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Abstract

The new pre-train-then-fine-tune paradigm in
Natural Language Processing (NLP) has made
important performance gains accessible to a
wider audience. Once pre-trained, deploying a
large language model presents comparatively
small infrastructure requirements, and offers
robust performance in many NLP tasks. The
Digital Humanities (DH) community has been
an early adapter of this paradigm. Yet, a large
part of this community is concerned with the ap-
plication of NLP algorithms to historical texts,
for which large models pre-trained on contem-
porary text may not provide optimal results. In
the present paper, we present “MacBERTh”—a
transformer-based language model pre-trained
on historical English—and exhaustively assess
its benefits on a large set of relevant down-
stream tasks. Our experiments highlight that,
despite some differences across target time
periods, pre-training on historical language
from scratch outperforms models pre-trained
on present-day language and later adapted to
historical language.1

1 Introduction & Related Work

Social scientists and Humanities scholars have
long been interested in describing cultural systems
and understanding the way in which these change
across time. Traditionally, such shifts were docu-
mented with ‘manual’ interpretative methods, but
more recently researchers in DH have begun apply-
ing Machine Learning techniques to support their
interpretation.

In the case of researchers working with historical
text, current work has been occupied with develop-
ing and evaluating NLP algorithms with the goal

1Evaluation code is available through the project’s repos-
itory: https://www.github.com/emanjavacas/
macberth-eval. “MacBERTh” itself is available as
emanjavacas/MacBERTh from the transformers
repository (Wolf et al., 2019).

of modeling the way in which concepts, categories
and discourses (e.g. of class, gender) change over
time along with their linguistic representations.

In this context, applications include data-driven
approaches to conceptual change (Fitzmaurice
et al., 2017; Sommerauer and Fokkens, 2019; Mar-
janen et al., 2019; Martinez-Ortiz et al., 2019),
historical word sense disambiguation (Bamman
and Crane, 2011; Fonteyn, 2020; Beelen et al.,
2021), Named-Entity Recognition in historical text
(Labusch et al., 2019; Konle and Jannidis, 2020;
Schweter and Baiter, 2019; Schweter and März,
2020; Ehrmann et al., 2020; Boros et al., 2020) or
unsupervised semantic change (Schlechtweg et al.,
2020; Giulianelli et al., 2020).

In view of the growing weight of the new NLP
paradigm of “pre-train-and-fine-tune”—which
leverages large language models in order to pro-
duce strong feature extractors (Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2019)—, the
question arises as to whether similar performance
boosts can be gained for current NLP-oriented re-
search dealing with historical text.

Due to the heavy domain-shift along grammat-
ical, semantic and orthographic language layers,
models pre-trained on contemporary data are less
helpful when applied on historical data. Previous
work has experimented with adapting contempo-
rary models to historical data on a per-task basis
(Han and Eisenstein, 2019), although it is unclear
whether this approach can yield a general purpose
historical model. An alternative approach would
be to adapt historical text to the modern standards
using a historical text normalization system (Boll-
mann, 2019). While this could indeed help tack-
ling orthographic shifts, grammatical and semantic
shifts would be left un-adapted. Moreover, error
percolation from the automatic normalization sys-
tem would still be an issue.

Arguably, the main advantage of pre-training

https://www.github.com/emanjavacas/macberth-eval
https://www.github.com/emanjavacas/macberth-eval
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this type of models is their ability to exploit very
large datasets. In the case of historical linguistic
resources, the known scarcity of digitized text—
even for commonly high-resource languages like
English—turns such enterprise problematic. How-
ever, ongoing efforts towards making historically
relevant book collections digitally accessible (Lan-
gley and Bloomberg, 2007; Labs, 2014; Mueller
et al., 2016) have kick-started experimentation in
this respect. For example, Bamman and Burns
(2020) pre-trained a model on Latin text spanning
several centuries. Schweter and Baiter (2019) and
Konle and Jannidis (2020) have employed contex-
tualized character-level models, (Schweter, 2020)
has released historical German and French models
trained on historical newspaper data, and Beelen
et al. (2021) and Hosseini et al. (2021a) trained and
released models on an English corpus spanning the
18th to 20th centuries.

Several questions appear in this context. For ex-
ample, it remains unclear whether all target periods
can benefit equally from a “historically” pre-trained
model or whether the performance benefits of these
models vary across periods depending on the avail-
able amount and type of documents. Moreover, it is
unclear what the advantages are of the two current
alternative pre-training approaches. In some cases,
pre-existing models pre-trained on contemporary
datasets are first “historically fine-tuned” before be-
ing applied on downstream tasks. This approach—
motivated by the promise to leverage a larger out-
of-domain contemporary dataset—has been shown
to outperform their non-adapted counterparts (al-
though, see German BERT vs. Europeana BERT in
Schweter and März, 2020), but it remains unclear
how these fine-tuned models compare to models
pre-trained “historically” from scratch, and, more
generally, whether the presence of modern data in
the training process diminishes model performance
(as suggested by Boros et al., 2020).

Contributions In this paper, we introduce a
model pre-trained on a large span of historical
English (1450-1900), and show its advantages
with respect to present-day models, as well as
models adapted from present-day to historical En-
glish on an exhaustive set of ad-hoc downstream
tasks. Moreover, we show how model performance
strongly depends on the time period of the target
application.

2 Experimental Setup

We rely on the large language model known as
“BERT”—a stack of transformer layers with a self-
attention mechanism (Vaswani et al., 2017), opti-
mizing a Masked Language Model (MLM) objec-
tive (Devlin et al., 2019). Despite the existence of
several MLM alternatives, BERT remains a good
choice, considering that (i) it is well-established
and most thoroughly studied, and (ii) on-going eval-
uation of alternative choices—mostly focus on Nat-
ural Language Understanding (NLU) tasks—has
not yielded a clearly superior architecture.

We rely on the seminal implementation,2 with
the hyper-parameterization corresponding to the
“BERT-base Uncased” architecture.3 Pre-training is
done with default parameters, except for the max-
imum sequence length (set to 128 subtokens) for
1,000,000 training steps.

2.1 Pre-training Dataset

The model is pre-trained on a corpus of a total
size of ca. 3.9B (tokenized) words (time span:
1450-1950) using the following corpora: the Early
English Books Online (EEBO) corpus, the Cor-
pus of Late Modern English Texts (CLMET3.1),
the Evans Early American Imprints Collection
(EVANS), Eighteenth Century Collections Online
(ECCO), the Corpus of Historical American En-
glish (COHA), and the Hansard corpus (Hansard).
The resulting corpus is a varied collection in terms
of text types, including literary works, religious and
legal text as well as news reports and transcriptions
of British parliamentary debates. The summary
word count statistics are shown in Figure 1.

In terms of preprocessing, the corpus was first
cleaned up in order to remove foreign text,4 and
split into sentences using the NLTK built-in sen-
tence tokenizer (Bird, 2006).

2.2 Benchmarking

To cast light upon the advantages of large MLMs
for diachronic tasks, we designed a number of
benchmarking tasks, in which the contextualized

2Available on the following URL: https://github.
com/google-research/bert.

3See Section 2.2.2 or the original paper for a description
of these parameters.

4We used an ensemble of the Google’s Compact Lan-
guage Identifier (v3) and the FastText Language Identification
system (Grave, 2017), operating over chunks of 500 characters,
which were flagged as foreign whenever both systems indi-
cated a language other than English as the highest probability
language.

https://github.com/google-research/bert
https://github.com/google-research/bert
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Figure 1: Aggregated word count statistics per decade for the pre-training corpora used in the present study.

representations of candidate models must encode
historical information in order to achieve strong
performance.

2.2.1 Benchmarking Datasets
In line with previous work (Hu et al., 2019; Heo
et al., 2020; Beelen et al., 2021), we rely on data
from the Oxford English Dictionary (OED Simp-
son and Weiner, 1989)—an authoritative resource
for historical and contemporary lexical semantics
in the English lexicon—for the benchmarking tasks.
For each lemma, the OED defines a hierarchy of
word senses, including quotations exemplifying
each sense over the entire historical span of that
sense. For the present experiments, we sampled
3,000 words from the vocabulary of the corpus
described in Section 2.1, in proportion to their
smoothed relative frequencies. Each word was re-
trieved and matched to existing lemmata in the
OED reservoir. Upon successful retrieval, the
senses and quotations of the corresponding lemma
were stored. The resulting dataset comprises 2,700
lemmas, 35,110 senses and 246,048 quotations,
which we utilize in varied ways for benchmarking.

We also include part-of-speech tagging, using
the Penn-Helsinki Parsed Corpus of Early Modern
English (PPCEME) (Kroch et al., 2004)—a man-
ually annotated corpus of Early Modern English
(time span: 1450-1700), comprising about 1.7m
words over 448 documents.5

2.2.2 Candidate Models
In order to quantify the relative advantage of pre-
training MLMs on historical corpora, we compare
different instantiations of BERT. First, we bench-
mark against models with comparable architectures

5We replicate the training-test splits from (Han and Eisen-
stein, 2019), thus keeping 115 files for testing and reserving
from the 333 remaining 17 randomly sampled files (ca. 5%)
for development purposes.

trained on present-day English data only. We
use BERT, which corresponds to “BERT-Base Un-
cased” in the original repository, and is trained on
ca. 3.3B tokens—i.e. the BookCorpus (Zhu et al.,
2015) and the English Wikipedia—using a Word-
Piece (Schuster and Nakajima, 2012) vocabulary
of 30,000; and MultiBERT, which corresponds
to “BERT-Base Multilingual Cased” from the orig-
inal repository, and is trained on the union of the
top 100 languages in terms of the size of the re-
spective Wikipedia sites, using a shared WordPiece
vocabulary of 110,000.

Secondly, we compare with a variant of BERT—
i.e. “BERT-Base Uncased”—that was fine-tuned at
the Alan Turing Institute on 5.1B tokens of histori-
cal English (time span: 1760-1900 Hosseini et al.,
2021a),6 which we label TuringBERT.

Contemporary BERT and MultiBERT dif-
fer mainly in training material and vocabulary.
MultiBERT should have an advantage when ap-
plied to historical English data, as it is trained on
a much larger and varied dataset and with a more
flexible vocabulary. The main difference between
TuringBERT and MacBERTh is their span and
size, with TuringBERT covering a smaller time
window but a larger training dataset. Furthermore,
as MacBERTh was pre-trained from scratch, its
vocabulary is better adjusted to historical English.

3 Results

We now describe the benchmarking tasks and the
results of the competing models in detail.

3.1 Part-of-speech Tagging

The first task tackles part-of-speech tagging of
historical documents. Historical text is known
to be challenging for automatic processing due

6The model is available through the accompanying online
repository (Hosseini et al., 2021b).
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Figure 2: Accuracy on the part-of-speech tagging task (on the y-axis) considering different training size regimes (in
number of documents in the x-axis) and different evaluation criteria: total (all tokens), known (only tokens observed
in the training set) and unknown (only tokens not present in the training set).

to (relatively more) complex inflection systems
and lacking orthographic standards (Manjavacas
et al., 2019). As recently shown by Han and Eisen-
stein (2019), domain-specific pre-training yields
improvements for historical pos-tagging, even if no
labeled data is available for the target domain. We
quantify the potential of pre-training on historical
data for pos-tagging of historical texts by comput-
ing accuracy on held-out data after fine-tuning the
pre-trained MLMs on target-domain data.7

We expect pre-training on target domain data to
improve tagging accuracy of documents, especially
if these stem from the same period. Moreover, in
line with (Han and Eisenstein, 2019) we particu-
larly expect improvements for tokens in the held-
out data that were not encountered during training.
Finally, we also test the relative sample efficiency
of the competing MLMs by fine-tuning these on
incrementally smaller samples of training data. To
test our hypotheses, we compute (micro-)accuracy
of all, known and unknown tokens, using random
sub-samples (50, 100, 150, 200 and all files).8

Pre-training on contemporary material (BERT,
MultiBERT) results in less accurate models for
all evaluation conditions (see Figure 2). The his-
torical models have an advantage, especially on
unknown tokens. The model pre-trained on the
larger temporal span (i.e. MacBERTh) has an ad-
vantage in the smaller training data regime.

Moreover, when factoring in the date of the held-
out document, we find that the relative improve-
ment of MacBERTh is larger for earlier dates, and
seems to increase for later dates, as shown in Fig-
ure 3 for the accuracy of unknown tokens in the

7We fine-tune all MLMs on the PPCEME for 3 epochs
with a batch size of 8 on a single GPU.

8The random sub-samples of training data were kept con-
stant for all models.
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Figure 3: Difference in part-of-speech tagging accuracy
of unknown tokens of MacBERTh with respect to the
alternative models in the small-size training regime (50
documents). The shaded area shows the total number of
tokens per period on which the evaluation is based.

small-size training regime. This may be explained
by the combined effect of the sample efficiency
of the different models and the training data size
of the different periods (shown in Figure 3 by the
shaded grey area), which is seemingly correlated
with the advantage of MacBERTh.9

3.2 Word Sense Disambiguation

Word Sense Disambiguation (WSD) by modeling
lexical semantics in context has received ample at-
tention from the DH community—see the different
applications surveyed by Tahmasebi et al. (2018,
Section 7.1 and 7.2)—, and is arguably one of the
most promising venues for deploying MLMs.

We first approach WSD as a binary classification
task in which pre-trained models are fine-tuned in
order to predict whether a pair of quotations ex-
emplifying senses of a given lemma correspond to
the same sense or not (Section 3.2.1). Second, we
evaluate the quality of sense embeddings derived
from the MLMs without explicit fine-tuning in a
sense classification task (Section 3.2.2).

9For the sake of completeness, the full results are shown
in Figure 10 in the Appendix.
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3.2.1 Word-in-Context
The word-in-context task for evaluating context-
sensitive word representations was introduced by
Pilehvar and Camacho-Collados (2019), follow-
ing earlier efforts on evaluating context-dependent
word similarity (Huang et al., 2012). Recently,
Beelen et al. (2021) have also focused on this task,
referring to it as “targeted sense disambiguation”.

We utilize the OED quotations dataset from Sec-
tion 2.2.1 in the following manner. First, we drop
quotations with less than 5 words, in order to en-
sure that there is enough context for disambiguat-
ing. Second, we drop lemmata with less than 100
quotations left as well as lemmata that do not cor-
respond to nouns, adjectives and verbs (based on
the OED’s lemma categorization). From the result-
ing dataset of 408 lemmata we reserved 10% (=
41), which are used for testing the generalization
capabilities of the models. For a given input quota-
tion, we generate a positive example by sampling a
paired quotation belonging to the same sense and a
negative example by sampling a quotation from a
different sense of the same lemma.

In order to fine-tune the models, we replicate
the settings in Devlin et al. (2019, Section 4.1),
using the last hidden activation corresponding to
the [CLS] token, adding a linear projection layer
in order to compute the logits of the positive and
negative class, and optimizing a cross entropy loss.
In order to let the model focus on the word that cor-
responds to the underlying lemma, we add [TGT]
tokens around the focus word in both members of
the input pair.10,11

Table 1 shows the results of development (= 25%
of the training data) and held-out data. For each
block of results, we further distinguish whether the
instantiation of the lemma corresponds to the same
part-of-speech tag, and, in case of correspondence,
we report results per part-of-speech tag—i.e. noun
(N), adjective (Adj) or verb (V).

Overall, MacBERTh obtained the best results
across conditions, except for held-out adjectives
where contemporary models had an advantage. Per-
formance on development data is generally very
high, surpassing 90% accuracy across conditions.
However, on held-out lemmata, no model surpasses
70% accuracy (with adjectives being easier to clas-

10An example input pair can be seen in Table 3 in the
Appendix.

11We use the “sbert” library (Reimers and Gurevych, 2019)
to fine-tune the models, training for 5 epochs with batch size
of 16 on a single GPU.

Development

Model Total ̸= POS
= POS

N Adj V

BERT 89.9 92.3 90.1 92.6 86.7
MultiBERT 92.0 94.8 91.6 95.6 88.7

TuringBERT 91.0 94.1 90.5 94.3 87.6
MacBERTh 94.5 96.1 94.1 96.8 92.6

Held-out

BERT 59.5 56.8 60.5 65.8 58.4
MultiBERT 62.1 63.3 64.0 66.1 57.1

TuringBERT 58.6 58.5 59.8 60.7 56.4
MacBERTh 63.0 63.8 65.3 61.8 59.3

Table 1: Results of the word-in-context task for develop-
ment and held-out lemmata across different conditions.

sify than nouns and verbs for all models).
Pairs with diverging part-of-speech tags resulted

in higher accuracy, which can be explained by
class imbalance: pairs with diverging tags tend
to belong to different senses. Interestingly, the
drop in performance for the positive class with re-
spect to the negative class was much smaller for
MacBERTh (6.9 points) than for the other mod-
els (9.8 for BERT, 9.9 for MultiBERT and for
12 points for TuringBERT), thus suggesting a
stronger generalization ability of MacBERTh over
competitors.

Finally, we observe that the afore-mentioned ad-
vantage is not evenly distributed over the periods
from which the input quotations stem. Instead, the
advantage of MacBERTh was generally larger for
quotations originating before the 1700s.12

3.2.2 Parameter-free WSD
In the full-fledged WSD setting, an input quotation
must be tagged with the sense that it is exemplify-
ing. A further difference with the word-in-context
task is that we do not use any additional fine-tuning
in order when approaching the task. Instead, we
follow the approach outlined in Peters et al. (2018,
Section 5.3). The distributed representations of
senses are first computed, and then a sense is pre-
dicted for an unseen input quotation based on its
proximity to the different sense representations (us-
ing the nearest sense representation neighbor in
terms of cosine similarity). We restrict ourselves
to a centroid approach to building sense represen-
tations, in which the contextualized vectors of the

12For completeness, a full visualization of the difference in
accuracy over time bins can be seen in Figure 11 (Appendix).
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Word Type

Model Total Content Function

BERT 36.0 36.1 34.8
MacBERTh 42.3 42.0 50.4
MultiBERT 32.3 32.1 38.6

TuringBERT 34.8 34.6 43.2

Majority 13.6 13.7 9.1
Random 9.2 9.3 6.1

Table 2: Results of the WSD comparison in terms of
classification accuracy by word type.

target tokens exemplifying a particular word sense
are averaged.

In order to build a dataset, we utilize the OED
quotations from Section 2.2.1. We first drop lem-
mata with less than 50 quotations. Second, we
discard single-sense lemmata as well as senses (of
a given lemma) with less than 2 quotations (as we
cannot produce classifications in those cases). On
the basis of the remaining senses, we generate a
stratified training and test set split with 50% of
the quotations in each set. In order to classify the
sense of an input sentence, we only need to com-
pare it against the sense representations of the same
lemma. For this purpose, we rely on the original
OED’s lemmata, thus assuming gold lemmata.

The results, split by word type, are shown in Ta-
ble 2.13 MacBERTh outperforms the competitors
across all conditions. Overall, models performed
better on function words than on content words,
even though the latter seems to be an easier task
as per the baseline. Interestingly, TuringBERT is
outperformed by BERT, despite the former being
fine-tuned on historical material.

Figure 4 factors in time on the x-axis, showing
that the effect of time on accuracy is constant across
models for content words. In the case of function
words, the historical pre-training of MacBERTh
seems to be of benefit in the earlier periods.

3.3 Fill-in-the-blank
The ad-hoc fill-in-the-blank task indirectly tackles
NLU. For a given OED input, we mask the target
token (i.e. the token corresponding to the word of
which a sense is being exemplified) and interpret
the plausibility assigned by the model to the target
token as a proxy of the model’s strength to capture

13We consider function words those tagged with “pron”,
“prep”, “conj” or “int” following OED’s classification.
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Figure 5: Results of the fill-in-the-blank task over time
in terms of Mean Reciprocal Rank.

meaning.
Using the OED quotations from Section 2.2.1,

we first select quotations for which the target token
is part of the vocabulary of all compared models,
which ensures that the comparison is fair. More-
over, since models differ in vocabulary sizes, we
evaluate using the rank of the target token based on
the logits (instead of directly using the full output
distribution of logits). We use the Mean Recip-
rocal Rank as evaluation metric, averaging over
quotations—shown in Figure 5.

The MacBERTh model tops across all periods.
The difference with respect to the other models is
larger in the earlier periods, highlighting a stronger
ability to capture the semantics of earlier examples.

3.4 Sentence Periodization

The last task concerns periodizing quotations from
the OED. OED quotations constitute a particularly
well-suited test bed, as they have been selected by
the OED editors in order to exemplify particular
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word usages within specific diachronic frames. A
periodizing model, thus, may exploit not only for-
mal aspects of how English has changed (such as
spelling, morphology, word order or grammar) but
also changes in lexical semantics.

To tackle this task, we first fine-tune the different
MLMs in a binary classification task with the goal
of predicting whether the first sentence stems from
a later period than the second. We deploy the same
architecture as the one described in Section 3.2.1
but drop the signalization of the target token.

In order to periodize an input sentence, we use a
subset of sentences for which the dates are known
(we refer to this subset as the “background corpus”).
This subset is both representative of the entire time
range for which predictions need to be produced
(i.e. sampled uniformly over equally sized spans
in the OED), and kept apart during training. Then,
for a given input sentence, we obtain a distribution
of scores (i.e. probability) over years by compar-
ing the input sentence against sentences from this
background corpus.

For each background sentence, the model yields
a probability that the input sentence stems from
a later period. We first sort these probabilities by
the years corresponding to the sentences in the
background corpus. We then compute the cumula-
tive distribution (which draws a strictly increasing
curve). The prediction then corresponds to the
point of maximum curvature or knee point within
this curve, which we compute using the Kneedle
method described by Satopaa et al. (2011). This
method identifies the highest point in the curve af-
ter (i) smoothing out edges using a polynomial fit
of the input data points and (ii) rotating the curve
so that both the start and end point lie on the same
horizontal line. An example prediction using this
method is shown in Figure 6.

We use the OED data from Section 2.2.1, remov-
ing quotations with less than 5 words. From the
remaining set, we reserve 5% for development and
5% for testing. The remaining 90%, is randomly
split into 75% for training and 25% for the back-
ground corpus (which is produced by binning the
range from 1450 to 1900 into decades and sampling
20 quotations per decade, giving a background cor-
pus of 1,000 quotations in total). Finally, the train-
ing, test and development splits are turned into
datasets by generating random pairs, ensuring that
quotations in the input pairs do not belong to the
same lemma. We restrict ourselves to 100,000 train-
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Figure 6: Visualization of a sentence periodization pre-
diction using the knee method. The dashed line shows
the cumulative distribution of prediction scores of a
given input sentence with respect to the background cor-
pus (x-axis). The grey line corresponds to the smoothing
derived from a 7th degree polynomial fit. Finally, the
green and red lines highlight the true and predicted year,
respectively. Left and right plots show examples of an
accurate and inaccurate prediction.
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Figure 7: Visualization of the Mean Absolute Error
achieved by the different models (lower is better) with
respect to the number of samples in the background
corpus.

ing and 5,000 development and test input pairs.14

Figure 7 shows the results in terms of Mean
Absolute Error (MAE). As the size of the back-
ground corpus is a source of variation, we re-run
the experiment varying the number of background
instances within each 50 year bin (shown on the
x-axis), until reaching the full size of 1,000 back-
ground quotations (i.e. 100 instances for each of
the 10 bins). All models converge to their opti-
mum performance when using the full background
corpus. Figure 7 also shows that MacBERTh has
the smallest error, being wrong on average by 50
years. TuringBERT is on par with BERT and
outperforms MultiBERT.

Figure 9 factors in the time dimension, aggre-

14We fine-tune the models following the same setting as in
Section 3.2.1.
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gating MAE over bins of 50 years. MacBERTh
achieves the best results for input sentences dated
before 1650, as well for those dated after 1750. Fur-
ther, Figure 8 shows the comparison of MacBERTh
vs. the rest taking into account the source year bin
of the left (y-axis) and right (x-axis) input examples.
All models agree on the periodization of sentences
that are separated in time by a larger span—i.e. off-
diagonal bins are sparsely populated, indicating a
small number of divergent predictions—especially
when sentences prior to 1650 enter the comparison.
MacBERTh’s improvement over the other models
seems to be concentrated in the period before 1650
(as suggested by the more intense color in the cor-
responding part of the plot).

4 Discussion

The exhaustive set of benchmarking experiments
allows us to assess the impact of pre-training MLM

architectures on historical data for diachronic tasks.
As expected, historical pre-training helps to im-
prove performance on diachronically relevant tasks.
Accordingly, both TuringBERT and MacBERTh
generally outperformed the models pre-trained on
contemporary data only—with the exception of
both WSD tasks, where MultiBERT (in word-in-
context) and BERT (in the parameter-free WSD)
outperformed TuringBERT. The historically pre-
trained MacBERTh outperformed all competing
models across tasks on partitions of the test data
stemming from earlier periods.

Furthermore, based on the fact that MacBERTh
displays an advantage across tasks and condi-
tions, we can conclude that enlarging the historical
span and coverage of pre-training data is advan-
tageous.15 Importantly, the period to which only
MacBERTh had access during pre-training coin-
cides roughly with the beginning of Late Modern
English (around the 1700s) and the consolidation
of the modern standard. Therefore, if variety in the
pre-training data sources results in more powerful
feature extractors, the impact for diachronic down-
stream tasks of the pre-training data stemming from
before the 1700s is even so larger.

Interestingly, in many tasks, the advantage
shown by MacBERTh was not restricted to the
earlier periods. For example, in part-of-speech
tagging, the increase in accuracy appeared to be
correlated with the total amount of data available
for training and testing. This can be interpreted as

15Note that this result was obtained even when the total
token counts of the pre-training dataset of MacBERTh was
smaller with respect to the other models.
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a sign of better sample efficiency that pre-training
on varied datasets confers the model.

Finally, a question that arises from the present
experiments concerns those aspects of the ex-
perimental setting that may be responsible for
the observed disadvantage of TuringBERT on
diachronic tasks—even on time spans to which
TuringBERT had access during pre-training. The
fact that the tokenizer is restricted to the specific
domain of contemporary English may force the
model to aggregate over odd subword tokenizations
in order to extract word-level feature representa-
tions, putting it in a weakened position. Adapting a
model originally pre-trained on contemporary En-
glish may also import too strong an inductive bias
when the model is later fine-tuned on historical
English. In any case, pre-training from scratch on
historical data may be a more robust strategy than
adapting a pre-trained model.

5 Conclusion & Future Work

Our experiments have shown the potential of histor-
ical pre-training for diachronically-relevant tasks.
Historical pre-training, however, did not benefit
the processing of historical texts from all different
time spans to the same extent. A more balanced
pre-training dataset could help alleviate these is-
sues. Still, since collecting new data for certain
time spans and genres is hindered by the scarcity
of such material, researchers are left with the only
option of up-sampling the available resources—c.f.
Bamman and Burns (2020). The benefits of up-
sampling for ranges of the diachrony that are lesser
sourced should thus be explored.

Moreover, we have gained insight on the rel-
ative merit of different approaches to historical
pre-training (pre-training from scratch vs. adapt-
ing a pre-existing model). This insight suggests
a further experiment in which the “BERT-based
Uncased” architecture is fine-tuned on the same
dataset as MacBERTh, and the resulting model is
put to test alongisde MacBERTh in order to see
whether the claim holds true. However, consider-
ing the elevated cost of experimenting with MLM
architectures, future research may want to refrain
from costly practices like ablation studies and, in-
stead, look at statistical modeling in order to find
out the effect of particular design choices—e.g. can
excessive sub-word tokenization be responsible for
the drop in performance?

Finally, some of the benchmark tasks we imple-

mented were designed ad-hoc to test the capabil-
ities of MLMs at handling historical text. Future
work should look into the deployment and evalu-
ation of MLMs in real-word Humanities and DH
scenarios in order to scale up the automated re-
trieval of otherwise difficult to access pieces of
information. Besides fine-tuning on appropriate
downstream tasks, current NLP research points to-
wards “prompt engineering” (see Liu et al. (2021)
for a recent survey) as a promising approach.
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Figure 10: Difference in part-of-speech tagging accuracy of known, unknown and all tokens of MacBERTh with
respect to the alternative models across training regimes.

Left Quotation Right Quotation

Example He lov’d his Country with too unskilful a
tenderness.

I love it to be grieved when he hideth his
smiles.

Input He [TGT] lov’d [TGT] his Country with too
unskilful a tenderness.

I [TGT] love [TGT] it to be grieved when he
hideth his smiles.

Sense 1.a “To have or feel love towards (a per-
son, a thing personified) (for a quality or at-
tribute); to entertain a great affection, fond-
ness, or regard for; to hold dear.”

3.c “With direct object and infinitive or
clause: to desire or like (something to be
done). Also (chiefly U.S.) with for preceding
the notional subject of the infinitive clause.”

Table 3: An example negative pair for lemma “love” showcasing the modification in order to fine-tune the model.
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Figure 11: Comparison factoring in the periods of left (y-axis) and right (x-axis) input quotations. Each circle
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