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Abstract

Modelling and understanding dialogues in a
conversation depends on identifying the user
intent from the given text. Unknown or new
intent detection has became an important task,
as in a realistic scenario a user intent may fre-
quently change over time and divert even to
an intent previously not encountered. This
task of separating the unknown intent samples
from known intents, is challenging as the un-
known user intent can range from intents sim-
ilar to the known ones or to something com-
pletely different. Prior research for intent dis-
covery often considers this problem as a clas-
sification task where an unknown intent can
belong to a finite or predefined set of known
intent classes, thus limiting the scope of such
research. In this paper, we tackle the prob-
lem of detecting a completely unknown in-
tent without any prior hints about the kind
of classes belonging to unknown intents. We
propose an effective post-processing method
using multi-objective optimization to tune an
existing neural network based intent classifier
making it capable of detecting unknown in-
tents. Thus our method can be plugged into
existing deep-learning based classifiers and
fine-tuned for the purpose of unknown intent
detection. We perform experiments using ex-
isting state-of-the-art intent classifiers and use
our method on top of them for unknown intent
detection. Our experiments across different
domains and real-world datasets show that our
method yields significant improvement com-
pared with the state-of-the-art methods for un-
known intent detection.

1 Introduction

Detecting whether an intent is unknown or new in
a dialogue system has become an important task for
improving customer satisfaction. Since user intent
may frequently change over time in many realistic

scenarios, unknown (new) intent detection has be-
come an essential problem so, solving which can
enhance system interaction with the customer. This
task is challenging since there is no prior knowledge
of the type or the exact numbers of unknown intents
that would be encountered in the future.

We model unknown intent detection as an (m+1)-
class classification task as suggested by (Shu et al.,
2017; Lin and Xu, 2019; Zhang et al., 2020) and
group unknown classes into the (m+1)th class. We
aim to identify the known intent samples accurately,
while at the same time finding the unknown intent
samples without having prior knowledge about the
unknown intents. Recently, to solve this problem,
researchers have used deep neural networks for open
classification. OpenMax (Bendale and Boult, 2016)
fits Weibull distribution to the outputs of the penulti-
mate layer, but requires negative samples for select-
ing the best hyperparameters. The MSP (Hendrycks
and Gimpel, 2016) calculates the softmax probabil-
ity of known samples and discards the low confi-
dence unknown samples with the threshold. In our
approach, we attempt to solve the problem of un-
known intent detection with added constraints such
as not having prior knowledge of the finite set of in-
tents. The main contributions of this paper are:

1. We develop a novel post processing method
using multi-objective optimization (non-
deterministic genetic algorithm-NSGA2) by
optimising two objectives i.e. recall and preci-
sion in order to obtain the optimal thresholds
for each intent class.

2. Our approach does not require any model ar-
chitecture modification and can be applied on
top of any deep neural network model.

The rest of the paper is organized as follows. In
Section 2 we cover literature survey on previous
work done for intent classification and open intent



detection. In Section 3 we elaborate on the pro-
posed architecture. In Section 4 we discuss the ex-
perimental setup and the dataset used. In Section 5
we analyse the results of detecting the unknown in-
tents. Finally, Section 6 concludes the paper with
future work that can be done explored in this field.

2 Related work

Several works have been done for intent detection in
dialogue systems in recent years (Min et al., 2020;
Qin et al., 2020; Zhang et al., 2018; Niu et al., 2019;
Qin et al., 2019). Most of the works are based on
closed world classification without any open intent.
(Srivastava et al., 2018) proposed zero-shot learn-
ing for intent detection. However, ZSL is different
from our task as it only contains finite known set of
classes during testing. (Kim and Kim, 2018) try to
optimise the intent classifier together with an out-
of-domain detector, which was trained using out-
of-domain samples. The generative method (Yu et
al., 2017) uses adversarial learning to generate pos-
itive and negative examples from known classes but
the method does not work well in the discrete data
space like text. (Ryu et al., 2018) proposed gen-
erative adversarial network (GAN) to train on the
ID samples and use the discriminator to detect the
OOD samples. (Nalisnick et al., 2018; Mundt et
al., 2019) showed that deep generative models fail
to capture high-level semantics on real world data.
(Jain et al., 2014) fit the probability distributions
to statistical Extreme Value Theory (EVT) using
a Weibull-calibrated multi-class SVM to detect the
unnormalized posterior probability of inclusion for
open set problems. ODIN (Liang et al., 2017) en-
larged the differences between known and unknown
samples by using temperature scaling and input pre-
processing but all the above method need negative
samples for selecting the decision boundary or prob-
ability threshold. DOC (Shu et al., 2017) instead of
using Softmax as the final output layer built a multi-
class classifier with a 1-vs-rest final layer which con-
tains a sigmoid function for each seen class to re-
duce the open space risk. Zero-shot intent classifi-
cation aims to generalize knowledge and concepts
learned from seen intents to recognize unseen in-
tents. Early methods (Ferreira et al., 2015a; Fer-
reira et al., 2015b) explore the relationship between

seen and unseen intents by introducing external re-
sources such as manually defined attributes or la-
bel ontologies, but they are usually expensive to ob-
tain. To deal with this, some methods (Chen et al.,
2016; Kumar et al., 2017) map the utterances and
intent labels to an embedding space and then model
their relations in the same space. IntentCapsNet-ZS
(Xia et al., 2018) extends capsule networks (Sabour
et al., 2017) for zero-shot intent classification by
transferring the prediction vectors from seen classes
to unseen classes. ReCapsNet (Liu et al., 2019)
shows that IntentCapsNet-ZS hardly recognizes ut-
terances from unseen intents in the generalized zero-
shot classification scenario, and proposes to solve
this issue by transferring the transformation matri-
ces from seen intents to unseen intents. These ap-
proaches also need unknown intents embedding for
classifying the unknown intent sample.

3 Methodology

We train two different model architectures for in-
tent classification and use our post-processing steps
on top of these to obtain optimal results. The
pipeline of the system processes is shown in Fig-
ure 1. We describe the models along with our novel
post-processing steps in this section.

3.1 Models
3.1.1 Bi-LSTM

We train Bi-LSTM to get the prediction scores
and use these prediction scores to get the opti-
mal thresholds for each known intent class by op-
timizing the correct classification rate and the mis-
classification rate on the training data. Given an
utterance with maximum word sequence length l,
we transform a sequence of input words w1:l into
m-dimensional word embedding v1:l, which is used
by forward and backward LSTM to produce feature
representations x:

~xt = LSTM(vt,~ct−1)

~xt = LSTM(vt,~ct−1)

x = [~xl : ~x1]

where vt denotes the word embedding of input at
time step t. ~xt and ~xt are the output vector of for-
ward and backward LSTM respectively. ~ct and ~ct



Figure 1: The system architecture consisting of two parts (i). BERT or Bi-LSTM model for softmax score
prediction and (ii). Normal Thresholding or NSGA2 for tuning the thresholds of class scores

are the cell state vectors of forward and backward
LSTM respectively. We concatenate the last output
vector of forward LSTM ~xl and the first output vec-
tor of backward LSTM ~x1 into x as the sentence rep-
resentation. It captures high-level semantic concepts
learned by the model. The representation x is then
fed to an n neuron feed forward layer where n is the
number of known intent classes in the dataset. The n
dimensional representation obtained is converted to
probability distribution by using a ‘Softmax’ func-
tion.

3.1.2 BERT

We fine tune the pre-trained BERT model to
get the ‘softmax’ classification scores of the input
samples. Given ith input sentence si we append
a [CLS] token at the beginning of the sentence.
We obtain the token embeddings of the sequence
[CLS, T1, , TN ] ε R(N+1)∗H from the last hid-
den layer of BERT. Here the [CLS] vector repre-
sentation is used for text classification, N is the se-
quence length and H is the hidden layer size. We
calculate the prediction scores by applying ‘Soft-
max’ function to the last layer output(logits(xi)) of
the trained BERT model.

3.2 Pre-training

For getting the optimal thresholds we require pre-
diction scores of the samples for which we had to
first train our base models by following the proce-
dure mentioned in section 3.1. As we don’t have un-
known intent samples we use known intents as prior
knowledge to train the model. In order to reflect the
effectiveness of the learned optimal thresholds we
use cross-Entropy loss Ls to train our both the base
models.

Ls =
−1
N

N∑
i=1

yilog(ŷi)

where N is total number of training samples yi is
true label and ŷi is predicted label Then, we use the
pre-trained model to get the prediction scores of the
input samples that is used further for threshold tun-
ing of each known intent class.

3.3 Finding optimal threshold for each known
intent class

We use the pre-trained models to get the prediction
scores corresponding to each sample by giving the
training data samples to the base models. After get-
ting the prediction scores we apply different tech-
niques for getting the optimal thresholds for each



Datasets Classes (intents) #Training #Validation #Test
Bank catridge 14 1020 120 240

Banking 77 9003 1000 3080
MultiWOZ 8 37542 4643 4720

Table 1: Statistics of the dataset being used in our experiment.

Datasets Few examples of intents

Bank catridge

[’Bal Inquiry’, ’Card Activation’, ’card declined’,
’cheque book Req’, ’credit query’, ’direct deposit’,
’freeze account’, ’inter transfer’, ’mortgage processing’,
’replacement card duration’, ’report fraud’,
’report lost card’, ’update so dd’]

Banking

[’transfer timing’, ’order physical card’, ’card acceptance’,
’balance not updated after bank transfer’,’card swallowed’,
’top up by bank transfer charge’, ’card delivery estimate’,
’transfer not received by recipient’]

MultiWOZ [’Find restaurant’,’book train’, ’Find attraction’, ’book taxi’, ’book restaurant’]

Table 2: Few intents present in each of the dataset.

known intent class. The different techniques are as
follows:

3.3.1 Normal thresholding
First, the input text containing the training data

samples is fed to the deep learning classifier to get
the prediction scores corresponding to each samples.
These prediction scores (PS) and the list of thresh-
olds (T ) ranging from 0.1 to 0.99 increasing by 0.01
in each step is used to calculate the correct classi-
fication matrix (CCM) and the mis-classification
matrix (MCM). The set of prediction scores is a
matrix of N ×M where N is the total number of
training samples and M is the number of known in-
tent classes. This set of prediction scores and the list
of thresholds containing K threshold values is used
to calculate correct classification matrix(CCM) and
the miss-classification matrix(MCM).

Let C(X) be the output class, Y the ground truth
class, and (.) the enumeration function, the stan-
dard definition for correctly classified sample (or
true positives) rate of an intent class i is given by
Equation 1:

CCi =
(C(X) = i AND Y = i)

Y = i
(1)

We can also write the standard definition of mis-
classified sample rate (or false negatives) of an intent

class i as given by Equation 2:

MCi =
(C(X) 6= i AND Y = i)

Y = i
(2)

The correct classification rate (CC) and mis-
classification (MC) rate of an intent i can be ex-
tended by introducing the thresholds τi and by
adding the unsure classification (UC) rate, for each
intent as shown in Equation 3, 4 and 5.

CCi(τi) =
(C(X) = i AND S(X) > τi)AND (Y = i)

Y = i
(3)

MCi(τi) =
(X) 6= i AND S(X) > τi)AND (Y = i)

Y = i
(4)

UCi(τi) =

((C(X) = i)or(C(X) 6= i)AND
(S(X) < τi)AND (Y = i)

Y = i
(5)

For each intent we have:

CCi(τ) +MCi(τ) + UCi(τ) = 1

CCM is a matrix of K ×M dimension contain-
ing the correct classification rate of each intent class



corresponding to each threshold in the threshold list
i.e each entry CCij is calculated using equation 6.

CCij =

N∑
i=1

(C(X) = i AND S(X) > τj)AND (Y = i)

Y = i

(6)
MCM is a matrix of K ×M dimension contain-

ing the mis-classification rate of each intent class
corresponding to each threshold in the threshold list
i.e each entry MCij is calculated using equation 7.

MCij =

N∑
i=1

(C(X) 6= i AND S(X) > τj)AND (Y = i)

Y = i

(7)
After obtaining these two matrices we obtain op-

timal τj for each known intent class by the follow-
ing technique. We keep the best correct classifica-
tion rate while reducing the mis-classification rate.
For this, we used two steps. First, we identified the
threshold(s) τ which maximizes CCi(τ). Since sev-
eral thresholds could reach this maximum, we get
a set of threshold(s) Seg1. Then, we selected the
threshold with the lowerMCi(τ). This can be math-
ematically written as:

s = argmaxτ (CCi(τ))

τi = argminτ ′εs(MCi(τ
′
))

3.3.2 Multi-objective optimization(NSGA2)
To get the optimal threshold we used Non-

dominated Sorting Genetic Algorithm II (NSGA-II)
which is a multi-objective genetic algorithm, pro-
posed by (Deb et al., 2002). In the structure of
NSGA-II, in addition to genetic operators, crossover
and mutation, two specialized multi-objective opera-
tors and mechanisms are defined and utilized. These
are as follows:

• Non-dominated Sorting: The population is
sorted and partitioned into fronts (F1, F2, etc.),
where F1 (first front) indicates the approxi-
mated Pareto front.

• Crowding Distance: It is a mechanism of
ranking among members of a front, which are
dominating or dominated by each other.

We optimize for two objective (1). Correct classi-
fication rate (CC) and (2). Precision of the known

intents. The NSGA2 takes threshold values of an in-
tent as the input variable (values ranging from 0.1
to 0.99). It then uses prediction scores of samples
from the pre-trained base model to perform opti-
mization on the two objective function explained in
detail in section 3.3.1 to get an optimal threshold
for each known intent class. We initialize the pop-
ulation by randomly selecting the values from the
range of the threshold variable and then we calculate
the two objective values for each entry in the ini-
tial population. Next we perform a non-dominated
sorting in the combination of parent and offspring
populations and classify them by fronts , i.e. they
are sorted according to an ascending level of non-
domination. After that we fill new population ac-
cording to front raking. If one front is taking par-
tially, we perform Crowding-sort that uses crowding
distance that is related with the density of solutions
around each solution. The less dense are preferred.
Then we create offspring population(children) from
this new population using crowded tournament se-
lection (It compares by front ranking, if equal then
by crowding distance), crossover and mutation oper-
ators. We keep the best entries of the population in
fronts.

We run the same procedure 1000 times to get a set
of optimal thresholds for each known intent class.
From this set of thresholds we choose the maximum
threshold. This optimal threshold is used to decide
upon known and unknown intent samples.

3.4 Testing

During testing, when a new sample (unseen class)
is encountered it is first fed to the base model (BiL-
STM or BERT) to get the corresponding prediction
scores. After getting the prediction scores we com-
pare each entries in the prediction scores with the
corresponding optimal thresholds and if we find all
the entries to be less than the corresponding optimal
thresholds we classify that sample as unknown else
we classify the sample to the one known intent class
for which the prediction score is higher than the cor-
responding optimal threshold.



Text True Label Predicted Label (ADB)

Is Visa or Mastercard available? visa or mastercard
supported cards
and currencies

The app is showing an ATM
withdrawal that I didn’t make.

cash withdrawal not
recognized

declined cash
withdrawal

I did what you told me earlier
and contacted the seller for a
refund directly, but nothing is
happening! It’s been a week and
I still haven’t got anything. Please
just give me back my money

refund not showing
uo

balance not updated
after cheque or cash
deposit

Table 3: Samples texts whose intents are mis-classified by the ADB model but are correctly identified by
out BERT+NSGA2 model

Model/Dataset Bank catridge Banking MultiWOZ
75% 50% 25% 75% 50% 25% 75% 50% 25%

Bi-LSTM +NT 0.28 0.42 0.48 0.22 0.34 0.46 0.03 0.04 0.05
Bi-LSTM+ NSGA2 0.45 0.54 0.64 0.35 0.4 0.52 0.12 0.56 0.76

BERT+NT 0.33 0.49 0.53 0.66 0.70 0.73 0.06 0.07 0.11
BERT+NSGA2 0.82 0.9 0.85 0.68 0.80 0.9 0.42 0.84 0.93

ADB 0.74 0.77 0.8 0.67 0.78 0.85 0.25 0.72 0.86

Table 4: F1 score of detecting unknown intent class samples with 75% ,50% and 25% of total intent class
as known class on BANKING, Bank Catridge and MultiWOZ dataset.

4 Datasets and Experiments

4.1 Dataset

We use three datasets on which we conduct our ex-
periment. The detailed statistics of the datasets are
shown in Table 1. Few intents of each dataset is
shown in Table2

4.1.1 Banking

A fine-grained dataset in the banking domain
(Casanueva et al., 2020). It contains 77 intents and
13,083 customer service queries.

4.1.2 Bank-catridge

A dataset which contain manually updated sam-
ples using paraphrasing tools along with manual
modification. It contains 36 intents but we clubbed
some of the intents into one to make overall 14 in-
tents, So that the samples per intent is constant. It
has almost 100 samples per intents.

4.1.3 MultiWOZ

MultiWOZ is a dialogue dataset which contains
multiple domains such as “restaurant booking”,
“train booking”, “attraction booing” and “taxi book-
ing”. It contains 2 main intents per domain namely
“find” and “book”. The total number of intents are 8
and number of samples per intents are not uniform.

4.2 Experimental Setups

We have kept 25% of the overall intent classes in
training and validation set as masked but we keep
those intents unmasked in the test set. To have a fair
evaluation on the imbalanced dataset, we randomly
select known classes by weighted random sampling
without replacement in the training and validation
set. If a class has more examples, it is more likely to
be chosen as the known class. However, a class with
fewer examples still has a chance to be selected.

For BERT we use ’bert-base-uncased’ with 12-
layer transformer model and fine-tune it using train-
ing set. We keep the learning-rate as 2e-5, the train-



Text True Label Predicted Label
(BERT+NT)

What is the number of days I have
to wait for my Europe transfer?

balance not updated
after bank transfer

transfer timing

I need to find out why my transfer
didn’t get there.

declined transfer
transfer not received
by recipient

I have a pending cash withdrawal
balance not updated
after cheque or cash
deposit

pending cash
withdrawal

I don’t find your services useful
anymore, how do I delete my account?

edit personal details terminate account

Will it cost more money if my
currency needs to be exchanged?

exchange via app exchange charge

Table 5: Samples texts whose intents are mis-classified by the BERT + NT model but are correctly identified
by out BERT + NSGA2 model

ing batch size 128 and train for 50 epochs. For Bi-
LSTM we set keep output dimension as 128 and
train for 50 epochs with early stopping.

In NSGA2 we keep the chromosome size as 1
as we require only 1 optimal threshold per intent
class. We have experiment with different thresh-
old values as input and found that a range be-
tween (0.1-0.9) gives better result. The number
of generations is kept 1000 and the population
size is 100, num of tour participants is 2, tourna-
ment probability is 0.9, crossover parameters is 2,
mutation parameters is 5.

For evaluating the models we use macro F1 score.
We compare our method with following state of the
art model: ADB (Shu et al., 2017) and with dif-
ferent variants of the proposed model as follows:
(i). Bi-Lstm + normal-thresholding, (ii). Bi-Lstm
+ NSGA2 and (iii). BERT + normal-thresholding
and (iv). BERT+NSGA2.

5 Result and Analysis

Table 4 shows the F1 score of detecting unknown
intent class samples with 75%, 50% and 25% of
total intent classes as known class on Banking,
Bank Catridge and SNIPS dataset. The best re-
sults are highlighted in bold. Comparing with the
best scores of previous state-of-the-art and differ-
ent variants of our approach we can see that our fi-
nal model BERT+NSGA2 gives better results than
the state-of-the-art and the different variants of our

proposed model. Using BERT as the baseline, our
model improves significantly in terms of F1 score
on the Banking dataset as this dataset has more
training samples as compared to other two dataset.
Comparing with ADB our approach gives 8%, 13%
and 5% improvement on Bank catridge dataset, 1%,
2% and 5% improvement on Banking dataset and
17% ,12% and 7% improvement on MultiWOZ
dataset. It can be explained from the results that
our BERT+NSGA2 approach is able to learn tighter
thresholds to decide upon known and unknown in-
tent samples. Using Normal thresholding technique
where the objective functions are optimised sequen-
tially doesn’t work well as optimizing one objec-
tive function can counter the optimization of an-
other objective. This problem is addressed by multi-
objective optimization technique which to satisfy all
objective functions, finds a set of optimal solutions
instead of one optimal solution. Some examples that
are correctly classified by the BERT+NSGA2 and
not by BERT+NT are shown in Table5. We can see
that multi-objective optimization plays a vital role in
predicting the unknown samples correctly as com-
pared to normal optimization. Some examples that
are correctly classified by the BERT+NSGA2 and
not by ADB are shown in Table 3: From the exam-
ples in the table we can say that our BERT+NSGA2
is giving importace to words that are there in the un-
known intent like “refund”, “visa”, “master card”
and “didn’t make” to make the decision between



known and unknown intent class. Our model is
learning tighter thresholds because of parallel opti-
mization of objective functions, giving better results
in many cases.

6 Conclusion and Future Work

We propose a novel post-processing method for un-
known intent classification. After pre-training the
model with labeled samples, our model can automat-
ically learn precise thresholds to separate the known
intent from unknown intent sample. Our method
has no requirement for unknown intent or model
architecture modification. Extensive experiments
on three benchmark datasets show that our method
yields significant improvements over the compared
baseline models. After getting the samples classi-
fied as unknown from the model we are trying to
cluster those samples. We are working on improv-
ing the cluster quality by varying the input features.
This kind of work using clustering is not done so far.
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intent detection with dual sentence encoders. arXiv
preprint arXiv:2003.04807.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong He.
2016. Zero-shot learning of intent embeddings for
expansion by convolutional deep structured semantic
models. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 6045–6049. IEEE.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and
TAMT Meyarivan. 2002. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 6(2):182–197.

Emmanuel Ferreira, Bassam Jabaian, and Fabrice
Lefevre. 2015a. Online adaptative zero-shot
learning spoken language understanding using word-
embedding. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 5321–5325. IEEE.

Emmanuel Ferreira, Bassam Jabaian, and Fabrice
Lefevre. 2015b. Zero-shot semantic parser for spoken

language understanding. In Sixteenth Annual Confer-
ence of the International Speech Communication As-
sociation.

Dan Hendrycks and Kevin Gimpel. 2016. A base-
line for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint
arXiv:1610.02136.

Lalit P Jain, Walter J Scheirer, and Terrance E Boult.
2014. Multi-class open set recognition using probabil-
ity of inclusion. In European Conference on Computer
Vision, pages 393–409. Springer.

Joo-Kyung Kim and Young-Bum Kim. 2018. Joint
learning of domain classification and out-of-domain
detection with dynamic class weighting for sat-
isficing false acceptance rates. arXiv preprint
arXiv:1807.00072.

Anjishnu Kumar, Pavankumar Reddy Muddireddy,
Markus Dreyer, and Björn Hoffmeister. 2017. Zero-
shot learning across heterogeneous overlapping do-
mains. In INTERSPEECH, pages 2914–2918.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. 2017.
Enhancing the reliability of out-of-distribution im-
age detection in neural networks. arXiv preprint
arXiv:1706.02690.

Ting-En Lin and Hua Xu. 2019. Deep unknown
intent detection with margin loss. arXiv preprint
arXiv:1906.00434.

Han Liu, Xiaotong Zhang, Lu Fan, Xuandi Fu, Qimai Li,
Xiao-Ming Wu, and Albert YS Lam. 2019. Recon-
structing capsule networks for zero-shot intent classi-
fication. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages
4801–4811.

Qingkai Min, Libo Qin, Zhiyang Teng, Xiao Liu, and
Yue Zhang. 2020. Dialogue state induction us-
ing neural latent variable models. arXiv preprint
arXiv:2008.05666.

Martin Mundt, Iuliia Pliushch, Sagnik Majumder, and
Visvanathan Ramesh. 2019. Open set recognition
through deep neural network uncertainty: Does out-
of-distribution detection require generative classifiers?
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision Workshops, pages 0–0.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Di-
lan Gorur, and Balaji Lakshminarayanan. 2018. Do
deep generative models know what they don’t know?
arXiv preprint arXiv:1810.09136.

Peiqing Niu, Zhongfu Chen, Meina Song, et al. 2019.
A novel bi-directional interrelated model for joint
intent detection and slot filling. arXiv preprint
arXiv:1907.00390.



Libo Qin, Wanxiang Che, Yangming Li, Haoyang Wen,
and Ting Liu. 2019. A stack-propagation framework
with token-level intent detection for spoken language
understanding. arXiv preprint arXiv:1909.02188.

Libo Qin, Wanxiang Che, Yangming Li, Mingheng Ni,
and Ting Liu. 2020. Dcr-net: A deep co-interactive re-
lation network for joint dialog act recognition and sen-
timent classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8665–8672.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Ge-
unbae Lee. 2018. Out-of-domain detection based
on generative adversarial network. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 714–718.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. arXiv
preprint arXiv:1710.09829.

Lei Shu, Hu Xu, and Bing Liu. 2017. Doc: Deep
open classification of text documents. arXiv preprint
arXiv:1709.08716.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2018. Zero-shot learning of classifiers from natural
language quantification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 306–316.

Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang,
and Philip S Yu. 2018. Zero-shot user intent de-
tection via capsule neural networks. arXiv preprint
arXiv:1809.00385.

Yang Yu, Wei-Yang Qu, Nan Li, and Zimin Guo. 2017.
Open-category classification by adversarial sample
generation. arXiv preprint arXiv:1705.08722.

Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and
Philip S Yu. 2018. Joint slot filling and intent de-
tection via capsule neural networks. arXiv preprint
arXiv:1812.09471.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2020.
Deep open intent classification with adaptive decision
boundary. arXiv preprint arXiv:2012.10209.




