
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4599–4610

June 6–11, 2021. ©2021 Association for Computational Linguistics

4599

A Dataset of Information-Seeking Questions
and Answers Anchored in Research Papers

Pradeep Dasigi♣ Kyle Lo♣ Iz Beltagy♣ Arman Cohan♣
Noah A. Smith♦♣ Matt Gardner♣

♣Allen Institute for AI ♦Paul G. Allen School of CSE, University of Washington
{pradeepd,kylel,beltagy,armanc,noah,mattg}@allenai.org

Abstract

Readers of academic research papers often
read with the goal of answering specific ques-
tions. Question Answering systems that can
answer those questions can make consumption
of the content much more efficient. However,
building such tools requires data that reflect
the difficulty of the task arising from complex
reasoning about claims made in multiple parts
of a paper. In contrast, existing information-
seeking question answering datasets usually
contain questions about generic factoid-type
information. We therefore present QASPER,
a dataset of 5,049 questions over 1,585 Natu-
ral Language Processing papers. Each ques-
tion is written by an NLP practitioner who
read only the title and abstract of the corre-
sponding paper, and the question seeks infor-
mation present in the full text. The questions
are then answered by a separate set of NLP
practitioners who also provide supporting ev-
idence to answers. We find that existing mod-
els that do well on other QA tasks do not per-
form well on answering these questions, un-
derperforming humans by at least 27 F1 points
when answering them from entire papers, moti-
vating further research in document-grounded,
information-seeking QA, which our dataset is
designed to facilitate.

1 Introduction

Machines built to assist humans who engage with
texts to seek information ought to be designed with
an awareness of the information need. Abstractly,
the human’s need should define the lens through
which the system views the text in order to find
desired information. Existing information-seeking
machine reading datasets (e.g., Kwiatkowski et al.,
2019; Clark et al., 2020) have led to significant
progress in reading at scale (e.g., Asai et al., 2020;
Guu et al., 2020; Liu et al., 2020). However, most
of those benchmarks focus on an “open domain”
setting where the questions are not anchored in any
particular user context. The result is an emphasis

Quasar: Datasets for Question Answering by 
Search and Reading

Abstract We present two new large-scale
datasets aimed at evaluating systems designed
to comprehend a natural language query and
extract its answer from a large corpus of text.
The QUASAR-S dataset consists of 37000 cloze-
style (fill-in-the-gap) queries constructed from
definitions of software entity tags on the popular
website Stack Overflow. We evaluate several
baselines on both datasets, ranging from simple
heuristics to powerful neural models, and show
that these lag behind human performance by
16.4% & 32.1% for Quasar-S and -T respectively.

3 Dataset Construction Each dataset consists of 
a collection of records with one QA problem per 
record. For each record, we include some 
question text, a context document relevant to 
the question, a set of candidate solutions, and 
the correct solution. 

3.2 Context Retrieval The context document for 
each record consists of a list of ranked and 
scored pseudodocuments relevant to the 
question.

Q. Which retrieval system was used for 
the baselines?

4.4 Results
Several baselines rely on the retrieved 
context to extract the answer to a 
question. For these, we refer to the 
fraction of instances for which the correct 
answer is present in the context as Search 
Accuracy. The performance of the baseline 
among
these instances is referred to as the 
Reading Accuracy.

A: The dataset comes with a ranked 
set of relevant documents. Hence the 
baselines do not use a retrieval 
system.

Evidence paragraphs

Question and AnswerTitle and Abstract

Figure 1: An example instance taken from QASPER.
A question about the paper is written after reading
only the title and the abstract. To arrive at the an-
swer, one finds relevant evidence, which can be spread
across multiple paragraphs. In this example, to answer
the question about “baselines”, the reader must realize
from evidence from Sections 3 and 4 that “context doc-
uments” come pre-ranked in the dataset and the paper’s
“baselines” select from these “context documents.”

on generic factoid questions, rather than the full
range of information needs people have.

We present QASPER,1 an information-seeking
question answering (QA) dataset over academic re-
search papers. Each question is written as a follow-
up to the title and abstract of a particular paper,
and the answer, if present, is identified in the rest
of the paper, along with evidence required to ar-
rive at it. This setup results in questions requiring
more complex document-level reasoning than prior
datasets, because (i) abstracts provide rich prompts
for questions that can be asked as follow-up and
(ii) academic research papers naturally trigger ques-

1Loosely derived from Question Answering over Scien-
tific Research Papers. The dataset, baseline code, and other
information about the project can be found at https://
allenai.org/project/qasper.

https://allenai.org/project/qasper
https://allenai.org/project/qasper
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tions by their target readers that require supporting
or refuting claims. This evidence may be spread
across the paper, including tables and figures, often
resulting in complex entailment problems. The ex-
ample in Figure 1 illustrates one such case where
we need to retrieve information from paragraphs in
three different sections to answer the question.

QASPER contains 5,049 questions over 1,585
natural language processing (NLP) papers, asked
by regular readers of NLP papers, and answered by
a separate set of NLP practitioners. Each paper has
an average of 3.2 questions, up to a maximum of
12 questions for a single paper. In addition to pro-
viding answers when the questions are answerable,
the annotators were asked to select text, tables, or
figures as evidence required for answering the ques-
tions. 55.5% of the questions require evidence from
multiple paragraphs in the paper and 13% require
tables or figures. To the best of our knowledge,
QASPER is the first QA dataset in the academic
research domain focusing on entire papers, and not
just abstracts.

To quantify the difficulty of the tasks in QASPER,
we apply state-of-the-art document-level Trans-
former (Vaswani et al., 2017) models to the tasks
of selecting evidence and generating answers, and
show that the best model performance lags behind
humans by 27 F1 points at answering questions
from entire papers, and 32 F1 points at selecting
the paragraphs that provide evidence to answer the
questions, indicating that these are both unsolved
problems. Additionally, we experiment with ora-
cles that answer questions from gold evidence and
find that better pretraining and domain-adaptation
might be helpful.

2 Building the QASPER Dataset

We now describe our process for constructing the
dataset. We began with a set of open-access NLP
papers, recruited NLP practitioners who are regu-
lar readers of research papers, and designed two
different data collection interfaces: one for collect-
ing follow-up questions given titles and abstracts,
and another for obtaining evidence and answers to
those questions.

2.1 Papers

We filtered S2ORC (Lo et al., 2020),2 a collection
of machine-readable full text for open-access pa-

2We accessed both release versions 20190928 and
20200705v1.

pers, to (i) those from arXiv with an associated
LaTeX source file,3 and (ii) are in the computa-
tional linguistics domain.4 We limited our domain
to computational linguistics to ensure high qual-
ity as we have access to realistic users through
our research network; broader domain collection
is left to future work and should be enabled by the
proof-of-concept of our protocols given in this pa-
per. We used the S2ORC parser (which normalizes
multi-file LaTeX sources and resolves comments
and macros) to convert LaTeX markup to full text
while preserving section and paragraph breaks and
math equations. We supplemented the paper text
with extracted images of figures and tables associ-
ated with their captions; these were crawled from
Semantic Scholar.5 The result of this process was
a collection of 18K full text papers for annotation.

2.2 Decoupled Data Collection
To ensure that our questions are realistic, we decou-
pled the question-writing and question-answering
phases. For both tasks we recruited graduate stu-
dents studying NLP and freelancers practicing NLP
through professional networks and Upwork6. All
the workers were regular readers of NLP papers,
and were paid US$25 per hour on average ($20-$40
based on experience). We paid them on a per-hour
basis and not a per-question basis to prioritize data
quality over quantity. A total of 25 workers wrote
questions while 51 answered them.

Questions To ensure that annotators were actu-
ally interested in the paper they are reading, we pro-
vided them with a lightweight search interface to
search papers from the aforementioned collection
to focus on their papers of interest. The interface
supports entering manual queries and examples of
the queries annotators used include general (e.g.,
“computer vision”) or specific (e.g., “question an-
swering”, “information extraction”) areas of study,
specific tasks (e.g., “language identification”), en-
tities (e.g., “bert”, “transformers”) or concepts
(e.g., “commonsense”, “interpretability”), or do-
main specifications (e.g., “medical”, “wikipedia”).
Annotators also had the option to not enter any
search queries; in this case, they were shown ran-
dom papers. Annotators were displayed only the
title and abstracts of relevant papers and asked to

3LaTeX allows us to avoid quality issues with PDF parsing.
4We chose those either tagged with the cs.CL arXiv cate-

gory or published with an ACL Anthology identifier.
5http://semanticscholar.org
6https://www.upwork.com/

http://semanticscholar.org
https://www.upwork.com/
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write any number of questions they had about the
paper. Annotators were instructed to only write
questions that are not answerable from the title and
abstract but expected to be answered somewhere
in the paper. Annotators also provided basic in-
formation about their expertise in NLP and how
familiar they already were with the paper for which
they asked questions. Most workers (about 70%)
had some experience in NLP, with 20% having
more than five years of experience. A vast majority
(94%) of the abstracts were seen by the question-
writers for the first time.

Answers Annotators were randomly assigned pa-
pers with all the corresponding questions written
for that paper. They were shown the paper title, ab-
stract, question, full text, and all associated figures
and tables to answer the questions. After reading
these, annotators were were asked to:

• Make a binary decision as to whether the ques-
tion is answerable given the paper.

• If the question is answerable, select the min-
imal set of evidence snippets that contains
the answer to the question. This could be
(possibly discontiguous) paragraphs from the
text and/or figures or tables. Annotators were
asked to prioritize text over figures and tables,
unless the information required was present
only in figures or tables. When multiple para-
graphs could serve as evidence, annotators
were asked to first prioritize evidence that ade-
quately answered the question, and then para-
graphs that occurred earlier in the text.

• If the question is answerable, also provide a
concise answer to the question. Annotators
were also asked to also indicate whether their
concise answer was (i) extracted from the evi-
dence, (ii) “yes” or “no”, or (iii) abstractively
written.

Annotators were allowed to skip any questions they
did not feel comfortable answering. Since the an-
swering task is significantly more complex than
the question-writing task, we designed interactive
tutorials and qualification exams for the workers
for this task using CrowdAQ (Ning et al., 2020).
Workers who scored well were invited to work on
the task. If the test performance indicated that the
workers did not have sufficient NLP knowledge, or
were not used to reading papers we did not let them

work on the task. In cases where the workers mis-
understood the task, but had sufficient background
knowledge, we provided additional training before
letting them work on the task.

3 QASPER Analysis

Table 1 provides representative examples from
QASPER categorized by question, answer, and ev-
idence types, which we describe here in greater
detail.

Question types We first analyze whether our an-
notation setup results in questions that are anchored
in the context of the papers. To answer this ques-
tion, we manually7 categorized a set of 200 ques-
tions as being applicable to most papers in the
domain (general) vs. being applicable only to the
paper that the question is written about (specific).
Table 1 shows that most of the questions (67%)
are specific to the papers they are written about.
This result indicates the advantage of viewing the
QASPER task as a question answering problem, in-
stead of an information extraction problem since a
fixed schema would not be able to handle the long
tail of paper-specific information needs.

Answer types As shown in Table 1, most of the
answers in the dataset are extractive. The average
length of the extractive answers is 14.4 words (in-
cluding all spans), and that of abstractive spans is
15.6 words.

Evidence types Evidence can include one or
more paragraphs from the paper, a figure, or a ta-
ble, or a combination of these. Table 1 shows the
distribution of these types. Among the answerable
questions with text-only evidence, 55.5% of the
answers have multi-paragraph evidence (Figure 1
is one example). Unanswerable questions do not
have any evidence. Among the answerable ones,
(3.0%) have no evidence when the answer is No,
and the evidence is the lack of a mention of some-
thing specific. The last question in Table 4 is one
example of such a case.

Distribution of evidence paragraphs We per-
form an analysis to identify the main sections of
a paper that contain textual evidence. We assign
each evidence paragraph to its containing top-level8

7Two domain-experts independently judged these, and
achieved a Cohen’s κ of 0.94.

8S2ORC provides section hierarchy derived from LaTeX
source
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Question Type % Paper(s)

What datasets do they use? General 33.3% 1; 2; 3
What other political events are included in the database? Specific 66.7% 1706.01875

Question Answer Type % Paper

What five dialogue attributes were
analyzed?

Model; Confidence; Continuity; Query-
relatedness; Repetitiveness; Specificity

Extractive 51.8% 1705.00571

Which neural architecture do they
use as a base for their attention con-
flict mechanisms?

GRU-based encoder, interaction block,
and classifier consisting of stacked fully-
connected layers.

Abstractive 24.2% 1906.08593

Do they ensure the that the architec-
ture is differentiable everywhere af-
ter adding the Hungarian layer?

Yes Yes/No 13.9% 1712.02555

What language are the captions in? N/A Unanswer. 10.2% 1909.09070

Question Evidence Type % Paper

What new tasks do they use to show
the transferring ability of the shared
meta-knowledge?

To test the transferability of our learned Meta-
LSTM, we also design an experiment, in
which we take turns choosing 15 tasks to
train our model with multi-task learning, then
the learned Meta-LSTM are transferred to
the remaining one task. The parameters of
transferred Meta-LSTM, θ(s)m in Eq.( 33 ), are
fixed and cannot be updated on the new task.

Text 81.6% 1802.08969

How much does it minimally cost to
fine-tune some model according to
benchmarking framework?

Table 1 Table/Figure 11.6% 2002.05829

Do they recommend translating the
premise and hypothesis together?

N/A None 12.8% 2004.04721

Table 1: Examples of questions (top), answers (middle), and evidence (bottom) sampled from QASPER. % are
relative frequencies of the corresponding type over all examples in QASPER. The percentages for evidence types
sum over 100% due to double-counting of 446 answers with both Table/Figure and Text evidence.

section, and perform some section name normal-
ization. We find that among the frequently used
section names such as “Experiments” and “Intro-
duction,” there was not a single section name that
contained a majority of evidence spans, indicating
that the distribution of evidence over section in the
paper was more or less uniform.

Inter-annotator agreement 44% of the ques-
tions in QASPER have multiple annotated answers.
On average, each question is answered by 1.6 an-
notators (up to a maximum of 6 annotators for the
same question). Using these multiple annotations,
we compute some measures of agreement between
annotators. First, we found that there is a high
level of agreement (90%) regarding answerabil-
ity of questions. Second, we find that annotators
agreed on the type of the evidence (text vs. fig-
ure) in 84.0% of the cases. Papers often provide
the same information both in tables and text, and
agreement over the evidence types could be a conse-
quence of our clear annotation guidelines regarding

selecting evidence.

Correctness To estimate the correctness of the
answer annotations in QASPER, we manually ana-
lyzed 100 randomly sampled questions with mul-
tiple answer annotations (averaging 2.73 answers
per question). We found that 207 (75.8%) of the
answers were correct. 98% of the questions had at
least one correct answer, and 77% had most of the
answers correct.

4 Modeling QASPER

This section explains the task, evaluation metrics,
and a model addressing QASPER tasks.

4.1 Task Setup

We formally define the QASPER tasks as follows:
Given a paper, and a question about it, the primary
task is to determine if the question is answerable,
and output a predicted answer, that is one or more
spans in the full-text of the paper, yes, no or other
free-form text. A system built for this will be eval-

https://arxiv.org/abs/1707.06519
https://arxiv.org/abs/1811.08603
https://arxiv.org/abs/1906.08286
https://arxiv.org/abs/1706.01875
https://arxiv.org/abs/1705.00571
https://arxiv.org/abs/1906.08593
https://arxiv.org/abs/1712.02555
https://arxiv.org/abs/1909.09070
https://arxiv.org/abs/1802.08969
https://www.semanticscholar.org/paper/HULK%3A-An-Energy-Efficiency-Benchmark-Platform-for-Zhou-Chen/c26f90d4cfa33ceff373cf49c2a534e2004685da/figure/0
https://arxiv.org/abs/2002.05829
https://arxiv.org/abs/2004.04721
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uated based on the correctness of the predicted
answer measured against the reference answers.
Since QASPER also provides labeled evidence for
all questions, the system may also use auxiliary
supervision provided by the evidence.

One such auxiliary task is to predict the evidence
required for the question. The inputs are the same
as that of the primary task, but the outputs are
expected to be one or more paragraphs in the full-
text, figures, or tables, and they will be evaluated
against labeled evidence spans.

Evaluation metrics As an automatic proxy for
the measure of correctness of all types of answers,
we use the span-level F1 measure proposed by Ra-
jpurkar et al. (2016). We convert answers that
are multiple selected spans into single comma-
separated strings. For questions with multiple ref-
erence answers, we compute the max span-F1 of
the predictions over all the references. We evaluate
the performance of a system over the auxiliary task
by computing a F1 score over the set of paragraphs,
figures, and tables chosen by the system against the
reference evidence, considering a max when there
are multiple references. We refer to these metrics
as Answer-F1 and Evidence-F1, respectively.

Data splits We split the dataset into train, vali-
dation, and test sets, so that each paper appears in
only one of them. Our analysis of correctness of
annotations presented in Section 3 indicates a high
likelihood (98%) of evaluating against a correct
reference when evaluation is aggregated over mul-
tiple references. Hence we ensure that most of the
questions in validation and test sets have multiple
references (98% in test, and 74% in validation).
This resulted in 2,593, 1,005, and 1,451 questions
in the three sets, respectively.

Estimating human performance To estimate
an upper bound on model performance given our
data splits and metrics, we assess the performance
of the workers when evaluated against each other
using the same metrics on a sample of the test set.
Since model performance is evaluated by aggregat-
ing over multiple references, we consider a subset
of the test set containing questions with at least
three references (40% of the test set), evaluate each
reference against the remaining, and compute an
average over all such combinations. This proce-
dure estimates the human performance to be 60.9
Answer-F1, and 71.6 Evidence-F1. Note that given
the disagreements among the workers estimated

in Section 3, this is a lower bound on human per-
formance for two reasons: first, because only two
annotations are used to compute the metric, while
systems are evaluated against all three; and second,
because the annotators are NLP practitioners, not
expert researchers, and it is likely that an expert
would score higher. Hence we report these num-
bers, along with a breakdown over answer types in
Table 2 and Table 3 as human performance lower
bounds.

4.2 QASPER Model

We base our model on pretrained Transformer
(Vaswani et al., 2017) models which currently pro-
duce state-of-the-art results on a majority of QA
tasks.9 Recall that QASPER introduces two main
modeling challenges – different answer types and
long input documents. First, QASPER includes a va-
riety of answer types, including extractive, abstrac-
tive, yes/no, and unanswerable questions, which
means a typical span-selection BERT-based QA
model (Devlin et al., 2019) is not sufficient to sup-
port all these answer types. We address this by
converting all answer types into a single task: gen-
erating answer text (Raffel et al., 2020; Khashabi
et al., 2020).10 This is a sequence-to-sequence for-
mulation that requires an encoder-decoder Trans-
former model where the encoder reads the question
and the document and the decoder generates the
answer text.

Second, research papers are much longer than
the typical 512 or 1024 token limit of most BERT-
like models, so we need a Transformer model that
can process long inputs. We use the Longformer-
Encoder-Decoder (LED; Beltagy et al., 2020), an
encoder-decoder Transformer model that can effi-
ciently process input sequences thousands of to-
kens long. With LED’s support for input sequence
length of 16K tokens, we can encode 99% of the
paper full texts in the QASPER dataset without trun-
cation.

Longformer-Encoder-Decoder (LED) LED
(Beltagy et al., 2020) is a variant of the original
Transformer encoder-decoder model that replaces
the Transformer’s full self-attention in the encoder
with the efficient local+global attention pattern

9https://paperswithcode.com/task/
question-answering

10We tried a model that predicts answer type, then based
on the type uses a different head to predict the corresponding
answer. This model performed much worse than the proposed
seq2seq formulation.

https://paperswithcode.com/task/question-answering
https://paperswithcode.com/task/question-answering
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of Longformer. This allows each token to attend
to only its local window and a pre-specified set
of global locations of interest, thereby scaling
self-attention computation linearly with the input
size (as opposed to quadratically with full context
self-attention). LED has a similar architecture to
BART (Lewis et al., 2020) in terms of number of
layers and hidden state sizes, with the distinction
that it has a larger position embeddings matrix,
allowing it to process inputs of up to 16K tokens
long (up from 1K tokens in the original BART
model). In practice, LED’s parameters are
initialized from a pretrained BART model, and
LED copies BART’s position embeddings 16 times
to fill the entire 16K position embeddings matrix.
For all experiments we use the LED-base sized
model, which uses BART-base weights.

Input and Output Encoding For the input, we
follow the Longformer QA models (Beltagy et al.,
2020) and encode the question and context in one
concatenated string with “global attention” over
all the question tokens. For the output, all answer
types are encoded as single strings. The string is the
text of the abstractive answer, a comma separated
concatenation of the extractive spans, “Yes”, “No”,
or “Unanswerable”.

Evidence extraction To support extracting evi-
dence paragraphs, we prepend each paragraph with
a </s> token and add a classification head over
these tokens on LED’s encoder side. We also add
Longformer’s global attention over these tokens to
facilitate direct information flow across the para-
graphs. We then train LED using both loss func-
tions (teacher-forced text generation and paragraph
classification) in a multi-task training setup. For
the answer generation, we use a cross-entropy loss
function over the vocabulary. For the evidence para-
graph extraction, we use a cross-entropy loss func-
tion with binary 0 or 1 gold labels for evidence/non-
evidence paragraph. To account for class imbal-
ance, we use loss scaling with weights proportional
to the ratio of positive to negative gold paragraphs
in the batch, which we found to be crucial for the
model to train. One benefit of multi-task training of
evidence extraction along with answer selection is
that tasks can benefit each other (see Section 5.2).

5 Experiments

We evaluate model performance on question an-
swering and evidence selection tasks, and compare

them to estimated lower bounds on human perfor-
mance. These human performance estimates are
calculated by comparing the answers of questions
for which we have multiple human annotations. For
each question, we choose one annotation as if it
were a prediction, and evaluate it against the rest
of the annotations, and consider as human perfor-
mance the average over all annotations chosen as
predictions. We restrict our experiments to the sub-
set of questions in QASPER that can be answered
from text in the paper, ignoring those that require
figures or tables as evidence (13% of the dataset;
see Section 3) to avoid having to deal with multi-
modal inputs. We leave multimodal question an-
swering to future work.

5.1 Training Details
We train all models using the Adam opti-
mizer (Kingma and Ba, 2014) and a triangular
learning rate scheduler (Howard and Ruder, 2018)
with 10% warmup. To determine number of epochs,
peak learning rate, and batch size, we performed
manual hyperparameter search on a subset of the
training data. We searched over {1, 3, 5} epochs
with learning rates {1e−5, 3e−5, 5e−5, 9e−5}, and
found that smaller batch sizes generally work better
than larger ones. Our final configuration was 10
epochs, peak learning rate of 5e−5, and batch size
of 2, which we used for all reported experimental
settings. When handling full text, we use gradient
checkpointing (Chen et al., 2016) to reduce mem-
ory consumption. We run our experiments on a
single RTX 8000 GPU, and each experiment takes
30–60 minutes per epoch.

5.2 Results
Question answering Table 2 shows the overall
performance of the LED-base model11 on question
answering, as well as the performance breakdown
on the different answer types. The table also com-
pares LED-base variants when the input is heuristi-
cally limited to smaller parts of the paper (i.e., no
context, abstract, introduction). We generally ob-
serve that, by using more context, the performance
improves. Specifically, as we observe in row 5 en-
coding the entire context results in significant over-
all performance improvement (∆ = +9.5) over
the best heuristic (“introduction”). This signifies
the importance of encoding the entire paper. Com-
paring rows 4 and 5, we observe that using the

11We trained an LED-large model as well, but it performed
much worse than the base model on the QA task.
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Input
Extractive Abstractive Yes/No Unanswerable Overall

Dev. Test Dev. Test Dev. Test Dev. Test Dev. Test

Q only 4.60 5.91 6.06 7.38 69.05 66.36 58.43 66.67 17.81 22.48
Q+Abstract 6.69 7.97 7.50 8.25 69.05 63.43 51.14 62.50 18.60 22.30
Q+Introduction 4.40 6.60 2.52 3.16 65.87 67.28 71.00 78.07 18.30 24.08
Q+Full Text 26.07 30.96 16.59 15.76 67.48 70.33 28.57 26.21 29.05 32.80
Q+Full Text w/ scaff. 24.62 29.97 13.86 15.02 63.64 68.90 38.89 44.97 28.01 33.63
Human (lower bound) - 58.92 - 39.71 - 78.98 - 69.44 - 60.92

Table 2: LED-base and lower-bound human performance on answering questions in QASPER, measured in Answer-
F!. The top three rows are heuristic baselines that try to predict answers without encoding entire papers. w/ scaff.
refers to the inclusion of the evidence selection scaffold during training.

evidence prediction as a multi-task scaffolding ob-
jective helps, improving the results by ∆ = +0.8
points.

Evidence selection Table 3 illustrates the evi-
dence selection performance of the LED-large and
LED-base models compared with simpler baselines.
We observe that LED variants outperform the sim-
ple TF-IDF baseline but there still remains a large
gap to human performance.

Varying amounts of training Figure 2 shows
the learning curve that measures the validation
Answer-F1 and Evidence-F1 of the LED-base vari-
ants based on training data size. The learning
curve suggests that performance has not reached a
plateau, and future data collection could be useful.

Answer prediction from gold evidence To bet-
ter isolate the question answering (as opposed to
evidence selection) task performance, we perform
oracle experiments where models are given the gold
evidence. For these experiments, we are able to
use larger (T5-large; Raffel et al., 2020) or better
task-adapted pretrained models (UnifiedQA-large;
Khashabi et al., 2020), which perform significantly
better in the oracle setting. We did not use them in
the non-oracle setting, however, as Longformer ver-
sions of these models are not available, and LED’s
ability to handle the full document without the need
for a pipelined retrieval system was more important.
These experiments show that (1) the human lower
bound is in fact a lower bound, as large models
exceed it for span answers in this setting; (2) the
majority of the large headroom in the non-oracle
setting can be closed with better evidence selection;
and (3) research into making large pretrained mod-
els able to better scale to long documents would be
beneficial.

Model
Evidence F1

Dev. Test

LED-base 23.94 29.85
LED-large 31.25 39.37
TF-IDF 10.68 9.20
Random paragraph 2.09 1.30
First paragraph 0.71 0.34
Human (lower bound) - 71.62

Table 3: Model and lower-bound human performance
on selecting evidence for questions in QASPER

Figure 2: Learning curves showing Answer-F1 and
Evidence-F1 on the dev. set while varying training data
size.

Error analysis To gain insight into the model’s
errors, we sample 67 test questions with predicted
Answer-F1 scores below 0.10 from the LED model
trained with evidence prediction scaffolding. We
remove four cases in which the predicted answers
are actually correct. Examining gold answers of
the remaining 63, we find 31 are extractive, 24
are abstractive, 3 are “yes”, 3 are “no,” and 2 are
unanswerable. We observe that LED often predicts
shorter spans than the gold answers (9.5 words
shorter than gold counterparts, on average). Focus-
ing only on the 55 questions with either extractive
or abstractive gold answers, we manually catego-
rize error types in Table 5.
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Model
Answer F1

Span Abstractive Overall

LED-base 54.20 24.95 44.96
T5-large 65.59 29.11 60.03
UnifiedQA-large 67.23 28.92 61.39

Table 4: Model performance on the QASPER test set on
answering questions given gold evidence. We do not
show performance on Yes/No and Unanswerable types
because they can be trivially predicted to a large extent
from the absence of gold evidence.

6 Related Work

Information-Verifying QA A large body
of work on question answering follows the
information-verifying paradigm where the writer
of the question already knows its answer, and
the questions are written solely for evaluating
the knowledge or understanding capabilities
of machines. Some examples include SQuAD
(Rajpurkar et al., 2016), TriviaQA (Joshi et al.,
2017), NarrativeQA (Kočiský et al., 2018),
WikiHop (Welbl et al., 2018), HotpotQA (Yang
et al., 2018), CoQA (Reddy et al., 2019), DROP
(Dua et al., 2019), QUOREF (Dasigi et al., 2019).
Most datasets for QA on academic research
papers also fall within the information-verifying
paradigm as they automatically construct QA
examples using extracted entities and relations and
structured knowledge resources, like DrugBank.
Some examples include emrQA (Pampari et al.,
2018), BioRead (Pappas et al., 2018), BioMRC
(Pappas et al., 2020), MedHop (Welbl et al., 2018).
While these datasets enabled significant progress
in machine comprehension, they include biases in
questions that may not reflect real-world settings
(Kwiatkowski et al., 2019).

Information-Seeking QA in General Domain
Recognizing this challenge, others have followed
an information-seeking paradigm where the writer
of questions is genuinely interested in finding the
answer to the question, or at least does not have
access to the answer. Examples of such datasets
include WikiQA (Yang et al., 2015), NewsQA
(Trischler et al., 2017), MsMarco (Campos et al.,
2016), QuAC (Choi et al., 2018), Natural Ques-
tions (Kwiatkowski et al., 2019), TyDiQA (Clark
et al., 2020), and IIRC (Ferguson et al., 2020). Un-
like QASPER, Natural Questions and TyDiQA12

12TyDiQA uses short snippets to prime annotators to write
questions of interest, but the annotation process does not re-

questions are not grounded in any contexts, and
the associated documents are linked to the ques-
tions after they are written. In contrast, QASPER’s
questions are real follow-up questions about a pa-
per that a reader of appropriate domain expertise
would have after reading the title and the abstract.
The priming lets the readers ask detailed questions
that are specific to the papers in context, those that
require a deeper understanding of the contexts, like
those shown in Figure 1 and Table 1. QuAC used
similar data collection method but with focus on
entities, which QASPER does not impose.

Domain-Specific Information-seeking QA
Some work has been done on information-seeking
QA on academic research papers. PubmedQA
(Jin et al., 2019) derives Yes/No/Maybe questions
from PubMed paper titles answered from the
conclusion sections of the corresponding abstracts.
BioAsq benchmarks (Balikas et al., 2013; Nentidis
et al., 2018; Krallinger et al., 2020) focus on
open-domain QA over PubMed abstracts. Like
QASPER, BioAsq answers can take different forms
(e.g., yes/no, extracted span(s)). QASPER differs
from BioAsq in that questions are grounded in a
single paper of interest. Furthermore, QASPER

uses the paper full text, not just the abstract. To
the best of our knowledge, QASPER is the first
information-seeking QA dataset in a computer
science domain, while most prior work using
academic research papers has been in biomedicine.
Furthermore, with over 5K annotated questions,
QASPER is also larger than other comparable
human-annotated QA datasets – PubmedQA and
BioAsq contain 1K and 3.2K questions, respec-
tively. Finally, QASPER poses a challenging full
document-level task while other related datasets
are abstract-level. Beyond the domain of academic
research, realistic QA datasets have also been built
in the privacy policy domain (Ravichander et al.,
2019; Ahmad et al., 2020). These tasks are similar
to our evidence selection task.

7 Conclusion

We presented QASPER, an information-seeking QA
dataset over NLP research papers. With natural
questions asked as follow-up to titles and abstracts,
the task presented by QASPER requires evidence
from multiple paragraphs and/or figures and tables
within the full text of the papers. Our empirical

quire workers to write questions grounded in those snippets.
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Error % Example question Gold Predicted

Incorrectly
predicts
unanswer-
able

34.5% How is the text segmented? “dividing documents into chunks
before processing” Unanswerable

Lacks
domain
knowledge

23.6%

What other scenarios can the bias
mitigation methods be applied to?

“sentiment analysis, other identity
problems like racial” GRU

What baselines is the neural
relation extractor compared to?

Berant et al. (2013), Yao and
Van Durme (2014), Xu et al.
(2014), Berant and Liang (2014), ...

Freebase, MCCNN

†What hand-crafted features
are used?

“position of sentence, sentence
length, tense, qualifying adjectives,
meta-discourse features”

the Minimum word
count is 40, The
number of threads
to run in parallel is 4
and the context
window is 10

Uninfor-
mative 20.0%

What do they mean by intrinsic
geometry of spaces of learned
representations?

“the inferred embedding space
creates a globally consistent
structured prediction of the
ontology, rather than local relation
predictions”

intrinsic geometry

How does the proposed training
framework mitigate the bias
pattern?

by balancing or, smoothing the
artifacts across different classes by
assigning specific weights for every
sample

By minimizing the
impact of the bias
pattern on the dataset

Not com-
prehensive 7.3%

Which metrics were considered?
“ter, bleu, rouge, nist, lepor, cider,
meteor, Semantic Similarity (sim),
readability and grammaticality”

Grammar-based
metrics (GBMs)

Was permission sought from the
bipolar patients to use this data?

For Twitter and Reddit users,
implicit consent is assumed to use
their public tweets. Blog users are
contacted to obtain consent for
using their texts.

No

Lacks
specificity 7.3%

What are the performance metrics? “Rouge-1, Rouge-2 and
Rouge-4 recall” Rouge scores

What supervised machine
learning models do they use?

“ZeroR, Naïve Bayes, J48, and
random forest” Weka classifiers

Lacks
numeracy 7.3% How many tags are included

in the ENE tag set? “200 fine-grained categories” 1

Table 5: Error analysis of our best model (LED from row 5 from Table 2) on 55 test examples with low F1 score
(excluding those with “yes,” “no,” or “unanswerable” gold answers). “Quotations” denote extractive gold answers.
We note Lacks domain knowledge errors are not always solved by better entity type resolution (see †).

results show plenty of room for improvement when
compared to the estimated human performance,
and suggest that QASPER could serve as a test-bed
for evaluating document-grounded QA research.

Ethical Considerations

We present a new dataset that uses papers authored
by other researchers. To adhere to copyright, we
have restricted ourselves to arXiv papers released
under a CC-BY-* license, as identified via Unpay-
wall, which was used in the S2ORC (Lo et al.,
2020) dataset construction. Due to our choice to
use arXiv as the source of papers, QASPER is al-
most entirely an English-language dataset, and QA

systems built on QASPER would not be expected
to work well on non-English language research
papers.

We have determined the amount we paid the
annotators to be well-above the minimum wage in
our local area. While we do collect information
about annotator background in NLP and familiarity
with the papers they are annotating, we have not
collected personal identifiable information without
their permission except for payment purposes, and
do not include any such information in the released
dataset.
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