
Proceedings of Recent Advances in Natural Language Processing, pages 1559–1566
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_175

1559

Sentence Structure and Word Relationship Modeling
for Emphasis Selection ∗

Haoran Yang, Wai Lam
The Chinese University of Hong Kong

{hryang, wlam} @se.cuhk.edu.hk

Abstract

Emphasis Selection is a newly proposed task
which focuses on choosing words for emphasis
in short sentences. Traditional methods only
consider the sequence information of a sen-
tence while ignoring the rich sentence struc-
ture and word relationship information. In this
paper, we propose a new framework that con-
siders sentence structure via a sentence struc-
ture graph and word relationship via a word
similarity graph. The sentence structure graph
is derived from the parse tree of a sentence.
The word similarity graph allows nodes to
share information with their neighbors since
we argue that in emphasis selection, similar
words are more likely to be emphasized to-
gether. Graph neural networks are employed
to learn the representation of each node of
these two graphs. Experimental results demon-
strate that our framework can achieve superior
performance.

1 Introduction

Emphasis Selection recently proposed by (Shirani
et al., 2019) aims to select candidate words for em-
phasis in short sentences. By emphasizing words,
people’s intent can be better conveyed, which is
useful in a variety of applications. For example,
it can be used in spoken language processing to
generate more expressive sentences and be used
to enable automated design assistance in author-
ing, i.e., labeling important parts in a paragraph
or in a poster title. Although it seems that this
task is highly similar to the task of keyword ex-
traction (Gupta, 2017), these two tasks are fun-
damentally different. The first difference is that
keyword extraction focuses on a paragraph which
is composed of multiple sentences while empha-
sis selection aims to choose words from a short
sentence. This difference implies that modeling

∗The work described in this paper is substantially sup-
ported by a grant from the Direct Grant of the Faculty of
Engineering, CUHK (Project Code: 4055093).

Figure 1: Two examples of the emphasis selection.
Words with darker background indicate that more peo-
ple agree to emphasize.

sentence structure is more effective in emphasis se-
lection. The second difference is that many global
word statistics methods employed in keyword ex-
traction such as TF-IDF and word co-occurence
frequency will not work in this task, because for
short sentences, it is meaningless to count word
frequency and whether the word should be empha-
sized has nothing to do with the frequency of the
word. In addition, keyword extraction requires that
the collected keywords are diverse, which means
that if two words have similar meaning, only one
should be kept. However, in emphasis selection,
similar words tend to be emphasized together. Em-
phasis selection also shares some resemblances
with entity recognition (Yadav and Bethard, 2018).
But one major difference is that the parts of speech
of emphasized words are more diverse and the re-
lation of adjacent words is weaker in the emphasis
selection task.

Generally speaking, emphasis selection can be
modeled as a sequence classification task where the
input is a sentence and the output is each word’s
probability to be emphasized. Shirani et al. (Shi-
rani et al., 2019) propose a model which is based
on the Recurrent Neural Network (Mikolov et al.,
2010) and KL-Divergence loss function. Despite
the fact that it looks like a straightforward task,
there still exist some challenges. The first chal-
lenge is about how to incorporate sentence struc-
ture information into the model. Sentence structure
information includes what role (subject, predicate,
object, etc.) the word plays as well as the position
of the word in a sentence. Obviously, this kind of
information is very useful. Existing works (Shi-

1560

rani et al., 2019) fail to model the global structure
of a sentence. The second challenge is that there
is no given context except a short sentence, so it
requires the model to be able to capture some com-
mon patterns or regularities of most people. More
concretely, if two words are similar, they are more
likely to be emphasized together. For example, in
Figure 1, persistence and victory are more likely
to be emphasized together. This observation can
also be found in the second example: Never and
impossible. Moreover, we analyze the training
dataset and get a more concrete understanding of
this phenomenon through the following procedures:
For each training sentence, we consider the most
popular emphasized word called word A. Then, we
identify the most similar word called word B to the
word A based on GloVe embedding (Pennington
et al., 2014). We find that the word B is also empha-
sized with a higher probability than other words in
this sentence and this phenomenon occurs in about
26% of the training dataset. Therefore, modeling
this kind of relationship between words definitely
can help improve the performance of models.

In this paper, we propose a sentence structure
graph to handle the sentence structure issue. Specif-
ically, the sentence structure graph is derived from
the parse tree of a sentence which contains useful
information for this task. For example, as illus-
trated in Figure 2, when the path is S→NP→PRP,
the word I is not inclined to be emphasized since
this path indicates that this word is a subject. How-
ever, when the path is S→VP→S→VP→NP→NN,
the word basketball is likely to be emphasized
since this word is a noun in a verb phrase. Gener-
ally, such sentence structure graph can reveal the
role of words in a sentence which is beneficial for
emphasis selection. Another important informa-
tion - word relationship information is captured by
a word similarity graph. Through the word sim-
ilarity graph, words can share information with
their neighbours, resulting in similar emphasized
probabilities of similar words. Next, graph neu-
ral networks (Vaswani et al., 2017; Cai and Lam,
2020; Kipf and Welling, 2017; Wu et al., 2019;
Yun et al., 2019; Veličković et al., 2018) which
has been demonstrated effective in modeling graph
structure data are employed to learn the represen-
tation of each node of these two graphs. We con-
duct extensive experiments based on different word
embeddings, i.e., GloVe (Pennington et al., 2014),
ELMo (Peters et al., 2018), RoBERTa (Liu et al.,

Figure 2: The part above the curve is the sentence struc-
ture graph constructed from the sentence: I love play-
ing basketball. After the whole parse tree is encoded,
the embeddings of the green nodes are used as the struc-
ture information for further classification.

2019) and the experimental results show that our
model can achieve superior performance.

2 Related Work

Emphasis selection is a new task proposed by (Shi-
rani et al., 2019) which aims to choose a subset
of words to emphasize in a sentence. Shirani et
al. (Shirani et al., 2019) propose a model which is
based on the Recurrent Neural Network (Mikolov
et al., 2010). KL-Divergence loss function is
adopted to conduct the label distribution learn-
ing (LDL) (Geng and Zhao, 2014). This method
achieves competitive performance over the se-
quence labeling model: CRF (Lafferty et al., 2001).

In Recent years, graph neural networks (Wu
et al., 2019; Kipf and Welling, 2017; Yun et al.,
2019; Veličković et al., 2018; Cai and Lam, 2020)
have demonstrated superiority in modeling the
structure of graphs. Kipf et al. (Kipf and Welling,
2017) propose a graph convolutional network
which is based on the fourier theory. One draw-
back of this model is that the edge weight of the
graph needs to be known in advance. To overcome
this shortcoming, Petar et al. (Veličković et al.,
2018) use a masked self-attention layer to calcu-
late the weight of node’s neighbours dynamically
and then aggregate information by conducting a
weighted addition operation. Currently, graph neu-
ral networks are applied to various tasks. Feria et al.
(Feria et al., 2018) construct a word graph by cal-
culating the word embedding similarity and apply
the community detection algorithm to find differ-
ent communities. Through the graph, they can find
named entities for a bilingual language base in an

1561

unsupervised manner. Sun et al. (Sun et al., 2019)
put forward a diverse graph pointer network for key-
word extraction. They first construct a word graph
based on the distance of two words and then use
the graph convolutional network as an encoder to
obtain each node’s representation, finally a pointer
network decoder and the diverse mechanism are
employed to generate diverse keywords. The graph
encoder can capture document-level word salience
and overcome the long-range dependency problem
of RNN.

3 Methodology

We follow the same problem setting given by (Shi-
rani et al., 2019). Suppose a sentence is composed
of n words C = (x1, x2, ..., xn). Our goal is to
obtain a subset S of words in C as selected words
for emphasis where 1 ≤ |S| ≤ n.

We model this task as a prediction problem:

(p1, p2, .., pn) = model(x1, x2, ..., xn) (1)

where pi is i-th word’s probability to be empha-
sized. Then S contains the top-|S| words with high
probability.

Figure 3 depicts the architecture of our proposed
model which is composed of three parts: (i) the
middle part - sequence encoder (ii) the left part -
word similarity graph encoder (iii) the right part
- sentence structure graph encoder. Next, we will
provide a detailed description of each part.

3.1 Sequence Encoder

The sequence encoder is composed of an embed-
ding layer and a bidirectional GRU. It is mainly
used to model the sequence information, i.e., word
sequence and tag sequence. Formally, given a sen-
tence C = (x1, x2, ..., xn) with n words, the em-
bedding layer is responsible for converting each
word into a d1-dimensional vector and converting
the corresponding POS tag into a d2-dimensional
vector:

(w1, ..., wn) = WordEmbed(x1, ..., xn) (2)

(e1, .., en) = TagEmbed(t1, ..., tn) (3)

where (t1, ..., tn) is the POS tag sequence and wi ∈
Rd1 , ei ∈ Rd2 . Then the word embedding and
the tag embedding are concatenated and fed into
a encoder E to encode the sequence information.

Figure 3: An overview of our model, the left part is
the word similarity graph encoder, the middle part is
the sequence encoder and the right part is the sentence
structure graph encoder. Lx representes that there are L
such blocks.

We can obtain the outputted hidden state of the
encoder:

(h1, ..., hn) = E([w1, e1], ...[wn, en]) (4)

3.2 Word Relationship Modeling

Given a sentence, we take each word as a node and
the weight of the edge is calculated by the word em-
bedding similarity. The weight matrix is denoted
by A ∈ Rn×n. After the graph is constructed, a
L-layer graph convolutional network (GCN) (Kipf
and Welling, 2017) is employed to encode the word
similarity graph:

H l+1 = ReLU(D−
1
2AD−

1
2H lW l) (5)

where W l is a parameter and H l denotes the nodes’
representation in the l-th layer. D ∈ Rn×n is a
diagonal matrix and Dii =

∑
j Aij .

Recall that the WSG is a complete graph since
each two words are connected by a weighted edge.
There exists a serious problem: Useful information
may be overwhelmed by useless information, be-
cause a majority number of words do not need to
be emphasized, causing the information in words
that are not emphasized dominates the words that
should be emphasized. To alleviate this problem,
we adopt two strategies: residual module (He et al.,
2016) and gate mechanism (Gehring et al., 2017;
Dauphin et al., 2017). The residual module makes
the current node’s representation as the addition

1562

between the former representation and the aggre-
gated information from its neighbours. The gate
mechanism controls the magnitude of the aggre-
gated information. Through this way, the current
node’s representation will not be significantly af-
fected by its neighbours. Therefore Equation (5)
can be rewritten as:

M l+1 = H lW l (6)

C = s(H lW g) (7)

H l+1 = M l+1 +D−
1
2AD−

1
2M l+1 ⊗ C (8)

where s(·) is the sigmoid function and ⊗ is the
point-wise multiplication.

We obtain H0 from the word embedding ma-
trix and obtain the L-th layer output HL =
(wL

1 , ..., w
L
n) as each node’s features of the word

similarity graph.

3.3 Sentence Structure Modeling

SSG is constructed by parsing the sentence using
NLTK1 and StandfordNLP 2. Then, we remove the
leaf nodes (which are the words) and the remaining
part is the SSG. Each node of the graph is a kind
of POS tag and the path from the root to a specific
word can reveal what role the word plays in the
sentence.

Apparently, the weight of edges is important.
For example, in Figure 2, the root node S has
two children nodes NP and VP. The edge (S, NP)
should have a smaller weight than the edge (S,
VP) since people tend not to emphasize the sub-
ject in most circumstances. Different from WSG
where the weight can be calculated by the word
embedding similarity explicitly, it is not appropri-
ate to calculate the weight in the SSG by the node
similarity. Hence, we integrate the idea of Trans-
former (Vaswani et al., 2017; Cai and Lam, 2020)
and masked self-attention (Veličković et al., 2018)
to the SSG modeling. Firstly, we generate three
vectors: key, query, value, according to the current
node’s representation:

kl+1
i = Wl

k(v
l
i) (9)

ql+1
i = Wl

q(v
l
i) (10)

vl+1
i = Wl

v(v
l
i) (11)

1https://www.nltk.org/
2https://stanfordnlp.github.io/

CoreNLP/

where Wl
k,W

l
q,W

l
v are parameters. kli, q

l
i, v

l
i cor-

respond to the l-th layer key, query, value vector re-
spectively. v0i is initialized from the tag embedding
matrix. Then, a masked self-attention is employed
to allow nodes aggregating information only from
their neighbours.

vl+1
i =

∑
j∈N (i)

aijv
l+1
j (12)

aij =
exp(ql+1

i kl+1
j)∑

z∈N (i) exp(q
l+1
i kl+1

z)
(13)

whereN (i) is the neighbour set of the node i. After
the graph is encoded with a L-layer network, we
obtain the leaf nodes (the green nodes shown in
Figure 2) representation V = (vL1 , v

L
2 , ..., v

L
n).

3.4 Loss Function
After obtaining these three modules’ output, we
conduct a concatenation operation and calculate
the probability:

pi = softmax(f([hi, v
L
i , w

L
i])) (14)

where pi ∈ R3 is i-th word’s probability distribu-
tion. f represents a fully connected neural network.
We adopt negative log likelihood as the loss func-
tion:

L = −
∑

C∈Dtrain

|C|∑
i=1

log piyi (15)

4 Experiment and Results

DIY ideas for leafing up your home
B O O O O B I
B I O O O O O
B O O O O O O
O B O O O O O
O O O B O O B
O O O B I I I
O O O B O O O
B O O B O O B
B I O O O O O

Table 1: An example of the labeled dataset

4.1 Dataset
We use the dataset3 provided by (Shirani et al.,
2019). The dataset contains 2742 training sen-
tences and 392 test sentences. Each sentence is

3https://github.com/RiTUAL-UH/
SemEval2020_Task10_Emphasis_Selection

https://www.nltk.org/
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/RiTUAL-UH/SemEval2020_Task10_Emphasis_Selection
https://github.com/RiTUAL-UH/SemEval2020_Task10_Emphasis_Selection

1563

Methods Match-1 Match-2 Match-3 Match-4 Average
GloVe
CNN 0.541 0.678 0.754 0.805 0.695
RNN (Shirani et al., 2019) 0.536 0.712 0.777 0.811 0.709
Ours 0.569 0.703 0.772 0.813 0.714
Ours w/o WSG 0.563 0.710 0.778 0.810 0.715
Ours w/o SSG 0.561 0.710 0.769 0.811 0.713
ELMo
CNN 0.574 0.729 0.795 0.832 0.733
RNN-based (Shirani et al., 2019) 0.592 0.752 0.804 0.822 0.743
Ours 0.610 0.768 0.813 0.836 0.757
Ours w/o WSG 0.604 0.742 0.804 0.827 0.744
Ours w/o SSG 0.597 0.753 0.801 0.836 0.747

Table 2: Results of our model and baselines on GloVe and ELMo. The best performance is boldfaced.

Stay foolish to stay sane .
Annotator 0.333(4) 0.889(1/2) 0.222(5/6) 0.444(3) 0.889(1/2) 0.222(5/6)

RNN-based 0.502(3) 0.565(2) 0.227(6) 0.460(4) 0.798(1) 0.357(5)
Ours 0.502(4) 0.784(2) 0.210(6) 0.595(3) 0.805(1) 0.288(5)

Table 3: A sample case. Numbers outside the brackets indicate the word’s probability of being emphasized. Num-
bers in the brackets are the ranking of the corresponding word. (a/b) means that two words have the same ranking.

labeled by nine annotators. Table 1 gives a sample
record of one sentence. B, I, O represent the begin-
ning word to be emphasized, the interior word to
be emphasized, and the word not to be emphasized
respectively. Since there exists different opinions
about whether the word should be emphasized, the
labels given by nine annotators are slightly differ-
ent.

4.2 Experimental Setup

We regard each annotator’s labeling as a sample
in the dataset. In other words, each sentence is
associate with nine samples. In order to verify
the robustness of our model, we conduct experi-
ments on two pre-trained word embeddings: 300-
d GloVe (Pennington et al., 2014) and 2048-d
ELMo (Peters et al., 2018). For the above two
kinds of embeddings, we adopt GRU as the encoder
E. The GRU hidden state size is 512 and 1024
respectively. The word similarity graph’s node em-
bedding size is 300 and 2048 respectively. The
sentence structure graph’s node embedding size is
300 and 512 respectively. Moreover, we initialize
the sentence structure graph’s node embedding by
training a classifier which only uses the sentence
structure graph encoder. We adopt a two-layer bidi-
rectional GRU. The sentence structure graph and
the word similarity graph are encoded by a two-

layer graph neural network. The batch size is set
to 16. The negative slope of the ReLU function
is set to 0.2. We use the Adam optimizer and the
learning rate is 0.0001. The number of epoch is
100. We also add a dropout layer and the dropout
rate is 0.5.

Since generalized pretrained language models
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) are demonstrated effective in a large
bunch of downstream tasks, we also report results
obtained by fine-tuning the RoBERTa on the em-
phasis selection dataset. There are two different
experimental settings. The first setting is that only
the RoBERTa model is used as the encoder E. The
second setting is that a GRU layer is added on the
top of the RoBERTa model, i.e., RoBERTa+GRU
is the encoder E. The sentence structure model
and the word relationship model remain unchanged.
Adam optimizer is adopted and the learning rate is
set to 1e-5.

4.3 Evaluation Metric

We adopt Match-m (Shirani et al., 2019) as the
evaluation metric which is defined as below:

Match-m: For a sentence C, we choose m
words (denoted by Sg

m(C)) with the top-m proba-
bility (probability of the label B + probability of the
label I) in the ground truth and m words (denoted

1564

Methods Match-1 Match-2 Match-3 Match-4 Average
RoBERTa
Ours w/o both 0.635 0.756 0.803 0.832 0.757
Ours w/o WSG 0.640 0.775 0.793 0.827 0.759
Ours w/o SSG 0.633 0.760 0.804 0.839 0.759
Ours 0.633 0.779 0.803 0.833 0.762
RoBERTa+GRU
Ours w/o both 0.607 0.755 0.795 0.822 0.745
Ours w/o WSG 0.602 0.766 0.798 0.825 0.748
Ours w/o SSG 0.607 0.758 0.801 0.837 0.747
Ours 0.600 0.761 0.806 0.838 0.751

Table 4: Results of our model and baselines based on two different architectures, RoBERTa and RoBERTa+GRU.
The best performance is boldfaced.

Thanks for showing me all the best dance moves
Annotator 0.444 0.111 0.111 0.111 0.111 0 0.888 0.555 0.444

Ours 0.412 0.057 0.332 0.092 0.063 0.024 0.406 0.599 0.387

Table 5: A failed case. Numbers are the word’s probability of being emphasized.

by Sp
m(C)) based on the predicted probability. The

formula is defined as:

Match-m =

∑
C∈Dtest

|Sg
m(C)∩Sp

m(C)|
min(|C|,m)

|Dtest|
(16)

4.4 Results and Analysis
4.4.1 Experimental Results
We compare our model with the existing model
based on RNN proposed by Shirani et al. (2019)
and the convolutional neural network (CNN). We
report results evaluated by the metrics Match-1,
Match-2, Match-3, Match-4 and the average of
these four metrics. From Table 2, we can see that
CNN lags behind other models on the whole.

When the word embedding is GloVe, models
with at least one graph surpass RNN on almost
all the metrics except Match-2. In particular, our
model can achieve an improvement on Match-1
and Match-4. Our model without WSG (word simi-
larity graph) achieves an excellent performance on
Match-3 and Average. When the word embedding
is ELMo, ours is superior to RNN-based on all the
evaluation metrics. Compared to these two ablated
models, Ours can also achieve better performance.
Ours w/o WSG is better than RNN-based on all the
evaluation metrics except Match-2 and Ours w/o
SSG is better than RNN-based except Match-3. On
the whole, models with graphs can obtain better
results on most metrics compared to the baseline
models, which shows the advantage of these two

components.
Experimental results based on RoBERTa are

listed in Table 4. Compared with the results based
on GloVe and ELMo, RoBERTa and its variants
achieve higher average match score which shows
that a better initialized word embedding is helpful
for a better performance. For the same RoBERTa
encoder, Ours can obtain the highest score on Aver-
age and Match-2. For RoBERTa+GRU encoder,
Ours can obtain the highest score on Average,
Match-3 and Match-4. However, one interesting
finding is that RoBERTa encoder performs much
better than RoBERTa+GRU encoder. Two possi-
ble reasons may interpret this phenomenon. The
first reason is the overfitting problem and the sec-
ond reason is that the larger network is harder to
train due to some optimization issues, e.g., gradient
vanishing.

4.4.2 Case Study

To gain some insights of our proposed model, we
present a sample case generated by the ELMo-
based model as shown in Table 3. We can see that
Ours not only predicts the ranking accurately, but
also obtains very close probability to the ground
truth probability derived by annotators. Besides
that, the probabilities of foolish and sane predicted
by our model are very close than that predicted by
RNN-based, which shows that the word similar-
ity graph can impel similar words to have similar
probabilities.

1565

We also provide a failed case in Table 5. It is
intrinsically harder to rank the words in this sen-
tence even for human beings. Our model does not
rank them correctly on these cases where multiple
words may be emphasized.

4.4.3 Some Useful Tips
We conclude some tips on the experiment that leads
to better performance. (1) We can firstly train a
classifier only using the SSG, then use the pre-
trained embeddings as an initialization of the sen-
tence graph nodes embeddings. It can obtain higher
score and faster convergence of the model. (2) We
also consider another method to model the rela-
tionships between words using a self-attention op-
eration proposed by Lin et al. (2017) above the
hidden vectors of RNN. However, the performance
is slightly degraded compared to removing this op-
eration. So we think it is much better to model
words relationships and sequence information sep-
arately.

5 Conclusions

The sentence structure graph and the word similar-
ity graph are proposed to solve two issues found in
emphasis selection. The sentence structure graph
helps to model the structure information of the
sentence and the word similarity graph is useful
in modeling relationships between words. With
the development of graph neural network, the two
graphs can be properly encoded and integrated into
existing models. Experimental results demonstrate
that our framework can achieve superior perfor-
mance.

References
Deng Cai and Wai Lam. 2020. Graph transformer for

graph-to-sequence learning. In 34th AAAI Confer-
ence on Artifical Intelligence.

Yann N. Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2017. Language modeling with
gated convolutional networks. In 34th Interna-
tional Conference on Machine Learning (ICML),
page 933–941.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Miguel Feria, Juan Paolo Balbin, and Francis Michael
Bautista. 2018. Constructing a word similarity
graph from vector based word representation for
named entity recognition.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In 34th Inter-
national Conference on Machine Learning (ICML),
page 1243–1252.

Xin Geng and Quan Zhao. 2014. Label distribution
learning.

Er. Tanya Gupta. 2017. Keyword extraction: A review.
In IJEAST, pages 215–220.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 770–
778.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations (ICLR).

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML, pages 282–289.

Zhouhan Lin, Minwei Feng, Cicero Dos Santos,
Mo Yu, Bing Xiang, Bowen Zhou, and Y. Bengio.
2017. A structured self-attentive sentence embed-
ding. In 5th International Conference on Learning
Representations (ICLR).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, pages 1045–1048.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL, page 2227–2237.

Amirreza Shirani, Franck Dernoncourt, Paul Asente,
Nedim Lipka, Seokhwan Kim, Jose Echevarria, and
Thamar Solorio. 2019. Learning emphasis selection
for written text in visual media from crowd-sourced
label distributions. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 1167–1172, Florence, Italy. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1112
https://doi.org/10.18653/v1/P19-1112
https://doi.org/10.18653/v1/P19-1112

1566

Zhiqing Sun, Jian Tang, Pan Du, Zhi-Hong Deng, and
Jian-Yun Nie. 2019. Divgraphpointer: A graph
pointer network for extracting diverse keyphrases.
In SIGIR, pages 755–764.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Kaiser,
and Illia Polosukhin. 2017. Attention is all you need.
In NIPS, pages 5998–6008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations
(ICLR).

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. 2019. A
comprehensive survey on graph neural networks.
CoRR, abs/1901.00596.

Vikas Yadav and Steven Bethard. 2018. A survey on re-
cent advances in named entity recognition from deep
learning models. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2145–2158, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo
Kang, and Hyunwoo J. Kim. 2019. Graph trans-
former networks. In NIPS, pages 11983–11993.

http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
https://www.aclweb.org/anthology/C18-1182
https://www.aclweb.org/anthology/C18-1182
https://www.aclweb.org/anthology/C18-1182

