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Abstract

State-of-the-art transformer models have
achieved robust performance on a variety of
NLP tasks. Many of these approaches have
employed domain agnostic pre-training tasks
to train models that yield highly generalized
sentence representations that can be fine-tuned
for specific downstream tasks. We propose
refining a pre-trained NLP model using the
objective of detecting shuffled tokens. We
use a sequential approach by starting with
the pre-trained RoBERTa model and training
it using our approach. Applying random
shuffling strategy on the word-level, we found
that our approach enables the RoBERTa
model achieve better performance on 4
out of 7 GLUE tasks. Our results indicate
that learning to detect shuffled tokens is a
promising approach to learn more coherent
sentence representations.1

1 Introduction
The method of pre-training natural language mod-
els has been shown to greatly improve model perfor-
mance on a wide range of NLP tasks (Peters et al.,
2018; Radford et al., 2018; Howard and Ruder,
2018). State-of-the-art models that utilize trans-
formers and deep bi-directional representations of
text such as BERT, RoBERTa, and ALBERT (De-
vlin et al., 2019; Liu et al., 2019; Lan et al., 2020)
have achieved superior results by pre-training on
general, large corpora to learn rich representations
from unlabeled data. Particularly helpful in low
training data resource scenarios, unsupervised pre-
training has become the first step for many lan-
guage models to build powerful linguistic repre-
sentations before fine tuning for downstream target
tasks.

BERT style models use masked language mod-
eling (MLM) and sometimes next sentence predic-
tion, as pre-training tasks. While these tasks have

1The code is available at https://github.com/
subhadarship/learning-to-unjumble.

been shown to produce transferable sentence repre-
sentations for many NLP tasks, using additional
domain-agnostic pre-training tasks such as sen-
tence shuffling may improve model performance.
In a seminal cognitive psychology study it has been
demonstrated that humans have a well trained abil-
ity to parse shuffled sentences (McCusker et al.,
1981). Moreover, it has been shown that pre-trained
models sometimes overlook word order while mak-
ing predictions (Pham et al., 2020), and encourag-
ing models to capture word order improves the clas-
sification performance. Shuffling as a pre-training
task may therefore help expand transformer models
to achieve even better performance on NLP tasks.

Drawing inspiration from recent work in recon-
structing shuffled text (Lewis et al., 2020; Raf-
fel et al., 2020), we propose that pre-training the
RoBERTa model with a token modification discrim-
ination head on randomly shuffled sentences pro-
vides constructive learning objective, which helps
the model learn coherent representations and fa-
cilitate model recognition of the key pieces of a
sentence and their association. To substantiate the
argument, we design experiments to examine the
model performance of RoBERTa with the proposed
approach. The results demonstrate that pre-training
the model with shuffled sentences enhances the
scores of a majority of GLUE tasks.

2 Related Work

Shuffling sentences and words has often been used
as a downstream task to evaluate model perfor-
mance. One relevant example is the work by Sak-
aguchi et al. (2017) to develop a semi-character
RNN model that surpasses previous spell-check
methodologies on the Cmadbrigde Uinervtisy ef-
fect, where humans can easily reconstruct the shuf-
fled token. Yang and Gao (2019) explored the per-
formance of BERT on a shuffled sentence down-
stream task and highlighted some induced bias in
the model that is the cause of incorrect predictions

https://github.com/subhadarship/learning-to-unjumble
https://github.com/subhadarship/learning-to-unjumble
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Figure 1: Illustration of our model for detecting shuffled tokens. The original sentence is “the sky is blue".

for noisy inputs. While the authors propose remov-
ing the induced bias from the representations to
improve results, they do not consider the possibility
of pre-training the model with shuffled sentences.

The use of un-ordered or noisy data in model
training itself has proven effective. A number of
studies have focused on using shuffled input to
create useful sentence representation vectors for
language models. Kiros et al. (2015) developed
the skip-thoughts method to accomplish the task
of reconstructing sentence order from a shuffled
input. The authors used an encoder-decoder RNN
model at the sentence level that allows a sentence
to predict the adjacent sentences. Logeswaran et al.
(2016) explored how sentence ordering tasks can
help models learn text coherence. Using an RNN
based approach, they train models to identify the
correct ordering of sentences and show that mod-
els learn both document structure and useful sen-
tence representations during this task. Jernite et al.
(2017) employed discourse based learning objec-
tives to help models understand discourse coher-
ence. Specifically, given some sentences, they ask
the model to predict if the sentences are in order, or
if one sentence comes next to a set of sentences, or
to predict the conjunction that joins the sentences.
They showed that using these objectives to train
models achieves significant reduction in compu-
tational training costs and is also effective when
using unlabeled data.

There are a number of papers that focus on word-
level shuffling, as opposed to sentence-level shuf-
fling. Hill et al. (2016) developed the Sequential
Denoising Autoencoder (SDAE) method, where
a sentence is corrupted using a noise function de-
termined by free parameters. After a certain per-
centage of words have been corrupted, an LSTM
encoder-decoder model is tasked with predicting
the original sentence from the corrupted version.
The authors demonstrate training with noisy inputs
allowed SDAE to significantly outperform regular
SAE models, which did not introduce word-level-

noise factors.
One closely related paper in the field of com-

puter vision leverages the use of shuffled input in
model training. Noroozi and Favaro (2016) employ
a CNN model that is trained to solve jigsaw puzzles
to determine correct spatial representation. Their
results show that using shuffled input helps models
learn that images are made up of different parts,
and their relationship to the whole.

Finally, a variety of studies demonstrate that
further pre-training performed after the general
purpose BERT pre-training leads to better model
results instead of simply fine-tuning downstream.
Domain specific pre-training, such as BioBERT
(Lee et al., 2019), story ending prediction by Trans-
BERT (Li et al., 2019), and video caption classi-
fication by videoBERT (Sun et al., 2019) are all
examples where expanding the pre-training tasks
for BERT has achieved enhancement in model per-
formance. TransBERT in particular demonstrates
that further pre-training using targeted supervised
tasks achieves better results than relying only on
the unsupervised pre-training in BERT.

3 Methodology

Consider a sequence of tokens x. We first ob-
tain xshuffled from x by shuffling a set of tokens
of x. Given xshuffled, we detect if tokens are shuf-
fled or not by using a token modification discrim-
ination head on top of the RoBERTa base model.
Our choice of the discriminative head is motivated
by the recent success of ELECTRA (Clark et al.,
2019).

3.1 Creating Shuffled Tokens for Training

We permute text sequences at the word level based
on a probability p. We consider shuffling on a
word level rather than a sub-word level. One
straightforward approach to achieve is to create
the shuffled tokens from a sequence and then use
RobertaTokenizer to tokenize the shuffled se-
quence. However, this approach is problematic
since the number of sub-words after tokenization
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Figure 2: Validation loss as training progresses.

may differ between the original and the shuffled
sentence. In order to ensure that the sub-words
belonging to a word stay intact and are not shuffled
away, we create a mapping, which maps each sub-
word to the corresponding word. Then, we tokenize
the original sequence and shuffle the tokens based
on the mapping so that all the sub-words belonging
to a word occur together. Further, we define the
target tensor which has binary labels for each token
that specifies whether the token was shuffled or not.

3.2 Shuffling Strategy

We randomly permute the words in a sequence
based on a probability p for our experiments high-
lighted in Section 4. Note that fraction ≥ p of the
input tokens would be shuffled since one or more
input tokens (sub-words) belong to a single word.

3.3 RoBERTa Model with Token
Modification Discrimination Head

Figure 1 shows an overview of our complete
model. We use the RoBERTa model to map a
sequence of input tokens xshuffled = [x1, . . . , xn]
into a sequence of contexualized vectors h(x) =
[h1, . . . , hn]. We add a token modification discrimi-
nator head to classify each hidden representation hi
to 0 (if the token at i-th place is not shuffled) or 1 (if
the token at the i-th place is shuffled). Specifically,
the head contains two linear layers with parameters
{WA} and {WB}. First, for every hidden vector
hi, we compute h

′
i = GELU(W T

Ahi) where the
GELU activation function (Hendrycks and Gim-
pel, 2016) is used. Then, we compute the output
of the model D(xshuffled, i) = σ(W T

Bh
′
i). During

training, we minimize the sum of the binary cross

entropy loss for every token.

L(x, θ) = E

(
n∑

i=1

−1
(
xshuffled
i = xi

)
logD

(
xshuffled , i

)
− 1

(
xshuffled
i 6= xi

)
log
(
1−D(xshuffled , i)

))

4 Experiments

4.1 Baseline

As our baseline approach, we trained the RoBERTa
base model with the token modification discrim-
ination head for detecting masked tokens instead
of detecting shuffled tokens. The baseline training
was done for the same number of optimization steps
as the proposed approach for a fair comparison.

4.2 Dataset for Shuffled-Token Detection

We extracted 133K articles from Wikidump.2 We
used each paragraph in the extracted text as a data
sample for our model. We filtered out samples
that were either spaces-only or had more than
512 tokens after tokenizing with the pretrained
RobertaTokenizer of the roberta-base
model. We finally randomly split the samples into
1.3M for training and 14K for validation.

Dataset for masked token detection We used
the same Wikidump dataset for the baseline ap-
proach as well, where we continue training pre-
trained RoBERTa on the objective of detecting
masked tokens.

4.3 Implementation

We built our model using HuggingFace transform-
ers (Wolf et al., 2020). All experiments have been
performed using the RoBERTa base model with the
token modification discrimination head described
in Section 3.3.

The hyperparameters used in our experiments
follow the hyperparameters of the RoBERTa base
model except for the warmup steps, batch size,
peak learning rate, and the maximum training steps.
For our experiments, we use 100 linear warmup
steps followed by linear decay of the learning rate
outlined in Figure 3.

To find the optimal peak learning rate and the
maximum steps, we performed a hyperparameter
search over the learning rates {1e-4, 5e-5, 1e-6}

2Timestamp May 9th, 2020. We used
the scripts from https://github.com/
NVIDIA/DeepLearningExamples/tree/
master/PyTorch/LanguageModeling/BERT#
getting-the-data to extract the data.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#getting-the-data
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#getting-the-data
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#getting-the-data
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#getting-the-data
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Task→ CoLA SST-2 MRPC STS-B QNLI RTE WNLI
Metric→ Matthew’s corr. Accuracy F1 score Spearman corr Accuracy Accuracy Accuracy

Plain pre-trained RoBERTa 0.557 0.946 0.901 0.896 0.928 0.661 0.423
Masked-token detection (Baseline) 0.508 0.950 0.869 0.888 0.924 0.631 0.563

Shuffled-token detection 0.621 0.92 0.905 0.886 0.928 0.704 0.437

Table 1: Results on GLUE tasks.
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Figure 3: Learning rate as training progresses.
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Figure 4: Training loss logged after every training step.

and over the maximum steps from [100, 1000] with
a step size of 100. Changes in learning rate with
the increase in optimization steps for different peak
learning rates are shown in Figure 3. The results
for the validation loss with an increasing number of
optimization steps for the different learning rates is
illustrated in Figure 2. The training loss is outlined
in Figure 4. We observe that the minimum training
loss, as well as validation loss, are achieved with
the peak learning rate of 1e-4. Moreover, the train-
ing loss and the validation loss keep on decreasing
with the number of optimization steps continuously
till 1000 steps which shows that training the model
for more number of steps could be beneficial. The
optimal maximum steps as shown in Figure 4 and 2
is 1000.3 For training our baseline approach of de-
tecting mask tokens, we set the learning rate to 1e-4.

3An actual optimum number of steps could be more than
1000 and training further would give us the best value for the
maximum steps.

The probability of masking tokens (sub-words) in
the baseline approach was fixed to 0.15 as done
in previous work (Devlin et al., 2019; Liu et al.,
2019). For the proposed approach, we also set the
probability p of shuffling tokens (words) to 0.15.

On using large batch sizes Pre-training proce-
dures have been shown to be effective when using
large batch sizes (Liu et al., 2019). Training our
model directly on a very large batch size required
computation power beyond what was available. To
alleviate this problem, we used gradient accumu-
lation for 64 steps with a per GPU batch size of
16. We used distributed training on 4 Nvidia K80
GPUs to train our models. The effective batch size
during training was 4096.

4.4 Downstream Evaluation

We evaluate our approach on 7 GLUE tasks us-
ing the metrics outlined in Table 1. We use the
same set of hyperparameters for fine-tuning for
downstream tasks for each approach for a fair com-
parison. Methods for comparison to our approach
include (a) the baseline approach where the training
objective is detecting masked tokens, and (b) the
plain pre-trained RoBERTa base model. The values
of hyperparameters used for GLUE fine-tuning are
outlined in Table 2. The rest of the hyperparameters
are set to default values.4

Hyperparameter Value
Maximum Sequence Length 128

Batch Size 64
Learning Rate 2e-5

Number of epochs 3

Table 2: Hyperparameters for fine-tuning RoBERTa
model.

4.5 Results and Analysis

Table 1 presents the results for the 7 GLUE tasks.
Our model trained to detect randomly shuffled to-

4The default hyperparameters are as in https:
//github.com/huggingface/transformers/
blob/v2.8.0/examples/run_glue.py.

https://github.com/huggingface/transformers/blob/v2.8.0/examples/run_glue.py
https://github.com/huggingface/transformers/blob/v2.8.0/examples/run_glue.py
https://github.com/huggingface/transformers/blob/v2.8.0/examples/run_glue.py
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kens performs the best in 4 of the 7 downstream
tasks, namely CoLA, MRPC, QNLI and RTE. The
scores for the baseline, where the objective is
to detect masked tokens, are interestingly some-
times worse than the plain pre-trained RoBERTa’s
scores. For example, the CoLA score using plain
pre-trained RoBERTa is 0.557 whereas the score
obtained by the baseline is 0.508.

The model performance based on the proposed
approach on individual tasks gives us insights about
what aspects of natural language our model im-
proved in learning. Our model’s performance on
CoLA, which predicts grammatical correctness of
a sentence, is better, indicating that the pre-training
task may have enhanced the model’s ability to learn
grammatical information. Moreover, better perfor-
mance on RTE, MRPC and QNLI shows that with
the proposed approach, the model better under-
stands the semantic relationships such as similarity
and entailment.

However, random shuffling hurts the perfor-
mance of the model on WNLI significantly in com-
parison to the baseline. This may be due to the
fact that WNLI forms a pair of sentences by replac-
ing the ambiguous pronouns with their referents.
Since we are shuffling the words, it is likely that
the nouns will be shuffled, resulting in misleading
replacement of the ambiguous pronoun.

Our baseline model outperforms the shuffled-
token detection approach on SST-2 task which pre-
dicts the sentiment polarity of the movie reviews.
One possible explanation is that shuffling negations
in presence of contrasting conjunctions can signif-
icantly change the sentiment associated with the
sentence.5

5 Conclusion and Future Work
In this paper, we examine the performance of
RoBERTa model with token modification discrimi-
nation head on detecting randomly shuffled tokens.
We have demonstrated that detecting shuffled to-
kens is indeed a challenging yet advantageous task,
which allows the model to learn coherent repre-
sentations of the sentences. In this work, we start
with pre-trained RoBERTa base model and train it
further on the shuffled token detection task.

For future work, the model can be further ex-
plored by expanding the shuffling strategy. One
possible strategy is part of speech (POS) shuffling,

5For instance, consider the sentence "That movie was good
but I did not watch it." A random shuffled sentence can be
"The movie was not good but I did watch it."

which randomly permutes specific POS tokens such
as nouns or verbs. Instead of detecting shuffled to-
kens, another objective would be to predict the
original positions of the shuffled tokens. Yet an-
other objective that can be explored is combining
our proposed loss with the masked language model-
ing loss. We would also like to study our approach
when applied to other pre-trained models such as
ALBERT and ELECTRA.
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