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Abstract

Due to its effectiveness and performance, the
Transformer translation model has attracted
wide attention, most recently in terms of
probing-based approaches. Previous work fo-
cuses on using or probing source linguistic
features in the encoder. To date, the way
word translation evolves in Transformer lay-
ers has not yet been investigated. Naively,
one might assume that encoder layers capture
source information while decoder layers trans-
late. In this work, we show that this is not quite
the case: translation already happens progres-
sively in encoder layers and even in the input
embeddings. More surprisingly, we find that
some of the lower decoder layers do not ac-
tually do that much decoding. We show all
of this in terms of a probing approach where
we project representations of the layer ana-
lyzed to the final trained and frozen classifier
level of the Transformer decoder to measure
word translation accuracy. Our findings moti-
vate and explain a Transformer configuration
change: if translation already happens in the
encoder layers, perhaps we can increase the
number of encoder layers, while decreasing
the number of decoder layers, boosting decod-
ing speed, without loss in translation quality?
Our experiments show that this is indeed the
case: we can increase speed by up to a fac-
tor 2.3 with small gains in translation qual-
ity, while an 18-4 deep encoder configuration
boosts translation quality by +1.42 BLEU (En-
De) at a speed-up of 1.4.

1 Introduction

Neural Machine Translation (NMT) has achieved
great success in the last few years. The popular
Transformer (Vaswani et al., 2017) model, which
outperforms previous RNN/CNN based transla-
tion models (Bahdanau et al., 2014; Gehring et al.,
2017), is based on multi-layer self-attention net-
works and can be parallelized effectively.

∗ Corresponding author.

Recently, a wide range of studies related to the
Transformer have been conducted. For example,
Bisazza and Tump (2018) perform a fine-grained
analysis of how various source-side morphological
features are captured at different levels of an NMT
encoder. Surprisingly, they do not find any corre-
lation between the accuracy of source morphology
encoding and translation quality. Morphological
features are only captured in context and only to the
extent that they are directly transferable to target
words. Voita et al. (2019a) study how information
flows across Transformer layers and find that rep-
resentations differ significantly depending on the
objectives (machine translation, standard left-to-
right language models and masked language mod-
eling). Tang et al. (2019) find that encoder hidden
states outperform word embeddings significantly in
word sense disambiguation. However, to the best
of our knowledge, to date there is no study about
how the Transformer translation model transforms
individual source tokens into corresponding target
tokens (i.e., word translations), and specifically,
which role each Transformer layer plays in word
translation, and at which layer a word is translated.

To investigate the roles of Transformer layers
in translation, in this paper, we adopt probing ap-
proaches (Adi et al., 2017; Hupkes et al., 2018;
Conneau et al., 2018) and propose to measure the
word translation accuracy of output representations
of individual Transformer layers by probing how
capable they are at translating words. Probing uses
linear classifiers, referred to as “probes”, where a
probe can only use the hidden units of a given inter-
mediate layer as discriminating features. Moreover,
these probes cannot affect the training phase of a
model, and they are generally added after training
(Alain and Bengio, 2017). In addition to analyz-
ing the role of each encoder/decoder layer, we also
analyze the contribution of the source context and
the decoding history in translation by testing the
effects of the masked self-attention sub-layer and
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Figure 1: Analyzing word translations of Transformer layers. Green indicates layers of the trained Transformer
model frozen for analysis. Orange indicates parameters of the linear projection layer and weights of alignment
matrices Ai trained on the training set. Dashed arrows indicate shared modules. When analyzing the separate
effects of source contexts or decoding history in a decoder layer, one of the cross-attention (in yellow) or self-
attention sub-layers (in blue) of the analyzed decoder layer are bypassed by a residual connection (Section 2.2).
Layers are independently analyzed. Target words (Shifted): the reference translation is one-position right-shifted
compared to decoder input, i.e., predicting the next word with the current word as input.

the cross-attention sub-layer in decoder layers.

We present empirical results for how word trans-
lation is performed in each encoder/decoder layer,
and how the alignment modeling (cross-attention
sub-layers) and language modeling (masked self-
attention sub-layers) contribute to the performance
in each decoder layer. Our analysis demon-
strates how word translation evolves across en-
coder/decoder layers and provides insights into the
impact of the source “encoding” and the decoding
history on the translation of target tokens. It re-
veals the existence of target translations in encoder
states (and even source word embeddings) and the
translation performed by encoder layers.

Based on our findings, we show that the proper
use of more encoder layers with fewer decoder lay-
ers can significantly boost decoding speed without
harming quality. Recently, Kasai et al. (2021) inde-
pendently and similar to our encoder-decoder layer
trading approach, compare the performance and
speed of a 12-layer encoder 1-layer decoder with
Non-Autoregressive Translation (NAT) approaches,
and show that a one-layer autoregressive decoder

can yield state-of-the-art accuracy with comparable
latency to strong non-autoregressive models. Our
analysis explains why using a deep encoder with a
shallow decoder is feasible, and we show that some
encoder-decoder depth configurations deliver both
increased speed and increased translation quality.

2 Probing Layer-wise Word Translation

To analyze word translation accuracy of the Trans-
former, we first freeze a trained Transformer model
so its behavior is consistent in how it performs in
translation during our analysis. We then extract out-
put representations of the particular layer analyzed,
apply a linear projection layer to extract features
related to translation and feed the projected repre-
sentations to the frozen decoder classifier of the
trained Transformer. Our approach is minimally
invasive in that only the linear projection layer and
the weights of the alignment matrix A responsi-
ble for combining frozen cross-attention alignment
matrices from the decoder are trained and updated
on the training set, with the original Transformer
being frozen. Thus the projection layer will only
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transform between vector spaces without generat-
ing new features for the word translation, and the
alignment matrix A will only combine frozen cross-
attention alignment matrices. A high-level illustra-
tion of our analysis approach for encoder/decoder
layers is shown in Figure 1.

2.1 Analysis of Encoder Layers
Analyzing word translation accuracy of encoder
layers requires us to align source tokens with cor-
responding target tokens. We use the frozen align-
ment matrices computed by cross-attention sub-
layers in decoder layers to align source tokens with
target tokens (Figure 1). As there are multiple ma-
trices produced by each sub-layer (due to the multi-
head attention mechanism) and multiple decoder
layers, we have to ensemble them into one matrix
of high alignment accuracy using weights. Assume
there are d decoder layers with k attention heads in
each multi-head attention sub-layer, which results
in d ∗ k alignment matrices A1, ..., Ad∗k. We use
a d ∗ k dimension weight vector w to combine all
attention matrices. The weight vector is normalized
by softmax to a probability distribution p:

pi =
ewi

d∗k∑
j=1

ewj

(1)

where i indicates the ith element in w.
Then we use p as the weights of the correspond-

ing attention matrices and merge them into one
alignment matrix A.

A =
d∗k∑
i=1

Ai ∗ pi (2)

w is trained with the linear projection layer
through backpropagation on the frozen Trans-
former.

After we obtain the alignment matrix A, instead
of selecting the target token with the highest align-
ment weight as the translation of a source token,
we perform matrix multiplication between the en-
coded source representations E (size: source sen-
tence length ∗ input dimension) and the alignment
matrix A (size: source sentence length ∗ target
sentence length) to transform/re-order source rep-
resentations to the target side TE :

TE = AT × E (3)

where AT and × indicate the transpose of A and
matrix multiplication.

Thus TE has the same length as the gold transla-
tion sequence, and the ground-truth target sequence
can be used directly as the translation represented
by TE .

Though source representations are transformed
to the target side, we suggest this does not in-
volve any target side information as the pre-trained
Transformer is frozen and the transformation does
not introduce any representation from the decoder
side. We do not retrieve target tokens with the
highest alignment score as word translations of
corresponding source tokens because translation
may involve zero/one/multiple source token(s) to
zero/one/multiple target token(s) alignments, and
we suggest that using a soft alignment (attention
weights) may lead to more reliable gradients than a
hard alignment.

2.2 Analysis of Decoder Layers

The analysis of the prediction accuracy of the de-
coder is simpler than the encoder, as we can di-
rectly use the shifted target sequence (teacher forc-
ing) without the requirement to bridge different
sequence lengths between the source sentence and
the target while analyzing the encoder. We use the
output representations of the analyzed layer, and
evaluate its prediction accuracy after projection.

However, as studied by Li et al. (2019a), the de-
coder involves two kinds of “translation”. One (per-
formed by the self-attention sub-layer) translates
the history token sequence to the next token, an-
other (performed by the cross-attention sub-layer)
translates by attending source tokens. We addi-
tionally analyze the effects of these two kinds of
translation on predicting accuracy by dropping the
corresponding sub-layer (either cross- or masked
self-attention) of the analyzed decoder layer (i.e.,
we only compute the other sub-layer and the feed-
forward layer where only the residual connection is
kept as the computation of the skipped sub-layer).

3 Analysis Experiments

3.1 Settings

We first trained a Transformer base model for our
analysis on the popular WMT 14 English to Ger-
man news translation task to compare with Vaswani
et al. (2017). We employed a 512 ∗ 512 parameter
matrix as the linear projection layer. The source
embedding matrix, the target embedding matrix
and the weight matrix of the classifier were tied.
Parameters were initialized under the Lipschitz con-
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Layer

Encoder Decoder

Acc ∆ Acc ∆
-Self attention -Cross attention
Acc ∆ Acc ∆

0 40.73 13.72
1 41.85 1.12 20.52 6.80 17.46 -3.06 16.47 -4.05
2 43.75 1.90 26.06 5.54 21.03 -5.03 22.91 -3.15
3 45.49 1.74 34.13 8.07 26.68 -7.45 27.79 -6.34
4 47.14 1.65 55.00 20.87 39.43 -15.57 35.32 -19.68
5 48.35 1.21 66.14 11.14 62.60 -3.54 55.84 -10.30
6 49.22 0.87 70.80 4.66 70.13 -0.67 69.03 -1.77

Table 1: Word translation accuracy of Transformer layers on the WMT 14 En-De task.

Layer

Encoder Decoder

Acc ∆ Acc ∆
-Self attention -Cross attention
Acc ∆ Acc ∆

0 41.87 16.26
1 43.61 1.74 25.73 9.47 23.31 -2.42 18.89 -6.84
2 45.26 1.65 32.55 6.82 27.10 -5.45 26.82 -5.73
3 46.68 1.42 40.80 8.25 34.05 -6.75 32.84 -7.96
4 47.88 1.20 55.60 14.80 47.29 -8.31 40.48 -15.12
5 48.73 0.85 64.39 8.79 62.41 -1.98 55.69 -8.70
6 49.39 0.66 67.10 2.71 66.93 -0.17 66.31 -0.79

Table 2: Word translation accuracy of Transformer layers on the WMT 15 Cs-En task.

straint (Xu et al., 2020) to ensure the convergence
of deep encoders. We implemented our approaches
based on the Neutron implementation (Xu and Liu,
2019) of the Transformer translation model.

We applied joint Byte-Pair Encoding (BPE)
(Sennrich et al., 2016b) with 32k merge operations.
We only kept sentences with a maximum of 256
sub-word tokens for training. The concatenation
of newstest 2012 and newstest 2013 was used for
validation and newstest 2014 as the test set.

The number of warm-up steps was set to 8k.1

The model was trained for 100k training steps with
around 25k target tokens in each batch. We fol-
lowed all the other settings of Vaswani et al. (2017).

We averaged the last 5 checkpoints saved with an
interval of 1, 500 training steps. For decoding, we
used a beam size of 4, and evaluated tokenized case-
sensitive BLEU.2 The averaged model achieved a

1https://github.com/tensorflow/
tensor2tensor/blob/v1.15.4/
tensor2tensor/models/transformer.py#
L1818.

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl.

BLEU score of 27.96 on the test set.
The projection matrix and the weight vector w

of 48 elements for alignment were trained on the
training set with the frozen Transformer. We mon-
itored the accuracy on the development set, and
report results on the test set.

3.2 Analysis

The analysis results of the trained Transformer are
shown in Table 1. Layer 0 stands for the embed-
ding layer. “Acc” indicates the prediction accuracy.
“-Self attention” and “-Cross attention” in the de-
coder layer analysis mean bypassing the compu-
tation of the masked self-attention sub-layer and
the cross-attention sub-layer respectively of the an-
alyzed decoder layer using a residual connection.
In our layer analysis of the encoder and decoder,
“∆” indicates improvements in word translation
accuracy of the analyzed layer over the previous
layer. While analyzing the self-attention and cross-
attention sub-layers, “∆” is the accuracy loss when
we remove the computation of the corresponding
sub-layer.

The results of the encoder layers in Table 1 show

https://github.com/tensorflow/tensor2tensor/blob/v1.15.4/tensor2tensor/models/transformer.py#L1818
https://github.com/tensorflow/tensor2tensor/blob/v1.15.4/tensor2tensor/models/transformer.py#L1818
https://github.com/tensorflow/tensor2tensor/blob/v1.15.4/tensor2tensor/models/transformer.py#L1818
https://github.com/tensorflow/tensor2tensor/blob/v1.15.4/tensor2tensor/models/transformer.py#L1818
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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that: 1) encoder layers already perform word trans-
lation, and the translation even starts at the em-
bedding layer with unexpectedly high accuracy.
2) With the stacking of encoder layers, the word
translation accuracy improves, and improvements
brought about by different layers are relatively sim-
ilar, indicating that all encoder layers are useful.

Surprisingly, analyzing decoder layers, Table 1
shows that: 1) shallow decoder layers (0, 1, 2 and
3) perform significantly worse compared to the
corresponding encoder layers (all the way up until
the 4th decoder layer, where a word translation
accuracy which surpasses the embedding layer of
the encoder is achieved); 2) The improvements
brought about by different decoder layers are quite
different. Specifically, the relative performance
increases between the low-performance decoder
layers (0, 1, 2 and 3) are low as well, while layers
4 and 5 bring more improvements than the others.

While analyzing the effects of the source context
(“-Cross attention” prevents informing translation
by the source “encoding”) and the decoding history
(the self-attention sub-layer is responsible for the
target language re-ordering, and “-Self attention”
prevents using the decoding history in the analyzed
decoder layer), Table 1 shows that in shallow de-
coder layers (layer 1-3), the decoding history is as
important as the source “encoding”, while in deep
decoder layers, the source “encoding” plays a more
vital role than the decoding history. Overall, our
results provide new insights on the importance of
translation already performed by the encoder.

Since the English-German translation shares
many sub-words naturally (∼13.89% source sub-
words including punctuations exist in the subword
set of the corresponding target translation in the
training set), we additionally provide results on the
WMT 15 Cs-En task in Table 2. Table 2 confirms
our observations reported in Table 1.

Zhang and Bowman (2018); Hewitt and Liang
(2019); Voita and Titov (2020) articulate concerns
about analyses with probing accuracies, as differ-
ences in accuracies fail to reflect differences in
representations in several “sanity checks”. Specifi-
cally, Zhang and Bowman (2018) compare probing
scores for trained models and randomly initialized
ones, and observe reasonable differences in the
scores only when reducing the amount of classifier
training data. However, we argue that in our work,
we use the frozen classifier of the pre-trained Trans-
former decoder as our probing classifier, and the

Layer BLEU 1 ∆ BLEU ∆

0 33.1 7.92
1 35.7 2.6 8.99 1.07
2 41.0 5.3 11.05 2.06
3 43.3 2.3 11.89 0.84
4 46.8 3.5 13.13 1.24
5 48.1 1.3 13.34 0.21
6 48.6 0.5 13.45 0.11

FULL 62.0 13.4 33.26 19.81

Table 3: Translation performance of encoder layers on
the WMT 14 En-De task.

introduced linear projection, as well as the align-
ment matrix A, are much smaller and weaker than
the frozen classifier and the rest of the frozen Trans-
former components. Thus we suggest that our ap-
proach is minimally invasive and that our analysis
is less likely to be seriously affected by this issue
even though we use a large training set. To empiri-
cally verify this, we apply our analysis approach on
a randomly initialized encoder and evaluate word
translation accuracies obtained by the source em-
bedding layer and last encoder layer, while the
alignment between the source and the target is still
from the pre-trained model. Both the source em-
bedding layer and the last encoder layer resulted
in the same accuracy of 23.66. Compared to the
corresponding values (40.73 and 49.22) in Table
1, the gap between the randomly initialized layers
and the pre-trained layers in accuracy is significant,
and the gap between accuracy improvements from
the representation extracted from the source embed-
ding layer and propagated through all intermediate
layers to the last encoder layer of pre-trained layers
(8.49) and randomly initialized layers (0.00) is also
significant. Thus, we suggest our analysis is robust.

3.3 Translation from Encoder Layers
without Using Decoder Layers

Since our approach extracts features for transla-
tion from encoder states while analyzing them, is
it possible to perform word translation with only
these features from encoder layers without using
the decoder except the frozen classifier?

To test this question, we feed output representa-
tions from an encoder layer to the corresponding
linear projection layer, and feed the output of the
linear projection layer directly to the frozen de-
coder classifier, and retrieve tokens with the high-
est probabilities as “translations”. Even though
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such “translations” from encoder layers have the
same length and the same word order as source
sentences, individual source tokens are translated
to the target language to some extent. We evalu-
ated BPEized 3 case-insensitive BLEU and BLEU
1 (1-gram BLEU, indicates the word translation
quality), and results are shown in Table 3. “FULL”
is the performance of the whole Transformer model
(decoding with a beam size of 4). “∆” means the
improvements obtained by the introduced layer (or
the decoder for “FULL”) over the previous layer.

Table 3 shows that while there is a significant gap
in BLEU scores between encoder layers and the
full Transformer, the gap in BLEU 1 is relatively
smaller than in BLEU. It is reasonable that encoder
layers achieve a comparably high BLEU 1 score but
a low BLEU score overall, as they perform word
translation in the same order as the source sentence
without any word re-ordering of the target language.
We suggest that the BLEU 1 score achieved by only
the source embedding layer (i.e., translating with
only embeddings) is surprising and worth noting.

3.4 Discussion
Our probing approach involves crucial information
from the decoder (encoder-decoder attention from
all decoder layers). However, we argue that probe
training requires supervision. For the decoder, we
can directly use gold references. On the encoder
side, parallel data does not provide word transla-
tions for source tokens, and we have to generate
this data by aligning target tokens to source tokens.
One choice is extracting alignments by taking an
argmax of alignment matrices or using toolkits like
fastalign (Dyer et al., 2013). In this case, probe
training does not involve attention matrices, but
this has drawbacks: multiple/no target tokens may
align to one source token. We use soft aggregation
to preserve more information (other attention possi-
bilities besides the highest are kept) and to alleviate
error propagation. We argue that the use of atten-
tion matrices is only to bring supervision (word
translations) from the target side to the source side,
which is inevitable. Decoder representations can-
not flow back to the frozen encoder.

Our paper also empirically reveals the impact of
attention matrices: 1) In Section 3.3, where after
the training of source probes, we decode target to-
kens with only encoder layers, the trained probe

3Since there is no re-ordering of the target language per-
formed, which makes the merging of translated sub-word units
in the source sentence order pointless.

(without involving cross-attention networks) and
the pre-trained classifier. 2) In the last paragraph of
Section 3.2, we train probes with alignment matri-
ces from the pre-trained model but a frozen random
encoder, showing the effects of cross-attention ma-
trices on the probe.

4 Trading Decoder for Encoder Layers

4.1 Motivation
From our analysis of the 6-layer Transformer base
model (Table 1), we find that in contrast to the im-
provements of the word translation accuracy with
increasing depth on the encoder side, some decoder
layers contribute significantly fewer improvements
than others (i.e., layers 4 and 5 bring more word
translation accuracy improvements than those from
layers 1, 2, 3 and 6 in Table 1). This suggests that
there might be more “lazy” layers in the decoder
than in the encoder, which means that it might be
easier to compress the decoder than the encoder,
and further we conjecture that simply removing
some decoder layers while adding the same number
of encoder layers may even improve the translation
quality of the transformer. Motivations targeting
efficiency include:

• Each decoder layer has one more cross-
attention sub-layer than an encoder layer, and
increasing encoder layers while decreasing the
same number of decoder layers will reduce the
number of parameters and computational cost;

• During inference, the decoder has to autore-
gressively compute the forward pass for every
decoding step (the decoding of each target to-
ken), which prevents efficient parallelization,
while encoder layers are non-autoregressively
propagated and highly parallelized, and the
acceleration caused by using fewer decoder
layers with more encoder layers will be more
significant in decoding, which is of practical
value.

4.2 Results and Analysis
We examine the effects of reducing the number of
decoder layers while adding corresponding num-
bers of encoder layers, and results are shown in
Table 4. “Speed up” stands for the decoding accel-
eration compared to the 6-layer Transformer.

Table 4 shows that while the acceleration of trad-
ing decoder layers for encoder layers in training is
small, in decoding it is significant. Specifically, the
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Model Depth
BLEU Para. (M)

Time
Encoder Decoder Train Decode (/s) Speed up

Zhang et al. (2018a) 6 6 28.13 74.97 40h09m 29 1.52

Transformer

6 6 27.96 62.37 33h33m 44 1.00
7 5 28.07 61.32 32h17m 38 1.16
8 4 28.61 60.27 31h26m 31 1.42
9 3 28.53 59.22 30h29m 25 1.76

10 2 28.47 58.17 30h11m 19 2.32
11 1 27.02 57.12 29h27m 13 3.38

18 4 29.38 91.77 52h56m 32 1.38

Table 4: Effects of encoder/decoder depth on the WMT 14 En-De task. The decoding time is for the test set of
3, 003 sentences with a beam size of 4.

Layer

Encoder Decoder

Acc ∆ Acc ∆
-Self attention -Cross attention
Acc ∆ Acc ∆

0 40.48 14.04
1 41.29 0.81 37.42 23.38 25.56 -11.86 20.40 -17.02
2 43.00 1.71 68.77 31.35 62.01 -6.76 40.67 -28.10
3 44.07 1.07
4 45.86 1.79
5 46.54 0.68
6 47.46 0.92
7 48.92 1.46
8 49.58 0.66
9 50.24 0.66

10 50.35 0.11

Table 5: Word accuracy analysis on Transformer with 10 encoder and 2 decoder layers on the WMT 14 En-De
task.

Transformer with 10 encoder layers and 2 decoder
layers is 2.32 times as fast as the 6-layer Trans-
former while achieving a slightly higher BLEU.

Can we use more than 12 encoder layers with a
shallow decoder to benefit both translation quality
and inference speed? Table 4 shows that the 18-4
model 4 brings about +1.42 BLEU improvements
over the strong baseline, while being 1.38 times as
fast in decoding. Comparing the 18-4 model to the
8-4 model, the time cost for using 10 more encoder
layers only increases 1 second for translating the
test set, suggesting that autoregressive decoding

4A full grid search over configurations is tedious and ex-
pensive. We take inspiration from Table 4 where going from
5 to 4 decoder layers brings about the biggest relative jump
in translation quality. We explored a few configurations and
find that using more than 18 encoder layers can still bring
improvements, but the gains are relatively small.

speed is quite insensitive to the encoder depth.

Our results show that using more encoder layers
with fewer but sufficient decoder layers can signifi-
cantly boost the decoding speed with small gains
in translation quality, and that a good choice in the
distribution of encoder and decoder layers (18-4)
can result in slightly faster decoding and a substan-
tial increase in translation quality, which is simple
but effective and valuable for back-translation (Sen-
nrich et al., 2016a) and production applications.

We present the word accuracy analysis results of
the 10 encoder layer - 2 decoder layer Transformer
on the En-De task in Table 5. Comparing Table 5
with Table 1, we find that: 1) The differences in
improvements (1.71 vs. 0.11) brought by individ-
ual layers of the 10-layer encoder are larger than
those of the 6-layer encoder (1.90 vs. 0.87), indi-
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Depth
En-De En-Fr Cs-En

Encoder Decoder

6 27.96 40.13 28.69
10 2 28.47 40.49 28.87
18 4 29.38† 40.90† 29.75†

Table 6: Verification of deep encoder and shallow de-
coder on WMT En-De, En-Fr and Cs-En tasks. † indi-
cates significance at p < 0.01.

cating that there might now be some “lazy” layers
in the 10-layer encoder; 2) Decreasing the depth
of the decoder removes “lazy” decoder layers in
the 6-layer decoder and makes decoder layers rely
more on the source “encoding” (by comparing the
effects of skipping the self-attention sub-layer and
cross-attention sub-layer on performance).

4.3 Verification of Deep Encoder and Shallow
Decoder on other Language Pairs

To investigate how a deep encoder with a shallow
decoder will perform in other tasks, we conducted
experiments on the WMT 14 English-French and
WMT 15 Czech-English news translation tasks in
addition to the WMT 14 English-German task. Re-
sults on newstest 2014 (En-De/Fr) and 2015 (Cs-
En) respectively are shown in Table 6.

Table 6 shows that the 10-2 model consistently
achieves higher BLEU scores than the 6-layer
model, and the 18-4 model consistently leads to
significant improvements in all 3 tasks.

5 Related Work

Analysis of NMT Models. Belinkov et al.
(2020) analyze the representations learned by NMT
models at various levels of granularity and evaluate
their quality through relevant extrinsic properties.
Li et al. (2019a) analyze the word alignment qual-
ity in NMT and the effect of alignment errors on
translation errors. They demonstrate that NMT cap-
tures word alignment much better for those words
mostly contributed from the source than those from
the target. Voita et al. (2019b) evaluate the contri-
bution of individual attention heads to the overall
performance of the model and analyze the roles
played by them in the encoder. Yang et al. (2019)
propose a word reordering detection task to quan-
tify how well the word order information is learned
by Self-Attention Networks and RNN, and reveal
that although recurrence structure makes the model
more universally effective on learning word order,

learning objectives matter more in the downstream
tasks such as machine translation. Tsai et al. (2019)
regard attention as applying a kernel smoother over
the inputs with the kernel scores being the similar-
ities between inputs, and analyze individual com-
ponents of the Transformer’s attention with the
new formulation via the lens of the kernel. Tang
et al. (2019) find that encoder hidden states out-
perform word embeddings significantly in word
sense disambiguation. He et al. (2019) measure
the word importance by attributing the NMT out-
put to every input word and reveal that words of
certain syntactic categories have higher importance
while the categories vary across language pairs.
Voita et al. (2019a) use canonical correlation anal-
ysis and mutual information estimators to study
how information flows across Transformer layers.
Early work by Bisazza and Tump (2018) performs
a fine-grained analysis of how various source-side
morphological features are captured at different lev-
els of the NMT encoder. While they are unable to
find any correlation between the accuracy of source
morphology encoding and translation quality, they
discover that morphological features are only cap-
tured in context and only to the extent that they
are directly transferable to the target words, and
suggest encoder layers are “lazy”. Our analysis
offers an explanation for their results as the trans-
lation already starts at the source embedding layer,
and possibly source embeddings already represent
linguistic features of their translations.

Analysis of BERT. BERT (Devlin et al., 2019)
uses the Transformer encoder, and analysis of
BERT may provide valuable references for analyz-
ing the Transformer. Jawahar et al. (2019) provide
support that BERT networks capture structural in-
formation, and perform a series of experiments to
unpack the elements of English language structure
learned by BERT. Tenney et al. (2019) employ the
edge probing task suite, and find that BERT rep-
resents the steps of the traditional NLP pipeline
in an interpretable and localizable way, and that
the regions responsible for each step appear in the
expected sequence: POS tagging, parsing, NER,
semantic roles, then coreference. Pires et al. (2019)
present a large number of probing experiments,
and show that Multilingual-BERT’s robust ability
to generalize cross-lingually is underpinned by a
multilingual representation.
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Accelerating Decoding. Zhang et al. (2018a)
propose average attention as an alternative to the
self-attention network in the Transformer decoder
to accelerate decoding. Wu et al. (2019) introduce
lightweight convolution and dynamic convolutions.
The number of operations required by their ap-
proach scales linearly in the input length, whereas
self-attention is quadratic. Zhang et al. (2018b)
apply cube pruning to neural machine translation
to speed up translation. Zhang et al. (2018c) pro-
pose to adopt an n-gram suffix-based equivalence
function into beam search decoding, which ob-
tains similar translation quality with a smaller beam
size, making NMT decoding more efficient. Non-
Autoregressive Translation (NAT) (Gu et al., 2018;
Libovický and Helcl, 2018; Wei et al., 2019; Shao
et al., 2019; Li et al., 2019b; Wang et al., 2019; Guo
et al., 2019) enables parallelized decoding, while
there is still a significant quality drop compared to
traditional autoregressive beam search, our findings
on using more encoder layers might also be adapted
to NAT. Recently, and independently of our work,
Kasai et al. (2021) compare the performance and
speed between a 12-layer encoder 1-layer decoder
case with NAT approaches, and show that a one-
layer autoregressive decoder yields state-of-the-art
accuracy with comparable latency to strong non-
autoregressive models. Our work explains why
using a deep encoder with a shallow decoder is
feasible, and we show that substantial increases
in decoding speed are possible with small gains
in translation quality, and that for some configu-
rations (e.g., 18-4) significant translation quality
increases with modest increases in decoding speed
are possible.

6 Conclusion

We propose approaches for the analysis of word
translation accuracy of Transformer layers to inves-
tigate how translation is performed. To measure
word translation accuracy, our approach trains a
linear projection layer that bridges representations
from the frozen pre-trained analyzed layer and the
frozen pre-trained classifier. While analyzing en-
coder layers, our approach additionally learns a
weight vector to merge multiple attention matrices
into one, and transforms the source “encoding” to
the target shape by multiplying the merged align-
ment matrix. Both the linear projection layer and
the weight vector are trained on the frozen Trans-
former. This is minimally invasive, and training the

new parameters does not account for the findings
reported. For the analysis of decoder layers, we
additionally analyze the effects of the source con-
text and the decoding history in word prediction
through bypassing the corresponding cross- and
self-attention sub-layers. Our findings motivate
and explain the benefits of trading decoder for en-
coder layers in our approach and that of Kasai et al.
(2021).

Our analysis is the first to reveal the existence of
target translations performed by encoder layers (in-
cluding the source embedding layer). We show that
increasing encoder depth while removing decoder
layers can lead to significant BLEU improvements
while boosting the decoding speed.
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