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Abstract

In human-level NLP tasks, such as predicting
mental health, personality, or demographics,
the number of observations is often smaller
than the standard 768+ hidden state sizes of
each layer within modern transformer-based
language models, limiting the ability to effec-
tively leverage transformers. Here, we provide
a systematic study on the role of dimension re-
duction methods (principal components anal-
ysis, factorization techniques, or multi-layer
auto-encoders) as well as the dimensionality
of embedding vectors and sample sizes as a
function of predictive performance. We first
find that fine-tuning large models with a lim-
ited amount of data pose a significant difficulty
which can be overcome with a pre-trained di-
mension reduction regime. RoBERTa con-
sistently achieves top performance in human-
level tasks, with PCA giving benefit over other
reduction methods in better handling users that
write longer texts. Finally, we observe that a
majority of the tasks achieve results compara-
ble to the best performance with just 1

12 of the
embedding dimensions.

1 Introduction

Transformer based language models (LMs) have
quickly become the foundation for accurately ap-
proaching many tasks in natural language process-
ing (Vaswani et al., 2017; Devlin et al., 2019). Ow-
ing to their success is their ability to capture both
syntactic and semantic information (Tenney et al.,
2019), modeled over large, deep attention-based
networks (transformers) with hidden state sizes on
the order of 1000 over 10s of layers (Liu et al.,
2019; Gururangan et al., 2020). In total such mod-
els typically have from hundreds of millions (De-
vlin et al., 2019) to a few billion parameters (Raffel
et al., 2020). However, the size of such models
presents a challenge for tasks involving small num-
bers of observations, such as for the growing num-
ber of tasks focused on human-level NLP.

Human-level NLP tasks, rooted in computational
social science, focus on making predictions about
people from their language use patterns. Some of
the more common tasks include age and gender
prediction (Sap et al., 2014; Morgan-Lopez et al.,
2017) , personality (Park et al., 2015; Lynn et al.,
2020), and mental health prediction (Coppersmith
et al., 2014; Guntuku et al., 2017; Lynn et al., 2018).
Such tasks present an interesting challenge for the
NLP community to model the people behind the
language rather than the language itself, and the so-
cial scientific community has begun to see success
of such approaches as an alternative or supplement
to standard psychological assessment techniques
like questionnaires (Kern et al., 2016; Eichstaedt
et al., 2018). Generally, such work is helping to
embed NLP in a greater social and human con-
text (Hovy and Spruit, 2016; Lynn et al., 2019).

Despite the simultaneous growth of both (1)
the use of transformers and (2) human-level NLP,
the effective merging of transformers for human-
level tasks has received little attention. In a recent
human-level shared task on mental health, most
participants did not utilize transformers (Zirikly
et al., 2019). A central challenge for their uti-
lization in such scenarios is that the number of
training examples (i.e. sample size) is often only
hundreds while the parameters for such deep mod-
els are in the hundreds of millions. For exam-
ple, recent human-level NLP shared tasks focused
on mental health have had N = 947 (Milne
et al., 2016), N = 9, 146 (Lynn et al., 2018) and
N = 993 (Zirikly et al., 2019) training examples.
Such sizes all but rules out the increasingly popular
approach of fine-tuning transformers whereby all
its millions of parameters are allowed to be updated
toward the specific task one is trying to achieve (De-
vlin et al., 2019; Mayfield and Black, 2020). Re-
cent research not only highlights the difficulty in
fine-tuning with few samples (Jiang et al., 2020)
but it also becomes unreliable even with thousands
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of training examples (Mosbach et al., 2020).
On the other hand, some of the common

transformer-based approaches of deriving contex-
tual embeddings from the top layers of a pre-
trained model (Devlin et al., 2019; Clark et al.,
2019) still leaves one with approximately an equal
number of embedding dimensions as training size.
In fact, in one of the few successful cases of us-
ing transformers for a human-level task, further
dimensionality reduction was used to avoid over-
fit (Matero et al., 2019), but an empirical under-
standing of the application of transformers for
human-level tasks — which models are best and
the relationship between embedding dimensions,
sample size, and accuracy — has yet to be estab-
lished.

In this work, we empirically explore strategies
to effectively utilize transformer-based LMs for rel-
atively small sample-size human-level tasks. We
provide the first systematic comparison of the most
widely used transformer models for demographic,
personality, and mental health prediction tasks.
Then, we consider the role of dimension reduction
to address the challenge of applying such models
on small sample sizes, yielding a suggested min-
imum number of dimensions necessary given a
sample size for each of demographic, personality,
and mental health tasks1. While it is suspected that
transformer LMs contain more dimensions than
necessary for document- or word-level NLP (Li
and Eisner, 2019; Bao and Qiao, 2019), this repre-
sents the first study on transformer dimensionality
for human-level tasks.

2 Related Work

Recently, NLP has taken to human-level predictive
tasks using increasingly sophisticated techniques.
The most common approaches use n-grams and
LDA (Blei et al., 2003) to model a person’s lan-
guage and behaviors (Resnik et al., 2013; Kern
et al., 2016). Other approaches utilize word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014) and more recently, contextual word represen-
tations (Ambalavanan et al., 2019).

Our work is inspired by one of the top per-
forming systems at a recent mental health pre-
diction shared task (Zirikly et al., 2019) that uti-
lized transformer-based contextualized word em-
beddings fed through a non-negative matrix fac-

1dimension reduction techniques can also be pre-trained
leveraging larger sets of unlabeled data

torization to reduce dimensionality (Matero et al.,
2019). While the approach seems reasonable for
addressing the dimensionality challenge in using
transformers, many critical questions remain unan-
swered: (a) Which type of transformer model is
best? (b) Would fine-tuning have worked instead?
and (c) Does such an approach generalize to other
human-level tasks? Most of the time, one does not
have a luxury of a shared task for their problem at
hand to determine a best approach. Here, we look
across many human-level tasks, some of which
with the luxury of having relatively large sample
sizes (in the thousands) from which to establish
upper-bounds, and ultimately to draw generalizable
information on how to approach a human-level task
given its domain (demographic, personality, mental
health) and sample size.

Our work also falls in line with a rising trend in
AI and NLP to quantify the number of dimensions
necessary. While this has not been considered for
human-level tasks, it has been explored in other
domains. The post processing algorithm (Mu and
Viswanath, 2018) of the static word embeddings
motivated by the power law distribution of max-
imum explained variance and the domination of
mean vector turned out to be very effective in mak-
ing these embeddings more discriminative. The
analysis of contextual embedding models (Etha-
yarajh, 2019) suggest that the static embeddings
contribute to less than 5% to the explained variance,
the contribution of the mean vector starts dominat-
ing when contextual embedding models are used
for human-level tasks. This is an effect of averaging
the message embeddings to form user representa-
tions in human-level tasks. This further motivates
the need to process these contextual embeddings
into more discriminative features.

Lastly, our work weighs into the discussion on
just which type of model is best in order to produce
effective contextual embedding models. A major-
ity of the models fall under two broad categories
based on how they are pre-trained - auto-encoders
(AE) and auto-regressive (AR) models. We com-
pare the performance of AE and AR style LMs
by comparing the performance of two widely used
models from each category with comparable num-
ber of parameters. From the experiments involving
BERT, RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019) and GPT-2 (Radford et al., 2019), we
find that AE based models perform better than AR
style models (with comparable model sizes), and
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RoBERTa is the best choice amongst these four
widely used models.

3 Data & Tasks

We evaluate approaches over 7 human-level tasks
spanning Demographics, Mental Health, and per-
sonality prediction. The 3 datasets used for these
tasks are described below.

FB-Demogs. (age, gen, ope, ext) One of our
goals was to leverage one of the largest human-
level datasets in order to evaluate over subsam-
ples of sizes. For this, we used the Facebook
demographic and personality dataset of Kosinski
et al. (2013). The data was collected from approx-
imately 71k consenting participants who shared
Facebook posts along with demographic and per-
sonality scores from Jan-2009 through Oct-2011.
The users in this sample had written at least a 1000
words and had selected English as their primary
language. Age (age) was self-reported and lim-
ited to those 65 years or younger (data beyond this
age becomes very sparse) as in (Sap et al., 2014).
Gender (gen) was only provided as a limited single
binary, male-female classification.

Personality was derived from the Big 5 person-
ality traits questionnaires, including both extraver-
sion (ext - one’s tendency to be energized by social
interaction) and openess (ope, one’s tendency to
be open to new ideas) (Schwartz et al., 2013). Dis-
attenuated Pearson correlation2 (rdis) was used to
measure the performance of these two personality
prediction tasks.

CLPsych-2018. (bsag, gen2) The CLPsych
2018 shared task (Lynn et al., 2018) consisted
of sub-tasks aimed at early prediction of men-
tal health scores (depression, anxiety and BSAG3

score) based on their language. The data for this
shared task (Power and Elliott, 2005) comprised
of English essays written by 11 year old students
along with their gender (gen2) and income classes.
There were 9217 students’ essays for training and
1000 for testing. The average word count in an
essay was less than 200. Each essay was annotated
with the student’s psychological health measure,

2Disattenuated Pearson correlation helps account for the er-
ror of the measurement instrument (Kosinski et al., 2013; Mur-
phy and Davidshofer, 1988). Following (Lynn et al., 2020),
we use reliabilities: rxx = 0.70 and ryy = 0.77.

3Bristol Social Adjustment Guide (Ghodsian, 1977) scores
contains twelve sub-scales that measures different aspects of
childhood behavior.

BSAG (when 11 years old) and distress scores at
ages 23, 33, 42 and 50. This task used a disattenu-
ated pearson correlation as the metric (rdis).

CLPsych-2019. (sui) This 2019 shared
task (Zirikly et al., 2019) comprised of 3 sub-tasks
for predicting the suicide risk level in reddit
users. This included a history of user posts on
r/SuicideWatch (SW), a subreddit dedicated
to those wanting to seek outside help for processing
their current state of emotions. Their posts on
other subreddits (NonSuicideWatch) were also
collected. The users were annotated with one of
the 4 risk levels: none, low, moderate and severe
risk based on their history of posts. In total this
task spans 496 users in training and 125 in testing.
We focused on Task A, predicting suicide risk of a
user by evaluating their (English) posts across SW,
measured via macro-F1.

FB-Demogs CLPsych
2018

CLPsych
2019

Sap et al. Lynn et al. Zirikly et al.
Npt 56,764 9,217 496
Nmax 10,000 9,217 496
Nte 5,000 1,000 125

Table 1: Summary of the datasets. Npt is the num-
ber of users available for pre-training the dimension
reduction model; Nmax is the maximum number of
users available for task training. For CLPsych 2018
and CLPsych 2019, this would be the same sample as
pre-training data. For Facebook, a disjoint set of 10k
users was available for task training; Nte is the num-
ber of test users. This is always a disjoint set of users
from the pre-training and task training samples.

4 Methods

Here we discuss how we utilized representations
from transformers, our approaches to dimensional-
ity reduction, and our technique for robust evalua-
tion using bootstrapped sampling.

4.1 Transformer Representations

The second to last layer representation of all the
messages was averaged to produce a 768 dimen-
sional feature for each user4. These user repre-
sentations are reduced to lower dimensions as de-
scribed in the following paragraphs. The message
representation from a layer was attained by aver-
aging the token embeddings of that layer. To con-

4The second to last layer was chosen owing to its consis-
tent performance in capturing semantic and syntactic struc-
tures (Jawahar et al., 2019).
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sider a variety of transformer LM architectures,
we explored two popular auto-encoder (BERT and
RoBERTa) and two auto-regressive (XLNet and
GPT-2) transformer-based models.

For fine-tuning evaluations, we used the trans-
former based model that performs best across the
majority of our task suite. Transformers are typi-
cally trained on single messages or pairs of mes-
sages, at a time. Since we are tuning towards a
human-level task, we label each user’s message
with their human-level attribute and treat it as a
standard document-level task (Morales et al., 2019).
Since we are interested in relative differences in
performance, we limit each user to at most 20 mes-
sages - approximately the median number of mes-
sages, randomly sampled, to save compute time for
the fine tuning experiments.

Algorithm 1 Dimension Reduction and Evaluation

Notation: hD: hidden size, f(·): function to train
dimension reduction, θ: Linear Model, g(·, ·):
Logistic loss function for classification and L2
loss for regression, η: learning rate, T : Num-
ber of iterations (100).

Data: Dpt ∈ RNpt×hD : Pre-training embeddings,
Dmax ∈ RNmax×hD : Task training embed-
dings, Dte ∈ RNte×hD : Test embeddings,
Ymax: Outcome for train set, Yte: Outcome
for test set.

1: W ← f(Dpt)
2: D̄max ← DmaxW
3: D̄te ← DteW
4: for i = 1, . . . , 10 do
5: θ

(0)
i ← ~0

6: Sample (D̄ta, Yta) from (D̄max, Ymax)
7: for j = 1, . . . , T do
8: θ

(j)
i ← θ

(j−1)
i − η∇g(D̄ta, Yta)

9: end for
10: Ŷtei ← D̄teθ

(T )
i

11: end for
12: Evaluate(Ŷte, Yte)

4.2 Dimension Reduction

We explore singular value decomposition-based
methods such as Principal components analysis
(PCA) (Halko et al., 2011), Non-negative matrix
factorization (NMF) (Févotte and Idier, 2011) and
Factor analysis (FA) as well as a deep learning
approach: multi-layer non linear auto encoders
(NLAE) (Hinton and Salakhutdinov, 2006). We

also considered the post processing algorithm
(PPA) of word embeddings5 (Mu and Viswanath,
2018) that has shown effectiveness with PCA on
word level (Raunak et al., 2019). Importantly, be-
sides transformer LMs being pre-trained, so too
can dimension reduction. Therefore, we distin-
guish: (1) learning the transformation from higher
dimension to lower dimensions (preferably on a
large data sample from the same domain) and (2)
applying the learned transformation (on the task’s
train/test set). For the first step, we used a sepa-
rate set of 56k unlabeled user data in the case of
FB-demog6. For CLPsych-2018 and -2019 (where
separate data from the exact domains was not read-
ily available), we used the task training data to train
the dimension reduction. Since variance explained
in factor analysis typically follows a power law,
these methods transformed the 768 original embed-
ding dimensions down to k, in powers of 2: 16, 32,
64, 128, 256 or 512.

4.3 Bootstrapped Sampling & Training
We systematically evaluate the role of training sam-
ple (Nta) versus embedding dimensions (k) for
human-level prediction tasks. The approach is
described in algorithm 1. Varying Nta, the task-
specific train data (after dimension reduction) is
sampled randomly (with replacement) to get ten
training samples with Nta users each. Small Nta

values simulate a low-data regime and were used
to understand its relationship with the least number
of dimensions required to perform the best (Nta vs
k). Bootstrapped sampling was done to arrive at
a conservative estimate of performance. Each of
the bootstrapped samples was used to train either
an L2 penalized (ridge) regression model or logis-
tic regression for the regression and classification
tasks respectively. The performance on the test
set using models from each bootstrapped training
sample was recorded in order to derive a mean and
standard error for each Nta and k for each task.

To summarize results over the many tasks and
possible k and Nta values in a useful fashion, we
propose a ‘first k to peak (fkp)’ metric. For each
Nta, this is the first observed k value for which
the mean score is within the 95% confidence inter-
val of the peak performance. This quantifies the
minimum number of dimensions required for peak
performance.

5The ’D’ value was set to bnumber of dimensions
100

c.
6these pre-trained dimension reduction models are made

available.



4519

LM demographics personality mental health

Nta type name age
(r)

gen
(F1)

gen2
(F1)

ext
(rdis)

ope
(rdis)

bsag
(rdis)

sui
(F1)

100

AE BERT 0.533 0.703 0.761 0.163 0.184 0.424 0.360
AE RoBERTa 0.589 0.712 0.761 0.123 0.203 0.455 0.363
AR XLNet 0.582 0.582 0.744 0.130 0.203 0.441 0.315
AR GPT-2 0.517 0.584 0.624 0.082 0.157 0.397 0.349

500

AE BERT 0.686 0.810 0.837 0.278 0.354 0.484 0.466
AE RoBERTa 0.700 0.802 0.852 0.283 0.361 0.490 0.432
AR XLNet 0.697 0.796 0.821 0.261 0.336 0.508 0.439
AR GPT-2 0.646 0.756 0.762 0.211 0.280 0.481 0.397

Table 2: Comparison of most commonly used auto-encoders (AE) and auto-regressor (AR) language models after
reducing the 768 dimensions to 128 using NMF and trained on 100 and 500 samples (Nta) for each task. (Nta)
pertains to the number of samples used for training each task. Classification tasks (gen, gen2 and sui) were scored
using macro-F1 (F1); the remaining regression tasks were scored using pearson-r (r)/ disattenuated pearson-r
(rdis). AE models predominantly perform the best. RoBERTa and BERT show consistent performance, with the
former performing the best in most tasks. The LMs in the table were base models (approx. 110M parameters).

5 Results

5.1 Best LM for Human-Level Tasks

We start by comparing transformer LMs, replicat-
ing the setup of one of the state-of-the-art systems
for the CLPsych-2019 task in which embeddings
were reduced from BERT-base to approximately
100 dimensions using NMF (Matero et al., 2019).
Specifically, we used 128 dimensions (to stick with
powers of 2 that we use throughout this work) as
we explore the other LMs over multiple tasks (we
will explore other dimensions next) and otherwise
use the bootstrapped evaluation described in the
method.

Table 2 shows the comparison of the four trans-
former LMs when varying the sample size (Nta)
between two low data regimes: 100 and 5007.
RoBERTa and BERT were the best performing
models in almost all the tasks, suggesting auto-
encoders based LMs are better than auto-regressive
models for these human-level tasks. Further,
RoBERTa performed better than BERT in the ma-
jority of cases. Since the number of model param-
eters are comparable, this may be attributable to
RoBERTa’s increased pre-training corpus, which
is inclusive of more human discourse and larger
vocabularies in comparison to BERT.

7The performance of all transformer embeddings without
any dimension reduction along with smaller sized models can
be found in the appendix section D.3.

Nta Method Age Gen

100
Fine-tuned 0.54 0.54
Pre-trained 0.56 0.63

500
Fine-tuned 0.64 0.60
Pre-trained 0.66 0.74

Table 3: Comparison of task specific fine tuning of
RoBERTa (top 2 layers) and pre-trained RoBERTa em-
beddings (second to last layer) for age and gender pre-
diction tasks. Results are averaged across 5 trials ran-
domly sampling users equal to Nta from the Facebook
data and reducing messages to maximum of 20 per user.

5.2 Fine-Tuning Best LM

We next evaluate fine-tuning in these low data situ-
ations8. Utilizing RoBERTa, the best performing
transformer from the previous experiments, we per-
form fine-tuning across the age and gender tasks.
Following (Sun et al., 2019; Mosbach et al., 2020),
we freeze layers 0-9 and fine-tune layers 10 and
11. Even these top 2 layers alone of RoBERTa still
result in a model that is updating tens of millions
of parameters while being tuned to a dataset of
hundreds of users and at most 10,000 messages.

In table 3, results for age and gender are shown
for both sample sizes of 100 and 500. For Age, the
average prediction across all of a user’s messages
was used as the user’s prediction and for gender the
mode was used. Overall, we find that fine-tuning

8As we are focused on readily available models, we con-
sider substantial changes to the architecture or training as
outside the scope of this systematic evaluation of existing
techniques.
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demographics personality mental health

Npt Nta Reduction age
(r)

gen
(F1)

gen2
(F1)

ext
(rdis)

ope
(rdis)

bsag
(rdis)

sui
(F1)

56k*

100

PCA 0.650 0.747 0.777 0.189 0.248 0.466 0.392
PCA-PPA 0.517 0.715 0.729 0.173 0.176 0.183 0.358
FA 0.534 0.722 0.729 0.171 0.183 0.210 0.360
NMF 0.589 0.712 0.761 0.123 0.203 0.455 0.363
NLAE 0.654 0.744 0.782 0.188 0.263 0.447 0.367

500

PCA 0.729 0.821 0.856 0.346 0.384 0.514 0.416
PCA-PPA 0.707 0.814 0.849 0.317 0.349 0.337 0.415
FA 0.713 0.819 0.849 0.322 0.361 0.400 0.415
NMF 0.700 0.802 0.852 0.283 0.361 0.490 0.432
NLAE 0.725 0.820 0.843 0.340 0.394 0.485 0.409

500
100

PCA 0.644 0.749 0.788 0.186 0.248 0.412 0.392
NLAE 0.634 0.743 0.744 0.159 0.230 0.433 0.367

500
PCA 0.726 0.819 0.850 0.344 0.382 0.509 0.416
NLAE 0.715 0.798 0.811 0.312 0.360 0.490 0.409

Table 4: Comparison of different dimension reduction techniques of RoBERTa embeddings (penultimate layer)
reduced down to 128 dimensions and Nta = 100 and 500. Number of user samples for pre-trianing the dimension
reduction model, Npt was 56k except for gen2, bsag (which had 9k users) and sui (which had 496 users). PCA
performs the best overall and NLAE performs as good as PCA consistently. With uniform pre-training size (Npt =
500), PCA performs better than NLAE.

offers lower performance with increased overhead
for both train time and modeling complexity (hy-
perparameter tuning, layer selection, etc).

We did robustness checks for hyper-parameters
to offer more confidence that this result was not
simply due to the fastidious nature of fine-tuning.
The process is described in Appendix B, includ-
ing an extensive exploration of hyper-parameters,
which never resulted in improvements over the pre-
trained setup. We are left to conclude that fine-
tuning over such small user samples, at least with
current typical techniques, is not able to produce
results on par with using transformers to produce
pre-trained embeddings.

5.3 Best Reduction technique for
Human-Level Tasks

We evaluated the reduction techniques in low data
regime by comparing their performance on the
downstream tasks across 100 and 500 training sam-
ples (Nta). As described in the methods, tech-
niques including PCA, NMF and FA along with
NLAE, were applied to reduce the 768 dimensional
RoBERTa embeddings to 128 features. The results
in table 4 show that PCA and NLAE perform most
consistently, with PCA having the best scores in
the majority tasks. NLAE’s performance appears
dependent on the amount of data available during

the pre-training. This is evident from the results in
Table 4 where the Npt was set to a uniform value
and tested for all the tasks with Nta set to 100 and
500. Thus, PCA appears a more reliable, showing
more generalization for low samples.

5.4 Performance by Sample Size and
Dimensions

Now that we have found (1) RoBERTa generally
performed best, (2) pre-trainining worked better
than fine-tuning, and (3) PCA was most consis-
tently best for dimension reduction (often doing
better than the full dimensions), we can systemat-
ically evaluate model performance as a function
of training sample size (Nta) and number of di-
mensions (k) over tasks spanning demographics,
personality, and mental health. We exponentially
increase k from 16 to 512, recognizing that vari-
ance explained decreases exponentially with dimen-
sion (Mu and Viswanath, 2018). The performance
is also compared with that of using the RoBERTa
embeddings without any reduction.

Figure 1 compares the scores at reduced dimen-
sions for age, ext, ope and bsag. These charts
depict the experiments on typical low data regime
(Nta ≤ 1000). Lower dimensional representations
performed comparable to the peak performance
with just 1

3 the features while covering the most
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Dimension reduced 
(mean ± std err)

All dimensions 
(mean)

Figure 1: Comparison of performance for all regression tasks: age, ext, ope and bsag over varying Nta and k.
Results vary by task, but predominantly, performance at k=64 is better than the performance without any reduction.
It is conclusive that the reduced features almost always performs better or as good as the original embeddings.

number of tasks and just 1
12 features for the ma-

jority of tasks. Charts exploring other ranges of
Nta values and remaining tasks can be found in the
appendix D.1.

5.5 Least Number of Dimensions Required

Lastly, we devise an experiment motivated by an-
swering the question of how many dimensions are
necessary to achieve top results, given a limited
sample size. Specifically, we define ‘first k to peak’
(fkp) as the least valued k that produces an accuracy
equivalent to the peak performance. A 95% con-
fidence interval was computed for the best score
(peak) for each task and each Nta based on boot-
strapped resamples, and fkp was the least number
of dimensions where this threshold was passed.

Our goal is that such results can provide a sys-
tematic guide for making such modeling decisions

Nta demographics
(3 tasks)

personality
(2 tasks)

mental
health

(2 tasks)
50 16 16 16

100 128 16 22
200 512 32 45
500 768 64 64

1000 768 90 64

Table 5: First k to peak (fkp) for each set of tasks: the
least value of k that performed statistically equivalent
(p > .05) to the best performing setup (peak). Inte-
ger shown is the exponential median of the set of tasks.
This table summarizes comprehensive testing and we
suggest its results, fkp, can be used as a recommen-
dation for the number of dimensions to use given a
task domain and training set size.
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in future human-level NLP tasks, where such an
experiment (which relies on resampling over larger
amounts of training data) is typically not feasible.
Table 5 shows the fkp over all of the training sample
sizes (Nta). The exponential median (med) in the
table is calculated as follows: med = 2Median(log(x))

The fkp results suggest that more training sam-
ples available yield ability to leverage more dimen-
sions, but the degree to which depends on the task.
In fact, utilizing all the embedding dimensions was
only effective for demographic prediction tasks.
The other two tasks benefited from reduction, of-
ten with only 1

12 to 1
6 of the original second to last

transformer layer dimensions.

6 Error Analysis

Here, we seek to better understand why using pre-
trained models worked better than fine-tuning, and
differences between using PCA and NMF compo-
nents in the low sample setting (Nta = 500).

Association LIWC variables

Positive
Informal, Netspeak, Negemo
Swear, Anger

Negative
Affiliation, Social, We, They,
Family, Function, Drives, Prep,
Focuspast, Quant

Table 6: Top LIWC variables having negative and pos-
itive correlations with the difference in the absolute er-
ror of the pre-trained model and the fine-tuned model
for age prediction. Benjamini-Hochberg FDR p < .05.
This suggests that the fine-tuned models have lesser er-
ror than pre-trained model when the language is infor-
mal and consists of more affect words.

Pre-trained vs Fine-tuned. We looked at cate-
gories of language from LIWC (Tausczik and Pen-
nebaker, 2010), correlated with the difference in
the absolute error of the pre-trained and fine-tuned
model in age prediction. Table 6 suggests that
pre-trained model is better at handling users with
language conforming to the formal rules, and fine-
tuning helps in learning better representation of the
affect words and captures informal language well.
Furthermore, these LIWC variables are also known
to be associated with age (Schwartz et al., 2013).
Additional analysis comparing these two models is
available in appendix E.1.

PCA vs NMF. Figure 2 suggests that PCA is bet-
ter at handling longer text sequences than NMF
(> 55 one grams on avg) when trained with less
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Figure 2: Comparison of the absolute error of NMF and
PCA with the average number of 1 grams per message.
While both the models appear to perform very similar
when the texts are small or average sized, PCA is better
at handling longer texts. The errors diverge when the
length of the texts increases.

data. This choice wouldn’t make much difference
when used for Tweet-like short texts, but the errors
diverge rapidly for longer samples. We also see
that PCA is better at capturing information from
these texts that have higher predictive power in
downstream tasks. This is discussed in appendix
E.2 along with other interesting findings involving
the comparison of PCA and the pre-trained model
in E.3.

7 Discussion

Ethical Consideration. We used existing
datasets that were either collected with participant
consent (FB and CLPsych 2018) or public
data with identifiers removed and collected in
a non-intrusive manner (CLPsych 2019). All
procedures were reviewed and approved by both
our institutional review board as well as the IRB of
the creators of the data set.

Our work can be seen as part of the growing
body of interdisciplinary research intended to un-
derstanding human attributes associated with lan-
guage, aiming towards applications that can im-
prove human life, such as producing better mental
health assessments that could ultimately save lives.
However, at this stage, our models are not intended
to be used in practice for mental health care nor
labeling of individuals publicly with mental health,
personality, or demographic scores. Even when
the point comes where such models are ready for
testing in clinical settings, this should only be done
with oversight from professionals in mental health
care to establish the failure modes and their rates
(e.g. false-positives leading to incorrect treatment
or false-negatives leading to missed care; increased
inaccuracies due to evolving language; disparities
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in failure modes by demographics). Malicious use
possibilities for which this work is not intended
include targeting advertising to individuals using
language-based psychology scores, which could
present harmful content to those suffering from
mental health conditions.

We intend that the results of our empirical study
are used to inform fellow researchers in computa-
tional linguistics and psychology on how to better
utilize contextual embeddings towards the goal of
improving psychological and mental health assess-
ments. Mental health conditions, such as depres-
sion, are widespread and many suffering from such
conditions are under-served with only 13 - 49%
receiving minimally adequate treatment (Kessler
et al., 2003; Wang et al., 2005). Marginalized pop-
ulations, such as those with low income or minori-
ties, are especially under-served (Saraceno et al.,
2007). Such populations are well represented in so-
cial media (Center, 2021) and with this technology
developed largely over social media and predom-
inantly using self-reported labels from users (i.e.,
rather than annotator-perceived labels that some-
times introduce bias (Sap et al., 2019; Flekova et al.,
2016)), we do not expect that marginalized popula-
tions are more likely to hit failure modes. Still, tests
for error disparities (Shah et al., 2020) should be
carried out in conjunction with clinical researchers
before this technology is deployed. We believe
this technology offers the potential to broaden the
coverage of mental health care to such populations
where resources are currently limited.

Future assessments built on the learnings of
this work, and in conjunction with clinical men-
tal health researchers, could help the under-served
by both better classifying one’s condition as well
as identifying an ideal treatment. Any applications
to human subjects should consider the ethical im-
plications, undergo human subjects review, and
the predictions made by the model should not be
shared with the individuals without consulting the
experts.

Limitations. Each dataset brings its own unique
selection biases across groups of people, which is
one reason we tested across many datasets cover-
ing a variety of human demographics. Most no-
tably, the FB dataset is skewed young and is geo-
graphically focused on residents within the United
States. The CLPsych 2018 dataset is a represen-
tative sample of citizens of the United Kingdom,
all born on the same week, and the CLPsych-2019

dataset was further limited primarily to those post-
ing in a suicide-related forum (Zirikly et al., 2019).
Further, tokenization techniques can also impact
language model performance (Bostrom and Dur-
rett, 2020). To avoid oversimplification of com-
plex human attributes, in line with psychological
research (Haslam et al., 2012), all outcomes were
kept in their most dimensional form – e.g. person-
ality scores were kept as real values rather than
divided into bins and the CLPsych-2019 risk levels
were kept at 4 levels to yield gradation in assess-
ments as justified by Zirikly et al., 2019.

8 Conclusion

We provide the first empirical evaluation of the ef-
fectiveness of contextual embeddings as a function
of dimensionality and sample size for human-level
prediction tasks. Multiple human-level tasks along
with many of the most popular language model
techniques, were systematically evaluated in con-
junction with dimension reduction techniques to
derive optimal setups for low sample regimes char-
acteristic of many human-level tasks.

We first show the fine-tuning transformer LMs
in low-data scenarios yields worse performance
than pre-trained models. We then show that re-
ducing dimensions of contextual embeddings can
improve performance and while past work used
non-negative matrix factorization (Matero et al.,
2019), we note that PCA gives the most reliable
improvement. Auto-encoder based transformer lan-
guage models gave better performance, on average,
than their auto-regressive contemporaries of com-
parable sizes. We find optimized versions of BERT,
specifically RoBERTa, to yield the best results.

Finally, we find that many human-level tasks can
be achieved with a fraction, often 1

6

th or 1
12

th, the
total transformer hidden-state size without sacri-
ficing significant accuracy. Generally, using fewer
dimensions also reduces variance in model perfor-
mance, in line with traditional bias-variance trade-
offs and, thus, increases the chance of generalizing
to new populations. Further it can aid in explain-
ability especially when considering that these di-
mension reduction models can be pre-trained and
standardized, and thus compared across problem
sets and studies.
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Appendices

A Experimental Setup

Implementation. All the experiments were im-
plemented using Python, DLATK (Schwartz et al.,
2017), HuggingFace Transformers (Wolf et al.,
2019), and PyTorch (Paszke et al., 2019). The envi-
ronments were instantiated with a seed value of 42,
except for fine-tuning which used 1337. Code to
reproduce all results is available in our github page:
github.com/adithya8/ContextualEmbeddingDR/

Infrastructure. The deep learning models such
as stacked-transformers and NLAE were run on
single GPU with batch size given by:

batchsize =

⌊
GPU memory −model size
(floating precision/8) ∗ (δ)

⌋

δ =


trainableparams; for fine tuning

(layers ∗ hidden_size ∗max_tokens);
for embedding retrieval

where GPU memory and model sizes (space oc-
cupied by the model) are in bytes, trainableparams

corresponds to number of trainable parameters
during fine tuning and layers corresponds to the
number of layers of embeddings required, the
hidden_size is the number of dimensions in the
hidden state and max_tokens is the maximum
number of tokens (after tokenization) in any batch.
We carried out the experiments with 1 NVIDIA
Titan Xp GPU which has around 12 GB of memory.
All the other methods were implemented on CPU.
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Figure A1: Depiction of Dimension Reduction method
- Transformer embeddings of domain data (Npt users’
embeddings9) is used to pre-train a dimension reduc-
tion model that transforms the embeddings down to
k dimensions. This step is followed by applying this
learned reduction model on task’s train and test data
embeddings. These reduced train features (Nmax

users) are then bootstrap sampled to produce 10 sets of
Nta users each for training task specific models. All
these 10 task specific models are evaluated on the re-
duced test features consisting of Nte users during task
evaluation. The mean and standard deviation of the task
specific metric are collected.

B Model Details

NLAE architecture. The model architecture for
the Non-linear auto-encoders in Table 4 was a twin
network taking inputs of 768 dimensions and re-
ducing it to 128 dimensions through 2 layers and

9Generation of user embeddings explained in detail under
methods.

https://doi.org/10.18653/v1/W19-3003
https://doi.org/10.18653/v1/W19-3003
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reconstructs the original 768 dimensional represen-
tation with 2 layers. This architecture was chosen
balancing the constraints of enabling the non-linear
associations while keeping total parameters low
given the low sample size context. The formal
definition of the model is:

xcomp = f(W T
2 f(W T

1 x+ b1) + b2)

xdecomp = W1
T
f(W2

T
xcomp + b2) + b1

x, xdecomp ∈ R768, xcomp ∈ R128

W1 ∈ R768∗448,W2 ∈ R448∗128

b1, b2 ∈ R448, b2 ∈ R128, b1 ∈ R768

W1 ∈ R448∗768,W2 ∈ R128∗448

f(a) = max(a, 0);∀a ∈ R

NLAE Training. The data for domain pre-
training of dimension reduction was split into 2
sets for NLAE alone: training and validation sets.
90% of the domain data was randomly sampled for
training the NLAE and the remaining 10% of pre-
training data was used to validate hyper-parameters
after every epoch. This model was trained with
an objective to minimise the reconstruction mean
squared loss over multiple epochs. It was trained
until the validation loss increased over 3 consecu-
tive epochs. AdamW was the optimizer used with
the learning rate set to 0.001. This took around
30-40 epochs depending upon the dataset.

Fine-tuning. In our fine-tuning configuration we
freeze all but the top 2 layers of the best LM, to
prevent over fitting and vanishing gradients at the
lower layers (Sun et al., 2019; Mosbach et al.,
2020). We also apply early stopping (varied the
patience between 3 and 6 depending upon the task).
Other hyperparameters for this experiment include
L2-regularization (in the form of weight-decay on
AdamW optimizer, set to 1), dropout set to 0.3,
batch size set to 10, learning rate initialized to 5e-5,
and the number of epochs was set to max of 15,
which was limited by early stopping between 5-10
depending on the task and early stopping patience.

We arrived at these hyperparameter values after
an extensive search. The weight decay param was
searched in [100, 0.01], dropout within [0.1, 0.5],
and learning rate between [5e-4, 5e-5].

C Data

Due to human subjects privacy constraints, most
data are not able to be publicly distributed but they
are available from the original data owners via re-
quests for research purposes (e.g. CLPsych-2018
and CLPsych-2019 shared tasks).

D Additional Results

D.1 Results on higher Nta

We can see that reduction still helps in majority of
tasks in higher Nta from Figure A2. As expected,
the performance starts to plateau at higher Nta val-
ues and it is visibly consistent across most tasks.
With the exception of age and gender prediction
using facebook data, all the other tasks benefit from
reduction.

D.2 Results on classification tasks
Figure A3 compares the performance of reduced
dimensions at low samples size scenario (Nta ≤
1000) in classification tasks. Except for a few Nta

values in gender prediction using the facebook data,
all the other tasks benefits from reduction in achiev-
ing the best performance.

D.3 LM comparison for no reduction &
Smaller models.

Table A1 compares the performance of the lan-
guage models without applying any dimension re-
duction of the embeddings and the performance
of the best transformer models is also compared
with smaller models (and distil version) after re-
ducing second to last lasyer representation to 128
dimensions in table A2.

D.4 Least dimensions required: Higher Nta

The ’fkp’ plateaus as the the number of training
samples grow as seen in table A3.

E Additional Analysis

E.1 Pre-trained vs Fine-Tuned models
We also find that fine-tuned model doesn’t perform
better than the pre-trained model for users with
typical message lengths, but is better at handling
longer sequences upon training it on the tasks’ data.
This is evident from the graphs in figure A4.

E.2 PCA vs NMF.
From figure A5, we can see that LIWC variables
like ARTICLE, INSIGHT, PERCEPT (perceptual
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LM demographics personality mental health

Nta type name age
(r)

gen
(f1)

gen2
(f1)

ext
(rdis)

ope
(rdis)

bsag
(rdis)

sui
(f1)

100

AE BERT 0.615 0.754 0.758 0.176 0.225 0.457 0.400
AE RoBERTa 0.649 0.753 0.788 0.167 0.213 0.443 0.381
AR XLNet 0.625 0.698 0.755 0.144 0.152 0.457 0.357
AR GPT-2 0.579 0.708 0.681 0.090 0.110 0.361 0.335

500

AE BERT 0.721 0.831 0.849 0.332 0.395 0.507 0.489
AE RoBERTa 0.737 0.830 0.859 0.331 0.382 0.519 0.447
AR XLNet 0.715 0.810 0.828 0.314 0.364 0.506 0.424
AR GPT-2 0.693 0.794 0.790 0.242 0.307 0.508 0.371

Table A1: Comparison of various auto-encoders(AE) and auto-regressor(AR) language models trained on 100 and
500 samples (Nta) for each task using all the dimensions of transformer embeddings. RoBERTa and BERT show
consistent performance.

demographics personality mental health

Nta LM age
(r)

gen
(F1)

gen2
(F1)

ext
(rdis)

ope
(rdis)

bsag
(rdis)

sui
(F1)

100

BERT 0.533 0.703 0.761 0.163 0.184 0.424 0.360
RoBERTa 0.589 0.712 0.761 0.123 0.203 0.455 0.363
DistilRoBERTa 0.568 0.640 0.731 0.130 0.207 0.446 0.355
ALBERT 0.525 0.689 0.710 0.111 0.218 0.413 0.355

500

BERT 0.686 0.810 0.837 0.278 0.354 0.484 0.466
RoBERTa 0.700 0.802 0.852 0.283 0.361 0.490 0.432
DistilRoBERTa 0.687 0.796 0.826 0.246 0.346 0.503 0.410
ALBERT 0.668 0.792 0.799 0.237 0.337 0.453 0.385

Table A2: Comparison of the best performing auto-encoder models with a smaller LMs (like ALBERT (Lan et al.,
2019) and DistilRoBERTa (Sanh et al., 2019) after reduction to 128 dimensions. These results suggest that the
reduction of the larger counterparts produce better results than reducing these smaller LMs’ representations.

process), COGPROC (cognitive process) nega-
tively correlates to the difference in absolute er-
ror of PCA and NMF. These variables also hap-
pen to have higher correlation with the openness
scores (Schwartz et al., 2013). We also see that
characteristics typical of an open person like inter-
est in arts, music, and writing (Kern et al., 2014)
appear in the word clouds.

The divergence of the absolute errors in NMF
and PCA is seen in bsag and ope tasks as well.
From graphs in figure A6 we can see that the se-
quence length at which we see this behavior is
close to the previously observed value in age and
ext tasks.

E.3 PCA vs Pre-trained.

PCA models overall perform better than pre-trained
model in low sample regime and from figure A7,
we can see that PCA captures slang, affect and
standard social media abbreviations better than the

pre-trained models. The task specific linear layer
is better able to capture social media language with
fewer dimensions (reduced by PCA) than from the
original 768 features produced by the pre-trained
models.
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Dimension reduced 
(mean ± std err)

All dimensions 
(mean)

Figure A2: Performance recorded for reduced dimensions for all tasks at higher Nta values (≥ 1000). Reduction
continues to help in performing the best in personality and mental-health tasks. The ’fkp’ is observed to be shifting
to a higher value, due to the rise in performance of no reduction and the reduction of standard error.
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Dimension reduced 
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Figure A3: Comparison of performance in gen, gen2 and sui tasks for varying Nta between 50 and 1000.
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Figure A4: The absolute error in age prediction for
the fine-tuned model is higher than pre-trained models
for users with short messages. Fine-tuned models have
smaller errors for users with longer messages.

Figure A5: The word cloud of the LIWC variables (left)
and the 1 grams (right) having negative correlation with
the difference in the absolute error of PCA and NMF in
Openness prediction. Benjamini-Hochberg FDR. p <
.05. We can see that LIWC variables and 1 grams more
correlative of a person exhibiting more openness are
better captured by the PCA model than the NMF.
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Figure A6: Comparison of the absolute error of NMF
and PCA with the average number of 1 grams per mes-
sage. We see that the absolute error of NMF models
starts diverging at longer text sequences for the bsag
and the ope tasks as well.

Figure A7: Terms having negative (left) and positive
(right) correlations with the difference in the absolute
error of the PCA and pre-trained model in age predic-
tion. Benjamini-Hochberg FDR. p < .05. The error in
the PCA model is lesser than pre-trained models when
messages contain more slang, affect words and social
media abbreviations.
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Nta demographics personality mental
health

2000 768 90 64
5000 768 181 64

10000 768 181 64

Table A3: First k to peak for each set of tasks: the
least value of k that performed statistically equivalent
(p > .05) to the best performing setup (peak). Integer
shown is the exponential median of the set of tasks.


