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Abstract

There has been significant progress in dialogue
systems research. However, dialogue systems
research in the healthcare domain is still in its
infancy. In this paper, we analyse recent stud-
ies and outline three building blocks of a task-
oriented dialogue system in the healthcare do-
main: i) privacy-preserving data collection; ii)
medical knowledge-grounded dialogue man-
agement; and iii) human-centric evaluations.
To this end, we propose a framework for devel-
oping a dialogue system and show preliminary
results of simulated dialogue data generation
by utilising expert knowledge and crowdsourc-
ing.

1 Introduction

There has been significant progress in the research
field of the dialogue system in past years with the
help of large-scale pre-trained language models
(LMs) (Vaswani et al., 2017; Radford et al., 2019;
Lewis et al., 2020). Pre-trained LMs show a good
generalised ability obtained from massive training
data collected from the internet and achieve state-
of-the-art performance over a wide range of dia-
logue domains (Zhang et al., 2020). While many
studies exist on general purpose dialogues, the re-
search on dialogue systems for healthcare applica-
tions is still in its infancy.

There are two major directions in the develop-
ment of a dialogue system. One direction is to
build a chatbot that can have a conversation with
a user. This approach mainly focuses on gener-
ating appropriate response given user input and
dialogue history. Researchers have been working
on this direction to create systems to produce more
human-like (Adiwardana et al., 2020), consistent
(Wolf et al., 2019), and empathetic (Rashkin et al.,
2019) responses. The other direction is to build a

task-oriented dialogue system that performs a spe-
cific task, such as triage or diagnosis within the
healthcare domain where researchers focus on de-
veloping systems that can detect implicit symptoms
or make precise diagnosis/triage result (Middleton
et al., 2016; Razzaki et al., 2018; Xu et al., 2019;
Wei et al., 2018).

In this study, we consider a dialogue system for a
sleep coaching programme for healthy people who
would like to optimise their sleep. Motivated by
cognitive behaviour therapy for insomnia (CBT-I),
we focus on investigating the relationship between
how people think, behave, and sleep (Morin et al.,
2006). The first step of the coaching programme
is a complaints assessment to identify sleep issues
and their potential causes and decide the next step
(e.g., referring to sleep apnea treatment, providing
a sleep education, suggesting a behaviour change
programme, etc). During this process, a coaching
provider (coach) plays as an active listener, asking
questions to probe specific information, while a
coaching receiver (user) has more chance to pro-
vide complaints and elaborate on these.

Real challenges in the development of a dialogue
system, especially a machine learning-based sys-
tem, come from three fundamental questions: i)
how to obtain relevant data; ii) how to develop
an automated system; and iii) how to evaluate a
system. In this paper, we first analyse existing
approaches that address the above questions (Sec-
tion 2). Then we propose our method to address
these questions (Section 3) and show preliminary
results and discuss its limitations (Section 4).

The major contributions of this paper are as fol-
lows:

• Identifying gaps in existing dialogue systems
in the healthcare domain.

• Proposing a framework consisting of three
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building blocks.

• Constructing a dataset to illustrate the validity
of the proposed method.

2 Related Work

2.1 Data Collection
Obtaining dialogue data is time-consuming and
might not be available, especially in the health-
care domain. There are several recent studies on
creating a large-scale conversation dataset in the
healthcare domain by scrapping dialogues from
online websites (Wei et al., 2018; Xu et al., 2019;
Zeng et al., 2020). These web-scraping approaches,
however, are not scalable and might create potential
privacy issues.

To mitigate the scalability issue, some studies
leverage domain knowledge to generate simulated
dialogue. For example, Liednikova et al. (2020)
modelled a typical dialogue flow between doctor-
patient in the form of a tree. Then they augmented
data by adding similar sentences extracted from an
online forum. A drawback of this approach is that
access to data sources is required and it might not
be available within European countries in the light
of the General Data Protection Regulation (GDPR).
Contrary to this, Liu et al. (2019) proposed a frame-
work for generating simulated data based on tem-
plates, which are logically and clinically verified,
and incorporated linguistic knowledge to create
diverse augmented data.

Another line of work on collecting dialogue
data is to utilise a user simulator. User simula-
tor has been widely used to interact with a dia-
logue system (Shi et al., 2019). Some of the re-
cent works adapted agenda-based user simulator
(Schatzmann and Young, 2009) to create training
data for dialogue-based diagnosis systems (Wei
et al., 2018; Xu et al., 2019). However, they
still utilised web-scrapped data to model user be-
haviour.

2.2 Dialogue Management
Dialogue management is a component of a dia-
logue system that processes dialogue context and
decides the right next action for the agent to take
(Young et al., 2013). For health-related dialogue
(e.g., symptom check, triage, diagnosis, etc), the
role of dialogue management is to decide what to
ask, answer, or inform given the context.

Middleton et al. (2016) casts triage into a se-
quence of questions and answers. They modelled

triage flow as a graph by encoding medical knowl-
edge. This graph plays the role of dialogue man-
agement to guide a system to interact with users
and make a triage decision. This approach has the
following advantages: 1) it alleviates the issue of
data collection since they do not rely on machine
learning with large-scale data but human expert
knowledge; 2) it can reason about its predictions.
However, the limitation of this approach is that it
requires a lot of expert resources.

Some task-oriented dialogue systems learn how
to manage a dialogue flow by reinforcement learn-
ing (RL) (Wei et al., 2018; Xu et al., 2019). For
example, Wei et al. (2018) framed a dialogue man-
agement module as an RL agent with a deep Q-
network (Mnih et al., 2015). With this approach,
the RL agent can decide the next action (i.e., to in-
quire about implicit symptoms, to make a diagnosis,
etc) based on the current dialogue state. Later, Xu
et al. (2019) showed that incorporating a medical
knowledge graph and symptom-disease relations
can allow an RL agent to ask more relevant implicit
symptoms and make a precise diagnosis.

There are also some recent works on develop-
ing generative models for an end-to-end dialogue
system in the healthcare domain (Liednikova et al.,
2020; Zeng et al., 2020) by utilising generative
pre-trained LMs (Wolf et al., 2019; Radford et al.,
2018, 2019; Lewis et al., 2020; Zhang et al., 2020;
Vaswani et al., 2017). However, considering the
fact that these generative models are less control-
lable (Wallace et al., 2019; Sheng et al., 2019),
using a pre-trained LM-based generative model for
health-related conversation could be risky.

2.3 Evaluation

To evaluate a task-oriented dialogue system, mul-
tiple metrics are used; both automatic evaluation
metrics and human evaluation metrics. Automatic
evaluation metrics include success rate, the average
number of turns per dialogue session, matching
rate, and average reward for an RL-based system
(Li et al., 2017; Wei et al., 2018; Xu et al., 2019).
While the automated metrics focus on task comple-
tion, human evaluation metrics consider qualitative
aspects of the dialogue, such as the quality of dia-
logue flow, the appropriateness of decision making
(diagnosis validity), and dialogue fluency scored
by experts (Razzaki et al., 2018; Xu et al., 2019).

However, user perspective has been less con-
sidered in evaluating a task-oriented dialogue sys-
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tem in healthcare. User-centric metric, such as
a user rating score or user preference score (Li
et al., 2019), is widely used for evaluating general-
purpose dialogue systems (Shi et al., 2019; Shah
et al., 2018; Budzianowski and Vulić, 2019; Roller
et al., 2020). A user-centric metric can not only
be used to assess the performance of a system but
debug a system as well. For example, a user might
have difficulty understanding the complex language
that a system uses or be annoyed by too many ques-
tions without a proper explanation. In this case,
using proper user-centric metrics can provide an
insight into which aspects of a system should be
updated.

3 Building Blocks

Here we outline three building blocks of a dialogue
system in the healthcare domain and identify open
research questions for each building block. To
this end, we propose a framework for developing a
conversation agent for healthcare-related dialogues.

3.1 Privacy-Preserving Data Collection

As mentioned earlier, the potential privacy issues
create challenges in data collection, especially in
European countries in the light of GDPR. We iden-
tify three potential methods of data collection while
safeguarding privacy. The first potential method is
to apply appropriate privacy protection techniques
to the collected data, such as de-identification that
replaces the sensitive information for text (Neamat-
ullah et al., 2008; Meystre et al., 2010; Neubauer
and Heurix, 2011). The second potential method
is to generate synthetic data by training generative
models on the collected data (Guan et al., 2019;
Hatua et al., 2019; Pan et al., 2020). The third
potential method is to generate simulated data by
building a user simulator that can interact with a
dialogue system (Wei et al., 2018; Xu et al., 2019;
Kao et al., 2018). Applying these three methods,
however, entails the following consideration: How
much is the risk of information leakage? What
is the difference in performance between models
trained on de-identified, synthesised, simulated and
real data?

3.2 Medical Knowledge-Grounded Dialogue
Management

Unlike an open-domain dialogue, healthcare-
related dialogue should be grounded in medical
knowledge. Two types of knowledge can be in-

cluded in a dialogue system. The first type of
knowledge is the knowledge about dialogue be-
tween healthcare professional and healthcare recip-
ient. For example, in the healthcare domain, there
exists a typical structure of dialogue that is advised
to be followed. Modelling a dialogue structure can
guide a system to have an appropriate dialogue
flow (Middleton et al., 2016; Razzaki et al., 2018).
The second type of knowledge is medical knowl-
edge, including correlations between symptoms
and causal relation between symptom and diseases.
Incorporating medical knowledge can allow a sys-
tem to have more appropriate dialogue and make
a precise decision (Ni et al., 2017; Ghosh et al.,
2018; Chen et al., 2020; Xu et al., 2019). The open
questions are: How to efficiently encode expert
knowledge into a machine-accessible format (e.g.,
knowledge graph, knowledge base) and how to in-
corporate it into a machine learning model? How
to maintain the previously built knowledge to keep
updated?

3.3 Human-Centric Evaluation

Since a dialogue system is designed to interact with
a user, a human evaluation should be is considered
as an ideal evaluation. More specifically, two types
of human evaluations metrics should be consid-
ered to correctly evaluate a dialogue system in the
healthcare domain: one from the expert (healthcare
professional) perspective and the other from the
end-user (healthcare recipient) perspective. Experts
from the domain should validate the appropriate-
ness of the dialogue actions made by an agent and
assess the quality of the dialogue (Razzaki et al.,
2018; Xu et al., 2019). Also, end-user should eval-
uate a system in terms of satisfaction, usability, and
comprehensibility by rating each aspect (Shi et al.,
2019; Shah et al., 2018) or deciding the preferred
system (Li et al., 2019; Roller et al., 2020). This
is associated with the following questions: Which
aspects are critical to assess both the functionality
and the usability of a system? How can these eval-
uations be reflected to update a system efficiently?

3.4 A Proposed Framework

Considering the above-mentioned building blocks,
we propose a framework for developing a conversa-
tional agent in the healthcare domain as illustrated
in Figure 1.

Simulated Data Generation The proposed
framework generates simulated dialogue data to
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Figure 1: Overview of the proposed framework.

avoid potential privacy issue in data collection. We
follow recent works on generating a simulated data
set based on the knowledge of user behaviour and
the characteristics of dialogue without using real
user data (Shah et al., 2018). This consists of two
steps: firstly, a template is constructed by exploit-
ing expert knowledge. Secondly, data is augmented
by utilising crowdsourcing.

Reinforcement Learning Agent Similar to pre-
vious studies (Wei et al., 2018; Xu et al., 2019),
we frame a dialogue management module as an RL
agent. We propose a two-step training procedure.
At the first step, the RL agent is trained with a user
simulator, either an agenda-based (Schatzmann and
Young, 2009) or a model-based (El Asri et al., 2016;
Kreyssig et al., 2018) one. At the second step, the
RL agent is further trained by interacting with real-
world users.

Model evaluation To evaluate the model, we
use both an automatic evaluation metric and a hu-
man evaluation metric. Since we consider a task-
oriented dialogue system, success rate and match-
ing rate (Xu et al., 2019) are used as automatic
metrics. For the human evaluation metric, validity
scores by experts (Razzaki et al., 2018) and prefer-
ence scores by users (Li et al., 2019) are used.

4 Preliminary Results

This section describes an initial approach of gen-
erating simulated dialogues based on a template
and crowdsourced data. The goal of a dialogue is
to assess user complaints related to their sleep and

identify all potential behavioural factors that might
be associated with the reported complaints.

4.1 Dialogue Template

We consulted an expert in the sleep domain to
model a dialogue between user and coach in the
form of a tree. The dialogue template is struc-
tured in three parts of questions and potential an-
swers related to sleep issues, the impacts of sleep is-
sues, and behavioural factors (i.e., habits/lifestyles
that might affect sleep quality). More specifically,
one open-ended question that is associated with 11
potential answers and two close-ended follow-up
questions (i.e., the frequency and the duration of
the reported issue) in the sleep issue part, one open-
ended question that is associated with 10 potential
answers and one close-ended follow-up question
(i.e., an enquiry regarding daytime fatigue) in the
impact part, and 11 close-ended questions in the
behavioural factor part. A subset of the dialogue
template and a corresponding dialogue example is
shown in Figure 2.

4.2 Crowdsourced Data

Then we collected crowdsourced data via the Ama-
zon MTurk platform. Participants were asked to
answer two open-ended questions related to sleep
issues and their impacts and check all applicable
behavioural factors. Further, the participants are
asked to paraphrase the specific sleep conditions
(i.e., issues, impacts), if they have ever experienced
them, and the selected behavioural factors. The
former and the latter data are denoted as the an-
swer data set and the paraphrase data set, respec-
tively. The answer data set are further used to
create user goals. Following the previous works
(Schatzmann and Young, 2009; Wei et al., 2018;
Xu et al., 2019), we create a user goal G = (E, I)
consisting of explicit information E, which is re-
ported in the answers to the open-ended questions,
and implicit information I , which is the answers
to the behavioural factor that can be retrieved via
probing questions. Table 1 summarises the size of
each data set and the details of each data set are
given in Appendix A.

Data set Goal Issue Impact Habit
Answer 3,015 3,015 3,015 7,961
Paraphrase - 12,325 7,287 7,961

Table 1: Size of each data set.
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(a) Dialogue structure

Coach (Q1) So, tell me a little bit, what is going on with your
sleep?

User (A101) I lie in bed awake, have trouble falling asleep.
Coach (Q1’1) How often does it happen? Do you experience

that issue more than three times a week?
User (A1’02) No, less than three times a week.
Coach (Q2) Tell me how your sleep issues are affecting you?
User (A202) It affects my performance (e.g. I can’t get things

done, or I can’t deliver the same quality)
Coach (Q2’1) Do you also experience daytime fatigue?
User (A2’01) Yes, I feel tired and have less energy or cannot

focus.
Coach (Q302) Do you consume caffeinated drinks, in particular

a few hours before going to bed? If so, could you
please elaborate it?

User (A302) I consume caffeinated drinks.

(b) An example of dialogue

Figure 2: A subset of the dialogue template (left) and a corresponding dialogue example (right).

4.3 Dialogue Simulation

The collected crowdsourced data are further used
to simulate dialogues. At the beginning of each
dialogue, a user goal is sampled from the answer
data set. Then a dialogue is simulated based on the
dialogue template with a set of handcrafted rules
and augmented by using the paraphrase data set.
An example of a user goal and the simulated and
augmented dialogues are shown in Appendix B.

4.4 Limitations and Future Study

In this paper, we show preliminary results of simu-
lating dialogues based on the dialogue template and
crowdsourced data. Our approach aims to augment
the size of the simulated dialogue data set by replac-
ing user answers with samples from the separate
paraphrase data set. However, there are a few limi-
tations that might be associated with the proposed
method. More specifically, the following concerns
should be addressed in a future study: First of all,
the paraphrased sentences should be diverse and
the simulated dialogues should cover all potential
dialogue paths. To validate the quality, the para-
phrased sentences and the simulated dialogues are
required to be accessed by proper measures. Sec-
ondly, as Shi et al. (2019) has already pointed out,
the RL agent may not generalise enough to real-
world dialogues even though it works well with
a user simulator. Therefore, there should be the
additional step of on-line learning by interacting

with real-world users (Shah et al., 2018) to mitigate
this issue.

5 Conclusion

In this paper, we analyse recent studies on the de-
velopment of a dialogue system in the healthcare
domain and outline three building blocks, namely:
i) privacy-preserving data collection; ii) medical
knowledge-grounded dialogue management; and
iii) human-centred evaluations. To this end, we
propose a framework for developing a dialogue
system and show preliminary results of simulated
dialogue data generation by utilising expert knowl-
edge and crowdsourcing. In the future study, we
foresee working on implementing a user simula-
tor that can interact with a reinforcement learning
agent, accessing the quality of the simulated dia-
logues, and deploying the reinforcement learning
agent to interact with both a user simulator and
real-world users.
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A Crowdsourced Data

We collected two crowdsourced data sets for ex-
periments: The answer data set contains user goals
consisting of answers to the two open-ended ques-
tions (i.e., sleep issue and the impact of the is-
sue) and one multiple-choice question (i.e., habit-
s/lifestyles). The paraphrase data set contains para-
phrased answers related to the sleep conditions
(i.e., sleep issue and the impact of the issue) and
the selected multiple-choice answers (i.e., habit-
s/lifestyles). The collected data were annotated
with class labels as shown in tables 2 to 4. Figure 3
shows label distributions of the collected data sets.

Class Description
troubleFallingAsleep Lie in bed awake
troubleStayingAsleep Wake up frequently
staysUpLate Stay up late
wakeUpTooEarly Wake up too early
problemWakingUp Trouble waking up
sleepsInLater Sleep in late
snoringBothersMe Snoring issue 1
snoringBothersOthers Snoring issue 2
snoringStoppedBreathing Breathing problem
otherIssue Other issue
goodSleep No issue

Table 2: Class labels for sleep issues.

Class Description
energy Feel tired or less energy
performance Affect performance
embarrassedBySnoring Snoring impact
dryMouth Cause dry mouth
appearance Look tired
stressMoodAnxiety Bad mood
lessPatience Become less patience
socialImpact Affect social life
otherHealthImmunity Affect health
noImpact No impact

Table 3: Class labels for the impacts of sleep issues.

Class Description
media Engage in screen-time
caffeine Consume caffeine
drinking Consume drink
alcohol Consume alcohol drinks
nicotine Smoke
eating Eat heavy meals
exercise Work out/exercise
passivity Physically not active
napping Nap during the day
obligationDuties Too many duties
stressMoodAnxiety Experience stress

Table 4: Class labels for habits/lifestyles.

B User Goal and Simulated Dialogue

An example of a user goal is shown in Figure 4.
To simulate a dialogue, we used the dialogue tem-
plate with a set of handcrafted rules to select a
coach’s next question. Each question is followed
by the answer by using the sampled user goal. If
the question cannot be answered by the user goal,
we randomly select an answer either Yes or No. The
simulated dialogue is then paraphrased by replac-
ing user answers with samples from the paraphrase
data set. Table 5 illustrates the examples of a simu-
lated dialogue and an augmented dialogue.
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(a) Issue label distribution in the answer data set. (b) Issue label distribution in the paraphrase data set.

(c) Impact label distribution in the answer data set. (d) Impact label distribution in the paraphrase data set.

(e) Habit label distribution in the answer data set. (f) Habit label distribution in the paraphrase data set.

Figure 3: Class label distributions of the collected data sets. Note that the answer data set and the paraphrase data
set have identical habit class label distribution but the former contains binary values (i.e., True, False) and the latter
contains free-text values (i.e., paraphrased sentences).
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A simulated dialogue
Coach So, tell me a little bit, what is going on with your sleep?
User I just can’t get to sleep.

I lie in bed awake, have trouble falling asleep.
I think too much about work issues and need to stop doing that.
I try to fall asleep, but I just lay there. The sleep doesn’t come for me quickly and I have to

wait and wait until my body finally falls asleep.
Coach How often does it happen? Do you experience that issue more than three times a week?
User Yes.
Coach How long does your issue last in general? More than 30 minutes?
User No.
Coach Tell me how your sleep issues are affecting you?
User My exhaustion really affects my work. I’m not sharp like I used to. I feel tortured.

I do less because I’m exhausted.
I need more time to get things done, and I don’t have the creativity and energy that I would
want to deliver top quality work.
Because I have not received enough sleep I do not focus as well. This causes my performance
to not be as well as it should.

Coach Do you also experience daytime fatigue?
User No
Coach Do you experience stress or mood swings?
User No
Coach Do you engage with digital devices/screen, in particular, a few hours before going to bed?
User Yes

I’m around screens all the time and it affects my sleep.
I end up being on my computer working all day and when I’m not working I’m watching TV
or on my phone. I do these things immediately before going to bed and while in bed.
Most of the time leading up to going to bed for us is watching TV. But really this is just about
the only time I have to look through facebook, and emails on my phone too. So it’s like I’m
getting a double whammy of light from these devices.

Table 5: An example of a simulated dialogue based on the dialogue template with a sampled user goal and para-
phrased sentences. Italic texts are the source texts extracted from the user goal and underlined italic texts are target
sentences sampled from the paraphrased data set. Three randomly sampled paraphrased sentences per user answer
are reported.
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{
’explicit’:{

’main_issue’: ’troubleFallingAsleep
’,

’main_issue_text’: "I just can’t
get to sleep.",

’main_impact’: ’performance’,
’main_impact_text’: "My exhaustion

really affects my work. I’m not
sharp like I used to. I feel

tortured.",
},
’implicit’: {

’passivity’: False,
’alcohol’: False,
’nicotine’: False,
’caffeine’: False,
’media’: True,
’exercise’: False,
’drinking’: False,
’eating’: False,
’stressMoodAnxiety’: False,
’obligationDuties’: False,
’napping’: False

}
}

Figure 4: An example of a user goal.


