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Abstract

Knowledge bases often consist of facts which
are harvested from a variety of sources, many
of which are noisy and some of which con-
flict, resulting in a level of uncertainty for
each triple. Knowledge bases are also often
incomplete, prompting the use of embedding
methods to generalize from known facts, how-
ever existing embedding methods only model
triple-level uncertainty and reasoning results
lack global consistency. To address these
shortcomings, we propose BEUrRE , a
novel uncertain knowledge graph embedding
method with calibrated probabilistic seman-
tics. BEUrRE models each entity as a box (i.e.
axis-aligned hyperrectangle), and relations be-
tween two entities as affine transforms on the
head and tail entity boxes. The geometry of
the boxes allows for efficient calculation of in-
tersections and volumes, endowing the model
with calibrated probabilistic semantics and fa-
cilitating the incorporation of relational con-
straints. Extensive experiments on two bench-
mark datasets show that BEUrRE consistently
outperforms baselines on confidence predic-
tion and fact ranking due to it’s probabilistic
calibration and ability to capture high-order de-
pendencies among facts.1

1 Introduction

Knowledge graphs (KGs) provide structured repre-
sentations of facts about real-world entities and re-
lations. In addition to deterministic KGs (Bollacker
et al., 2008; Lehmann et al., 2015; Mahdisoltani
et al., 2015), much recent attention has been paid to
uncertain KGs (or UKGs). UKGs, such as ProBase
(Wu et al., 2012), NELL (Mitchell et al., 2018),
and ConceptNet (Speer et al., 2017), associate each
fact (or triple) with a confidence score representing
the likelihood of that fact to be true. Such uncer-
tain knowledge representations critically capture

∗ Indicating equal contribution.
1Resources and software are available at https://

github.com/stasl0217/beurre

Figure 1: BEUrRE models entities as boxes and rela-
tions as two affine transforms.

the uncertain nature of reality, and provide more
precise reasoning. For example, while both (Honda,
competeswith, Toyota) and (Honda, competeswith,
Chrysler) look somewhat correct, the former fact
should have a higher confidence than the latter one,
since Honda and Toyota are both Japanese car man-
ufacturers and have highly overlapping customer
bases. Similarly, while (The Beatles, genre, Rock)
and (The Beatles, genre, Pop) are both true, the first
one may receive a slightly higher confidence, since
the Beatles is generally considered a rock band.
Such confidence information is important when an-
swering questions like Who is the main competitor
of Honda?, or extracting confident knowledge for
drug repurposing (Sosa et al., 2020).

To facilitate automated knowledge acquisition
for UKGs, some UKG embedding models (Chen
et al., 2019; Kertkeidkachorn et al., 2019) have re-
cently been proposed. Inspired by the works about
deterministic KG embeddings (Yang et al., 2015;
Bordes et al., 2013), existing approaches model
entities and relations as points in low-dimensional
vector space, measure triple plausibility with vec-
tor similarity (eg. distance, dot-product), and map
the plausibility to the confidence range of [0, 1].
For instance, the representative work UKGE (Chen
et al., 2019) models the triple plausibility in the

https://github.com/stasl0217/beurre
https://github.com/stasl0217/beurre
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form of embedding product (Yang et al., 2015),
and trains the embedding model as a regressor to
predict the confidence score. One interpretation
of existing methods is that they model each triple
using a binary random variable, where the latent
dependency structure between different binary ran-
dom variables is captured by vector similarities.
Without an explicit dependency structure it is diffi-
cult to enforce logical reasoning rules to maintain
global consistency.

In order to go beyond triple-level uncertainty
modeling, we consider each entity as a binary
random variable. However, representing such a
probability distribution in an embedding space and
reasoning over it is non-trivial. It is difficult to
model marginal and joint probabilities for enti-
ties using simple geometric objects like vectors.
In order to encode probability distributions in the
embedding space, recent works (Lai and Hocken-
maier, 2017; Vilnis et al., 2018; Li et al., 2019;
Dasgupta et al., 2020) represent random variables
as more complex geometric objects, such as cones
and axis-aligned hyperrectangles (boxes), and use
volume as the probability measure. Inspired by
such advances of probability measures in embed-
dings, we present BEUrRE (Box Embedding
for Uncertain RElational Data)2. BEUrRE repre-
sents entities as boxes. Relations are modeled as
two separate affine transforms on the head and tail
entity boxes. Confidence of a triple is modeled
by the intersection between the two transformed
boxes. Fig. 1 shows how a fact about the genre of
the Beatles is represented under our framework.

Such representation is not only inline with the hu-
man perception that entities or concepts have differ-
ent levels of granularity, but also allows more pow-
erful domain knowledge representation. UKGE
(Chen et al., 2019) has demonstrated that introduc-
ing domain knowledge about relation properties
(e.g. transitivity) can effectively enhance reason-
ing on UKGs. While UKGE uses Probabilistic
Soft Logic (PSL) (Bach et al., 2017) to reason
for unseen facts and adds the extra training sam-
ples to training, such a method can lead to error
propagation and has limited scope of application
when UKG is sparse. In our work, we propose
sufficient conditions for these relation properties
to be preserved in the embedding space and di-
rectly model the relation properties by regularizing
relation-specific transforms based on constraints.

2“Beurre” is French for “butter”.

This technique is more robust to noise and has
wide coverage that is not restricted by the scarcity
of the existing triples. Extensive experiments on
two benchmark datasets show that BEUrRE effec-
tively captures the uncertainty, and consistently
outperforms the baseline models on ranking and
predicting confidence of unseen facts.

2 Related Work

We discuss two lines of related work.

UKG Embeddings. A UKG assigns a confidence
score to each fact. The development of relation ex-
traction and crowdsourcing in recent years enabled
the construction of many large-scale uncertain
knowledge bases. ConceptNet (Speer et al., 2017)
is a multilingual KG of commonsense concepts,
where triples are assigned with confidence mea-
sures reflecting crowdsourcing agreement. NELL
(Mitchell et al., 2018) collects facts from web
pages with an active-learnable information extrac-
tion model, and measures their confidence scores
by semi-supervised learning with the Expectation-
Maximum (EM) algorithm. Probase (Wu et al.,
2012) is a general probabilistic taxonomy obtained
from syntactic extraction. Aforementioned UKGs
have supported numerous knowledge-driven appli-
cations, such as literature-based drug repurposing
(Sosa et al., 2020).

Recently, a few UKG embedding methods have
been proposed, which seek to facilitate automated
knowledge acquisition for UKGs. UKGE (Chen
et al., 2019) is the first work of this kind, which
models triple plausibility as product of embedding
vectors (Yang et al., 2015), and maps the plausi-
bility to the confidence score range of [0, 1]. To
further enhance the performance, UKGE incorpo-
rates PSL based constraints (Bach et al., 2017) to
help enforce the global consistency of predicted
knowledge. UOKGE (Boutouhami et al., 2020)
jointly encodes the graph structure and the ontol-
ogy structure to improve the confidence prediction
performance, which however requires an additional
ontology of entity types that is not always available
to all KGs. In addition to the above UKG embed-
dings models, there is also a matrix-factorization-
based approach URGE that seeks to embed uncer-
tain graphs (Hu et al., 2017). However, URGE
only considers the node proximity in the networks.
URGE cannot handle multi-relational data and only
generates node embeddings.
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Geometric Embeddings. Developing embedding
methods to represent elements using geometric
objects with more complex structures than (Eu-
clidean) vectors is an active area of study. Poincaré
embeddings (Nickel and Kiela, 2017) represent en-
tities in hyperbolic space, leveraging the inductive
bias of negative curvature to fit hierarchies. Order
embeddings (Vendrov et al., 2016) take a region-
based approach, representing nodes of a graph us-
ing infinite cones, and using containment between
cones to represent edges. Hyperbolic entailment
cones (Ganea et al., 2018) combine order embed-
dings with hyperbolic geometry. While these meth-
ods show various degrees of promise when em-
bedding hierarchies, they do not provide scores
between entities that can be interpreted probabilis-
tically, which is particularly useful in our setting.

Lai and Hockenmaier (2017) extend order em-
beddings with a probabilistic interpretation by inte-
grating the volume of the infinite cones under the
negative exponential measure, however the rigid
structure imposed by the cone representation lim-
its the representational capacity, and the resulting
model cannot model negative correlation or dis-
jointness. Introduced by Vilnis et al. (2018), prob-
abilistic box embeddings represent elements us-
ing axis-aligned hyperrectangles (or boxes). Box
embeddings not only demonstrate improved per-
formance on modeling hierarchies, such embed-
dings also capture probabilistic semantics based on
box volumes, and are capable of compactly rep-
resenting conditional probability distributions. A
few training improvement methods for box embed-
dings have been proposed (Li et al., 2019; Dasgupta
et al., 2020), and we make use of the latter, which
is termed GumbelBox after the distribution used to
model endpoints of boxes.

While box embeddings have shown promise in
representing hierarchies, our work is the first use
of box embeddings to represent entities in multi-
relational data. Query2Box (Ren et al., 2020) and
BoxE (Abboud et al., 2020) make use of boxes in
the loss function of their models, however entities
themselves are represented as vectors, and thus
these models do not benefit from the probabilis-
tic semantics of box embeddings, which we rely
on heavily for modeling UKGs. In (Patel et al.,
2020), the authors demonstrate the capability of
box embeddings to jointly model two hierarchical
relations, which is improved upon using a learned
transform in (Dasgupta et al., 2021). Similarly to

Ren et al. (2020) and Dasgupta et al. (2021), we
also make use of a learned transform for each rela-
tion, however we differ from Ren et al. (2020) in
that entities themselves are boxes, and differ from
both in the structure of the learned transform.

3 Background

Before we move on to the presented method in this
work, we use this section to introduce the back-
ground of box embeddings and the addressed task.

3.1 Uncertain Knowledge Graphs

A UKG consists of a set of weighted triples G =
{(l, sl)}. For each pair (l, sl), l = (h, r, t) is a
triple representing a fact where h, t ∈ E (the set
of entities) and r ∈ R (the set of relations), and
sl ∈ [0, 1] represents the confidence score for this
fact to be true. Some examples of weighted triples
from NELL are (Honda, competeswith, Toyota) :
1.00 and (Honda, competeswith, Chrysler) : 0.94.

UKG Reasoning. Given a UKG G, the uncertain
knowledge graph reasoning task seeks to predict
the confidence of an unseen fact (h, r, t).

3.2 Probabilistic Box Embeddings

In this section we give a formal definition of prob-
abilistic box embeddings, as introduced by Vilnis
et al. (2018). A box is an n-dimensional hyperrect-
angle, i.e. a product of intervals

d∏
i=1

[xm
i , x

M
i ], where xm

i < xM
i .

Given a space ΩBox ⊆ Rn, we define B(ΩBox) to
be the set of all boxes in ΩBox. Note that B(ΩBox)
is closed under intersection, and the volume of a
box is simply the product of side-lengths. Vilnis
et al. (2018) note that this allows one to interpret
box volumes as unnormalized probabilities. This
can be formalized as follows.

Definition 3.1. Let (ΩBox, E , PBox) be a probabil-
ity space, where ΩBox ⊆ Rn and B(ΩBox) ⊆ E .
Let Y be the set of binary random variables Y
on ΩBox such that Y −1(1) ∈ B(ΩBox). A prob-
abilistic box embedding of a set S is a function
: S → Y . We typically denote f(s) =: Ys and
Y −1
s (1) =: Box(s).

Essentially, to each element of S we associate
a box which, when taken as the support set of a
binary random variable, allows us to interpret each
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element of S as a binary random variable. Using
boxes for the support sets allows one to easily calcu-
late marginal and conditional probabilities, for ex-
ample if we embed the elements {CAT,MAMMAL}
as boxes in ΩBox = [0, 1]d with PBox as Lebesgue
measure, then

P (MAMMAL | CAT) = PBox(XMAMMAL|XCAT)

=
Vol(Box(MAMMAL) ∩ Box(CAT))

Vol(Box(CAT))
.

3.3 Gumbel Boxes
We further give a brief description of the Gumbel-
Box method, which we rely on for training our box
embeddings (Dasgupta et al., 2020).

As described thus far, probabilistic box embed-
dings would struggle to train via gradient descent,
as there are many settings of parameters and objec-
tives which have no gradient signal. (For example,
if boxes are disjoint but should overlap.) To miti-
gate this, Dasgupta et al. (2020) propose a latent
noise model, where the min and max coordinates of
boxes in each dimension are modeled via Gumbel
distributions, that is

Box(X) =
d∏
i=1

[xm
i , x

M
i ] where

xm
i ∼ GumbelMax(µm

i , β),

xM
i ∼ GumbelMin(µM

i , β).

µm
i thereof is the location parameter, and β is the

(global) variance. The Gumbel distribution was
chosen due to its min/max stability, which means
that the set of all “Gumbel boxes” are closed under
intersection. Dasgupta et al. (2020) go on to pro-
vide an approximation of the expected volume of a
Gumbel box,

E [Vol(Box(X))] ≈
d∏
i=1

β log
(

1 + exp
(
µM
i −µm

i
β − 2γ

))
.

A first-order Taylor series approximation yields

E[PBox(XA | XB)] ≈ E[Vol(Box(A) ∩ Box(B))]

E[Vol(Box(B))]
,

and Dasgupta et al. (2020) empirically demonstrate
that this approach leads to improved learning when
targeting a given conditional probability distribu-
tion as the latent noise essentially ensembles over a
large collection of boxes which allows the model to
escape plateaus in the loss function. We therefore
use this method when training box embeddings.

Remark 3.1. While we use Gumbel boxes for
training, intuition is often gained by interpreting
these boxes as standard hyperrectangles, which is
valid as the Gumbel boxes can be seen as a dis-
tribution over such rectangles, with the Gumbel
variance parameter β acting as a global measure
of uncertainty. We thus make statements such as
Box(X) ⊆ Box(Y ), which, strictly speaking, are
not well-defined for Gumbel boxes. However we
can interpret this probabilistically as P (Y | X) =
1 which coincides with the conventional interpreta-
tion when β = 0.

4 Method

In this section, we present our UKG embedding
model BEUrRE. The proposed model encodes en-
tities as probabilistic boxes and relations as affine
transforms. We also discuss the method to incorpo-
rate logical constraints into learning.

4.1 Modeling UKGs with Box Embeddings
BEUrRE represents entities as Gumbel boxes, and
a relation r acting on these boxes by translation and
scaling. Specifically, we parametrize a Gumbel
box Box(X) using a center cen(Box(X)) ∈ Rd
and offset off(Box(X)) ∈ Rd+, where the location
parameters are given by

µm
i = cen(Box(X))− off(Box(X)),

µM
i = cen(Box(X)) + off(Box(X)).

We consider transformations on Gumbel boxes
parametrized by a translation vector τ ∈ Rd and a
scaling vector ∆ ∈ Rd+ such that

cen(f(Box(X); τ,∆)) = cen(Box(X)) + τ,

off(f(Box(X); τ,∆)) = off(Box(X)) ◦∆,

where ◦ is the Hadamard product. We use separate
actions for the head and tail entities of a relation,
which we denote fr and gr, and omit the explicit
dependence on the learned parameters τ and ∆.
Remark 4.1. Note that these relations are not an
affine transformations of the space, ΩBox, rather
they perform a transformation of a box. These
functions form an Abelian group under composi-
tion, and furthermore define a transitive, faithful
group action on the set of (Gumbel) boxes.

Given a triple (h, r, t), BEUrRE models the con-
fidence score using the (approximate) conditional
probability given by

φ(h, r, t) =
E[Vol(fr(Box(h)) ∩ gr(Box(t)))]

E[Vol(gr(Box(t)))]
.
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We can think of the box fr(Box(h)) as the sup-
port set of a binary random variable representing
the concept h in the context of the head position
of relation r, for example Box(THEBEATLES) is
a latent representation of the concept of The Bea-
tles, and fGENRE(Box(THEBEATLES)) represents
The Beatles in the context of genre classification
as the object to be classified.

4.2 Logical Constraints

The sparsity of real-world UKGs makes learning
high quality representations difficult. To address
this problem, previous work (Chen et al., 2019) in-
troduces domain knowledge about the properties of
relations (e.g., transitivity) and uses PSL over first-
order logical rules to reason for unseen facts and
create extra training samples. While this technique
successfully enhances the performance by incor-
porating constraints based on relational properties,
the coverage of such reasoning is still limited by
the density of the graph. In UKGE, the confidence
score of a triple can be inferred and benefit training
only if all triples in the rule premise are already
present in the KG. This leads to a limited scope of
application, particularly when the graph is sparse.

In our work, we propose sufficient conditions
for these relation properties to be preserved in the
embedding space and directly incorporating the re-
lational constraints by regularizing relation-specific
transforms. Compared to previous work, our ap-
proach is more robust to noise since it does not
hardcode inferred confidence for unseen triples,
and it has wide coverage that is not restricted by
the scarcity of the existing triples.

In the following, we discuss the incorporation of
two logical constraints — transitivity and compo-
sition — in the learning process. We use capital
letters A,B,C to represent universally quantified
entities from UKG and use Φ to denote a set of
boxes sampled from B(ΩBox).

Transitivity Constraint. A relation r is transitive
if (A, r,B) ∧ (B, r, C) =⇒ (A, r, C). An exam-
ple of a transitive relation is hypernymy.

The objective of imposing a transitivity con-
straint in learning is to preserve this property of
the relation in the embedding space, i.e. to ensure
that (A, r, C) will be predicted true if (A, r,B)
and (B, r, C) are true. This objective is fulfilled if
gr(Box(B)) contains fr(Box(B)). An illustration
of the box containment relationships is given in
Fig 2. Thus, we constrain fr and gr so that gr(u)

Figure 2: Illustration of how the constraint that gr(u)
contains fr(u) preserves transitivity of relation r in
the embedding space. A triple (h, r, t) is true if and
only if fr(Box(h)) contains gr(Box(t))). By adding
this constraint, fr(Box(A)) is guaranteed to contain
gr(Box(C)) if (A, r,B) and (B, r, C) are true.

contains fr(u) for any u ∈ ΩBox. We impose the
constraint with the following regularization term:

Ltr(r) =
1

|Φ|
∑
u∈Φ

‖PBox(gr(u) | fr(u))− 1‖2 .

Composition Constraint. A relation r3 is
composed of relation r1 and relation r2 if
(A, r1, B) ∧ (B, r2, C) =⇒ (A, r3, C). For
example, the relation atheletePlaysSports can be
composed of relations atheletePlaysForTeam and
teamPlaysSports.

To preserve the relation composition in the
embedding space, we constrain that the relation-
specific mappings fr3 and gr3 are the composite
mappings of fr1 , fr2 and gr1 , gr2 respectively:

fr3 = fr2 · fr1 ; gr3 = gr2 · gr1 .

where · is the mapping composition operator. Thus,
for any u ∈ ΩBox, we expect that fr3(u) is the
same as fr2(fr1(u)) and gr3(u) is the same as
gr2(gr1(u)). We accordingly add the following
regularization term

Lc(r1, r2, r3) =
1

|Φ|
∑
u∈Φ

fr3(u)⊕ fr2(fr1(u))

+ gr3(u)⊕ gr2(gr1(u))

where ⊕ is defined as

Box1⊕Box2 = ‖1− PBox(Box1 | Box2)‖2

+ ‖1− PBox(Box2 | Box1)‖2 .
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4.3 Learning Objective
The learning process of BEUrRE optimizes two
objectives. The main objective optimizes the loss
for a regression task and, simultaneously, a con-
strained regularization loss enforces the aforemen-
tioned constraints.

Let L+ be the set of observed relation facts in
training data. The goal is to minimize the mean
squared error (MSE) between the ground truth con-
fidence score sl and the prediction φ(l) for each
relation l ∈ L+. Following UKGE (Chen et al.,
2019), we also penalize the predicted confidence
scores of facts that are not observed in UKG. The
main learning objective is as follows:

J1 =
∑
l∈L+

|φ(l)− sl|2 + α
∑
l∈L−

|φ(l)|2.

where L− is a sample set of the facts not observed
in UKG, and α is a hyper-parameter to weigh unob-
served fact confidence penalization. Similar to pre-
vious works, we sample those facts by corrupting
the head and the tail for observed facts to generate
L− during training.

In terms of constraints, letRtr be the set of tran-
sitive relations,Rc be the set of composite relation
groups, and wtr and wc be the regularization co-
efficients. We add the following regularization to
impose our constraints on relations:

J2 = wtr
∑
r∈Rtr

Ltr(r) + wc
∑

(r1,r2,r3)∈Rc

Lc(r1, r2, r3).

Combining both learning objectives, the learning
process optimizes the joint loss J = J1 + J2.

4.4 Inference
Once BEUrRE is trained, the model can easily infer
the confidence of a new fact (h, r, t) based on the
confidence score function φ(h, r, t) defined in Sec-
tion 4.1. This inference mechanism easily supports
other types of reasoning tasks, such as inferring
the plausibility of a new fact, and ranking multiple
related facts. The experiments presented in the next
section will demonstrate the ability of BEUrRE to
perform those reasoning tasks.

5 Experiments

In this section we present evaluation of our model
on two UKG reasoning tasks, i.e. confidence pre-
diction and fact ranking. More experimentation
details are in Appendices.

Dataset #Ent. #Rel. #Rel. Facts Avg(s) Std(s)
CN15k 15,000 36 241,158 0.629 0.232
NL27k 27,221 404 175,412 0.797 0.242

Table 1: Statistics of the datasets. Ent. and Rel. stand
for entities and relations. Avg(s) and Std(s) are the av-
erage and standard deviation of confidence.

Dataset Transitivity Composition
CN15k causes N/A

NL27k locationAtLocation

(atheletePlaysForTeam,

teamPlaysSport)

→ atheletePlaysSport

Table 2: Examples of relations with logical constraints.

5.1 Experiment settings

Datasets. We follow Chen et al. (2019) and evalu-
ate our models on CN15k and NL27k benchmarks,
which are subsets of ConceptNet (Speer et al.,
2017) and NELL (Mitchell et al., 2018) respec-
tively. Table 1 gives the statistics of the datasets.
We use the same split provided by Chen et al.
(2019): 85% for training, 7% for validation, and
8% for testing. We exclude the dataset PPI5k, the
subgraph of the protein-protein interaction (PPI)
network STRING (Szklarczyk et al., 2016), where
the supporting scores of PPI information are indica-
tors based on experimental and literary verification,
instead of a probabilistic measure.

Logical constraints. We report results of both
versions of our model with and without logi-
cal constraints, denoted as BEUrRE (rule+) and
BEUrRE respectively. For a fair comparison, we
incorporate into BEUrRE (rule+) the same set of
logical constraints as UKGE (Chen et al., 2019).
Table 2 gives a few examples of the relations on
which we impose constraints.

Baselines. We compare our models with UKG
embedding models as well as deterministic KG
embedding models.

UKG embedding models include UKGE (Chen
et al., 2019) and URGE (Hu et al., 2017). While
UKGE has multiple versions incorporated with dif-
ferent regression functions, we report the results
of the best performing one with the logistic func-
tion. We also include results for both settings
with and without constraints, marked as UKGE
(rule+) and UKGE in result tables respectively.
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Dataset CN15k NL27k
Metrics MSE MAE MSE MAE
URGE 10.32 22.72 7.48 11.35
UKGE 9.02 20.05 2.67 7.03
BEUrRE 7.80 20.03 2.37 7.12

UKGE(rule+) 8.61 19.90 2.36 6.90
BEUrRE(rule+) 7.49 19.88 2.01 6.89

Table 3: Results of fact confidence prediction (×10−2).

URGE was originally designed for probabilistic
homogeneous graphs and cannot handle multi-
relational graphs, so accordingly we ignore rela-
tion information when embedding a UKG. UOKGE
(Boutouhami et al., 2020) cannot serve as a baseline
because it requires additional ontology information
for entities that is not available to these UKGs.

Deterministic KG embedding models TransE
(Bordes et al., 2013), DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2016), RotatE (Sun
et al., 2019), and TuckER (Balazevic et al., 2019)
have demonstrated high performance on reasoning
tasks for deterministic KGs, and we also include
them as baselines. These models cannot predict
confidence scores for uncertain facts, so we com-
pare our method with them only on the ranking
task. Following Chen et al. (2019), we only use
facts with confidence above the threshold τ = 0.85
to train deterministic models.

Model configurations. We use Adam (Kingma
and Ba, 2014) as the optimizer and fine-tune the
following hyper-parameters by grid search based
on the performance on the validation set, i.e. MSE
for confidence prediction and normalized Dis-
counted Cumulative Gain (nDCG) for fact ranking.
Hyper-parameter search range and the best hyper-
parameter configurations are given in Appendix
A.1. Training terminates with early stopping based
on the same metric with a patience of 30 epochs.
We repeat each experiment five times and report
the average results.

5.2 Confidence Prediction

This task seeks to predict the confidence of new
facts that are unseen to training. For each uncertain
fact (l, sl) in the test set, we predict the confidence
of l and report the mean squared error (MSE) and
mean absolute error (MAE).

Results. Results are reported in Table 3. We com-
pare our models with baselines under the uncon-

Variants uncons. rule+
Metrics MSE (×10−2)
BEUrRE 7.80 7.49
—w/o Gumbel distribution 8.13 8.14
—Single relation-specific transform 7.81 7.60

Table 4: Ablation study results on CN15k. uncons. rep-
resents the unconstrained setting, and rule+ denotes the
logically constrained setting.

strained and logically constrained (marked with
rule+) settings respectively. Under both settings,
BEUrRE outperforms the baselines in terms of
MSE on both datasets.

Under the unconstrained setting, BEUrRE im-
proves MSE of the best baseline UKGE by 0.012
(ca. 14% relative improvement) on CN15k and
0.003 (ca. 11% relative improvement) on NL27k.
The enhancement demonstrates that box embed-
dings can effectively improve reasoning on UKGs.
It is worth noting that even without constraints
in learning, BEUrRE can still achieve compara-
ble MSE and MAE to the logically constrained
UKGE (rule+) on both datasets and even outper-
forms UKGE (rule+) on CN15k. Considering that
constraints of relations in CN15k mainly describe
transitivity, the aforementioned observation is con-
sistent with the fact that box embeddings are nat-
urally good at capturing transitive relations, as
shown in the recent study (Vilnis et al., 2018).

With logical constraints, BEUrRE (rule+) fur-
ther enhances the performance of BEUrRE and
reduces its MSE by 0.0031 (ca. 4% relative im-
provement) on CN15k and 0.0036 (ca. 15% relative
improvement) on NL27k. This is as expected, since
logical constraints capture higher-order relations of
facts and lead to more globally consistent reason-
ing. We also observe that BEUrRE (rule+) brings
larger gains over BEUrRE on NL27k, where we
have both transitivity constraints and composition
constraints, than on CN15k with only transitivity
constraints incorporated.

In general, with box embeddings, BEUrRE ef-
fectively improves reasoning on UKGs with bet-
ter captured fact-wise confidence. Furthermore,
the results under the logically constrained setting
show the effectiveness of improving reasoning with
higher-order relations of uncertain facts.

Ablation Study. To examine the contribution from
Gumbel distribution to model box boundaries and
the effectiveness of representing relations as two
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Dataset CN15K NL27k
Metrics linear exp. linear exp.
TransE 0.601 0.591 0.730 0.722

DistMult 0.689 0.677 0.911 0.897
ComplEx 0.723 0.712 0.921 0.913

RotatE 0.715 0.703 0.901 0.887
TuckER 0.736 0.724 0.877 0.870
URGE 0.572 0.570 0.593 0.593
UKGE 0.769 0.768 0.933 0.929
BEUrRE 0.796 0.795 0.942 0.942

UKGE(rule+) 0.789 0.788 0.955 0.956
BEUrRE(rule+) 0.801 0.803 0.966 0.970

Table 5: Mean nDCG for fact ranking. linear stands
for linear gain, and exp. stands for exponential gain.

separate transforms for head and tail boxes, we
conduct an ablation study based on CN15k. The
results for comparison are given in Table 4. First,
we resort to a new configuration of BEUrRE where
we use smoothed boundaries for boxes as in (Li
et al., 2019) instead of Gumbel boxes. We refer to
boxes of this kind as soft boxes. Under the uncon-
strained setting, using soft boxes increases MSE
by 0.0033 on CN15k (ca. 4% relative degrada-
tion), with even worse performance observed when
adding logical constraints. This confirms the find-
ing by Dasgupta et al. (2020) that using Gumbel
distribution for boundaries greatly improves box
embedding training. Next, to analyze the effect of
using separate transforms to represent a relation,
we set the tail transform gr as the identity function.
For logical constraint incorporation, we accord-
ingly update the constraint on transitive relation r
as PBox(u | fr(u)) = 1, u ∈ ΩBox, which requires
that u always contains fr(u), i.e. the translation
vector of fr is always zero and elements of the scal-
ing vector are always less than 1. Although there
is little difference between using one or two trans-
forms under the unconstrained setting, under the
logically constrained setting, the constraint is too
stringent to be preserved with only one transform.

Case study. To investigate whether our model
can encode meaningful probabilistic semantics, we
present a case study about box volumes. We ex-
amine the objects of the atLocation predicate on
CN15k and check which entity boxes have larger
volume and cover more entity boxes after the re-
lation transformation. Ideally, geographic enti-
ties with larger areas or more frequent mentions

should be at the top of the list. When using the
BEUrRE(rule+) model, the top 10 in all entities
are place, town, bed, school, city, home, house,
capital, church, camp, which are general concepts.
Among the observed objects of the atLocation pred-
icate, the entities that have the least coverage are
Tunisia, Morocco, Algeria, Westminster, Veracruz,
Buenos Aires, Emilia-Romagna, Tyrrhenian sea,
Kuwait, Serbia. Those entities are very specific
locations. This observation confirms that the box
volume effectively represents probabilistic seman-
tics and captures specificity/granularity of concepts,
which we believe to be a reason for the performance
improvement.

5.3 Fact Ranking
Multiple facts can be associated with the same en-
tity. However, those relevant facts may appear with
very different plausibility. Consider the example
about Honda Motor Co. in Section 1, where it
was mentioned that (Honda, competeswith, Toy-
ota) should have a higher belief than (Honda, com-
peteswith, Chrysler). Following this intuition, this
task focuses on ranking multiple candidate tail en-
tities for a query (h, r, ?t) in terms of their confi-
dence.

Evaluation protocol. Given a query (h, r, ?t), we
rank all the entities in the vocabulary as tail entity
candidates and evaluate the ranking performance
using the normalized Discounted Cumulative Gain
(nDCG) (Li et al., 2009). The gain in retrieving a
relevant tail t0 is defined as the ground truth con-
fidence s(h,r,t0). Same as Chen et al. (2019), we
report two versions of nDCG that use linear gain
and exponential gain respectively. The exponential
gain puts stronger emphasis on the most relevant
results.

Results. We report the mean nDCG over the
test query set in Table 5. Although the determin-
istic models do not explicitly capture the confi-
dence of facts, those models are trained with high-
confidence facts and have a certain ability to dif-
ferentiate high confidence facts from lesser ones.
URGE ignores relation information and yields
worse predictions than other models. UKGE ex-
plicitly models uncertainty of facts and is the best
performing baseline.

The proposed BEUrRE leads to more improve-
ments under both the unconstrained and logically
constrained settings. Under the unconstrained
setting, BEUrRE offers consistently better per-
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formance over UKGE. Specifically, on CN15k,
BEUrRE leads to 0.027 improvement in both lin-
ear nDCG and exponential nDCG. On NL27k, it
offers 0.009 higher linear nDCG and 0.013 higher
exponential nDCG. Similar to the results on the
confidence prediction task, even unconstrained
BEUrRE is able to outperform the logically con-
strained UKGE (rule+) on CN15k without incor-
porating any constraints of relations. This further
confirms the superior expressive power of box em-
beddings.

In summary, box embeddings improve accuracy
and consistency of reasoning and BEUrRE delivers
better fact ranking performance than baselines.

6 Conclusion

This paper presents a novel UKG embedding
method with calibrated probabilistic semantics.
Our model BEUrRE encodes each entity as a Gum-
ble box representation whose volume represents
marginal probability. A relation is modeled as
two affine transforms on the head and tail en-
tity boxes. We also incorporate logic constraints
that capture the high-order dependency of facts
and enhance global reasoning consistency. Exten-
sive experiments show the promising capability of
BEUrRE on confidence prediction and fact ranking
for UKGs. The results are encouraging and suggest
various extensions, including deeper transforma-
tion architectures as well as alternative geometries
to allow for additional rules to be imposed. In
this context, we are also interested in extending
the use of the proposed technologies into more
downstream tasks, such as knowledge association
(Sun et al., 2020) and event hierarchy induction
(Wang et al., 2020). Another direction is to use
BEUrRE for ontology construction and population,
since box embeddings are naturally capable of cap-
turing granularities of concepts.

Ethical Considerations

Real-world UKGs often harvest data from open
data sources and may include biases. Reasoning
over biased UKGs may support or magnify those
biases. While not specifically addressed in this
work, the ability to inject logical rules could be one
way to mitigate bias, and the ability to interpret the
learned representation probabilistically allows the
investigation of potential learned biases.

All the datasets used in this paper are publicly
available and free to download. The model pro-

posed in the paper aims to model uncertainty in
knowledge graphs more accurately, and the effec-
tiveness of the proposed model is supported by the
empirical experiment results.

Acknowledgment

We appreciate the anonymous reviewers for their
insightful comments and suggestions.

This material is based upon work sponsored
by the DARPA MCS program under Contract No.
N660011924033 with the United States Office Of
Naval Research, and by Air Force Research Lab-
oratory under agreement number FA8750-20-2-
10002. We also thank our colleagues within IESL
at UMass Amherst, for their helpful discussions.
Michael, Shib and Xiang were supported in part by
the Center for Intelligent Information Retrieval and
the Center for Data Science, in part by the IBM
Research AI through the AI Horizons Network, in
part by the University of Southern California sub-
contract No. 123875727 under Office of Naval
Research prime contract No. N660011924032
and in part by the University of Southern Califor-
nia subcontract no. 89341790 under Defense Ad-
vanced Research Projects Agency prime contract
No. FA8750-17-C-0106. The U.S. Government
is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any
copyright notation thereon. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of the U.S. Government.

References
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A Appendices

A.1 More Implementation Details
Table 6 lists hyper-parameter search space for ob-
taining the set of used numbers. We performed grid
search to choose the final setting.

Hyper-parameters Search space
Learning rate lr {0.001, 0.0001, 0.00001}

Embedding dimension d {30, 64, 128, 300}
Batch size b {256, 512, 1024, 2048, 4096}

Gumbel box temperature β {0.1, 0.01, 0.001, 0.0001}
L2 regularization λ {0.001, 0.01, 0.1, 1}

Table 6: Search Space for hyper-parameters

The best hyper-parameter combinations for
confidence prediction are {lr = 0.0001, b =
1024, d = 64, β = 0.01}, b = 2048 for CN15k
and b = 4096 for NL27k. L2 regularization
is 1 for box sizes in logarithm scale and 0.001
for other parameters. For fact ranking they are
{lr = 0.0001, d = 300, b = 4096, λ = 0.00001},
β = 0.001 for CN15k and β = 0.0001 for NL27k.
The number of negative samples is fixed as 30.
Rule weights are empirically set as wtr = wcp =
0.1.

Table 7 lists the hardware specifications of the
machine where we train and evaluate all models.
On this machine, training BEUrRE for the con-
fidence prediction task takes around 1-1.5 hours.
Training BEUrRE for the ranking task takes around
1-2 hours for CN15k and 3 hours for NL27k.
For the reported model, on CN15k, BEUrRE has
around 2M parameters for confidence prediction
and 9M parameters for ranking. On NL27k,
BEUrRE has 9M parameters for confidence pre-
diction and 17M for ranking.

Hardware Specification
CPU Intelr Xeonr E5-2650 v4 12-core
GPU NVIDIAr GP102 TITAN Xp (12GB)
RAM 256GB

Table 7: Hardware specifications of the used machine


