satellite is the peripheral part. Nucleus
units consist of basic information and satellite units
contain additional information about the nucleus.

An exploration of coherence relations in frame-
works such as RST has experienced a revival in
the decade in English and a few other languages
(Matthiessen and Teruya, 2015; Maziero et al.,
2015; Zeldes, 2016) which has led to a grown num-
ber of applications of discourse analysis. For ex-
ample, discourse parsers are used in argumenta-
tion mining in online discussions, summarization,
QA systems, and machine translation (Benamara
et al., 2017; Durrett et al., 2016; Peldszus and Stede,
2016; Chakrabarty et al., 2020). We claim that in-
corporating this additional discourse information
provided by state-of-the-art parsers could be ben-
eficial for DL models performing MRC. We are
motivated to improve the self-attention layer ap-
pended to the top of the transformer encoder to
enrich the contextualized word representation with
information from its neighbors and the relations
from the dependency parse trees.

3 MRC System Extended with Discourse
Relations

In this paper, we present the novel discourse-aware
attentive model designed to perform the MRC task.
Our approach is inspired by syntax-guided BERT
(Zhang et al., 2020b), while instead of encapsulat-
ing the syntactic dependencies among the words,
we pre-process the discourse parse tree and observe
the EDUs as long as the specific discourse relations
connecting them.

We introduce the architecture of the transformer-
based encoder empowered with the discourse
knowledge about the input text in Section 3.1. As
we aim to assess the influence of all three types of
linguistic information, in Section 3.2, we present
the final MRC system designed as the ensemble
of state-of-the-art syntactic, semantic, and the pro-
posed discourse-aware attention components.

3.1 Discourse-aware Model

In this section, we describe a method for incor-
porating discourse relations into the transformer-
based model explicitly. As well as the syntactic



447

dependency parse tree, the discourse structure can
be represented as a hierarchically organized tree,
where the leaves are the text spans and the edges
denote the type of relations connecting them. Thus,
we propose to modify the SAN appended to the
top of vanilla transformer-based encoder to make it
able to process the discourse text organization, and,
thus, to utilize this additional linguistic feature for
MRC.

3.1.1 Discourse-aware Self-attention Layer
Our discourse-aware language model is trained to
provide the vector representation of the text en-
riched by the discourse relations connecting text
units. To obtain this representation we use the stan-
dard transformer encoder to calculate contextual
representation of the text, then the obtained vector
is passed through the discourse-aware SAN, which
is designed to encapsulate the discourse structure
into the embedding of the sequence. Finally, the
discourse-aware representation is aggregated with
the output of the pure transformer, this final embed-
ding goes through the task-specific layer to perform
the MRC task. The overall model architecture is
presented in Fig. 1.

Generally, the main difference between the
discourse-aware language model and the traditional
transformer-based model is as follows. In tradi-
tional transformers, the word attends to both sides
of the context, while in the discourse-aware model
we would like each word to attend to its discourse-
dependent ancestors. This forces a multi-head
attention mechanism to analyze the dependency
among tokens w.r.t. the rhetoric relations connect-
ing them. As we have already mentioned, the dis-
course structure of the text is represented by the
DT. In this section, we will present the approach
for incorporating this DT into the SAN.

To provide the discourse structure of the text we
use a state-of-the-art discourse parser (Joty et al.,
2013) which constructs a hierarchically organized
dependency tree for the input text. The text anno-
tated with discourse relations will be transmitted
to the attention network. Whereas the SAN cannot
encapsulate the whole discourse tree, we need to
detect the essential dependencies existing among
words that should be included in the model. Each
discourse unit (sequence of words) corresponding
to some leaf in DT is connected to its ancestor
non-terminal node labeled by the rhetoric relation
referred to this EDU. For example, in the passage
and its DT shown in Fig. 3, the words do not attend

to all of the left and right neighbors in the context,
on the contrary, the words finds and clinicians are
connected to their ancestor labeled by Attributions,
while the pneumonia attends to its ancestor Cause
which also depends on Attributions. This sequence
of connections fully reflects the discourse organi-
zation of the text.

Formally, given input token sequence S =
{s1, s2, ..., sn} of length n, we first pass it through
the discourse parser to split into the EDUs and
generate the discourse dependencies existing be-
tween them. The input sequence after parsing
is enriched with the discourse relations Srel =
{rel1, edu1, rel2, edu2, ..., relm, edum} of length
m where edui = {sk, sk+1, .., sk+K}, and K is
the number of tokens assigned to the ith EDU. We
should notice that edui could be an empty set if reli
connects two non-terminals nodes corresponding to
the sub-trees in the DT (see contrast→elaboration
relations in Fig. 3). Then, we should retrieve the
ancestor nodes for each of the word si and the
rhetoric relation reli. To provide this we traverse
the discourse dependency tree, and the ancestor
node set Pi is derived for each si and reli. Finally,
in an analogy with syntax-guided SAN a discourse
dependency of interest mask M is obtained. M is
(n+m)× (n+m) matrix, where the elements in
each row denote the dependency mask of all tokens
to the row-index token. M [i, j] = 1 means that
token si is the ancestor node of token sj .

M [i, j] =

{
1 if j ∈ Pi or j = i

0 otherwise.

To obtain the discourse-aware representation of
the text we project the last layer output H of size L
calculated by the original transformer encoder into
the distinct key, value, and query representations of
dimensions < L × dk, L × dq, L × dv >, respec-
tively, denoted < K ′

i, Q
′
i, V

′
i > for each headword

i. Then a dot product is computed to score key-
query pairs with the dependency of interest mask
to obtain attention weights of dimension L × L,
denoted A′

i:

A′
i = Softmax(

M
(
Q′

iK
′T
i

)
√
dk

)

The attention weight A′
i is multiplied by V ′

i to
obtain the discourse-aware token representations:
W ′

i = A′
iV

′
i . W ′

i for all heads are concatenated
and passed through a feed-forward layer. After
passing through another feed-forward layer, a layer
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Discourse-Aware Self Attention Layer Dual Context Aggregation

Figure 1: Architecture of the discourse-aware model.

normalization is applied to the sum of output and
initial representation to obtain the final H ′

disc =
{h′0, h′1, ..., h′n}.

Finally, we summarize the two text representa-
tions, where the former is obtained from the stan-
dard transformer encoder H , and the latter is the
discourse-aware text representation H ′

disc, finally
Hdisc = H +H ′

disc.

3.1.2 Answer Detection
Having identified the model for calculating
discourse-aware text representation, we could pro-
ceed with the MRC task. MRC is the ability to
answer the question based on the input paragraph
of the text. As we have already mentioned, in this
work, we consider a so-called span-based MRC,
where the answer should be found as the span of
the input passage referring to the question. For-
mally, we can define the span-based MRC by a
triple < P,Q,A >, where P is the text paragraph
which is the basis for the question Q, and A is the
correct answer to the question.

The input data which is fed to the transformer
encoder is performed as [CLS] P [SEP] Q [SEP],
where the [CLS] and [SEP] are the special tokens
utilized in the BERT model.

We use BERT model as the transformer encoder,
so, the [CLS] token representation calculated by
the BERT encoder for the input sequence is used as
the contextualized representation H of the whole
text passage and question. Finally, H goes through
the linguistically enriched SAN in order to obtain
H ′

ling and H ling, where ling ∈ [synt, sem, disc]
that refers to the syntax, semantic, and discourse-
aware SAN, respectively. H ling is fed to a linear

layer to obtain the probability distribution over the
start and end positions of the answer in the text
through a softmax layer.

In the work, we propose to analyze the influence
of various linguistic characteristics on the MRC.
So, for the experiments, we will use both the stan-
dalone H ling, and their combination, calculated as
the sum of the individual H ling.

3.2 MRC Pipeline

Fig. 2 demonstrates the architecture of the whole
pipeline that we introduce to perform the MRC
task. All in all the main components of the model
are as follows:

1. Linguistic data preparation, which extracts,
organizes, and aligns linguistic features at var-
ious levels of knowledge abstraction. There
the system parses the input text passage to ob-
tain relevant linguistically enriched structures
that will be further utilized in neural model
performance. Discourse after-parser is respon-
sible for enrichment of the input sequence
with the discourse relations revealed form the
DT, Srel.

2. Deep learning component actually perform-
ing MRC. This block provides encoding of
the input passage and related questions us-
ing the classical transformer encoder as long
as the additional linguistic feature extraction.
The output of the context aggregation block is
the representation H ling, which is the sum of
context-based text embedding and the embed-
ding provided by linguistically-guided SAN.
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DL Component

Linguistic data preparation component

Transformer 

encoder

Syntax SAN Semantic SAN Discourse SAN

Context aggregation MRC Layer

Syntactic parser Semantic (AMR) parser Discourse parser

Discourse after-parser

Answer

question passage

Figure 2: Architecture of linguistically-enabled MRC system.

Finally, this H ling is used to perform the MRC
task.

The discourse SAN block is the one introduced
in Section 3.1.1. To provide the syntactic- and
semantic-aware models we use the state-of-the-
art models described in Sections 2.1.1 and 2.1.2.
Specifically, we implement syntax-guided SAN
by (Zhang et al., 2020b) and Sem-Bert by (Zhang
et al., 2020a). These models are able to encapsu-
late the corresponding linguistic features into the
transformer-based models that help to achieve an
accuracy gain for the tasks related to MRC.

4 Experiments

In this work, we rely on four QA datasets with long,
complex, multi-hop questions to observe if/how
syntactic, semantic, and, mainly, discourse-level
features help to provide the correct answers. As the
baseline, we use fine-tuned BERT model. Besides,
we compare the performance of our system with
the current state-of-the-art results published or ob-
tained from the leaderboard for the corresponding
dataset.

4.1 Datasets and Setup

The experimental evaluation has been performed
on several extracting reading comprehension En-
glish datasets. First, we verified the model on
the well-known SQuAD datasets (Rajpurkar et al.,

2016, 2018). then we evaluated how the intro-
duced MRC model can cope with the more com-
plex questions that require language comprehen-
sion and understanding of the full text rather than
just a small paragraph. As the example of complex
questions datasets, we consider NewsQA (Trischler
et al., 2017), QA in Context (QuAC) dataset (Choi
et al., 2020), and multi-sentence questions (MSQ)
(Burchell et al., 2020).

Stanford Question Answering Dataset (SQuAD)
is a reading comprehension dataset, consisting
of questions posed by crowd-workers on a set
of Wikipedia articles, where the answer to ev-
ery question is a segment of text from the corre-
sponding reading passage. SQuAD contains more
than 100,000 question-answer pairs on 500 articles,
which is significantly larger than previous reading
comprehension datasets. We use two versions of
this corpus: SQuAD 1.1 and SQuAD 2.0, where
the latter also includes unanswerable questions so
that we can test the ability of the model to detect
the questions that cannot be answered based on the
provided paragraph. F1 score that measures the
weighted average of the word-level precision and
recall rate is used to evaluate the performance of
the models.

NewsQA dataset consists of 100K QA pairs
written by humans for CNN news articles. Answers
are typically the multiword spans of the source text,
as in the SQuAD there are unanswerable questions
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presented. The main challenge of this dataset is
that a significant proportion of questions cannot
be solved without reasoning, i.e. understanding
conceptual overlap or identifying the synonyms.

MSQ dataset uses the Stack Exchange Data
Explorer, an open-source tool for running arbi-
trary queries against public data from the Stack
Exchange network. The authors of this corpora
chose 93 sites within the network and queried each
site for entries with at least two question marks
in the body of the question. Also, the authors fil-
tered too short (under 5 characters) and too long
(over 300 characters), and badly formed questions.
After cleaning and processing, 162,745 questions
from 93 topics were extracted. This dataset in-
cludes the questions that consist of several sequen-
tial questions, and in order to answer them right,
they should be considered as the one. We are not
aware of any works that has attempted to improve
QA performance on MSQs so far.

QuAC dataset has 100K QA pairs created by
two crowd workers who are asking and answer-
ing questions about a hidden Wikipedia text. This
dataset is aimed at enabling the MRC model to
answer the latest question by comprehending not
only the given context passage but all the dialogue
that has been seen so far.

4.2 Results

To assess the influence of different linguistic fea-
tures on the model performance we divided our ex-
periments into two parts. Firstly, we provide the re-
sults on SQuAD datasets, then we present the eval-
uation on the more complex (w.r.t. the questions’
design) NewsQA, QuAC, and MSQ datasets. In all
experiments, we calculate F1 score as the weighted
average between precision and recall. The results
achieved by the introduced MRC model are pre-
sented in the bottom block of the table. We also
show the results of the state-of-the-art models pre-
sented in the literature or public leaderboards (*
symbol is used to refer to the unpublished works)
for the available datasets (upper block). The results
achieved by the MRC models relying on discourse
information are in bold.

SQuAD. Our performance on both SQuAD 1.1
and 2.0 test data is shown in Table 1. The de-
fault MRC (baseline) employs neither syntactic nor
semantic information, this is a typical fine-tuned
cased BERT used as the encoder for the question
and the passage. As we move towards syntactic,

v1.1 test v2.0 testDataset/settings
F1 F1

SQuAD leaderboard
FPNet* - 93.18
Retro-Reader (Zhang
et al., 2020c)

- 92.98

ALBERT (Lan et al.,
2020)

- 92.20

LUKE* 95.4 -
Baseline 88.61 83.98
Syntax MRC 89.90 87.13
Semantic MRC 90.60 88.76
Discourse MRC 90.08 88.60
Syntax w. semantic w.
discourse MRC 93.14 90.20

Table 1: F1 scores (%) on SQuAD 1.1 (v1.1) and
SQuAD 2.0 (v2.0) datasets.

NewsQA QuAC MSQDataset/settings
F1 F1 F1

literature + QuAC leaderboard
SpanBERT
(Joshi et al.,
2020)

73.6 - -

DecaProp (Tay
et al., 2018)

66.3 - -

RoR* - 74.9 -
FlowQA (Huang
et al., 2019)

- 64.1 -

Baseline 66.48 65.69 60.66
Syntax MRC 70.95 71.09 66.79
Semantic MRC 71.84 70.15 66.55
Discourse MRC 72.13 72.40 67.80
Syntax w.
semantic w.
discourse MRC

75.05 74.88 71.65

Table 2: F1 scores (%) on complex questions datasets.
The performance of other MRC models on MSQ
dataset has not been published yet.

semantic, and discourse levels the average perfor-
mance gain is 2.2, 3.4, and 3% respectively. The
improvement of the integrated system is 5.4%. De-
spite the fact that the introduced model could not
outperform the best both single (such as ALBERT)
and ensemble (FPNet) models, we can observe that
it boosts the default linguistic-free baseline essen-
tially.

Complex datasets. Table 2 shows the result on
NewsQA, QuAC, and MSQ. As we proceed to-
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wards evaluation in the datasets of more complex
questions, the performance drops up to 20%. Anal-
ogously to Table 1, the default MRC employs none
of the additional linguistic information. Whereas
the absolute performance value is lower than in Ta-
ble 1, the performance boost due to linguistic infor-
mation is higher. The average contributions of syn-
tactic, semantic, and discourse levels are 5.3, 5.2,
and 6.5% respectively. One can observe that con-
tribution of discourse-level features is the highest
in this evaluation domain of longer, multi-sentence
questions (MSQ). The improvement of the inte-
grated system is almost 11% for MSQ, and 9.5%
on average. Hence, the more long and complex the
questions are, the higher the impact of linguistic
information, especially discourse-level. We should
also mention that the introduced ensemble model
outperforms both the stand-alone fine-tuned BERT
and current state-of-the-art models for NewsQA
and achieves comparable results on QuAC.

4.3 Case Study

Finally, let us consider a case study, where the
linguistic-free BERT model provides the wrong re-
sult answering the question, while the introduced
discourse-aware MRC model can answer the ques-
tion correctly. Bellow, there are an input passage
and the question regarding it.

P: Viruses, bacteria, and fungi can all cause
pneumonia. In the United States, common causes
of viral pneumonia are influenza and respiratory
syncytial virus. A common cause of bacterial pneu-
monia is Streptococcus pneumonia. However, clin-
icians are not always able to find out which germ
caused someone to get sick with pneumonia.

Q: Who experience difficulties finding causes for
pneumonia?

The answer found by ELMO is Viruses, bacteria,
and fungi, which, indeed, is not correct. The cor-
rect answer is clinicians. MRC fails miserably here
associating virus, bacteria, and fungi with Who.
Also, MRC failed to match the question with the
sentence “However, clinicians are not always able
to find out which germ caused someone to get sick
with pneumonia.”. The introduced discourse-aware
model answers the question as “Clinicians are not
always able to find out.”. Let us consider the dis-
course structure for the passage and the question to
understand the influence of discourse knowledge
while dealing with this example.

The DT for this passage is shown in Fig. 3. In

accordance with the constructed DT, we have a
mapping between: Q: attribution→ P: attribution,
Q: cause→ P: cause, Q: “causes”→ P: “caused”.
This information allows the model to attend each
word to the relevant text spans in the input passage
and, thus, to find the correct answer to the question.

DT for Passage: 

contrast  

  elaboration  

    TEXT: Viruses, bacteria, and fungi can all cause pneumonia. 

    elaboration  

      cause 

        TEXT: Common causes of viral pneumonia are  

        TEXT: influenza and respiratory syncytial virus . 

      TEXT: A common cause of bacterial pneumonia is Streptococcus pneumonia . 

  attribution 

    TEXT: However, clinicians are not always able to find out 

    cause  

      TEXT: which germ caused someone 

      TEXT: to get sick with pneumonia. 

DT for Q: 

attribution 

  TEXT: Who experience difficulties 

Figure 3: The discourse tree (DT) for text to chose
an answer from (on the top) and for the question (on
the bottom) with the mappings between corresponding
nodes.

5 Conclusion

In this paper, we analyzed various linguistically
enriched deep neural models and assessed the in-
fluence of semantic, syntax, and discourse on their
performance on MRC tasks. While, modern sys-
tems are usually linguistic-free or rely on some
independent linguistic characteristic, such as syn-
tax or semantic individually, we claim that their
combination could provide even higher accuracy
gain. We also introduce the approach to incorpo-
rate discourse structure into the transformer-based
model, which has been proven to be necessary for
answering complex multi-sentence questions.

We have shown that the combination of three
additional features encoded into a neural MRC
is able to answer lengthy and complex questions
better than the linguistic-free models, even the
ones fine-tuned on the observed datasets. The
introduced discourse-aware MRC model outper-
formed standalone syntax-guided (Zhang et al.,
2020b) and semantic-enhanced models (Zhang
et al., 2020a) for all the observed datasets. Al-
though our MRC system did not achieve state-of-
the-art results on some of the evaluation datasets
(e.g., on the SQuAD), it demonstrated the superior-
ity of integrated syntax/semantic/discourse subsys-
tems in multiple diverse QA domains with complex
questions.



452

References
Farah Benamara, Maite Taboada, and Yannick Mathieu.

2017. Evaluative language beyond bags of words:
Linguistic insights and computational applications.
Computational Linguistics, 43.

Laurie Burchell, Jie Chi, Tom Hosking, Nina Markl,
and Bonnie Webber. 2020. Querent intent in multi-
sentence questions. arXiv:2010.08980.

Tuhin Chakrabarty, Christopher Hidey, Smaranda
Muresan, Kathleen McKeown, and Alyssa Hwang.
2020. AmperSand: Argument mining for persuasive
online discussions. In EMNLP-IJCNLP 2019 - 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and 9th International Joint Con-
ference on Natural Language Processing, Proceed-
ings of the Conference.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. In EMNLP 2016 - Conference on Empiri-
cal Methods in Natural Language Processing, Pro-
ceedings.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar,
Wen Tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. 2020. QUAC: Question answering in
context. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2018.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL HLT 2019 - 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies - Proceedings of the Conference, volume 1.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-based single-document summariza-
tion with compression and anaphoricity constraints.
In 54th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2016 - Long Papers, vol-
ume 4.

Boris A. Galitsky, Sergei O. Kuznetsov, and Daniel
Usikov. 2013. Parse thicket representation for multi-
sentence search. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
volume 7735 LNCS.

Jiabao Guo, Gang Liu, and Caiquan Xiong. 2019. Mul-
tiple attention networks with temporal convolution
for machine reading comprehension. In ICEIEC
2019 - Proceedings of 2019 IEEE 9th International
Conference on Electronics Information and Emer-
gency Communication.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In ACL 2018

- 56th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference
(Long Papers), volume 2.

Minghao Hu, Furu Wei, Yuxing Peng, Zhen Huang,
Nan Yang, and Dongsheng Li. 2019. Read + verify:
Machine reading comprehension with unanswerable
questions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33(01).

Hsin Yuan Huang, Wen Tau Yih, and Eunsol Choi.
2019. FlowQA: Grasping flow in history for con-
versational machine comprehension. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and
Yashar Mehdad. 2013. Combining intra- and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In ACL 2013 - 51st Annual Meet-
ing of the Association for Computational Linguistics,
Proceedings of the Conference, volume 1.

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and Jan
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