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Abstract

To fully model human-like ability to ask
questions, automatic question generation (QG)
models must be able to produce multiple ex-
pressions of the same question with differ-
ent levels of detail. Unfortunately, existing
datasets available for learning QG do not in-
clude paraphrases or question variations affect-
ing a model’s ability to learn this capability.
We present FIRS, a dataset containing human-
generated fact-infused rewrites of questions
from the widely-used SQuAD dataset to ad-
dress this limitation. Questions in FIRS were
obtained by combining a given question with
facts of entities referenced in the question. We
study a double encoder-decoder model, Fact-
Infused Question Generator (FIQG ), for learn-
ing to generate fact-infused questions from a
given question. Experimental results show
that FIQG effectively incorporates informa-
tion from facts to add more detail to a given
question. To the best of our knowledge, ours
is the first study to present fact-infusion as a
novel form of question paraphrasing.

1 Introduction

Recently, automatic Question Generation (QG) is
being addressed for generating natural language
questions for a given input text passage. Viewed as
the reverse of the well-studied question answering
task (QA), QG has been applied in education and
tutoring (Heilman and Smith, 2010; Lindberg et al.,
2013), dialog systems and chatbots (Shum et al.,
2018), as well as for improving QA systems (Duan
et al., 2017; Tang et al., 2018).

Various deep learning models are being rapidly
developed for QG (Talmor and Berant, 2018; Kim
et al., 2019; Tuan et al., 2020; Pan et al., 2020; Su
et al., 2020; Wang et al., 2020a). However, it is only
recently that QG studies have started focusing on an

∗*Equal contribution. All work was done at Institute of
Data Science, NUS.

important aspect of the human question generation
process known as paraphrasing, or the ability to
ask questions in diverse ways all expressing the
same intent (Harrison and Walker, 2018; Wang
et al., 2020b).

Paraphrasing ability has been identified as a nec-
essary aspect of learning human-like language gen-
eration (Shum et al., 2018; Huang et al., 2020) and
was previously studied in context of community
QA (Liang et al., 2016; Kunneman et al., 2019;
Hosking and Lapata, 2021). These works address
the identification of synonymous and syntactic
question variations such as (“What’s the weight
of an elephant in kg?”; “How heavy is an ele-
phant?”). In addition to synonymous variations,
human beings are also adept at generating ques-
tions expressing the same intent with varying level
of details. For example, consider a QA pair from
the SQuAD dataset1 shown in Table 1. SQuAD
is one of the widely-used datasets for training QG
models and contains about 100K training instances
made up of an answer context, the answer string,
and a “correct” question (Rajpurkar et al., 2016).
We show in Table 1, fact-infused rewrites (or alter-
natively, variations) for the SQuAD question: “In
what year did IBM get its name?”. Except question
2 which is a synonymous variation, the other varia-
tions include additional details of the entity “IBM”
obtained from Google’s Entity Search API.2

We argue that question variations that include
more detail can provide a form of query expansion
and are likely to benefit downstream applications.
Indeed, it has been observed that content words and
named-entities referenced in the question improve
the answerability of a question (Nema and Khapra,
2018) and result in improved QA and reading com-
prehension performance through the addition of

1https://rajpurkar.github.io/SQuAD-explorer/
2https://developers.google.com/knowledge-graph
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SQuAD QA Pair
Passage Title: IBM
Answer Context: The company originated in 1911 as the Computing-Tabulating-Recording Company (CTR)
through the consolidation of The Tabulating Machine Company, the International Time Recording Company,
the Computing Scale Company and the Bundy Manufacturing Company. CTR was renamed “International
Business Machines” in 1924, a name which Thomas J. Watson first used for a CTR Canadian subsidiary.
The initialism IBM followed. Securities analysts nicknamed the company Big Blue for its size
and common use of the color in products, packaging and its logo.

Question: In what year did IBM get its name?

Google Entity Search Result for the query “IBM”: International Business Machines Corporation is
an American multinational technology company headquartered in Armonk, New York, with operations
in over 170 countries.
Human-generated Fact-Infused Variations:
1. In what year did International Business Machines Corporation get its name?
2. When did the IBM get its name?
3. In what year did multinational technology company IBM get its name?
4. In what year did American company IBM get its name?

Table 1: Example from the FIRS dataset.

constraints on the candidate answers (Chakrabarti,
2020; Wang et al., 2016; Steuer et al., 2020; Huang
et al., 2019). We refer to question variations ob-
tained by incorporating facts of relevant entities
into a question as “fact-infused question rewrites”.
Fact-infused question rewrites add details to an
existing question without changing its underlying
intent thereby comprising a form of paraphrasing.

How can we combine a given question with facts
of relevant entities to generate question variations
with more details? We address this precise question
in our paper and make the following contributions:

1. We present FIRS, a novel dataset contain-
ing Fact-Infused Rewrites of SQuAD ques-
tions. FIRS contains approximately 6.9K
paraphrases of about 1.5K questions that were
manually-generated by crowdworkers on the
Amazon Mechanical Turk platform.3

Unlike mere synonymous paraphrases avail-
able in existing paraphrase datasets such
as Quora Question Pairs4 and WikiAn-
swers (Fader et al., 2013) or prominent QG
datasets such as SQuAD (Rajpurkar et al.,
2016), HotPotQA (Yang et al., 2018), Com-
plexWebQA (Talmor and Berant, 2018), MS
MARCO (Nguyen et al., 2016) that only in-
corporate one reference question for a given
passage and answer-span pair, FIRS contains
multiple question variations obtained by aug-
menting a given question with different facts
of entities referenced in the question. To

3https://www.mturk.com/
4https://www.kaggle.com/c/quora-question-pairs

the best of our knowledge, FIRS is a first-
of-its-kind dataset available for learning fact-
infusion into a given question.5

2. We propose Fact-Infused Question Generator
(FIQG ), a novel attention-based sequence-
to-sequence model using a double encoder-
decoder set-up and an extended copy mech-
anism for learning to generate fact-infused
question rewrites. The performance of FIQG
is demonstrated on FIRS and compared
against state-of-the-art QG models modified
for fact-infused question rewriting. Our exper-
imental results show that FIQG significantly
outperforms other models on standard eval-
uation metrics. FIRS and the novel task of
fact-infusion not only complement on-going
studies on question generation and paraphras-
ing but also presents new challenges for learn-
ing models and evaluation metrics. In addi-
tion, we expect FIRS to be useful in studying
other QA-related tasks due its links with the
widely-used SQuAD dataset.

Organization: We summarize our dataset col-
lection process in Section 3. Next, we present
FIQG, our model for learning to generate fact-
infused question variations in Section 4. Section 5
contains a discussion on our experimental settings,
results and observations while Section 2 briefly
summarizes closely-related works. Finally, we pro-
vide future directions with conclusions in Section 6.

5FIRS and the code used in this paper along with the
Appendix can be downloaded for academic use from
https://github.com/NUS-IDS/ranlp21-fiqv.

https://github.com/NUS-IDS/ranlp21-fiqv
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2 Related Work

Models for question generation and question an-
swering are being rapidly developed in current
NLP research. We refer our reader to a survey by
Pan et al. (2019) for an overview on challenges,
existing approaches, as well as evaluation met-
rics for QG. Several QG models use LSTM-based
encoder-decoder setups with attention and copy
mechanisms (Zhou et al., 2018; Duan et al., 2017;
Zhao et al., 2018; Kim et al., 2019). Recent works
are focused on improving QG performance by in-
corporating external knowledge, semantic infor-
mation, and reinforcement learning into this basic
architecture (Nema et al., 2019; Pan et al., 2020;
Wang et al., 2020a; Majumder et al., 2021). Other
state-of-the-art QG frameworks include variational
autoencoders, graph convolutional networks and
transformers (Lee et al., 2020; Su et al., 2020; Kri-
angchaivech and Wangperawong, 2019).

Paraphrase generation is a related task for iden-
tifying semantically similar texts in applications
such as retrieval and question answering, query re-
formulation and dialog system applications (Liang
et al., 2016; Zhao and Wang, 2010). Similar
to QG, seq2seq models and encoder-decoder ar-
chitectures are common in paraphrase generation
works (Gupta et al., 2018) but other approaches
for paraphrase generation include variational auto-
encoders and translation models (Wang et al., 2019;
Li et al., 2018; Hosking and Lapata, 2021).

3 FIRS Dataset Creation

As highlighted in Section 1, existing datasets for
QA/QG and paraphrase generation do not include
question variations with details. To fill this gap, we
collected a new dataset by integrating the questions
in the widely-used Stanford Question Answering
Dataset (SQuAD) with relevant facts obtained from
Google’s Entity Search API as follows:

Collecting candidate question-entity pairs:
We selected from SQuAD, questions that refer to
named entities in either the (1) question or (2) an-
swer texts. In Table 1, we showed an example
where the relevant entity IBM is mentioned in the
question text. For the second case, consider a ques-
tion from the SQuAD dataset from a passage on
Computer Security, namely, “What is the source of
the quote?” with the corresponding answer string
“Reuters”. Nowhere in the SQuAD answer passage
for this question is a mention of what “Reuters” is
but using its entity description from Google, ex-

ample paraphrases created by our crowdworkers
for this question include “What news agency is
the source of the quote?” and “Which international
news organization is the source of the quote?”. This
example highlights how a vague “What is” ques-
tion can be expanded through the addition of the
answer type (“news agency”) detail.

We obtained the subset of 25, 316 questions
from the 100K questions in SQuAD which refer-
ence ‘tangible’ named-entity types such as people,
places, and organizations. Entity types referring to
concepts such as “quantity, percent etc” are not sup-
ported in currently-available knowledge resources.
For example, for the IBM question in Table 1, it is
difficult to obtain focused knowledge pertaining to
the answer “1924” (of type “date”).

Entity Name: IBM
Type: ‘Corporation’, ‘Thing’, ‘Organization’
Description: Computer hardware company
Detailed description: International Business Machines
Corporation is an American multinational technology
company headquartered in Armonk, New York, with
operations in over 170 countries.

Table 2: Search Result for “IBM” on the Entity Search API

Obtaining Entity Descriptions: We performed
entity searches through the Google Knowledge
Graph Entity Search API (GES) using the entity
names as query strings. Next, entity-type match
rules and text similarity thresholds were applied
based on the source SQuAD passage to identify the
correct entity description from the search results.
We were able to obtain descriptions for 62, 473
entities referenced in SQuAD questions using the
above process. Based on crowdsourced annotations
(described next), the precision of our search and
filtering is ∼ 97%. An example search result from
GES along with its different fields is shown for the
query “IBM” in Table 2.

We note that compared to other resources such as
DBpedia (Lehmann et al., 2015) and YAGO (Hof-
fart et al., 2013), the coverage of entities and facts
is several scales higher in GES.6 After manually
examining hundreds of results, we found GES to
be consistently superior and accurate for our pur-
pose. The “detailed description” fields were used
by our crowdworkers while creating the question
paraphrases. A limitation however is that there
is no official documentation on the resources and
algorithms employed in GES and neither is the full-

6https://en.wikipedia.org/wiki/Knowledge Graph



338

type hierarchy information directly available given
its proprietary nature.7

Creating ground truth paraphrases: We ran-
domly sampled a subset of about 1600 (question,
entity) pairs collected from Steps 1 and 2 for ob-
taining human-generated question variations. We
set up our task through the crowdsourcing platform
Amazon Mechanical Turk (AMT) following simi-
lar dataset collection efforts (Rajpurkar et al., 2016;
Yang et al., 2018; Harrison and Walker, 2018).
Each question, along with the entity descriptions
was examined by three crowdworkers. The answer
passage with the answer highlighted was also pro-
vided for the workers to identify cases where the
entity is not relevant.

We required the crowdworkers to have greater
than 95% HIT approval rate, a minimum of 10,000
HITs, and be located in the United States. The
workers were instructed to “Rewrite the original
question in more details using information from the
provided knowledge” and to “Ensure that the intent
of the original question remains the same.” Several
examples of good and bad rewrites along with de-
tailed explanations were included as guidance. At
least one and up to three different re-writings were
collected for each question per crowdworker.

Split #Questions #Rewrites #Avg
Train 1156 4973 4.30
Dev 128 531 4.14
Test 299 1400 4.63
Total #Questions: 1583, #Paraphrases: 6904

Table 3: Dataset Summary

Intra-Set w/ Base Question
SBAK 0.6285±0.2205 0.7412±0.2061
Jaccard 0.4033±0.1448 0.5178±0.1429
POS Tag Spread of Added Words
Nouns+Proper nouns 37.02%
Adpos+Adj+Det 32.68%
Verbs+Adverbs 9.2%
Other POS 21.1%

Table 4: Properties of FIRS

After pooling the results of the AMT task, fil-
tering out duplicates and variations that do not in-
clude any word from the extra knowledge (such
as rewrite#2 for IBM in Table 1), our dataset has

7Further details of the search result filtering processes are
provided in the Appendix (See Footnote 5).

an average of four fact-infused variations for each
question and is summarized in Table 3. We refer to
our dataset as FIRS for Fact-Infused Rewrites of
SQuAD questions.

3.1 Analysis of FIRS
We analyzed the question rewrites in FIRS along
two dimensions, namely, (i) Diversity and (ii) De-
tails. That is, a fact-infused rewrite should retain
the semantics of the base question (original ques-
tion from SQuAD) in terms of its intent but have
other words that add extra details of relevant en-
tities. To characterize this aspect, we employ the
Simple Approximate Bigram Kernel (SBAK) simi-
larity to measure the pairwise similarity between
two sentences. Dependency-tree based similarity
measures that account for partial matches and type
of dependency edges are known to better represent
semantic similarity between two sentences com-
pared to bag-of-words similarity functions (Ambati,
2008; Özateş et al., 2016).

In Table 4, the average values of pairwise simi-
larities of the fact-infused question variations with
each other are shown in the “Intra-Set” column
and with the base question are shown in the third
column. The high SBAK similarity is indicative
of semantic or intent similarity between the base
question and the variations. However, the Jaccard
overlap scores between the word sets (computed
without stopwords) is lower due to the additional
words present in the rewrites.8

The percentage spread of the parts-of-speech
tags for the words added in rewritten questions are
shown in Table 4. Not surprisingly, about 37% of
the newly-added words are proper nouns or nouns
whereas about 33% of words refer to adpositions,
adjectives, and determiners that are often assigned
to words surrounding noun phrases.9 These as-
signments indicate that the extra words added in
rewrites are often content words and therefore, can
be expected to improve the answerability of ques-
tions (Nema and Khapra, 2018).

Additional Notes on Data Collection: We per-
formed the following checks to meet the ethics,
quality, and reliability considerations for our col-
lected questions. As part of the AMT data col-
lection process, the anonymity and privacy of the
crowdworkers is already ensured. Furthermore, the
settings for the HIT approval rates, and location of

8The formulae from (Özateş et al., 2016) are included in
the Appendix for reference.

9https://universaldependencies.org
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the worker, described previously are set similar to
previous QA/QG data collection efforts to ensure
the English language skills of the data annotators.
A remuneration of $0.20 per assignment was paid
to each worker. A total of 75 workers helped in
creating our dataset, with about 47% of the workers
labeling less than 5 questions each.

We ensure quality of the collected question vari-
ations, by employing a set of rules based on the a)
similarity with the original question, (b) similarity
within the collected paraphrases, (c) presence of
the answer token, and (d) length of the rewritten
question versus the original question. About 3% of
the collected data was filtered out with the above
rules. Finally, at every step of data collection, we
performed checks manually on random subsets of
the collected data to ensure the reliability of the
named-entity taggers, the entity descriptions fil-
tered from GES results as well as the quality of the
rewrites produced by the workers.

4 Generating Fact-Infused Questions

Definition: Given two input sequences of |n| base
question words, Qb = q1, q2 . . . qn, and |m| words
of a fact related to an entity, F = f1, f2 . . . fm,
the objective of fact-infused question generation
is to generate an output sequence of |k| words,
Qp = p1, p2 . . . pk, such that Qp is a fact-infused
rewrite of Qb. That is, Qp includes specific details
from F while maintaining the intent of Qb and our
goal is to find Qp that maximizes the conditional
likelihood:

Qp = argmax
Q

P(Q|Qb, F )

Figure 1: Fact-Infused Question Generator Network.

We follow standard question generation ap-
proaches and adopt an attention-based encoder-

decoder architecture for estimating the probability
function, P (Bahdanau et al., 2015; Sutskever et al.,
2014; Kim et al., 2019). The main components
of our Fact-Infused Question Generator Network
(FIQG ) are depicted in the schematic diagram in
Figure 1 and summarized below:

Fact and Question Encoders: We use separate
encoders for representing the question and fact se-
quences. The encoders are one-layer bidirectional
LSTMs that extract contextual features from the
input question (or alternatively, fact) and represent
them as hidden states of the forward and back-
ward LSTMs. Let E i(Qb) and E i(F ) represent the
feature-rich embeddings of our base question and
fact, respectively (Zhou et al., 2018). Then,

E i(Qb) = [E i(q1), . . . , E i(qn)]
E i(F ) = [E i(f1), . . . , E i(fm)]

where E i(w) refers to the input feature embedding
for word w. Using LSTM notations, the hidden
state for the fact encoder is therefore given by

oFt = [
−→
h F

t ;
←−
h F

t ]

where
−→
h F

t and
←−
h F

t are the hidden vectors of the
forward and backward LSTMs, respectively, at
time t and ; represents the concatenation opera-
tor. The hidden state for the question encoder can
be similarly represented as

oQ
b

t = [
−→
h Qb

t ;
←−
h Qb

t ]

Next, applying the attention mechanism (Bah-
danau et al., 2015) for the question encoders over
its hidden states, the attention weighted sum of the
contextualized question can be written as

gt =
n∑

i=1

αtio
Qb

i

αti =
exp (ati)∑n

k=1 exp (atk)

ati = f(st−1,o
Qb

i )

where αtis represent the attention weights with pa-
rameters ati such that YQb

t = {αti}ni=1 is a prob-
ability distribution over the question words. The
values of ati depend on the hidden state of the
decoder at the previous timestep (st−1), and the
hidden state of the question encoder:

f(st−1,o
Qb

i ) = vᵀ
E tanh (WE [st−1;o

Qb

i ])
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where vE and WE are learnable parameters.
The attention weights and vectors for the fact

encoder are calculated similarly. We use γti to
refer to the parameterized and normalized attention
weights for the fact encoder and YF

t = {γtj}j=m
j=1

is a probability distribution over the fact words.
The context vector for the fact can be written as:

mt =
m∑
i=1

γtio
F
i

Decoder: The decoder takes the hidden states
from the question and fact encoders to generate
the paraphrased sequence of words. Our decoder
is a uni-directional LSTM network whose state
and context vectors are represented by st and it,
respectively, such that:

it = [Ed(pt−1);mt−1;gt−1]

st = LSTM(it, st−1)

s0 =
←−
h Qb

1

Here Ed refers to the embedding from the decoder
for the paraphrase word, pt−1. The current context
and decoder state vectors are combined with the
attention vector from the question encoder to obtain
the readout state and subsequently the generative
probability distribution over the vocabulary using
a maxout layer (Goodfellow et al., 2013):

rt = Wrst +Urit +Vrgt−1

YV
t = softmax(Wy maxout(rt))

The matrices Wy, Wr, Ur and Vr are all learned
during training.

Copy mechanism: Recent works for QG handle
rare words by employing a pointer network that
enables both copying of the words from the input
source (answer passage) and generation of words
during the decoding process (Gulcehre et al., 2016;
See et al., 2017). For question rewriting using
facts, we extend this copy mechanism to enable
copying from both the input fact words as well as
the question words. The copy switch in our case is
a softmax function given by

p = softmax
(
Wcopyst+Ucopygt+Zcopymt+b

)
where the matrices Wcopy ∈ R3×|st|, Ucopy ∈
R3×|gt| and Zcopy ∈ R3×|mt| are learnable parame-
ters and b is the bias parameter.

During the decoding step, p is sampled to (1)
copy the words from the question, based on YQ

t ,
the normalized, attention weights from the question
encoder, or, (2) copy words from the fact based on
YF

t , the normalized, attention weights from the
fact encoder, or (3) generate a new word, based on
YV

t , the generative distribution on the vocabulary
estimated during learning.

4.1 Baselines
Considering the novelty of our proposed task, we
are limited in our choice of baselines for compar-
ing with FIQG. However, we note that similar to
our objective which involves the infusion of parts
of an entity fact into a given base question along
with possible re-writing of the “wh”-word (for ex-
ample, “Where” to “Which <location>”), existing
QG approaches involve the inclusion of parts of
an answer passage into a generated question tem-
plate using attention and copy mechanisms. Thus,
a straightforward application of QG models for our
task would involve retraining the model using input
passages comprising of both the base question and
the fact sentences.

We also highlight that existing paraphrase gen-
eration models operate on a source question and
generate synonymous variations by substituting
specific words with related words and syntactic
variations by using other exemplar questions (Fu
et al., 2019; Hosking and Lapata, 2021). Conse-
quently, we find QG models more appropriate for
fact-infusion and compare FIQG with the follow-
ing state-of-the-art QG baselines:

1. NQG10 is one of the earliest neural seq2seq
models proposed for QG using feature-rich
input embeddings comprising of words, an-
swer position, parts-of-speech, NER and case
information (Zhou et al., 2018).

2. SGDQG11 is a recent model designed to gen-
erate complex questions that require reason-
ing on multiple pieces of information (for ex-
ample, in the HotpotQA dataset). SGDQG
uses semantic graph information constructed
from NLP relations between words in the pas-
sages (Pan et al., 2020).

3. GSAQG12 uses maxout pointer mechanism
10https://github.com/magic282/NQG
11https://github.com/YuxiXie/SG-Deep-Question-

Generation
12https://github.com/seanie12/neural-question-generation
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with gated self-attention network to handle
long text inputs (Zhao et al., 2018).

4. RefNet13 is a two decoder based model where
a second decoder refines the output from the
first decoder for generating more complete
questions (Nema et al., 2019).

5. ASs2s14 employs an answer-separated
seq2seq approach along with a keyword-net
and interrogative word identification to handle
irrelevant words in generated questions (Kim
et al., 2019).

We note that QG models are being widely inves-
tigated in current research and some recent inno-
vative aspects in learning QG include the use of
variational encoders, graph convolutional networks,
and incorporation of global and semantic knowl-
edge (Pan et al., 2020; Wang et al., 2020a; Su et al.,
2020; Majumder et al., 2021). Keeping the nov-
elty of our task and dataset in mind, we compare
against state-of-the-art models that use components
very similar to FIQG and defer the investigation of
more recent QG research on FIRS for future.

5 Experiments and Results

Implementation: We implemented FIQG in
Python.15 The hidden state sizes for the two en-
coders and the decoder are set to 256, whereas the
depth for the attention mechanism is set to 512.
The readout size is 128 whereas vocabulary size is
∼ 20K words, and the target sequence length was
set to 50. Dropout rates are set to 0.5 for the dense
layers and 0.3 for the attention layers, respectively.
A learning rate of 0.001 was used.

Feature-rich embeddings (Zhou et al., 2018)
were used for input representations using word,
parts-of-speech tags and indicator embeddings. In-
dicator features using the BIO representation are
incorporated in QG models to indicate the answer
span in a passage to focus the question around the
answer. For our case, this aspect corresponds to the
named-entity whose fact we are integrating into the
question. However, to differentiate the two cases,
namely, when the entity is part of the answer versus
when the entity name is part of the question, we
use an extended set of tags: {BA, IA, BN, IN, O}.

13https://github.com/PrekshaNema25/RefNet-QG
14https://github.com/yanghoonkim/NQG ASs2s
15Python 3.7.7, NLTK 3.5, Stanza 1.0.1 libraries were used

in feature extraction whereas the deep learning models were
implemented in Tensorflow 2.3.0.

Fact Extraction: The entity descriptions ob-
tained from Google are brief summaries compris-
ing 1-3 long sentences. The crowdworkers however
only use specific segments of these summaries or
entity facts in their paraphrases. To model this
aspect, we used MinIE16 an unsupervised, domain-
independent fact extraction tool on our entity de-
scriptions and mapped a specific fact from the sum-
mary with each rewrite (Gashteovski et al., 2017).
We provide an example in the Appendix (Foot-
note 5).

Evaluation: Following existing QG works, we
use BLEU (Papineni et al., 2002), METEOR (Lavie
and Denkowski, 2009), and ROUGE-L (Lin, 2004)
scores to characterize model performance. All
three measures are based on calculating the n-gram
overlap between human-generated “gold” refer-
ences and machine-generated predictions.

All baseline models were set up using the con-
figuration settings shared by the authors. As in
existing QG studies, we uniformly use pretrained
embeddings from GloVe17 (Pennington et al., 2014)
for word representations and tune all models us-
ing the BLEU−4 score on the dev portion of the
dataset. All experiments were performed on a sin-
gle GPU on an Nvidia cluster and FIQG took ap-
proximately 2 hours to train.

5.1 Results and Observations

Fact-Infusion Performance: In Table 5, we sum-
marize the performance of FIQG and the base-
line models using the different evaluation mea-
sures. FIQG is able to significantly outperform
all baselines on the test data. Even though the
number of training instances available in FIRS is
significantly smaller than datasets such as SQuAD,
fact-infused rewriting can be expected to be eas-
ier than standard QG since it involves combining
a fact with a base question along with potentially
rewriting the wh-word in contrast with QG where
models learn to generate questions for a given pas-
sage and an answer-span. Indeed on SQuAD, the
state-of-the-art QG models obtain BLEU-4 and
METEOR scores about half of that obtained on
FIRS by FIQG. As such, the BLEU scores of the
modified QG baselines on FIRS are also reasonably
high although we note that separately representing
the question and fact sentences via the double en-
coder in FIQG results in superior performance over

16https://github.com/uma-pi1/minie
17http://nlp.stanford.edu/data/glove.840B.300d.zip
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
NQG 0.431 0.318 0.247 0.195 0.222 0.484
SGDQG 0.524 0.374 0.278 0.209 0.233 0.482
RefNet 0.567 0.469 0.397 0.338 0.381 0.562
GSAQG 0.572 0.472 0.390 0.322 0.293 0.589
ASs2s 0.614 0.497 0.411 0.342 0.292 0.579
FIQG (Our Model) 0.729 0.623 0.547 0.486 0.382 0.686

Ablation Experiments
-GloVe 0.634 0.510 0.429 0.367 0.331 0.623
-Indicator Features 0.721 0.608 0.528 0.464 0.376 0.675
-POS Features 0.705 0.598 0.523 0.463 0.371 0.677
w/ Combined Indicator 0.717 0.608 0.531 0.469 0.376 0.676

Table 5: Question Paraphrase Generation Results on FIRS

the baselines. Indeed, statistically significant gains
are seen on all evaluation measures except the ME-
TEOR score for which the performance is similar
to that of RefNet.

Ablation Experiments: The results of our abla-
tion experiments are also shown in Table 5. Not
surprisingly, and as shown in other QG studies,
initializing our word embeddings with pretrained
embeddings results in improved question rewriting
performance. Without initialization from GloVe
vectors, we observe a significant drop in the scores.
Similarly, indicator features are known to help QG
by providing signals to the model on what parts of
the passage the generation should be focused on.
For our smaller sentences, excluding them yields a
small drop in performance. Moreover, discriminat-
ing between the two cases (answer versus question
entity) seems to help the model attain a minor im-
provement in performance over using a single set
of indicators as shown in the ‘w/ Combined Indi-
cator” row of Table 5. Although as observed in
Section 3.1, the extra “fact” words in rewrites are
often nouns and words related to nouns, excluding
POS tag information causes a small drop in the per-
formance. Based on these results, we can attribute
the overall performance of FIQG mostly to the
network architecture coupled with appropriately
initialized word embedding features.

Anecdotal observations: We show sample test
predictions with FIQG in Table 6 for discussion.
In the first example, a fact related to an entity men-
tioned in the question (“Martin Luther”) is being
utilized whereas in the second example, the fact
relates to “David Booth”, the answer entity. FIQG
missed some words from the human-specified vari-
ation (“target”) in the first case and gets the tense

wrong in the second example. However, we note
that the fact extracted from the summary did not
contain the extra initials whereas the tense is also
specified incorrectly in the base question from
SQuAD. Barring these minor aspects, the predic-
tions are legitimate and complete and in the second
example we also note the change in the wh-word.

Base Question: When did Martin Luther publish
his translation of the New Testament?
Entity Description: Martin Luther, O.S.A. was a
German professor of theology, composer, priest,
Augustinian monk, and a seminal figure in the
Protestant Reformation. Martin Luther was ordained to
the priesthood in 1507.

Fact: Martin Luther was ordained to the priesthood
in 1507.
Target: When did Martin Luther,
O.S.A., who was ordained to the priesthood in 1507,
publish his translation of the New Testament?
Prediction: when did martin luther, ordained to
priesthood 1507, publish his translation of
the new testament ?
Base question: Who decide to make a very large
donation to the university’s Booth School of Business?
Entity Description: David Gilbert Booth is an
American businessman, investor, and philanthropist.
He is the Executive Chairman of Dimensional Fund
Advisors, which he co-founded with Rex Sinquefield.

Fact: David Gilbert Booth is American businessman
Target: What American businessman decided
to make a very large donation to the university’s
Booth School of Business?
Prediction: what american businessman decide
to make a very large donation to the university ’s
booth school of business ?

Table 6: Anecdotes from FIQG predictions

6 Conclusions and Future Work

We presented FIRS, to the best of our knowledge, a
first-of-its-kind dataset containing fact-infused vari-
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ations of a subset of questions from SQuAD. We
proposed a double encoder-decoder model FIQG,
for learning to generate question variations through
fact infusion. FIQG is able to significantly outper-
form extensions of standard QG models on FIRS.

In future, we would like to investigate the use
of question variations on downstream tasks such
as QA, reading comprehension, and interactive di-
alog (Tang et al., 2018; Ribeiro et al., 2019; Gao
et al., 2020). Additionally, question variations avail-
able in FIRS can be used for learning diverse ques-
tion generation, adversarial models for QA, and
QG on multiple passages (Ren et al., 2018; Yang
et al., 2018; Gan and Ng, 2019). We would like to
explore these aspects as well as study novel learn-
ing methods such as variational auto-encoders and
reinforcement learning for improving performance
on the fact-infused question generation task (Misra
et al., 2018; Li et al., 2018).
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