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Abstract

It has been shown that named entity recogni-
tion (NER) could benefit from incorporating
the long-distance structured information cap-
tured by dependency trees. We believe this is
because both types of features – the contextual
information captured by the linear sequences
and the structured information captured by the
dependency trees may complement each other.
However, existing approaches largely focused
on stacking the LSTM and graph neural net-
works such as graph convolutional networks
(GCNs) for building improved NER models,
where the exact interaction mechanism be-
tween the two different types of features is not
very clear, and the performance gain does not
appear to be significant. In this work, we pro-
pose a simple and robust solution to incorpo-
rate both types of features with our Synergized-
LSTM (Syn-LSTM), which clearly captures
how the two types of features interact. We con-
duct extensive experiments on several standard
datasets across four languages. The results
demonstrate that the proposed model achieves
better performance than previous approaches
while requiring fewer parameters. Our fur-
ther analysis demonstrates that our model can
capture longer dependencies compared with
strong baselines.1

1 Introduction

Named entity recognition (NER) is one of the
most fundamental and important tasks in natu-
ral language processing (NLP). While the litera-
ture (Peters et al., 2018; Akbik et al., 2018; De-
vlin et al., 2019) largely focuses on training deep
language models to improve the contextualized
word representations, previous studies show that

∗ Lu Xu is under the Joint PhD Program between Alibaba
and Singapore University of Technology and Design. The
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Singapore University of Technology and Design.

1We make our code publicly available at https://
github.com/xuuuluuu/SynLSTM-for-NER.
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Precision Castparts Corp. , Portlan , will begin trading with the symbol PCP .

PRODUCT ?

Dependency Path: Corp. begin trading with symbol PCP

Hybrid Paths: Corp. begin . PCP OR Corp. begin trading with the symbol PCP

neighbor context

Figure 1: A sentence annotated with dependency trees
and named entities. The paths to connect two entities
are shown below the sentence.

the structured information such as interactions be-
tween non-adjacent words can also be important for
NER (Finkel et al., 2005; Jie et al., 2017; Aguilar
and Solorio, 2019).

However, sequence models such as bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) are not
able to fully capture the long-range dependencies
(Bengio, 2009). For instance, Figure 1 (top) shows
one type of structured information in NER. The
words “Precision Castparts Corp.” can be easily
inferred as ORGANIZATION by its context (i.e.,
Corp.). However, the second entity “PCP” could
be misclassified as a PRODUCT entity if a model
relies more on the context “begin trading with” but
ignores the hidden information that “PCP” is the
symbol of “Precision Castparts Corp.”.

Previous research works (Li et al., 2017; Jie and
Lu, 2019; Wang et al., 2019) have been using the
parse trees (Chomsky, 1956, 1969; Sandra and Taft,
2014) to incorporate such structured information.
Figure 1 (Dependency Path) shows that the first en-
tity can be connected to the second entity following
the dependency tree with 5 hops. Incorporating the
dependency information can be done with graph
neural networks (GNNs) such as graph convolu-
tional networks (GCNs) (Kipf and Welling, 2017).
However, simply stacking the LSTM and GCN
architectures for NER can only provide us with
modest improvements; sometimes, it decreases per-
formance (Jie and Lu, 2019). Based on the depen-

https://github.com/xuuuluuu/SynLSTM-for-NER
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dency path in Figure 1, it requires a 5-layer GCN
to capture the connections between these two enti-
ties. However, deep GCN architectures often face
training difficulties, which cause a performance
drop (Hamilton et al., 2017b; Kipf and Welling,
2017). Directly stacking GCN and LSTM has diffi-
culties in modeling the interaction between depen-
dency trees and contextual information.

To address the above limitations, we propose
the Synergized-LSTM (Syn-LSTM), a new recur-
rent neural network architecture that considers an
additional graph-encoded representation to update
the memory and hidden states, as shown in Figure
2. More specifically, the graph-encoded represen-
tation for each word can be obtained with GCNs.
Our proposed Syn-LSTM allows the cell to receive
the structured information from the graph-encoded
representation. With the newly designed gating
mechanism, our model is able to make indepen-
dent assessments on the amounts of information to
be retrieved from the word representation and the
graph-encoded representation respectively. Such
a mechanism allows for better integration of both
contextual and structured information.

Our contributions can be summarized as:

• We propose a simple and robust Syn-LSTM
model to better incorporate the structured in-
formation conveyed by dependency trees. The
output of the Syn-LSTM cell is jointly de-
termined by both contextual and structured
information. We adopt the classic conditional
random fields (CRF) (Lafferty et al., 2001) on
top of the Syn-LSTM for NER.

• We conduct extensive experiments on several
standard datasets across four languages. The
proposed model significantly outperforms pre-
vious approaches on these datasets.

• We show that the proposed model can cap-
ture long-distance interactions between enti-
ties. Our further analysis statistically demon-
strates the proposed gating mechanism is able
to aggregate the structured information selec-
tively.

2 Synergized-LSTM

2.1 Incorporating Structured Information

To incorporate the long-range dependencies, we
consider an additional graph-encoded representa-
tion gt (Figure 2) as the model input to integrate
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Figure 2: Syn-LSTM cell. t is the current time step.

contextual and structured information. The graph-
encoded representation gt can be derived from
Graph Neural Networks (GNNs) such as GCN
(Kipf and Welling, 2017), which are capable of
bringing in structured information through graph
structure (Hamilton et al., 2017a).

However, structured information sometimes is
hard to encode, as we can see from the example
in Figure 1. One naive approach is to use a deep
GNN to capture such information along multiple
dependency arcs between two words, which could
mess up information and lead to training difficul-
ties. A straightforward solution is to integrate both
structured and contextual information via LSTM.
As shown in Figure 1 (Hybrid Paths), the structured
information can be passed to neighbors or context,
which allows a model to use less number of GNN
layers and alleviate such issues for long-range de-
pendencies. The input to the LSTM can simply be
the concatenation of word representation xt and gt
at each position (Jie and Lu, 2019)2. However, be-
cause such an approach requires both xt and gt to
decide the value of the input gate jointly, it could be
a potential victim of two sources of uncertainties:
1) the uncertainty of the quality of graph-encoded
representation gt, and 2) the uncertainty of the ex-
act interaction mechanism between the two types
of features. These may lead to sub-optimal perfor-
mance, especially if the graph-encoded representa-
tion gt is unsatisfactory. Thus, we need to design a
new approach to incorporate both types of informa-
tion from xt and gt with a more explicit interaction
mechanism, with which we hope to alleviate the
above issues.

2They concatenate the current word and head word repre-
sentations.
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2.2 Syn-LSTM Cell
We propose the Synergized-LSTM (Syn-LSTM) to
better integrate the contextual and structured infor-
mation to address the above limitations. The inputs
of the Syn-LSTM cell include previous cell state
ct−1, previous hidden state ht−1, current cell input
xt, and an additional graph-encoded representation
gt. The outputs of the Syn-LSTM cell include cur-
rent cell state ct and current hidden state ht. Within
the cell, there are four gates: input gate it, forget
gate ft, output gate ot, and an additional new gate
mt to control the flow of information. Note that the
forget gate ft and output gate ot are not just look-
ing at ht−1 and xt; they are also affected by the
graph-encoded representation gt. The cell state ct
and hidden state ht are computed as follows:

ft = σ(W (f)xt + U (f)ht−1 +Q(f)gt + b(f))
(1)

ot = σ(W (o)xt + U (o)ht−1 +Q(o)gt + b(o))
(2)

it = σ(W (i)xt + U (i)ht−1 + b(i)) (3)

mt = σ(W (m)gt + U (m)ht−1 + b(m)) (4)

c̃t = tanh(W (u)xt + U (u)ht−1 + b(u)) (5)

s̃t = tanh(W (n)gt + U (n)ht−1 + b(n)) (6)

ct = ft � ct−1 + it � c̃t +mt � s̃t (7)

ht = ot � tanh(ct) (8)

where σ is the sigmoid function, W (·), U (·), Q(·)

and b(·) are learnable parameters.
The additional new gate mt is used to control the

information from the graph-encoded representation
directly. Such a design allows the original input
gates it and our new gate mt to make independent
assessments on the amounts of information to be
retrieved from the word representation xt and the
graph-encoded representation gt respectively. On
the other hand, we also have a different candidate
state s̃t to represent the cell state that corresponds
to the graph-encoded representation separately.

With the proposed Syn-LSTM, the structured
information captured by the dependency trees can
be passed to each cell, and the additional gate mt

is able to control how much structured information
can be incorporated. The additional gate enables
the model to feed the contextual and structured
information into the LSTM cell separately. Such
a mechanism allows our model to aggregate the
information from linear sequence and dependency
trees selectively.

xt-1 xt xt+1 xt+2gL
t-1 gL

t gL
t+1 gL

t+2

Syn-LSTM Syn-LSTM Syn-LSTM Syn-LSTM

yt−1 yt yt+1 yt+2

g0
t-1 g0

t g0
t+1 g0

t+2

Graph Convolutional Network

Figure 3: Syn-LSTM-CRF architecture.

Similar to the previous work (Levy et al., 2018),
it is also possible to show that the cell state ct im-
plicitly computes the element-wise weighted sum
of the previous states by expanding Equation 7:

ct = ft � ct−1 + it � c̃t +mt � s̃t (9)

=
t∑

j=0

(ij �
t∏

k=j+1

fk)� c̃j

+
t∑

j=0

(mj �
t∏

k=j+1

fk)� s̃j (10)

=

t∑
j=0

atj � c̃j +
t∑

j=0

qt
j � s̃j (11)

Note that the two terms, atj and qt
j , are the prod-

uct of gates. The value of the two terms are in the
range from 0 to 1. Since the c̃t and s̃t represent con-
textual and structured features, the corresponding
weights control the flow of information.

3 Syn-LSTM-CRF

The goal of named entity recognition is to predict
the label sequence y = {y1, y2, ..., yn} given the
input sequence w = {w1, w2, ..., wn}, where wt

represents the t-th word and n is the number of
words. Our model is mainly constructed with three
layers: input representation layer, bi-directional
Syn-LSTM layer, and CRF layer. The architecture
of our Syn-LSTM-CRF is shown in Figure 3.

Input Representation Layer Similar to the
work by Lample et al. (2016), our input representa-
tion also includes the character embeddings, which
are the hidden states of character-based BiLSTM.
Jie and Lu (2019) highlight that the dependency
relation helps to enhance the input representation.
Furthermore, previous methods (Wang et al., 2018;
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Wang and Lu, 2018) use embeddings of part-of-
speech (POS) tags as additional input representa-
tion. The input representation xt of our model is
the concatenation of the word embedding vt, the
character representation et, the dependency rela-
tion embedding rt, and the POS embedding pt:

xt = [vt; et; rt; pt] (12)

where both rt and pt embeddings are randomly ini-
tialized and are fine-tuned during training. For ex-
periments with the contextualized representations
(e.g., BERT (Devlin et al., 2019)), we further con-
catenate the contextual word representation to xt.

For our task, we employ the graph convolutional
network (Kipf and Welling, 2017; Zhang et al.,
2018b) to get the graph-encoded representation gt.
Given a graph, an adjacency matrix A of size n×n
is able to represent the graph structure, where n is
the number of nodes; Ai,j = 1 indicates that node
i and node j are connected. We transform depen-
dency tree into its corresponding adjacency matrix3

A, and Ai,j = 1 denotes that node i and node j
have dependency relation. Note that the purpose of
graph-encoded representation gt is to incorporate
the dependency information from neighbor nodes.
The input and output representations of the l-th
layer GCN at t-th position are denoted as gl−1

t and
gl
t respectively. Similar to the work by Zhang et al.

(2018b), we use dt =
∑n

j=1At,j , which is the total
number of neighbors of node t, to normalize the
representation before going through the nonlinear
function. The GCN operation is defined as:

gl
t = ReLU(

n∑
j=1

At,jW
lgl−1

t /dt + bl) (13)

whereW l is a linear transformation and bl is a bias.
The initial g0

t is the concatenation of word embed-
ding vt, character embedding et, and dependency
relation embedding rt: g0

t = [vt; et; rt].

Bi-directional Syn-LSTM Layer With the
word representation xt and the graph-encoded rep-
resentation gt, a bi-directional Syn-LSTM is ap-
plied to generate contextual representation. The for-
ward and backward Syn-LSTM enable the model to
integrate the contextual and structured information
from both directions. We concatenate the hidden
state

−→
ht from forward Syn-LSTM and hidden state

3We treat the dependency edge as undirected and add a
self-loop for each node: Ai,j = Aj,i and Ai,i = 1.

Dataset # Sent. # Entity in Sentence Length

≤ 14 15 - 29 30 - 44 45 - 59 ≥ 60

Catalan
Train 8,709 944 4,821 5,309 2,815 1,389
Dev 1,445 135 836 815 477 168
Test 1,698 243 919 946 518 284

Spanish
Train 9,022 855 4,031 6,656 4,279 1,446
Dev 1,419 125 612 911 707 260
Test 1,705 175 703 1,143 783 242

English
Train 59,924 13,309 33,853 22728 8,099 3,839
Dev 8,528 1,778 4,830 2,882 1,051 525
Test 8,262 1,785 4,673 3,171 1,082 546

Chinese
Train 36,487 8,424 21,033 17,260 8,392 7,434
Dev 6,083 1,493 3,250 2,284 1,099 978
Test 4,472 968 2,517 2,149 1,024 836

Table 1: Statistics of datasets.

←−
ht from backward Syn-LSTM to form the contex-
tual representation of t-th token: ht = [

−→
ht;
←−
ht].

CRF Layer The CRF (Lafferty et al., 2001) is
widely used in NER tasks as it is capable of cap-
turing the structured correlations between adjacent
output labels. Given the sentence w and depen-
dency tree τ , the probability of the label sequence
y is defined as:

P (y|w, τ) = exp(score(w, τ,y))∑
y′ exp(score(w, τ,y′))

(14)

The score function is defined as:

score(w, τ,y) =
n∑

t=0

Tyt,yt+1 +
n∑

t=1

Eyt (15)

where Tyt,yt+1 denotes the transition score from
label yt to yt+1, Eyt denotes the score of label yt at
the t-th position and the scores are computed using
the hidden state ht. We learn the model parameters
by minimizing the negative log-likelihood and em-
ploy the Viterbi algorithm to obtain the best label
sequence during evaluation.

4 Experiments

Datasets The proposed model is evaluated on
four benchmark datasets: SemEval 2010 Task
1 (Recasens et al., 2010) Catalan and Spanish
datasets, and OntoNotes 5.0 (Weischedel et al.,
2013) English and Chinese datasets. We choose
these four datasets as they have explicit dependency
annotations which allow us to evaluate the effec-
tiveness of our approach when dependency trees of
different qualities are used. For SemEval 2010 Task
1 datasets, there are 4 entity types: PER, LOC and
ORG and MISC. For OntoNotes 5.0 datasets, there
are 18 entity types in total. Following the work
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by Jie and Lu (2019), we transform the parse trees
into the Stanford dependency trees (De Marneffe
and Manning, 2008) by using Stanford CoreNLP
(Manning et al., 2014). Detailed statistics of each
dataset can be found in Table 1. Intuitively, longer
sentences would require the model to capture more
long-distance interactions in the sentences. We
present the number of entities in terms of different
sentence lengths to show that these datasets have a
modest amount of entities in long sentences.

Experimental Setup For Catalan, Spanish, and
Chinese, we use the FastText (Grave et al., 2018)
300 dimensional embeddings to initialize the word
embeddings. For OntoNotes 5.0 English, we adopt
the publicly available GloVE (Pennington et al.,
2014) 100 dimensional embeddings to initialize the
word embeddings. For experiments with the con-
textualized representation, we adopt the pre-trained
language model BERT (Devlin et al., 2019) for the
four datasets. Specifically, we use bert-as-service
(Xiao, 2018) to generate the contextualized word
representation without fine-tuning. Following Luo
et al. (2020), we use the cased version of BERT
large model for the experiments on the OntoNotes
5.0 English data. We use the cased version of BERT
base model for the experiments on the other three
datasets. For the character embedding, we ran-
domly initialize the character embeddings and set
the dimension as 30, and set the hidden size of
character-level BiLSTM as 50. The hidden size of
GCN and Syn-LSTM is set as 200, the number of
GCN layer is 2. We adopt stochastic gradient de-
scent (SGD) to optimize our model with batch size
100, L2 regularization 10−8, initial learning rate lr
0.2 and the learning rate is decayed4 with respect
to the number of epoch. We select the best model
based on the performance on the dev set5 and apply
it to the test set. We use the bootstrapping t-test to
compare the results.

Baselines We compare our model with several
baselines with or without dependency tree infor-
mation. The first one is BERT-CRF, where we ap-
ply a CRF layer on top of BERT (Devlin et al.,
2019). Secondly, we compare with the BERT
implementation by HuggingFace (Wolf et al.,
2019). For models with dependency trees, we take
the models BiLSTM-GCN-CRF and dependency-

4We set the decay as 0.1 and the learning rate for each
epoch equals to lr/(1 + decay ∗ (epoch− 1)).

5The experimental results on the dev set and other experi-
mental details can be found in the Appendix.

Models Catalan Spanish

P. R. F1 P. R. F1

BiLSTM-CRF† 76.83 63.47 69.51 78.33 69.89 73.87
BiLSTM-GCN-CRF† 81.25 75.22 78.12 84.10 79.88 81.93
GCN-BiLSTM-CRF∗ 80.95 74.19 77.43 84.36 79.48 81.85
DGLSTM-CRF (2019) 83.35 80.00 81.64 84.05 82.90 83.47
Syn-LSTM-CRF (Ours) 83.90 81.65 82.76 86.22 84.24 85.09

+ Contextualized Word Representation
BERT-CRF∗ 76.34 76.05 76.19 79.30 77.22 78.24
Wolf et al. (2019)∗ 82.82 85.7 84.23 81.36 85.58 83.42
BiLSTM-CRF + ELMO

† 77.85 76.22 77.03 81.72 79.09 80.38
BiLSTM-CRF + BERT

∗ 81.21 79.90 80.55 83.28 80.11 81.66
BiLSTM-GCN-CRF+ ELMO

† 83.68 83.16 83.42 85.31 85.19 85.25
GCN-BiLSTM-CRF+ BERT

∗ 87.60 86.39 86.99 88.07 87.46 87.76
DGLSTM-CRF (2019)+ ELMO 84.71 83.75 84.22 87.79 87.33 87.56
DGLSTM-CRF+ BERT

∗ 85.92 84.50 85.20 85.67 85.00 85.33
Syn-LSTM-CRF+ BERT (Ours) 89.07 89.04 89.05 89.66 90.54 90.10

Table 2: Experimental results [%] on SemEval 2010
Task 1 Catalan and Spanish test set. The models with
* symbol are our implementations. The models with †

symbol are retrieved from Jie and Lu (2019).

guided LSTM-CRF (DGLSTM-CRF) proposed by
Jie and Lu (2019), and our implemented GCN-
BiLSTM-CRF. The BiLSTM-GCN-CRF model
simply stacks the GCN on top of the BiLSTM
to incorporate the dependency trees. The GCN-
BiLSTM-CRF model takes the concatenation of the
graph-encoded representation from GCN and word
embedding as input into BiLSTM. The DGLSTM-
CRF takes the concatenation of the head word
representation and word embedding as input into
BiLSTM. Note that the original implementation of
DGLSTM-CRF uses ELMo (Peters et al., 2018),
but we also implement it with BERT. Besides, we
compare our model with previous works that have
results on these datasets.

4.1 Main Results
SemEval 2010 Task 1 Table 2 shows compar-
isons of our model with baseline models on the
SemEval 2010 Task 1 Catalan and Spanish datasets.
Our Syn-LSTM-CRF model outperforms all exist-
ing models with F1 82.76 and 85.09 (p < 10−5)
compared to DGLSTM-CRF on Catalan and Span-
ish datasets when FastText word embeddings are
used. Our model outperforms the BiLSTM-CRF
model by 13.25 and 11.22 F1 points, and out-
performs BiLSTM-GCN-CRF (Jie and Lu, 2019)
model by 4.64 and 3.16 on Catalan and Span-
ish. The large performance gap between BiLSTM-
GCN-CRF and our model indicates that Syn-
LSTM-CRF shows better compatibility with GCN,
and this confirms that simply stacking GCN on
top of the BiLSTM does not perform well. Our
method outperforms GCN-BiLSTM-CRF model
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by 5.33 and 3.24 F1 points on Catalan and Span-
ish. This shows that our proposed model demon-
strates a better integration of contextual informa-
tion and structured information. Furthermore, our
proposed method brings 1.12 and 1.62 F1 points
improvement on Catalan and Spanish datasets com-
pare to the DGLSTM-CRF (Jie and Lu, 2019).
The DGLSTM-CRF employs 2-layer dependency
guided BiLSTM to capture grandchild dependen-
cies, which leads to longer training time and more
model parameters. However, our Syn-LSTM-CRF
is able to get better performance with fewer model
parameters and shorter training time because of the
fewer LSTM layers. Such results demonstrate that
our proposed Syn-LSTM-CRF manages to capture
structured information effectively.

Furthermore, with the contextualized word repre-
sentation, the Syn-LSTM-CRF+ BERT achieves much
higher performance improvement than any other
method. Our model outperforms the strong base-
line model DGLSTM-CRF+ ELMO by 4.83 and 2.54
in terms of F1 (p < 10−5) on Catalan and Spanish,
respectively.

OntoNotes 5.0 English To understand the gener-
alizability of our model, we evaluate the proposed
Syn-LSTM-CRF model on large scale OntoNotes
5.0 datasets. Table 3 shows comparisons of our
model with baseline models on English. Our Syn-
LSTM-CRF model outperforms all existing meth-
ods with 89.04 in terms of F1 score (p < 0.01)
compared to DGLSTM-CRF, when GloVE word
embeddings are used. Our model outperforms
the BiLSTM-CRF model by 1.97 in F1, BiLSTM-
GCN-CRF (Jie and Lu, 2019) model by 0.86. Note
that our implemented GCN-BiLSTM-CRF outper-
forms the previous DGLSTM-CRF (Jie and Lu,
2019) by 0.14 in F1. Our Syn-LSTM-CRF further
brings the improvement to 0.52. Moreover, with
the contextualized word representation BERT, our
method achieves an F1 score of 90.85 (p < 10−5)
compared to DGLSTM-CRF+ ELMO. Our method
outperforms the previous model (Luo et al., 2020),
which relies on document-level information, by
0.55 in F1. Furthermore, the performance improve-
ment on recall is more prominent as compared
to precision. This shows that the proposed Syn-
LSTM-CRF is able to extract more entities.

OntoNotes 5.0 Chinese We present the experi-
mental results on the OntoNotes 5.0 Chinese test
set in Table 4. Our model still consistently outper-

Models P. R. F1

Chiu and Nichols (2016a) 86.04 86.53 86.28
Li et al. (2017) 88.00 86.50 87.21
Strubell et al. (2017) - - 86.84
Ghaddar and Langlais (2018) - - 87.95
BiLSTM-CRF† 87.21 86.93 87.07
BiLSTM-GCN-CRF† 88.30 88.06 88.18
GCN-BiLSTM-CRF∗ 88.56 88.76 88.66
DGLSTM-CRF (2019) 88.53 88.50 88.52
Luo et al. (2020) - - 87.98
Syn-LSTM-CRF (Ours) 88.96 89.13 89.04

+ Contextualized Word Representation
Akbik et al. (2018) - - 89.30
BERT-CRF∗ 88.42 88.33 88.37
Wolf et al. (2019)∗ 88.39 90.29 89.33
BiLSTM-CRF+ ELMO

† 89.14 88.59 88.87
BiLSTM-CRF+ BERT

∗ 89.32 90.02 89.67
BiLSTM-GCN-CRF+ ELMO

† 89.40 89.71 89.55
GCN-BiLSTM-CRF+ BERT

∗ 89.34 91.26 90.29
DGLSTM-CRF (2019)+ ELMO 89.59 90.17 89.88
DGLSTM-CRF+ BERT

∗ 89.63 89.87 89.75
Luo et al. (2020)+ BERT - - 90.30
Syn-LSTM-CRF+ BERT (Ours) 90.14 91.58 90.85

Table 3: Experimental results [%] on OntoNotes 5.0
English test set. The models with * symbol are our im-
plementations. The models with † symbol are retrieved
from Jie and Lu (2019). There are also other methods
(Li et al., 2020a,b) that use external information, (Yu
et al., 2020) use document-level information to encode
the sentence, which are not direct comparisons to ours.

forms the baseline models, specifically by 2.04 in
F1 compared to BiLSTM-CRF, by 2.39 compared
to BiLSTM-GCN-CRF, by 1.86 compared to GCN-
BILSTM-CRF and by 1.11 (p < 10−5) compared
to DGLSTM-CRF when FastText is used. Note
that the baseline BiLSTM-GCN-CRF model is 0.35
points worse than BiLSTM-CRF. Such results fur-
ther confirm the effectiveness of our proposed Syn-
LSTM-CRF for incorporating structured informa-
tion. We find a similar behavior when the contextu-
alized word representation BERT is used. With the
contextualized word representation, we achieve a
higher F1 score of 80.20.

5 Analysis

Robustness Analysis To study the robustness
of our model and check whether our model can
regulate the flow of information from the graph-
encoded representation, we analyze the influence
of the quality of dependency trees. We train and
evaluate an additional dependency parser (Dozat
and Manning, 2017). Specifically, we train the
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Models P. R. F1

Pradhan et al. (2013) 78.20 66.45 71.85
Lattice LSTM (2018) 76.34 77.01 76.67
BiLSTM-CRF† 78.45 74.59 76.47
BiLSTM-GCN-CRF† 76.35 75.89 76.12
GCN-BiLSTM-CRF∗ 78.30 75.07 76.65
DGLSTM-CRF (2019) 77.40 77.41 77.40
Syn-LSTM-CRF (Ours) 77.95 79.07 78.51

+ Contextualized Word Representation
BERT-CRF∗ 79.83 79.68 79.75
Wolf et al. (2019)∗ 77.35 81.74 79.49
BiLSTM-CRF+ ELMO

† 79.20 79.21 79.20
BiLSTM-CRF+ BERT

∗ 78.45 81.24 79.82
BiLSTM-GCN-CRF+ ELMO

† 78.71 79.29 79.00
GCN-BiLSTM-CRF+ BERT

∗ 79.03 80.98 80.00
DGLSTM-CRF (2019)+ ELMO 78.86 81.00 79.92
DGLSTM-CRF+ BERT

∗ 77.79 81.65 79.67
Syn-LSTM-CRF+ BERT (Ours) 78.66 81.80 80.20

Table 4: Experimental results [%] on OntoNotes 5.0
Chinese test set. The models with * symbol are our im-
plementations. The models with † symbol are retrieved
from Jie and Lu (2019). There are also other methods
(Li et al., 2020a,b) that use external information, which
are not direct comparisons to ours.

dependency parser6 on the given training datasets
and select the best model based on the dev sets.
Then we apply the best model to the test sets to ob-
tain dependency trees. We also train and evaluate
our model with random dependency trees. Table
8 presents the comparisons between Syn-LSTM-
CRF+ BERT and DGLSTM-CRF+ ELMO with given, pre-
dicted and random dependency trees. We observe
that both models encounter a performance drop
when we use the predicted parse trees and ran-
dom trees. Our performance differences with the
given parse trees are relatively smaller than the
corresponding differences in DGLSTM-CRF+ ELMO.
Such an observation demonstrates the robustness of
our proposed model against structured information
from the trees of different quality. It is worthwhile
to note that, with the predicted dependencies, our
proposed Syn-LSTM-CRF+ BERT is still able to out-
perform the strong baseline DGLSTM-CRF+ ELMO

even with the given parse trees on Catalan, English,
and Chinese datasets.

To further study the robustness, we conduct an
analysis to investigate if the gate mt (Figure 2) has
the ability to regulate the flow of information from
the graph-encoded representation. Intuitively, the
gate mt should tend to have a small value when

6The performance of the dependency parser can be found
in the Appendix.
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Figure 4: Left: Catalan, Right: Spanish. x-axis: the
value of gate mt. y-axis: the number of words.
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Figure 5: Left: Catalan, Right: Spanish. x-axis:
sentence length. y-axis:F1 score (%). Note that
DGLSTM-CRF+ ELMO have better performance com-
pared to DGLSTM-CRF+ BERT based on Table 2, 3, 4.

the quality of the parse tree is not good (e.g., with
random trees). We statistically plot the number of
words with respect to different gate value ranges
(mt). Figure 4 shows the comparison between the
models of using random trees and given trees on
Catalan and Spanish7. We observe that the gate mt

is more likely to open (the value is higher) when
we use the given parse trees compared with random
parse trees. Such behavior demonstrates that our
proposed model can selectively aggregate the infor-
mation from the graph-encoded representation.

Effect of Sentence Length We compare the
performance of our Syn-LSTM-CRF+ BERT with
BiLSTM-CRF+ BERT and DGLSTM-CRF+ ELMO mod-
els with respect to sentence length, and the results
are shown in Figure 5. We observe that the Syn-
LSTM-CRF+ BERT model consistently outperforms
the two baseline models on the four languages8.
In particular, although the performance tends to
drop as the sentence length increases, our proposed
model shows relatively better performance when
the sentence length is ≥ 60. This confirms that
the proposed Syn-LSTM-CRF+ BERT is able to ef-
fectively incorporate structured information. Note
that our 2-layer GCN is computed based on the

7We found a similar behavior for OntoNotes 5.0 English
and Chinese datasets, and the detailed result can be found in
the Appendix.

8See the Appendix for the results on OntoNotes 5.0 English
and Chinese datasets.
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Models Catalan Spanish English Chinese

P. R. F1 P. R. F1 P. R. F1 P. R. F1

DGLSTM-CRF+ ELMO (Given) 84.71 83.75 84.22 87.79 87.33 87.56 89.59 90.17 89.88 78.86 81.00 79.92
DGLSTM-CRF+ ELMO (Predicted) - - 82.37 - - 83.92 - - 89.64 - - 79.59
Differences - - -1.85 - - -3.64 - - -0.24 - - -0.33
DGLSTM-CRF+ ELMO (Random) 78.99 79.31 79.15 82.11 80.89 81.49 88.80 88.91 88.85 77.68 80.60 79.11
Differences -5.72 -4.44 -5.07 -5.68 -6.44 -6.07 -0.79 -1.26 -1.03 -1.18 -0.40 -0.81

Syn-LSTM-CRF+ BERT (Given) 89.07 89.04 89.05 89.66 90.54 90.10 90.14 91.58 90.85 78.66 81.80 80.20
Syn-LSTM-CRF+ BERT (Predicted) 87.33 87.42 87.38 86.50 87.49 86.99 89.91 91.27 90.58 78.86 81.57 80.19
Differences -1.74 -1.62 -1.67 -3.16 -3.05 -3.11 -0.23 -0.31 -0.27 +0.20 -0.23 -0.01
Syn-LSTM-CRF+ BERT (Random) 84.57 85.53 85.05 84.61 86.61 85.59 89.24 90.46 89.84 77.25 81.91 79.51
Differences -4.50 -3.51 -4.00 -5.05 -3.93 -4.51 -0.90 -1.12 -1.01 -1.41 -0.11 -0.69

Table 5: Performance comparison between adopting the given, predicted and random dependencies on SemEval
2010 Task 1 Catalan and Spanish, and OntoNotes 5.0 English and Chinese datasets. Note that DGLSTM-CRF+ ELMO

have better performance compared to DGLSTM-CRF+ BERT based on Table 2, 3, 4.

dependency trees, which include both short-range
dependencies and long-range dependencies. With
the graph-encoded representation and the proposed
Syn-LSTM-CRF+ BERT, the individual word repre-
sentation is enhanced by both contextual and struc-
tured information. Therefore, for the sentences
with length of ≤ 14, we can still observe obvious
improvements. The significant performance im-
provements on the four datasets show the capability
of our Syn-LSTM-CRF to capture the structured
information despite the sentence length.

Effect of Entity Length We conduct another
evaluation on BiLSTM-CRF+ BERT, DGLSTM-
CRF+ ELMO, and Syn-LSTM-CRF+ BERT models with
respect to entity length ∈ {1, 2, 3, 4, 5,≥ 6} on
the four languages. Table 6 shows the perfor-
mance comparison of two models with respect
to entity length. With the structured informa-
tion, both DGLSTM-CRF+ ELMO and Syn-LSTM-
CRF+ BERT achieve better performance compared to
BiLSTM-CRF+ BERT. When the length of entity is
≤ 3, Syn-LSTM-CRF+ BERT achieves better results
compared to DGLSTM-CRF+ ELMO. This confirms
that our proposed method can effectively incorpo-
rate the structured information. Our model consis-
tently outperforms BiLSTM-CRF+ BERT, and the per-
formance tends to have more improvements when
entities are getting longer except on the Chinese
dataset. We note there are some special characteris-
tics of the Chinese language. As mentioned by Jie
and Lu (2019), the percentage of entities that are
able to perfectly form a sub-tree is only 92.9% for
OntoNotes Chinese, as compared to 98.5%, 100%,
100% for OntoNotes English, SemEval Catalan
and Spanish. Furthermore, the ratio of long entities
is much higher for Catalan and Spanish compared

Dataset Model Entity Length
1 2 3 4 5 ≥6

Catalan BiLSTM-CRF+ BERT 82.4 84.4 77.8 53.3 31.8 36.2
DGLSTM-CRF+ ELMO 85.4 85.1 84.1 78.9 60.9 59.3
Syn-LSTM-CRF+ BERT 90.5 91.1 87.2 77.8 63.8 60.6

Spanish BiLSTM-CRF+ BERT 85.1 84.2 81.5 33.7 43.1 27.2
DGLSTM-CRF+ ELMO 89.3 87.4 90.8 74.1 67.7 64.4
Syn-LSTM-CRF+ BERT 92.7 90.9 91.1 73.0 75.4 58.5

English BiLSTM-CRF+ BERT 92.9 88.3 83.1 85.5 80.5 77.9
DGLSTM-CRF+ ELMO 91.8 90.1 85.4 87.0 80.8 78.7
Syn-LSTM-CRF+ BERT 92.9 90.8 87.7 87.4 80.6 79.8

Chinese BiLSTM-CRF+ BERT 82.5 74.6 71.4 65.0 69.8 52.5
DGLSTM-CRF+ ELMO 82.2 75.5 71.8 64.1 58.5 41.1
Syn-LSTM-CRF+ BERT 82.5 75.6 73.1 66.4 66.1 42.5

Table 6: F1 score [%] based on entity length on Cata-
lan, Spanish, English and Chinese datasets. Note
that DGLSTM-CRF+ ELMO have better performance com-
pared to DGLSTM-CRF+ BERT based on the results in the
main paper.

to English and Chinese. The experimental results
on Catalan and Spanish datasets show significant
improvements for long entities. Such results show
that the structured information conveyed by the de-
pendency trees can be more crucial when entity
length becomes longer.

Number of GCN Layers To fully explore the
impact of the number of GCN layers, we con-
duct another experiment on Syn-LSTM-CRF+ BERT

model with the number of GCN layers ∈ {1, 2, 3},
and Figure 6 shows the performance on the dev
set of the four languages. The last bar, indicated
as AVG, is obtained by averaging the dev results
on the four datasets. We observe that the overall
performance is better when the number of GCN
layers equals 2. Note that similar behavior can also
be found in the work by Kipf and Welling (2017)
for document classification and node classification.
Therefore, we evaluate our proposed Syn-LSTM-
CRF model with 2-layer GCN.
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Figure 6: Performance of different number of layers of
GCN on dev set.

Model P. R. F1

Syn-LSTM-CRF+ BERT 90.14 91.58 90.85
– 1 layer GCN 89.93 91.30 90.61
– 2 layer GCN 89.50 89.93 89.72
– original dependency 89.91 91.27 90.58
– dependency embedding 89.85 91.31 90.58
– POS embedding 89.84 90.95 90.46

Table 7: Ablation study of the Syn-LSTM-CRF+ BERT

model on OntoNotes 5.0 English. – means removing.

Ablation Study To understand the contribution
of each component, we conduct an ablation study
on the OntoNotes 5.0 English dataset, and Table
7 presents the detailed results of our model with
contextualized representation. We find that the per-
formance drops by 0.24 F1 score when we only use
1-layer GCN. Without GCN at all, the score drops
by 1.13 F1. The original dependency contributes
0.27 F1 score. Removing the dependency relation
embedding also decreases the performance by 0.27
F1. When we remove the POS tags embedding, the
result drops by 0.39 F1.

6 Related Work

LSTM LSTM has demonstrated its great effec-
tiveness in many NLP tasks and becomes a stan-
dard module for many state-of-the-art models (Wen
et al., 2015; Ma and Hovy, 2016; Dozat and Man-
ning, 2017). However, the sequential nature of the
LSTM makes it challenging to capture long-range
dependencies. Zhang et al. (2018a) propose the
S-LSTM model to include a sentence state to allow
both local and global information exchange simul-
taneously. Mogrifier LSTM (Melis et al., 2020)
mutually gates the current input and the previous
output to enhance the interaction between the input
and the context. These two works do not consider
structured information for the LSTM design. Since
natural language is usually structured, Shen et al.

(2018) propose ON-LSTM to add a hierarchical
bias to allow the neurons to be updated by follow-
ing certain order. While the ON-LSTM is learning
the latent constituency parse trees, we focus on
incorporating the explicit structured information
conveyed by the dependency parse trees.

NER Early work (Sasano and Kurohashi, 2008)
uses syntactic dependency features to improve the
SVM performance on Japanese NER task. Liu
et al. (2010) propose to construct skip-edges to link
similar words or words having typed dependen-
cies to capture long-range dependencies. The later
works (Collobert et al., 2010; Lample et al., 2016;
Chiu and Nichols, 2016b) focus on using neural
networks to extract features and achieved the state-
of-the-art performance. Jie et al. (2017) find that
some relations between the dependency edges and
the entities can be used to reduce the search space
of their model, which significantly reduces the time
complexity. Yu et al. (2020) employ pre-trained
language model to encode document-level infor-
mation to explore all spans with the graph-based
dependency graph based ideas. The pre-trained
language models (e.g., BERT (Devlin et al., 2019),
ELMO (Peters et al., 2018)) further improve neural-
based approaches with a good contextualized repre-
sentation. However, previous works did not focus
on investigating how to effectively integrate struc-
tured and contextual information well.

7 Conclusion

In this paper, we propose a simple and robust Syn-
LSTM model to better integrate the structured in-
formation leveraged from the long-range dependen-
cies. Specifically, we introduce an additional graph-
encoded representation to each recurrent unit. Such
a graph-encoded representation can be obtained via
GNNs. Through the newly designed gating mech-
anism, the hidden states are enhanced by contex-
tual information captured by the linear sequence
and structured information captured by the depen-
dency trees. We present the Syn-LSTM-CRF for
NER and adopt the GCN on dependency trees to
obtain the graph-encoded representations. Our ex-
tensive experiments and analysis on the datasets
with four languages demonstrate that the proposed
Syn-LSTM is able to effectively incorporate both
contextual and structured information. The robust-
ness analysis demonstrates that our model is capa-
ble of selectively aggregating the information from
the graph-encoded representation.
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English Chinese Catalan Spanish

Dependency LAS† 94.89 89.28 93.25 93.35

Table 8: Performance of the trained dependency parser.

Dataset Entity Length
1 2 3 4 5 ≥6

English
Train 46,525 17,391 9,714 4,892 1,938 1,368
Dev 6,325 2,395 1,256 643 275 172
Test 6,129 2,598 1,359 706 278 187

Chinese
Train 47,285 9,668 3,626 1,139 467 358
Dev 6,969 1,397 473 169 55 41
Test 5,479 1299 473 146 55 42

Catalan
Train 8,819 3,897 1,742 264 119 437
Dev 1,370 676 269 40 18 58
Test 1,601 811 338 57 27 76

Spanish
Train 10,307 3,609 2,302 301 175 603
Dev 1,523 559 348 54 31 100
Test 1,755 702 369 59 34 127

Table 9: Number of entities with respect to entity
length for OntoNotes 5.0 English and Chinese, Se-
mEval 2010 Catalan and Spanish datasets.

language model BERT (Devlin et al., 2019) for the
four datasets. Specifically, we use bert-as-service
(Xiao, 2018) to generate the contextualized word
representation without fine-tuning. Following Luo
et al. (2020), we select the 18th layer of the cased
version of BERT large model for the experiments
on the OntoNotes 5.0 English data. We use the
the 9th layer of cased version of BERT base model
for the experiments on the rest three datasets. For
the character embedding, we randomly initialize
the character embeddings and set the dimension
as 30, and set the hidden size of character-level
BiLSTM as 50. The hidden size of GCN and Syn-
LSTM is set as 200. Note that we only use one
layer of bi-directional Syn-LSTM for our experi-
ments. Dropout is set to 0.5 for input embeddings
and hidden states. We adopt stochastic gradient
descent (SGD) to optimize our model with batch
size 100, L2 regularization 10−8, learning rate 0.2
and the learning rate is decayed with respect to the
number of epoch 9 .

B Performance of dependency parser

Table 8 presents the performance of dependency
parser.

9We set the decay as 0.1 and the learning rate for each
epoch equals to learning_rate/(1+ decay ∗ (epoch− 1)).
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Figure 7: Left: English, Right: Chinese. The x-axis
indicates the value of gate mt, the y-axis denotes the
number of cells.
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Figure 8: Left: English, Right: Chinese. x-axis:
sentence length. y-axis:F1 score (%). Note that
DGLSTM-CRF+ ELMO have better performance com-
pared to DGLSTM-CRF+ BERT based on the results in the
main paper.

C More data statistics

Table 9 shows the statistics of the number of entities
with respect to entity length for OntoNotes 5.0
English and Chinese, SemEval 2010 Task 1 Catalan
and Spanish datasets.

D More Robustness Analysis

Figure 7 shows the comparisons of the models of
using random trees and given trees on OntoNotes
5.0 English and Chinese datasets.

E Effect of Sentence Length

We compare the performance of our Syn-LSTM-
CRF+ BERT with BiLSTM-CRF+ BERT and DGLSTM-
CRF+ ELMO models with respect to sentence length,
and the results are shown in Figure 8.

F Case Study

We further show an example to visualize the prop-
agation of non-local information (Figure 9). The
example is selected from OntoNotes 5.0 English
dataset. Even though the DGLSTM-CRF (Jie and
Lu, 2019) model is able to recognize "Tianshui"
as a named entity, it predicts a wrong entity type
as PERSON while the true type is GPE. If only
looking at the first half of the sentence, it is possi-
ble to predict "Tianshui" as PERSON because of
the local information "age". However, the second
half of the sentence confirms that the entity type of
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Models English Chinese Catalan Spanish

P. R. F1 P. R. F1 P. R. F1 P. .R F1

Syn-LSTM-CRF 86.73 87.71 87.22 77.25 75.74 76.49 84.48 82.60 83.53 83.76 82.22 82.98

Syn-LSTM-CRF+ BERT 88.10 90.27 89.17 78.05 78.84 78.45 89.87 89.76 89.81 88.50 88.60 88.55

Table 10: Experimental results [%] on dev set.

During Tanshui ’s golden age , large and small boats were constantly coming and going in the harbor , and it was not usual to see enormous steamships .

ROOT

Figure 9: An example of dependency tree. The mentioned entity is highlighted in orange, and the entity type is
GPE.

"Tianshui" is GPE. With the non-local information
from the graph-encoded representation, our Syn-
LSTM-CRF successfully predicts the right entity
type.


