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Abstract

Zero-shot learning aims to recognize unseen
objects using their semantic representations.
Most existing works use visual attributes la-
beled by humans, not suitable for large-scale
applications. In this paper, we revisit the use of
documents as semantic representations. We ar-
gue that documents like Wikipedia pages con-
tain rich visual information, which however
can easily be buried by the vast amount of
non-visual sentences. To address this issue,
we propose a semi-automatic mechanism for
visual sentence extraction that leverages the
document section headers and the clustering
structure of visual sentences. The extracted vi-
sual sentences, after a novel weighting scheme
to distinguish similar classes, essentially form
semantic representations like visual attributes
but need much less human effort. On the Ima-
geNet dataset with over 10,000 unseen classes,
our representations lead to a 64% relative im-
provement against the commonly used ones.

1 Introduction

Algorithms for visual recognition usually require
hundreds of labeled images to learn how to classify
an object (He et al., 2016). In reality, however, the
frequency of observing an object follows a long-
tailed distribution (Zhu et al., 2014): many objects
do not appear frequently enough for us to collect
sufficient images. Zero-shot learning (ZSL) (Lam-
pert et al., 2009), which aims to build classifiers for
unseen object classes using their semantic represen-
tations, has thus emerged as a promising paradigm
for recognizing a large number of classes.

Being the only information of unseen objects,
how well the semantic representations describe the
visual appearances plays a crucial role in ZSL. One
popular choice is visual attributes (Lampert et al.,
2009; Patterson and Hays, 2012; Wah et al., 2011)
carefully annotated by humans. For example, the
bird “Red bellied Woodpecker” has the “capped
head pattern” and “pointed wing shape”. While

Figure 1: An illustration of our ZSL approach, which recog-
nizes the input image by comparing it to the visual sentences
of documents. Here we show two documents, one for “Tiger”
and one for “Lion”. The gray area highlights the extracted
visual sentences (red: by section headers; blue: by clustering).

strictly tied to visual appearances, visual attributes
are laborious to collect, limiting their applicability
to small-scale problems with hundreds of classes.

For large-scale problems like ImageNet (Deng
et al., 2009) that has more than 20, 000 classes, ex-
isting ZSL algorithms (Frome et al., 2013; Norouzi
et al., 2013) mostly resort to word vectors of classes
names (Mikolov et al., 2013; Pennington et al.,
2014) that are automatically extracted from large
corpora like Common Crawl. While almost labor
free, word vectors are purely text-driven and barely
aligned with visual information. As a result, the
state-of-the-art ZSL accuracy on ImageNet falls far
behind being practical (Changpinyo et al., 2020).

Is it possible to develop semantic representations
that are as powerful as visual attributes without
significant human effort? A feasibility study by
representing a class with its Wikipedia page shows
some positive signs — Wikipedia pages do capture
rich attribute information. For example, the page
“Red-bellied Woodpecker” contains phrases “red
cap going from the bill to the nape” and “black and
white barred patterns on their back, wings and tail”
that exactly match the visual attributes mentioned
above. In other words, if we can identify visual
sentences from a document to represent a class, we
are likely to attain much higher ZSL accuracy1.

1Representing a class by a document has been studied
in (Zhu et al., 2018; Elhoseiny et al., 2013; Qiao et al., 2016),
but they use all sentences instead of extracting the visual ones.
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To this end, we present a simple yet effective
semi-automatic approach for visual sentence ex-
traction, which leverages two informative seman-
tic cues. First, we leverage the section structures
of Wikipedia pages: the section header indicates
what kind of sentences (visual or not) appear in the
section. Concretely, we search Wikipedia pages
of common objects following the sysnsets in Im-
ageNet (e.g., fish, room), and manually identify
sections that contain visual information (e.g., char-
acteristics, appearance). We then apply these vi-
sual headers to the Wikipedia pages of the remain-
ing ImageNet classes. Second, we observe that
visual sentences share some common contextual
patterns: for example, they contain commonly used
words or phrases of visual attributes (e.g., red color,
furry surface). To leverage these patterns, we per-
form K-means sentence clustering using the BERT
features (Devlin et al., 2018) and manually select
clusters that contain visual information. We keep
sentences in these clusters and combine them with
those selected by section headers to represent a
document. See Figure 1 for an illustration.

To further increase the discriminative ability of
the visual sentences between similar object classes
(e.g., breeds of dogs), we introduce a novel scheme
to assign weights to sentences, emphasizing those
that are more representative for each class.

We validate our approach on three datasets: Ima-
geNet Fall 2011 dataset (Deng et al., 2009), which
contains 14, 840 unseen classes with Wikipedia
pages; Animals with Attributes 2 (AwA2) (Xian
et al., 2018a), which has 50 animal classes; At-
tribute Pascal and Yahoo (aPY) (Farhadi et al.,
2009), which has 32 classes. Our results are promis-
ing: compared to word vectors on ImageNet, we
improve by 64% using visual sentences. On AwA2
and aPY, compared to visual attributes annotated
by humans, we improve by 8% and 5%, respec-
tively. Moreover, our new semantic representations
can be easily incorporated into any ZSL algorithms.
Our code and data will be available at https:
//github.com/heendung/vs-zsl.

2 Related Work

Semantic representations. Visual attributes are
the most popular semantic representations (Lam-
pert et al., 2009; Patterson and Hays, 2012; Wah
et al., 2011; Zhao et al., 2019). However, due to the
need of human annotation, the largest dataset has
only 717 classes. Reed et al. (2016b,a) collect vi-

sual sentences for each image, which is not scalable.
For large-scale recognition, word vectors (Mikolov
et al., 2013) have been widely used. Lu (2015);
Kampffmeyer et al. (2019); Wang et al. (2018) ex-
plore the use of WordNet hierarchy (Miller, 1995),
which may not be available in other applications.

Similar to ours, Akata et al. (2015b); Elhoseiny
et al. (2013); Qiao et al. (2016); Zhu et al. (2018)
represent classes by documents, by counting word
frequencies but not extracting visual sentences. Al-
Halah and Stiefelhagen (2017) extract single word
attributes, which are not discriminative enough
(e.g., “red cap” becomes “red”, “cap”). None of
them works on ZSL with over 1,000 classes.

Hessel et al. (2018); Le Cacheux et al. (2020)
collect images and tags of a class and derives its
semantic representation from tags, which is not
feasible for unseen classes on ZSL.
Zero-shot learning algorithms. The most popu-
lar way is to learn an embedding space in which
visual features and semantic representations are
aligned and nearest neighbor classifiers can be ap-
plied (Changpinyo et al., 2017; Romera-Paredes
and Torr, 2015; Akata et al., 2015a; Kodirov et al.,
2017; Schonfeld et al., 2019; Zhu et al., 2019; Xie
et al., 2019; Socher et al., 2013). These algorithms
consistently improve accuracy on datasets with at-
tributes. Their accuracy on ImageNet, however, is
saturated, mainly due to the poor quality of seman-
tic representations (Changpinyo et al., 2020).

3 Visual Sentence Extraction

3.1 Background and notation

ZSL algorithms learn to align visual features and se-
mantic representations using a set of seen classes S .
The alignment is then applied to the test images of
unseen classes U . We denote by D = {(xn, yn ∈
S)}Nn=1 the training data (i.e., image feature and
label pairs) with the labels coming from S .

Suppose that we have access to a semantic rep-
resentation ac (e.g., word vectors) for each class
c ∈ S ∪ U , one popular algorithm DeViSE (Frome
et al., 2013) proposes the learning objective∑

n

∑
c 6=yn

max{0,∆− f>θ (xn)Mgφ(ayn)

+ f>θ (xn)Mgφ(ac)}, (1)

where ∆ ≥ 0 is a margin. That is, DeViSE tries to
learn transformations fθ and gφ and a matrix M
to maximize the visual and semantic alignment of

https://github.com/heendung/vs-zsl
https://github.com/heendung/vs-zsl
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Section headers
Characteristics, Description, Appearance, Habitat, Diet,
Construction and Mechanics, Materials for utensil,
Design for appliance, Furnishings for room, Fabrication,
Feature for geological formation, Design, Equipment for sport

History, Health, Terminology, Mythology, Conservation, Culture,
References, External links, Further reading

Table 1: Visual (top) & Non-Visual (bottom) sections.

the same classes while minimizing that between
classes. We can then classify a test image x by

arg maxc∈U f
>
θ (x)Mgφ(ac). (2)

Here, we consider that every class c ∈ S ∪U is pro-
vided with a document Hc = {h(c)

1 , · · · ,h(c)
|Hc|}

rather than ac, where |Hc| is the amount of sen-
tences in document Hc and h

(c)
j is the jth sentence,

encoded by BERT (Devlin et al., 2018). We mainly
study DeViSE, but our approach can easily be ap-
plied to other ZSL algorithms.

3.2 Visual section selection

We aim to filter out sentences in Hc that are not
describing visual information. We first leverage the
section headers in Wikipedia pages, which indicate
what types of sentences (visual or not) are in the
sections. For example, the page “Lion” has sections
“Description” and “Colour variation” that are likely
for visual information, and “Health” and “Cultural
significance” that are for non-visual information.

To efficiently identify these section headers, we
use ImageNet synsets (Deng et al., 2009), which
group objects into 16 broad categories. We ran-
domly sample 30 ∼ 35 classes per group, resulting
in a set of 500 classes. We then retrieve the cor-
responding Wikipedia pages by their names and
manually identify section headers related to visual
sentences. By sub-sampling classes in this way, we
can quickly find section headers that are applicable
to other classes within the same groups. Table 1
shows some visual/non-visual sections gathered
from the 500 classes. For example, “Characteris-
tics” frequently appears in pages of animals to de-
scribe their appearances. In contrast, sections like
“History” or “Mythology” do not contain visual
information. Investigating all the 500 Wikipedia
pages carefully, we find 40 distinct visual sections.
We also include the first paragraph of a Wikipedia
page, which often contains visual information.

3.3 Visual cluster selection

Our second approach uses K-means for sentence
clustering: visual sentences often share common

Sentence clusters
It has large ears that help the fox lower its body temperature.
It usually has a gray coat, with rusty tones, and a black tip to its tail.
It has distinct dark patches around the nose.
It is most recognisable for its dark vertical stripes on orangish-brown fur.
· · · muscular body with powerful forelimbs, a large head and a tail.
They have a mane-like heavy growth of fur around the neck and jaws · · ·
The kit fox is a socially monogamous species.
Male and female kit foxes usually establish monogamous mating · · ·
The average lifespan of a wild kit fox is 5.5 years.
Tiger mates all year round, but most cubs are born between March · · ·
The father generally takes no part in rearing.
The mortality rate of tiger cubs is about 50% in the first two years.

Table 2: Sentence clusters. The top cluster is visual and the
bottom one is non-visual. The sentences from a class kit-fox
are in red and those from a class tiger are in blue.

words and phrases of visual attributes, naturally
forming clusters. We represent each sentence us-
ing the BERT features (Devlin et al., 2018), and
perform K-means (with K = 100) over all the sen-
tences from Wikipedia pages of ImageNet classes.
We then manually check the 100 clusters and iden-
tify 40 visual clusters. Table 2 shows a visual (top)
and a non-visual (bottom) cluster. We highlight
sentences related to two classes: “kit-fox” (red)
and “tiger” (blue). The visual cluster describes the
animals’ general appearances, especially about vi-
sual attributes “dark”, “black”, “tail”, “large”, etc.
In contrast, the non-visual cluster describes mating
and lifespan that are not related to visual aspects.

3.4 Semantic representations of documents

After we obtain a filtered document Ĥc, which con-
tains sentences of the visual sections and clusters,
the next step is to represent Ĥc by a vector ac so
that nearly all the ZSL algorithms can leverage it.

A simple way is average, āc = 1
|Ĥc|

∑
h∈Ĥc

h,
where h is the BERT feature. This, however, may
not be discriminative enough to differentiate similar
classes that share many common descriptions (e.g.,
dog classes share common phrase like “a breed of
dogs” and “having a coat or a tail”).

We therefore propose to identify informative sen-
tences that can enlarge the difference of ac between
classes. Concretely, we learn to assign each sen-
tence a weight λ, such that the resulting weighted
average ac = 1

|Ĥc|

∑
h∈Ĥc

λ(h)× h can be more

distinctive. We model λ(·) ∈ R by a multi-layer
perceptron (MLP) bψ

λ(h) =
exp(bψ(h))∑

h′∈Ĥc
exp(bψ(h′))

. (3)

We learn bψ to meet two criteria. On the one hand,
for very similar classes c and c′ whose similarity
cos(ac,ac′) is larger than a threshold τ , we want
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cos(ac,ac′) to be smaller than τ so they can be
discriminable. On the other hand, for other pair
of less similar classes, we want their similarity to
follow the average semantic representation āc

2.
To this end, we initialize bψ such that the initial

ac is close to āc. We do so by first learning bψ to
minimize the following objective∑

c∈S∪U
max{0, ε− cos(ac, āc)}. (4)

We set ε = 0.9, forcing ac and āc of the same class
to have cos(ac, āc) > 0.9. We then fine-tune bψ
by minimizing the following objective

S∪U∑
c

S∪U∑
c 6=c′

max{0, cos(ac,ac′)− τ}. (5)

We assign τ a high value (e.g., 0.95) to only penal-
ize overly similar semantic representations. Please
see the appendix for details.
Comparison. Our approach is different from
DAN (Iyyer et al., 2015). First, we learn an MLP
to assign weights to sentences so that their em-
beddings can be combined appropriately to differ-
entiate classes. In contrast, DAN computes the
averaged embedding and learns an MLP to map it
to another (more discriminative) embedding space.
Second, DAN leans the MLP with a classification
loss. In contrast, we learn the MLP to reduce the
embedding similarity between similar classes while
maintaining the similarity for other pairs of classes.

4 Experiments

4.1 Dataset and splits: ImageNet

We use the ImageNet Fall 2011 dataset (Deng et al.,
2009) with 21, 842 classes. We use the 1K classes
in ILSVRC 2012 (Russakovsky et al., 2015) for
DeViSE training and validation (cf. Equation 1),
leaving the remaining 20, 842 classes as unseen
classes for testing. We follow (Changpinyo et al.,
2016) to consider three tasks, 2-Hop, 3-Hop, and
ALL, corresponding to 1,290, 5,984, and 14,840
unseen classes that have Wikipedia pages and word
vectors and are within two, three, and arbitrary tree
hop distances (w.r.t. the ImageNet hierarchy) to the
1K classes. On average, each page contains 80 sen-
tences. For images, we use the 2, 048-dimensional
ResNet visual features (He et al., 2016) provided

2The purpose of introducing λ(·) is to improve ac from
the average representation āc to differentiate similar classes.

Model Type Filter 2-Hop 3-Hop ALL
Random - - 0.078 0.017 0.007

DeViSE w2v-v2 - 6.45 1.99 0.78
BERTp No 6.73 2.23 0.83

DeViSE?

w2v-v2 - 11.55 3.07 1.48
No 13.84 4.05 1.75

BERTp Vissec 15.56 4.41 1.82
Visclu 15.72 4.49 2.01

Vissec-clu 15.86 4.65 2.05
BERTp-w Vissec-clu 16.32 4.73 2.10

No 17.70 5.17 2.29
BERTf Vissec 19.52 5.20 2.32

Visclu 19.74 5.37 2.36
Vissec-clu 19.82 5.39 2.39

BERTf-w Vissec-clu 20.47 5.53 2.42

EXEM w2v-v2 - 16.04 4.54 1.99
BERTf Vissec-clu 21.22 5.42 2.37

HVE w2v-v2 - 8.63 2.38 1.09
BERTf-w Vissec-clu 18.42 5.12 2.07

Table 3: Comparison of different semantic representations
on ImageNet. We use per-class Top-1 accuracy(%). The best
is in red and the second best in blue.

by Xian et al. (2018a). For sentences, we use a 12-
layer pre-trained BERT model (Devlin et al., 2018).
We denote by BERTp the pre-trained BERT and
BERTf the one fine-tuned with DeViSE. Please see
the appendix for details.

4.2 Baselines, variants, and metrics

Word vectors of class names are the standard se-
mantic representations for ImageNet. Here we
compare to the state-of-the-art w2v-v2 provided by
Changpinyo et al. (2020), corresponding to a skip-
gram model (Mikolov et al., 2013) trained with ten
passes of the Wikipedia dump corpus. For ours,
we compare using all sentences (NO), visual sec-
tions (Vissec) or visual clusters (Visclu), and both
(Vissec-clu). On average, Vissec-clu filters out 57%
of the sentences per class. We denote weighted
average (Section 3.4) by BERTp-w and BERTf-w.

The original DeViSE (Frome et al., 2013) has
fθ and gφ as identity functions. Here, we consider
a stronger version, DeViSE?, in which we model
fθ and gφ each by a two-hidden layers multi-layer
perceptron (MLP). We also experiment with two
state-of-the-art ZSL algorithms, EXEM (Chang-
pinyo et al., 2020) and HVE (Liu et al., 2020).

We use the average per-class Top-1 classification
accuracy as the metric (Xian et al., 2018a).

4.3 Main results

Table 3 summarizes the results on ImageNet. In
combining with each ZSL algorithm, our semantic
representations Vissec-clu that uses visual sections



3121

Model Type
AwA2 aPY

ZSL GZSL ZSL GZSL
U S H U S H

DeViSE
Visual attributes 59.70 17.10 74.70 27.80 37.02 3.54 78.41 6.73
w2v-v2 39.56 2.18 69.29 4.22 27.67 1.68 85.53 3.22
BERTp + Vissec-clu 64.32 19.79 72.46 31.09 38.79 3.94 71.60 7.51

Table 4: Results on AwA2 and aPY. We compare different semantic representations. Visual attributes are annotated by humans.
GZSL is the generalized ZSL setting (Xian et al., 2018a). In GZSL, U, S, H denote unseen class accuracy, seen class accuracy,
and their harmonic mean, respectively. We use per-class Top-1 accuracy (%).

and visual clusters for sentence extraction outper-
forms w2v-v2. More discussions are as follows.
BERT vs. w2v-v2. For both DeViSE? and De-
ViSE, BERTp by averaging all the sentences in a
Wikipedia page outperforms w2v-v2, suggesting
that representing a class by its document is more
powerful than its word vector.
DeViSE? vs. DeViSE. Adding MLPs to DeViSE
largely improves its accuracy: from 0.78% (De-
ViSE + w2v-v2) to 1.48% (DeViSE? + w2v-v2) at
ALL. In the following, we then focus on DeViSE?.
Visual sentence extraction. Comparing different
strategies for BERTp, we see both Visclu and Vissec
largely improves NO, demonstrating the effective-
ness of sentence selection. Combining the two sets
of sentences (Vissec-clu) leads to a further boost.
Fine-tuning BERT. BERT can be fine-tuned to-
gether with DeViSE?. The resulting BERTf has a
notable gain over BERTp (e.g., 2.39% vs. 2.05%).
Weighted average. With the weighted average
(BERTp-w, BERTf-w), we obtain the best accuracy.
ZSL algorithms. EXEM + w2v-v2 outperforms
DeViSE? + w2v-v2, but falls behind DeViSE? +
BERTp-w (or BERTf, BERTf-w). This suggests that
algorithm design and semantic representations are
both crucial. Importantly, EXEM and HVE can be
improved using our proposed semantic representa-
tions, demonstrating the applicability and general-
izability of our approach.

4.4 Results on other datasets

Table 4 summarizes the results on AwA2 (Xian
et al., 2018a) and aPY (Farhadi et al., 2009). The
former has 40 seen and 10 unseen classes; the lat-
ter has 20 seen and 12 unseen classes. We ap-
ply DeViSE together with the 2, 048-dimensional
ResNet features (He et al., 2016) provided by Xian
et al. (2018a). Our proposed semantic representa-
tions (i.e., BERTp + Vissec-clu) outperform w2-v2
and the manually annotated visual attributes on
both the ZSL and generalized ZSL (GZSL) set-
tings. Please see the appendix for the detailed ex-
perimental setup. These improved results on Ima-

Model Type Filter 2-Hop 3-Hop ALL
BERTp No 13.84 4.05 1.75
BERTp-w-direct No 14.85 4.25 1.79

Par1st 13.48 4.10 1.78
DeViSE? Clsname 14.82 3.31 1.40

BERTp Vissec 15.56 4.41 1.82
Visclu 15.72 4.49 2.01

Vissec-clu 15.86 4.65 2.05
BERTp-w Vissec-clu 16.32 4.73 2.10

Table 5: The effectiveness of our visual sentence extraction.
BERTp-w-direct directly learns visual sentences without our
sentence selection. Par1st and Clsname use the first paragraph
and sentences containing the class name, respectively.

geNet, AwA2, and aPY demonstrate our proposed
method’s applicability to multiple datasets.

4.5 Analysis on ImageNet
To further justify the effectiveness of our approach,
we compare to additional baselines in Table 5.
• BERTp-w-direct: it directly learns bψ (Equation 3)

as part of the DeViSE objective. Namely, we di-
rectly learn bψ to identify visual sentences, with-
out our proposed selection mechanisms, such
that the resulting ac optimizes Equation 1.
• Par1st: it uses the first paragraph of a document.
• Clsname: it uses the sentences of a Wikipedia

page that contain the class name.
As shown in Table 5, our proposed sentence selec-
tion mechanisms (i.e., Vissec, Visclu, and Vissec-clu)
outperform all the three baselines.

5 Conclusion

ZSL relies heavily on the quality of semantic rep-
resentations. Most recent work, however, focuses
solely on algorithm design, trying to squeeze out
the last bit of information from the pre-define,
likely poor semantic representations. Changpinyo
et al. (2020) has shown that existing algorithms are
trapped in the plateau of inferior semantic represen-
tations. Improving the representations is thus more
crucial for ZSL. We investigate this direction and
show promising results by extracting distinctive vi-
sual sentences from documents for representations,
which can be easily used by any ZSL algorithms.
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Appendix

In this appendix, we provide details omitted in the
main text.

• Appendix A : contribution

• Appendix B : more related work (cf. Section 2
in the main text)

• Appendix C: detailed statistics of Wikipedia
pages (cf. Section 4.1 in the main text)

• Appendix D: weighted average representa-
tions (cf. Section 3.4 in the main text)

• Appendix E: dataset, metrics, and ZSL algo-
rithms (cf. Section 4.2 in the main text)

• Appendix F: implementation details (cf. Sec-
tion 4.3 in the main text)

• Appendix G: ablation study (cf. Section 4.3
in the main text)

• Appendix H qualitative results (cf. Section 3
in the main text)

A Contribution

Our contribution is not merely in the method we de-
veloped, but also in the direction we explored. As
discussed in Section 5 of the main paper, most of
the efforts in ZSL have focused on algorithm design
to associate visual features and pre-defined seman-
tic representations. Yet, it is also important to im-
prove semantic representations. Indeed, one reason
that ZSL performs poorly on large-scale datasets
is the poor semantic representations (Changpinyo
et al., 2020). We therefore chose to investigate this
direction by revisiting document representations,
with the goal to make our contributions widely
applicable. To this end, we deliberately kept our
method simple and intuitive, but also provided in-
sights for future work to build upon. Our manual
inspection identified important properties of visual
sentences like the clustering structure, enabling us
to efficiently extract them. We chose to not de-
sign new ZSL algorithms but make our semantic
representations compatible with existing ones to
clearly demonstrate the effectiveness of improving
semantic representations.

B More Related Work

Zero-shot learning (ZSL) algorithms construct
visual classifiers based on semantic representa-
tions. Some recent work applies generative models
to generate images or visual features of unseen
classes (Xian et al., 2019, 2018b; Zhu et al., 2018),
so that conventional supervised learning algorithms
can be applied.
Knowledge bases usually contain triplets of en-
tities and relationships. The entities are usually
objects, locations, etc. For ZSL, we need enti-
ties to be fine-grained (e.g., “beaks”) and capture
more visual appearances. YAGO (Suchanek et al.,
2008) and DBpedia (Zaveri et al., 2013) leverage
Wikipedia infoboxes to construct triplets, which is
elegant but not suitable for ZSL since Wikipedia
infoboxes contain insufficient visual information.
Thus, these datasets and construction methods may
not be directly applicable to ZSL. Nevertheless, the
underlying methodologies are inspiring and could
serve as the basis for future work. The datasets also
offer inter-class relationships that are complemen-
tary to visual descriptions, and may be useful to
establish class relationships in ZSL algorithms like
SynC (Changpinyo et al., 2016).

C Statistics of Wikipedia Pages

We use a Wikipedia API to extract pages from
Wikipedia for ImageNet 21,842 classes. Among
21,842 classes, we find that some classes have mul-
tiple Wikipedia pages because of their ambiguous
class names. For example, a class “black widow”
in ImageNet refers to a spider with dark brown
or a shiny black in colour, but it also refers to the
name of a “Marvel Comics” character in Wikipedia.
We therefore exclude such classes and also classes
that do not have word vectors, resulting in 15,833
classes. The Wikipedia pages of the 15K classes
contain 1,260,889 sentences where each class has
80 sentences on average. We also investigate the
number of sentences by our filters (i.e. Vissec,
Viscls, Vissec-clu). As a result, we correspondingly
find 213,585, 534,852, 542,645 sentences, which
are 16%, 42%, 43% of all sentences in 15K classes,
respectively (See Figure 2).

D Weighted Average Representations

D.1 Observation

Two similar classes may have similar averaged vi-
sual sentence embeddings since they share many
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Figure 2: Statistics of Wikipedia pages.

common descriptions. For example, Figure 3
shows that the averaged embedding (i.e., BERTp
and BERTf) between “Kerry Blue Terrier” and
“Soft-coated Terrier” are overly similar since they
share a number of sentences containing the com-
mon dog features such as “a breed of dog” or “hav-
ing a coat or a tail”. Thus, if we represent their
semantic representations ac as the averaged em-
beddings, ZSL models may not differentiate them.

D.2 Algorithm
In Section 3.4 of the main text, we introduce λ(·)
to give each sentence h of a document a weight.
We note that, while learning λ(·) can enlarge the
distance of ac between similar classes, we should
not overly maximize the distance to prevent seman-
tically similar classes (e.g., different breed of dogs)
end up being less similar than dissimilar classes
(e.g., dogs and cats). To this end, we introduce
a margin loss with τ in Equation 5, which only
penalize overly similar semantic representations.

We also note that, the purpose of λ(·) is to im-
prove ac from the simple average embedding āc.
We therefore initialize λ(·) such that the initial ac
is similar to āc. We do so by first learning bψ with
the following objective:

∑
c∈S∪U

max{0, ε− cos(ac, āc)}. (6)

We set ε = 0.9, forcing ac and āc to have a
similarity larger than 0.9.

D.3 Results
Figure 3 demonstrates the effectiveness of the
weighted average embedding BERTf-w. While
other semantic representations predict “Kerry Blue

Terrier” as other similar dog, “soft-coated Terrier”,
BERTf-w is able to classify the image correctly. In
addition, based on the attention weights, we report
the Top 3 sentences and the Bottom 3 sentences.
The Top 1st sentence contains the inherent features
for “Kerry Blue Terrier” such as long head or soft-
to-curly coat while the Top 2nd and 3rd sentences
describe general features of dogs. On the other
hand, the Bottom 3 sentences do not have visual
appearance of the object. This suggest that our
weighted representation BERTf-w is more represen-
tative to “Kerry Blue Terrier” than other semantic
representations.

E Dataset, Features, Metrics, and ZSL
Algorithm

For visual features, we use the 2, 048-dimensional
ResNet visual features (He et al., 2016) provided
by Xian et al. (2018a). Word vectors can be found
in (Changpinyo et al., 2020). Followed by (Xian
et al., 2018a), we use the average per-class Top-1
accuracy as our metric. Instead of simply averaging
over all test images (i.e. the average per-sample
Top-1 accuracy), this accuracy is obtained by first
taking average over all images in each test class
independently and then taking average over all test
classes. Compared to the average per-sample ac-
curacy, the per-class accuracy is a more suitable
for ImageNet since the dataset is highly imbal-
anced (Changpinyo et al., 2020). The state-of-the-
art algorithms in ZSL are EXEM and HVE pro-
posed by (Changpinyo et al., 2020) and (Liu et al.,
2020), respectively. To make fair comparison with
our models, we evaluate their algorithms on the
same number of our test classes using their official
codes.

E.1 ImageNet

We follow (Xian et al., 2018a; Changpinyo et al.,
2016) to consider three tasks, 2-Hop, 3-Hop, and
ALL, corresponding to 1, 509, 7, 678 and 20, 345
unseen classes that have word vectors and are
within two, three, and arbitrary tree hop distances
to the 1, 000 seen classes.

We search Wikipedia and successfully retrieve
pages for 15,833 classes, of which 1,290, 5,984,
and 14,840 are for 2-Hop, 3-Hop, and ALL.

E.2 AwA2

Animals with Attributes2 (AwA2) provides 37,322
images of 50 animal classes. On average, each class
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Figure 3: Qualitative analysis of a class Kerry Blue Terrier. w2v-v2, BERTp, and BERTf can not distinguish between Kerry
Blue Terrier and Soft-coated Terrier since two classes share the common features of dogs such as “a breed of dog” or “having a
coat or a tail”. On the other hand, our weighted average BERTf-w is able to differentiate them by weighting on the sentences. We
report the Top 3 sentences and the Bottom 3 sentences based on the attention weights.

includes 746 images. It also provides 85 visual
attributes that are manually annotated by humans.
In AwA2, classes are split into 40 seen classes and
10 unseen classes. For GZSL, a total of 50 classes
is used for testing.

E.3 aPY

Attribute Pascal and Yahoo (aPY) contains 15,339
images of 32 classes with 64 attributes. The classes
are split into 20 seen classes and 12 unseen classes.
A total of 32 classes is used for testing on GZSL.

E.4 DeViSE (Frome et al., 2013) vs.
EXEM (Changpinyo et al., 2020) vs.
HVE (Liu et al., 2020)

All algorithms learn feature transformations to asso-
ciate visual features x and semantic representations
ac. The key differences are what and how to learn.
DeViSE? learns two MLPs fθ and gφ to embed x
and ac into a common space, while HVE embeds
them into a hyperbolic space. EXEM learns kernel
regressors to embed ac into the visual space. On
how to learn, DeViSE? and HVE force each image
x to be similar to the true class ac by a margin
loss and a ranking loss respectively, while EXEM
learns to regress the averaged visual features of a
class from ac.

F Implementation Details

F.1 Sentence representations from BERT

Sentence representations can be defined in multi-
ple ways such as a [CLS] token embbedding or
an average word embedding from different layers
in BERT (Reimers and Gurevych, 2019). In our
experiments, the average word embedding from the
second last layer of BERT achieve the best results
in all cases.

Model Type Filter Threshold τ 2-Hop
0.98 15.97

DeViSE?

BERTp-w Vissec-clu 0.97 16.09
0.96 16.32
0.95 16.13
0.88 20.34

BERTf-w Vissec-clu 0.86 20.44
0.82 20.33
0.80 20.47

Table 6: Results of per-class Top-1 accuracy(%) on 2-Hop
with different thresholds τ and semantic representation types.
The best is in red and the second best in blue.

F.2 Hyperparameters
DeViSE (Frome et al., 2013) has a tunable margin
∆ ≥ 0 (cf. Section 3.1 in the main text) which
its default value is 0.1. We try multiple values
0.1, 0.2, 0.5, and 0.7 to find the best setting. De-
ViSE uses Adam optimizer which its learning rate
is 1e−3 by default. We try different possible val-
ues, 1e−3, 5e−4, 2e−4, and 1e−4. Among all 16
possible combination of the margin and learning
rate, we find that margin of 0.2 and learning rate
of 2e−4 achieve the best results on all our cases.

F.3 Fine-tuned models
For fine-tuning, DeViSE? is first attached to a
BERT model. Then, we train the model with
jointly fine-tuning BERT parameters based on the
DeViSE? objective. Regards to BERT training,
Houlsby et al. (2019) demonstrates that fine-tuning
only last few n layers (e.g. 2 or 4) can outperform
fine-tuning all layers in some NLP tasks. Koval-
eva et al. (2019) also shows that the fine-tuning
procedure is more effective to the last few layers
than earlier layers. Considering the computational
resources and time, we therefore set n equal to 2.
After fine-tuning, we freeze BERT parameters and
further train DeViSE?.
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Class Top3 Similar Similarity
Classes BERTp BERTp-w

Scow 0.94 0.91
Sea boat Row boat 0.93 0.91

Canoe 0.93 0.91

Table 7: Similarity of Top 3 similar classes with Sea boat
drops after applying the weighting approach.

G Ablation Study

Table 6 shows the results on 2-Hop with different
thresholds τ introduced in Equation 5. We obtain
the weighted average BERTp-w by taking an input
h from BERTp and learning MLP bψ with different
τ (similar for BERTf-w). Then, we measure 2-Hop
accuracy based on BERTp-w (or BERTf-w ). Note
that BERTp and BERTf have different ranges of
τ , since BERTf already has lower similarity be-
tween classes. This is because BERTf is trained
with images (from seen classes) during fine-tuning,
which makes BERTf more aligned with visual fea-
tures and thus is more representative. We choose
τ based on the ImageNet validation set of the seen
classes.

Table 7 shows that the weighted average embed-
ding BERTp-w makes similar classes less similar.
Originally, a class “Sea boat” has overly similar se-
mantic representations with other type of boats (i.e.
BERTp). After applying our weighting approach,
the classes become less similar (e.g. 0.94 to 0.91
between “Sea boat” and “Scow”).

H Qualitative Results

H.1 Visual sections and clusters

We provide additional illustrations of visual sec-
tions and clusters of Section 3 in the main text.

Figure 4 shows visual and non-visual sections in
a Wikipedia page Siberian Husky. We note that
the summary paragraph and sections such as De-
scription contain visual sentences while sections
such as Health or History do not. Similarly, Table 8
shows two clusters: the top cluster is visual, con-
sisting of information about hunting and preys of
animals while the bottom cluster includes mythol-
ogy sentences not visually related.

H.2 On ImageNet

Figure 5 shows the qualitative results of our
BERTf-w and w2v-v2 on ImageNet. For each im-
age, we provide its label and the Top 5 prediction
by BERTf-w and w2v-v2. While w2v-v2 is not able

Clusters
· · · hunt shortly after sunset, eating small animals · · ·
· · · if food is scarce, it has been known to eat tomatoes · · ·
Tigers are capable of taking down larger prey like adult gaur · · ·
Tigers will also prey on such domestic livestock as cattle, horses, · · ·
Panda is a Roman goddess of peace and travellers · · ·
The Ibex is also a national emblem of the great ancient Axum empire.
In Aztec mythology, the jaguar was considered to be the totem animal of · · ·
It is the national animal of Guyana, and is featured in its coat of arms · · ·

Table 8: K-means sentence clusters. The top cluster has
visual information about hunting and preys while the bottom
one contains non-visual description such as mythology.

to differentiate the similar classes (e.g. Predict-
ing “Scooter” as “Tandem bicycle”), our BERTf-w
can distinguish them. We also note that the Top
5 classes predicted by BERTf-w are similar (e.g.
“Grey whale” and “Killer whale”). This suggests
that our approach maintains the order of similarity
among classes but make their semantic representa-
tions more distinctive.
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Figure 4: Visual sections on Siberian Husky.

Figure 5: Qualitative results between BERTf-w and w2v-v2 on ImageNet. For each image, we report Top 5 prediction. While
w2v-v2 is not able to distinguish similar classes (e.g. Predicting “Scooter” as “Tandem bicycle”), our BERTf-w differentiates
them.


