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Abstract
Biomedical Named Entities are complex, so
approximate matching has been used to im-
prove entity coverage. However, the usual
approximate matching approach fetches only
one matching result, which is often noisy. In
this work, we propose a method for biomed-
ical NER that fetches multiple approximate
matches for a given phrase to leverage their
variations to estimate entity-likeness. The
model uses pooling to discard the unnecessary
information from the noisy matching results,
and learn the entity-likeness of the phrase with
multiple approximate matches. Experimental
results on three benchmark datasets from the
biomedical domain, BC2GM, NCBI-disease,
and BC4CHEMD, demonstrate the effective-
ness. Our model improves the average F-
measures by up to 0.21 percentage points com-
pared to a BioBERT-based NER.

1 Introduction

In the biomedical field, obtaining labelled data is
very costly. Biomedical Named Entities (NEs) are
complex and new NEs are continuously increasing
in significant numbers, leading to unknown-word
issues in Biomedical Named Entity Recognition
(BioNER) tasks. One reason why biomedical NEs
are complex is that they have many variations with
the interchangeability of Roman numbers and Latin
characters, spaces and hyphens, etc. The number
of new biomedical research papers is increasing,
wherein approximately two papers per minute, re-
sulting in more than 1 million papers each year, are
added to the PubMed database (Landhuis, 2016).
With this number of publications, new NEs are
constantly being reported.

In the last few years, NER using pre-trained lan-
guage models (LMs), such as BERT (Devlin et al.,
2018), ELMo (Peters et al., 2018), and Flair (Ak-
bik et al., 2019), has shown state-of-the-art perfor-
mance. In the biomedical domain, pre-trained LMs

such as BioBERT (Lee et al., 2019a) and BioELMo
(Jin et al., 2019), which are BERT and ELMo
trained on a biomedical domain text, have achieved
the state-of-the-art performance in many biomed-
ical natural language processing tasks including
NER. However, only using previously trained LMs
cannot cover the continuously increasing new enti-
ties due to complex characteristics of biomedical
NEs, lead to unknown words problem. Despite
being used as approaches to avoid unknown words
problem, subword segmentation (Sennrich et al.,
2015; Kudo and Richardson, 2018) methods con-
sider subwords represented as unique IDs, but not
words or their synonyms. therefore, it is difficult for
subword or character based LMs to cover biomedi-
cal NEs , which are complex and contain various
of expression described in section 3. Moreover,
LM pre-training is costly, time-consuming, and
computationally expensive. Training BioBERT on
biomedical corpora based on the BERT model re-
quires 10 to 23 days on eight NVIDIA V100 GPUs
(Lee et al., 2019a).

To deal with the complex and continuously in-
creasing entities, the use of dictionary-based ap-
proaches can be an effective approach in previous
works (Collobert et al., 2011; Rijhwani et al., 2020).
In contrast to pre-training models, we can cover
new NEs by adding entries to the dictionary, with-
out needing time-consuming pre-training. There
are two types of dictionary application methods:
exact matching and approximate matching. Exact
matching has been incorporated into neural NER
(Collobert et al., 2011; Chiu and Nichols, 2016; Wu
et al., 2018) and non-neural NER methods (Uchi-
moto et al., 2000) to improve accuracy.

Exact matching cannot totally cover all of the
complex and newly-created NEs. In the biomed-
ical domain, new NEs are created by modifying
the endings of the existing one. For example, the
new gene TAAR7P was named by modifying the
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ending of the existing gene TAAR8. To improve
the coverage of entities, approximate matching has
been used to manage new NEs in non-neural NER
(Cohen and Sarawagi, 2004). However, the approx-
imate matching approach fetches only one match-
ing result, which cannot cover all variations of NEs.
For example, NEs “Type-1 angiotensin II receptor-
associated protein” have many variations such as
“Type-1 angiotensin II receptor associated protein”,
“Type-1 angiotensin 2 receptor associated protein”,
and “Type 1 angiotensin II receptor-associated pro-
tein”. Also, approximate matching results are often
noisy.

In this paper, we propose a method to improve
neural BioNER by learning the entity-likeness of
a given input sentence using multiple approxi-
mate matches of the input sentence with a dic-
tionary. We define the entity-likeness as the degree
to which a certain input sentence is likely to appear
in the dictionary. It is estimated from matching
results between the input sentence and entities in
the dictionary.

We evaluated our method with three biomedical
domain benchmarks, i.e., BC2GM, NCBI-disease,
and BC4CHEMD dataset. The experimental re-
sults show the effectiveness of our approach. It
improves F-measures by up to +0.21 points on the
biomedical benchmark, and +2.2 points when prob-
ing the biomedical ELMo (Jin et al., 2019), which
is a recent state-of-the-art pre-training method.

2 Related Work

For the NER task, previous studies have examined
the application of dictionaries in machine learning.
Dictionary matching was employed in SVM-based
NER (Ratinov and Roth, 2009) and partial match-
ing computed by distance feature between a token
and entity in dictionary was considered in semi-
Markov extraction processes (Cohen and Sarawagi,
2004).

Dictionary matching is also used in Neural NER
approaches. Liu et al. added a pre-trained mod-
ule that softly matches the gazetteers to the semi-
Markov CRF-based segmental NER task. Soft
matching of gazetteers is also used in the work of
Rijhwani et al. (2020) for low-resource NER. Exact
matching was used by Collobert et al. (2011) ; they
use a network layer to map words of dictionary
into feature vectors by a lookup table operation
and train the features as input in their model. Chiu
and Nichols proposed the use of the longest match-

ing, including partial lexicon matching in neural
networks. Each word vector has dimensions to
express dictionary matching.

In the CRF-based sequence labeling model for
NER, the clustering results of phrases in the search
engine query logs were used as features by Lin
and Wu (2009). To improve word representation, a
word embedding learning method that leverages in-
formation from relevant lexicons to phrase embed-
ding was proposed by Passos et al. (2014). Hand-
crafting features obtained from gazetteers were also
incorporated to model additional information in the
named entity (Wu et al., 2018; Shang et al., 2018).

Related to approaches employing approximate
string matching in Biomedical NER, Tsuruoka and
Tsujii proposed a method to recognize entity can-
didates by approximate searching and filtering out
false positives using a binary classifier. Yang et al.
used approximate string matching and added pre-
and post-keywords for each bio-entity name to ex-
pand the coverage of the dictionary. Xu et al. con-
structed a dictionary attention layer to incorporate
exact dictionary matching and a document-level
attention mechanism to improve disease NER.

Approaches based on neural network were also
applied for Biomedical NER (Habibi et al., 2017;
Crichton et al., 2017; Wang et al., 2018). For a
transformer-based approach, Khan et al. used a
shared transformer encoder to capture the embed-
ding vector of each token in input sentence and task
specific linear layers to generate representations of
multi-tasks including Biomedical NER.

Differing from these works, we propose a
method to learn the entity-likeness of a sentence
by leveraging multiple approximate matches of the
sentence with one or multiple dictionaries. Recent
approaches based on pre-training for specific do-
mains, such as biomedical (Lee et al., 2019a; Jin
et al., 2019), clinical (Huang et al., 2019) and scien-
tific (Beltagy et al., 2019), have shown high levels
of accuracy; our method is complementary to these
approaches.

3 NEs in Biomedical Domain

Biomedical NEs are complex and ambiguous due
to the following characteristics:

Variation of Expression Biomedical NEs have
various synonyms, including abbreviations, inter-
changeability of Roman numbers and Latin charac-
ters, insertions and deletions of hyphens and spaces,
and changes in word order. For example, the gene
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“Angiotensin II Receptor Type 1” has the official
name “AGTR1”, as well as more than ten other
names, e.g., AGTR -1, Type -1 Angiotensin II Re-
ceptor, Angiotensin Receptor 1B, and AT1 Recep-
tor. Even if the dictionary is further expanded,
exact matching cannot entirely cover all possible
variations of NEs.

Composite Mentions NEs in the biomedical do-
main are frequently connected by “and,” “or” in
a single span which refers to more than one en-
tity. For example, “alpha and beta globin” refers to
“alpha globin” and “beta globin”.

Nested NEs Nested NEs (Kim et al., 2003; Ring-
land et al., 2019), where one NE is completely
contained by the other, are also commonly used
in biomedical data. For example, both “adenylate
cyclase activating polypeptide 1” and “adenylate
cyclase” are the names of proteins.

Entity ambiguity The same mention may often
refer to many different entities depending on con-
text. For example, “VHL” can be either a disease
name “Von Hippel–Lindau (VHL) disease” or a
gene name “VHL gene” depending on context.

NEs in the biomedical domain are continuously
increasing in number every year. When using exact
matching or pre-trained LMs for BioNER, it is diffi-
cult to sufficiently cover all possible combinations
of NEs, leading to the omission of NE recognition.

4 Learning Entity-likeness with Multiple
Approximate Matches

The concept of our approach is that the entity-
likeness of a given input sentence can be esti-
mated by its maximal similarity to entities in a
dictionary. Our motivation is to assign the entity-
likeness to each word of the input sentence.

The overall flow of the proposed approach is as
follows:

1. Given an input sentence, we first fetch match-
ing results between the input sentence and a
specified dictionary.

2. We create matching patterns based on the
matching results, and assign them to each
word in the input sentence. The matching
pattern is a label that indicates how each word
matches with the dictionary.

3. For each word in the input sentence, we build
a vector for predicting entity-likeness from

the multiple matching patterns by a pooling
operation.

4. We build an NER model learning both vector
of entity-likeness and contextual embedding
derived from pre-trained LMs.

4.1 Creating Multiple Approximate Matches
Given an input sentence, we first fetch the matching
results between the input sentence and entities in a
dictionary. Since we cannot specify which part of
the input sentence contains the entity, we calculate
the string similarity of all continuous word level
N -grams (N ≤ 5) in the input sentence with all
dictionary entries. The matching returns entries
whose similarity with the N -gram is larger than
a specified threshold 1. We regard a match of N-
gram with an entity with threshold 1.0 as an exact
matching.

By employing the multiple approximate match-
ings of N -gram with the dictionary, it is possi-
ble to obtain useful information about the multiple
matches for estimating the entity-likeness of the
N -grams, especially in the case of predicting a new
NE which is similar to the existing one. For exam-
ple, we can obtain information on the interchange-
ability of Greek or Roman characters in NEs from
dictionary entries “beta-1 Adrenergic Receptor”,
“β-1 Adrenergic Receptor” and other synonyms.
The information is useful for recognizing the un-
known NE “α-1 Adrenergic Receptor”.

4.2 Creating Dictionary Matching Patterns
Based on the matching results ofN -grams (N ≤ 5)
with a dictionary obtained in section 4.1, we create
a set of dictionary matching patterns that includes
the information of the dictionary that is used, the
types of matching, and the matching position;
this information is assigned to each word in the
input sentence. The type of matching is set to “Ex-
act” if the N -gram exactly matches the dictionary
entry, otherwise it is set to “Approximate”. There
are three types of matching positions (B (Begin-
ning), I (Inside), and E (Ending)) which indicate
the position of the word in the N -gram.

For example, as shown in Figure 1, the input
sentence “EGFR is epidermal growth factor re-
ceptor” is matched with a gene/protein dictionary.
The gene/protein dictionary includes entries such
as “epidermal growth factor receptor substrate

1Note that an N -gram can be matched with one or multiple
dictionaries when we have two or more dictionaries.



1043

Figure 1: Method to create matching patterns using a gene/protein dictionary. The blue markers representN -grams
of the input sentence, and the purple, yellow, and red markers represent N -grams matching with the corresponding
dictionary entries. The green marker describes the current word and corresponding matching patterns that are
created and assigned to the current word.

15,” “epidermal growth factor receptor GRB-7,”
etc. As shown in Figure 1, 3-gram N1 with the
beginning word w0 “epidermal” exactly matches
with gene/protein dictionary entry M1 and it ap-
proximately matches with entries M3, M4 and
M5. The matching result of the 3-gram N1 assigns
matching patterns: “Gene-Exact-B” and “Gene-
Approximate-B” to w0.

In the same way, 4-gram N2 approximately
matches with dictionary entries M6 and M7. In
this case, the word “epidermal” is inside the N2
and therefore the matching result of the N2 assigns
matching patterns:“Gene-Approximate-I’ to w0.

Based on matching results between all N -grams
of the input sentence and the dictionary, we can
obtain a set of matching patterns for each word
in the input sentence. The possible matching pat-
terns for each word are {Number of dictionaries}
× {Exact, Approximate} × {B, I, E}. For exam-
ple, in Figure 1, a set of matching patterns with the
Gene dictionary for the third word “epidermal” are
{“Gene-Exact-B,” “Gene-Approximate-B,” “Gene-
Approximate-I”}.

4.3 Representation of Multiple Matching
Patterns

After creating sets of dictionary matching patterns
corresponding to each word, we build a representa-
tion for the dictionary matching patterns.

Suppose each word wi corresponds to a subset
of matching patterns Si ⊂ S, where S is the pos-
sible matching patterns, Si is obtained in section
4.2. Here, Si represents the likeliness of that the
word forms a part of entities. Ei corresponds to
embeddings of Si:

Ei = {emb(s)|s ∈ Si} (1)

where emb(·) indicates an embedding operation.
In experiments, embedding emb(s) is randomly
initialized from a normal distribution but not fine-
tuned.

Next, we build a vector representation Di of
entity-likeness by pooling the embeddings Ei; Di

has the same dimension as Ei:

Di = fpool(Ei) (2)

where fpool is a pooling operation.
The aim of the pooling is to aggregate informa-

tion for learning from various matching patterns.
In order to investigate the effect of various pooling
functions, we consider four types of pooling: Sum,
Max, Average and Convolution.

Sum Pooling It is expected that summarizing
all features of the possible matching pattern em-
beddings gives information for estimating entity-
likeness of words.

fsum(Ei) =
∑
v∈Ei

v (3)
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Figure 2: Illustration of the proposed model architec-
ture. Ti and Di are the corresponding contextual word
embedding module and dictionary matching pattern
module for each word wi in the input sentence, respec-
tively. Vi represents interaction between each word and
its entity-likeness . The model predicts the token-level
NE label, li. am1B, am1I,... are embeddings of match-
ing patterns.

Max Pooling Instead of sum pooling, we use max
pooling to compose the set of matching pattern
embeddings:

fmax(Ei) = max(Ei) (4)

Average Pooling In the same way, we consider the
average variation of the pooling method:

favg(Ei) = avg(Ei) (5)

Convolution As a way to combine embeddings,
we apply 1-D convolution over the set of matching
pattern embeddings to build the dictionary match-
ing embedding:

fconv(Ei) = Conv1d(Ei) (6)

4.4 Learning Representations of
Entity-likeness with NER

Figure 2 shows the overview of our method. Given
the output of the contextual word embedding Ti,
and vector representation of entity-likeness Di, the
label prediction module predicts the IOB2 labels of
input sentence wi. By learning Ti and Di together,

it is possible to recognize new NEs which were
not in the dictionary or training data of LMs. For
the pre-trained LMs, we use BioBERT (Lee et al.,
2019a) or BioELMo (Jin et al., 2019) depending
on experiments.

The layer numbers and the internal details of the
label prediction layer vary depending on the used
pre-trained LMs. We follow the settings of the
original studies (Lee et al., 2019a; Jin et al., 2019).
In the case of BioBERT, we use a single linear layer
to compute token level IOB2 probabilities. In the
case of BioELMo, we follow the probing settings
in the work of Jin et al. (2019). We use several
linear layers to compute the probabilities.

5 Experiments

In this section, we conduct three experiments. Ex-
periment 1 confirms the effectiveness of learning
both entity-likeness and contextual embedding for
BioNER. Also, we want to confirm if applying
appropriate pooling operations can reduce noise
in the case of approximate matching. Experiment
2 confirms portability by using our method with
different pre-trained LMs. Experiment 3 confirms
the effectiveness of our method not only in the
biomedical domain but also in the general domain.
For pre-trained LMs, we employed BioBERT and
BioELMo trained on PubMed and PMC biomedi-
cal articles. For experiments on a general domain
dataset, we applied the pre-trained BERT base
cased LMs.

5.1 Datasets

In this study, the results were obtained by adopting
the proposed and BioBERT-based methods to three
benchmark biomedical datasets, BC2GM, NCBI-
disease, and BC4CHEMD, which are exclusively
annotated with protein, disease, and chemical en-
tities 2, respectively. For the general domain, we
used the CoNLL 2003 dataset (Tjong Kim Sang
and De Meulder, 2003). Table 1 shows the size of
the datasets. All datasets are publicly available.

5.2 Dictionary

We consider the dictionary as a set of names includ-
ing synonyms of the entities, e.g., Gene, Disease,
and Drug. In the biomedical domain, there are sev-
eral publicly available databases that can be used to
create dictionaries. The dictionaries are built from

2https://github.com/cambridgeltl/
MTL-Bioinformatics-2016

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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Dataset train dev test
BC2GM 12,574 2,519 5,038
NCBI-disease 5,424 923 940
BC4CHEMD 30,682 30,639 26,364
CoNLL 2003 14,987 3,466 3,684

Table 1: Size of NER datasets used in the experiments.
The numbers are in sentences.

the databases. Therefore, we do not need to create
and maintain dictionaries from scratch.

We construct dictionaries for genes/proteins, dis-
eases, and drugs, to train the proposed model
on the BC2GM, NCBI-disease, and BC4CHEMD
datasets, respectively. Further, three dictionaries
of person (PER), location (LOC), and organization
(ORG) are built to train the proposed model on the
CoNLL 2003 dataset.

Gene/protein dictionary We created a
gene/protein dictionary from public databases:
Human Gene Nomenclature (HGNC) and NCBI
Entrez Gene (Maglott et al., 2019). HGNC is
a database containing unique names and alias
names for human genes. NCBI Entrez Gene is the
National Center for Biotechnology Information
(NCBI)’s database for gene-specific information
(Maglott et al., 2011). We extracted gene names,
their symbols, alias symbols, and alias names to
build our gene/protein dictionary. The dictionary
contains 292,853 gene entity surfaces.

Disease dictionary We built a disease dictionary
based on Human Disease Ontology (LM et al.,
2019). Our disease dictionary is built from disease
names and their synonyms based on the ontology
with 30,426 disease entities.

Drug dictionary For the drug dictionary, we
used DrugBank Vocabulary 3 from DrugBank (DS
et al., 2019). We entered common names and syn-
onyms as drug names into the dictionary. The dic-
tionary contains 26,235 drug entities.

PER, LOC, and ORG dictionaries We con-
structed three dictionaries on person (PER), loca-
tion (LOC), and organization (ORG) from the DB-
pedia database 4 to train the proposed model on
the CoNLL 2003 dataset. We used categories from
the 2019-8-30 Version and extracted categories that

3https://www.drugbank.ca/releases/
5-1-4/downloads/all-drugbank-vocabulary

4https://downloads.dbpedia.org/repo/
lts/generic/

include keywords such as “Person,” “Organization,”
and “Places” to construct the dictionaries. The dic-
tionary consists of 710,492 PER, 37,687 ORG, and
69,028 LOC entities.

5.3 Experimental Setting

To obtain multiple approximate matches of the in-
put sentence and dictionary, we used Simstring
(Okazaki and Tsujii, 2010), an approximate string
matching library that searches for similarities be-
tween a set of characters (e.g., “cosine,” “jaccard”)
with a query string length exceeding a specified
threshold. Simstring is known as a fast and efficient
algorithm for approximate dictionary matching.

We used Simstring to obtain matching results for
N -gram (N ≤ 5) with the dictionary. The cosine
similarity threshold between N -grams of the input
sentence and dictionary entries was empirically set
to 0.8. This is because the threshold value of 0.8
revealed good results during preliminary experi-
ments. Next, we created a set of matching patterns
based on the matching results.

For hyperparameter tuning, entity-likeness repre-
sentation dimension sizes of 50, 100, and 300, and
batch sizes of 16 and 32, were selected. Therein,
we decided the parameter for entity-likeness rep-
resentation and batch size are 100 and 32, respec-
tively. Contextual word embedding derived from
the pre-trained model is concatenated with 100-
dimensional entity-likeness representation embed-
dings, and then fed into a label prediction layer. We
applied four types of pooling: Sum, Max, Average,
and Convolution. We trained for 20 epochs and the
NER results were averaged over five seeds.

All experiments were conducted using a single
NVIDIA GeForce RTX 16 GB GPU. Pytorch ver-
sion was 1.4.0. We used the HuggingFace PyTorch
implementation of (Wolf et al., 2019) 5 to conduct
the experiments.

Experiment 1: Learning Entity-likeness with
BioBERT We followed the recipe of Lee et al.
(2019a) to train the model with the following hy-
perparameters: learning rates of 1e-5; batch sizes
of 32; and weight-decay of 0.001. We used the
pre-trained model BioBERT v1.0 (Wiki + Books
+ PubMed 200K + PMC 270K) 6 as a contextual
word embedding.

5https://github.com/huggingface/
transformers

6https://github.com/naver/
biobert-pretrained

https://www.drugbank.ca/releases/5-1-4/downloads/all-drugbank-vocabulary
https://www.drugbank.ca/releases/5-1-4/downloads/all-drugbank-vocabulary
https://downloads.dbpedia.org/repo/lts/generic/
https://downloads.dbpedia.org/repo/lts/generic/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/naver/biobert-pretrained
https://github.com/naver/biobert-pretrained
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For the approach using the approximate match-
ing result, we compared our method with Liu
et al. (2019). They proposed a pre-training sub-
tagger softdict that softly matches a sentence with
gazetteers for NER. This sub-tagger plays the role
of an approximate dictionary look-up. Softdict is
trained on gazetteers and non-entity N -grams sam-
pled from the corpus.

They sampled 1 million non-entity N -grams
from 14,987 sentences in the CoNLL 2003 training
data. For each dataset, we sampled non-entity N -
grams using the same ratio of data size and sample
size. Following the settings in their work, we used
pre-trained 50-dimensional Glove word embedding
(Pennington et al., 2014), contextualized ELMo
embedding, a convolutional character encoder and
the pre-trained softdict to train the NER model.

Experiment 2: Learning Entity-likeness with
BioELMo and Bio word2vec We confirmed the
performance of the proposed method with other
pre-trained LMs. We conducted experiments using
contextual embeddings from pre-trained models
BioELMo (Jin et al., 2019) 7 and Bio word2vec
(Pyysalo et al., 2013) 8. We kept the default hyper-
parameters settings in Jin et al.’s work, with a batch
size of 32, Adam learning rate of 0.002, and train-
ing for 10 epochs. The embedding derived from
BioELMo or Bio word2vec is concatenated with
100-dimensional entity-likeness representation em-
beddings and then are fed to four feed-forward
layers and a CRF output layer.

Experiment 3: Learning Entity-likeness with
BERT For experiments on the CoNLL 2003
dataset, a pre-trained BERT-base-cased model was
used instead of BioBERT. Hyperparameters were
set the same as for learning entity-likeness with
Experiment 1.

5.4 Results

For learning entity-likeness with BioBERT, we
evaluated the accuracy of the results with an entity-
level F-measures. For learning entity-likeness with
BioELMo and Bio word2vec, we used the official
evaluation codes of BC2GM, which contain multi-
ple ground-truth tags to calculate F-measures, fol-
lowing the work of Jin et al. (2019).

The experimental results are presented in Ta-
bles 2, 3 and 4. In Table 2, the F-measures were

7https://github.com/Andy-jqa/bioelmo
8http://bio.nlplab.org

obtained in the experiments conducted based on
the Pytorch implementation library of (Wolf et al.,
2019); the best scores are denoted in bold. The
scores are almost the same with scores reported
in (Lee et al., 2019b), which are not the scores re-
ported in the original BioBERT papers (Lee et al.,
2019a).

The difference in scores of the original paper
(Lee et al., 2019a) and (Lee et al., 2019b) is
due to the neural network implementation library
(Pytorch-based or TensorFlow-based), the imple-
mentation framework (HuggingFace, etc.), and the
GPU architecture and setting of the random seed.

Model P R F
BC2GM

BioBERT 82.34 ±0.02 84.82 ±0.02 83.56 ±0.02

Liu et al. 79.63 ±0.002 81.09 ±0.009 80.35 ±0.004

Exa-Sum 82.58 ±0.05 84.65 ±0.05 83.60 ±0.02

Exa-Max 82.54 ±0.01 84.61 ±0.02 83.56 ±0.00

Exa-Avg 82.52 ±0.01 84.61 ±0.02 83.55 ±0.00

Exa-Conv 82.56 ±0.03 84.61 ±0.06 83.57 ±0.04

App-Sum 82.69 ±0.01 84.71 ±0.01 83.69 ±0.02

App-Max 82.57 ±0.01 84.66 ±0.03 83.65 ±0.03

App-Avg 82.51 ±0.04 84.60 ±0.02 83.58 ±0.00

App-Conv 82.54 ±0.04 84.66 ±0.01 83.58 ±0.02

NCBI-disease
BioBERT 86.67 ±0.06 90.28 ±0.02 88.44 ±0.03

Liu et al. 85.21 ±0.006 87.01 ±0.005 86.10 ±0.003

Exa-Sum 86.40 ±0.02 90.37 ±0.02 88.34 ±0.03

Exa-Max 86.67 ±0.06 90.30 ±0.06 88.44 ±0.02

Exa-Avg 86.68 ±0.04 90.38 ±0.05 88.49 ±0.10

Exa-Con 86.57 ±0.05 90.26 ±0.07 88.38 ±0.06

App-Sum 86.74 ±0.06 90.64 ±0.06 88.65 ±0.05

App-Max 86.39 ±0.02 90.58 ±0.02 88.43 ±0.03

App-Avg 86.73 ±0.04 90.51 ±0.05 88.58 ±0.01

App-Con 86.46 ±0.06 90.51 ±0.12 88.49 ±0.08

BC4CHEMD
BioBERT 91.89 ±0.06 90.95 ±0.04 91.41 ±0.02

Liu et al. 88.78 ±0.06 89.02 ±0.02 88.89 ±0.03

Exa-Sum 91.79 ±0.10 91.08 ±0.05 91.43 ±0.02

Exa-Max 91.92 ±0.06 90.93 ±0.10 91.43 ±0.05

Exa-Avg 91.90 ±0.08 91.00 ±0.10 91.44 ±0.00

Exa-Con 91.86 ±0.06 91.04 ±0.03 91.45 ±0.01

App-Sum 91.81 ±0.10 91.11 ±0.05 91.45 ±0.02

App-Max 91.94 ±0.06 91.01 ±0.08 91.47 ±0.01

App-Avg 91.88 ±0.10 91.06 ±0.10 91.47 ±0.00

App-Con 91.85 ±0.10 91.03 ±0.08 91.44 ±0.00

Table 2: Experimental results of the proposed
method with BioBERT-base model on three biomedi-
cal datasets BC2GM, NCBI-disease, and BC4CHEMD.
Cells represent Precision, Recall and F-measure with
standard deviation on each test set, respectively. Exa
and App denote Exact and Approximate, respectively.

https://github.com/Andy-jqa/bioelmo
http://bio.nlplab.org
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Model P R F
BioELMo

BioELMo - - 88.4
Exa-Sum 89.6 ±0.61 90.4 ±0.56 90.0 ±0.06

Exa-Max 90.4 ±0.18 89.9 ±0.33 90.1 ±0.24

Exa-Avg 90.6 ±0.38 89.7 ±0.53 90.2 ±0.35

Exa-Con 89.5 ±0.72 89.9 ±0.78 89.7 ±0.02

App-Sum 91.1 ±0.68 90.0 ±0.67 90.6 ±0.25

App-Max 90.0 ±0.34 90.4 ±0.50 90.2 ±0.29

App-Avg 89.3 ±0.55 90.3 ±0.18 89.8 ±0.19

App-Con 89.1 ±0.10 90.0 ±0.30 89.5 ±0.10

Bio word2vec
Bio w2v - - 78.5
Exa-Sum 86.3 ±0.30 80.3 ±0.24 83.2 ±0.16

Exa-Max 86.2 ±0.28 79.9 ±0.11 82.9 ±0.10

Exa-Avg 86.2 ±0.06 80.2 ±0.30 83.1 ±0.07

Exa-Con 84.9 ±0.36 80.7 ±0.38 82.7 ±0.06

App-Sum 85.7 ±0.10 81.3 ±0.33 83.4 ±0.09

App-Max 85.4 ±0.51 80.7 ±0.13 83.0 ±0.11

App-Avg 85.9 ±0.28 80.9 ±0.51 83.3 ±0.13

App-Con 85.2 ±0.29 81.2 ±0.07 83.2 ±0.10

Table 3: Results of learning entity-likeness by probing
BioELMo and Bio word2vec on the BC2GM dataset.
Cells represent Precision, Recall and F-measure with
standard deviation. Exa and App denote Exact and Ap-
proximate, respectively.

As listed in Tables 2, 3 and 4, learning both
exact matching and approximate matching outper-
forms BioBERT-based methods and improves F-
measures by up to +0.13, +0.21 and +0.06 points on
the three biomedical benchmarks BC2GM, NCBI-
disease and BC4CHEMD, respectively; BioELMo
and Bio word2vec improve F-measures by up to
+2.2 and +4.9 points on BC2GM; BERT-based
methods improve F-measures by up to +0.25 points
on CoNLL 2003.

6 Discussion

The experimental results indicate that, in the case
of exact matching, F-measures are not highly differ-
ent for the four types of pooling. As shown in Table
2, 3 and 4, sum pooling obtains the best results in
the case of approximate matching. It is considered
to be more informative for summarizing all features
of the possible approximate matching patterns to
estimate entity-likeness. Precision is improved in
exact matching while recall is improved in approx-
imate matching. In approximate matching, even
though the matching results are noisy, tuning to

Model P R F
CoNLL 2003

BERT 90.73 ±0.06 92.00 ±0.05 91.36 ±0.03

Exa-Sum 90.96 ±0.02 92.16 ±0.02 91.56 ±0.01

Exa-Max 90.90 ±0.06 92.10 ±0.06 91.50 ±0.00

Exa-Avg 90.89 ±0.04 92.17 ±0.05 91.52 ±0.03

Exa-Con 90.87 ±0.05 92.09 ±0.07 91.48 ±0.03

App-Sum 91.01 ±0.02 92.23 ±0.02 91.61 ±0.01

App-Max 90.91 ±0.06 92.12 ±0.06 91.51 ±0.00

App-Avg 90.91 ±0.04 92.17 ±0.05 91.53 ±0.03

App-Con 90.86 ±0.06 92.11 ±0.12 91.48 ±0.03

Table 4: Experimental results of the proposed method
with BERT on CoNLL 2003.

select the appropriate pooling can help minimize
noise. Our approach has effectiveness for small
datasets such as NCBI-disease, and multi-category
datasets such as CoNLL 2003, where F-measures
improved by up to +0.21 and +0.25 points, respec-
tively.

In Table 2, the improvement of F-measures is
not significant on the BC4CHEMD dataset. It is
thought that this is because approximate match-
ing of N -gram (N ≤ 5) returns only dictionary
entries which approximately match with N -gram
only up to 5-words, while there are drug names
whose length are much longer than 5-gram in
BC4CHEMD dataset. For datasets containing long
NEs, it is necessary to set N-grams with larger
values.

Our approach has effectiveness for small datasets
with complicated NEs. In reality, obtaining
large-scale domain specific data like BC2GM and
BC4CHEMD is very costly, while NEs in the
biomedical domain are complex and continuously
increasing every year.

7 Conclusion

In this paper, we proposed a new approach: learn-
ing the entity-likeness of phrases in sentences by us-
ing multiple approximate matching results. The ex-
periments show three properties. The approach has
portability with various pre-trained LMs. Our Sum
pooling methods efficiently filter noisy approxi-
mate matching results for learning entity-likeness.
Our approach effectively works particularly on
small datasets, not only in the biomedical area but
also in more general domains. Moreover, our ap-
proach does not require expensive computation.
We hope that the proposed approach can contribute
to identifying NEs in such cases.
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