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Abstract
Graph convolutional networks (GCNs) have
been applied recently to text classification and
produced an excellent performance. However,
existing GCN-based methods do not assume
an explicit latent semantic structure of doc-
uments, making learned representations less
effective and difficult to interpret. They are
also transductive in nature, thus cannot han-
dle out-of-graph documents. To address these
issues, we propose a novel model named in-
ductive Topic Variational Graph Auto-Encoder
(T-VGAE), which incorporates a topic model
into variational graph-auto-encoder (VGAE)
to capture the hidden semantic information be-
tween documents and words. T-VGAE inher-
its the interpretability of the topic model and
the efficient information propagation mecha-
nism of VGAE. It learns probabilistic repre-
sentations of words and documents by jointly
encoding and reconstructing the global word-
level graph and bipartite graphs of documents,
where each document is considered individ-
ually and decoupled from the global corre-
lation graph so as to enable inductive learn-
ing. Our experiments on several benchmark
datasets show that our method outperforms the
existing competitive models on supervised and
semi-supervised text classification, as well as
unsupervised text representation learning. In
addition, it has higher interpretability and is
able to deal with unseen documents.

1 Introduction

Recently, graph convolutional networks
(GCNs)(Kipf and Welling, 2017; Veličković
et al., 2018) have been successfully applied to
text classification tasks (Peng et al., 2018a; Yao

et al., 2019; Liu et al., 2020; Wang et al., 2020).
In addition to the local information captured by
CNN or RNN, GCNs learn word and document
representations by taking into account the global
correlation information embedded in the corpus-
level graph, where words and documents are nodes
connected by indexing or citation relations.

However, the hidden semantic structures, such
as latent topics in documents (Blei et al., 2003; Yan
et al., 2013; Peng et al., 2018b), is still ignored by
most of these methods (Yao et al., 2019; Huang
et al., 2019; Liu et al., 2020; Zhang et al., 2020),
which can improve the text representation and pro-
vide extra interpretability (in which the proba-
bilistic generative process and topics make more
sense to humans compared to neural networks, i.e.
topics can be visually represented by top-10 or 20
most probable word clusters). Although few stud-
ies such as (Wang et al., 2020) have proposed incor-
porating a topic structure into GCNs, the topics are
extracted in advance from the set of documents, in-
dependently from the graph and information prop-
agation among documents and words. We believe
that the topics should be determined in accordance
with the connections in the graph. For example,
the fact that two words are connected provides ex-
tra information that these words are on a similar
topic(s). Moreover, existing GCN-based methods
are limited by their transductive learning nature, i.e.
a document can be classified only if it is already
seen in the training phase (Wang et al., 2020; Yao
et al., 2019; Liu et al., 2020). The lack of inductive
learning ability for unseen documents is a critical
issue in practical text classification applications,
where we have to deal with new documents. It is



4219

Table 1: Comparison with related work. We compare
the manner of model learning, whether incorporate the
latent topic structure and the manner of topic learning
of these models.

Model Explainability Learning Topics

TextGCN (Yao et al., 2019) - transductive -
TensorGCN (Liu et al., 2020) - transductive -

DHTG (Wang et al., 2020)
p

transductive static
T-GCN (Huang et al., 2019) - inductive -

TG-Trans (Zhang and Zhang, 2020) - inductive -
TextING (Zhang et al., 2020) - inductive -
HyperGAT (Ding et al., 2020) - inductive -

Our model
p

inductive dynamic

intuitive to decouple documents with the global
graph and treat each document as an independent
graph (Huang et al., 2019; Zhang et al., 2020; Ding
et al., 2020; Zhang and Zhang, 2020; Xie et al.,
2021). However, no attempt has been made to ad-
dress both aforementioned issues.

To address these issues, we incorporate the topic
model into variational graph auto-encoder (VGAE),
and propose a novel framework named inductive
Topic Variational Graph Auto-Encoder (T-VGAE).
T-VGAE first learns to represent the words in a
latent topic space by embedding and reconstructing
the word correlation graph with the GCN proba-
bilistic encoder and probabilistic decoder. Take
the learned word representations as input, a GCN-
based message passing probabilistic encoder is
adopted to generate document representations via
information propagation between words and doc-
uments in the bipartite graph. We compare our
model with existing related work in Table 1. Dif-
ferent from previous approaches, our method uni-
fies topic mining and graph embedding learning
with VGAE, thus can fully embed the relations be-
tween documents and words into dynamic topics
and provide interpretable topic structures into repre-
sentations. Besides, our model builds a document-
independent word correlation graph and a word-
document bipartite graph for each document in-
stead of a corpus-level graph to enable inductive
learning.

The main contributions of our work are as fol-
lows:

1. We propose a novel model T-VGAE based on
topic models and VGAE, which incorporates
latent topic structures for inductively docu-
ment and word representation learning. This
makes the model more effective and inter-
pretable.

2. we propose to utilize the auto-encoding vari-

ational Bayes (AEVB) method to make effi-
cient black-box inference of our model.

3. Experimental results on benchmark datasets
demonstrate that our method outperforms the
existing competitive GCN-based methods on
supervised and semi-supervised text classifi-
cation tasks. It also outperforms topic models
on unsupervised text representation learning.

2 Related Work

2.1 Graph based Text Classification

Recently, GCNs have been applied to various NLP
tasks (Zhang et al., 2018; Vashishth et al., 2019).
For example, TextGCN (Yao et al., 2019) was pro-
posed for text classification, which enriches the
corpus-level graph with the global semantic infor-
mation to learn word and document embeddings.
Inspired by it, Liu et al. (Liu et al., 2020) fur-
ther considered syntactic and sequential contextual
information and proposed TensorGCN. However,
none of them utilized the latent semantic structures
in the documents to enhance text classification. To
address the issue, (Wang et al., 2020) proposed
dynamic HTG (DHTG), in an attempt to integrate
the topic model into graph construction. DHTG
learned latent topics from the document-word cor-
relation information (similar to traditional topic
models), which will be used for GCN based doc-
ument embedding. However, the topics in DHTG
were learned independently from the word relation
graph and the information propagation process in
the graph, in which word relations are ignored.

Moreover, the existing GCN-based methods also
require a pre-defined graph with all the documents
and cannot handle out-of-graph documents, thus
limiting their practical applicability.

To deal with the inductive learning problem,
(Huang et al., 2019; Zhang et al., 2020; Ding et al.,
2020; Zhang and Zhang, 2020) proposed to con-
sider each document as an independent graph for
text classification. However, the latent semantic
structure and interpretability are still ignored in
these methods. Different from previous approaches,
we aim to deal with both issues of dynamic topic
structure and inductive learning. We propose to
combine the topic model and graph based infor-
mation propagation in a unified framework with
VGAE to learn interpretable representations for
words and documents.
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2.2 Graph Enhanced Topic Models

There are also studies trying to enhance topic mod-
els with efficient message passing in the graph data
structure of GCNs. GraphBTM (Zhu et al., 2018)
proposed to enrich the biterm topic model (BTM)
with the word co-occurrence graph encoded with
GCNs. To deal with data streams, (Van Linh et al.,
2020) proposed graph convolutional topic model
(GCTM), which introduces a knowledge graph
modeled with GCNs to the topic model. (Yang
et al., 2020) presented Graph Attention TOpic Net-
work (GATON) for correlated topic modeling. It
tackles the overfitting issue in topic modeling with
a generative stochastic block model (SBM) and
GCNs. In contrast with these studies, we focus on
integrating the topic model into GCN-based VGAE
for supervised learning tasks and derive word-topic
and document-topic distributions simultaneously.

2.3 Variational Graph Auto-encoders

Variational Graph Auto-encoders (VGAEs) have
been widely used in graph representation learning
and graph generation. The earliest study (Kipf and
Welling, 2016) proposed VGAE method, which
extended variational auto-encoder (VAE) on graph
structure data for learning graph embedding. Based
on VGAE, (Pan et al., 2018) introduced an adver-
sarial training to regularize the latent variables and
further proposed adversarially regularized varia-
tional graph autoencoder (ARVGA). (Hasanzadeh
et al., 2019) incorporated semi-implicit hierarchi-
cal variational distribution into VGAE (SIG-VAE)
to improve the representation power of node em-
beddings. (Grover et al., 2019) proposed Graphite
model that integrated an iterative graph refinement
strategy into VGAE, inspired by low-rank approx-
imations. However, to the best of our knowledge,
our model is the first effort to apply VGAE to unify
the topic learning and graph embedding for text
classification, thus can provide better interpretabil-
ity and overall performance.

3 Method

3.1 Graph Construction

Formally, we denote a corpus as C, which contains
D documents and the ground truth labels Y 2
c = {1, ...,M} of documents, where M is the total
number of classes in the corpus. Each document
t 2 C is represented by a sequence of words t =
{w1, ..., wnt}(wi 2 v), where nt is the number of

words in document t and v is the vocabulary of size
V .

From the whole corpus, we build a word cor-
relation graph G = (v, e) containing word nodes
v and edges e, to capture the word co-occurrence
information. Similar to previous work (Yao et al.,
2019), we utilize the positive point mutual infor-
mation (PPMI) to calculate the correlation between
two word nodes. Formally, for two words (wi, wj),
we have

PPMI(wi, wj) = max(log
p(wi, wj)
p(wi)p(wj)

, 0) (1)

where p(wi, wj) is the probability that (wi, wj) co-
occur in the sliding window and p(wi), p(wj) are
the probabilities of words wi and wj in the slid-
ing window. They can be empirically estimated
as P (wi, wj) = n(wi,wj)

n and P (wi) = n(wi)
n ,

where n(wi, wj) is the number of co-occurrences
of (wi, wj) in the sliding windows, n(wi) is the
number of occurrences of wi in the sliding win-
dows and n the total number of sliding windows.
For two word nodes (wi, wj), the weight of the
edge between them can be defined as:

A
v
i,j =

(
PPMI(wi, wj), i 6= j

1, i = j
(2)

where A
v 2 RV ⇤V is the adjacency matrix which

represents the word correlation graph structure G.
Different from the existing studies (Yao et al.,

2019; Liu et al., 2020; Wang et al., 2020) that
consider all documents and words in a heteroge-
neous graph, we propose to build a separate graph
for each document to enable inductive learning.
Typically, documents can be represented by the
document-word matrix A

d 2 RD⇥V , in which the
row A

d
i = {xi1, ..., xiv} 2 R1⇥V represents the

document i, and xij is the TF-IDF weight of the
word j in document i. The decoupling of docu-
ments from a global pre-defined graph enables our
method to handle new documents.

3.2 Topic Variational Graph Auto-encoder
Based on A

v and A
d, we propose the T-VGAE

model, as shown in Figure 1. It is a deep generative
model with structured latent variables based on
GCNs.

3.2.1 Generative Modeling
We consider that the word co-occurrence graph A

v

and the bipartite graph A
d
t of each document t are

generated from the random process with two latent
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Figure 1: The architecture of T-VGAE.As shown in the Figure, for a new test document i, its latent representation
z
d
i is generated by the UAMP probabilistic encoder based on its document-word vector Ad

i and learned word topic
distribution matrix z

v . Then, zdi is fed into the trained MLP classifier fy to predict the output label. Therefore,
new test documents can be classified do not need to be included in the training process, thus enabling inductive
learning of our model.

variables zv 2 RV⇥K and z
d
t 2 R1⇥K , where K

denotes the number of latent topics. The generating
process for Av, Ad and Y are as follows (see Figure
2(a)):

vA

vz

YdA

dz

T

DV

(a) Generative process

dz

I

vz
D V

vAdA vX

(b) Inference process

Figure 2: The generative and inference processes.

1. For each word i in vocabulary v, draw the
latent variable z

v
i from the prior p✓(zvi )

2. For each observed edge A
v
i,j between words i

and j, draw A
v
i,j from conditional distribution

p✓(Av
i,j |zvi , zvj )

3. For each document t in corpus C:

(a) Draw the latent variable zdt from the prior
p✓(zdt )

(b) Draw A
d
t from the conditional distribu-

tion p✓(Ad
t |zdt , zv)

(c) Draw Yt from the conditional distribu-
tion p✓(Yt|zdt )

where ✓ is the set of parameters for all prior distribu-
tions. Here, we consider the centered isotropic mul-
tivariate Gaussian priors p(zv) =

QV
i=1 p(z

v
i ) =QV

i=1N (zvi |0, I) and p(zd) =
QD

t=1 p(z
d
t ) =QD

t=1N (zdt |0, I).

Notice that the priors p(zv) and p(zd) are pa-
rameter free in this case. According to the above
generative process, we can maximize the marginal
likelihood of observed graph A

v, Ad and Y to learn
parameters ✓ and latent variables as follows:

p(Av
, A

d
, Y |Zv

, Z
d
, X

v) =

DY

t=1

p✓(Yt|zdt )p✓(Ad
t |zdt , zv)p✓(zdt )

VY

i=1

VY

j=1

p✓(A
v
i,j |zvi (zvj )T)p✓(zv)

(3)

Because the inference of true posterior of la-
tent variable z

v and z
d is intractable, we fur-

ther introduce the variational posterior distri-
bution q�(zv, zd|Ad

, A
v
, X

v) with parameters �

to approximate the true posterior p✓(zv, zd) =
p✓(zv)p✓(zd). We make the structured mean-
field (SMF) assumption q�(zv, zd|Ad

, A
v
, X

v) =
q�(zv|Av

, X
v)q�(zd|Ad

, z
v), where Xv 2 RV⇥M

are the feature vectors of words and M is the di-
mension of the feature vectors (see Figure 2(b)).
We can yield the following tractable stochastic evi-
dence lower bound (ELBO):

L(✓,�;Av
, A

d
, X

v)

= Eq�(zv|Av,Xv)[log p✓(A
v|zv)]

+ Eq�(zd|Ad,zv)[log p✓(A
d|zd, zv)]

+ Eq�(zd|Ad,zv)[log p✓(Y |zd)]
�KL[q�(z

v|Av
, X

v)||p✓(zv)]
�KL[q�(z

d|Ad
, z

v)||p✓(zd)]

(4)

where the first three terms are the reconstruction
terms, and the latter two terms are the Kullback-
Leibler (KL) divergences of variational posterior
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distributions and true posterior distributions. Us-
ing auto-encoding variational Bayes (AVB) ap-
proach (Kingma and Welling, 2013), we are able to
parametrize the variational posteriors q� and true
posteriors p✓ with the GCN-based probabilistic en-
coder and decoder, to conduct neural variational
inference (NVI).

3.2.2 Graph Convolutional Probabilistic
Encoder

For the latent variable z
v, we make the mean-

field approximation that: q�(zv|Av
, X

v) =QV
i=1 q�(z

v
i |Av

, X
v). For simplify the model in-

ference, we consider the multivariate normal vari-
ational posterior with a diagonal covariance ma-
trix as previous neural topic models (Miao et al.,
2016; Bai et al., 2018)that: q�(zvi |Av

, X
v) =

N (zvi |µv
i , diag((�

v
i )

2)), where µ
v
i , (�

v
i )

2 are the
mean and diagonal covariance of the multivariate
Gaussian distribution.

We use the graph convolutional neural network
to parametrize the above posterior and inference zv

with the input graph A
v and feature vectors Xv:

(Hv)l+1 = ⇢(Âv(Hv)l(W v)l)

µ
v = ⇢(Âv(Hv)l+1(W v

µ )
l+1)

log�
v = ⇢(Âv(Hv)l+1(W v

� )
l+1)

(5)

where µ
v
,�

v are matrices of µv
i ,�

v
i , l is the num-

ber of GCN layers, we use one layer in our exper-
iments, {W v

µ ,W
v
�} 2 � are weight matrices, ⇢ is

the ReLU, Âv = (Dv)�
1
2A

v(Dv)�
1
2 is the sym-

metrically normalized adjacent matrix of the word
graph, and D

v denotes the corresponding degree
matrix. The input of GCN is the feature vectors
Xv which is initialized as the identity matrix I , i.e.,
(Hv)0 = X

v = I , same as in (Yao et al., 2019).
Then, zv can be naturally sampled as follows ac-
cording to the reparameterization trick (Kingma
and Welling, 2013): zv = µ

v + �
v � ✏, where � is

the element-wise product, and ✏ ⇠ N (0, I) is the
noise variable. Through the message propagation
of the GCN layer, words that co-occur frequently
tend to achieve similar representations in the latent
topic space.

Similar to z
v, we also have:

q�(z
d|Ad

, z
v) =

DY

t=1

q�(z
d
t |Ad

t , z
v)

q�(z
d
t |Ad

t , z
v) = N (zdt |µd

t , diag((�
d
t )

2))

(6)

where µ
d
t , (�

d
t )

2 are the mean and diagonal covari-
ance of the multivariate Gaussian distribution. Al-
though there are two types of nodes - word and

document - in the bipartite graph A
d, we mainly fo-

cus on learning representations of document nodes
based on the representations of word nodes learned
from A

v in this step. Therefore, we propose the uni-
directional message passing (UDMP) process on
A

d, which propagates the information from word
nodes to documents: H

d
t = ⇢(

PV
i=1A

d
tiz

v
i W

d)
where ⇢ is the Relu activation function, W d is the
weight matrix.

Then, we parametrize the posterior and inference
z
d based on UDMP:

µ
d = UDMP (Ad

, z
v
,W

d
µ )

log�
d = UDMP (Ad

, z
v
,W

d
� )

(7)

where µ
d
,�

d are matrices of µd
t , (�

d
t )

2, UDMP

is the message passing as in Equation 4, W d
µ ,W

d
�

are weight matrices. Similarly, we sample z
d as

follows zd = µ
d + �

d � ", where " ⇠ N (0, I) is
the noise variable. Through the propagation mech-
anism of UDMP, documents which share similar
words tend to yield similar representations in the
latent topic space.

Although T-VGAE can learn topics z
v and

document-topic representations zd as in traditional
topic models, we do not focus on proposing a novel
topic model, but aim to combine the topic model
with VGAE, to improve word and document rep-
resentations with latent topic semantic and pro-
vide probabilistic interpretability. Moreover, rather
than learning topics and document-topic representa-
tions from the document-word feature A

d as LDA
topic models (Blei et al., 2003), we propose to
learn word-topic representations zv from word co-
occurrence matrix A

v, and then infer document-
topic representations z

d based on the document-
word feature Ad and word-topic representations zv,
which is similar to the Biterm topic model (Yan
et al., 2013).

3.2.3 Probabilistic Decoder
With the learned z

v and z
d, ideally, the observed

graph A
v and A

d can be reconstructed through a
decoding process. For Av, we assume P✓(Av|zv)
conforms to a multivariate Gaussian distribution,
whose mean parameters are generated from the
inner product of the latent variable z

v:

P✓(A
v|zv) =

VY

i=1

p✓(A
v
i |zv)

p✓(A
v
i |zv) =

VY

i=1

N (Av
i |⇢(zvi (zv)T), I)

(8)
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where ⇢ is the nonlinear activation function.
Similarly, the inner product between z

v and z
d

is used to generate A
d, which is sampled from the

multivariate Gaussian distribution:

P✓(A
d|zd, zv) =

DY

i=1

p✓(A
d
i |zdi , zv)

P✓(A
d
i |zdi , zv) =

DY

i=1

N (Ad
i |⇢(zdi (zv)T), I)

(9)

For categorical labels Y , we assume p✓(Y |zd)
follows a multinomial distribution P✓(Y |zd) =
Mul(Y |fy(zd)), whose label probability vectors
are generated from z

d, where fy is the multi-layer
neural network. For each document t, the predic-
tion is given by ŷt = argmax

y2c
P✓(y|fy(zdt )).

3.2.4 Optimization
We can rewrite Equation 4 to yield the final varia-
tional objective function:

L(✓,�) ⇡
VX

i=1

VX

j=1

log p✓(A
v
i,j |zvi , zvj )

+
DX

t=1

⇣
log p✓(A

d
t |zdt , zv) + log p✓(Yt|zdt )

⌘

�KL[q�(zv)||p✓(zv)]
�KL[q�(zd)||p✓(z

d)]

(10)

with following reconstruction terms and KL diver-
gences:

log p✓(A
v
i |zv) ⇡ ||Av

i � ⇢(zvi (z
v)T)||2

log p✓(A
d
t |zdt , zv) ⇡ ||Ad

t � ⇢(zdt (z
v)T)||2

log p✓(Yt|zdt ) ⇡ Yt log ŷt + (1� Yt) log(1� ŷt)

KL[q�(z
v
i )||p✓(zvi )]

⇡ 1
2

VX

j=1

((µv
ij)

2+(�v
ij)

2 � (1 + log(�v
ij)

2))

KL[q�(z
d
t )||p✓(zdt )]

⇡ 1
2

VX

j=1

((µd
tj)

2+(�d
tj)

2 � (1 + log(�d
tj)

2))

(11)
Through maximizing the objective with stochas-
tic gradient descent, we jointly learn the latent
word and document representations, which can ef-
ficiently reconstruct observed graphs and predict
ground truth labels.

4 Experiment
In this section, to evaluate the effectiveness of our
proposed T-VGAE, experiments are conducted on
both supervised and semi-supervised text classifica-
tion tasks, as well as unsupervised topic modeling
tasks.

Table 2: Summary statistics of five datasets (Yao et al.,
2019)

Dataset Doc Train Test Word Node Class Average
Len

20NG 18,846 11,314 7,532 42,757 42,757 20 221.26
R8 7,674 5,485 2,189 7,688 7,688 8 65.72

R52 9,100 6,532 2,568 8,892 8,892 52 69.82
Ohsumed 7,400 3,357 4,043 14,157 14,157 23 135.82

MR 10,662 7,108 3,554 18,764 18,764 2 20.39

A
cc
u
ra
cy

-0.01

0

0.01

0.02

0.03

0.04

0.05

K
50 100 150 200 250

MR
Oshumed
R8
R52
20NG

Figure 3: The augmentation of test accuracy with our
model under different topic size k.

4.1 Datasets and settings
4.1.1 Datasets
We conduct experiments on five commonly
used text classification datasets: 20NewsGroups,
Ohsumed, R52 and R8, and MR. We use the same
data preprocessing as in (Yao et al., 2019). The
overview of the five datasets is depicted in Table 2.

4.1.2 Baselines
We compare our method with the following two
categories of baselines:

text classification: 1)TF-IDF+LR: the classical
logistic regression method based on TF-IDF fea-
tures. 2) CNN (Kim, 2014): the convolutional neu-
ral network based method with pre-trained word
embeddings. 3) LSTM (Liu et al., 2016): the
LSTM based method with pre-trained word em-
beddings. 4) SWEM (Shen et al., 2018): the word
embedding model with pooling strategies. 5) fast-
Text (Joulin et al., 2016): the averages word em-
beddings for text classification. 6) Graph-CNN
(Peng et al., 2018a): a graph CNN model based
on word embedding similarity graphs 7) LEAM
(Wang et al., 2018): the label-embedding attentive
models with document embeddings based on word
and label descriptions. 8) TextGCN (Yao et al.,
2019): a GCN model with a corpus-level graph to
learn word and document embeddings. 9) DHTG
(Wang et al., 2020): a GCN model with a dynamic
hierarchical topic graph based on the topic model.

topic modeling: 1) LDA (Blei et al., 2003):
a classical probabilistic topic model. 2) NVDM

1Its code is not released yet, therefore we only report the
test micro precision here.
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Table 3: Micro precision, recall and F1-Score on document classification task. We report mean ± standard devia-
tion averaged on 10 times following previous methods (Yao et al., 2019).

Model 20NG MR Ohsumed
Measure Precision Recall F1 Precision Recall F1 Precision Recall

TF-IDF+LR 0.8212 ± 0.0000 0.8301± 0.0000 0.8300± 0.0000 0.7452 ± 0.0000 0.7432 ± 0.0000 0.7431 ± 0.0000 0.5454 ± 0.0000 0.5454 ± 0.0000
CNN 0.8213 ± 0.0052 0.7844 ± 0.0022 0.7880± 0.0020 0.7769 ± 0.0007 0.7366 ± 0.0026 0.7390 ± 0.0018 0.5842 ± 0.0106 0.4429 ± 0.0057

LSTM 0.7321 ± 0.0185 0.7025 ± 0.0046 0.7016 ± 0.0050 0.7769 ± 0.0086 0.7526 ± 0.0062 0.7432 ± 0.0024 0.4925 ± 0.0107 0.4852 ± 0.0046
SWEM 0.8518 ± 0.0029 0.8324 ± 0.0016 0.8273 ± 0.0021 0.7668 ± 0.0063 0.7481 ± 0.0026 0.7428 ± 0.0023 0.6313 ± 0.0055 0.6280 ± 0.0041
LEAM 0.8190 ± 0.0024 0.8026 ± 0.0014 0.8132 ± 0.0021 0.7693 ± 0.0045 0.7438 ± 0.0036 0.7562 ± 0.0023 0.5859 ± 0.0079 0.5832 ± 0.0026
fastText 0.7937 ± 0.0030 0.7726 ± 0.0046 0.7730 ± 0.0028 0.7512 ± 0.0020 0.7411 ± 0.0013 0.7406 ± 0.0025 0.5769 ± 0.0049 0.5594 ± 0.0012

Graph-CNN 0.8139 ± 0.0032 0.8106 ± 0.0056 0.8099 ± 0.0042 0.7721 ± 0.0027 0.7643 ± 0.0034 0.7667 ± 0.0029 0.6390 ± 0.0053 0.6345 ± 0.0032
TextGCN 0.8634 ± 0.0009 0.8627 ± 0.0006 0.8627 ± 0.0011 0.7673 ± 0.0020 0.7640 ± 0.0010 0.7636 ± 0.0010 0.6834 ± 0.0056 0.6820 ± 0.0014
DHTG 1 0.8713 ± 0.0007 - - 0.7721 ± 0.0011 - - 0.6880 ± 0.0033 -
T-VGAE 0.8808 ± 0.0006 0.8804 ± 0.0010 0.8802 ± 0.0009 0.7803 ± 0.0011 0.7805 ± 0.0011 0.7805 ± 0.0011 0.7002 ± 0.0014 0.7008 ± 0.0010
Model Ohsumed R52 R8

Measure F1 Precision Recall F1 Precision Recall F1
TF-IDF+LR 0.5453 ± 0.0000 0.8693 ± 0.0000 0.8670 ± 0.0000 0.8687 ± 0.0000 0.9375 ± 0.0000 0.9366 ± 0.0000 0.9344 ± 0.0000

CNN 0.4295 ± 0.0018 0.8760 ± 0.0048 0.8711± 0.0012 0.8431 ± 0.0015 0.9572± 0.0052 0.9534± 0.0014 0.9519± 0.0017
LSTM 0.4864 ± 0.0060 0.9053 ± 0.0091 0.8932 ± 0.0022 0.8910 ± 0.0018 0.9634 ± 0.0033 0.9612 ± 0.0025 0.9608 ± 0.0031
SWEM 0.6252 ± 0.0032 0.9295 ± 0.0024 0.9236 ± 0.0022 0.9180 ± 0.0022 0.9531 ± 0.0026 0.9487 ± 0.0024 0.9462 ± 0.0018
LEAM 0.5824 ± 0.0022 0.9183 ± 0.0023 0.9041 ± 0.0017 0.9002 ± 0.0030 0.9330 ± 0.0024 0.9211 ± 0.0012 0.9207 ± 0.0014
fastText 0.5587 ± 0.0026 0.9282 ± 0.0009 0.9146 ± 0.0012 0.9112 ± 0.0026 0.9611 ± 0.0021 0.9467 ± 0.0018 0.9501 ± 0.0022

Graph-CNN 0.6278 ± 0.0023 0.9274 ± 0.0023 0.9106 ± 0.0030 0.9098 ± 0.0028 0.9697 ± 0.0012 0.9387 ± 0.0018 0.9403 ± 0.0014
TextGCN 0.6820 ± 0.0012 0.9354 ± 0.0018 0.9340 ± 0.0012 0.9339 ± 0.0010 0.9704 ± 0.0010 0.9703 ± 0.0009 0.9700 ± 0.0012

DHTG - 0.9393 ± 0.0010 - - 0.9733 ± 0.0006 - -
T-VGAE 0.7004± 0.0010 0.9505 ± 0.0010 0.9500 ± 0.0012 0.9500 ± 0.0010 0.9768 ± 0.0014 0.9766 ± 0.0009 0.9765 ± 0.0009

Table 4: Test Accuracy on document classification task
averaged on 10 times using different layers of GCN en-
coder, i.e. l 2 (0, 1, 2, 3).

Model R52 R8
l = 0 0.9143 ± 0.0015 0.9495 ± 0.0011
l = 1 0.9505 ± 0.0010 0.9768 ± 0.0014
l = 2 0.8942 ± 0.0012 0.9667 ± 0.0014
l = 3 0.7326 ± 0.0012 0.8795 ± 0.0010

(Miao et al., 2016): a deep neural variational doc-
ument topic model. 3) AVITM (Srivastava and
Sutton, 2017): an autoencoding variational Bayes
(AEVB) topic model based on LDA. 4) GraphBTM
(Zhu et al., 2018): an enriched biterm topic model
(BTM) with the word co-occurrence graph encoded
by GCN.

4.1.3 Settings
Following (Yao et al., 2019), we set the hidden
size K of latent variables and other neural network
layers as 200 and set the window size in PPMI as 20.
The dropout is only utilized in the classifier, and
is set to 0.85. We train our model for a maximum
of 1000 epochs with Adam (Kingma and Ba, 2015)
under learning rate 0.05. 10% of the data set is
randomly sampled and spared as the validation set
for model selection. The parameter settings of all
baselines are the same as their original papers or
implementations.

4.2 Performance
4.2.1 Supervised Classification
We present the test performances of models in text
classification among five datasets in Table 3. We
can see that our model consistently outperforms
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Figure 4: Test accuracy of different models under vary-
ing training data proportions.

all the baselines on each dataset, which proves the
effectiveness of our proposed methods. Compared
with TextGCN, our method yields better perfor-
mance in both datasets. It demonstrates the impor-
tance of integrating the latent semantic structures
in text classification. It is also observed from the
superior performance of DHTG when compared
with TextGCN. However, DHTG only learns from
the document-word correlation while our method
fully exploits both word-word and document-word
correlation information, resulting in a significant
improvement over DHTG. This proves the effec-
tiveness of unified topic modeling and graph repre-
sentation learning in text classification. Moreover,
there are no test documents involved during the
training of our method, which shows the induc-
tive learning ability of our method, different from
TextGCN and DHTG which requires a global graph
including all documents and words.

4.2.2 Effects of Correlation Information of
Different Order

In Table 4, we further present the test accuracy
of our method using different layers of GCN en-
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coder, to demonstrate the impact of a different order
of word-word correlation information in A

v. On
datasets R52 and R8, our method achieves the best
performance when the layer number is 1. This is
different from TextGCN and DHTG, which gener-
ally have the best performance with 2 layer GCN.
A possible reason is that our model has already
considered one-hop document-word relation infor-
mation when encoding document-word graph A

d.
If the layer number is set to 1 when encoding A

v, it
actually integrates two-hop neighborhood informa-
tion, thus achieves a similar effect to TextGCN and
DHTG. In Table 4, we further present the test accu-
racy of our method using different layers of GCN
encoder, to demonstrate the impact of different or-
ders of word-word correlation information in A

v.
On datasets R52 and R8, our method achieves the
best performance when the layer number is 1. This
is different from TextGCN and DHTG, which gen-
erally have the best performance with 2 layer GCN.
A possible reason is that our model has already
considered one-hop document-word relation infor-
mation when encoding document-word graph A

d.
If the layer number is set to 1 when encoding A

v,
it actually integrates two-hop neighborhood infor-
mation, thus achieves a similar effect to TextGCN
and DHTG.

4.2.3 Effects of Number of Topics
Figure 3 shows the changes of the test accuracy
along with different numbers of topics on five
datasets. We can see that the test accuracy on five
datasets generally improves with the increase of
the number of topics and reaches the peak when
the topic number is around 200. The number of
topics shows more impact on the Oshumed dataset
than on the other four datasets. This does not seem
to be related to the number of classes in the dataset.
We suspect it has to do with the nature of the text
(medical domain vs. other domains).

4.2.4 Semi-Supervised Classification
In Figure 4, we further present the semi-supervised
classification test accuracy on datasets 20NG and
R8 where different proportions (1%, 5%,10% and
20%) of the original training set are used. We
can see that, in cases where labeled samples are
limited, our model still consistently outperforms
all the baselines. Compared with other methods,
TextGCN and our model can preserve good perfor-
mance with few labeled samples (1%, 5%). This
illustrates the effect of label propagation in GCN

for semi-supervised learning. When compared with
TextGCN, our model yields better performance be-
cause of its inductive learning capability and the
incorporation of the latent topic semantics.

4.2.5 Document Topic Modelling

Table 5: The top-10 words and coherence score of top-
ics in 20NG dataset from z

v .

Category Topic

Sport

T57: team season hockey game nhl players win
play baseball chip 1.8902
T64: clipper hockey season team encryption key
nhl toal baseball gt 1.1985

Autos

T61: lcs x11r5 xpert x 6128 cars enterpoop lintlibdir
car xwininfo 1.1931
T62: x11r5 x car cars lcs encryption daubenspeck
xterm clipper xpert 0.8977

Elec

T12: mac centris graphics quadra iisi apple c650
tomj geb powerbook 1.1603
T71: mac dod quadra centris apple bike iisi
encryption lciii lc 0.9789

Table 6: The average topic coherence (higher is bet-
ter) and perplexity (lower is better) with different topic
numbers.

Metrics Topic coherence Perplexity
Model K=50 K=200 K=50 K=200
LDA 0.17 0.14 728 688

NVDM 0.08 0.06 837 884
AVITM 0.24 0.19 1059 1128

GraphBTM 0.28 0.26 - -
T-VGAE 0.37 0.59 615 665

(a) T-VGAE (b) DHTG (c) TextGCN

Figure 5: The t-SNE visualization of test document em-
beddings of 20NG by different models.

We further evaluate the performance of models
on unsupervised topic modeling tasks. We gener-
ally assume that the more topics are coherent, the
more they are interpretable. Following (Srivastava
and Sutton, 2017), We use the average pairwise
PMI of the top 10 words in each topic and the
perplexity with the ELBO as quality measures of
topics. We show in Table 6 the measures under
different topic numbers in the 20NG dataset. We
remove the supervised loss of our method and the
result of GraphBTM is not presented for unable
to learn document topic representation for each
document.
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In the table, we can see that our model outper-
forms the others in terms of topic coherence, which
could be attributed to the combination of word co-
occurrence graph and message passing in GCN.
The message passing leads to similar representa-
tions of words that co-occur frequently in the la-
tent topic space, thus improves the semantic coher-
ence of learned topics, as shown in Table 5 that
related words tend to belong to the same topic. Our
method also benefits from document-word correla-
tion, and yield better performance when compared
with GraphBTM which encode bi-term graph via
GCN.

4.2.6 Document Representations
We utilize t-SNE to visualize the latent test docu-
ment representations of the 20NG dataset learned
by our model, DHTG and TextGCN in Figure 5,
in which each dot represents a document and each
color represents a category. Our method yields the
best clustering results compared with the others,
which means the topics are more consistent with
pre-defined classes. It shows the superior inter-
pretability of our method for modeling the latent
topics along with both word co-occurrence graph
and document-word graph when compared with
DHTG.

5 Conclusion

In this paper, we proposed a novel deep latent vari-
able model T-VGAE via combining the topic model
with VGAE. It can learn more interpretable rep-
resentations and leverage the latent topic seman-
tic to improve the classification performance. T-
VGAE inherits advantages from the topic model
and VGAE: probabilistic interpretability and effi-
cient label propagation mechanism. Experimental
results demonstrate the effectiveness of our method
along with inductive learning. As future work, it
would be interesting to explore better-suited prior
distribution in the generative process. It is also
possible to extend our model to other tasks, such as
information recommendation and link prediction.
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