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Abstract

In this paper we address the problem of
fine-tuned text generation with a limited
computational budget. For that, we use
a well-performing text generative adversar-
ial network (GAN) architecture - Diversity-
Promoting GAN (DPGAN), and attempted a
drop-in replacement of the LSTM layer with
a self-attention-based Transformer layer in or-
der to leverage their efficiency. The result-
ing Self-Attention DPGAN (SADPGAN) was
evaluated for performance, quality and diver-
sity of generated text and stability. Compu-
tational experiments suggested that a trans-
former architecture is unable to drop-in re-
place the LSTM layer, under-performing dur-
ing the pre-training phase and undergoing a
complete mode collapse during the GAN tun-
ing phase. Our results suggest that the trans-
former architecture need to be adapted before
it can be used as a replacement for RNNs in
text-generating GANs.

1 Introduction

Since the introduction of the Transformer in late
2017 by Vaswani et al. (2017), pure self-attention
architectures have become ubiquitous in the natural
language processing community.

Initially introduced by Bahdanau et al. (2015),
the self-attention mechanism proved to be particu-
larly useful in the context of neural machine transla-
tion to augment existing recurrent neural networks
(RNNs). Recurrent neural networks (RNNs), in-
troduced by Rumelhart et al. (1986) and expanded
by Hochreiter and Schmidhuber (1997); Cho et al.
(2014), were the state of the art in learning and gen-
erating sequential models, notably for texts. With
the addition of the attention mechanism, in the con-
text of machine translation, they could focus better
on the words and word combinations correspond-
ing to the same concepts in different languages and

focus on learning equivalences between them as
opposed to trying to infer them directly from the
whole excerpts of parallel texts used for learning.

Following the initial introduction of the atten-
tion mechanism to augment the RNNs, architec-
tures combining the two became de-facto state of
the art. Stacking RNN layers, adding pass-through
mechanisms and separating the architecture into
encoder and decoder with an attention layer in the
middle became a standard, powering among oth-
ers Google’s Neural Machine Translation system
(Wu et al., 2016; Johnson et al., 2017). Despite
impressive performance, those architectures had a
fundamental limitation to their ability to scale. The
RNN training and evaluation are sequential by their
nature, which means that architectures relying on
the RNNs could hardly benefit from the arrival of
massively parallel computing.

The innovation of the Transformer was to show
that it was possible to learn sequence-to-sequence
mapping while dispensing entirely with RNN lay-
ers, using only self-attention mechanisms (”Atten-
tion is all you need”) - Vaswani et al. (2017)). By
stacking several layers of self-attention networks to
form an encoder and a decoder, as well as introduc-
ing multi-head architectures, where each layer of
self-attention network could be trained in parallel,
the Transformer and architectures derived from it
scaled up easily and could be trained in parallel at
a scale that was previously unreachable.

That scalability enabled a continuous ramp-up
of performance through parameter and training
dataset size increase (Brown et al., 2020), which
eventually hurt itself against the limitations of rea-
sonable demands on computational power in de-
ployments. In turn, this led to an extensive research
into making Transformer-based architectures more
efficient, focusing at first on specific instances (Jiao
et al., 2020; Sanh et al., 2019) and more recently
on more general approaches (eg. Li et al. (2020);
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Mandava et al. (2020); Fedus et al. (2021); Ren
et al. (2021)). Combined with the existence of spe-
cialized, energy-efficient hardware that is highly
compatible with the Transformer architectures, this
make Transformer-based architectures an attractive
architecture to get the best value of limited compu-
tational budget.

The text-generating capabilities of the Trans-
former also gave rise to a new generation of models
specialized in text generation. Rather than mapping
texts between languages, they focused on mapping
a prompt to a text that would follow it. Google’s
BERT model (Devlin et al., 2019) isolated and
scaled up the Transformer encoder stack in order
to perform masked training - predicting masked
words in a text - referred to as autoencoding models
(Rumelhart et al., 1986; Hinton et al., 2006; Erhan
et al., 2010). On the other side of the spectrum,
OpenAI’s generative pre-training (GPT) family of
models (Radford et al., 2018, 2019; Brown et al.,
2020), focused on approximating the decoder stack
and using the tokens from the prompt in order to
initialize the hidden state of the self-attention mod-
ules stack - referred to as autoregressive models
(by similarity with statistical autoregressive meth-
ods (Yule, 1926; Wold, 1938; Slutzky, 1937; Box
and Jenkins, 1970), see Bowman et al. (2016) for
machine learning applications).

Despite their impressive performance, when it
comes to the text generation, both types of models
are essentially autoregressive and are trained by
max likelihood methods with regards to the train-
ing datasets. This poses several challenges. First,
the autoregressive models learn the next token as
a continuation of real texts they encounter in train-
ing, yet during the generation phase they continue
from the text they themselves have generated. This
means that during the generation phase they can
rapidly go off the deeper end into an uncharted ter-
ritory, they don’t have a statistical model, and start
generating degenerate output - a problem referred
to as exposure biais (Holtzman et al., 2020). So
far, solutions to this problem, such as scheduled
sampling (Bengio et al., 2015), are far from per-
fect and result in less diverse sampling and mode
collapse (Huszar, 2015). On top of that, the autore-
gressive nature of the model means that even in
the territory where it has learned an appropriate to-
ken distribution, it will still be learning potentially
undesirable biases (Hutchinson et al., 2020), with
no means to correct them other than to curate the

entire dataset used to train the model (reviewed in
depth by Bender et al. (2021)).

Trying to learn the explicit statistical structure
of natural language is, however, not the only way
to train generative models. Adversarial Generative
Networks (GANs) are a different training mode,
where a generative model learns to generate out-
puts that are indistinguishable from the ones in the
training dataset through a competition with a critic
model, trained in tandem with it. Introduced by
(Goodfellow et al., 2014), they are more robust to
output degeneration, given that they always train
in the generative mode, and require less compu-
tational resources than traditional auto regressive
models. Besides, a number of different pre-trained
critics can be used to eliminate undesired biases
or on the contrary, introduce desired ones, such as
specifying an artistic style of an image (Gatys et al.,
2015).

The adversarial learning approach has been
highly successful for training image generation
models, allowing high-quality image generation
(Brock et al., 2019), day-to-night or summer-
to-winter image translation (Isola et al., 2017),
or sketch-to-image translation (Lu et al., 2018).
GANs application to text generation, however, re-
mained relatively limited. A major reason for that
is that the sampling step leading to discrete and se-
quential token organization, needed for text genera-
tion, is problematic for gradient estimation, which
is essential for training GANs. As such, most exist-
ing text-generating GANs rely on a max-likelihood
autoregressive pre-training with the actual adver-
sarial training phase being short and using a small
learning rate, similar to a fine-tuning. Unfortu-
nately such an approach failed to address the short-
comings of the purely autoregressive models they
acquire during the pre-training phase.

However, recently de Masson d’Autume et al.
(2019) was able to demonstrate that it was possible
to train a text-generating GAN architecture from
scratch, thus avoiding entirely the problems en-
countered by autoregressive max-likelihood meth-
ods. A curious property of the Scratch-GAN he
developed, is that while it seems to solve problems
that plagues both RNNs and pure self-attention au-
toregressive models learning the explicit text token
distribution, the authors still opted for RNN blocks,
foregoing the advantages of Transformer architec-
tures in NLP and self-attention in image-generating
GANs (Zhang et al., 2019).
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Given the massive advantages of the Transformer
presents when it comes to training as well as with
regards to the amount of research performed to
make them more efficient, as well as better capa-
bilities of Transformers compared to GANs, we
wanted to know if it was possible to perform a
drop-in replacement of RNNs with Transformers.
Such a Transformer-based GAN could provide two
main benefits: the ability of produce higher quality
samples at a reduced computational cost compared
to traditional RNN-based GANs, and a more scal-
able language GAN.

In order to approach this question, we chose to
perform an experimental evaluation, based on a
classical text-generating GAN - Diversity Promot-
ing GAN (DPGAN), developed by Xu et al. (2018).
We chose DPGAN due to its straight-forwards ar-
chitecture and training mode, similarity of its re-
wards structure to the state of the art text-generating
GANs de Masson d’Autume et al. (2019) and the
presence of the maximum likelihood pre-training,
that we were expecting to be particularly favorable
to the Transformer layers. We refer to the DPGAN
with RNN layers replaced by a transformer as Self-
attention DPGAN (SADPGAN).

2 Related Work

The power of the Transformer architecture in the
language modelling tasks and its potential to fur-
ther improve existing GAN architectures did not
escape the attention of the machine learning com-
munity. So far, self-attention architectures in GANs
focused on image generation tasks. Perhaps the two
best known examples are TransGAN (Jiang et al.,
2021) and Self-Attention GAN (SAGAN) (Zhang
et al., 2019). More recent advances, such as the
introduction of Generative Adversarial Transform-
ers by Hudson and Zitnick (2021) have build on
the Transformer architecture even further, enabling
long-range correlation to improve over the exist-
ing state of art, showing a potential for it in the
GAN setting. However, a common point between
all of them is that they focus on the generation
of images, rather than texts, and use only a sin-
gle encoding layer for self attention or attempt to
modify self-attention mechanism to better suite the
image generation, diverging from the Transformer
architecture.

The approach to text generation by combining
the Transformer and GANs that comes closest to
ours is the SALSA-Text, developed by Gagnon-

Marchand et al. (2019). SALSA-Text is a text-
generating GAN build around a Transformer, dis-
carding the original layer normalization and replac-
ing it with the spectral layer normalization. In ad-
dition to that, SALSA-Text uses a modified Trans-
former architecture, with less layers and a different
structure, as well as a specific training regimen,
meaning it is more of a GAN built around a Trans-
former rather than a GAN where an RNN layer
has been replaced with a pure self-attention based
layer.

Here, we examine the Transformer applicability
as a general-purpose element that can be drop-in in
architectures requiring a latent space encoding and
thus directly replace RNNs structures as LSTMs
and Gated Recurrent Units (GRUs).

3 Contribution and Outline

Our contribution consisted in assessing the po-
tential of Transformers as a drop-in replacement
of LSTMs in text-generating GANs. Through
three different experiment involving SADPGAN,
we showed that Transformers, despite achieving
remarkable results in several NLP tasks, fail to
adapt to the adversarial learning and adversarial
fine-tuning context (Jeddi et al., 2020), causing
SADPGAN to consistently come short of the DP-
GAN performance and to exhibit severe mode col-
lapse. This results suggest that as of now, the Trans-
former can’t be directly used as a replacement for
LSTM without further architectural and training
mode changes.

4 Methodology

Our work is built upon an existing PyTorch imple-
mentation of DPGAN by Liu et al. (2020b).

We used an iterative approach, first implement-
ing a layer using exclusively Transformer encoders,
then adding the decoder stack with masking and
finally adding teacher forcing during training. For
each of these steps we compared the training results
to the original implementation.

Since our goal was to investigate the possibil-
ity of replacing LSTM layers in text-generating
GANs by dropping in Transformer layers, and not
to achieve new state of the art for text-generating
GANs, we kept our models relatively small: em-
bedding and hidden dimension of 32, Transformer
encoder/decoder with two layers, each with 4 atten-
tion heads of size 64.

The training loop for both GANs consisted in
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120 iterations of MLE pre-training for the gener-
ator followed by another 120 epochs of adversar-
ial training between the discriminator and gener-
ator. To assess the performance of both architec-
tures, we used two negative log likelihood met-
rics, NLLgen and NLLdiv which measure the
quality and respectively diversity of the gener-
ated text and (self)BLEU scores when using real
data. For the NLL metrics lower values corre-
spond to better results while for BLEU higher
scores are desirable. The code developed for
this project is available from https://github.

com/TheBlueHawk/RANLP21-70, specifically the
RANLP-2021 release. For the ease of use, it was
packaged integrated into the code from Liu et al.
(2020b).

5 Results and Discussion

5.1 Experiment #1

Following the example set by Jiang et al. (2021)
in image GANs, we first tried to drop-in a Trans-
former encoder block, ensuring that it would prop-
erly fit the rest of the GAN architecture. For this
preliminary experiment we trained both SADP-
GAN and DPGAN on a synthetic dataset with a
vocabulary of 5000 words.

As shown in figure 1, for SADPGAN we didn’t
observe any improvement during MLE training.
This can be explained by the choice of architecture:
using only Transformer encoders without combin-
ing them with up-sampling layers for image gen-
eration or using bidirectional attention heads as in
Devlin et al. (2019), doesn’t allow the model to
correctly learn how to produce realistic samples.

5.2 Experiment #2

Following the results of the first experiment, we
modified the Transformer block by adding a Trans-
former decoder after the Transformer encoder. Con-
trary to an encoder-only architecture, the addition
of the decoder require a second input, the output
vector (also know as target), which is fed to the first
masked multi-head attention layer of the decoder.
To leave a maximum freedom to the decoder when
generating sentences, we decided to feed it with
an empty vector. For this second experiment we
trained both model on real data, specifically the
Lin et al. (2014) annotation dataset using a pre-
trained Word2Vec embedding. Word samples were
obtained in parallel using multinomial sampling.

The set of modifications permitted SADPGAN

Figure 1: NLLdiv and NLLgen losses of SADPGAN
and DPGAN during the first experiment.

to improve the quality of the generated text during
the MLE pre-training iterations but the learning
curve flattened out rather quickly and performed
worse than the original implementation, with also a
decrease of output diversity. During the adversarial
training we observed a severe mode collapse: the
original DPGAN produced very similar sentences
while SADPGAN eventually produced exclusively
empty sentences. See table 1 for some samples
randomly drawn at the end of pre-training and ad-
versarial training.

The reason for this particular behaviour lies in
the role of the target vector, which act as a ground
truth in a teacher forcing scenario. This means
that parallel sampling cannot be performed without
forcing the use of the empty sentence as a refer-
ence.

5.3 Experiment #3

To address the problems of experiment #2 we used
two modifications: a new target vector and auto-
regressive sampling. As a target vector we used
the input sentence to the encoder but shifted right
by one position: this allowed a correct implemen-
tation of teacher forcing during the training phase.
During the evaluation phase or when sampling, we
don’t want the teacher to influence the output of

https://github.com/TheBlueHawk/RANLP21-70
https://github.com/TheBlueHawk/RANLP21-70
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DPGAN
pre a person sits on black motorcycle on a busy bench near the side
adv a man riding a motorcycle down a street

SADPGAN
pre flies a various a trash a while begs area in refrigerator
adv ”empty sentence”

Table 1: Text samples produced after pre-training (pre) and adversarial training (adv) by GAN architectures

Figure 2: NLLdiv and NLLgen losses of SADPGAN
and DPGAN during the second experiment.

the block, and thus we used a word-by-word auto-
regressive structure where the previously generated
text is reused as the input of the target vector of the
Transformer decoder.

The results of pre-training show a greater im-
provement of the quality of samples but at the cost
of severe lack of diversity, resulting in common
words repeated in sequence. Again, the adversarial
training further exacerbate the issues resulting in
total mode collapse. BLEU and self-BLEU scores
for different n-grams at the end of pre-training and
adversarial training are reported in table 2 for both
DPGAN and SADPGAN.

6 Conclusion

Following our results, we have observed that a
Transformer architecture cannot be used as a sim-
ple drop-in replacement for RNNs in the context of

Figure 3: NLLdiv and NLLgen losses of SADPGAN
and DPGAN during the third experiment

text-generating GANs, at least not in its unmodified
form.

This result is not entirely surprising. Despite
a great performance of the Transformer and its
derivatives in different NLP tasks, Transformer-
based architectures are all but simple to train, as
reviewed in Liu et al. (2020a).

Another problem with Transformer architectures
is their tendency to overfit the distribution of the
text they are learning and fail to generate novel text
in case insufficiently diverse and varied training
datasets are used. In the case of the DPGAN, the
small size of the training dataset and the relatively
small size of batches likely place us directly into
the overfitting territory. Upon the transition into
the adversarial training, this overfitting is likely
mutually amplified, leading to more and more de-
generate text outputs.
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BLEU Self-BLEU

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4

DPGAN
pre 0.73 0.497 0.306 0.185 0.77 0.537 0.327
adv 0.845 0.737 0.578 0.455 0.993 0.989 0.982

SADPGAN
pre 0.276 0.065 0.03 0.019 0.97 0.945 0.912
adv nan nan

Table 2: n-gram BLEU and self-BLEU scores for DPGAN and SADPGAN after pre-training and adversarial
training

A more fundamental problem is that in DPGAN,
we are still faced with the transition from the max-
likelihood training regime to a generative regime.
Which means that even with improved datasets, the
generator is likely to wander off into the uncharted
territory as it tries to generate a new token based
on the tokens it has already generated rather than
tokes sampled from the training dataset. While this
problem is present as well with the RNNs, it seems
that the output quality decay occurs faster with the
Transformer-based architecture.

Despite the existing wealth of text-generating
GANs, none, except for SALSA-text (Gagnon-
Marchand et al., 2019) are Transformer-based, but
persistently use RNNs, notably LSTM layers, in-
cluding in the most recent, state-of-the-art ones,
such as (de Masson d’Autume et al., 2019). In
case of SALSA-text, a modified architecture and a
different regularization methods are used, both in
two specific setups. It seems that part of this trend
in using RNNs rather than a Transformer-based
architecture is rooted in the existence of fundamen-
tal differences in the way the Transformer learns
compared to the RNNs, that make it particularly
vulnerable to the hazards of adversarial training
regiments.

As a result, we expect that developing text GAN
architectures using self-attention based architec-
tures instead of RNNs ones would require design-
ing new GAN architecture from scratch to ensure a
initialization and evaluation/reward structure that
would be compatible with the the Transformer layer.
A pure self-attention layer capable to be a drop-
in replacement for RNNs is still to be developed.
Given the similarity between the adversarial phase
occurring in the majority of current text-generating
GANs and the adversarial fine-tuning mechanism
(reviewed by eg. Jeddi et al. (2020)), we expect

that text-generating model fine-tuning to avoid un-
desirable patterns and adversarial prompts (such as
exemplified in Bender et al. (2021)) would not be
straightforwards and rely on the development of
more robust and stable self-attention architectures.

7 Future Work

While this paper presents a negative result, we did
not evaluate a number of approaches that could
stabilize the training of pure self-attention architec-
tures. Such approaches could prove to be key to
the development of self-attention architectures that
can be used as drop-in RNN layers replacements.

An interesting avenue is to build upon the
achievements of Gagnon-Marchand et al. (2019),
and start with a reduced Transformer architecture,
combined with a spectral normalization. Building
up on this idea, Noise Stability Regularization pro-
posed by Hua et al. (2021), suggested that noise
regularization methods were capable to signifi-
cantly improve the stability pre-trained pure self-
attention generative networks fine-tuning, which
could indicate an overall improvement in stability
that would be visible in generative adversarial train-
ing. The regularization approach has been as well
highlighted by several other publications, such as
Nguyen and Salazar (2019) and would be the first
line of research to be investigated.

Another angle of attack would be to increase
the amount of tokens used for initialization of the
Transformer on the generator side as well as to
perform the initialization on multiple levels. This
approach have been shown to perform well in
Shin et al. (2020). Similarly, existing Transformer
architectures are known to require learning rate
schedulers for training, something that seems to
be entirely absent from almost all existing text-
generating GAN architectures. It is possible that
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a learning rate scheduler needs to be incorporated
into a Transformer layer for it to be able to become
generally applicable. The importance of the learn-
ing rate scheduler for Transformers has been exten-
sively documented in the past, notably by Popel and
Bojar (2018) and could also be key in stabilizing
the training of Transformer-based architectures.

Overall, in the absence of proof that pure self-
attention architectures are inherently unstable in
the adversarial training context, there is a number
of potential approaches to make them work in the
context of GANs and leverage their advantages that
are to be explored.
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