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Abstract

Encoder-decoder models have been commonly
used for many tasks such as machine transla-
tion and response generation. As previous re-
search reported, these models suffer from gen-
erating redundant repetition. In this research,
we propose a new mechanism for encoder-
decoder models that estimates the semantic dif-
ference of a source sentence before and af-
ter being fed into the encoder-decoder model
to capture the consistency between two sides.
This mechanism helps reduce repeatedly gen-
erated tokens for a variety of tasks. Evaluation
results on publicly available machine transla-
tion and response generation datasets demon-
strate the effectiveness of our proposal.

1 Introduction

Sequence-to-sequence (seq2seq) models are a dom-
inant paradigm in various natural language genera-
tion tasks, such as machine translation (Luong et al.,
2015b; Tu et al., 2016), text summarization (Kiy-
ono et al., 2018; Li et al., 2017), and response gen-
eration (Miller et al., 2017; Pasunuru and Bansal,
2018). As Mi et al. (2016) reported, however, ba-
sic seq2seq models (Bahdanau et al., 2015; Luong
et al., 2015b) sometimes suffer from a repetition
problem. One reason is that the attention mecha-
nism does not explicitly consider which source side
tokens have already been covered in the past atten-
tions. As a result, the encoder repeatedly attends to
the same token in the decoding steps, which leads
to redundant generation.

Many researchers have proposed variants of the
seq2seq model to tackle the problem. The cover-
age mechanism (Tu et al., 2016; Mi et al., 2016)
prevented the model from generating redundant
outputs by taking into account the coverage of the
attention distribution. These approaches can be
easily incorporated into the seq2seq model with

only a single attention distribution between the en-
coder and the decoder. However, for seq2seq mod-
els with multiple attentions, such as Transformer
(Vaswani et al., 2017), we cannot calculate the cov-
erage of attentions, because the encoder attempts
to attend to multiple attentions on each layer in the
decoder. Thus, it is challenging to incorporate the
coverage mechanism into the multi-attention based
seq2seq models.

As another solution, Suzuki and Nagata (2017)
proposed word-frequency estimation (WFE) that
predicts the upper-bound frequency for each output
token from the given input tokens to control redun-
dancy in the output. Furthermore, Kiyono et al.
(2018) proposed a source-side prediction module
(SPM) that estimates the occurrences of input to-
kens from the hidden states of the decoder in the
seq2seq model to reduce repetition. While WFE
and SPM have an advantage in not depending on
the structure of a seq2seq model, it is difficult to
apply these approaches to some tasks other than
text summarization because WFE and SPM assume
that the input sentence contains more tokens than
the output.

To cope with the above problems, in this work,
we propose a generic approach for reducing the
repetition, focusing on the differences between the
embedding spaces of the source and target sides.
Based on the assumption of distributional seman-
tics, our approach regards the representations of
an input sentence on both sides as word vectors,
and attempts to minimize their difference during
the training step. Hence, the seq2seq model can
explicitly take into account the source side context
also in the decoder.

Our experimental results on the IWSLT 2014
German-to-English translation task (Cettolo et al.,
2014) and the PERSONA-CHAT response genera-
tion task (Zhang et al., 2018) showed that the pro-
posed method effectively alleviates the repetition
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problem for both tasks.

2 Seq2seq Model

Given a source sentence X = {x1, .., xI}, the
seq2seq model generates a target sentence Y =
{y1, ..., yJ}, where I and J are the numbers of
source and target tokens, respectively. The seq2seq
model consists of two main parts: encoder and de-
coder. The encoder computes the representation
of a source sentence X , and the decoder generates
a target sentence by decomposing the conditional
probability:

p(Y |X) =
J∏

j=1

p(yj |y<j , X). (1)

3 Repetition Reduction Module

3.1 Overview
An overview of our proposed method, the repetition
reduction module (RRM), is illustrated in Figure 1.
We employ Transformer for both the encoder and
decoder in the explanation in this section. Let x̃ be
the source side sentence representations of source
sentence X . With RRM, inspired by Kiyono et al.
(2018) and Luong et al. (2015a), we consider x̃ as
the correct representation of X and try to recon-
struct x̃ in the target side. We use q̃ to represent the
reconstructed x̃. Then the seq2seq model predicts
not only the target side sequence Y but also x̃. The
prediction is written as follows:

p(Y, x̃|X) = p(x̃|Y,X)p(Y |X). (2)

The conditional probability p(x̃|Y,X) has the role
of preventing either over- or under-generation of
Y by predicting the source side context until the
decoding step ends. p(x̃|Y,X) can be simplified as
p(x̃|X) if q̃ does not depend on Y . Since p(Y |X)
is predicted by the seq2seq model as shown in Eq.
(1), we give details of p(x̃|Y,X) in the next sec-
tion.

3.2 Prediction of Source Side Context
Instead of using count-based discrete representa-
tions as in Kiyono et al. (2018), we incorporate con-
tinuous representations for both source and target
sides to capture deeper semantic relations (Mikolov
et al., 2013). We assume p(x̃|Y,X) is proportional
to the similarity between the representations of the
source sentence X before and after being encoded
and decoded:

p(x̃|Y,X) ∝ exp(α(cos(x̃, q̃))), (3)

where α is a scaling factor.
Next, we explain the representations of the

source sentence X in the source and target sides.
Letting Vs be the source vocabulary, we define the
indicator vector for the presence of source tokens
as xi ∈ {0, 1}|Vs|. The source side representation
x̃ of the source sentence is defined as follows:

x̃ =

I∑
i

Esrcxi, (4)

whereEsrc ∈ RH×|Vs| is a word embedding matrix
for the source vocabulary, and H is the embedding
size.

Similarly, we define the target side representa-
tion q̃ of the source sentence as follows:

q̃ =

J∑
j

Esrcqj , (5)

where qj ∈ R|Vs| represents the probability distri-
bution over the source vocabulary Vs at the j-th
decoding step, which is calculated as follows:

qj = SoftMax(Wq z̃j + bq), (6)

where z̃j is the final hidden state from the decoder,
Wq is a weight matrix, and bq is a bias term. Note
that this softmax layer is only used in the training
step.

3.3 Objective Function
By considering the negative log-likelihood of Eq.
(2) , we can induce our objective function Gt as
follows:

Gt =
∑

(X,Y )∈D

{− log p(Y |X)− α(cos(x̃, q̃))},

(7)

where D is a parallel training corpus.

4 Experiments

4.1 Experimental Settings
We first used the IWSLT 2014 German-to-English
translation task to evaluate our method. The dataset
is split into 160k/7k/7k sentences for training, vali-
dation, and test. Since Cho et al. (2014) reported
that seq2seq models tend to produce few unknown
tokens and yield high BLEU scores for short sen-
tences in the neural machine translation task, we
supposed longer sentences are vulnerable to be
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Figure 1: Overview of transformer-based encoder-decoder model with repetition reduction module (RRM). The
part inside a dashed rectangular box represents RRM. oj represents the probability distribution over the target
vocabulary at the j-th decoding step.

over-translation, and our proposal would perform
better for longer sentences. Therefore, we divided
the test data into 3 parts: Short, Medium, and Long.
In Short with 4927 pairs, the source contains no
more than 25 byte pair encoding (BPE) (Sennrich
et al., 2016) tokens. In Medium with 1524 pairs,
the source contains 26 to 50 BPE tokens. In Long
with 299 pairs, the source contains more than 50
BPE tokens.

We used PERSONA-CHAT for response gen-
eration as another dataset. This is the official
dataset of The Conversational Intelligence Chal-
lenge 2 (ConvAI2)1 for testing chatbots. It con-
tains 164k/15k/15k utterances (corresponding to
10k/1k/1k dialogs) for training, validation, and test.
It also contains corresponding persona information
for each dialog.

We used the model of Fonollosa et al. (2019) as
a baseline for the machine translation task. And
we regarded the best performing model (Wolf et al.,
2019) in ConvAI2 as our baseline for the response
generation task. Wolf et al. (2019) adopted a Gener-
ative Pretrained Transformer (Radford et al.) based
encoder and a 12-layer Transformer decoder, and
concatenated the persona information, up to two
turns of history utterances, and the query (the utter-
ance) together as an input sequence. To investigate
the effectiveness of our proposed module, we com-
pared the experimental results between the models
with and without RRM on top of the baseline mod-
els.

For evaluation metrics, we used tokenized BLEU
(Papineni et al., 2002), Meteor (Denkowski and
Lavie, 2014), and Repeat (Kiyono et al., 2018) for

1http://convai.io/

the machine translation task. Repeat is defined as
follows. Following the definition by Kiyono et al.
(2018), we think that a model causes a repetition if
it outputs the same token more than once. For each
pair of a generated translation and its corresponding
reference in the dataset, while we considered some
tokens might occur more than once in the reference,
Repeat was computed by subtracting the frequency
of tokens in the reference from the frequency of
tokens that occur more than once in the generated
translation.

For the response generation task, we used the
official evaluation metrics, F1 and Perplexity. Note
that the official method, offered by ParlAI (Miller
et al., 2017), ignores words {a, an, the} and punctu-
ation when computing F1. To compute Perplexity,
Wolf et al. (2019) indirectly predicted the word
probability on the basis of the ratio of probabilities
of subwords since they utilized a BPE vocabulary.

Different from the machine translation task,
the response generation task has no fixed answer.
Therefore, in this task, we ignored the reference
sequence when we computed Repeat. For each
generated sequence, Repeat was computed by sub-
tracting 1 from the frequency of tokens that occur
more than once in the generated sequence. While
ignoring the words {a, an, the} and punctuation, we
calculated Repeat scores under an n-gram setting
at sentence-level and dialog-level. At the sentence-
level, we calculated Repeat only with each gener-
ated response. At the dialog-level, we calculated
Repeat with the concatenation of a sequence of the
generated responses in a dialog.

For the machine translation task, we followed
the experimental settings of Fonollosa et al. (2019),



1609

Model Repeat BLEU Meteor

Fonollosa et al. (2019)* - 35.70 -
Fonollosa et al. (2019) 1.244 35.61 35.76

+RRM 1.229 35.71 35.77

Table 1: Experimental results on the IWSLT 2014 De-
En test dataset. Bold indicates the best scores. Results
were the average over 3 runs by random seeds. * in-
dicates the reported scores by Fonollosa et al. (2019).
For both models using cosine similarity and euclidean
distance, α was fixed to 0.3, that yielded the best with
Repeat on the validation dataset.

Data Model Repeat BLEU Meteor

Short Fonollosa et al. (2019) 0.552 37.41 36.83
+RRM 0.554 37.47 36.81

Medium Fonollosa et al. (2019) 2.484 34.28 34.91
+RRM 2.467 34.38 35.00

Long Fonollosa et al. (2019) 6.371 33.11 34.12
+RRM 6.036 33.36 33.99

Table 2: Experimental results on the IWSLT 2014 De-
En test dataset at different lengths. Bold indicates the
best scores. Results were the average over 3 runs by
random seeds. For both cosine similarity and euclidean
distance, α was fixed to 0.3, that yielded the best with
Repeat on the validation dataset.

and tuned the scaling factor α in Eq. (7) with
Repeat as the evaluation metric on the validation
dataset. For the response generation task, we car-
ried on the experimental settings of Wolf et al.
(2019), and tuned the scaling factor α with Repeat
(Sentence-Level) under 1-gram as the evaluation
metric on the validation dataset. See Appendix A
for a complete list of hyperparameter settings.

4.2 German-to-English Results

Table 1 shows the experimental results for the
German-to-English translation task. The results
suggest that combining RRM with the model of
Fonollosa et al. (2019) helps to improve Repeat,
BLEU, and Meteor scores.

Next, we compared the experimental results for
Short, Medium, and Long to investigate the ef-
fectiveness of RRM at different source sentence
lengths. Table 2 summarizes the experimental re-
sults. Similar to the results from Cho et al. (2014),
both models tended to have lower BLEU scores and
more repetitions for longer sentences. RRM per-
formed relatively well for longer sentences. It re-

duced more repetitions and improved more BLEU
on top of Fonollosa et al. (2019) for longer sen-
tences. While RRM (α = 0.3) showed no effect
in reducing the repetition for short sentences, it
assisted the model of Fonollosa et al. (2019) in
reducing the Repeat score by 0.335 points and im-
proved BLEU by 0.25 points for long sentences.
These results suggest the importance of RRM for
long sentences.

In Table 3, we list top and bottom 20 words
based on the degree of Repeat reduction by RRM
(α = 0.3). These results show that RRM tended to
reduce repetitions for high frequency words. RRM
showed no effect of reducing repetitions for “.” and
“&apos;s.” See Appendix B for sample translations.

4.3 Response Generation Results

Tables 4 and 5 show the experimental results for the
response generation task. Obviously, RRM reduced
Repeat (Sentence-Level) by 0.056 (1-gram), and
Repeat (Dialog-Level) by 0.471 (1-gram). The re-
sults suggest that combining RRM with the model
of Wolf et al. (2019) helps to improve F1 and Re-
peat, while the performance of RRM in reducing
perplexity is limited. We suppose that there are
two reasons. One is that the probability calculation
method offered by Wolf et al. (2019) is an indirect
method. The other is that, the response is not fixed
for a given source. See Appendix C for a sample
dialog.

We conducted extensive experiments to investi-
gate whether RRM has a potential to reduce more
repetitions by considering the following condi-
tions. First, beam search is an optimized decod-
ing method which generates less repetitions than
greedy decoding, and it may limit the performance
of RRM. We investigate whether decoding meth-
ods might influence the performance of RRM by
comparing beam search with greedy decoding.

Second, Wolf et al. (2019) used the persona in-
formation and the history utterances as an input
sequence for their model to generate a response
that differs from the history and contains a part of
the persona information. However, in this task our
model shared its vocabulary between source and
target sides, and in Eq. (3) we utilized the cosine
similarity to force q̃ to be similar to x̃, which may
make the generated response similar to the input
sequence. Therefore, we investigate whether using
history utterances in the input sequence during test-
ing might influence the performance of RRM. “w/o
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Word Frequency Frequency Rank Sum of Repeat Reduced RepeatFonollosa et al. (2019) +RRM (α = 0.3)

you 45794 12 50 31 19
of 73774 6 76 62 14
a 67343 7 80 67 13

on 16749 27 18 7 11
they 21064 19 31 22 9
and 96381 4 76 68 8

in 50081 10 56 48 8
do 11485 39 10 4 6

how 7722 59 9 3 6
to 78411 5 73 68 5

where 4913 91 6 1 5
could 4503 98 8 3 5

through 2617 141 7 2 5
is 41409 14 35 31 4

&quot; 22866 18 15 11 4
these 9016 49 4 0 4
their 6187 75 11 7 4

the 134603 3 129 126 3
one 11115 40 5 2 3

would 6084 77 4 1 3

belief 120 1868 0 2 -2
generally 101 2206 0 2 -2

determine 86 2497 0 2 -2
defined 85 2523 0 2 -2

colleague 63 3210 0 2 -2
eliminating 20 7370 0 2 -2

celestial 15 8869 0 2 -2
joints 15 8870 0 2 -2

mutilated 11 10851 0 2 -2
anatomic 5 17811 0 2 -2

humiliated 5 17812 0 2 -2
for 18902 22 7 10 -3
can 15244 29 11 14 -3

people 10653 42 8 11 -3
someone 695 415 1 4 -3

river 146 1572 1 4 -3
compromised 12 10263 0 3 -3

had 6648 70 6 11 -5
&apos;s 36495 15 39 47 -8

, 191365 1 211 224 -13

Table 3: Top and bottom 20 words based on the degree of Repeat reduction. They are listed in descending order of
the Repeat reduction by +RRM (α = 0.3) on top of Fonollosa et al. (2019) for the IWSLT 2014 De-En test dataset
at Long length. Frequency is the frequency in the training dataset, and Frequency Rank is its rank in the training
dataset.

Model Repeat (Sentence-Level) Perplexity F11-gram 2-gram 3-gram 4-gram 5-gram

Wolf et al. (2019)* - - - - - 16.28 19.50
Wolf et al. (2019) 0.755 0.244 0.107 0.056 0.025 16.31 18.22

+RRM 0.699 0.210 0.090 0.045 0.018 16.33 18.36

Table 4: Experimental results on the PERSONA-CHAT test dataset. Bold indicates the best scores. Results were
the average over 3 runs by random seeds. * indicates the reported scores by Wolf et al. (2019). α was fixed to 0.3,
that yielded the best with Repeat (Sentence-Level) under 1-gram on the validation dataset.

Model Repeat (Dialog-Level)
1-gram 2-gram 3-gram 4-gram 5-gram

Wolf et al. (2019) 28.423 14.319 7.786 4.822 2.800
+RRM 27.952 13.982 7.605 4.743 2.791

Table 5: Experimental results on the PERSONA-CHAT test dataset. Bold indicates the best scores. Results were
the average over 3 runs by random seeds. α was fixed to 0.3, that yielded the best with Repeat (Sentence-Level)
under 1-gram on the validation dataset.

history” indicates the case where the history utter-
ances were not used for an input sequence during
testing.

Third, the history utterances might contain a part
of the persona information, which can cause addi-
tional repetitions in Eq. (4). RRM might be misled
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Decode Model Repeat (Sentence-Level) Perplexity F11-gram 2-gram 3-gram 4-gram 5-gram

Beam Wolf et al. (2019)* - - - - - 16.28 19.50
Wolf et al. (2019) 0.755 0.244 0.107 0.056 0.025 16.31 18.22

+RRM (α = 0.3, full) 0.699 0.210 0.090 0.045 0.018 16.33 18.36
+RRM (α = 1, divide) 0.746 0.248 0.114 0.063 0.028 16.34 18.20
+RRM (α = 0.2, part) 0.703 0.212 0.090 0.043 0.017 16.40 18.27

Beam Wolf et al. (2019) w/o history 0.902 0.336 0.135 0.067 0.026 17.96 17.30
+RRM (α = 0.05, full) 0.842 0.275 0.100 0.043 0.014 18.04 17.14
+RRM (α = 1, divide) 0.905 0.338 0.146 0.080 0.034 17.96 17.16
+RRM (α = 0.2, part) 0.836 0.266 0.096 0.043 0.015 18.00 17.17

Greedy Wolf et al. (2019) 1.275 0.477 0.187 0.089 0.037 - 18.02
+RRM (α = 0.3, full) 1.247 0.454 0.178 0.083 0.034 - 18.09
+RRM (α = 1, divide) 1.255 0.473 0.199 0.099 0.042 - 17.87
+RRM (α = 0.2, part) 1.265 0.469 0.188 0.085 0.033 - 18.08

Table 6: The results of the extensive experiments on the PERSONA-CHAT test dataset. Bold indicates the best
scores for each setting. Results were the average over 3 runs by random seeds. * indicates the reported scores by
Wolf et al. (2019). Because Perplexity does not depend on a decoding method, we report it only once in the table.
For each setting, we fixed α to the value that yielded the best performance with Repeat (Sentence-Level) under
1-gram on the validation dataset.

Decode Model Repeat (Dialog-Level)
1-gram 2-gram 3-gram 4-gram 5-gram

Beam Wolf et al. (2019) 28.423 14.319 7.786 4.822 2.800
+RRM (α = 0.3, full) 27.952 13.982 7.605 4.743 2.791
+RRM (α = 1, divide) 28.034 14.275 7.894 4.955 2.931
+RRM (α = 0.2, part) 27.956 14.066 7.663 4.762 2.773

Beam Wolf et al. (2019) w/o history 33.058 19.399 11.940 7.960 5.180
+RRM (α = 0.05, full) 32.306 18.650 11.265 7.330 4.671
+RRM (α = 1, divide) 33.340 19.814 12.347 8.331 5.465
+RRM (α = 0.2, part) 32.696 18.934 11.559 7.698 5.040

Greedy Wolf et al. (2019) 32.960 17.208 8.852 5.022 2.805
+RRM (α = 0.3, full) 32.559 16.741 8.532 4.852 2.706
+RRM (α = 1, divide) 32.692 17.115 8.872 5.110 2.867
+RRM (α = 0.2, part) 32.678 16.919 8.599 4.822 2.689

Table 7: The results of the extensive experiments on the PERSONA-CHAT test dataset. Bold indicates the best
scores for each setting. Results were the average over 3 runs by random seeds. For each setting, we fixed α to the
value that yielded the best performance with Repeat (Sentence-Level) under 1-gram on the validation dataset.

to producing more repetitions at the sentence-level
and hence more repetitions at the dialog-level. We
therefore investigated whether using the persona
information and the history utterances in Eq. (4)
during training influences the performance of RRM.
Full indicates the usage of the persona information,
the history utterances and the query as a source
in Eq. (4) during training, while part indicates
the usage of only the query. We also tried the set-
ting divide, which divides the input sequence in
Eq. (4) into three parts, x̃p, x̃h, x̃l, depending on
the persona information, the history utterances and
the query, and uses the corresponding Wqp , Wqh ,
Wql in Eq. (6) to compute q̃p, q̃h, q̃l respectively.
Then, the averaged cosine similarity was calculated

between each divided x̃ and q̃.
Tables 6 and 7 show the results of our extensive

experiments. Clearly, RRM reduced more repe-
titions and improved F1 scores more when using
beam search and the full setting. When the in-
put sequence excluded history utterances during
testing, RRM performed worse in F1 scores. Us-
ing only the query (part) in Eq. (4) during train-
ing reduced more repetitions at the sentence-level
than using a full input sequence (full) when the
input sequence excluded the history. But under
other settings, RRM performed best when full
was used. divide setting was the worst among the
full, divide and part settings.

It indicates that our third supposition was wrong
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and the part setting was unstable. We think the
reason of such unstable performance is, when using
the part setting, q̃ and x̃ in Eq. (3) were respec-
tively generated from the full input sequence and
only a part of the input sequence, which makes the
information unbalanced.

The above results suggest that, when RRM was
utilized, the method for combining multiple infor-
mation for the input sequence was important. Fur-
thermore, the decoding method would influence
the performance of RRM.

5 Related Work

To overcome the repetition problem in neural ma-
chine translation, Tu et al. (2016) and Mi et al.
(2016) introduced the coverage mechanism into a
seq2seq model so that the decoder can pay atten-
tion to the encoder information without duplication.
See et al. (2017) extended the coverage model by
incorporating a pointer-generator network based on
Tu et al. (2016). However, it is hard to utilize these
coverage methods for multi-head attention based
models because multi-head attention is a stack of
several attention layers, and each layer is trained
to capture its own distribution. Furthermore, the
works of Tu et al. (2016) and Mi et al. (2016) are
based on one-to-one correspondence generation,
which cannot be applied to a “lossy” compression
task such as summarization.

Suzuki and Nagata (2017) proposed word-
frequency estimation (WFE) which used several
linear transformations to map the hidden states of
the encoder into the upper-bound occurrence of
each target vocabulary and controlled the gener-
ation by the estimated occurrence. However, we
cannot apply WFE for some generation tasks such
as the response generation task, in which the fre-
quency of target tokens is irrelevant to the source
sentence. Kiyono et al. (2018) proposed a source-
side prediction module (SPM) and assumed that
output sentences are always shorter than input sen-
tences (i.e., a summary or a headline of the input).
To make sure the lengths of input and output sen-
tences were equal, special < pad > tokens were
added to the end of the target sentence. While this
method helps SPM to estimate the over- or under-
generation with the euclidean distance, it limits the
application of SPM. Since our approach does not
rely on the above assumptions, RRM is more scal-
able to other downstream tasks, including machine
translation and response generation.

6 Conclusion

In this work, we proposed a novel mechanism to
suppress repetitions in machine translation and re-
sponse generation. Our model attempts to estimate
the semantic vectors from a source sentence on
both sides of an encoder-decoder model, which
takes semantic repetitions into consideration and
does not rely on any attention features. There-
fore, it is potential to apply our proposal to other
sequence-to-sequence models, which is an advan-
tage of our approach compared with previous meth-
ods.

Experimental results on the IWSLT 2014
German-to-English translation task and the
PERSONA-CHAT response generation task
demonstrated the effectiveness of our proposal.
The results of the extensive experiments in the
response generation task showed RRM has the
ability to handle a concatenated input sequence.

Because our proposal takes the semantic repeti-
tions into consideration, we believe it might have
the ability to reduce the repetitions among seman-
tically similar words. We will verify it as future
work.
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A Hyperparmeters

For the machine translation task, we followed the
experimental settings of Fonollosa et al. (2019),
which used fairseq (Ott et al., 2019) and a 31K-
token BPE source and target vocabulary. For the
hyperparameters of Transformer, we used 14 layers,
an embedding size of 256, a feedforward expansion
size of 1024, and 4 attention heads. We used the
Adam (Kingma and Ba, 2015) optimizer with a
4k mini-batch size and 85k training steps. The
learning rate was linearly warmed from 1× 10−7

to 0.001 in 4k steps and then decayed by a weight
of 0.0001 (Loshchilov and Hutter, 2017). In the
decoding steps, we used beam search (Wu et al.,
2016) with a beam size of 5. We set the scaling
factor α to {1, 0.3, 0.2, 0.05, 0.01} and selected
the best α with Repeat as the evaluation metric on
the validation dataset. We pretrained the model of
Fonollosa et al. (2019) in advance to extract word
embeddings.

For the response generation task, we carried on
the experimental settings of Wolf et al. (2019).
We utilized a 40k-token BPE source and target
vocabulary and trained the model with 2 epochs,
a batch size of 32 sequences, and the Adam op-
timizer. The learning rate was linearly decayed
from 6.25 × 10−5 to zero. In the decoding step,
we adopted beam search, and top 20 sampling
(Fan et al., 2018) was utilized before selecting four
beams. We set the scaling factor α to {1, 0.3, 0.2,
0.05, 0.01}. Since RRM was designed to reduce
repetitions at the sentence-level, we selected the
best α with Repeat (Sentence-Level) under 1-gram
as the evaluation metric on the validation dataset.

B Sample of German-to-English

Table 8 shows sample translations. While the
model of Fonollosa et al. (2019) tended to gen-
erate repeating phrases, our model reduced such
generation.

C Sample of Response Generation

We show a sample dialog in Table 9. Similar to
the machine translation task, the model of Wolf
et al. (2019) tended to generate repeating phrases,
and our model helped to alleviate it. In particular,
“i’m a real estate agent” in the second turn is a 5-
gram repetition of the one in the first turn at the
dialog-level when word “a” is ignored. “they are
twins” in the third turn is a 3-gram repetition at
both dialog-level and sentence-level because it is
generated twice in a response.
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German-English translation
Short Medium Long

Source die einzige wahre wahl
war &quot; wer &quot; ,
nicht wann , und nicht was
sie danach taten .

wir nehmen also etwas sehr kom-
pliziertes , wandeln es in töne um
, eine sequenz von tönen , und
produzieren damit etwas sehr kom-
pliziertes in den köpfen von anderen
.

sie ist ein prozess , und manchmal funktioniert er
und manchmal nicht , aber die idee , dass wir der
wissenschaft nicht erlauben sollten , ihre arbeit
zu tun , weil wir angst haben ist eine wirkliche
sackgasse , und sie hält millionen von menschen
vom aufblühen ab .

Reference the only real choice was
who , not when , and not
what you did after .

but we ’re taking something very
complicated , turning it into sound ,
sequences of sounds , and producing
something very complicated in your
brain .

it &apos;s a process , and sometimes it works
and sometimes it doesn &apos;t , but the idea that
we should not allow science to do its job because
we &apos;re afraid , is really very deadening ,
and it &apos;s preventing millions of people from
prospering .

Fonollosa et al.
(2019)

the only real choice
was who , not when ,
not when , and not what
they did after that .

so we take something very com-
plicated , we turn it into sound ,
we turn it into sound sequence , and
we produce something very compli-
cated in the head of others .

it &apos;s a process , and sometimes it
doesn &apos;t work and sometimes it
doesn &apos;t work , but the idea that we
shouldn &apos;t allow science to do their work
, because we &apos;re afraid to have a real
dead end , and it keeps millions of people from
flourishing .

+RRM the only real choice was
&quot; who , &quot; not
when , and not what they
did after that .

so we take something very compli-
cated , we turn it into sound , a se-
quence of sound , and we produce
something very complicated in the
head of others .

it &apos;s a process , and sometimes it works
and sometimes it doesn &apos;t , but the idea that
we shouldn &apos;t allow science to do its job
because we &apos;re afraid is a truly dead end ,
and it keeps millions of people from flourishing .

Table 8: Sample translations for Short, Medium, and Long data. Underline indicates repetitions that contain more
than two words, and bold indicates wrong translations. α was fixed to 0.3, that yielded the best with Repeat on the
validation dataset.

Response generation
Persona Information i have two children that are in their kindergarten. i am 34 years old. i am an environmen-

talist. i have been working as a real estate agent for the past 12 years. i went to college
at university of mississippi.

1st Query hi , want to be my friend ?
Turn Reference hello , sure why not ! how old are you ? i just turned 34

Wolf et al. (2019) sure, i’m a real estate agent.
+RRM sure, what do you do for a living?

2nd Query whoa . i am only 12 . what is it like to be old ?
Turn Reference my 2 kiddos are in kindergarten , they want to graduate at mississippi university like me

Wolf et al. (2019) i’m 35, so i’m not sure. i’m a real estate agent
+RRM i’m a real estate agent, what about you?

3rd Query that is cool i guess . are they twins
Turn Reference no . only 12 ? so no job yet . i have done real estate 12 years now

Wolf et al. (2019) yes, they are twins, they are twins
+RRM they’re, they’re in their early 20s.

Table 9: Sample responses generated by various models. Underline indicates repetitions that contain more than
two words, and bold indicates their counterparts. A turn is a pair of a query (an utterance) and its response (either
a reference or a generation). In this example, a sequence of the three turns consist of a part of a dialog. When
a model tries to output a response to the third query, the first and second turns are the history utterances, and it
receives the concatenation of the persona information, the history utterances and the third query as an input. α was
fixed to 0.3, that yielded the best with Repeat (Sentence-Level) under 1-gram on the validation dataset.


