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Abstract

We present CoTexT, a pre-trained, transformer-
based encoder-decoder model that learns
the representative context between natural
language (NL) and programming language
(PL). Using self-supervision, CoTexT is pre-
trained on large programming language cor-
pora to learn a general understanding of lan-
guage and code. CoTexT supports down-
stream NL-PL tasks such as code summariz-
ing/documentation, code generation, defect de-
tection, and code debugging. We train CoTexT
on different combinations of available PL cor-
pus including both ”bimodal” and ”unimodal”
data. Here, bimodal data is the combination of
text and corresponding code snippets, whereas
unimodal data is merely code snippets. We
first evaluate CoTexT with multi-task learning:
we perform Code Summarization on 6 differ-
ent programming languages and Code Refine-
ment on both small and medium size featured
in the CodeXGLUE dataset. We further con-
duct extensive experiments to investigate Co-
TexT on other tasks within the CodeXGlue
dataset, including Code Generation and Defect
Detection. We consistently achieve SOTA re-
sults in these tasks, demonstrating the versatil-
ity of our models.

1 Introduction

In recent years, pre-trained language models (LM)
have played a crucial role in the development of
many natural language processing (NLP) systems.
Before the emergence of large LMs, traditional
word embedding gives each word/token a global
representation. Large pre-trained models such as
ELMo (Peters et al., 2018), GPT (Brown et al.,
2020), BERT (Devlin et al., 2018), and XLNet
(Yang et al., 2020) can derive contextualized word
vector representations from large corpora. These
methods can learn generalized representations of
language and have significantly improved a broad

range of downstream NLP tasks. These LMs
make use of learning objectives such as Masked
Language Modeling (MLM) (Devlin et al., 2018)
where random tokens in a sequence are masked
and the model predicts the original tokens to learn
the context. The success of pre-trained models in
NLP has created a path for domain-specific pre-
trained LMs, such as BioBERT (Lee et al., 2019a)
on biomedical text, or TaBERT (Yin et al., 2020)
on NL text and tabular data.

We introduce CoTexT (Code and Text Trans-
fer Transformer), a pre-trained model for both nat-
ural language (NL) and programming language
(PL) such as Java, Python, Javascript, PHP, etc.
CoTexT follows the encoder-decoder architecture
proposed by (Vaswani et al., 2017) with attention
mechanisms. We then adapt the model to match T5
framework proposed by (Raffel et al., 2019). We
test CoTexT by performing exhaustive experiments
on multi-task learning of multiple programming
languages and other related tasks.

We train CoTexT using large programming lan-
guage corpora containing multiple programming
languages (including Java, Python, JavaScript,
Ruby, etc.). Here, we test different combinations
of unimodal and bimodal data to produce the best
result for each downstream task. We then fine-
tune CoTexT on four CodeXGLUE tasks (Lu et al.,
2021) including CodeSummarization, CodeGenera-
tion, Defect Detection and Code Refinement (small
and medium dataset). Results show that we achieve
state-of-the-art values for each of the four tasks.
We found that CoTexT outperforms current SOTA
models such as CodeBERT (Feng et al., 2020) and
PLBART (Ahmad et al., 2021a).

In this paper we offer the following contribution:

• Three different versions of CoTexT that
achieve state-of-the-art on the CodeXGLUE’s
CodeSummarization, CodeGeneration, Defect
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Detection and Code Refinement (small and
medium dataset) tasks. We publicize our
CoTexT pre-trained checkpoints and related
source code available for future studies and
improvements.

2 Related Work

Recent work on domain adaptation of BERT show
improvements compared to the general BERT
model. BioBERT (Lee et al., 2019b) is further
trained from BERTBASE on biomedical articles
such as PubMed abstracts and PMC articles. Simi-
larly, SciBERT (Beltagy et al., 2019) is trained on
the full text of biomedical and computer science
papers. The experimental results of these models
on domain-specific datasets show the enhanced per-
formance compared to BERTBASE.

Relating specfically to our work, CodeBERT is
(Feng et al., 2020) trained on bimodal data of NL-
PL pairs. This strategy allows CodeBERT to learn
general-purpose representations of both natural lan-
guage and programming language. GraphCode-
BERT (Guo et al., 2021) is an extension of Code-
BERT that moves beyond syntactic-level structure
and uses data flow in the pre-training stage to cap-
ture the semantic-level structure of code. More
recently, PLBART (Ahmad et al., 2021b) is a pre-
trained sequence-to-sequence model for NL and
PL. Through denoising autoencoding, this model
can perform well on NL-PL understanding and gen-
eration tasks.

3 CoTexT

3.1 Vocabulary

Following the example of T5 (Raffel et al., 2019),
we use the Sentence Piece Unsupervised Text Tok-
enizer proposed by (Kudo and Richardson, 2018).
The Sentence Piece model extracts the sub-words
that contain the semantic context of a sequence. We
employ Sentence Piece as a vocabulary model for
all of our contributed CoTexT models. However,
the special tokens used in code (such as ”[”, ”{”,
”$”, etc) are out-of-vocab for the SentencePiece
model 1. These tokens have a crucial representative
context in programming languages. Therefore, to
enhance the robustness of the model, we encode
all of these missing tokens into a natural language
representation during both self-supervised and su-
pervised training.

1https://github.com/google/sentencepiece

)def add ( a , b : return a + b

def <X> a , b <Y> : return <Z>

<X> add ( <Y> ) <Z> a + b

Transformer

Figure 1: An illustration about Fill-in-the-blank objec-
tive

3.2 Pre-training CoTexT
We train CoTexT on both bimodal and unimodal
data. Bimodal data contains both code snippets and
the corresponding natural text in each sequence,
while unimodal data contains only the sequence
of code. We use two main datasets during self-
supervised training: CodeSearchNet Corpus Col-
lection (Husain et al., 2020) and GitHub Reposi-
tories2 data. The combinations of corpus used to
train CoTexT are listed in Table 1. To save both
time and computing resources, we initialized the
checkpoints from the original T5 that was trained
on the C4 corpus. (Raffel et al., 2019).

3.2.1 CodeSearchNet Corpus Collection
CodeSearchNet Corpus (Husain et al., 2020) con-
tains coded functions from open-source non-forked
Github repositories. This dataset spans 6 coding
languages (Python, Java, Javascript, PHP, Ruby,
Go), which facilitates multi-task learning. Code-
SearchNet also contains a natural language descrip-
tion for each function. For bimodal data, we simply
concatenate the natural language snippet with the
corresponding code snippet to create one input se-
quence. These data are then processed as described
in 3.1.

3.2.2 GitHub repositories
We download a large collection of Java and Python
functions from the GitHub repositories dataset
available on Google BigQuery. These Java and
Python functions are then extracted and the natural
language descriptions are obtained using the pre-
processing pipeline from (Lachaux et al., 2020).
These datapoints also run through a pipeline to
replace special tokens (as described in 3.1).

3.3 Input/Output Representations
CoTexT converts all NLP problems into a text-
to-text format. This means that during both self-

2https://console.cloud.google.com/marketplace/details/github/github-
repos
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Table 1: Pre-training CoTexT on different combinations of natural language and programming language copora

Model N-modal Corpus combination

T5 NL C4
CoTexT (1-CC) PL C4 + CodeSearchNet
CoTexT (2-CC) NL-PL C4 + CodeSearchNet
CoTexT (1-CCG) PL C4 + CodeSearchNet + Github Repos

supervised pre-training and supervised training, we
use an input sequence and a target sequence. For
the bimodal model, we concatenate a sequence
of natural language text and the corresponding se-
quence of programming language text as an in-
put. For the unimodal model, we simply use each
coded function as an input sequence. During self-
supervised training, spans of the input sequence
are randomly masked and the target sequence (Raf-
fel et al., 2019) is formed as the concatenation
of the same sentinel tokens and the real masked
spans/tokens.

3.4 Model Architecture

CoTexT follows the sequence-to-sequence encoder-
decoder architecture proposed by (Vaswani et al.,
2017). We initialize the Base T5 model released
by (Raffel et al., 2019) which has 220 million pa-
rameters. We train the model with a 0.001 learning
rate and an input/target length of 1024. With the
provided TPU v2-8 on Google Colab, we train with
the recommended setting of model parallelism 2
and batch size 128.

3.5 Multi-task Learning

The model is trained with maximum likelihood ob-
jective (that is using ”teacher forcing” (Williams
and Zipser, 1989)) regardless of the text-code or
code-text tasks. Therefore, for CoTexT, we lever-
age the potential for Multi-Task learning (Raffel
et al., 2019) to complete both text-code and code-
text generation on CodeSummarization and Code
Refinement tasks. To specify the task our model
should perform, we simply add a task-specific pre-
fix to the input sequence. For example, when fine-
tuning of the CodeSummarization task for each pro-
gramming language, we simply prepend a prefix
for each PL name (i.e., Java) to the input sequence.

4 Experiments

In this section, we will first describe the benchmark
dataset for code intelligence CodeXGLUE, then we

CoTexT
javascript: console.log("Hello");

ruby: puts "Hello"

go: fmt.Println("Hello")

python: print("Hello")

java: System.out.println("Hello");

PHP: echo "Hello";

To display Hello on the screen

Figure 2: An illustration about Multi-task learning

will explain the experimental setup on the tasks we
perform and discuss the results of each task. The
evaluation datasets are summarized in Table 3.

4.1 CodeXGLUE

General Language Understanding Evaluation
benchmark for CODE (CodeXGLUE) (Lu et al.,
2021) is a benchmark dataset to facilitate machine
learning studies on code understanding and code
generation problems. This dataset includes a collec-
tion of code intelligence tasks (both classification
and generation), a platform for model evaluation,
and a leaderboard for comparison. CodeXGLUE
has 10 code intelligence tasks including code-text,
text-code, code-code, and text-text scenarios. For
CoTexT, we focus on Code Summarization, Code
Generation, Code Refinement, and Defect Detec-
tion tasks.

4.2 Evaluation Tasks

We evaluate our programming language and natural
language generation tasks on TPU v2-8 with the
settings from the original T5 model (Raffel et al.,
2019). The input length and target length for each
task are described in Table 2.

4.2.1 Code Summarization
For Code Summarization, the objective is to gener-
ate a natural language description for a given code
snippet. The task includes a CodeSearchNet dataset
(Husain et al., 2019) with 6 different programming
languages: Python, Java, Javascript, PHP, Ruby,
Go. The data comes from public open-source non-
fork GitHub repositories and the annotations are ex-
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Table 2: The input and target sequence length settings for each self-supervised learning, code summarization, code
generation, code refinement, and defect detection task

Task Dataset Task Type Input Length Target Length

Self-supervised Learning
CodSearchNet Corpus 1024 1024
GitHub Repositories 1024 1024

Code Summarization CodeSearchNet Multi-Task 512 512

Code Generation CONCODE Single-Task 256 256

Code Refinement Bugs2Fixsmall Multi-Task 512 512
Bugs2Fixmedium

Defect Detection Devign Single-Task 1024 5

tracted from function documentation as described
in (Husain et al., 2019).

4.2.2 Code Generation

Text-to-Code Generation aims to generate a coded
function given a natural language description. This
task is completed using the CONCODE dataset
(Iyer et al., 2018), a well-known dataset for Java
language generation. Within the dataset, there are
tuples which contain a natural language description,
code environments, ad code snippets. The goal is to
generate the correct Java function from the natural
language description in the form of Javadoc-style
method comments.

4.2.3 Code Refinement

Code Refinement, or Code Repair, aims to au-
tomatically correct bugs in Java code. We used
the Bug2Fix corpus released by CodeXGLUE (Lu
et al., 2021), which divides the task into 2 subsets:
SMALL and MEDIUM The small dataset includes
only Java code functions with fewer than 50 to-
kens. The medium dataset includes functions with
50-100 tokens.

4.2.4 Defect Detection

For Defect Detection tasks, we attempt to clas-
sify whether a PL snippet contains vulnerabilities
that could lead to damaging outcomes such as re-
source leaks or DoS attacks. The task uses the De-
vign dataset (Zhou et al., 2019), which contains C
programming language from open-source projects.
This dataset is labeled based on security-related
commits. For details on the annotation process,
refer to (Zhou et al., 2019).

4.3 Experimental Setup

4.3.1 Baselines
We compare our model with some well-known pre-
trained models:

• CodeGPT, CodeGPT-adapted are based on the
architecture and training objective of GPT-2
(Budzianowski and Vulic, 2019). CodeGPT
is pre-trained from scratch on CodeSearch-
Net dataset (Lu et al., 2021) while CodeGPT-
adapted learns this dataset starting from the
GPT-2 checkpoint.

• CodeBERT (Feng et al., 2020) employs the
same architecture as RoBERTa (Liu et al.,
2020) but aims to minimize the combined loss
from masked language modeling and replaced
token detection.

• PLBART (Ahmad et al., 2021b) is a
Transformer-based model. BART (Lewis
et al., 2019) is trained on PL corpora using
three learning strategies: token masking, to-
ken deletion, and token infilling.

4.3.2 Performance Metrics
• BLEU (Papineni et al., 2002) is an algo-

rithm which performs automatic evaluation
of machine-translated text. This method cal-
culates the n-gram similarity of a candidate
translation compared to a set of reference texts.
Similar to (Feng et al., 2020) and (Ahmad
et al., 2021b), we use smooth BLEU-4 score
(?) for Code Summarization and corpus-level
BLEU score for all remaining tasks.

• CodeBLEU (Ren et al., 2020) is designed to
consider syntactic and semantic features of
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Table 3: Data statistics about Code Intelligence datasets

Category Task Dataset
Size

Language
Train Val Test

Code-Text
Code Summarization

(Lu et al., 2021)
CodeSearchNet

164K 5.1K 10.9K Java
58K 3.8K 3.2K Javascript
251K 13.9K 14.9K Python
241K 12.9K 14K PHP
167K 7.3K 8.1K Go
24K 1.4K 1.2K Ruby

Code-Code

Defect Detection
Devign 21K 2.7K 2.7K C

(Zhou et al., 2019)

Code Refinement
(Lu et al., 2021)

Bugs2Fixsmall 46K 5.8K 5.8K
Java

Bugs2Fixmedium 52K 6.5K 6.5K

Text-Code
Code Generation

CONCODE 100K 2K 2K Java
(Iyer et al., 2018)

codes based on the abstract syntax tree and
the data flow structure.

• Accuracy is the ratio of the number of gener-
ated sequences that harmonise the reference
to the total number of observations.

5 Results

5.1 Multi-Task Learning
We first report the result of CoTexT in Multi-Task
Learning tasks including Code Summarization and
Code Refinement.

5.1.1 Code Summarization
For the Code Summarization task, we perform
Multi-Task Learning by using the T5 framework
(Raffel et al., 2019) to finetune CoTexT on 6 difer-
ent programming language (Ruby, Javascript, Go,
Python, Java, and PHP). The results of the Code
Summarization task are shown in Table 5.

First, we observe that the base T5, which is
pre-trained only on the general domain corpus
(C4), is effective on this task. In fact, base T5
achieves higher overall results on the BLEU-4 met-
ric compared to all other related models on the
CodeXGLUE leaderboard. This shows the impor-
tance of domain-specific T5 models, which we ex-
pect to achieve superior results compared to base
T5.

We further observe that CoTexT achieves state-
of-the-art (SOTA) on the overall score, the Python-

specific score, the Java-specific score, and the Go-
specific score. While CoTexT does not significantly
outperform other pre-trained models, we observe
that CoTexT achieves SOTA on two very common
programming languages (Python and Java) while
still obtaining competitive results on other program-
ming languages. We attribute this result to the
large amount of training data for Python and Java
compared to the other languages (training size de-
scribed in Table 3). Based on this result, CoTeXT
has the potential to further surpass competitor mod-
els as more training data becomes availible.

5.1.2 Code Refinement
We also tested CoTexT by performing multi-task
learning for Code Refinement. In this case, both the
small and medium test sets have a task registry with
respective prefix prepending to the input sequence.

The Code Refinement results of each model are
shown in Table 6. For this task, the base T5, which
is pre-trained only on natural language text, does
not perform well compared to other transformer-
based models. Yet, after the training on a large
programming language corpus, the result from Co-
TexT improves significantly on all metrics for both
small and medium test sets. CoTexT achieves
SOTA for all metrics on the small test set and on
the accuracy metric for the medium test set.

5.2 Single-Task Learning

In addition to multi-task learning, we also evalu-
ate CoTexT performance single-task learning with
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Table 4: Test result on Code Generation task

Model
Text2Code Generation

EM BLEU CodeBLEU
PLBART 18.75 36.69 38.52
CodeGPT-adapted 20.10 32.79 35.98
CodeGPT 18.25 28.69 32.71
T5 18.65 32.74 35.95
CoText (1-CCG) 19.45 35.40 38.47
CoText (2-CC) 20.10 36.51 39.49
CoText (1-CC) 20.10 37.40 40.14

Notes: The best scores are in bold and second best scores are underlined. The baseline scores were obtained from the
CodeXGLUE’s Leaderboard (https://microsoft.github.io/CodeXGLUE/)

Table 5: Test result on Code Summarization task

Model All Ruby Javascript Go Python Java PHP

RoBERTa 16.57 11.17 11.90 17.72 18.14 16.47 24.02
CodeBERT 17.83 12.16 14.90 18.07 19.06 17.65 25.16
PLBART 18.32 14.11 15.56 18.91 19.3 18.45 23.58
T5 18.35 14.18 14.57 19.17 19.26 18.35 24.59

CoTexT (1-CCG) 18.00 13.23 14.75 18.95 19.35 18.75 22.97
CoTexT (2-CC) 18.38 13.07 14.77 19.37 19.52 19.1 24.47
CoTexT (1-CC) 18.55 14.02 14.96 18.86 19.73 19.06 24.58

Notes: The best scores are in bold and second best scores are underlined. The baseline scores were obtained from the
CodeXGLUE’s Leaderboard (https://microsoft.github.io/CodeXGLUE/)

Table 6: Test result on Code Refinement task

Small test set Medium test set
Model BLEU Acc(%) CodeBLEU BLEU Acc(%) CodeBLEU

Transformer 77.21 14.70 73.31 89.25 3.70 81.72
CodeBERT 77.42 16.40 75.58 91.07 5.16 87.52
PLBART 77.02 19.21 / 88.5 8.98 /
T5 74.94 15.3 75.85 88.28 4.11 85.61

CoTexT (1-CCG) 76.87 20.39 77.34 88.58 12.88 86.05
CoTexT (2-CC) 77.28 21.58 77.38 88.68 13.03 84.41
CoTexT (1-CC) 77.79 21.03 76.15 88.4 13.11 85.83

Notes: The best scores are in bold and second best scores are underlined. The baseline scores were obtained from the
CodeXGLUE’s Leaderboard (https://microsoft.github.io/CodeXGLUE/)
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Table 7: Test result on Defect Detection task

Model Accuracy

RoBERTa 61.05
CodeBERT 62.08
PLBART 63.18
T5 61.93

CoTexT (1-CCG) 66.62
CoTexT (2-CC) 64.49
CoTexT (1-CC) 65.99

Notes: The best scores are in bold and second
best scores are underlined. The baseline scores
were obtained from the CodeXGLUE’s Leaderboard
(https://microsoft.github.io/CodeXGLUE/)

a Code Generation Task and a classification task
relating to Defect Detection.

5.2.1 Code Generation

In Table 4, we reported our results for the Code
Generation task wherein natural language is trans-
lated into Java code. The result shows that our
proposed model achieves SOTA results based on
3 metrics: Exact Match (EM), BLEU, and Code-
BLEU. For each individual metric, CoTexT has
only slightly outperformed other models (e.g both
CoTexT and CodeGPT-adapted achieve 20.10 for
EM). However, our model is consistently superior
across the 3 metrics. Prior to CoTexT, CodeGPT-
adapted was SOTA for the EM metric and PLBART
was SOTA for the BLUE/CodeBLUE metrics.
From this result, we infer that CoTexT has the best
overall performance on this task and has great po-
tential in the area of code generation.

5.2.2 Defect Detection

The Defect Detection results are shown in Table
7. Specifically, CoText outperforms the previ-
ous SOTA model (PLBART) by 3.44%. For this
task, extra training on a large programming cor-
pus allows CoTexT to outperform all other models
and achieve SOTA results. The Defect Detection
dataset consists of code written in the C program-
ming language, which is not contained in our train-
ing data. Our model has a strong understanding of
similar languages, and is thus able to perform De-
fect Detection in C with improved results compared
to competitor models.

6 Conclusion

In this manuscript, we introduced CoTexT, a pre-
trained language representation for both program-
ming language and natural language. CoTexT fo-
cused on text-code and code-text understanding and
generating. Leveraging the T5 framework (Raffel
et al., 2019), we showed that pre-training on a large
programming language corpus is effective for a di-
verse array of tasks within the natural language and
programming language domain. CoTexT achieves
state-of-the-art results on 4 CodeXGLUE code in-
telligence tasks: Code Summarization, Code Gen-
eration, Code Refinement, and Code Detection. For
future work, we plan to test CoTexT on a broader
range of programming language and natural lan-
guage generation tasks, such as autocompletion or
code translation.
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