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Abstract
The aim of vocabulary inventory prediction is
to predict a learner’s whole vocabulary based
on a limited sample of query words. This paper
approaches the problem starting from the 2-
parameter Item Response Theory (IRT) model,
giving each word in the vocabulary a difficulty
and discrimination parameter. The discrimina-
tion parameter is evaluated on the sub-problem
of question item selection, familiar from the
fields of Computerised Adaptive Testing (CAT)
and active learning. Next, the effect of the
discrimination parameter on prediction perfor-
mance is examined, both in a binary classifi-
cation setting, and in an information retrieval
setting. Performance is compared with base-
lines based on word frequency. A number of
different generalisation scenarios are examined,
including generalising word difficulty and dis-
crimination using word embeddings with a pre-
dictor network and testing on out-of-dataset
data.

1 Introduction

Given a small sample of words, how well can
we predict whether a learner knows some out-of-
sample word? This is the task of vocabulary inven-
tory prediction. A clear motivation for the topic
is to enable quicker and more precise placement
testing. For example, a 40 word self-assessed word
knowledge quiz used as a benchmark in this paper
is quick enough that an L2 learner returning to a
language learning app after a long break, in which
they may have either forgotten a lot or had a lot
of extra exposure to their target language, can be
placed again quickly without excessive disruption.

This paper addresses the following research
questions:

1. What are the empirical differences in per-
formances between difficulty parameters pro-
duced by estimation of Item Response The-
ory (IRT) models and those based on word

frequency in terms of their application to vo-
cabulary inventory prediction?

2. How well can the IRT parameters of diffi-
culty and discrimination be regressed based
on word embeddings?

3. Which approaches from the field of Comput-
erised Adaptive Testing (CAT) help to select
good items to query? Does the addition of a
discrimination parameter help with question
selection?

4. Does the addition of a discrimination parame-
ter help with the final prediction step?

2 Related Work

Milton (2009) refers to the common assump-
tion when quantifying vocabulary acquisition that
words are learnt in approximately descending or-
der of frequency as the frequency assumption. It
has been used in the field of reading research, for
example in estimating vocabulary size, but can also
provide a simple baseline for the task of vocabulary
inventory prediction.

Avdiu et al. (2019) approached the problem
through feature engineering, taking frequency pro-
files of different genres and associating learners
with them according to their responses. They used
a large section of the data for training, without
testing a scenario in which learned data is to be
generalised to new learners with less data available,
as in this paper

Item Response Theory (IRT) (Tatsuoka et al.,
1968; Baker, 2001) is widely used to determine
item difficulties and examinee ability in academic
assessments. A key drawback of traditional IRT
is that the actual content of the items is ignored.
Instead, items are only understood in terms of their
responses. This leaves no possibility of generalis-
ing item parameters to unseen items. Recent work
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has begun to generalise difficulty scores based on
representations based on items’ textual content us-
ing deep neural networks. For example Benedetto
et al. (2021) first fit an IRT model on questions
from a cloud technology certification exam, before
training a transformer model to regress the result-
ing difficulty scores, allowing generalisation to new
questions without a pre-testing stage.

Ehara (2019) approaches the problem of vocabu-
lary prediction by fitting a Rasch (1960) model,
equivalent to a 1-parameter logistic IRT model.
The problem was modelled such that an equivalent
neural network was constructed which included
features based on Glove (Pennington et al., 2014)
word embeddings. As with Avdiu et al. (2019), a
single stage of training was performed so that the
ability of the learners was learnt simultaneously
with the weights of the prediction network. This
network did not beat a word frequency and logistic
regression baseline. In this paper, a 2-parameter
logistic IRT model is fitted as an initial step, before
proceeding to generalise these parameters using a
word embedding based regressor.

Computerised Adaptive Testing (CAT) (Lord,
1977; Wainer, 2000) has not been widely applied to
the task of vocabulary inventory estimation. A CAT
system selects questions based on a examinee’s
previous answers in order to converge on an accu-
rate ability estimate faster. Related, but outside of
CAT/IRT setting, Ehara et al. (2014a) builds graphs
made from a combination of multiple corpora com-
bined and apply label propagation to find a fixed set
of queries to in-effect give a more accurate ability
estimate than choosing at random. Restricting our-
selves to the adaptive setting, the main prior art is
the website http://testyourvocab.com/, which
uses CAT to estimate vocabulary size based on
word frequencies. To the best of the author’s knowl-
edge, there is no prior work attempting to quantify
how accurate the ability estimates obtained when
applying CAT to the problem of vocabulary inven-
tory estimation are.

3 Method

3.1 Datasets

Three datasets are used in this paper. The first,
SVD12K, is due to Ehara et al. (2012) and contains
12 000 words rated on a 5-point scale by 16 learners
of English, most of whom have Japanese as their
native language. Following Ehara et al. (2014b),
the first learner is discarded due to lower quality

pi,j

aj bj

θi

J

I

aj ∼ N (1.2, 0.25)

bj ∼ N (0, 1)

θi ∼ N (0, 1)

Figure 1: Plate diagram showing the Bayesian network
corresponding to the 2-parameter logistic IRT model.

data. The learners in SVD12K were all students
of the University of Tokyo and we speculate that
it is quite possible they have all learnt English for
similar purposes, i.e. academic usage, and may
have even attended the same English classes.

The other two datasets are used as additional test
sets, so as to see how well the techniques generalise
beyond the potentially rather narrow distribution of
SVD12K. Both of the two extra datasets are con-
structed such that they should be mainly composed
of learners with Japanese as their L1, i.e. testing of
generalisation beyond learner L1 is not considered
here. Ehara (2018) introduce EVKD1, a dataset
consisting of responses to a 100 word 4-way mul-
tiple choice test given to 100 participants, admin-
istered using a Japanese crowdsourcing platform.
Respondents were asked to choose the correct defi-
nition of a word given in a context sentence. The
final dataset is a section of responses to the website
TestYourVocab1 limited to responses from 2018 by
participants who selected their country as “Japan”.
This dataset has a different selection of responses
for each person.

3.2 Fitting an IRT Model

Given a matrix of responses ri,j indexed by items
i and respondents j, an IRT model predicts latent
features of the items and respondents. Respon-
dents are assigned abilities θi, while in 2-parameter
IRT models, items are assigned difficulties aj and
discriminations bj . Typically we predict binomial
responses based on an Item Characteristic Curve

1Obtained by direct request from the owner of http://
testyourvocab.com/.

http://testyourvocab.com/
http://testyourvocab.com/
http://testyourvocab.com/
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(ICC) like so:

ICCj(θ) =
(
1 + e−aj(θ−bj)

)−1

P (ri,j |θi, aj , bj) = ICCj(θi)

Q(ri,j |θi, aj , bj) = 1− ICCj(θi)

The data of Ehara et al. (2012) is rated on a 5-
point scale, suggesting a graded IRT model. A
typical formulation may try and learn separate diffi-
culty and discrimination parameters per item-level
pair, significantly increasing the number of param-
eters to be learnt. In order to reduce the amount
of data necessary to fit the IRT model, we learn
only one difficulty discrimination per item and cre-
ate fixed global offsets l1...4 ≥ 0 to create offset
difficulties for the thresholds. We then model:

P (r?i,j ≥ k|θi, aj , bj) = ICCj(θi −
∑4

s=k ls)

And note that:

P (r?i,j = k) = P (r?i,j ≥ k)− P (r?i,j ≥ k + 1)

P (r?i,j ≥ 1) = 1

P (r?i,j ≥ 6) = 0

We estimate the Maximum A Posteriori (MAP)
with Stan (Carpenter et al., 2017). The priors are
illustrated alongside Figure 1. After fitting the
model we revert to considering the binomial case
by defining P (ri,j) := P (r?i,j = 5).

3.3 Frequencies as a Difficulty Baseline

A simple frequency baseline for difficulty was con-
structed based on the word frequencies of the word-
freq (Speer et al., 2018) library. The wordfreq
library incorporates frequencies from multiple cor-
pora of different registers, ensuring balanced cov-
erage by taking equal contributions from each reg-
ister after removing outliers. Internally, wordfreq
stores log frequencies on an 800 point scale. These
are first negated and then standardized according
to their mean and standard deviation based on the
words in the SVD12K dataset so that they lie in the
same range as the IRT difficulties.

To the best of the author’s knowledge, given
good frequency data, this baseline has not yet been
significantly surpassed on this task in the setting
where there are only a small number responses
available from the learner, making it effectively
state-of-the-art.

Linear (2)

Numberbatch
(300)

Linear (300)

FullBatchNorm

GeLu

Figure 2: The architecture of the IRT item parameter
regressor network.

3.4 Generalising IRT Item Parameters

In order to generalise the difficulty and discrimina-
tion parameters beyond the words present at IRT
model estimation time, a Multi-Layer Perceptron
(MLP) was trained as a regressor for both param-
eters. Words are input to the network as Number-
batch 19.08 (Speer et al., 2017) embeddings. These
300 dimensional embeddings, based on lemmas
rather than word forms, are constructed by combin-
ing multiple distributional word embeddings with
information from the ConceptNet lexical knowl-
edge graph. They were chosen because most vo-
cabulary tests are either based on lemmas or word
families rather than word forms, and because they
have performed well in previous studies.

The architecture shown in Figure 2 was imple-
mented using PyTorch (Paszke et al., 2019). The
GeLu activation function (Hendrycks and Gimpel,
2016) and BatchNorm (Ioffe and Szegedy, 2015)
are used as non-linearities. Since full batch training
is used here, the BatchNorm damping parameter,
which is intended to stabilise random variations
in minibatches, is not used. The Adam optimizer
(Kingma and Ba, 2015) was used with a learning
rate of 0.003. Training was performed for 50 iter-
ations and the best iteration on the validation set
created by 1:11 validation:train split was chosen.

3.5 Computerised Adaptive Testing

The aim of Computerised Adaptive Testing (CAT)
(Lord, 1977; Wainer, 2000) is to estimate a
learner’s ability parameter θ as accurately as possi-
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ble with as few queries as possible. Key parts of a
CAT system are initialisation, next item selection,
and θ estimation. After initialisation, the system
repeatedly queries a new item from the learner and
re-estimates θ∗ until a termination condition. Here,
we terminate after having made 40 queries, and
always initialise θ∗ to be 0.

Next item selection rules are typically formu-
lated as choosing an next item so as to maximise
some measure of merit. Here we consider the max-
imisation of Fisher information introduced to the
field of CAT by Lord (1977), and denoted as Max-
Info. For the 2-parameter logistic IRT model the
Fisher information is defined as:

Ij(θ) = a2jICCaj ,bj (θ)(1− ICCaj ,bj (θ))

An alternative next item selection rule is due to
Urry (1970), and denoted as such, and simply picks
questions close to the current estimate of θ. Note
that this is equivalent to the max entropy heuristic
in active learning, which queries the data point
about which the current version of the classifier is
most uncertain.

There are two approaches for estimating θ∗. The
first, denoted Full-ICC, starts from a binomial IRT
model introduced in Section 3.2 and incomplete
response data U = {uj |j ∈ J, uj ∈ {0, 1}}. We
then obtain θ∗ by maximum likelihood estimation:

L(θ) =
∏

uj∈U P (ri,j |θ, aj , bj)uj

×Q(ri,j |θ, aj , bj)(1−uj)

θ∗ = argmax
θ

L(θ)

The second, denoted Difficulty Only, ignores the
discriminations of the items, which is equivalent
to setting all aj = 1. Substituting the resulting
ICC expressions into the likelihood reveals an
equivalence with logistic regression. Namely, after
fitting a logistic regression model on the responses
U , we get a model with coefficient m and intercept
c. We then find that θ∗ = −c

m .
In early iterations, there may only be positive

or negative responses. In this case we apply the
method of Dodd (1990), which averages the pre-
vious theta estimate with either the maximum or
minimum item difficulty value depending on the
direction in which θ∗ would otherwise diverge.

As a non-CAT baseline, there is stratified ran-
dom selection, denoted Rand. In order to guarantee
a reasonable range of item difficulties are asked,

strata for the words are created by ordering by fre-
quency and splitting into 5 equal sized strata. The
random selection procedure then chooses 40 items
randomly, taking equally from each stratum.

The catsim Python library (De Rizzo Meneghetti
and Aquino Junior, 2017) is used for the implemen-
tations of all CAT techniques.

3.6 Evaluation

The vocabulary inventory prediction task can be
viewed as a binary classification problem. The Re-
ceiver Operator Characteristic (ROC) curve plots
the recall of the positive class against the recall of
the negative class by varying the classifier thresh-
old. Statistics based on ROC curve, such as Area
Under ROC (AUROC) enjoy the key advantage of
threshold invariance. On the other hand, we typi-
cally do have to pick some threshold and for this
reason, a metric based on a default threshold of 0.5
is given: Matthews Correlation Coefficient (MCC).
The second angle on the problem is that of known
and unknown word retrieval. In this case Average
Precision (AP) acts as a threshold invariant measure
of retrieval performance. We consider AP+ and AP-
for measuring retrieval performance from the two
classes of known and unknown respectively.

AUROC does not change significantly based on
exact ability estimate of the learner due to its lack
of a fixed threshold. Here, we use it only to explore
different ways the difficulty parameter can be ob-
tained and the effect of including the discrimination
parameter. Being based on a fixed threshold, MCC
is highly sensitive to the actual ability estimate, and
so it gives a more realistic picture of performance
practically. The metrics AP+ and AP- are used to
measure an upper bound on the performance on the
retrieval tasks.

Intuitively, we can see low values of discrimina-
tion as reflecting a degree of uncertainty about a
word’s true difficulty. The information retrieval per-
spective is particularly relevant here since the pres-
ence of the discrimination parameter means that,
for example in unknown word retrieval, words that
are highly discriminating but less difficult could be
returned earlier than words with low discrimina-
tion that are more difficult, potentially improving
performance.

4 Experiments

We first evaluate how well the item/word param-
eters from the IRT model can be regressed with
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Gen Param MAE Norm

Words Diff 0.595 0.495
Discrim 0.148 1.365

Both Diff 0.608 0.506
Discrim 0.147 1.356

Table 1: Table containing the both the raw Mean Abso-
lute Error (MAE) and the MAE normalised by the true
standard deviation of difficulties and discriminations as
predicted in two word generalisation scenarios.

the chosen architecture. Next we move on to con-
sider how well various CAT approaches can esti-
mate learners’ abilities. Finally, the results for the
final task of vocabulary inventory prediction are
presented, first cross validating on the SVD12K
dataset and then training on the whole SVD12K
dataset and testing on the extra datasets.

Four generalisation scenarios are considered
across experiments:

Gen-None No generalisation; The IRT model is
fitted on the same data as the test data.

Gen-Word Generalising only to new words; 3-
fold cross validation is performed on words,
with the IRT model being fitted on 2/3 training
words, before fitting the MLP on the results
to predict the out-of-vocabulary 1/3 of words.

Gen-Respondent Generalising only to new learn-
ers; 3-fold cross validation is performed on
participants, with the IRT model being fitted
on 2/3 participants, from which the item param-
eters are used as-is on the out-of-sample 1/3 of
participants.

Gen-Both Generalising to new words and learn-
ers; 9-fold cross validation is performed, con-
sisting of the product of 3-fold cross valida-
tion on participants with 3-fold cross valida-
tion on words.

4.1 Predicting Item Parameters
Table 1 gives the results evaluating the performance
of the IRT parameter regressor. When looking at
the results normalised by true standard deviation,
it is clear that the parameter of discrimination is
more difficult to predict. The lower error in predict-
ing difficulties in the Gen-Words scenario suggests
that the more accurate IRT predictions made with
more data do indeed provide an easier target for the
network to fit. However, the actual errors are quite
close, and the generalisation scenarios tend to give

Gen Estimator Next Item MAE Norm

Both

Full ICC
Rand 1.204 1.136
Urry 1.117 1.053
Max-Info 1.110 1.047

Difficulty
only

Rand 1.087 1.025
Urry 1.037 0.978
Max-Info 1.114 1.051

Resp.

Full ICC
Rand 1.334 1.258
Urry 1.150 1.084
Max-Info 1.199 1.131

Difficulty
only

Rand 1.280 1.207
Urry 1.068 1.007
Max-Info 1.211 1.142

None

Full ICC
Rand 1.372 1.294
Urry 1.105 1.042
Max-Info 1.395 1.316

Difficulty
only

Rand 1.249 1.178
Urry 1.233 1.163
Max-Info 1.338 1.262

Table 2: Table showing the raw MAE and MAE normal-
ized by standard deviation of estimated difficulties after
40 questions versus true difficulties.

similar results, so for this reason Gen-Words is not
considered further in the later results.

4.2 θ-estimation

We now turn to the matter of how well θ is esti-
mated using different approaches. The results are
shown in Table 2.

For both next item selection methods and θ-
estimation methods, including the discrimination
parameter seemed to decrease performance. Note-
worthy is that the best overall score is obtained
by difficulty-based CAT for the Gen-Both and
Gen-Resp, with this setting in the Gen-Both sce-
nario outperforming the others, showing that the
regressed word difficulties perform well for this
task. For the Gen-None scenario, including the full
ICC when estimating θ appeared to help. It may
be that having non-regressed discrimination values
based on responses from more respondents helped
in this case.

However, since discriminations appear to not be
generally useful for finding θ in any generalisa-
tion scenario, they are not used further in the next
section and the Urry (1970) next item rule is used
together with the difficulty only θ estimator.

4.3 Vocabulary Inventory Prediction

We now evaluate the final task of vocabulary in-
ventory prediction. Table 3 shows the results
on this task using the metrics introduced in Sec-
tion 3.6. The experiments compare the use of dif-
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Gen Diff. Dis. ROC MCC AP+ AP-

Both
Resp. Off 0.829 0.398 0.848 0.722

On 0.827 0.398 0.845 0.720

Freq Off 0.805 0.260 0.842 0.659
On 0.799 0.260 0.839 0.656

Resp.
Resp. Off 0.882 0.492 0.879 0.786

On 0.882 0.492 0.880 0.786

Freq Off 0.805 0.346 0.842 0.659
On 0.805 0.346 0.843 0.658

None
Resp. Off 0.915 0.598 0.933 0.840

On 0.918 0.598 0.934 0.843

Freq Off 0.805 0.359 0.842 0.659
On 0.811 0.359 0.845 0.666

Table 3: Table showing results on the SVD12K
dataset in different generalisation settings given differ-
ent choices of source difficulty parameter and whether
to include the discrimination parameter in predictions.

Gen Diff. Dis. ROC MCC AP+ AP-

Freq Freq Off 0.690 0.228 0.711 0.650

Pred
Resp. Off 0.658 0.195 0.676 0.614

On 0.656 0.205 0.676 0.608
Freq On 0.680 0.228 0.704 0.648

Mix
Resp. Off 0.670 0.261 0.711 0.625

On 0.677 0.280 0.718 0.625
Freq On 0.687 0.262 0.715 0.654

Table 4: Table showing results on the EVKD1 dataset
of different choices of source difficulty parameter and
whether to include the discrimination parameter in pre-
dictions.

ficulties from IRT versus the wordfreq baseline,
and whether or not the discrimination parameter is
used for prediction. The idea behind using the dis-
crimination parameter in prediction is that highly
discriminating words may receive more confident
scores even when they’re further from ability esti-
mate than a nearer lowly discriminating word since
the discrimination parameter acts as a measure of
certainty of the item’s difficulty.

From the results we can see that using difficulties
based on word frequencies reduces performance
across the board. The inclusion of the discrimina-
tion parameter in most cases does not seem to make
too much of a change, slightly decreasing perfor-
mance in the Gen-Both scenario, and making very
little difference for Gen-Respondent. Although
there is a small improvement in the Gen-None case,
this reflects the IRT model’s goodness of fit, rather
than how well the values generalise.

Gen. Diff. Dis. ROC MCC AP+ AP-

Freq Freq Off 0.895 0.612 0.886 0.903

Pred
Resp. Off 0.843 0.516 0.835 0.844

On 0.837 0.516 0.826 0.839
Freq On 0.888 0.612 0.880 0.896

Mix
Resp. Off 0.878 0.609 0.871 0.877

On 0.876 0.609 0.872 0.875
Freq On 0.893 0.612 0.886 0.901

Table 5: Table showing results on the TestYourVocab
dataset of different choices of source difficulty parame-
ter and whether to include the discrimination parameter
in predictions.

4.4 Generalising Vocabulary Inventory
Prediction

We now turn to a scenario in which all the data from
the SVD12K dataset is used for training, equivalent
to the Gen-None scenario, but the resulting item
parameters are tested on external datasets. We test
on the EVKD1 data set and TestYourVocab dataset
introduced in Section 3.1. The results are given in
Tables 4 & 5.

Since the EVKD1 set is a 4-way multiple choice
test, we account for correct answers by guessing by
using an item response curve with a guessing prob-
ability of 0.25, similar to the 3-parameter logistic
IRT model:

ICCaj ,bj (θ) = 0.25 +
0.75

1 + e−aj(θi−bj)

Since there is a limited number of training words
available in these datasets, in these experiments, no
CAT is used, and instead the difficulty parameter
is estimated based on 40 words taken at regular
intervals from the frequency ranked list. There
are three generalisation scenarios: Freq, where
only frequency data is used; Pred, where only pre-
dictions from the generalisation model are used;
and Mix, where item parameters are used directly
from the IRT model fitted on SVD12K where
possible, falling back to predictions when items
available in SVD12K. Other variations are as in
Section 4.3. For both datasets, frequency based
difficulties outperform difficulties estimated from
SVD12K, suggesting these do not generalise well
to other datasets. The inclusion of the discrimina-
tion parameter appears to have a consistent small
negative effect across all these experiments.
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5 Discussion

We now summarise and discuss some of the main
results of the experiments. Firstly, the discrimina-
tion parameter does not appear to help with query
item selection, however it remains somewhat in-
conclusive whether it can help with estimating the
learner ability θ since this was the best configu-
ration in the Gen-None case. It may be that with
sufficiently high quality estimates of the discrimina-
tion values, using this for θ-estimation would help
more. The approach which appeared best overall
in this case however, and which was used for later
experiments on the SVD12K dataset ignored the
discrimination parameter altogether for both steps
of the CAT stage.

The difficulty parameter generalises reasonably
well, while the discrimination parameter gener-
alises quite poorly when regressed using a MLP
based on Numberbatch representations of the word
items. Since item difficulty here is closely related
to frequency, it seems quite possible that a lot of the
generalisation is happening based on frequency in-
formation encoded in the word embeddings. When
considering how well both parameters generalised,
we should note that only one type of word em-
bedding and regressor was tried, and others may
generalise this parameter better.

The regressed difficulties perform better than the
frequency data on in-dataset data, while perform-
ing worse on out-of-dataset data. Given all datasets
contained mostly Japanese learners of English, this
suggests that both the IRT parameter and the MLP
generalising may have over fitted on narrow at-
tributes of the particular cohort of University of
Tokyo students making up SVD12K. Conversely
we see that that high quality, balanced word fre-
quency data generalises rather well.

Usage of the discrimination parameter for vocab-
ulary inventory prediction was largely inconclusive,
with some evidence against it. In many cases, it ap-
peared to decrease performance on metrics such as
AUROC, however some tasks showed a promising
but insignificant boost in AP-.

It is unclear exactly why the discrimination pa-
rameter failed to provide significant improvements
in either next-item selection, θ-estimation or vocab-
ulary inventory prediction. It is possible that the
amount of response data was not sufficient either
in terms of the number of respondents, or in terms

of representing a diverse range of abilities, to ob-
tain accurate word discrimination estimates. Apart
from simply finding and integrating more vocabu-
lary knowledge data, one direction for future work
is trying to find corpus derived measures which cor-
relate with word discrimination, analogously to the
negative correlation between word frequency and
word difficulty. This would also effectively address
the failure to generalise the word discriminations
parameter to out of vocabulary words.

We hope the methods of evaluating the different
sub-tasks of the vocabulary inventory prediction
task in the settings demonstrated here can help
establish practices for evaluating this task more
throughly. We also hope that the framing given
here inspires others to tackle the problem in the
challenging, but more broadly applicable setting
of vocabulary inventory prediction having a small,
limited number of queries.

The code to replicate all experiments is made
available at https://github.com/frankier/

vocabirt.
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