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Abstract
Machine translation (MT) is currently evalu-
ated in one of two ways: in a monolingual
fashion, by comparison with the system out-
put to one or more human reference trans-
lations, or in a trained crosslingual fashion,
by building a supervised model to predict
quality scores from human-labeled data. In
this paper, we propose a more cost-effective,
yet well performing unsupervised alternative
SentSim: relying on strong pretrained mul-
tilingual word and sentence representations,
we directly compare the source with the ma-
chine translated sentence, thus avoiding the
need for both reference translations and la-
belled training data. The metric builds on
state-of-the-art embedding-based approaches –
namely BERTScore and Word Mover’s Dis-
tance – by incorporating a notion of sentence
semantic similarity. By doing so, it achieves
better correlation with human scores on differ-
ent datasets. We show that it outperforms these
and other metrics in the standard monolingual
setting (MT-reference translation), a well as
in the source-MT bilingual setting, where it
performs on par with glass-box approaches to
quality estimation that rely on MT model in-
formation.

1 Introduction

Automatically evaluating machine translation (MT)
as well as other language generation tasks has been
investigated for decades, with substantial progress
in recent years due to the advances of pretrained
contextual word embeddings. The general goal of
such evaluation metrics is to estimate the semantic
equivalence between the input text (e.g. a source
sentence or a document) and an output text that
has been modified in some way (e.g. a translation
or summary), as well as the general quality of the
output (e.g. fluency). As such, by definition met-
rics should perform some forms of input-output
comparisons.

*Contributed equally to this work.

However, this direct comparison has been proven
hard in the past because of the natural differences
between the two versions (such as different lan-
guages). Instead, evaluation metrics have resorted
to comparison against one or more correct outputs
produced by humans, a.k.a. reference texts, where
comparisons at the string level are possible and
straightforward. A multitude of evaluation metrics
have been proposed following this approach, espe-
cially for MT, the application we focus on in this
paper. These include the famous BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005) for machine translation, ROUGE (Lin, 2004)
for summarization, and CIDER (Vedantam et al.,
2014) for image captioning. These traditional met-
rics are based on simple-word, n-gram matching
mechanisms or slight relaxations of these (e.g. syn-
onyms) which are computationally efficient, but
suffer from various limitations.

In order to overcome the drawbacks of the tra-
ditional string-based evaluation metrics, recent
work (Williams et al., 2018; Bowman et al.,
2015; Echizen’ya et al., 2019; Cer et al., 2017;
Echizen’ya et al., 2019) has investigated metrics
that perform comparisons in the semantic space
rather than at the surface level. Notably, applica-
tions of Word Mover’s Distance (WMD; Kusner
et al., 2015), such as WMDo (Chow et al., 2019),
VIFIDEL (Madhyastha et al., 2019) and mover-
score (Zhao et al., 2019), which compute similarity
based on continuous word embeddings using pre-
trained representations. These have been shown to
consistently outperform previous metrics on vari-
ous language generation evaluation tasks.

However, these metrics have two limitations: (i)
they still rely on reference outputs, which are ex-
pensive to collect, only cover one possible correct
answer, and do not represent how humans do eval-
uation; (ii) they are bag-of-embeddings approaches
which capture semantic similarity at the token level,
but are unable to capture the meaning of the sen-
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tence or text as a whole, including correct word
order.

In this paper, focusing on MT, to address these
limitations we first posit that evaluation can be done
by directly comparing the source to the machine
translation using multilingual pretrained embed-
dings, such as multilingual BERT, avoiding the
need of reference translations. We note that this
is different from quality estimation (QE) metrics
(Specia et al., 2013; Shah et al., 2015) , which also
compare source and machine translated texts di-
rectly, but assume an additional step of supervised
learning against human labels for quality. Sec-
ond, we introduce Sentence Semantic Similarity
(SSS) , an additional component to be combined
with bag-of-embeddings distance metrics such as
BERTScore. More specifically, we propose to ex-
plore semantic similarity at the sentence level –
based on sentence embeddings (Sellam et al., 2020;
Reimers and Gurevych, 2020; Thakur et al., 2020)
– and linearly combine it with existing metrics that
use word embeddings. By doing so, the resulting
metrics have access to word and compositional se-
mantics, leading with improved performance. The
combination is a simple weighted sum, and does
not require training data.

As a motivational example, consider the case in
Table 1, from the WMT-17 Metrics task (Zhang
et al., 2019). When faced with MT sentences that
contain a negated version of the reference (MT3
and MT4), token-level metrics such as BERTScore
and WMD cannot correctly penalize these sen-
tences since they match representations of words
in both versions without a full understanding of the
semantics of the sentences. As a consequence, they
return a high score for these incorrect translations,
higher than the score for correct paraphrases of the
reference (MT1 and MT2). Sentence similarity, on
the other hand, correctly captures this mismatch
in meaning, returning relatively lower scores for
Translations 3 and 4. However on their own they
may be too harsh, since the remaining of the sen-
tence has the same meaning. The combination of
these two metrics (last column) balances between
these two sources of information and, as we will
later show in this paper, has higher correlation with
human scores.

Our main contributions are:

1. We investigate and show the effectiveness of
linearly combining sentence-level semantic
similarity with different metrics using token-

level semantic similarity. The resulting com-
bined metric, SentSim, consistently achieves
higher Pearson Correlation with human judge-
ments of translation quality than both word
and sentence similarity alone.

2. We show, for the first time, that these met-
rics can be effective when comparing system-
generated sentences directly against source
sentences, in a crosslingual fashion.

3. Our SentSim metric outperforms existing met-
rics on various MT datasets in monolingual
and crosslingual settings.

2 Related Work

Various natural language generation tasks, includ-
ing machine translation, image captioning, among
others, produce sentences as output. These are eval-
uated either manually or automatically by compari-
son against one or multiple reference sentences. A
multitude of metrics have been proposed for the lat-
ter, which perform comparisons at various granular-
ity levels, from characters to words to embedding
vectors. The goal of such metrics is to replace hu-
man judgements. In order to understand how well
they fare at this task, metrics are evaluated by how
similar their scores are to human assigned judge-
ments on held-out datasets. For absolute quality
judgements, Pearson Correlation is the most pop-
ularly used metric for such a comparison (Mathur
et al., 2020).

Recent studies have showed that the new genera-
tion of automatic evaluation metrics, which instead
of lexical overlap are based on word semantics
using continuous word embedding, such as BERT
(Devlin et al., 2019), ElMo (Peters et al., 2019), XL-
Net (Yang et al., 2019) or XLM-Roberta (Conneau
et al., 2019), have significantly higher Pearson Cor-
relation with the human judgements when compar-
ing reference sentences with system generated sen-
tences. Zhang et al. (2019) introduce BERTscore,
an automatic evaluation metric based on contextual
word embeddings, and tests it for text generation
tasks such as machine translation and imaging cap-
tioning, using embeddings including BERT, XLM-
Roberta, and XLNet (more details in Section 3.2).
Mathur et al. (2019) present supervised and unsu-
pervised metrics which are based on BERT em-
beddings for improving machine translation eval-
uation. Zhao et al. (2019) introduce moverscore,
a metric which generates high-quality evaluation
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BERTScore SSS SSS + BERTScore
REF We have made a complete turnaround.
MT1 We did a complete turnaround. 0.7975 0.9578 0.8111
MT2 We made a turnaround. 0.7748 0.8898 0.7427
MT3 We have not made a complete turnaround. 0.8296 0.3878 0.4832
MT4 We have made an incomplete turnaround. 0.8318 0.4431 0.5107

Table 1: An example from the WMT-17 dataset. Given the reference (REF) sentence, BERTScore assigns higher
similarity to its negated versions (MT3 and MT4) than to semantically similar variants (MT1 and MT2). Contrarily,
SSS gives a very low score to MT3 and MT4. Their combination provides a more balanced score.

results on a number of text generation tasks in-
cluding summarization, machine translation, im-
age captioning, and data-to-text generation, using
BERT embeddings. Clark et al. (2019) present se-
mantic metrics for text summarization based on
the sentence mover’s similarity and ELMo em-
beddings. Chow et al. (2019) introduce a fluency-
based word mover’s distance (WMDo) metric for
machine translation evaluation using Word2Vec
embeddings (Mikolov et al., 2013). Lo (2019)
presents Yisi, a unified automatic semantic ma-
chine translation quality evaluation and estimation
metric using BERT embeddings.

There is also a bulk of work on metrics that take
a step further to optimize their scores using ma-
chine learning algorithms trained on human scores
for quality (Sellam et al., 2020; Ma et al., 2017).
They often perform even better, but the reliance on
human scores for training, in addition to reference
translations at inference time, makes them less ap-
plicable in practice. A separate strand of work that
relies on contextual embeddings is that of Quality
Estimation (Moura et al., 2020; Fomicheva et al.,
2020a; Ranasinghe et al., 2020; Specia et al., 2020).
These are also trained on human judgements of
quality, but machine translations are compared di-
rectly to the source sentences rather than against
reference translations.

In addition to embeddings for words, embed-
dings for full sentences have been shown to work
very well to measure semantic similarity. These are
extracted using Transformer models that are specifi-
cally trained for capturing sentence semantic mean-
ings using BERT, Roberta, and XLM-Roberta em-
beddings (Reimers and Gurevych, 2019; Reimers
and Gurevych, 2020; Thakur et al., 2020) and pro-
vide state-of-art performance pretrained models for
many languages.1

In this paper, we take inspiration from these lines

1https://github.com/UKPLab/sentence-transformers

of previous works to propose unsupervised metrics
that combine word and sentence semantic similarity
and show that this can be effective for both MT-
reference and source-MT comparisons.

3 Method

In this section, we first describe in more detail
the metrics that we have used in our experiments,
namely semantic sentence cosine similarity, WMD
and BERTScore. Then we present our simple ap-
proach to linearly combine these metrics.

3.1 Word Mover’s Distance (WMD)
Kusner et al. (2015) presents word mover’s distance
(WMD) metric, a special case of Earth mover’s dis-
tance (Rubner et al., 2000), computing the semantic
distance between two text documents by aligning
semantically similar words and capturing the word
traveling flow between the similar words utilizing
the vectorial relationship between their word em-
beddings (Mikolov et al., 2013). WMD has been
proven to generate consistently high-quality results
for the tasks of measuring text similarity and text
classification (Kusner et al., 2015). A text doc-
ument is represented as a vector D, where each
element is denoted as the normalized frequency of
a word in the document such that:

D = [d1, d2, ...., dn]
T (1)

where di = ci/
∑n

j cj and ci is the frequency that
the ith word which appears ci times in a given text
document. Assuming there are two given words
from different text document denoted as i and j,
then the euclidean distance in the embedding xi
and xj for the two words is defined as:

c(i, j) = ‖xi − xj‖2 (2)

where c(i, j) is defined as the "word traveling cost"
from xi in one document to xj in the other doc-
ument. Now, assuming there are two documents,
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one is the source document denoted as A where the
word i belongs to, and another one is the target doc-
ument denoted as B where the word j belongs to.
A flow matrix T is defined in which every element
is denoted as Tij , suggesting the number of times
the word i in document A moves to the word j in
document B. Then, the value of the flow matrix is
normalized based on the total count of words in the
vocabulary such that:∑

j

Tij = di,
∑
i

Tij = dj (3)

The semantic distance calculated by WMD can
be then defined as follows:

WMD = min
T≥0

n∑
i,j=1

Tijc(i, j) (4)

WMD, or the semantic distance between two
text documents, can thus be computed by optimiz-
ing values in the flow matrix T . In other words,
WMD corresponds to the minimal semantic dis-
tance to move semantically similar words (via their
embeddings) from one text document to another.

3.2 BERTScore

BERTScore (Zhang et al., 2020) is designed to
evaluate semantic similarity between sentences in
the same language, namely a reference sentence
and a machine-generated sentence. Assume a refer-
ence sentence is denoted as x = (x1, ...., xk) and a
candidate sentence is denoted as x̂ = (x̂1, ...., x̂k),
BERTScore uses contextual embeddings such as
BERT (Devlin et al., 2019) or ELMo (Peters et al.,
2019) to represent word tokens in the sentences.
It finds word matchings between the reference
and candidate sentence using cosine similarity,
which can be optionally reweighted by the inverse
document frequency scores (IDF) of each word.
BERTScore matches each word token x in refer-
ence sentence to the closest word token x̂ in can-
didate sentence for computing recall, and matches
each word token x̂ in candidate sentence to the
closest word token x in reference sentence for com-
puting precision. It combines recall with precision
to produce an F1 score. However, only recall is
used for evaluation in most cases, which is defined
as follows:

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

xTi x̂j (5)

In essence, BERTScore can be viewed as a hard
word alignment given a pair of sentences using con-
textual embeddings, in which each word is aligned
to one other word, the closest in the embedding
space according to the cosine distance between
their vectors.

3.3 Semantic Sentence Similarity (SSS)
A commonly used method to measure sentence
similarity is using the cosine distance between the
two vectors summarizing the sentences:

cos(θ) =
α · β
‖α‖‖β‖

(6)

where α and β are the vectors representing the
two sentences. The higher the value obtained
through cosine similarity between two sentences
vectors based on the pretrained sentence represen-
tation (Reimers and Gurevych, 2019; Reimers and
Gurevych, 2020; Thakur et al., 2020), the stronger
their similarity.

3.4 SentSim
In order to bring the notion of semantic similar-
ity to token similarity metrics, we combine the
sentence cosine similarity using semantically fine-
tuned sentence embedding with the metrics using
contextual word embeddings. Assume that the gen-
erated score from sentence level metric is denoted
asA, the value generated from token-level metric is
denoted as B and the gold truth from human judge-
ment is denoted as S. Our combination metric,
namely SentSim, is as follows:

SentSim(A,B) =w1 ∗ eA + w2 ∗ eB (7)

where A and B are normalized to the range be-
tween 0 and 1, w1 and w2 are the weights given to
two metric scores. If metric B is negatively cor-
related with S, i.e., if it is a distance metric like
WMD, we give it e1−B . We use eB for similarity
metrics such as SSS and BERTScore.

In equation 7, we apply exponential for similar-
ity scores as the linear addition of two similarity
scores (A+B) in lower-order leads to a large vari-
ance and inconsistency in the correlation with hu-
man scores. Lower-order models are too simple to
fit the relationship between similarities. Therefore,
a non-linear model is required to project these sim-
ilarities into higher-order (An + Bn). Given the
Taylor Series Expansion (Abramowitz and Stegun,
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1965) of exponential function, we can get a facto-
rial average of two similarities from lower-order to
higher-order as follows:

SentSim(A,B) =
∞∑
n=1

w1 ∗An + w2 ∗Bn

n!
(8)

Our final metric is given in Equation 8, which
follows from Equation 7 using Taylor Series Ex-
pansion. This was also shown in (Kilickaya et al.,
2017; Clark et al., 2019), which convert distance
scores to similarities by using the exponential func-
tion.

In Section 5, we report experiments with two
linear metric combinations: SSS + WMD and SSS
+ BERTScore, where we give equal weight to each
metric (w1 = w2 = 0.5). We have also investigated
the linear combination between Sentence Mover’s
Distance (Zhao et al., 2019) and token-level met-
rics, but the performance is poorer than SSS, so we
only show results in the Appendix A.1.

4 Experiment Setup

In this section, we describe two types of exper-
imental scenarios, monolingual and crosslingual
evaluation, as well as the three datasets and pre-
trained embeddings we used.

4.1 Task Scenarios

The first evaluation setting we experimented with
is the standard monolingual evaluation task sce-
nario (MT-REF), which takes reference sentences
and machine generated sentences in the same lan-
guage as input. The second one is the crosslingual
evaluation task scenario (SRC-MT), which directly
assesses the similarity between source sentences
and machine generated sentences in different lan-
guages. We compute our combined metrics for
each task scenario separately.

4.2 Datasets

We use various datasets with absolute human judge-
ments from recent evaluation campaigns.

Multi-30K (Elliott et al., 2016) is a multilingual
(English-German (en-de) and English-French (en-
fr)) image description dataset. We use the 2018 test
set, in which each language pair contains more than
2K sentence tuples, including source sentences,
reference sentences, machine generated sentences,
and the corresponding human judgement scores
in an (0-100) continuous range. Therefore, this

dataset can be used for both crosslingual and mono-
lingual task scenarios.

WMT-17 (Bojar et al., 2017) is a dataset con-
taining multiple language pairs from the WMT
News Translation task used for segment-level sys-
tem evaluation in the Metrics task. We used all
seven to-English datasets: German-English (de-
en), Chinese-English (zh-en), Latvian-English (lv-
en), Czech-English (cs-en), Finnish-English (fi-en),
Russian-English (ru-en), Turkish-English (tr-en)
and two from-English datasets: English-Russian
(en-ru), English-Chinese (en-zh). Each language
has 560 sentence tuples, where each tuple has a
source sentence, a reference sentence and multiple
system generated sentences, in addition to a human
score varying from 0 to 100. WMT-17 can be used
in both monolingual and crosslingual evaluation
task scenarios, and is our main experimental data.
More recent WMT Metrics task datasets do not
report metrics results using absolute judgements,
but rather convert these into pairwise judgements.
While such relative judgements are useful to assess
metrics ability to rank different MT systems, they
are not applicable to assess metrics in their ability
to estimate quality in absolute terms, which are
what we are interested in.

WMT-20 (Fomicheva et al., 2020b) is the dataset
used in the WMT20 quality estimation task,
where participants are expected to directly pre-
dict the translation quality between source sen-
tences and machine generated sentences with-
out using reference sentences. This dataset has
seven language pairs: Sinhala-English (si-en),
Nepalese-English (ne-en), Estonian-English (et-
en), English-German (en-de), English-Chinese (en-
zh), Romanian-English (ro-en), Russian-English
(ru-en). We use the test set, witwhere each lan-
guage pair contains 1K tuples with source and
machine generated sentences, as well as human
judgements in the 0-100 range. Therefore, with
this dataset we can only perform crosslingual eval-
uation.

4.3 Embeddings
For each language model, we consider embeddings
at the token level and sentence level individually
and in combination. In our experiments, Roberta-
Large and XLM-Roberta-Base for monolingual and
crosslingual assessments respectively.

For crossligual embeddings we use XLM-
Roberta instead of multilingual BERT (mBERT)
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SRC-MT REF-MT
Metrics en-de en-fr Avg de-de fr-fr Avg
BLEU - - - 0.262 0.387 0.325
METEOR - - - 0.461 0.411 0.436
WMD 0.360 0.319 0.340 0.492 0.425 0.459
BERTScore 0.335 0.291 0.313 0.434 0.352 0.393
SSS 0.483 0.449 0.466 0.487 0.446 0.467
SSS + WMD 0.508 0.477 0.492 0.546 0.501 0.524
SSS + BERTScore 0.486 0.434 0.460 0.527 0.462 0.494

Table 2: Pearson Correlation with human scores for Multi-30K with Roberta-Base in the SRC-MT and MT-REF
settings. For the latter we evaluate German to German and French to French as monolingual tasks.

SRC-MT
Metrics de-en zh-en fi-en lv-en ru-en cs-en en-ru en-zh tr-en Avg
WMD 0.366 0.501 0.373 0.373 0.308 0.267 0.404 0.408 0.350 0.372
BERTScore 0.409 0.510 0.414 0.402 0.337 0.319 0.434 0.446 0.382 0.406
SSS 0.456 0.514 0.540 0.555 0.541 0.464 0.505 0.458 0.540 0.508
SSS + WMD 0.504 0.594 0.566 0.569 0.534 0.476 0.538 0.513 0.562 0.540
SSS + BERTScore 0.523 0.600 0.578 0.574 0.551 0.499 0.553 0.531 0.569 0.553

Table 3: Pearson Correlation with human scores for the WMT-17 with Roberta-Base in the SRC-MT setting.

because the former significantly outperforms the
latter (Conneau et al., 2019), as also shown by
Reimers and Gurevych (2020) for crosslingual se-
mantic textual similarity (STS) tasks (Cer et al.,
2017). For a fair comparison with previous metrics
like WMD0, we replaced their original embeddings
with XLM-Roberta-Base embeddings.

For the semantic sentence embedding, we used
XLM-Roberta-Base embeddings from Sentence
Transformer, which were trained on SNLI (Bow-
man et al., 2015) + MultiNLI (Williams et al., 2018)
and then fine-tuned on the STS benchmark training
data. These sentence embeddings have been shown
to provide good representations of the semantic
relationship between two sentences, but they had
not yet been tested for machine translation eval-
uation. Without using semantic embeddings, the
performance of SSS is not consistent across differ-
ent languages pairs given our experimental datasets
(see Appendix A.1). XLM-Roberta-Large embed-
dings are not used in our experiments because they
are not available in the pre-trained Sentence Trans-
former package yet.

For monolingual word and semantic sentence
embeddings we use the Roberta-Large model,
which has shown the best performance with
BERTScore (Zhang et al., 2019).

5 Results

The evaluation results are presented in this section.
Our code and data can be found on github2.

2https://github.com/Rain9876/Unsupervised-
crosslingual-Compound-Method-For-MT

5.1 SRC-MT Setting

From Table 2, we can observe the Pearson correla-
tion results of our metrics by comparing the source
sentences with machine translated sentences using
both single metrics and their combinations in the
Multi-30K dataset. The result reveals that SSS +
WMD outperforms all individual metrics and the
other combined metrics. It is clear that SSS is bet-
ter than both WMD and BERTScore, with WMD
outperforming BERTScore in this specific crosslin-
gual task.

In Table 3, the benefit of SSS becomes even
more evident. It again outperforms WMD and
BERTScore, with BERTScore also significantly
outperforming WMD in this case. Moreover, SSS
+ BERTScore showed the best and more stable
performance for all language pairs in the WMT-17
dataset. This can be clearly visualised for en-lv
as an example in Figure 1, where we plot metric
scores in the Y axis against human scores in the X
axis.

We believe the differences in the performance of
the combined metric in the Multi-30K and WMT-
17 datasets happens because the sentence length
differs significantly in these datasets: sentences in
Multi-30K have on average 12-14 words, much
shorter than those in the WMT-17 dataset. Be-
cause WMD optimizes the word alignment glob-
ally for the whole sentence, instead of optimiz-
ing word alignment locally like BERTScore, the
performance of WMD is better than BERTScore
when sentence length is shorter, but it becomes
a harder optimization problem when the sentence
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MT-REF
Metrics de-en zh-en fi-en lv-en ru-en cs-en tr-en Avg
BLEU 0.366 0.440 0.444 0.321 0.413 0.344 0.441 0.396
METEOR 0.460 0.557 0.631 0.450 0.525 0.480 0.596 0.528
MEANT 2.0 0.565 0.639 0.687 0.586 0.607 0.578 0.596 0.608
WMDo (Word2Vec) 0.531 0.595 0.689 0.505 0.562 0.513 0.561 0.565
WMDo (BERT) 0.546 0.623 0.710 0.543 0.585 0.531 0.637 0.596
WMD 0.730 0.769 0.827 0.736 0.733 0.698 0.770 0.752
BERTScore 0.745 0.775 0.833 0.756 0.746 0.710 0.751 0.759
SSS 0.612 0.653 0.730 0.703 0.700 0.622 0.654 0.668
SSS + WMD 0.755 0.779 0.847 0.781 0.786 0.731 0.781 0.780
SSS + BERTScore 0.770 0.785 0.860 0.792 0.796 0.746 0.782 0.790

Table 4: Pearson Correlation with human scores for the WMT-17 dataset (to English) with Roberta-Large in the
MT-REF setting. MEANT 2.0 (Lo, 2017) was the winning metric in that year, WMDo (Word2Vec) is from (Chow
et al., 2019) using Word2Vec embeddings, and WMDo (BERT) our modification of it using BERT embeddings.

SRC-MT
Metrics ne-en en-de et-en en-zh ro-en si-en ru-en Avg
Leaderboard baseline 0.386 0.146 0.477 0.190 0.685 0.374 0.548 0.322
D-TP 0.558 0.259 0.642 0.321 0.693 0.460 — 0.489
D-Lex-Sim 0.600 0.172 0.612 0.313 0.663 0.513 — 0.479
WMD 0.361 0.456 0.463 0.251 0.647 0.308 0.315 0.400
BERTScore 0.357 0.459 0.460 0.260 0.673 0.309 0.320 0.405
SSS 0.313 0.330 0.481 0.401 0.694 0.404 0.441 0.438
SSS + WMD 0.390 0.472 0.553 0.427 0.724 0.426 0.476 0.495
SSS + BERTScore 0.392 0.484 0.553 0.427 0.727 0.426 0.475 0.498

Table 5: Pearson Correlation with human scores for the WMT-20 dataset with Roberta-Base in the SRC-MT
setting. Metrics like D-TP and D-Lex-Sim (Fomicheva et al., 2020b) are unsupervised metrics which show good
performance in the WMT-20 quality estimation shared task, while Leaderboard baseline is a supervised model
provided by the organizers that uses training data to finetune pretrained representations.

Figure 1: Comparing BERTScore and SSS +
BERTScore for lv-en in WMT-17 SRC-MT case.

length is long. This may explain why the perfor-
mance of SSS + WMD is better than that of SSS
+ BERTScore in Multi-30K but lower than that of
SSS + BERTScore in the WMT-17 dataset.

SSS also outperforms WMD and BERTScore
in the WMT-20 dataset, as Table 5 shows. SSS +
BERTScore reaches the best performance in three
out of seven language pairs and is the best metric
in comparison with BERTScore or WMD alone.
The metrics that outperform SSS + BERTScore

for three language pairs require multiple passes of
the neural machine translation decoder to score or
generate multiple translations (D-TP and D-Lex-
Sim, respectively), or require supervised machine
learning (Leaderboard baseline).

5.2 MT-REF Setting

In the machine generated sentence to reference
sentence case, as Table 2 shows, SSS + WMD
achieves the best result in the monolingual Multi-
30K tasks for both German to German and French
to French using XLM-Roberta-Base embeddings.
However, for other datasets in this standard set-
ting where we compare sentences in a monolingual
fashion, as we can observe from Table 4 for the
WMT-17 dataset, SSS + BERTScore is the best
metric. The reason for the differences is again
likely to be the sentence lengths in the two datasets.
If taken independently, the performance of SSS is
not as good here as that of WMD or BERTScore.
The two variants of the combined metrics still out-
perform any metric on their own, and reach the best
performance results in this dataset. It can also be
observed from Table 4 that WMDo with Word2Vec
is far behind than that with BERT embedding or
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BERTScore SSS SentSim
E1 REF The food tastes good.
E1 MT1 The food tastes not good. 0.954 0.778 0.821
E1 MT2 The food tastes not bad. 0.948 0.948 0.950
E2 REF President Barack Obama also backs the proposal.
E2 MT1 President Obama also supported this proposal. 0.8419 0.954 0.844
E2 MT2 Supported President Obama also this proposal. 0.4604 0.625 0.405
E3 REF She is recovering, and police are still searching for a suspect.
E3 MT1 She is recovering, and police are searching for a suspect. 0.984 0.903 0.912
E3 MT2 Police searched for a suspect, and she recovered. 0.911 0.688 0.713
E4 SRC The food tastes good.
E4 MT1 这食物味道好. 0.882 1.000 0.958
E4 MT2 好道味物食这. (word order shuffled) 0.207 0.682 0.309

Table 6: Examples from various datasets including the comparisons among BERTScore, SSS and SentSim (SSS +
BERTScore).

our WMD with Roberta-Large. It indicates that the
importance of using the pretrained contextual em-
bedding as the representation of tokens. A visual
example of correlation plots can be seen in Figure
2 for the en-lv language pair again.

Generally, the metrics’ performances in the case
of SRC-MT are much lower than in the MT-REF
setting. This can be attributed to the embeddings
used. First, the models’ embeddings are not the
same in these two cases. In the case of MT-
REF, monolingual embeddings are used, which
are known to be stronger; however these cannot
be used in the case of SRC-MT evaluation, where
crosslingual embeddings are used instead, which
have been trained on more than 100 languages.
Also, the way the crosslingual embeddings were
generated does not rely on specific alignments or
mappings between tokens or sentences in different
languages, which can make them suboptimal. Sec-
ond, the size of pretrained model for the case of
MT-REF (Roberta-Large) is much larger than that
of SRC-MT (XLM-Roberta-Base). As previously
mentioned, pre-trained semantic sentence embed-
dings using XLM-Roberta-Large are not available,
so we instead provide a comparison with Roberta-
Base for the MT-REF case with WMT-17 in Sec-
tion 5.5 to show the impact of model size.

5.3 Effect of Embedding Layers

Since both XLM-Roberta-Base and Roberta-Large
have multiple layers, selecting a good layer or
combination of layers is important for WMD and
BERTScore. Here we use the WMT-17 dataset
to study these representation choices. The Pear-
son Correlation of WMD with human judgement
scores for the SRC-MT setting by specific XLM-
Roberta-Base’s layers is shown in Figure 3. Se-

Figure 2: Comparing BERTScore and SSS +
BERTscore for lv-en in WMT-17 MT-REF case.

lecting Layer 9 as the token embeddings for XLM-
Roberta-Base leads to the best average Pearson
Correlation among 9 language pairs in this SRC-
MT setting.

Figure 3: Pearson Correlation of WMD with different
layers of XLM-Roberta-Base embeddings in the WMT-
17 dataset, SRC-MT setting.

For Roberta-Large, in Figure 4 we study the
performance of different layers using the WMT-
17 dataset in the MT-REF setting. Among the 24
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Metrics de-en zh-en fi-en lv-en ru-en cs-en tr-en Avg
WMD 0.667 0.743 0.818 0.693 0.705 0.663 0.744 0.719
BERTScore 0.683 0.740 0.818 0.693 0.707 0.675 0.718 0.719
SSS 0.612 0.655 0.705 0.680 0.642 0.599 0.644 0.648
SSS + WMD 0.718 0.767 0.832 0.755 0.736 0.703 0.764 0.754
SSS + BERTScore 0.728 0.767 0.843 0.755 0.744 0.717 0.758 0.759

Table 7: Pearson Correlation with human scores for WMT-17 dataset with Roberta-Base in the MT-REF setting
(to English).

output layers, the best layer seems to be 17. This
is inline with the results described in (Zhang et al.,
2019), where the best layer for Roberta-Large to
use in BERTScore is also found to be layer 17.

Figure 4: Pearson Correlation of WMD with different
layers of Roberta-Large embeddings in the WMT-17
dataset, MT-REF setting.

5.4 Analysis of SSS vs token-level metrics
For illustration purposes, Table 6 shows a few cases
where SSS performs better than token-level metric
because it adds the notion of sentence meaning and
where, as a consequence, SentSim performs better
(examples E1 and E2). It also show cases where
SSS is too sensitive to semantic changes (example
E3). SSS also performs well in the SRC-MT case
(example E4). Here, the second machine transla-
tion has very different and incorrect word order,
and the token-level metric (BERTScore) has very
low performance compared to SSS, but both token-
level and SSS metrics capture the incorrect word
order. The combined metric (SentSim), therefore,
is very robust.

5.5 Effect of Pretrained Embeddings
To analyse the impact of pre-trained embeddings,
Table 7 shows the performance of Roberta-Base in
the case of WMT-17 MT-REF. As with the general
trend in NLP, this confirms that stronger embed-
dings (Roberta-Large, Table 4) lead to better per-
formance. The same trend was observed for the

other test sets.

6 Conclusions

In this paper, we propose to combine sentence-level
and token-level evaluation metrics in an unsuper-
vised way. In our experiments on a number of
standard datasets, we demonstrate that this combi-
nation is more effective for MT evaluation than the
current state-of-the-art unsupervised token-level
metrics, substantially outperforming these as well
as sentence-level semantic metrics on their own.
The sentence level metric seems to capture higher-
level or compositional semantic similarity, which
complements the token-level semantic similarity
information.

We also show that this combination approach can
be applied both in the standard monolingual evalu-
ation setting, where machine translations are com-
pared to reference translations, and in a crosslin-
gual evaluation setting, where reference transla-
tions are not available and machine translations are
directly compared with the source sentences.

In future work, we will aim to improve the
crosslingual metric and explore other types of mul-
tilingual embeddings for better mapping across dif-
ferent languages.
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A Appendix

A.1 Comparison to Sentence Mover’s
Distance

Sentence Mover’s Distance (SMD) (Zhao et al.,
2019) is an alternative sentence level metric which
for sentence semantic similarity. It compares two
text documents using sentence embeddings which
are not semantically fine-tuned but based on averag-
ing or pooling the sentences’ combined contextual
word embeddings. The SMD is defined as follows:

SMD(xn, yn) := ‖E(xlx1 )− E(y
ly
1 )‖ (9)

where E is the embedding function which maps
an n-gram to its vector representation, lx and ly
are the size of sentences. As a comparison, we
experimented with the linear combination between
SMD and each of our token-level metrics – WMD
and BERTScore. The metrics performances for
WMT-17 in both cases of SRC-MT and MT-REF,
and WMT-20 SRC-MT are shown in Table 8, Table
9 and Table 10.

The overall performance of this metric is inferior
to that of SSS, which is to be expected since this is
simply averaging token-level embeddings. Similar
to our SSS, the SMD metric performance improves
when it is combined with token-level metrics. The
combined metrics’ performance drops when there
is a big difference between the scores of the two
combined metrics, e.g. more than 10%. To pick an
example, in Table 8 the gap between BERTScore
and SMD for zh-en is 0.115, and the combined
SMD + BERTScore only reaches a score of 0.503,
compared to 0.51 from BERTScore alone. For
other languages with closer BERTScore and SMD
scores, the performance of the combined metric
remains the same or improves, for example, ru-en.

A.2 Plots with Metrics’ Performance
To facilitate visualisation of our main tabular re-
sults presented in the paper, Figures 5, 6, 7 show
them as bar plots.

Figure 5: Metrics’ performance in WMT-20 SRC-MT
case.

Figure 6: Metrics’ performance in WMT-17 SRC-MT
case.

Figure 7: Metrics’ performance in WMT-17 MT-REF
case.
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Metrics de-en zh-en fi-en lv-en ru-en cs-en en-ru en-zh tr-en Avg
WMD 0.366 0.501 0.373 0.373 0.308 0.267 0.404 0.408 0.350 0.372
BERTScore 0.409 0.510 0.414 0.402 0.337 0.319 0.434 0.446 0.382 0.406
SMD 0.348 0.394 0.360 0.342 0.276 0.158 0.271 0.345 0.250 0.305
SMD + WMD 0.392 0.491 0.392 0.382 0.343 0.239 0.373 0.429 0.310 0.372
SMD + BERTScore 0.417 0.503 0.416 0.400 0.361 0.271 0.394 0.454 0.341 0.395

Table 8: Pearson Correlation with human scores in WMT-17 SRC-MT case with Sentence Mover’s Distance.

Metrics de-en zh-en fi-en lv-en ru-en cs-en tr-en Avg
WMD 0.730 0.769 0.827 0.736 0.733 0.698 0.770 0.752
BERTScore 0.745 0.775 0.833 0.756 0.746 0.710 0.751 0.759
SMD 0.703 0.686 0.763 0.693 0.698 0.648 0.644 0.691
SMD + WMD 0.745 0.757 0.832 0.750 0.736 0.705 0.753 0.754
SMD + BERTScore 0.757 0.771 0.846 0.764 0.752 0.717 0.752 0.766

Table 9: Pearson Correlation with human scores in WMT-17 MT-REF case with Sentence Mover’s Distance.

Metrics ne-en en-de et-en en-zh ro-en si-en ru-en Avg
WMD 0.361 0.456 0.463 0.251 0.647 0.308 0.315 0.400
BERTScore 0.357 0.459 0.460 0.260 0.673 0.309 0.320 0.405
SMD 0.436 0.368 0.302 0.277 0.570 0.298 0.281 0.362
SMD + WMD 0.452 0.423 0.401 0.279 0.618 0.355 0.326 0.408
SMD + BERTScore 0.449 0.439 0.413 0.289 0.638 0.363 0.327 0.417

Table 10: Pearson Correlation with human scores in WMT-20 SRC-MT case with Sentence Mover’s Distance.


