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Abstract

Recently, pre-trained language representation
models such as BERT and RoBERTa have
achieved significant results in a wide range of
natural language processing (NLP) tasks, how-
ever, it requires extremely high computational
cost. Curriculum learning (CL) is one of the
potential solutions to alleviate this problem.
CL is a training strategy where training sam-
ples are given to models in a meaningful or-
der instead of random sampling. In this work,
we propose a new CL method which gradu-
ally increases the block-size of input text for
training the self-attention mechanism of BERT
and its variants using the maximum available
batch-size. Experiments in low-resource set-
tings show that our approach outperforms the
baseline in terms of convergence speed and fi-
nal performance on down-stream tasks.

1 Introduction

Recent years have seen a series of breakthroughs
in pre-trained language representation models. The
development of pre-training methods like BERT
(Devlin et al., 2019) and its variants (Liu et al.,
2019) have led to large improvements in many
down-stream tasks such as paraphrase identifica-
tion, sentence textual similarity, sentiment analysis,
and natural language inference. One of the ad-
vantages in training these models is that they can
leverage the unlabeled large-scale corpora which
are more available compared to the labeled ones.
However, training these models with large-scale
corpora is pretty expensive in terms of computa-
tional time and memory footprint. In the litera-
ture, there are three main approaches that have
been adopted to address this problem. These are
architecture-based approach (Sanh et al., 2019;
Voita et al., 2019; Sukhbaatar et al., 2019; de Wyn-
ter and Perry, 2020; Lan et al., 2020), task-based
approach (Yang et al., 2019; Clark et al., 2020)
and dataset-based approach (Elman, 1993; Bengio

et al., 2009; Moore and Lewis, 2010; Gururangan
et al., 2020). While the architecture-based and task-
based methods have been extensively studied in
the context of pre-training methods for natural lan-
guage processing (NLP), dataset-based approach
is relatively unexplored. To this end, we adopt a
dataset-based method called Curriculum Learning
(CL) which controls the order of training samples
so that the model might converge faster with better
performance.

The idea of CL-like approach was originally pro-
posed by Elman (1993). The idea is based on the
actual learning mechanism of humans and animals,
where basic concepts are acquired first, then more
complex ones are gradually learned. Bengio et al.
(2009) formalized this concept as CL to train neu-
ral networks. Through experimental analysis, Ben-
gio et al. (2009) showed the benefit of CL on con-
vergence speed and performance in shape recog-
nition and language modeling tasks. One of the
most significant challenges when adapting CL to a
new task is to figure out a criterion for measuring
the difficulty of the training samples. For exam-
ple, in object recognition task, the size of objects
is a good measure of difficulty (Shi and Ferrari,
2016; Ionescu et al., 2016), and the presence of
low-frequent words in input text is an indicator
of difficulty in language modeling (Bengio et al.,
2009). These criteria vary greatly depending on
the task, thus, it is not easy to define a measure of
difficulty which is suitable for a particular task.

Most studies in the field of CL for NLP have pro-
posed variety of difficulty measure by leveraging
heuristics of the target tasks with neural networks
(Bengio et al., 2009; Kocmi and Bojar, 2017; So-
viany et al., 2021; Spitkovsky et al., 2009; Cirik
et al., 2016; Rajeswar et al., 2017). On the other
hand, it is not clear how to design CL for lan-
guage representation models such as BERT. In pre-
training BERT, distributed word representations
are learned through optimizing masked language
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modeling (MLM) loss which is computed by pre-
dicting a masked word or token in an input text.
The input to the model is not a single sentence but
an arbitrary-length span of text called a block. This
indicates that it is not obvious how to measure the
difficulty of the training samples using CL-based
approach proposed in the previous studies.

The key component of BERT is the multi-head
self-attention mechanism that learns to compute
token embeddings from its context (Devlin et al.,
2019). The multi-head self-attention mechanism
can be thought as a problem of searching for im-
portant token-pairs based on the relative magni-
tude of attention among all the token-pairs in an
input text. This process can be served as a clue
which leads us to speculate that it might be pos-
sible to formulate CL strategy by focusing on the
effective training of the self-attention mechanism in
BERT. Although each individual head of the multi-
head self-attention mechanism can learn any depen-
dency among tokens, most of the heads tend to pay
more attention to local dependencies than global
ones (Kovaleva et al., 2019; Brunner et al., 2019;
Sukhbaatar et al., 2019; Jiang et al., 2020). It could
be easier to train local self-attention in shorter
blocks of input text than global self-attention in
longer ones. Therefore, the block-size of input text
can be used as the effective criterion to measure
the difficulty-level of training samples for BERT.

In this paper, we introduce a new CL method
which gradually increases the block-size of input
text for pre-training BERT using the maximum
available batch-size to accomplish convergence
speedup, and also improve performance in the
down-stream tasks. Since our approach is very
simple, it is easy to apply it to BERT and its vari-
ants with little effort. Using a small-scale corpus,
the experimental results demonstrated that our pro-
posed approach outperforms the baseline on GLUE
tasks with faster convergence speed.

2 Related Work

To reduce the memory footprint and improve the
training speed of pre-trained language models,
prior works have shown that architecture-based ap-
proaches are very useful. Sanh et al. (2019) pro-
posed to leverage knowledge distillation to train a
smaller version of BERT with faster training speed
while maintaining comparative performance. Lan
et al. (2020) used factorized embedding parameta-
rization and cross-layer parameter sharing, which

led to the reduction of parameter size and training
time. de Wynter and Perry (2020) applied neural
architecture search to select the optimal architec-
ture of BERT and successfully compressed the size
of the model. Task-based approaches have also
been explored for pre-training language models
with high training efficiency. Yang et al. (2019)
introduced permutation language modeling which
retains the benefits of autoregressive models and
allows the models to capture bidirectional context.
Instead of performing pre-training with MLM task,
Clark et al. (2020) trained a BERT as a discrimina-
tor that determines whether each corrupted token
was replaced by a generator model.

Recent studies have shown that CL is a success-
ful approach for a wide range of machine learn-
ing applications (Soviany et al., 2021; Wang et al.,
2021), including the fine-tuning of large-scale lan-
guage models such as BERT (Xu et al., 2020).
Some of large-scale language models like GPT-
3 (Brown et al., 2020) and T5 (Raffel et al., 2020)
adopted non-uniform mixing strategies which con-
trol the amount of training samples from multiple
corpora. However, CL strategy has not directly
been applied to pre-training large-scale language
models. There exists many studies of CL which
used the length of sentences or input sequences
as a measure of difficulty in NLP tasks includ-
ing neural machine translation (Kocmi and Bojar,
2017), sentiment analysis (Cirik et al., 2016), pars-
ing (Spitkovsky et al., 2009), poem generation (Ra-
jeswar et al., 2017) and reading comprehension
task (Tay et al., 2019). In this work, we exploit
the block-size of input text in the context of self-
attention mechanism as a measure of difficulty for
pre-training BERT.

3 Method

The overview of the proposed CL method is pre-
sented in Figure 1. The method is divided into
two stages: (a) Splitting a corpus based on specific
block-sizes and (b) Gradual training of BERT by
increasing the block-size. In the first stage, we split
the original corpus into a series of input blocks
with the pre-defined length. In the second stage,
we train a model by changing the training samples
from the short block-size to the long one depend-
ing on the pre-defined number of training steps.
In training, some tokens in a block are randomly
masked to perform the MLM task. We describe the
MLM task and the details of the two stages of our
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Figure 1: The overview of the proposed CL method.

CL approach in this section.

3.1 Masked Language Modeling (MLM)

Let x = x1, x2, ..., xT denotes a sequence of origi-
nal tokens, where T is a block-size. By randomly
masking an arbitrary number of tokens, we obtain
an input sequence x̂. Given the corrupted sequence
x̂, MLM is a task of predicting the original se-
quence x. The training objective is formulated as:

max
θ

log pθ(x | x̂) ≈
T∑
i=1

mi log pθ(xi | x<i,x>i)

(1)
where xi is the predicted token at position i and

θ is the parameters of a model. mi indicates the
presence of a masked token where mi = 1 if xi is
masked, otherwise 0. For this objective, we opti-
mize the model parameters using the cross-entropy
loss. In the MLM task, models infer masked tokens
from bi-directional context (x<i and x>i). The
block-size restricts the available context informa-
tion in both directions and thus affects the MLM
accuracy.

3.2 Splitting a Corpus Based on Block-sizes

In the first stage, we split the original corpus into
training samples with the specified size. Each input
text for training BERT is not a linguistically coher-
ent unit like a sentence or multiple sentences, but a
fixed span of contiguous text (Devlin et al., 2019)
that we called a block. In other words, the input is
not guaranteed to end with a period nor start with
a first word in a sentence. Liu et al. (2019) argues
that it is desirable to acquire the input sequence

to be at most 512 tokens through the extensive ex-
periments. We follow this setting to obtain the
block of a specified length from the corpus as a
training sample. We train a byte-level Byte-Pair
Encoding (BPE) tokenizer as in (Radford et al.,
2019) to split the raw text into a sequence of to-
kens. By using byte-level BPE, we can decompose
all words including out-of-vocabularies, which are
likely to appear at test time especially when using
a small training dataset. In the experiment, we set
the vocabulary size to 20,000.

3.3 Gradual Training

In the second stage, we train a model step-by-step
with four different block-sizes which are 64, 128,
256, and 512. We first train the model with the
shortest block-size, which is 64 in this case, for
an arbitrary number of steps. Then, we retrain
the model in the order of 128 and 256 block-sizes
respectively for the same number of steps. Finally,
we retrain the model with the longest block-size of
512 until it converges. For masking tokens, we use
the fixed masking rate of 0.15. When restarting the
training, we always initialize the learning rate. To
accelerate training, we use the maximum available
batch-size depending on the block-size. Since our
proposed method is designed to limit the block-
size in the early training phase, we employ larger
batch-size with shorter block-size which improves
the whole training efficiency.

4 Experiments

In the experiments, we evaluate our proposed CL
approach in terms of the convergence speed and
model performance. We use wikitext-2 (Merity
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Figure 2: Comparison of our approach and the baseline on the validation losses. Left (a): The result of CL which
increases the block-size with the maximum available batch-size. Right (b): The result of CL which increases
block-sizes with the fixed batch size (16). Black dotted lines indicates the points where the block-size of training
samples is changed, and the red dotted line indicates each convergence point.

Model (block-size) Training time Number of steps Memory (batch-size)
Baseline(512) 5:28:38 60K 17.5(16)
Curriculum(64) 1:19:15 10K(fixed) 19.2(256)
Curriculum(128) 1:21:02 10K(fixed) 21.1(128)
Curriculum(256) 1:07:16 10K(fixed) 19.9(48)
Curriculum(512) 0:50:10 10K 17.5(16)
Curriculum(total) 4:37:43 40K —

Table 1: Statistics on training of the baseline and each curriculum training phase.

et al., 2016) for pre-training RoBERTa (Liu et al.,
2019), which is a variant of BERT. For fine-tuning
on down-stream tasks, we use the General Lan-
guage Understanding Evaluation (GLUE) dataset
(Wang et al., 2018). All the training and fine-
tuning were carried out on a GeForce RTX3090
with 24GB memory.

4.1 Datasets

Wikitext-2: Although BERT and its variants (e.g.
RoBERTa) are commonly trained with large-scale
corpora which contain over 3 billion words, we use
wikitext-2 (Merity et al., 2016) which is a small
corpus to enable pre-training with a limited compu-
tational resource. Wikitext-2 is one of the standard
corpora for language models, and consists of 720
good-quality articles from English Wikipedia. It
has about 2M tokens for training, and 217K and
245K tokens for validation and testing respectively.

GLUE Benchmarks: We fine-tune our models
on the GLUE benchmarks (Wang et al., 2018).
GLUE consists of nine datasets for measuring the
generalization performance of pre-trained language

models. We use only 7 datasets (SST-2, MRPC,
QQP, MNLI-m, QNLI, RTE, and WNLI) out of
the 9 GLUE benchmarks. CoLA and STS-B are
removed due to a tendency to fall into over-fitting
which stems from the small-scale pre-training.

4.2 Training Details
We perform both curriculum training and
anti-curriculum training in the pre-training of
RoBERTa. In curriculum training, we increase the
block-size of training samples from the shortest to
the longest. On the other hand, in anti-curriculum
training, training samples with the longest block-
size are first given to the model as the most difficult
ones, then the difficulty-level of training samples
is gradually reduced by shortening the block-size
in the training process. By comparing curriculum
training with anti-curriculum training, which fol-
lows the opposite sampling order, we show that
increasing block-size is an effective CL method for
pre-trained language representation models.

For all the models, we use the same RoBERTa-
base architecture which has 12 layers with a hidden
size of 768. Each layer has 12 attention heads. We
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Model (block-size) Samples per second Batch-size Validation loss
Baseline 48.68 16 5.045
Curriculum(64) 538.38 256 6.624
Curriculum(128) 263.26 128 4.030
Curriculum(256) 118.92 48 3.132
Curriculum(512) 53.15 16 2.950
Curriculum Ave. 262.85 — 2.950

Table 2: Comparison of training efficiency between the baseline and our curriculum model.

use AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 1e-5 in the pre-training with four
different batch-sizes depending on the block-sizes
as shown in Table 2. In fine-tuning, we also use
the same optimizer as used in pre-training and set
a learning rate to 5e-5 and batch-size to 64 for all
task except for QNLI where we use learning rate
of 2e-5 and batch-size of 16 due to the memory
limitation.

We define the training time of the overall curricu-
lum training as a total of the training time for every
training phase corresponding to each block-size. In
both curriculum training and anti-curriculum train-
ing, our models are trained for 10,000 steps with
each block-size except for the last block-size where
we continue the training until the convergence of
the models. For comparative evaluation, we train
RoBERTa without CL by using random sampling
as the baseline model.

4.3 Results

4.3.1 Convergence Speed

Figure 2(a) shows the comparison of our curricu-
lum model which increases the block-size with the
maximum available batch-size and the baseline on
the validation losses throughout pre-training. Com-
pared to the loss of the baseline model that con-
verged at around 5.0, the loss of curriculum model
decreased steadily and achieved the faster conver-
gence speed outperforming the baseline by about 2
points in validation loss. The learning curve of the
baseline model were plateau until 35K steps, and
then the loss finally restarted to descend. On the
other hand, the loss of the curriculum model stably
decreased every time we switched the difficulty-
level of training samples. To analyze the effect
of increasing a batch-size on convergence speed,
we demonstrated an ablation study by fixing the
batch-size to 16 (which is the maximum size when
block-size is set to 512). Figure 2(b) shows the
result of the curriculum model which increases

block-size with the fixed batch-size. Compared to
the our proposed curriculum model (Figure 2(a)),
it required about 60K steps to converge, which is
the same training time as the baseline. This result
indicates that CL improves final performance but
does not contribute to the convergence speedup in
case the batch-size is fixed.

Table 1 presents the statistical information about
the training of the baseline and each curriculum
phase. While the baseline model converged af-
ter about 60K steps, our curriculum model re-
quired just 40K steps in total, which is about 1.5
times faster than the baseline. Although using the
large batch-size depending on the small block-size
tended to take long training time, it allows train-
ing a large number of training samples and the
total training time was reduced by about 1.0 hours.
Table 2 represents the comparison of training ef-
ficiency between the baseline and our curriculum
model. With respect to the training samples per
second, curriculum model achieved better training
efficiency, which is 5 times as higher as the base-
line, and also resulted in much better validation
loss.

4.3.2 GLUE Results

Table 3 shows the GLUE scores on development
datasets. For all 6 down-stream tasks, our cur-
riculum model at the bottom of the table outper-
formed the baseline model at the top. Especially,
performances on STS-2, MRPC, QQP, MNLI-m
and QNLI were higher than the baseline by a large
margin (+4.47 on SST-2, +3.19 on MRPC, +6.48 F1
score and +3.37 accuracy on QQP, 8.89 on MNLI-
m, and 15.74 on QNLI) while accuracy on RTE
and WNLI were extremely low in both curriculum
and baseline. Although each scores of our model
is not high due to the small-scale pre-training, rela-
tive improvements of scores by CL were generally
observed.
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Model
(The Order of block-size)

SST-2 MRPC QQP
(F1/Acc.)

MNLI-m QNLI RTE WNLI

Baseline
(512)

79.01 69.60
69.77
79.52

57.39 63.97 51.98 56.33

Anti-Curriculum
(512, 256, 128, 64)

80.38 70.09
72.88
81.47

60.64 49.46 52.34 56.33

Curriculum w/o 64
(128, 256, 512)

81.99 69.60
74.81
82.04

64.97 78.74 47.29 46.47

Curriculum w/o 128
(64, 256, 512)

83.37 70.58
75.21
82.29

66.34 77.74 45.12 56.33

Curriculum w/o 256
(64, 128, 512)

82.45 70.34
75.22
82.40

65.76 77.75 50.18 46.47

Curriculum w/o 512
(64, 128, 256)

80.61 70.83
75.76
82.93 66.53 75.76 51.26 32.39

Curriculum 2-stage
(64, 512)

80.84 72.05
76.21
82.85

66.82 77.22 48.73 56.33

Curriculum (Ours)
(64, 128, 256, 512)

83.48 72.79 76.25
82.89

66.28 79.71 53.42 56.33

Table 3: GLUE scores on development datasets. batch-size=64, lr=5e-5, but in QNLI, batch-size=16, lr=2e-5.

4.3.3 Comparison with Anti-Curriculum

Compared with our curriculum model, perfor-
mances of anti-curriculum model were lower on
every down-stream tasks. This result indicates that
not decreasing but increasing a block-size is the
effective for improving the generalization perfor-
mances. Interestingly, the performances of anti-
curriculum were better or equal to the baseline in
all tasks except for QNLI. One possible reason for
this result is that generating training samples with
various block-sizes may have the same impact as
data augmentation. Anti-curriculum model, how-
ever, failed to learn the QNLI task because the
model is optimized for short text like 64 tokens at
the end while the input of QNLI contains samples
whose input length is longer than 64.

4.3.4 Ablation Study

As an ablation study, we tested two types of models
including 3-stage curriculum and 2-stage curricu-
lum. For the 3-stage curriculum, we removed a
specific block-size from our training schedule and
conducted the CL with the rest of block-sizes. For
2-stage curriculum, we trained the model only with
the shortest block-size (64 tokens) and longest one
(512 tokens).

As Table 3 shows, our curriculum model with
the full training schedule is equal to or slightly
better than the 2-stage or 3-stage models on each
down-stream tasks. However, for tasks where per-

formance gaps are not significant, the 2-stage and
3-stage curricula are more advantageous because of
the shorter training time. As in the case of the anti-
curriculum, the curriculum model without block-
size of 512 tokens, that was not optimized for the
largest block-size, had lower performance in QNLI.
The 2-stage curriculum, which requires the least
amount of training time, achieved almost the same
accuracy as the normal curriculum in MRPC and
MNLI-m, but relatively poor performance in tasks
such as SST-2. These experiments show that there
is room to further speed-up of CL by modifying
the curriculum schedule on the block-size. More-
over, the result also indicates that the impact of CL
on the performance will be different depending on
each down-stream task.

5 Conclusion

In this paper, we proposed a new CL method for
pre-training BERT, which progressively increase
a block-size of input text. Our approach is very
simple and thus handy to implement. Experiments
in the low-resource setting have shown that pro-
posed method leads to faster convergence speed
and better performances in down-stream tasks. In
further research, we expand the corpus and validate
the scalability of our approach. In addition, we
speculate that it is important to investigate when
the difficulty-level should be changed through the
training and how it affect model performances.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Radu Tudor Ionescu, Bogdan Alexe, Marius
Leordeanu, Marius Popescu, Dim P. Papadopoulos,
and Vittorio Ferrari. 2016. How hard can it be?
estimating the difficulty of visual search in an image.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2157–2166.

Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng
Chen, Jiashi Feng, and Shuicheng Yan. 2020. Con-
vbert: Improving bert with span-based dynamic con-
volution. arXiv preprint arXiv:2008.02496.
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