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Abstract

Augmentative and Alternative Communica-
tion (AAC) devices and applications are in-
tended to make it easier for individuals with
complex communication needs to participate
in conversations. However, these devices have
low adoption and retention rates. We review
prior work with text recommendation systems
that have not been successful in mitigating
these problems. To address these gaps, we pro-
pose applying Dialogue Act classification to
AAC conversations. We evaluated the perfor-
mance of a state of the art model on a limited
AAC dataset that was trained on both AAC
and non-AAC datasets. The one trained on
AAC (accuracy = 38.6%) achieved better per-
formance than that trained on a non-AAC cor-
pus (accuracy = 34.1%). These results reflect
the need to incorporate representative datasets
in later experiments. We discuss the need to
collect more labeled AAC datasets and pro-
pose areas of future work.

1 Introduction

Dialogue Act classification takes a conversation
transcript as input and identifies the appropriate
intent for each turn in a conversation. For example,
the sentence “How are you?” might be classified as
an Open Ended Question. The exact tags that are
used to label sentences depend on the context. The
Switchboard DAMSL tag set (Jurafsky et al., 1997)
is frequently used as a standard initial classification
model which has forty-two distinct classes. Once
labeled conversational data is available, it can be
used to create generative statistical systems that
take a sentence and a prior Dialogue Act as input
and provide the next most like Dialogue Act for the
conversation. Prior research has used this informa-
tion to analyze both human-human conversations
and better facilitate human-machine conversations
(Ahmadvand et al., 2019).

However, research in Dialogue Act classification
has not included conversations with individuals
who do not rely solely on verbal speech to com-
municate. As of the 2010 United States census,
approximately 15.7 million adults were listed as
having a communicative disability (Brault, 2012).
The communicative disability domain includes in-
dividuals who identify as having either a visual,
hearing, or speech impairment or some combina-
tion of the three. Many of these individuals commu-
nicate through non-verbal methods including Aug-
mentative and Alternative Communication (AAC)
technology; we will refer to this population as AAC
communicators.

AAC communicators leverage a broad set of
tools to supplement their verbal speech or to re-
place it entirely. Speech language pathologists may
recommend AAC as part of a treatment plan for
an individual in order to maximize their ability to
effectively communicate in their environment. In
addition to providing more communication meth-
ods, research has proven that AAC technology can
actually improve language development skills in
children (Light et al., 2019). These systems vary
in technical sophistication from picture boards cor-
responding to concepts to tablets or application
based speech-generating devices (Elsahar et al.,
2019). Figure 1 depicts two such devices, both of
which include touch-based text displays. There are
standalone or dedicated AAC devices available that
only provide a communication interface whereas
application-based solutions may run on a personal
tablet or mobile device. In addition to touch access,
devices can also incorporate eye-gaze, switch, or
brainwave input. Some devices will allow individ-
uals to switch between different access modes to
account for fatigue levels they may experience at
different times. (Elsahar et al., 2019)

The exact system used is tailored to the individ-
ual based on their cognitive, communicative, and
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Figure 1: Two examples of AAC devices, a) is a dedicated AAC device using touch-input and b) is an AAC
application running on a non-dedicated device. (Elsahar et al., 2019)

physical profile. An ideal system will maximize
the individual’s ability to express themselves while
minimizing the cognitive and physical demands of
using the system. Speech pathologists will perform
an initial AAC evaluation to match a patient with
the appropriate device to fit their immediate needs
and long term communication goals and define an
AAC intervention plan to track progress on these
goals. Over the course of intervention, the system
may be adjusted in order to better suit the needs
of the individual whether it be physical changes to
accommodate improved or worsening motor func-
tionality or word selection adjustments to introduce
more complicated vocabulary.

Over the last few decades, AAC devices have im-
proved significantly, but satisfaction and retention
rates for them remain low (Waller, 2019). There
has been some effort to improve on-screen word
prediction, but it has yet to provide sufficiently rel-
evant suggestions during conversations or improve
communication rates for AAC communicators. As
we will discuss in the Related Work section, the
application of NLP to AAC technology has been
primarily limited to word prediction, despite the
expansion of the field to a multitude of other tasks.
We hypothesize that incorporating Dialogue Act
information into AAC technology will improve the
ease of use of these devices and in turn positively
impact the ability of AAC communicators to par-
ticipate in conversations.

In this paper, we address the potential benefits
of applying Dialogue Act classification to conver-
sations that include a participant communicating
via an AAC device. We will start by presenting the

previous NLP applications that have been used to
enhance AAC software as well as currently avail-
able representative datasets. Then, we evaluate the
performance of an existing state-of-the-art model
on a small dataset of transcribed conversations be-
tween an AAC communicator and one of their daily
communication partners. Finally, we present the
challenges that inhibit work in this context. Ulti-
mately, we hope that future researchers will rec-
ognize the value of applying language models to
conversations with AAC communicators in order to
improve their ability to independently participate
in educational, social, and career settings.

2 Related Work

2.1 Natural Language Processing For AAC
Users

There have been numerous efforts to incorporate
different aspects of language processing into AAC.
In 2011, (Higginbotham et al., 2011) conducted a
review of the use of Natural Language Processing
for Augmentative and Alternative Communication.
These proposed enhancements are often aimed at
improving the ease of use of devices or the rate of
communication. The rate of communication for
a device indicates how quickly an AAC commu-
nicator can respond using the technology. This
is a critical element for being an active conversa-
tional participant. At the time, the relevant systems
used optimized keyboards to improve input, word
prediction, and speech recognition. There were
different variations on improvements to word pre-
diction including incorporating key noun phrases
used by communication partners to enhance the
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on-screen suggestions. (Wisenburn and Higgin-
botham, 2009). However, none of the word predic-
tion methods used were found to improve the rate
of communication for AAC users.

Nearly a decade later, language processing re-
search in AAC has not expanded much outside of
the realm of word prediction. The research has
focused on incorporating additional context to the
word suggestions provided to users on device with
the intent of improving communication rates as
well as relevance of the suggestions themselves.
Fried-Oken, M., Jakobs, T., & Jakobs, E. (2018)
developed SmartPredict, an application-based AAC
that leverages a statistical language model, the com-
municator’s recent vocabulary, and content sugges-
tions from their conversational partner via a part-
ner application. Their hypothesis was that infor-
mation provided by conversational partners would
enhance the overall ease of use with the applica-
tion. Initial findings from their experiments show
a slight improvement in the number of selections
that the AAC communicators required to indicate
their desired intent, but these have not been ex-
panded to a larger group yet. Garcia et al. (2015)
investigated the use of location-aware language
models for word and sentence prediction and found
that they did not provide statistically significant
improvements for participants’ conversational rate.
Location information was later used for pictogram
prediction in a pictogram-based AAC device (Gar-
cia et al., 2016) where the location based models
also did not result in significant improvements in
AAC usage. Outside of predictive models for word
or pictogram-based devices, there has also been
research into how NLP can be used to improve new
AAC technology. Oken et al. (2014) were the first
researchers to use NLP to enhance a Brain Com-
puter Interface (BCI) system. Their system works
by presenting the individual with a single letter for
2.5 seconds at a time and using non-invasive sen-
sors to determine if this is the individual’s target
character. Instead of scanning through the entire
alphabet, their statistical model presents the next
letter based on what is most likely to occur follow-
ing the previous letter. An enhanced BCI system
has the potential to improve communication meth-
ods available to individuals with extremely limited
or no voluntary motor control, including those with
Locked-In Syndrome.

Research in the AAC space has remained limited
to a small number of language processing tasks in

the last several decades. Effort has been made to
improve ease of use of AAC devices and communi-
cation rates by incorporating geographic, temporal,
and contextual information into word prediction
systems. Yet, as mentioned above, these additions
have not significantly impacted the rate of com-
munication or device retention rates of AAC com-
municators. Future work in this space needs to
include experimental AAC designs that leverage a
greater breadth of NLP applications to better meet
the needs of this population.

2.2 Data including Individuals with Complex
Communication Needs

In order to pursue further NLP applications for
AAC, there is a need to collect or aggregate repre-
sentative training data sets for these models. The
most comprehensive dataset including conversa-
tional data for AAC communicators is the AAC
and non-AAC Workplace Corpus (Friginal et al.,
2013). This corpus includes transcripts of over
two hundred hours of data captured with eight par-
ticipants using AAC devices in their workplace
environment. A single corpus of conversational
transcripts is not sufficient to create statistical mod-
els that will provide significant benefit.

However, despite a lack of transcribed conversa-
tions, audio datasets have been greatly expanded
upon to include speech samples that represent a va-
riety of different language disorders. There are
multiple corpora available that include samples
of speech from adult Parkinson’s patients (Tsanas
et al., 2014) (Orozco et al., 2014) (Jaeger et al.,
2019). Other audio datasets have been collected
to study the dysarthric speech of individuals with
Cerebral Palsy and Amyotrophic Lateral Sclerosis
(Rudzicz et al., 2010). Little et al. (2007)’s corpus
includes speech samples from individuals with a
mixed set of language disorders. In addition to
covering a range of language impairment types, the
audio data that has been collected is also representa-
tive of individuals from different age groups. As an
example, the Child’s Pathological Speech Database
(Ringeval et al., 2011) includes speech data from
children with either autism spectrum disorder or a
different language impairment. There is also the
CSLU Autism Speech Corpus which contains data
from speech pathology evaluations on forty-five
children conducted from 2005-2012 (Gale et al.,
2019) amounting to 1.5 hours of audio data with a
total of 1,022 utterances.
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Of the datasets mentioned above, the AAC and
non-AAC Workplace Corpus is the only one that
includes individuals communicating with an AAC
device. It is also the only corpus that is coded for
linguistic characteristics, including part-of-speech
tagging. Even if speech-to-text applications were
run to convert all of the audio corpora mentioned
above to transcript formats, they would still need
to be coded by linguistic features in order to be
usable as training data for certain language pro-
cessing tasks. For these reasons, additional effort
to collect and label representative conversational
data of AAC communicators is needed to make
meaningful progress with NLP advancements.

3 Implications of Dialogue Act Analysis
for AAC

Applying Dialogue Act classification to conversa-
tions including communicators reliant on AAC has
the potential to improve their ability to communi-
cate as well as enhance the AAC intervention and
evaluation processes.

3.1 Benefits for AAC Communicators

The ultimate goal of AAC intervention is to in-
crease the communicative competence of an indi-
vidual. This covers not only the ability to com-
municate in the workplace or classroom setting,
but also the ability to engage in personal conversa-
tions with friends and family. The current set of
AAC devices and applications has yet to provide
an adequate solution for individuals with complex
communication needs. Many individuals who have
been prescribed high-tech AAC devices end up
abandoning them due to bad user interface, physi-
cal access limitations, the cognitive load required
to learn them, or due to a lack of access to an ex-
pert (Waller, 2019). Those that continue to use
their devices face limitations with conversational
agency in terms of conversational, task, and device
constraints (Valencia et al., 2020).

Incorporating Dialogue Act information into an
AAC interface would improve the ability of AAC
communicators to participate in conversations. A
generative Dialogue Act model built into an AAC
application would be able to predict the most likely
next Dialog Act in a conversation. This information
could then be used to provide the AAC communica-
tor with partial or full phrases that correspond to the
appropriate Dialog Act. Smart phrase recommen-
dations may enhance the rate of communication,

making it easier for the AAC communicator to re-
spond to the topic in a timely manner. For example,
if their conversational partner asks, a Wh-Question:
What are you doing this weekend.” the system could
provide partial phrase recommendations that con-
form to a Statement-Non-Opinion such as “I’m
going to . . . “. Dialog Act suggestions also have
the potential to impact ease of use with the device
by reducing the amount of navigation required to
find desired words or phrases. These improvements
would reduce the cognitive and physical load im-
posed on the AAC communicator and potentially
make them more motivated to continue to use their
device.

3.2 AAC Evaluation and Intervention
Improvements

Dialogue Act classification could also be used to
quickly analyze speech pathology transcripts to im-
prove both initial AAC evaluations and ongoing
AAC intervention. As part of the initial AAC as-
sessment, the conversations between the patient
and members of the AAC team are coded for com-
municative functions such as requests, information
sharing, and wh-questions. (Beukelman and Light,
2020) Speech language pathologists record these
sessions and transcribe them on their own or send
them to a transcription service. Once they have
a written version, they review either the audio or
written files and annotate them for the appropriate
communicative function.

Communicative functions could be treated as Di-
alogue Act classes and annotated by speech pathol-
ogists on representative samples of atypical speech.
A Dialogue Act classification model could then
be trained on this gold standard data in order to
automate this process in the future. This type of
automation would make it easier for speech pathol-
ogists to evaluate patients for an initial AAC device
as well as fitting them to a new device at a later
stage in their treatment. As a result, their patients
could gain access to an appropriate AAC device
and improve their ability to communicate more
quickly.

Following the initial assessment, Dialogue Act
classification could then be used to track the
progress of the patient with their initial evaluation
goals. Current speech pathology research stresses
the importance of evidence-based intervention for
individuals with complex communication needs
(Light et al., 2019). By using a Dialogue Act clas-
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sification model, speech pathologists and conver-
sational partners could quickly code interactions
and identify how often the individual is able to ex-
press the communicative functions that correspond
to their intervention goals. This provides more
frequent feedback on goals and allows the AAC
team to adjust appropriately. Additionally, models
could be trained to identify the method by which
the individual is communicating, either through
vocalization or a device. Then multi-class models
could associate particular communicative functions
with communication methods. This would provide
deeper insight into whether the individual can vo-
calize a particular communicative function or if
they require a device to fulfill particular conversa-
tional needs. Automated transcription would also
allow for conversations to be evaluated at home
instead of in a speech pathologists office, reducing
potential burden on the individual and their AAC
team.

4 Experiments

To explore the potential of Dialogue Act classifica-
tion for conversations including individuals using
AAC, we will evaluate the accuracy of a state of
the art model on a small representative dataset.

4.1 Data

The data used consists of written transcripts of un-
scripted conversation between an individual using
a speech generating device and one of their reg-
ular communication partners. The data was col-
lected at the University of Buffalo (Higginbotham,
2021). Each of the individuals involved in the orig-
inal study had amyotrophic lateral sclerosis (ALS)
which has impacted their ability to communicate
vocally. Participants were prompted to discuss trips
that they had taken in the past. There are ten unique
transcripts which each correspond to a conversa-
tion between one of the communicative partner
pairs In total, there are four hundred and thirty six
utterances present in the dataset.

In addition to the AAC dataset, some of the mod-
els were trained on the Switchboard training corpus
(Jurafsky et al., 1997). The Switchboard corpus
contains labeled data from 1,155 5-minute conver-
sations. The training set contains a total of 197,489
utterances. Both datasets were annotated with the
Switchboard DAMSL tags which are described in
detail below.

Dialogue Act Tag Count
Statement-non-opinion 155
Statement-opinion 36
Yes-No-Question 26
Repeat-phrase 24
Open-Question 20
Other 19
Yes Answers 19
Agree/Accept 16
Response Acknowledgement 15
Backchannel in question form 14

Table 1: Counts of dialogue act tags in the ALS
Dataset.

Dialogue Act Annotation We annotated the sen-
tences based on the Switchboard DAMSL Dialogue
Act tags (Jurafsky et al., 1997) which are currently
the standard benchmark for evaluating the accuracy
Dialogue Act classification models. The DAMSL
model consists of forty-two distinct classes of di-
alogue acts meant to represent the meaning of a
particular utterance. The top ten most frequent set
of dialogue act tags present in the dataset can be
seen in Table 1. The standards followed are based
on the examples provided in the Switchboard man-
ual.

A sample conversation snippet with the associ-
ated dialogue act tags can be seen in the conversa-
tion below. AC refers to the AAC communicator
and P is their conversational partner.

P: 20 years together you can’t think of one thing?
[Rhetorical-Question]

AC: We don’t take many trips
[Statement-non-opinion]

AC: Florida was cool when we went to Universal
Studios [Statement-opinion]

P: Yeah [Yes Answers]

4.2 Classification Model

To establish a baseline of model performance,
we picked the top implementation currently avail-
able for Dialogue Act analysis based on exist-
ing leaderboards (Ruder, 2021). The classifica-
tion model from Ravi and Kozareva (2018)’s is
currently ranked as the highest performing solu-
tion with an accuracy of 83.1 on the Switchboard
dataset. This approach avoids the need to use pre-
trained word embeddings and instead uses projec-
tion transformations to transform the input. This
avoids the need for us to train word embeddings on
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Training Set Validation Set Accuracy Loss
AAC AAC 0.386 2.655
SWBD SWBD 0.341 2.787
SWBD AAC 0.341 2.787

Table 2: We evaluated all three versions of our Dia-
logue Act Classification models with a subset of the
AAC datset based on categorical accuracy and crossen-
tropy loss. AAC indicates that the training or validation
set was sampled from the AAC dataset whereas SWBD
indicates that the sampling was from the Switchboard
corpus.

our limited dataset. We used the publicly available
implementation which closely follows the original
algorithm, but achieves a maximum accuracy of
73.1 (Suarez, 2021). Our experiments used a neu-
ral network with 2 hidden layers with 256 units.
The Dialogue Act labels were mapped to one-hot
encoding vectors of size 42. All of the models are
trained with stochastic gradient descent for 100
epochs.

We compared three methods of training a clas-
sification model based on different combinations
of the AAC data and the Switchboard dataset.
The goal of these experiments was to understand
whether the AAC transcripts alone could be used to
train a classification model as well as whether train-
ing a model on the Switchboard corpus would be
sufficient for classifying AAC conversational data.
The first model relies on only the ALS transcript
data for training and validation. We randomly sam-
pled 80% of the sentences from the transcripts to
use for training data, 10% for validation, and 10%
for testing. The second model was trained and vali-
dated with the Switchboard corpus and then tested
with the same test set of AAC sentences. Lastly, we
trained a model on the Switchboard training corpus
and validated with samples from the AAC set. The
same sample set of sentences was used for valida-
tion in the first and third models. For each model
variation, we calculate the categorical crossentropy
loss and the categorical accuracy on the test set of
AAC sentences.

5 Results

The results in Table 2 show that the first model,
which was trained and validated on the AAC corpus
outperforms both of the others, which were trained
on the Switchboard dataset. This indicates that the
Switchboard dataset is an inadequate training set

for AAC conversations. It also suggests that the use
of representative data in model training has a pos-
itive impact on classification accuracy. However,
the low 38.6% accuracy of this model reflects the
fact that our current AAC dataset is not adequate
for training a statistical Dialogue Act classification
model. A larger representative dataset would be
needed to improve results for a model trained on
AAC-data only. The use of AAC data only in the
validation phase of model training, during which
hyperparameters are set, seems to have minimal
impact on the accuracy of the model. This could be
due to the small size of the validation set or further
evidence that the Switchboard training data does
not generalize to the AAC sentence data.

The low accuracy scores could also be reflective
of the need to use better annotation tags. The AAC
conversational data used for future experiments
could benefit from AAC context specific Dialogue
Act tags. Although the DAMSL tags work well for
comparison to results on existing datasets, it would
be more beneficial to use a refined tag set that is
specific to the AAC data that is being analyzed.
Ideally, the tags should be modified depending on
the context in which they are being used. A speech
pathologist may choose to use a specific set of
classes for coding sentences that are closely related
to the goals of the individual’s intervention. These
tags are different from a set that would be used to
provide real-time suggestions on a device during
a typical conversation. Once a set of context ap-
propriate tags has been established, the AAC data
should be annotated by a group of annotators who
are familiar with interpreting AAC output, such as
speech pathologists in order to establish more ac-
curate standard tags and inter-annotator agreement.

6 Conclusion

In this paper, we introduced the possibility of ap-
plying Dialogue Act classification to conversations
that include one or more individuals communicat-
ing via AAC devices. We have discussed the po-
tential benefits for applying this NLP technique
to AAC applications as well as speech pathology
transcriptions. In the experiments, we trained a Di-
alogue Act classification model on a small subset
of AAC data and determined that a model trained
on the Switchboard corpus does not perform as
well on AAC conversational data as one that has
been trained on a representative corpus. However,
with the current AAC corpus available, the accu-
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racy for the Dialogue Act classification model is
far from the current benchmarks for these mod-
els on the Switchboard corpus. This indicates the
need for more experiments to improve Dialogue
Act classification accuracy in this context.

Future experiments will require labeled AAC
conversational data for model training. The data
collection task is a daunting proposition due to the
fact that AAC devices are inherently personalized.
Each AAC intervention session is tailored to the
patient, the devices chosen, and goals set are meant
to be the best choice for that individual. A represen-
tative dataset would need to be sufficiently large to
incorporate individuals with different communica-
tion impairments, different degrees of impairment,
and those from different age groups. The data must
also be collected in a manner to preserve the privacy
of the individuals’ included. Furthermore, the cur-
rent limitations of AAC devices may bias the data
that could be collected. If a person is currently lim-
ited in their communicative ability due to poor user
design with the device, the speech that they output
will not be reflective of their full communicative
desires. To mitigate this risk, further research needs
to be done with this population to better incorpo-
rate their conversational goals into a representative
dataset. Additionally, any model proposed should
have a personalizable component. This component
would allow for supplemental training data that is
based on the individual’s recent conversation his-
tory or a bootstrapping period. The inclusion of
a personalization training period would provide
enhanced conversational agency as well as incor-
porating an individual’s communication style into
their AAC device.

Once a sufficiently accurate Dialogue Act classi-
fication model is available, it can be embedded into
a standalone AAC device or AAC application. This
prototype should be designed alongside individuals
who currently communicate via AAC as well as
their AAC team. Through a collaborative research
and design process, we hope to see improvements
in usage rates for AAC devices and higher satisfac-
tion rates by AAC communicators. More impor-
tantly, we anticipate that as AAC devices improve,
AAC communicators will find themselves able to
participate in more professional, educational, and
social conversational opportunities.
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