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Abstract

In this work, we present an information-
theoretic framework that formulates cross-
lingual language model pre-training as
maximizing mutual information between
multilingual-multi-granularity texts. The
unified view helps us to better understand the
existing methods for learning cross-lingual
representations. More importantly, inspired
by the framework, we propose a new pre-
training task based on contrastive learning.
Specifically, we regard a bilingual sentence
pair as two views of the same meaning and
encourage their encoded representations to
be more similar than the negative examples.
By leveraging both monolingual and parallel
corpora, we jointly train the pretext tasks to
improve the cross-lingual transferability of
pre-trained models. Experimental results on
several benchmarks show that our approach
achieves considerably better performance.
The code and pre-trained models are available
at https://aka.ms/infoxlm.

1 Introduction

Learning cross-lingual language representations
plays an important role in overcoming the language
barrier of NLP models. The recent success of cross-
lingual language model pre-training (Devlin et al.,
2019; Conneau and Lample, 2019; Conneau et al.,
2020a; Chi et al., 2020; Liu et al., 2020) signif-
icantly improves the cross-lingual transferability
in various downstream tasks, such as cross-lingual
classification, and question answering.

State-of-the-art cross-lingual pre-trained mod-
els are typically built upon multilingual masked
language modeling (MMLM; Devlin et al. 2019;
Conneau et al. 2020a), and translation language
modeling (TLM; Conneau and Lample 2019). The
goal of both pretext tasks is to predict masked to-
kens given input context. The difference is that
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MMLM uses monolingual text as input, while TLM
feeds bilingual parallel sentences into the model.
Even without explicit encouragement of learning
universal representations across languages, the de-
rived models have shown promising abilities of
cross-lingual transfer.

In this work, we formulate cross-lingual pre-
training from a unified information-theoretic per-
spective. Following the mutual information maxi-
mization principle (Hjelm et al., 2019; Kong et al.,
2020), we show that the existing pretext tasks can
be viewed as maximizing the lower bounds of
mutual information between various multilingual-
multi-granularity views.

Specifically, MMLM maximizes mutual infor-
mation between the masked tokens and the con-
text in the same language while the anchor points
across languages encourages the correlation be-
tween cross-lingual contexts. Moreover, we present
that TLM can maximize mutual information be-
tween the masked tokens and the parallel context,
which implicitly aligns encoded representations
of different languages. The unified information-
theoretic framework also inspires us to propose
a new cross-lingual pre-training task, named as
cross-lingual contrast (XLCO). The model learns
to distinguish the translation of an input sentence
from a set of negative examples. In comparison
to TLM that maximizes token-sequence mutual
information, XLCO maximizes sequence-level mu-
tual information between translation pairs which
are regarded as cross-lingual views of the same
meaning. We employ the momentum contrast (He
et al., 2020) to realize XLCO. We also propose
the mixup contrast and conduct the contrast on the
universal layer to further facilitate the cross-lingual
transferability.

Under the presented framework, we develop a
cross-lingual pre-trained model (INFOXLM) to
leverage both monolingual and parallel corpora.
We jointly train INFOXLM with MMLM, TLM
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and XLCO. We conduct extensive experiments on
several cross-lingual understanding tasks, includ-
ing cross-lingual natural language inference (Con-
neau et al., 2018), cross-lingual question answer-
ing (Lewis et al., 2020), and cross-lingual sentence
retrieval (Artetxe and Schwenk, 2019). Experimen-
tal results show that INFOXLM outperforms strong
baselines on all the benchmarks. Moreover, the
analysis indicates that INFOXLM achieves better
cross-lingual transferability.

2 Related Work

2.1 Cross-Lingual LM Pre-Training

Multilingual BERT (mBERT; Devlin et al. 2019)
is pre-trained with the multilingual masked lan-
guage modeling (MMLM) task on the monolingual
text. mBERT produces cross-lingual representa-
tions and performs cross-lingual tasks surprisingly
well (Wu and Dredze, 2019). XLM (Conneau and
Lample, 2019) extends mBERT with the translation
language modeling (TLM) task so that the model
can learn cross-lingual representations from par-
allel corpora. Unicoder (Huang et al., 2019) tries
several pre-training tasks to utilize parallel corpora.
ALM (Yang et al., 2020) extends TLM to code-
switched sequences obtained from translation pairs.
XLM-R (Conneau et al., 2020a) scales up MMLM
pre-training with larger corpus and longer training.
LaBSE (Feng et al., 2020) learns cross-lingual sen-
tence embeddings by an additive translation rank-
ing loss.

In addition to learning cross-lingual encoders,
several pre-trained models focus on generation.
MASS (Song et al., 2019) and mBART (Liu et al.,
2020) pretrain sequence-to-sequence models to im-
prove machine translation. XNLG (Chi et al., 2020)
focuses on the cross-lingual transfer of language
generation, such as cross-lingual question genera-
tion, and abstractive summarization.

2.2 Mutual Information Maximization

Various methods have successfully learned visual
or language representations by maximizing mutual
information between different views of input. It is
difficult to directly maximize mutual information.
In practice, the methods resort to a tractable lower
bound as the estimator, such as InfoNCE (Oord
et al., 2018), and the variational form of the KL
divergence (Nguyen et al., 2010). The estimators
are also known as contrastive learning (Arora et al.,
2019) that measures the representation similarities

between the sampled positive and negative pairs.
In addition to the estimators, various view pairs are
employed in these methods. The view pair can be
the local and global features of an image (Hjelm
et al., 2019; Bachman et al., 2019), the random
data augmentations of the same image (Tian et al.,
2019; He et al., 2020; Chen et al., 2020), or differ-
ent parts of a sequence (Oord et al., 2018; Henaff,
2020; Kong et al., 2020). Kong et al. (2020) show
that learning word embeddings or contextual em-
beddings can also be unified under the framework
of mutual information maximization.

3 Information-Theoretic Framework for
Cross-Lingual Pre-Training

In representation learning, the learned representa-
tions are expected to preserve the information of
the original input data. However, it is intractable
to directly model the mutual information between
the input data and the representations. Alterna-
tively, we can maximize the mutual information
between the representations from different views
of the input data, e.g., different parts of a sentence,
a translation pair of the same meaning.

In this section, we start from a unified
information-theoretic perspective, and formulate
cross-lingual pre-training with the mutual infor-
mation maximization principle. Then, under the
information-theoretic framework, we propose a
new cross-lingual pre-training task, named as cross-
lingual contrast (XLCO). Finally, we present the
pre-training procedure of our INFOXLM.

3.1 Multilingual Masked Language Modeling

The goal of multilingual masked language mod-
eling (MMLM; Devlin et al. 2019) is to recover
the masked tokens from a randomly masked se-
quence. For each input sequence of MMLM, we
sample a text from the monolingual corpus for pre-
training. Let (c1, x1) denote a monolingual text
sequence, where x1 is the masked token, and c1
is the corresponding context. Intuitively, we need
to maximize their dependency (i.e., I(c1;x1)), so
that the context representations are predictive for
masked tokens (Kong et al., 2020).

For the example pair (c1, x1), we construct a set
N that contains x1 and |N | − 1 negative samples
drawn from a proposal distribution q. According to
the InfoNCE (Oord et al., 2018) lower bound, we
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have:

I(c1;x1)

> E
q(N )

[
log

fθ(c1, x1)∑
x′∈N fθ(c1, x′)

]
+ log |N | (1)

where fθ is a function that scores whether the input
c1 and x1 is a positive pair.

Given context c1, MMLM learns to minimize
the cross-entropy loss of the masked token x1:

LMMLM = − log
exp(gθT (c1)

>gθE (x1))∑
x′∈V exp(gθT (c1)

>gθE (x
′))

(2)

where V is the vocabulary, gθE is a look-up func-
tion that returns the token embeddings, gθT is
a Transformer that returns the final hidden vec-
tors in position of x1. According to Equation (1)
and Equation (2), if N = V and fθ(c1, x1) =
exp(gθT (c1)

>gθE (x1)), we can find that MMLM
maximizes a lower bound of I(c1;x1).

Next, we explain why MMLM can implicitly
learn cross-lingual representations. Let (c2, x2)
denote a MMLM instance that is in different lan-
guage as (c1, x1). Because the vocabulary, the po-
sition embedding, and special tokens are shared
across languages, it is common to find anchor
points (Pires et al., 2019; Dufter and Schütze, 2020)
where x1 = x2 (such as subword, punctuation, and
digit) or I(x1, x2) is positive (i.e., the representa-
tions are associated or isomorphic). With the bridge
effect of {x1, x2}, MMLM obtains a v-structure de-
pendency “c1 → {x1, x2} ← c2”, which leads to a
negative co-information (i.e., interaction informa-
tion) I(c1; c2; {x1, x2}) (Tsujishita, 1995). Specif-
ically, the negative value of I(c1; c2; {x1, x2}) in-
dicates that the variable {x1, x2} enhances the cor-
relation between c1 and c2 (Fano, 1963).

In summary, although MMLM learns to maxi-
mize I(c1, x1) and I(c2, x2) in each language, we
argue that the task encourages the cross-lingual
correlation of learned representations. Notice that
for the setting without word-piece overlap (Artetxe
et al., 2020; Conneau et al., 2020b; K et al., 2020),
we hypothesize that the information bottleneck
principle (Tishby and Zaslavsky, 2015) tends to
transform the cross-lingual structural similarity
into isomorphic representations, which has sim-
ilar bridge effects as the anchor points. Then we
can explain how the cross-lingual ability is spread
out as above. We leave more discussions about the
setting without word-piece overlap for future work.

3.2 Translation Language Modeling
Similar to MMLM, the goal of translation language
modeling (TLM; Conneau and Lample 2019) is
also to predict masked tokens, but the prediction is
conditioned on the concatenation of a translation
pair. We try to explain how TLM pre-training en-
hances cross-lingual transfer from an information-
theoretic perspective.

Let c1 and c2 denote a translation pair of sen-
tences, and x1 a masked token taken in c1. So c1
and x1 are in the same language, while c1 and c2
are in different ones. Following the derivations of
MMLM in Section 3.1, the objective of TLM is
maximizing the lower bound of mutual informa-
tion I(c1, c2;x1). By re-writing the above mutual
information, we have:

I(c1, c2;x1) = I(c1;x1) + I(c2;x1|c1) (3)

The first term I(c1;x1) corresponds to MMLM,
which learns to use monolingual context. In con-
trast, the second term I(c2;x1|c1) indicates cross-
lingual mutual information between c2 and x1 that
is not included by c1. In other words, I(c2;x1|c1)
encourages the model to predict masked tokens by
using the context in a different language. In con-
clusion, TLM learns to utilize the context in both
languages, which implicitly improves the cross-
lingual transferability of pre-trained models.

3.3 Cross-Lingual Contrastive Learning
Inspired by the unified information-theoretic frame-
work, we propose a new cross-lingual pre-training
task, named as cross-lingual contrast (XLCO). The
goal of XLCO is to maximize mutual information
between the representations of parallel sentences
c1 and c2, i.e., I(c1, c2). Unlike maximizing token-
sequence mutual information in MMLM and TLM,
XLCO targets at cross-lingual sequence-level mu-
tual information.

We describe how the task is derived as follows.
Using InfoNCE (Oord et al., 2018) as the lower
bound, we have:

I(c1; c2) > E
q(N )

[
log

fθ(c1, c2)∑
c′∈N fθ(c1, c′)

]
+ log |N |

(4)

where N is a set that contains the positive pair c2
and |N |−1 negative samples. In order to maximize
the lower bound of I(c1; c2), we need to design the
function fθ that measures the similarity between
the input sentence and the proposal distribution
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q(N ). Specifically, we use the following similarity
function fθ:

fθ(c1, c2) = exp(gθ(c1)
>gθ(c2)) (5)

where gθ is the Transformer encoder that we are
pre-training. Following (Devlin et al., 2019), a
special token [CLS] is added to the input, whose
hidden vector is used as the sequence representa-
tion. Additionally, we use a linear projection head
after the encoder in gθ.

Momentum Contrast Another design choice is
how to construct N . As shown in Equation (4),
a large |N | improves the tightness of the lower
bound, which has been proven to be critical for
contrastive learning (Chen et al., 2020).

In our work, we employ the momentum con-
trast (He et al., 2020) to construct the setN , where
the previously encoded sentences are progressively
reused as negative samples. Specifically, we con-
struct two encoders with the same architecture
which are the query encoder gθQ and the key en-
coder gθK . The loss function of XLCO is:

LXLCO = − log
exp(gθQ(c1)

>gθK (c2))∑
c′∈N exp(gθQ(c1)

>gθK (c
′))

(6)

During training, the query encoder gθQ encodes
c1 and is updated by backpropagation. The key
encoder gθK encodes N and is learned with mo-
mentum update (He et al., 2020) towards the query
encoder. The negative examples in N are orga-
nized as a queue, where a newly encoded example
is added while the oldest one is popped from the
queue. We initialize the query encoder and the
key encoder with the same parameters, and pre-fill
the queue with a set of encoded examples until it
reaches the desired size |N |. Notice that the size
of the queue remains constant during training.

Mixup Contrast For each pair, we concatenate
it with a randomly sampled translation pair from
another parallel corpus. For example, consider
the pairs 〈c1, c2〉 and 〈d1, d2〉 sampled from two
different parallel corpora. The two pairs are con-
catenated in a random order, such as 〈c1d1, c2d2〉,
and 〈c1d2, d1c2〉. The data augmentation of mixup
encourages pre-trained models to learn sentence
boundaries and to distinguish the order of multilin-
gual texts.

Contrast on Universal Layer As a pre-training
task maximizing the lower bound of sequence-
level mutual information, XLCO is usually jointly
learned with token-sequence tasks, such as
MMLM, and TLM. In order to make XLCO more
compatible with the other pretext tasks, we propose
to conduct contrastive learning on the most univer-
sal (or transferable) layer in terms of MMLM and
TLM.

In our implementations, we instead use the hid-
den vectors of [CLS] at layer 8 to perform con-
trastive learning for base-size (12 layers) models,
and layer 12 for large-size (24 layers) models. Be-
cause previous analysis (Sabet et al., 2020; Dufter
and Schütze, 2020; Conneau et al., 2020b) shows
that the specific layers of MMLM learn more uni-
versal representations and work better on cross-
lingual retrieval tasks than other layers. We choose
the layers following the same principle.

The intuition behind the method is that MMLM
and TLM encourage the last layer to produce
language-distinguishable token representations be-
cause of the masked token classification. But
XLCO tends to learn similar representations across
languages. So we do not directly use the hidden
states of the last layer in XLCO.

3.4 Cross-Lingual Pre-Training

We pretrain a cross-lingual model INFOXLM by
jointly maximizing the lower bounds of three
types of mutual information, including monolin-
gual token-sequence mutual information (MMLM),
cross-lingual token-sequence mutual information
(TLM), and cross-lingual sequence-level mutual
information (XLCO). Formally, the loss of cross-
lingual pre-training in INFOXLM is defined as:

L = LMMLM + LTLM + LXLCO (7)

where we apply the same weight for the loss terms.
Both TLM and XLCO use parallel data. The

number of bilingual pairs increases with the square
of the number of languages. In our work, we set
English as the pivot language following (Conneau
and Lample, 2019), i.e., we only use the parallel
corpora that contain English.

In order to balance the data size between high-
resource and low-resource languages, we apply a
multilingual sampling strategy (Conneau and Lam-
ple, 2019) for both monolingual and parallel data.
An example in the language l is sampled with the
probability pl ∝ (nl/n)

0.7, where nl is the number
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of instances in the language l, and n refers to the
total number of data. Empirically, the sampling
algorithm alleviates the bias towards high-resource
languages (Conneau et al., 2020a).

4 Experiments

In this section, we first present the training config-
uration of INFOXLM. Then we compare the fine-
tuning results of INFOXLM with previous work on
three cross-lingual understanding tasks. We also
conduct ablation studies to understand the major
components of INFOXLM.

4.1 Setup

Corpus We use the same pre-training corpora
as previous models (Conneau et al., 2020a; Con-
neau and Lample, 2019). Specifically, we recon-
struct CC-100 (Conneau et al., 2020a) for MMLM,
which remains 94 languages by filtering the lan-
guage code larger than 0.1GB. Following (Con-
neau and Lample, 2019), for the TLM and XLCO

tasks, we employ 14 language pairs of parallel data
that involves English. We collect translation pairs
from MultiUN (Ziemski et al., 2016), IIT Bom-
bay (Kunchukuttan et al., 2018), OPUS (Tiede-
mann, 2012), and WikiMatrix (Schwenk et al.,
2019). The size of parallel corpora is about 42GB.
More details about the pre-training data are de-
scribed in the appendix.

Model Size We follow the model configurations
of XLM-R (Conneau et al., 2020a). For the Trans-
former (Vaswani et al., 2017) architecture, we use
12 layers and 768 hidden states for INFOXLM (i.e.,
base size), and 24 layers and 1,024 hidden states
for INFOXLMLARGE (i.e., large size).

Hyperparameters We initialize the parameters
of INFOXLM with XLM-R. We optimize the
model with Adam (Kingma and Ba, 2015) using
a batch size of 2048 for a total of 150K steps for
INFOXLM, and 200K steps for INFOXLMLARGE.
The same number of training examples are fed to
three tasks. The learning rate is scheduled with a
linear decay with 10K warmup steps, where the
peak learning rate is set as 0.0002 for INFOXLM,
and 0.0001 for INFOXLMLARGE. The momen-
tum coefficient is set as 0.9999 and 0.999 for IN-
FOXLM and INFOXLMLARGE, respectively. The
length of the queue is set as 131, 072. The train-
ing procedure takes about 2.3 days × 2 Nvidia
DGX-2 stations for INFOXLM, and 5 days × 16

Nvidia DGX-2 stations for INFOXLMLARGE. De-
tails about the pre-training hyperparameters can be
found in the appendix.

4.2 Evaluation
We conduct experiments over three cross-lingual
understanding tasks, i.e., cross-lingual natural lan-
guage inference, cross-lingual sentence retrieval,
and cross-lingual question answering.

Cross-Lingual Natural Language Inference
The Cross-Lingual Natural Language Inference cor-
pus (XNLI; Conneau et al. 2018) is a widely used
cross-lingual classification benchmark. The goal
of NLI is to identify the relationship of an input
sentence pair. We evaluate the models under the
following two settings. (1) Cross-Lingual Transfer:
fine-tuning the model with English training set and
directly evaluating on multilingual test sets. (2)
Translate-Train-All: fine-tuning the model with the
English training data and the pseudo data that are
translated from English to the other languages.

Cross-Lingual Sentence Retrieval The goal of
the cross-lingual sentence retrieval task is to extract
parallel sentences from bilingual comparable cor-
pora. We use the subset of 36 language pairs of the
Tatoeba dataset (Artetxe and Schwenk, 2019) for
the task. The dataset is collected from Tatoeba1,
which is an open collection of multilingual parallel
sentences in more than 300 languages. Follow-
ing (Hu et al., 2020), we use the averaged hidden
vectors in the seventh Transformer layer to com-
pute cosine similarity for sentence retrieval.

Cross-Lingual Question Answering We
use the Multilingual Question Answering
(MLQA; Lewis et al. 2020) dataset for the cross-
lingual QA task. MLQA provides development
and test data in seven languages in the format of
SQuAD v1.1 (Rajpurkar et al., 2016). We follow
the fine-tuning method introduced in (Devlin et al.,
2019) that concatenates the question-passage pair
as the input.

4.3 Results
We compare INFOXLM with the following pre-
trained Transformer models: (1) Multilingual
BERT (MBERT; Devlin et al. 2019) is pre-trained
with MMLM on Wikipedia in 102 languages; (2)
XLM (Conneau and Lample, 2019) pretrains both
MMLM and TLM tasks on Wikipedia in 100

1https://tatoeba.org/eng/

https://tatoeba.org/eng/
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Models #M en fr es de el bg ru tr ar vi th zh hi sw ur Avg

Fine-tune multilingual model on English training set (Cross-lingual Transfer)

MBERT* N 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
XLM (w/o TLM)* N 83.7 76.2 76.6 73.7 72.4 73.0 72.1 68.1 68.4 72.0 68.2 71.5 64.5 58.0 62.4 71.3
XLM* N 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
XLM (w/o TLM)* 1 83.2 76.7 77.7 74.0 72.7 74.1 72.7 68.7 68.6 72.9 68.9 72.5 65.6 58.2 62.4 70.7
UNICODER 1 85.4 79.2 79.8 78.2 77.3 78.5 76.7 73.8 73.9 75.9 71.8 74.7 70.1 67.4 66.3 75.3
XLM-R* 1 85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
XLM-R (reimpl) 1 84.7 79.1 79.4 77.4 76.6 78.4 76.0 73.5 72.6 75.5 73.0 74.5 71.0 65.7 67.6 75.0
INFOXLM 1 86.4 80.3 80.9 79.3 77.8 79.3 77.6 75.6 74.2 77.1 74.6 77.0 72.2 67.5 67.3 76.5
−XLCO 1 86.5 80.5 80.3 78.7 77.3 78.8 77.4 74.6 73.8 76.8 73.7 76.7 71.8 66.3 66.4 76.0

XLM-RLARGE* 1 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9
XLM-RLARGE (reimpl) 1 88.9 83.6 84.8 83.1 82.4 83.7 80.7 79.2 79.0 80.4 77.8 79.8 76.8 72.7 73.3 80.4
INFOXLMLARGE 1 89.7 84.5 85.5 84.1 83.4 84.2 81.3 80.9 80.4 80.8 78.9 80.9 77.9 74.8 73.7 81.4

Fine-tune multilingual model on all training sets (Translate-Train-All)

XLM (w/o TLM)* 1 84.5 80.1 81.3 79.3 78.6 79.4 77.5 75.2 75.6 78.3 75.7 78.3 72.1 69.2 67.7 76.9
XLM* 1 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
XLM-R* 1 85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
XLM-R (reimpl) 1 85.0 81.0 81.9 80.6 79.7 81.4 79.5 77.7 77.3 79.5 77.5 79.1 75.3 72.2 70.9 78.6
INFOXLM 1 86.5 82.6 83.0 82.3 81.3 82.4 80.6 79.5 78.9 81.0 78.9 80.7 77.8 73.3 71.6 80.0

Table 1: Evaluation results on XNLI cross-lingual natural language inference. We report test accuracy in 15
languages. The model number #M=N indicates the model selection is done on each language’s validation set (i.e.,
each language has a different model), while #M=1 means only one model is used for all languages. Results with
“*” are taken from Conneau et al. (2020a). “(reimpl)” is our reimplementation of fine-tuning, which is the same
as INFOXLM. Results of INFOXLM and XLM-R (reimpl) are averaged over five runs. “−XLCO” is the model
without cross-lingual contrast.

languages; (3) XLM-R (Conneau et al., 2020a)
scales up MMLM to the large CC-100 corpus
in 100 languages with much more training steps;
(4) UNICODER (Liang et al., 2020) continues
training XLM-R with MMLM and TLM. (5) IN-
FOXLM−XLCO continues training XLM-R with
MMLM and TLM, using the same pre-training
datasets with INFOXLM.

Cross-Lingual Natural Language Inference
Table 1 reports the classification accuracy on each
test of XNLI under the above evaluation settings.
The final scores on test set are averaged over five
random seeds. INFOXLM outperforms all base-
line models on the two evaluation settings of XNLI.
In the cross-lingual transfer setting, INFOXLM
achieves 76.5 averaged accuracy, outperforming
XLM-R (reimpl) by 1.5. Similar improvements can
be observed for large-size models. Moreover, the
ablation results “−XLCO” show that cross-lingual
contrast is helpful for zero-shot transfer in most
languages. We also find that INFOXLM improves
the results in the translate-train-all setting.

Cross-Lingual Sentence Retrieval In Table 2
and Table 3, we report the top-1 accuracy scores of
cross-lingual sentence retrieval with the base-size

models. The evaluation results demonstrate that
INFOXLM produces better aligned cross-lingual
sentence representations. On the 14 language pairs
that are covered by parallel data, INFOXLM ob-
tains 77.8 and 80.6 averaged top-1 accuracies in
the directions of xx → en and en → xx, outper-
forming XLM-R by 20.2 and 21.1. Even on the
22 language pairs that are not covered by parallel
data, INFOXLM outperforms XLM-R on 16 out of
22 language pairs, providing 8.1% improvement
in averaged accuracy. In comparison, the ablation
variant “−XLCO” (i.e., MMLM+TLM) obtains
better results than XLM-R in Table 2, while getting
worse performance than XLM-R in Table 3. The
results indicate that XLCO encourages the model
to learn universal representations even on the lan-
guage pairs without parallel supervision.

Cross-Lingual Question Answering Table 4
compares INFOXLM with baseline models on
MLQA, where we report the F1 and the exact
match (EM) scores on each test set. Both IN-
FOXLM and INFOXLMLARGE obtain the best re-
sults against the four baselines. In addition, the
results of the ablation variant “−XLCO” indicate
that the proposed cross-lingual contrast is benefi-
cial on MLQA.
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Models Direction ar bg zh de el fr hi ru es sw th tr ur vi Avg

XLM-R xx→ en 36.8 67.6 60.7 89.9 53.7 74.1 54.2 72.5 74.0 18.7 38.3 61.1 36.6 68.4 57.6
INFOXLM xx→ en 59.0 78.6 86.3 93.9 62.1 79.4 87.1 83.8 88.2 39.5 84.9 83.3 73.0 89.6 77.8
−XLCO xx→ en 42.9 65.5 69.5 91.1 55.6 76.4 71.6 74.9 74.8 20.5 68.1 69.8 51.6 81.8 65.3

XLM-R en→ xx 38.6 69.9 60.3 89.4 57.3 74.3 49.3 73.0 74.6 14.4 58.4 64.0 36.9 72.5 59.5
INFOXLM en→ xx 68.6 78.6 86.4 95.1 72.6 84.0 88.3 85.7 87.2 40.8 91.2 84.7 73.3 92.0 80.6
−XLCO en→ xx 45.4 64.0 69.3 88.1 56.5 72.3 69.6 73.6 71.5 22.1 79.7 64.3 48.2 79.8 64.6

Table 2: Evaluation results on Tatoeba cross-lingual sentence retrieval. We report the top-1 accuracy of 14 language
pairs that are covered by parallel data.

Models Direction af bn et eu fi he hu id it jv ja ka kk ko ml mr nl fa pt ta te tl Avg

XLM-R xx→ en 55.2 29.3 49.3 33.5 66.7 53.9 61.6 70.8 68.2 15.1 57.2 41.4 40.3 51.6 56.5 46.0 79.5 68.0 80.6 25.7 32.5 31.2 50.6
INFOXLM xx→ en 48.6 49.6 38.3 36.7 65.7 62.9 61.7 79.9 72.2 13.2 78.3 57.4 49.2 74.5 76.6 72.0 80.8 82.2 84.7 53.7 53.0 42.1 60.6
−XLCO xx→ en 33.1 33.5 25.9 20.8 48.4 49.1 46.1 68.5 60.4 12.2 60.6 38.6 35.1 60.6 57.8 49.1 72.2 66.0 75.3 36.5 38.0 25.5 46.1

XLM-R en→ xx 55.0 27.9 50.2 32.5 72.9 63.2 67.1 71.9 68.0 9.8 58.2 52.0 41.7 58.3 60.8 42.1 78.9 69.6 82.1 33.2 38.9 29.7 52.9
INFOXLM en→ xx 51.8 49.1 35.2 28.6 65.6 66.5 61.7 80.1 72.8 7.8 80.4 61.9 50.6 79.6 78.7 68.1 81.8 82.8 86.5 63.5 53.0 35.5 61.0
−XLCO en→ xx 28.1 23.5 19.0 12.6 45.2 49.7 40.8 62.8 57.5 3.4 58.2 38.9 31.3 61.0 57.5 37.2 67.8 66.4 75.0 43.0 31.6 17.9 42.2

Table 3: Evaluation results on Tatoeba cross-lingual sentence retrieval. We report the top-1 accuracy scores of 22
language pairs that are not covered by parallel data.

4.4 Analysis and Discussion

To understand INFOXLM and the cross-lingual
contrast task more deeply, we conduct analysis
from the perspectives of cross-lingual transfer and
cross-lingual representations. Furthermore, we per-
form comprehensive ablation studies on the ma-
jor components of INFOXLM, including the cross-
lingual pre-training tasks, mixup contrast, the con-
trast layer, and the momentum contrast. To reduce
the computation load, we use INFOXLM15 in our
ablation studies, which is trained on 15 languages
for 100K steps.

Cross-Lingual Transfer Gap Cross-lingual
transfer gap (Hu et al., 2020) is the difference
between the performance on the English test set
and the averaged performance on the test sets of
all other languages. A lower cross-lingual transfer
gap score indicates more end-task knowledge
from the English training set is transferred to
other languages. In Table 5, we compare the
cross-lingual transfer gap scores of INFOXLM
with baseline models on MLQA and XNLI. Note
that we do not include the results of XLM because
it is pre-trained on 15 languages or using #M=N.
The results show that INFOXLM reduces the gap
scores on both MLQA and XNLI, providing better
cross-lingual transferability than the baselines.

Cross-Lingual Representations In addition to
cross-lingual transfer, learning good cross-lingual
representations is also the goal of cross-lingual pre-

1 2 3 4 5 6 7 8 9 10 11 12
Layer

20

40

60

80

A
ve

ra
ge

d
A

cc
u

ra
cy

XLM-R

InfoXLM

- TLM

- XlCo

Figure 1: Evaluation results of different layers on
Tatoeba cross-lingual sentence retrieval.

training. In order to analyze how the cross-lingual
contrast task affects the alignment of the learned
cross-lingual representations, we evaluate the repre-
sentations of different middle layers on the Tatoeba
test sets of the 14 languages that are covered by
parallel data. Figure 1 presents the averaged top-
1 accuracy of cross-lingual sentence retrieval in
the direction of xx→ en. INFOXLM outperforms
XLM-R on all of the 12 layers, demonstrating
that our proposed task improves the cross-lingual
alignment of the learned representations. From the
results of XLM-R, we observe that the model suf-
fers from a performance drop in the last few layers.
The reason is that MMLM encourages the repre-
sentations of the last hidden layer to be similar to
token embeddings, which is contradictory with the
goal of learning cross-lingual representations. In
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Models en es de ar hi vi zh Avg

MBERT* 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
XLM* 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
UNICODER 80.6 / - 68.6 / - 62.7 / - 57.8 / - 62.7 / - 67.5 / - 62.1 / - 66.0 / -
XLM-R 77.1 / 64.6 67.4 / 49.6 60.9 / 46.7 54.9 / 36.6 59.4 / 42.9 64.5 / 44.7 61.8 / 39.3 63.7 / 46.3
XLM-R (reimpl) 80.2 / 67.0 67.7 / 49.9 62.1 / 47.7 56.1 / 37.2 61.1 / 44.0 67.0 / 46.3 61.4 / 38.5 65.1 / 47.2
INFOXLM 81.6 / 68.3 69.8 / 51.6 64.3 / 49.4 60.6 / 40.9 65.2 / 47.1 70.2 / 49.0 64.8 / 41.3 68.1 / 49.6
−XLCO 81.2 / 68.1 69.6 / 51.9 64.0 / 49.3 59.7 / 40.2 64.0 / 46.3 69.3 / 48.0 64.1 / 40.6 67.4 / 49.2

XLM-RLARGE 80.6 / 67.8 74.1 / 56.0 68.5 / 53.6 63.1 / 43.5 69.2 / 51.6 71.3 / 50.9 68.0 / 45.4 70.7 / 52.7
XLM-RLARGE (reimpl) 84.0 / 71.1 74.4 / 56.4 70.2 / 55.0 66.5 / 46.3 71.1 / 53.2 74.4 / 53.5 68.6 / 44.6 72.7 / 54.3
INFOXLMLARGE 84.5 / 71.6 75.1 / 57.3 71.2 / 56.2 67.6 / 47.6 72.5 / 54.2 75.2 / 54.1 69.2 / 45.4 73.6 / 55.2

Table 4: Evaluation results on MLQA cross-lingual question answering. We report the F1 and exact match
(EM) scores. Results with “*” are taken from (Lewis et al., 2020). “(reimpl)” is our reimplementation of fine-
tuning, which is the same as INFOXLM. Results of INFOXLM and XLM-R (reimpl) are averaged over five runs.
“−XLCO” is the model without cross-lingual contrast.

Models MLQA XNLI Average

MBERT 23.3 16.9 20.1
XLM-R 17.6 10.4 14.0
INFOXLM 15.8 10.3 13.1
−XLCO 16.1 11.0 13.6

Table 5: Cross-lingual transfer gap scores, i.e., aver-
aged performance drop between English and other lan-
guages in zero-shot transfer. Smaller gap indicates
better transferability. “−XLCO” is the model without
cross-lingual contrast.

contrast, INFOXLM still provides high retrieval
accuracy at the last few layers, which indicates
that INFOXLM provides better aligned represen-
tations than XLM-R. Moreover, we find that the
performance is further improved when removing
TLM, demonstrating that XLCO is more effective
than TLM for aligning cross-lingual representa-
tions, although TLM helps to improve zero-shot
cross-lingual transfer.

Effect of Cross-Lingual Pre-training Tasks To
better understand the effect of the cross-lingual
pre-training tasks, we perform ablation studies on
the pre-training tasks of INFOXLM, by remov-
ing XLCO, TLM, or both. We present the ex-
perimental results in Table 7. Comparing the re-
sults of −TLM and −XLCO with the results of
−TLM−XLCO, we find that both XLCO and TLM
effectively improve cross-lingual transferability of
the pre-trained INFOXLM model. TLM is more ef-
fective for XNLI while XLCO is more effective for
MLQA. Moreover, the performance can be further
improved by jointly learning XLCO and TLM.

Effect of Contrast on Universal Layer We con-
duct experiments to investigate whether contrast

Model XLCO Layer XNLI MLQA

INFOXLM15 8 76.45 67.87 / 49.58
INFOXLM15 12 76.12 67.83 / 49.50

INFOXLM15−TLM 8 75.58 67.42 / 49.27
INFOXLM15−TLM 12 75.85 67.84 / 49.54

Table 6: Contrast on the universal layer v.s. on the last
layer. Results are averaged over five runs. “−TLM” is
the ablation variant without TLM.

Model XNLI MLQA

[0] INFOXLM15 76.45 67.87 / 49.58
[1] [0]−XLCO 76.24 67.43 / 49.23
[2] [0]−TLM 75.85 67.84 / 49.54
[3] [2]−XLCO 75.33 66.86 / 48.82
[4] [2]−Mixup 75.43 67.21 / 49.19
[5] [2]−Momentum 75.32 66.58 / 48.66

Table 7: Ablation results on components of INFOXLM.
Results are averaged over five runs.

on the universal layer improves cross-lingual pre-
training. As shown in Table 6, we compare the
evaluation results of four variants of INFOXLM,
where XLCO is applied on the layer 8 (i.e., uni-
versal layer) or on the layer 12 (i.e., the last layer).
We find that contrast on the layer 8 provides bet-
ter results for INFOXLM. However, conducting
XLCO on layer 12 performs better when the TLM
task is excluded. The results show that maximiz-
ing context-sequence (TLM) and sequence-level
(XLCO) mutual information at the last layer tends
to interfere with each other. Thus, we suggest ap-
plying XLCO on the universal layer for pre-training
INFOXLM.

Effect of Mixup Contrast We conduct an abla-
tion study on the mixup contrast strategy. We pre-
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train a model that directly uses translation pairs for
XLCO without mixup contrast (−TLM−Mixup).
As shown in Table 7, we present the evaluation re-
sults on XNLI and MLQA. We observe that mixup
contrast improves the performance of INFOXLM
on both datasets.

Effect of Momentum Contrast In order to show
whether our pre-trained model benefits from mo-
mentum contrast, we pretrain a revised version of
INFOXLM without momentum contrast. In other
words, the parameters of the key encoder are al-
ways the same as the query encoder. As shown
in Table 7, we report evaluation results (indicated
by “−TLM−Momentum”) of removing momen-
tum contrast on XNLI and MLQA. We observe a
performance descent after removing the momen-
tum contrast from INFOXLM, which indicates that
momentum contrast improves the learned language
representations of INFOXLM.

5 Conclusion

In this paper, we present a cross-lingual pre-trained
model INFOXLM that is trained with both mono-
lingual and parallel corpora. The model is mo-
tivated by the unified view of cross-lingual pre-
training from an information-theoretic perspective.
Specifically, in addition to the masked language
modeling and translation language modeling tasks,
INFOXLM is jointly pre-trained with a newly intro-
duced cross-lingual contrastive learning task. The
cross-lingual contrast leverages bilingual pairs as
the two views of the same meaning, and encourages
their encoded representations to be more similar
than the negative examples. Experimental results
on several cross-lingual language understanding
tasks show that INFOXLM can considerably im-
prove the performance.

6 Ethical Considerations

Currently, most NLP research works and applica-
tions are English-centric, which makes non-English
users hard to access to NLP-related services. Our
work focuses on cross-lingual language model pre-
training. With the pre-trained model, we are able
to transfer end-task knowledge from high-resource
languages to low-resource languages, which helps
to build more accessible NLP applications. Addi-
tionally, incorporating parallel corpora into the pre-
training procedure improves the training efficiency,
which potentially reduces the computational cost
for building multilingual NLP applications.
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A Pre-Training Data

We reconstruct CCNet2 and follow (Conneau et al.,
2020a) to reproduce the CC-100 corpus for mono-
lingual texts. The resulting corpus contains 94 lan-
guages. Table 8 reports the language codes and data
size in our work. Notice that several languages can
share the same ISO language code, e.g., zh rep-
resents both Simplified Chinese and Traditional
Chinese. Moreover, Table 9 shows the statistics of
the parallel data.

Code Size (GB) Code Size (GB) Code Size (GB)

af 0.2 hr 1.4 pa 0.8
am 0.4 hu 9.5 pl 28.6
ar 16.1 hy 0.7 ps 0.4
as 0.1 id 17.2 pt 39.4
az 0.8 is 0.5 ro 11.0
ba 0.2 it 47.2 ru 253.3
be 0.5 ja 86.8 sa 0.2
bg 7.0 ka 1.0 sd 0.2
bn 5.5 kk 0.6 si 1.3
ca 3.0 km 0.2 sk 13.6

ckb 0.6 kn 0.3 sl 6.2
cs 14.9 ko 40.0 sq 3.0
cy 0.4 ky 0.5 sr 7.2
da 6.9 la 0.3 sv 60.4
de 99.0 lo 0.2 sw 0.3
el 13.1 lt 2.3 ta 7.9
en 731.6 lv 1.3 te 2.3
eo 0.5 mk 0.6 tg 0.7
es 85.6 ml 1.3 th 33.0
et 1.4 mn 0.4 tl 1.2
eu 1.0 mr 0.5 tr 56.4
fa 19.0 ms 0.7 tt 0.6
fi 5.9 mt 0.2 ug 0.2
fr 89.9 my 0.4 uk 13.4
ga 0.2 ne 0.6 ur 3.0
gl 1.5 nl 25.9 uz 0.1
gu 0.3 nn 0.4 vi 74.5
he 4.4 no 5.5 yi 0.3
hi 5.0 or 0.3 zh 96.8

Table 8: The statistics of CCNet used corpus for pre-
training.

ISO Code Size (GB) ISO Code Size (GB)

en-ar 5.88 en-ru 7.72
en-bg 0.49 en-sw 0.06
en-de 4.21 en-th 0.47
en-el 2.28 en-tr 0.34
en-es 7.09 en-ur 0.39
en-fr 7.63 en-vi 0.86
en-hi 0.62 en-zh 4.02

Table 9: Parallel data used for pre-training.

B Results of Training From Scratch

We conduct experiments under the setting of train-
ing from scratch. The Transformer size and hy-
perparameters follow BERT-base (Devlin et al.,
2019). The parameters are randomly initialized
from U [−0.02, 0.02]. We optimize the models with

2https://github.com/facebookresearch/
cc_net

Model XNLI MLQA
Metrics Acc. F1 / EM

MMLMSCRATCH 69.40 55.02 / 37.90
INFOXLMSCRATCH 70.71 59.71 / 41.46
−XLCO 70.64 57.70 / 40.21
−TLM 69.76 58.22 / 40.78
−MMLM 63.06 52.81 / 35.01

Table 10: Ablation results of the models pre-trained
from scratch. Results are averaged over five runs.

Adam using a batch size of 256 for a total of 1M
steps. The learning rate is scheduled with a lin-
ear decay with 10K warmup steps, where the peak
learning rate is set as 0.0001. For cross-lingual
contrast, we set the queue length as 16, 384. We
use a warmup of 200K steps for the key encoder
and then enable cross-lingual contrast. We use an
inverse square root scheduler to set the momen-
tum coefficient, i.e., m = min(1− t−0.51, 0.9995),
where t is training step.

Table 10 shows the results of INFOXLMSCRATCH

and various ablations. INFOXLMSCRATCH signifi-
cantly outperforms MMLMSCRATCH on both XNLI
and MLQA. We also evaluate the pre-training ob-
jectives of INFOXLM, where we ablate XLCO,
TLM, and MMLM, respectively. The findings
agree with the results in Table 7.

C Hyperparameters for Pre-Training

As shown in Table 11, we present the hyperparam-
eters for pre-training INFOXLM. We use the same
vocabulary with XLM-R (Conneau et al., 2020a).

Hyperparameters FROM SCRATCH BASE LARGE

Layers 12 12 24
Hidden size 768 768 1,024
FFN inner hidden size 3,072 3,072 4,096
Attention heads 12 12 16
Training steps 1M 150K 200K
Batch size 256 2,048 2,048
Adam ε 1e-6 1e-6 1e-6
Adam β (0.9, 0.999) (0.9, 0.98) (0.9, 0.98)
Learning rate 1e-4 2e-4 1e-4
Learning rate schedule Linear Linear Linear
Warmup steps 10,000 10,000 10,000
Gradient clipping 1.0 1.0 1.0
Weight decay 0.01 0.01 0.01
Momentum coefficient 0.9995* 0.9999 0.999
Queue length 16,384 131,072 131,072
Universal layer 8 8 12

Table 11: Hyperparameters used for INFOXLM pre-
training. *: the momentum coefficient uses an inverse
square root scheduler m = min(1− t−0.51, 0.9995).

https://github.com/facebookresearch/cc_net
https://github.com/facebookresearch/cc_net
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XNLI MLQA

Batch size 32 {16, 32}
Learning rate {5e-6, 7e-6, 1e-5} {2e-5, 3e-5, 5e-5}
LR schedule Linear Linear
Warmup 12,500 steps 10%
Weight decay 0 0
Epochs 10 {2, 3, 4}

Table 12: Hyperparameters used for fine-tuning BASE-
size models on XNLI and MLQA.

XNLI MLQA

Batch size 32 32
Learning rate {4e-6, 5e-6, 6e-6} {2e-5, 3e-5, 5e-5}
LR schedule Linear Linear
Warmup 5,000 steps 10%
Weight decay {0, 0.01} 0
Epochs 10 {2, 3, 4}

Table 13: Hyperparameters used for fine-tuning
LARGE-size models on XNLI and MLQA.

D Hyperparameters for Fine-Tuning

In Table 12 and Table 13, we present the hyperpa-
rameters for fine-tuning on XNLI and MLQA. For
each task, the hyperparameters are searched on the
joint validation set of all languages (#M=1). For
XNLI, we evaluate the model every 5,000 steps,
and select the model with the best accuracy score
on the validation set. For MLQA, we directly use
the final learned model. The final scores are aver-
aged over five random seeds.


