
Knowledge Distillation for Swedish NER models: A Search for
Performance and Efficiency

Lovisa Hagström
Chalmers University of Technology

Sweden
lovhag@chalmers.se

Richard Johansson
University of Gothenburg

Sweden
richard.johansson@cse.gu.se

Abstract

The current recipe for better model per-
formance within NLP is to increase model
size and training data. While it gives us
models with increasingly impressive re-
sults, it also makes it more difficult to
train and deploy state-of-the-art models
for NLP due to increasing computational
costs. Model compression is a field of re-
search that aims to alleviate this problem.
The field encompasses different methods
that aim to preserve the performance of
a model while decreasing the size of it.
One such method is knowledge distilla-
tion. In this article, we investigate the ef-
fect of knowledge distillation for named
entity recognition models in Swedish. We
show that while some sequence tagging
models benefit from knowledge distilla-
tion, not all models do. This prompts us
to ask questions about in which situations
and for which models knowledge distilla-
tion is beneficial. We also reason about the
effect of knowledge distillation on compu-
tational costs.

1 Introduction

Currently, most research that pushes the bound-
ary for state-of-the-art performance within natu-
ral language processing involves the increase of
number of model parameters as well as the com-
putations needed for training (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020). The
trend seems to be that the larger the model, the
better the performance. As noted by Strubell et al.
(2019) these state-of-the-art models require signif-
icant computational resources during training as
well as deployment. While it certainly is a good
thing that state-of-the-art performance within NLP
is continuously improving, there is work to be

done on model efficiency. More efficient models
are needed both for the sake of the environment
and for the sake of equal research opportunities.
Here we define an “efficient model” based on both
performance and computational cost, such that a
model is more efficient if it has better performance
or lower computational cost, and vice versa.

Knowledge distillation (Hinton et al., 2015) is
one way to improve model efficiency during de-
ployment. There are several works on successful
application of knowledge distillation both for pre-
training tasks and for specific downstream tasks.
Adhikari et al. (2020) show that knowledge dis-
tillation can be used to improve deployment effi-
ciency of models for the downstream task of doc-
ument classification in English.

In this article we investigate the effect of knowl-
edge distillation on models for named entity
recognition (NER) in Swedish.1 The intention is
to shed some light on how well knowledge distilla-
tion performs for different sequence tagging mod-
els and in the Swedish language. Our main goal
is to contribute to better model efficiency within
NLP. Naturally, this entails that we also focus on
measuring the efficiency of each model investi-
gated. Hopefully, this work will facilitate the de-
velopment of more efficient models for both the
English and the Swedish language.

2 Related work

Our work focuses on the task of named entity
recognition, on model efficiency and on improv-
ing model efficiency. These topics are hardly new
to the NLP arena and we will use this section to
describe some of the previous work.

2.1 Named Entity Recognition
The most well-known NER task is probably the
CoNLL-2003 Task created by Tjong Kim Sang

1The code for the project is available at https://
github.com/lovhag/distilling-in-swedish.
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and De Meulder (2003). It tests a model on its ca-
pacity to recognize words as either names of per-
son (PER), location (LOC), organization (ORG),
miscellaneous (MISC) or not an entity (O).

Much work has been done on NER for English,
with several models trained on the data, as seen
in section 2.2. However, the same cannot be said
for other languages. Firstly, there is the issue of
obtaining an adequate training, development and
test dataset for NER. The largest Swedish dataset
which can be used for NER is built on the SUC 3.0
dataset (Ejerhed et al., 1992).

NER data resources have also been developed
in other North-Germanic languages and work on
this is ongoing. Recently, Hvingelby et al. (2020)
created a novel NER dataset for Danish. In the
same article, they provide an overview of the avail-
able NER datasets for similar languages, such as
Swedish and Norwegian. They also train a BERT
model for their Danish NER task and obtain an f1
score of 83.76.

2.2 Named Entity Recognition models

When Devlin et al. (2019) tested their BERT
model on the downstream task of NER they used
the CoNLL-2003 English data and obtained an f1
score of 92.4 with their base model.

One previous state of the art model for NER
before BERT, named “CCNN+WLSTM+CRF”, is
provided by Yang and Zhang (2018) and Ma and
Hovy (2016).2 It does not use hand-crafted fea-
tures or deep contextualized word embeddings.

2.3 Model efficiency

Research that focuses on model efficiency and en-
ergy consumption is seemingly on the rise. The
most noteworthy contribution within the field of
NLP is that of Strubell et al. (2019). In their work,
Strubell et al. claim that the NLP field would ben-
efit from reporting training time and sensitivity to
hyperparameters for developed models. Addition-
ally, Clark et al. (2020) argue that compute effi-
ciency should be taken in consideration together
with downstream performance for representation
learning methods. To this end, they report model
performance as a function of train FLOPS neces-
sary to reach that performance.

2According to http://nlpprogress.com/
english/named_entity_recognition.html.

2.4 Development of more efficient models

Several methods for making models within lan-
guage processing more efficient have been devel-
oped and research on this is ongoing. Seemingly,
the methods so far discovered can be categorized
into three different types: 1) conditional computa-
tion, 2) improving sample efficiency and 3) model
compression. Conditional computation is about
not using the full network when making infer-
ences, thus reducing the number of computations
needed (Shazeer et al., 2017; Fedus et al., 2021).
The goal of improving sample efficiency is quite
self-explanatory, and may be exemplified by the
recent work by (Clark et al., 2020) in which a more
effective method for training BERT is proposed.
Model compression is the focus of this article and
will be further explained in this section.

The objective of model compression is to
compress a large model with good performance
into a smaller model that still performs on par
with the larger model. A “smaller model” is a
model which in some way requires less compu-
tational power and/or memory. In general, this
means that you still need to do some training of
the larger model before you can compress it. As
such, model compression is beneficial when you
want to achieve energy efficiency at deployment.
Apart from knowledge distillation, pruning can
also be used to this end. For example, after the lot-
tery ticket hypothesis was presented for neural net-
works by Frankle and Carbin (2018), Chen et al.
(2020) presented corresponding work on iterative
pruning for BERT models.

Knowledge distillation (KD) is another model
compression technique that will be the main focus
of this article. The main idea behind the technique
is to distill the knowledge from a larger model, a
teacher, into a smaller model, a student, by provid-
ing the student with the predictions of the teacher
(Hinton et al., 2015).

KD can be implemented in different ways dur-
ing training of the student model. One implemen-
tation that was used by Adhikari et al. (2020) is to
train the student model to also imitate the predic-
tions of the teacher model through an additional
KD term in the loss signal. This KD loss term
measures how similar the predictions of the stu-
dent model y(s) are to those of the teacher model
y(t), denoted LKD(y

(s),y(t)). The standard loss
for the task, denoted Ltask(y

(s)), is still included
in the loss signal. Thus, the training loss during
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KD can be described as below.

L = Ltask(y
(s)) + λLKD(y

(s),y(t)) (1)

Here, λ is a tunable hyperparameter used to tune
the balance between how much feedback the stu-
dent model should receive from the objective of
the task and how much feedback it should receive
from the teacher. With a non-zero λ, the student
model is partly trained to imitate the predictions
of the teacher model.

KD within the scope of natural language pro-
cessing can be used in either of two training sit-
uations; 1) during pre-training of a model that is
intended to be transferable on several downstream
tasks and 2) during fine-tuning of a model for a
specific downstream task.

Previous work on KD for language models in-
tended to be transferable is that of Sanh et al.
(2019) in which a distilled version of BERT (Dis-
tilBERT) was created. DistilBERT has 40% fewer
models parameters than BERT and is capable of
being fine-tuned to perform well on several down-
stream tasks without requiring as many computa-
tions as BERT.

Previous work on KD for a specific downstream
task includes that by Adhikari et al. (2020). In
their work Adhikari et al. found that generally any
model benefits from KD for document classifica-
tion. They also found that simpler models such
as logistic regression models benefit the most with
respect to relative improvement in f1 score.

There is also work on trying to understand why
models benefit from KD. The number of theoreti-
cal justifications are few, although some have been
found in the recent work by Rahbar et al. (2020).
On the other hand, there is more work in the area
of empirical explanations. Based on empirical ex-
periments, Yuan et al. (2020) claim that the ben-
efits of KD mainly come from the label smooth-
ing regularization provided by the soft targets of
the teacher model, such that even a “bad” teacher
can improve the performance of a student model
as long as it provides soft targets. Yuan et al.
also suggest that an increase in performance that is
comparable to that of KD can be obtained by using
“self-training” or a manually designed regulariza-
tion term, without the need of a teacher model.

3 Swedish NER dataset

We use the manual NER annotations based on
the SUC 3.0 dataset (Ejerhed et al., 1992) for our

SUC 3.0 CoNLL-2003
person PER
animal PER
myth PER
place LOC
institution ORG
product MISC
work MISC
event MISC
other MISC

Table 1: The mapping used to convert SUC 3.0
entity types to the same as those of the CoNLL-
2003 data.

Resource SUC 3.0
#tokens 1,166,593
#entity tokens 47,310
%entities 4.06

Table 2: Some general features of the SUC 3.0
NER dataset in Swedish. The number of entity
tokens measures the number of tokens that make
up the named entities. The percentage of entities is
the number of tokens that make up entities divided
by the total number of tokens in the dataset.

Swedish NER task. Before training, we reshape
the data to a more suitable format for our task.

Firstly, the manual annotations in the SUC 3.0
data contain annotations for the entities person,
animal, myth (for example “God”), place, institu-
tion, product, work, event and other. These entity
categories are not found in NER datasets for other
languages. In order to make better comparisons
to other languages, we map the entity types in the
dataset to the same types as those that can be found
in the CoNLL-2003 data, as described by Table 1.
We also represent the data in the IOB2 format
(Tjong Kim Sang and Veenstra, 1999) and split
it into 70%/10%/20% for the train/validation/test
data. The splits were made with random sampling
without regard to text source.

Tables 2 and 3 list some of the features of the re-
shaped dataset. From these tables, we can observe
that the Swedish dataset is about three times larger
than the CoNLL-2003 dataset, while the latter has
a higher density of entities. It is worth remark-
ing that while the English dataset was developed
for NER, the SUC dataset was originally compiled
for the purpose of part-of-speech tagging, with the
entity annotation added later. Additionally, we can



Resource LOC MISC ORG PER #examples
SUC 3.0 train 6,705 4,551 6,005 16,030 51,971

dev 955 549 885 2,135 7,351
test 1,857 1,402 1,574 4,662 14,923
total 9,517 6,502 8,464 22,827 74,245

Table 3: The distribution of the named entities of the Swedish NER dataset.

observe from Table 3 that the Swedish dataset has
quite an unbalanced entity distribution.

4 Method

The goal of this work is contribute to better model
efficiency within NLP by investigating the effect
of KD on different NER models in Swedish. To
this end, we utilize the method for KD as pre-
sented in Section 4.1 and investigate the NER
models seen in Section 4.2. The efficiency of
our models is then measured as described in Sec-
tion 4.3.

4.1 Application-targeted KD
The general form of the KD objective was previ-
ously introduced in Equation (1). We let the KD
loss term LKD(x) for one batch be given by the
Kullback–Leibler divergence as shown in Equa-
tion (2), similarly to what was done by Adhikari
et al. (2020).

LKD(y
(s),y(t),w) = (2)∑

n

∑
l:wn,l 6=“PAD′′

∑
k

y
(t)
n,l,k

N
(log

y
(t)
n,l,k

y
(s)
n,l,k

)

y(s) and y(t) are the respective label probabili-
ties of student and teacher model for each token in
each batch example. The sum indices n, l, k de-
note the batch index, token index and label index.
So 1 ≤ n ≤ 32, 1 ≤ l ≤ 128 and 1 ≤ k ≤ 9 in the
case of our work. N is the batch size and wn,l de-
notes the token at position l in the sequence with
index n in the batch.

The objective of the KL divergence is to mea-
sure the difference between the student model la-
bel probabilities and the teacher model label prob-
abilities. It is only zero if the probabilities are
identical. Neither the cross-entropy loss nor the
Kullback–Leibler divergence were evaluated for
padding tokens.

Another important variable for the KD is λ.
This was set by studying the sizes of the two
loss terms and making sure that they contributed

with feedback of roughly equal magnitude, as this
seemingly generated the best KD results.

Moreover, data augmentation has successfully
been used for improving the performance of KD
(Hinton et al., 2015). Results by Ba and Caru-
ana (2014a) indicate that the more data, the more
for the student model to learn on from the teacher
model. To this end, Adhikari et al. (2020) used
data augmentation during KD. However, we find
it meaningful to investigate the benefits of KD be-
fore the usage of data augmentation, and will not
use it in this work.

4.2 Models
All of the evaluated models and their parameters
are listed in Table 4. The models were chosen with
the objective of investigating the effect of KD for
simpler as well as more complex models on the
NER task, similarly to what was done by Adhikari
et al. (2020). However, we did not include quite as
simple models as those evaluated by Adhikari et
al., as our sequence tagging task of NER requires
a sequential model output.

Common for all models except for the Char-
CNNWordLSTM model is that their input is for-
matted by a Swedish BERT tokenizer with a vo-
cabulary size of 50,325. As such, each embed-
ding layer of the models expects word pieces as
input and covers a vocabulary of the same size as
BERT. Additionally, each training example is trun-
cated or padded to a sequence length of 128 word-
pieces and the label for an entity consisting of sev-
eral word pieces is given by the label generated
for the first wordpiece, similarly to the approach
by Devlin et al. (2019).

The BERT model was developed with support
from the Huggingface Transformers software by
Wolf et al. (2020). A linear classification layer
was added on top of the pre-trained Swedish base
BERT model by Malmsten et al. (2020) to create
a BERT model for NER in Swedish. This model
was fine-tuned for 3 epochs on the Swedish NER
data. A cross-entropy loss was used and all layers
of the model were fine-tuned during training. This



Model name #parameters % in emb infer FLOPS % of BERT FLOPS infer time [s]
BERT 124,107,273 31.14 2.9e10 100 0.287
Window 6,445,065 99.94 8.8e5 3e-3 0.000254
Window-B 38,670,345 99.95 5.3e6 2e-2 0.000718
LSTM-128 6,708,105 96.03 6.9e7 2e-1 0.009278
LSTM-128-B 39,571,465 97.67 2.4e8 8e-1 0.011056
LSTM-256 13,940,489 92.42 2.7e8 9e-1 0.015666
LSTM-256-B 40,755,465 94.83 5.4e8 2 0.020334
LSTM-256-2-B 42,332,425 91.30 9.4e8 3 0.035662
LSTM-256-2-drop-B 42,332,425 91.30 9.4e8 3 0.037428
CharCNNWordLSTM 27,002,212 98.75 1.0e8 4e-1 0.009930

Table 4: The number of model parameters for all models investigated. We also indicate how many
percentages of the parameters are found in the word embedding layer. The infer FLOPS correspond to
one forward pass of an example. The infer time is the inference time of the model for one example.

model also served as the teacher during KD train-
ing of the other models in Table 4, such that y(t)

in Equation (2) is given by the predictions of this
model.

The Window model is a straightforward imple-
mentation of a window-based sequence labeling
model with a window size of 3. This window size
was found to be the best after some preliminary
tuning. Furthermore, the model has an initial em-
bedding layer with dimension (50325, 128) and a
final fully connected top layer which predicts for
the nine available labels.

The LSTM-128 model is a straightforward im-
plementation of an LSTM model with an initial
embedding layer with dimension (50325, 128), a
hidden bidirectional LSTM layer with size 128
and a final fully connected top layer for the labels.
The same applies for the LSTM-256 model, with
the exception that the LSTM layer of this model
has a size of 256 and that the embedding dimen-
sion is 256.

The LSTM-256-2 model has the same archi-
tecture as the LSTM-256 except for that it utilizes
two bidirectional LSTM layers instead of one.

The LSTM-256-2-drop model has the same ar-
chitecture as the LSTM-256-2 model except for
that it has a word dropout probability of 0.2 and
a dropout layer with a dropout probability of 0.2
on the output of the first LSTM layer. This model
was chosen to investigate the effect of KD on a
more regularized model.

The -B extension denotes that the same model
architecture is used, but with the pre-trained word
piece embedding layer of size 50325 × 768 from
the BERT model. For these -B models the em-

bedding layer is frozen during training. Conse-
quently, this increases the number of parameters
for the models, while it is somewhat mitigated by
the fact that the embedding layer does not need to
be tuned.

The CharCNNWordLSTM model was cho-
sen with the intention of investigating the effect
of KD on a state-of-the-art model for NER which
does not utilize deep contextual word representa-
tions. The architecture of this model is a Char-
CNN+WordLSTM structure, the same as that of
Yang and Zhang (2018) and Ma and Hovy (2016),
with the exception that we do not include the con-
ditional random field (CRF) layer in our Char-
CNNWordLSTM model. Similarly to the work by
Yang and Zhang (2018) and Ma and Hovy (2016)
we use pre-trained word embeddings in the model.
These are given by a Word2Vec model trained on a
Swedish corpus.3 The Swedish embeddings have
a word vocabulary of size 104,162 and an embed-
ding size of 256. To make the KD from BERT fea-
sible, the input data to the CharCNNWordLSTM
model was potentially truncated to less than 128
words, since the output of it needed to be of the
same shape as that of BERT which was given an
input of maximum 128 word pieces. Additionally,
this model is regularized with dropout and weight
decay during training. This model and the LSTM-
256-2-drop model are the only models with regu-
larization mechanisms, such as dropout.

Common for all models is that none of them
employ a final CRF layer. Models used for se-

3The corpus consists of approximately 10e9 words from
a mix of corpora distributed by Språkbanken, https://
spraakbanken.gu.se/resurser.
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quence tagging usually show an improvement in
performance if they have a final CRF layer which
takes regard to sequential dependencies in the pre-
dictions. We chose to not use a CRF layer with the
purpose of faster training and a simpler implemen-
tation of the KD.

All non-BERT models are trained and evaluated
both with and without KD on a GeForce GTX TI-
TAN X GPU. Every model was trained until it
showed no further increase in f1 score. The re-
sults reported for the models in Tables 5 and 6 are
the test scores for the model checkpoint with the
best f1 score on the validation data. The number
of epochs for the model in the table is then given
by the number of train epochs required to reach
this best checkpoint.

4.3 Method for measuring model efficiency

To evaluate the method of KD with respect to ef-
ficiency we measure the inference time, number
of parameters as well as training and inference
FLOPS required by each model investigated, as
seen in Tables 4 to 6.

We use the Python package thop to estimate
the number of FLOPS required for one forward-
pass of all models in Table 4 except for BERT.
These numbers are reported as “infer FLOPS” in
the table. The number of FLOPS are calculated
for the forward-pass of one data example with a
sequence length of 128. We choose a character
length of 15 for the forward-pass example in the
case of the CharCNNWordLSTM model which
also separates the characters of each word. We
do not include the FLOPS required by the embed-
ding layer in these calculations since we deem this
number to be negligible in comparison with the
FLOPS required by the other parts of the models.

To estimate the number of FLOPS required for
training we then use Equation (3).4 In the equa-
tion, ninfer denotes the number of FLOPS required
for one forward pass and nexamples denotes the
number of examples the model was trained on.
The number of training FLOPS is reported as
“FLOPS” in Tables 5 and 6.

nFLOPS = ninfer · 3 · nexamples (3)

To calculate the number of FLOPS required for
one forward pass in the BERT model, which is

4There is a blog post by OpenAI which explains a
method for calculating model training FLOPS, see https:
//openai.com/blog/ai-and-compute/.

a standard BERT-base model, we use the infor-
mation given by Clark et al. (2020). The pre-
train FLOPS required for BERT are then given
by estimating the training parameters of the BERT
training method as described by Malmsten et al.
(2020) and using Equation (3) with the forward
pass FLOPS previously obtained.

To calculate the inference time, denoted “infer
time” in Table 4, we use the same data example
as was used for calculating the number of infer
FLOPS for the models. We then make the model
predict for this example 100 times and estimate
the average of the inference time required for each
prediction iteration as the inference time of the
model. These time calculations were done on a
2.3 GHz Quad-Core Intel Core i7 CPU.

5 Results and Discussion

The model scores on the Swedish NER test data
are split into Tables 5 and 6. The results in the
former table are of the simpler models that were
not regularized, while the results in the latter are
of the models that were regularized.

We split the analysis of the results with respect
to our aspects of interest. Consequently, we start
off with a general analysis of the model results for
Swedish NER, after which we examine the effect
of KD on model scores and then study the effect
of KD on model efficiency.

5.1 General analysis of the Swedish NER
model results

Firstly, the BERT model has the highest f1 score
for the Swedish NER task. This also comes with
the highest computational cost and the longest in-
ference time, which is ten times longer than that of
the second most slow model. This is not surpris-
ing, as the current trend within NLP is that better
models require more resources.

Moreover, the f1 score of the BERT model is ap-
proximately two percentage units lower than that
of BERT on the English NER dataset. This could
be due to the difference between the datasets, dif-
ferent fine-tuning procedures, and/or to the differ-
ent pre-training processes of the BERT models.
Nonetheless, it is not entirely unexpected that the
models we investigate may perform worse for the
Swedish language than for the English.

https://openai.com/blog/ai-and-compute/
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Model P R f1 epochs FLOPS
Window 0.667± 0.005 0.707± 0.007 0.686± 0.004 18± 5 2.4e12

KD 0.681± 0.006 0.705± 0.003 0.693± 0.004 18± 2 2.4e12
B 0.731± 0.000 0.721± 0.002 0.726± 0.001 24± 4 2.0e13
B-KD 0.726± 0.001 0.712± 0.002 0.719± 0.000 21± 2 1.8e13

LSTM-128 0.720± 0.004 0.717± 0.004 0.719± 0.003 60± 9 6.5e14
KD 0.758± 0.006 0.736± 0.005 0.747± 0.005 66± 11 7.1e14
B 0.802± 0.004 0.808± 0.005 0.805± 0.004 44± 23 1.7e15
B-KD 0.823± 0.003 0.822± 0.004 0.823± 0.003 60± 12 2.2e15

LSTM-256 0.743± 0.007 0.729± 0.008 0.735± 0.006 46± 24 1.9e15
KD 0.784± 0.005 0.747± 0.003 0.765± 0.003 66± 15 2.8e15
B 0.807± 0.010 0.815± 0.004 0.811± 0.006 54± 12 4.6e15
B-KD 0.829± 0.006 0.826± 0.002 0.828± 0.003 66± 21 5.5e15

LSTM-256-2
B 0.830± 0.007 0.831± 0.003 0.831± 0.005 61± 21 8.9e15
B-KD 0.849± 0.004 0.845± 0.004 0.847± 0.004 78± 15 1.1e16

Table 5: The scores on the test data for all of the evaluated models that are not regularized.

Model P R f1 epochs FLOPS
BERT 0.892 0.897 0.895 3 1.4e16 (9.1e19)
LSTM-256-2-drop-B 0.844± 0.006 0.832± 0.002 0.838± 0.002 39± 9 5.7e15

KD 0.847± 0.004 0.833± 0.006 0.840± 0.002 25± 10 3.6e15
CharCNNWordLSTM 0.843± 0.002 0.822± 0.004 0.836± 0.008 90± 11 1.4e15

KD 0.842± 0.005 0.824± 0.003 0.833± 0.003 97± 2 1.5e15

Table 6: The scores on the test data for all of the evaluated models implemented with regularization.
Models trained with knowledge distillation are marked with “KD”. “P” denotes precision and “R” recall.
Epochs, time and mean number of FLOPS required to reach best evaluation performance during training
are also displayed. FLOPS values in parentheses denote number of FLOPS required during pre-training.

5.2 The effect of KD on model scores

For the one-layer LSTM models without BERT
embeddings the f1 score increases with approx-
imately 3 units when using KD training. With
BERT embeddings, these models also benefit
some from KD. Seemingly, the LSTM models im-
prove primarily in precision when KD is applied.

Additionally, it appears as though the LSTM
models benefit more from KD than the simpler
Window model. The Window model without
BERT embeddings displays an increase in preci-
sion with KD, while the same model with BERT
embeddings even decreases in performance with
KD. This contradicts previous results on KD by
e.g. Adhikari et al. (2020), where it was found
that simpler models have the most to benefit from
KD. A potential reason for this could be that the
model architecture was not expressive enough to
benefit from KD.

Moreover, the LSTM-256-2-drop-B model per-

forms better than its counterpart LSTM-256-2-B
when no KD is applied. However, when KD is
applied, the LSTM-256-2-B-KD model surpasses
the LSTM-256-2-drop-B-KD model in f1 score as
it seemingly benefits more from KD.

The models Window-B, LSTM-256-2-drop-B
and CharCNNWordLSTM that do not clearly ben-
efit in f1 score from KD have in common that they
are either quite small or regularized. Revisiting
the idea of Yuan et al. (2020), one possible reason
for this is that KD provides regularization and that
a model that does not need regularization conse-
quently will not benefit in performance from KD.

5.3 The effect of KD on model efficiency

The three non-BERT models with the best
f1 scores in descending order are given by
the LSTM-256-2-B-KD, LSTM-256-2-drop-B-
KD and the CharCNNWordLSTM models. The
LSTM models are slightly better than the Char-
CNNWordLSTM model, although this comes with



the price of requiring approximately 4 to 10
times more FLOPS for training and an infer-
ence time that is approximately 4 times longer.
The LSTM models also rely on the existence
of a pre-trained BERT model, which requires
approximately 9.1e19 FLOPS. While the Char-
CNNWordLSTM model also relies on pre-trained
word embeddings, these do not require as many
FLOPS.

The best non-BERT model is the LSTM-256-
2-B-KD with an f1 score of 0.847. It is ap-
proximately 5 units worse than the BERT model,
while it requires approximately the same num-
ber of training FLOPS (BERT pre-training not in-
cluded) and only 3% of the number of inference
FLOPS required by BERT. Clearly, it is more effi-
cient at deployment, while the question remains as
to whether it has a performance good enough for
deployment.

The second best non-BERT model is the LSTM-
256-2-drop-B-KD model. While it did not clearly
benefit in f1 score from KD, it seemingly bene-
fited with respect to the number of required train-
ing FLOPS, as the number of training FLOPS of
the model decreased with approximately 40%. In
every other case, the general model behavior with
KD applied is that both the number of training
FLOPS and the f1 score increase.

Clearly, every trained model that utilized and
benefited from KD is more performance efficient
than its non-distilled version when making infer-
ences for new data, as the model improves in f1
score while the number of computations for infer-
ence is the same as before KD. However, the cost
of training such a model is higher, mainly due to
the need of a trained teacher model. The ques-
tion is whether the gain in deployment efficiency
is worth the additional effort. One way to reason
about this is through basic arguments of when such
an “investment” would reach a break-even point,
similarly to how e.g. solar panels are judged based
on how many years they would need to be used to
repay the energy required to produce them. For
example, if we are to develop a model that we
know will be run several times during deployment,
the use of KD could enable the use of a smaller
model without loss of performance, thus reduc-
ing the computational cost required during deploy-
ment, weighting up for the extra cost of training it
with KD. One such model that has been developed
is DistilBERT (Sanh et al., 2019), which only last

month was downloaded 1,544,446 times from the
Huggingface model library.5

Apart from reasoning about model efficiency,
we can also reason about when an increase in f1
score is worth the associated computational cost.
Since the general trend is that we obtain better
models if we allow for an increase in computa-
tional cost, the question is how much we are will-
ing to pay for one unit of f1 score. In this case
we also have to take into account that the compu-
tational cost of one f1 score unit increases with f1
score, as it is harder to increase the performance
in the region of e.g. 0.9 than it is in the region
of 0.6. Ethayarajh and Jurafsky (2020) propose
a way to handle this by using an utility function
that takes regard to performance as well as prac-
tical concerns, such as model size and inference
latency. It may be appropriate to investigate the
effect of KD in the eye of such an utility function.

6 Conclusion and Future work

Our work indicates that different models may dif-
fer in whether they benefit from KD. Thus, we
cannot make the assumption that KD should ben-
efit the performance of every model. Adding to
the question of why some models seem to bene-
fit from KD, we may also ask ourselves in which
situations the soft targets of a teacher model may
benefit a student model.

We observe three different situations for which
it is worth to further investigate the effect of KD;
1) when the student model is in need of regular-
ization, 2) when we want more data for the student
model to train on and 3) when the data for train-
ing is of poor quality. The two latter situations
have not been covered in this work, while they
have been mentioned by other researchers (Ba and
Caruana, 2014b). The former situation has already
been observed by Hinton et al. (2015), and we
have found additional support for it in our work.
For this situation we may further investigate how
KD works in combination with existing regular-
ization techniques and whether it is a better such
technique.

From our work we can also conclude that KD
may provide us with more efficient models at de-
ployment, while the cost of training these models
is high due to the need of a trained teacher. This
prompts us to reason about when KD is worth the
effort, with regard to how we value an increase in

5For the uncased base version of DistilBERT.



f1 score in terms of computational costs. We also
reason about situations when KD may be a good
investment for models that will be used heavily
during deployment. To fully measure the benefits
of KD with respect to model efficiency we con-
clude that we need to investigate better tools for
judging these trade-offs and different deployment
situations.

Future work may also investigate other types of
KD, such as extracting more layers than the em-
bedding layer from the teacher model and provid-
ing teacher signals to more layers of the student
model. Potentially, these KD variations could fur-
ther improve the performance of a model without
requiring more computational costs.

Moreover, it still remains to investigate the ben-
efits of data augmentation for the student mod-
els during KD. The question is whether we could
attain even better KD results with this approach.
This could also be taken one step further to the re-
gion of completely unsupervised training on unla-
beled data, merely by providing the student model
with the labels generated by the teacher.

Lastly we can conclude that, unsurprisingly, KD
works for the Swedish language as well. One in-
teresting next step which may benefit the Swedish
industry would be to develop a Swedish Distil-
BERT.
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