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Abstract

It is popular that neural graph-based models
are applied in existing aspect-based sentiment
analysis (ABSA) studies for utilizing word re-
lations through dependency parses to facilitate
the task with better semantic guidance for an-
alyzing context and aspect words. However,
most of these studies only leverage depen-
dency relations without considering their de-
pendency types, and are limited in lacking effi-
cient mechanisms to distinguish the important
relations as well as learn from different layers
of graph based models. To address such limita-
tions, in this paper, we propose an approach to
explicitly utilize dependency types for ABSA
with type-aware graph convolutional networks
(T-GCN), where attention is used in T-GCN
to distinguish different edges (relations) in the
graph and attentive layer ensemble is proposed
to comprehensively learn from different layers
of T-GCN. The validity and effectiveness of
our approach are demonstrated in the exper-
imental results, where state-of-the-art perfor-
mance is achieved on six English benchmark
datasets. Further experiments are conducted to
analyze the contributions of each component
in our approach and illustrate how different
layers in T-GCN help ABSA with quantitative
and qualitative analysis.1

1 Introduction

Aspect-based sentiment analysis (ABSA) processes
fine-grained sentiment polarities towards specific
aspects, where in many cases, it is required to iden-
tify different sentiments for multiple aspects in the
same context. For example, in the sentence “The
drink menu is limited but the wines are excellent.”,
the sentiment polarity towards “drink menu” is neg-
ative while that towards “wines” is positive; an

*Equal contribution.
†Corresponding author.
1The code and models involved in this paper are released

at https://github.com/cuhksz-nlp/ASA-TGCN.

Figure 1: An example sentence (including the aspect
term “drink menu”) with its dependency parsing result.

ABSA system may predict wrong if it fails to cap-
ture the important contextual information for each
aspects. Therefore, to model such contextual infor-
mation, neural models (e.g., Bi-LSTM and Trans-
former (Vaswani et al., 2017)) have been widely
used for ABSA and demonstrated to be useful for
this task (Wang et al., 2016; Tang et al., 2016a;
Chen et al., 2017; Ma et al., 2017; Fan et al., 2018).

As a further enhancement of encoding contextual
information for ABSA, there are studies (Sun et al.,
2019; Huang and Carley, 2019; Zhang et al., 2019a)
using graph convolutional networks (GCN) to learn
from a graph that is often built over the dependency
parsing results of the input texts. As a result, the
GCN models are able to learn from distant word-
word relations that are more helpful to ABSA. How-
ever, GCN models used in these studies are limited
by omitting the information carried in dependency
types and treating all word-word relations in the
graph equally, therefore unimportant relations may
not be distinguished and mislead ABSA accord-
ingly. For example, Figure 1 illustrates an example
sentence with an aspect highlighted in red, where
the aspect word “menu” is connected with three oth-
ers words, i.e., “the”, “drink”, and “limited”. The
connection between “menu” and “limited” could be
the most important one since its dependency type,
i.e., “nsubj”, suggests that “menu” is the nominal
subject of “limited”, which strongly guides senti-
ment analysis towards “menu”. In this case, if the
dependency type is not modeled, one may not be
able to leverage such beneficial information. In ad-
dition, although previous GCN models learn such
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Figure 2: The overall architecture of our approach
with an example sentence-aspect pair input (the aspect
words “dink menu” are in boldface) from a sentence.
Our T-GCN and ALE are marked on top of the figure.

word-word relations by multiple GCN layers, they
only use the output from the last layer for ABSA,
where the encodings from intermediate layers are
omitted and some essential information may be lost
because different context information are modeled
across layers. Thus an appropriate approach is re-
quired to enhance current GCN models for ABSA.

In this paper, we propose a type-aware graph
convolutional networks (T-GCN) with multiple lay-
ers to enhance ABSA by incorporating both word
relations and their dependency types to compre-
hensively learn from dependency parsing results.
Specifically, we firstly obtain the dependency pars-
ing results of the input texts through off-the-shelf
toolkits, then build the graph over the dependency
tree with each edge labeled by the corresponding
dependency type between the two connected words,
later apply an attention mechanism to the graph to
weight all edges according to their contributions to
the task, and finally use attentive layer ensemble
to weight and combine the contextual information
learned from different GCN layers. In doing so, our
proposed T-GCN model can not only model word-
word relations and their dependency types, but also
distinguish the important contextual information
from such relations to enhance ABSA. Experiments
on six English benchmark datasets are conducted
to evaluate the proposed model, where the results
illustrate its effectiveness and state-of-the-art per-
formance is observed over previous studies on all
datasets. We also perform further analysis to in-

vestigate the contribution of each component (i.e.,
type-aware graph, attention for edges, and atten-
tive layer ensemble) in our approach, and illustrate
how different layers in T-GCN helps ABSA with
quantitative and qualitative studies.

2 The Approach

Given an input sentence X = x1, x2, · · · , xn and
the aspect terms A ⇢ X (A is usually a sub-string
of X ), the conventional ABSA approaches often
take the sentence-aspect pair as the input and pre-
dicts A’s sentiment polarity by (Tang et al., 2016b;
Ma et al., 2017; Xue and Li, 2018; Hazarika et al.,
2018; Fan et al., 2018; Huang and Carley, 2018;
Tang et al., 2019; Chen and Qian, 2019; Tan et al.,
2019; Tang et al., 2020). We follow this paradigm
and the overview of our approach is illustrated in
Figure 2, with a contextual encoder (i.e., BERT),
the proposed T-GCN and the attentive layer ensem-
ble (ALE). The overall conceptual formalism of
our approach can be written as

by = argmax
y2T

p (y|ALE (T -GCN (X ,A))) (1)

where T denotes the set of all sentiment labels for
y (i.e., positive, neutral, and negative) and p com-
putes the probability of predicting y 2 T given
X and A through T-GCN and ALE. In the follow-
ing texts, we firstly describe the construction of
the graph with dependency types, then elaborate
the details of our T-GCN model, and the ALE to
incorporate contextual information from different
T-GCN layers, and finally illustrate incorporating
T-GCN to ABSA.

2.1 Type-aware Graph Construction

Contextual features such as n-grams and syntactic
information have been demonstrated to be useful
to enhance text representation and thus improve
model performance for many NLP tasks (Sun and
Xu, 2011; Song and Xia, 2012; Gong et al., 2012;
Song et al., 2012; Xu et al., 2015; Chen et al., 2017;
Zhang et al., 2019b; Tang et al., 2020). In addi-
tion, it is demonstrated by many recent studies that
GCN models are effective in capturing contextual
features that are represented in graph-like signals,
i.e., dependencies among words, of an input sen-
tence (Sun et al., 2019; Huang and Carley, 2019;
Zhang et al., 2019a; Tian et al., 2020c; Chen et al.,
2020). In the graph for conventional GCN models,
each edge between any two words xi and xj in the
input sentence is added to the graph if there is a
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Figure 3: An illustration of how we build the type-
aware graph from dependency parsing results and the
detail of a T-GCN layer that consumes the graph. Edges
and their dependency types are illustrated in the adja-
cency matrix and the relation matrix, respectively.

dependency relation on them. Therefore, they fail
to comprehensively use the dependency parsing re-
sults because dependency types are always omitted
in the graph. To leverage the such type information,
we propose the type-aware graph for feeding our
T-GCN via the following steps.

First, we use off-the-shelf toolkits to obtain the
dependency results, which can be represented by
a list of dependency tuples (xi, xj , ri,j) with ri,j
denoting the dependency type between xi and
xj . Second, we use an adjacency matrix A =
{ai,j}n⇥n to present the graph by recording word
relations in all tuples and a relation type matrix
R = {ri,j}n⇥n to represent the edges with their
dependency types. Therefore, A is a 0-1 matrix
where ai,j = 1 if there is an edge between xi and
xj , and ai,j = 0 otherwise. For R, each element
ri,j in it uses a mark to denote the dependency
type between xi and xj . Figure 3 illustrates the
dependency parsing results of an example sentence
as well as its type-aware graph represented by A

and R, with the marks for ri,j listed in the “Type
Reference”. Finally, to leverage the relation types,

Figure 4: The illustration of how we compute h
(l)
i for

x3 =“menu” through a T-GCN layer. All words xj

connected to “menu” with their dependency types (in
embeddings eri,j) are shown at the bottom part.

we use a transition matrix to map all ri,j to their
embeddings eri,j .

2.2 T-GCN

With the type-aware graph, we propose an L-layer
T-GCN and for each layer we apply attention to the
edges in the graph to weight them by their contri-
butions to the ABSA task. Figure 4 illustrates the
processes of doing so for the aspect word “menu”
in the sentence “The drink menu is limited but all
the wines are excellent.”. In detail, for a each edge
between xi and xj , the l-th GCN layer takes the
hidden vectors h(l�1)

i and h
(l�1)
j of xi and xj from

the (l � 1)-th GCN layer (h(0)
i and h

(0)
i are from

the context encoder) and concatenate them with the
embeddings of their dependency types eri,j by

s
(l)
i = h

(l�1)
i � e

r
i,j (2)

and

s
(l)
j = h

(l�1)
j � e

r
i,j (3)

Then, we compute the weight p(l)i,j for this edge by

p(l)i,j =
ai,j · exp

⇣
s
(l)
i · s(l)j

⌘

Pn
j=1 ai,j · exp

⇣
s
(l)
i · s(l)j

⌘ (4)

and align the dimension of eri,j to h
(l�1)
j by a train-

able matrix W
(l)
R of the l-th GCN layer by

h
(l�1)

0

j = h
(l�1)
j +W

(l)
R · eri,j (5)

Finally, we apply p(l)i,j to this edge and compute
the output for xi at l-th layer following a similar
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process in the conventional GCN by

h
(l)
i = �

0

@
nX

j=1

pij

✓
W

(l) · h(l�1)
0

j + b
(l)

◆1

A

(6)
where W(l) and b

(l) denote trainable parameters in
the l-th GCN layer and � refers to the ReLU activa-
tion function. The above process is conducted for
every xi and throughout all GCN layers, thus the
information of dependency types are incorporated
into the GCN to enhance ABSA accordingly.

2.3 Attentive Layer Ensemble

For each word xi, since every T-GCN layer incor-
porates information from the words that directly
connect to it, so that multiple T-GCN layers could
learn indirect word relations from long distance.
Thus it is assumed that different layers have their
unique capabilities to encode contextual informa-
tion. To utilize such capabilities, we propose to
comprehensively learn from all T-GCN layers with
attentive layer ensemble.

In doing so, we firstly obtain the output o(l) from
each T-GCN layer by averaging the output hidden
vectors of all aspect terms xk 2 A:

o
(l) =

1

|A| ·
X

xk2A
h
(l)
k (7)

where |A| is the number of words in the aspect
terms A. Then we attentively ensemble the output
of all T-GCN layers through a weighted average:

o =
LX

l=1

�(l) · o(l) (8)

where o is the final vector output for ABSA and
�(l) is a trainable weight assigned to o

(l) to balance
its contribution and satisfying

PL
l=1 �

(l) = 1.

2.4 Encoding and Decoding with T-GCN

To support applying T-GCN for ABSA, there are
necessary encoding and decoding processes. For
encoding, there are two ways in doing so. The first
is to take the sentence X as the input and obtain
the hidden vectors h(0)

i for all xi by

H
X = BERT (X ) (9)

where H
X is the hidden vectors of all words in X ,

and we use BERT as the encoder (same below).
The second is to take the sentence-aspect pair as
the input, which can be formalized by

[HX ,HA] = BERT (X ,A) (10)

Datasets Pos. # Neu. # Neg. #

LAP14
Train 994 464 870
Test 341 169 128

REST14
Train 2,164 637 807
Test 728 196 182

REST15
Train 907 36 254
Test 326 34 207

REST16
Train 1,229 69 437
Test 469 30 114

TWITTER
Train 1,561 3,127 1,560
Test 173 346 173

MAMS

(ATSA)

Train 3,380 5,042 2,764
Dev 403 604 325
Test 400 607 329

Table 1: The number of aspects with positive, neutral,
and negative sentiment polarities in all datasets.

where HA is the hidden vectors of all aspect words.
Then, the hidden vectors from H

X or HA are feed
into the T-GCN model as that described in §2.2. For
decoding, after we obtain o from ALE, we firstly
map o to the label space by a fully connected layer,
u = W · o+ b, where W and b are the trainable
matrix and the bias, respectively, and each dimen-
sion of u corresponds to a sentiment type. Thus,
we employ a softmax function to u and predict the
output sentiment ŷ for the aspect A in X by:

ŷ = argmax
exp(ut)

P|T |
t=1 exp(u

t)
(11)

where ut is the value at dimension t in u.

3 Experimental Settings

3.1 Datasets

In the experiments, we employ five widely used
English benchmark datasets: LAP14 and REST14
from Pontiki et al. (2014), REST15 from Pontiki
et al. (2015), REST16 from Pontiki et al. (2016),
and TWITTER from Dong et al. (2014), with their
official train/test splits. In addition, we try another
recently released English dataset, named MAMS2

(Jiang et al., 2019), with the official train/dev/test
splits for ABSA, which is much larger than the
aforementioned five datasets. It is worth noting that,
in addition to the positive, neutral, and negative
sentiment labels, LAP14, REST14, and REST16

2We use the ATSA part of MAMS obtained from https:
//github.com/siat-nlp/MAMS-for-ABSA.
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Models
LAP14 REST14 REST15 REST16 TWITTER MAMS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT-base (S) 77.74 73.30 82.68 73.54 81.34 63.57 88.89 68.19 73.70 71.50 78.94 79.42
+ GCN 79.52 76.01 84.79 77.93 83.60 65.71 90.76 72.79 75.16 72.96 80.69 80.27
+ T-GCN 80.25 76.92 85.54 78.86 85.07 72.50 91.83 76.86 76.16 74.44 81.73 81.12

BERT-base (P) 78.68 74.64 84.55 77.34 83.40 65.28 89.54 70.47 75.00 72.53 80.11 80.34
+ GCN 79.94 76.72 85.09 78.81 84.14 65.75 91.01 73.38 75.29 73.68 81.96 81.31
+ T-GCN 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29 76.45 75.25 83.38 82.77

BERT-large (S) 78.06 74.67 83.04 73.27 83.02 68.34 90.20 73.64 73.12 72.08 79.33 79.87
+ GCN 80.09 76.84 86.07 80.35 84.69 70.31 91.48 74.96 75.21 73.69 81.36 81.04
+ T-GCN 81.50 78.48 86.88 81.03 85.07 70.30 92.32 75.83 75.43 73.71 82.70 82.16

BERT-large (P) 79.62 75.77 85.53 77.64 84.14 69.67 91.34 74.35 75.43 73.55 80.62 80.77
+ GCN 80.68 77.85 86.48 80.63 85.42 70.42 91.69 75.24 75.26 73.41 82.56 82.14
+ T-GCN 81.97 78.71 87.41 82.23 86.00 72.81 92.97 80.07 78.03 77.31 83.68 83.07

Table 2: Experimental results (accuracy and F1 scores) of using two encoders i.e., BERT-base and BERT-large,
with different configurations on six benchmark datasets. “GCN” refers to the normal GCN model without using
type-aware graph, attention mechanism as well as ALE. “S” and “P” refer to the settings that the input is a single
sentence and a sentence-aspect pair, respectively.

contain another conflict label, which identifies the
aspects that have conflict sentiment polarities. For
example, the aspect “sushi” is assigned by a con-
flict label in “Certainly not the best sushi in New
York, however, it is always fresh.” from REST14.
Therefore, we follow Tang et al. (2016b) to clean
the datasets by removing all aspects with the afore-
mentioned conflict label, as well as sentences with-
out an aspect. The statistics (number of aspects
with positive, neutral, and negative labels) of the
processed six datasets are reported in Table 1.

3.2 Implementation Details

To build the graph for T-GCN, we firstly use the
current best performing constituency parser, i.e.,
SAPar3 (Tian et al., 2020d), to parse all input text
into constituency trees, then convert the trees into
dependency trees by Stanford Converter4, and fi-
nally build the graph over the dependency relations
and types from the trees.5 Since high quality text
representations can improve the performance of
NLP models (Mikolov et al., 2013; Song et al.,
2017; Bojanowski et al., 2017; Song and Shi, 2018;
Song et al., 2018), we employ BERT (Devlin et al.,
2019) as the context encoder, which and whose
variants (Diao et al., 2020; Dai et al., 2019; Joshi
et al., 2020) have demonstrated their effectiveness

3https://github.com/cuhksz-nlp/SAPar
4We use the converter of version 3.3.0 from https://

stanfordnlp.github.io/CoreNLP/index.html.
5We also try Stanford CoreNLP Toolkits (https:

//stanfordnlp.github.io/CoreNLP/) (Manning
et al., 2014) and spaCy (https://spacy.io/) depen-
dency parsers with similar results obtained.

to encode context information and achieved state-
of-the-art performance in many NLP tasks (Huang
and Carley, 2019; Tian et al., 2020a,b; Tang et al.,
2020; Nie et al., 2020; Wang et al., 2020). Specif-
ically, we use the uncased BERT-base and BERT-
large6 with their default settings, i.e., 12 layers
of self-attention with 768 dimensional hidden vec-
tors for BERT-base and 24 layers of self-attention
with 1024 dimensional hidden vectors for BERT-
large, and use three T-GCN layers. We try two
ways to encode the input, where the first encodes
the single sentence and the second encodes the
sentence-aspect pair. For all models, we use the
pre-trained parameters of BERT and initialize all
other trainable parameters by Xavier (Glorot and
Bengio, 2010). Moreover, we use the cross-entropy
loss function for our models and follow previous
studies (Tang et al., 2016a; Chen et al., 2017; He
et al., 2018a; Sun et al., 2019; Zhang et al., 2019a)
to evaluate them via accuracy and macro-averaged
F1 scores over all sentiment polarities. For datasets
without the official development set, we randomly
sample 10% instances from the training set and
regard them as the development set to find the best
hyper-parameter setting which is then used to train
different models on the entire training set.7

6We obtain the BERT models from https://github.
com/huggingface/pytorch-pretrained-BERT.

7We report the hyper-parameter settings of different mod-
els with their size and running speed in Appendix A and B.
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Models
LAP14 REST14 REST15 REST16 TWITTER MAMS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

†Chen et al. (2017) 74.49 71.35 80.23 70.80 - - - - 69.36 67.30 - -
Ma et al. (2017) 72.10 - 78.60 - - - - - - - - -
Fan et al. (2018) 75.39 72.47 81.25 71.94 - - - - 72.54 70.81 - -
Gu et al. (2018) 74.12 - 81.16 - - - - - - - - -
†He et al. (2018a) 72.57 69.13 80.63 71.32 81.67 66.05 64.61 67.45 - - - -
He et al. (2018b) 71.15 67.46 79.11 69.73 81.30 68.74 85.58 69.76 - - - -
Huang and Carley (2018) 70.06 - 79.20 - - - - - - - - -
Li et al. (2018) 76.54 71.75 80.69 71.27 - - - - 74.97 73.60 - -
Chen and Qian (2019) 73.87 70.10 79.55 71.41 - - - - - - - -
Du et al. (2019) 76.80 73.29 81.79 73.40 - - - - 75.01 73.81 - -
Hu et al. (2019) - - 84.28 74.45 78.58 54.72 - - - - - -
*Mao et al. (2019) 75.84 72.49 82.49 72.10 - - - - 72.35 69.45 - -
*Song et al. (2019) 79.93 76.31 83.12 73.76 - - - - 74.71 73.13 - -
*Xu et al. (2019) 78.07 75.08 84.95 76.96 - - - - - - - -
*Jiang et al. (2019) - - 85.93 - - - - - - - 83.39 -
†Sun et al. (2019) 77.19 72.99 82.30 74.02 - - 85.58 69.93 74.66 73.66 - -
†Zhang et al. (2019a) 75.55 71.05 81.22 72.94 79.89 61.89 88.99 67.48 72.69 70.59 - -
*†Huang and Carley (2019) 80.10 - 83.00 - - - - - - - - -
*†Wang et al. (2020) 78.21 74.07 86.60 81.35 - - - - 76.15 74.88 - -
*†Tang et al. (2020) 79.8 75.6 86.3 80.0 84.0 71.0 91.9 79.0 77.9 75.4 - -

*†Our Best Model 81.97 78.71 87.41 82.23 86.00 72.81 92.97 80.07 78.03 77.31 83.68 83.07

Table 3: Performance (accuracy and F1 scores) comparison of our best model (i.e., T-GCN and ALE on large
BERT with sentence-aspect pair input) with previous studies on all six benchmark datasets. Models using BERT-
large and dependency information are marked by “*” and “†”, respectively.

4 Experimental Results

4.1 Effect of T-GCN

In the main experiments, for each encoder (i.e.,
BERT base and large), we run two baselines: 1,
only using BERT and 2, BERT with normal GCN
where all edges are equally treated and the ABSA
result is predicted based on the output of the last
GCN layer. Table 2 reports the experimental results
from all baselines and our models.8

There are several observations. First, for both
BERT-base and BERT-large encoders, although the
models with normal GCN are able to enhance the
BERT baselines, our models can further improve
the performance in both accuracy and F1 socres
on all datasets. This observation clearly illustrate
the effectiveness of incorporating dependency type
information into GCN and thus improves ABSA
accordingly. Second, in most cases, our models
that encode the sentence-aspect pair achieve higher
results than the ones encoding the single sentence,
which is not surprising because the aspect is there-
fore emphasized in the input and provide more
contextual information to be modeled for ABSA.

4.2 Comparison with Previous Studies

To further demonstrate the effective of our ap-
proach, we compare the performance of our best

8We report the mean and the standard deviation of the
results of the same group of models in Appendix C.

model (i.e., T-GCN using BERT-large encoder with
sentence-aspect pair input), with previous studies
on all datasets. The results are reported in Table
3, where our model outperforms previous stud-
ies, including the ones (Huang and Carley, 2019;
Wang et al., 2020; Tang et al., 2020) using BERT-
large (marked by “*”) and dependency informa-
tion (marked by “†”), on all datasets in terms of
both accuracy and F1 scores. In particular, com-
pared with our approach, Huang and Carley (2019)
use a variant of graph attention networks (GAT),
while they do not use dependency types; Wang
et al. (2020) also use a variant of GAT and they
use the relation type as well, but they do not assign
different weight to separate word-word relations;
Tang et al. (2020) use a variant of GCN but they
do not use the dependency type information. Our
model shows its superiority to the aforementioned
studies since we not only assign different weights
to dependencies, but also comprehensively lever-
age the dependency parsing results with both word
relations and their dependency type information, as
well as fined-grained encoding results from multi-
ple T-GCN layers.

5 Analyses

5.1 Ablation Study

To explore the effectiveness of different compo-
nents in our model, i.e., type-aware graph (TG),
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Setting LAP14 REST14 REST15 REST16 TWITTER MAMS

TG Att ALE Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

1
p p p

81.97 78.71 87.41 82.23 86.00 72.81 92.97 80.07 78.03 77.31 83.68 83.07

2 ⇥
p p

81.46 78.69 87.21 81.35 85.93 72.06 92.14 77.80 77.31 76.42 83.01 82.53
3

p
⇥

p
80.96 77.66 86.68 81.09 85.66 71.03 91.89 76.40 76.73 75.90 82.78 82.47

4
p p

⇥ 80.88 77.54 86.85 81.20 85.89 71.32 91.75 76.65 77.16 76.23 83.31 82.70

5
p

⇥ ⇥ 80.79 77.42 86.50 80.42 85.65 70.50 91.45 75.64 76.15 75.28 83.16 82.76
6 ⇥

p
⇥ 81.10 78.12 86.88 81.02 85.89 71.10 91.99 77.50 77.31 76.18 83.53 82.90

7 ⇥ ⇥
p

80.85 77.56 86.45 80.21 85.79 70.91 91.66 75.92 76.73 74.97 82.86 82.38

8 ⇥ ⇥ ⇥ 80.68 77.85 86.48 80.63 85.42 70.42 91.69 75.24 75.26 73.41 82.56 82.14

Table 4: Experimental results of ablation study on the six datasets, with different configurations applied to our best
model. ‘TG” refers to the type-aware graph; “ATT” denotes the attention mechanism in T-GCN; “ALE” stands for
the attentive layer ensemble. “

p
” and “⇥” represent if a corresponding component is used or not.

attention (Att), and ALE, we conduct an ablation
study based on our best model (i.e., T-GCN on
BERT-large encoder with sentence-aspect pair in-
put). The experimental results on all datasets with
respect to using different combinations of such
components are reported in Table 4, with the re-
sults of the full model and the baseline with normal
GCN illustrated on the first (ID: 1) and last row (ID:
8), respectively. Herein, models without ALE (ID:
4-6) use the output of the last T-GCN layer (i.e.,
the third layer) to predict the sentiment polarity.9

Here are some observations. First, it is clearly
indicated in results that, the model performance
drops on all datasets if any component is excluded
from the full model. This observation indicates
that all three components play important roles in
our approach to enhance ABSA; each one has its
unique contribution to the full model. Second, for
each single components, compared with the results
from GCN baseline (ID: 8), the results from mod-
els with a particular module (ID: 5-7) demonstrate
that the attention mechanism is the most important
one to improve model performance, where on all
datasets, the model (ID: 6) with attention outper-
forms the others. This observation complies with
our intuition because the attention directly guides
the model to distinguish the contextual information
to the aspect words, so that informative words are
highlighted so as to improve ABSA accordingly.

5.2 Impact of Different T-GCN Layers

Besides those components, we also investigate the
effect of each layer when our model is trained on
different datasets. In doing so, we perform exper-
iments on all datasets using our best performing
model and use the weight (�(l) in Eq. (8)) assigned

9We obtain similar results when using the output of inter-
mediate layers. The details are reported in Appendix D.

Figure 5: The histograms of weights assigned to differ-
ent T-GCN layers (blue, green, and orange bars refer to
the weights for the 1st, 2nd, and 3rd layer, respectively)
in ALE with respect to each dataset.

to each T-GCN layer to identify the contribution of
them. The results are illustrated in Figure 5, with
the weights for the 1st, 2nd, and 3rd T-GCN layers
drawn in blue, green, and orange bars, respectively.

We have following observations. First, all lay-
ers contribute to the final prediction for ABSA,
which complies with our expectation and confirms
the validity of leveraging the information from all
layers of GCN. Therefore, the model is able to pro-
vide comprehensive contextual information com-
paring to that only uses the output from the last
layer. Second, interestingly, as shown in the his-
tograms, for most datasets (i.e. LAP14, REST14,
REST15, REST16, and MAMS), the second layer
of T-GCN contributes the most among all three
layers. A possible reason behind is that (1) the
second layer is able to encode contextual informa-
tion from a larger range (because the edges in the
first layer only cover words with direct relations,
while the second and third layer provide indirect
relations, i.e., second and third order dependencies
in practice); (2) comparing to the third layer, the
second layer may introduce less irrelevant infor-
mation from multi-word relations. Third, we also
notice that for TWITTER, the weight distribution
among three layers is rather different from the other
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Figure 6: Visualization of the weights assigned to different edges and dependency types in each T-GCN layer for
an example sentence with two aspects (in red) in conflict sentiment polarities. The edge and type weights (in blue)
for “OK” in the first and second layer are illustrated on the left, while such weights (in green) for “food” and ALE
weights (in yellow) for each layer are illustrated on the right. Deeper color refers to the higher weight.

datasets, where the first and last layer contributes
more to ABSA. This observation can be explained
by that, TWITTER is social medial data, where, in
general, sentences in such data are short and less
organized, so that our model may require the in-
formation from either local context or the entire
sentence for ABSA.

5.3 Case Study

To further illustrate the effectiveness of T-GCN
on leveraging the information of dependency types
and weighting salient word relations for improv-
ing ABSA, we conduct a case study on using our
model to process the sentence “The food was OK
but the service was so poor that the food was cold
by the time everyone in my party was served” from
REST16. In this sentence, there are two aspects
with contrast sentiment polarities, i.e., “food” and
“service” have positive and negative sentiment sug-
gested by “OK” and “limited”, respectively.

To demonstrate the effectiveness of our model
to process such sentence with conflict sentiments,
on the right part of Figure 6, we visualize weights
(in green) assigned to the edges connected to ‘food”
from the attention in all T-GCN layers, and the
ALE weights (in yellow) for each layer, where
deeper color refers to higher weight. For those
edges, except for its self-connection, the edge be-
tween “food” and “OK” receives the highest weight
in every layer, and the second layer receives the
highest weight in ALE. Note that in this case, the
reason why T-GCN works can be explained by that,

when there are more than two layers are used in a
GCN model, the edges connecting to “OK” also
influence the ABSA results because indirect rela-
tions are introduced across layers. As a result, the
noisy connection between “OK” and “poor” may
contribute to the prediction and the normal GCN
could possibly fail on this case because of lacking
a mechanism to distinguish it from other edges.
Therefore, as shown in the left part of Figure 6, we
also visualize the weights for edges connecting to
“OK” from the first and second T-GCN layers,10

where the informative word relations and their de-
pendency types receive much heavier weights than
that for noisy ones. Moreover, it is noticed that the
dependency type for the edge between “OK” and
“poor” is “conj” (conjunction), which suggests that
“poor” is syntactically parallel with “OK” and is
thus less likely to provide essential sentiment guid-
ance for “OK”. Overall, this case study illustrates
that our model successfully identifies that “OK” is
the most important contextual information to de-
termine the sentiment for “food”, with the help of
dependency type and attention used in T-GCN, and
also shows that the final prediction relies on the
contributions from different T-GCN layers.

6 Related Work

ABSA is in the line of research on sentiment anal-
ysis in a fine-grained level focusing on categoriz-

10Note that we do not visualize the weights for “OK” in
the third layer because its resulting hidden vector does not
contribute to the final sentiment prediction.
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ing sentiment polarities for a specific aspect (e.g.,
“chicken”) or category (e.g., “food”) in a sentence.
Conventionally, this task is formulated as to clas-
sify a sentence-aspect pair and most of studies try
to explore the contextual information between as-
pect and the entire sentence to facilitate the analysis
of sentiment (Dong et al., 2014; Wang et al., 2016;
Tang et al., 2016a; Ma et al., 2017; Chen et al.,
2017; Xue and Li, 2018; Li et al., 2018; Xu et al.,
2019; Wang et al., 2020; Tang et al., 2020). To
further enhancing the modeling of contextual in-
formation, dependency parses were leveraged by
many studies, where adaptive recursive neural net-
works (Dong et al., 2014), attention mechanism
(He et al., 2018a), and key-value memory networks
(Tian et al., 2021) are used. Later, Huang and Car-
ley (2019); Sun et al. (2019); Zhang et al. (2019a);
Wang et al. (2020); Tang et al. (2020) leveraged
graph neural models (e.g., GCN) for ABSA with
their graph built upon the dependency tree obtained
from off-the-self dependency parsers, and demon-
strated promising results. The models in their stud-
ies normally focus on building the graph with the
dependency structure without considering depen-
dency types, meanwhile treating the edges in the
graph equally. In addition, they usually use the out-
put of the last layer to predict sentiment labels al-
though their models consist multiple layers. Thus,
our approach differs from previous graph-based
ones on several aspects, including the integration
of depdendency type information, applying atten-
tion to edges, and ensemble of multiple layers to
comprehensively learn from the graph model.

7 Conclusion

In this paper, we propose a neural approach for
ABSA with T-GCN, where the input graph is
built on the dependency tree of the input sentence.
Specifically, the edges in the graph are constructed
on top of both dependency relations and types for
the input sentence; for each word, we use atten-
tion to weight all such type-aware edges associated
to it in the T-GCN; we also apply attentive layer
ensemble to comprehensively learn contextual in-
formation from different T-GCN layers. Experi-
mental results on six widely used English bench-
mark datasets demonstrate the effectiveness of our
approach, where state-of-the-art performance are
achieved on all datasets. Further analyses illustrate
the validity of incorporating type information into
our model as well as applying attentive ensemble

to learning from its multiple layers.
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2016. SemEval-2016 Task 5: Aspect Based Benti-
ment Analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 19–30.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 Task 12: Aspect Based Sentiment
Analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 486–495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 Task 4:
Aspect Based Sentiment Analysis. In Proceedings
of the 8th International Workshop on Semantic Eval-
uation (SemEval 2014), pages 27–35.

Yan Song, Prescott Klassen, Fei Xia, and Chunyu Kit.
2012. Entropy-based Training Data Selection for
Domain Adaptation. In Proceedings of COLING
2012: Posters, pages 1191–1200.

Yan Song, Chia-Jung Lee, and Fei Xia. 2017. Learn-
ing Word Representations with Regularization from
Prior Knowledge. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 143–152.

Yan Song and Shuming Shi. 2018. Complementary
Learning of Word Embeddings. In Proceedings of
the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pages 4368–
4374.

Yan Song, Shuming Shi, Jing Li, and Haisong Zhang.
2018. Directional Skip-Gram: Explicitly Distin-
guishing Left and Right Context for Word Embed-
dings. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 175–180.

Yan Song and Fei Xia. 2012. Using a Goodness Mea-
surement for Domain Adaptation: A Case Study on
Chinese Word Segmentation. In LREC, pages 3853–
3860.

Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu,
and Yanghui Rao. 2019. Attentional Encoder Net-
work for Targeted Sentiment Classification. arXiv
preprint arXiv:1902.09314.

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi
Mao, and Xudong Liu. 2019. Aspect-Level Sen-
timent Analysis Via Convolution over Dependency
Tree. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5683–5692.

Weiwei Sun and Jia Xu. 2011. Enhancing Chinese
Word Segmentation Using Unlabeled Data. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 970–979.

Xingwei Tan, Yi Cai, and Changxi Zhu. 2019. Recog-
nizing Conflict Opinions in Aspect-level Sentiment
Classification with Dual Attention Networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3417–
3422.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.
2016a. Effective LSTMs for Target-Dependent Sen-
timent Classification. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 3298–
3307.

Duyu Tang, Bing Qin, and Ting Liu. 2016b. Aspect
Level Sentiment Classification with Deep Memory
Network. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 214–224.

Hao Tang, Donghong Ji, Chenliang Li, and Qiji
Zhou. 2020. Dependency Graph Enhanced Dual-
transformer Structure for Aspect-based Sentiment
Classification. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6578–6588.

Jialong Tang, Ziyao Lu, Jinsong Su, Yubin Ge, Lin-
feng Song, Le Sun, and Jiebo Luo. 2019. Progres-
sive Self-Supervised Attention Learning for Aspect-
Level Sentiment Analysis. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 557–566.

Yuanhe Tian, Guimin Chen, and Yan Song. 2021. En-
hancing Aspect-level Sentiment Analysis with Word
Dependencies. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics.

Yuanhe Tian, Yan Song, Xiang Ao, Fei Xia, Xi-
aojun Quan, Tong Zhang, and Yonggang Wang.
2020a. Joint Chinese Word Segmentation and Part-
of-speech Tagging via Two-way Attentions of Auto-
analyzed Knowledge. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8286–8296.

Yuanhe Tian, Yan Song, and Fei Xia. 2020b. Joint Chi-
nese Word Segmentation and Part-of-speech Tag-
ging via Multi-channel Attention of Character N-
grams. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
2073–2084.



2921

Yuanhe Tian, Yan Song, and Fei Xia. 2020c. Supertag-
ging Combinatory Categorial Grammar with Atten-
tive Graph Convolutional Networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6037–6044.

Yuanhe Tian, Yan Song, Fei Xia, and Tong Zhang.
2020d. Improving Constituency Parsing with Span
Attention. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 1691–
1703.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,
and Rui Wang. 2020. Relational Graph Attention
Network for Aspect-based Sentiment Analysis. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3229–
3238.

Yequan Wang, Minlie Huang, Li Zhao, et al. 2016.
Attention-based LSTM for Aspect-level Sentiment
Classification. In Proceedings of the 2016 confer-
ence on empirical methods in natural language pro-
cessing, pages 606–615.

Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. 2019.
BERT Post-Training for Review Reading Compre-
hension and Aspect-based Sentiment Analysis. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2324–
2335.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying Relations via Long
Short Term Memory Networks Along Shortest De-
pendency Paths. In Proceedings of the 2015 con-
ference on empirical methods in natural language
processing, pages 1785–1794.

Wei Xue and Tao Li. 2018. Aspect Based Sentiment
Analysis with Gated Convolutional Networks. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2514–2523.

Chen Zhang, Qiuchi Li, and Dawei Song. 2019a.
Aspect-based Sentiment Classification with Aspect-
specific Graph Convolutional Networks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4560–4570.

Hongming Zhang, Yan Song, and Yangqiu Song.
2019b. Incorporating Context and External Knowl-
edge for Pronoun Coreference Resolution. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational

Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 872–881.

Appendix

A. Hyper-parameter Settings

Table 5 reports the hyper-parameters tested in train-
ing our models. We test all combinations of them
for each model and use the one achieving the high-
est accuracy score in our final experiments.

Hyper-parameters Values

Learning Rate 5e� 6, 1e� 5,2e� 5, 3e� 5
Warmup Rate 0.06,0.1
Dropout Rate 0.1
Batch Size 8, 16, 32
Max Input Length 100

Table 5: The hyper-parameters tested in tuning our
models, where the best ones used in our final experi-
ments are highlighted in boldface.

B. Model Size and Running Speed

Table 6 reports the number of trainable parameters
and the inference speed (sentences per second) of
the baseline models (BERT) and our best perform-
ing models (i.e., T-GCN and ALE using BERT-
large encoder with sentence-aspect pair input) on
all datasets. All models are performed on an Nvidia
Quadro RTX 6000 GPU.

C. Mean and Deviation of the Results

In our experiments, we run models using BERT-
base and BERT-large encoders with different con-
figurations, where models using single sentence
input (S) or sentence-aspect pair input (P) as well
as models using normal GCN (+ GCN) or T-GCN
(+ T-GCN) are tested. For each model, we train it
with the best hyper-parameter setting using five dif-
ferent random seeds. We report the mean (µ) and
standard deviation (�) of the experimental results
(accuracy and F1 scores) on all datasets in Table 7.

D. Effect of T-GCN layer

In our ablation study, we run models with different
configurations of type-aware graph (TG), attention
(Att), and ALE, where three T-GCN layers are used.
For settings without ALE (ID: 4-6 and 8), we also
try different number of layers and report the results
in Table 8, where similar trend is observed.
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Models
LAP14 REST14 REST15 REST16 TWITTER MAMS

Para. Speed Para. Speed Para. Speed Para. Speed Para. Speed Para. Speed

BERT-Base 109.5M 37.1 109.5M 38.1 109.5M 37.3 109.5M 38.5 109.5M 38.2 109.5M 38.0
Full Model 114.8M 31.4 114.8M 30.9 114.8M 30.6 114.8M 29.6 114.8M 30.7 114.8M 30.2

BERT-Large 335.1M 20.0 335.1M 20.1 335.1M 20.5 335.1M 20.5 335.1M 19.6 335.1M 20.0
Full Model 344.6M 16.4 344.6M 17.4 344.6M 16.8 344.6M 17.1 344.6M 17.6 344.6M 17.3

Table 6: Numbers of trainable parameters (Para.) in different models and the inference speed (sentences per
second) of these models on the test sets of all datasets.

Models

LAP14 REST14 REST15 REST16 TWITTER MAMS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
µ � µ � µ � µ � µ � µ � µ � µ � µ � µ � µ � µ �

BERT-base (S) 77.61 0.74 72.85 0.74 82.45 0.41 72.62 0.74 81.48 0.61 64.00 0.64 89.05 0.46 69.04 1.94 73.89 0.24 72.20 0.63 78.85 0.15 79.29 0.20
+ GCN 78.95 0.37 74.71 0.62 85.39 0.36 78.72 0.64 83.65 0.75 69.66 1.93 91.37 0.63 74.99 1.14 75.05 0.71 73.39 0.90 80.51 0.33 80.22 0.31
+ T-GCN 79.33 0.68 75.29 1.00 85.86 0.30 79.19 0.61 84.44 0.75 69.61 2.34 91.61 0.53 76.63 1.03 75.48 0.75 74.00 0.89 81.80 0.23 81.20 0.31

BERT-base (P) 78.97 0.49 74,75 0.30 85.49 0.75 78.54 1.23 83.40 0.73 69.12 2.83 91.04 0.87 74.93 2.41 74.88 0.16 73.43 0.46 80.02 0.32 80.16 0.27
+ GCN 79.00 0.82 74.90 1.14 85.76 0.13 79.62 0.73 83.69 0.79 69.86 1.59 91.60 0.57 76.87 0.61 75.31 0.95 73.66 1.08 81.76 0.44 81.12 0.37
+ T-GCN 79.10 0.87 75.16 0.95 86.19 0.24 79.56 0.72 84.16 0.81 69.95 2.03 92.36 0.33 77.70 1.69 75.65 0.91 74.40 0.98 83.09 0.33 82.41 0.42

BERT-large (S) 78.11 0.30 74.00 0.67 82.35 0.87 71.75 1.77 82.03 0.51 68.04 0.39 89.30 0.90 70.24 1.39 74.47 0.87 73.16 0.72 79.17 0.26 79.71 0.32
+ GCN 80.77 0.58 77.56 0.69 86.87 0.51 81.00 0.50 84.93 0.58 69.83 1.49 92.18 0.76 76.84 1.90 75.39 0.47 73.95 0.42 81.30 0.13 80.89 0.18
+ T-GCN 81.00 0.98 77.89 0.96 87.02 0.10 81.26 0.16 85.57 0.35 69.73 1.07 92.23 0.18 76.78 1.48 75.52 0.34 74.16 0.45 82.51 0.22 82.05 0.18

BERT-large (P) 80.06 0.48 76.50 0.67 86.17 0.33 79.10 0.76 81.59 1.87 59.23 7.40 89.29 2.04 65.32 9.02 75.34 0.31 74.21 0.53 80.45 0.35 80.62 0.30
+ GCN 81.22 0.50 77.15 0.75 86.83 0.22 80.18 0.32 85.26 0.56 68.37 1.50 92.21 0.65 77.86 1.68 75.65 0.30 74.25 0.75 82.60 0.11 82.19 0.19
+ T-GCN 81.37 0.68 77.94 0.92 87.11 0.25 81.33 0.85 85.89 0.72 70.06 2.53 92.74 0.28 78.60 1.33 77.73 0.41 77.01 0.48 83.56 0.25 82.91 0.21

Table 7: The mean µ and standard deviation � of accuracy and F1 scores of all models on six benchmark datasets.
“GCN” refers to the normal GCN model without using type-aware graph, attention mechanism and ALE. “S” and
“P” refer to the settings that the input is a single sentence and a sentence-aspect pair, respectively.

Setting LAP14 REST14 REST15 REST16 TWITTER MAMS

TG Att ALE Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

4
p p

⇥ 81.50 78.42 87.35 82.17 85.44 72.32 92.48 78.26 76.58 75.53 83.21 82.53

5
p

⇥ ⇥ 81.21 77.79 87.26 81.64 86.13 73.96 92.42 75.69 74.88 73.89 83.18 82.39
6 ⇥

p
⇥ 81.32 77.75 87.21 81.43 86.19 73.78 92.43 75.87 75.17 73.91 83.33 82.56

8 ⇥ ⇥ ⇥ 80.88 77.63 86.84 81.07 85.85 72.11 91.89 75.18 75.04 73.99 82.26 82.13

(a) 1 T-GCN layer

Setting LAP14 REST14 REST15 REST16 TWITTER MAMS

TG Att ALE Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

4
p p

⇥ 81.34 77.84 87.31 81.57 86.19 73.99 92.48 75.64 75.00 73.96 83.18 82.47

5
p

⇥ ⇥ 81.13 77.68 87.16 81.42 86.08 73.86 92.38 75.61 74.90 73.82 83.08 82.32
6 ⇥

p
⇥ 81.38 77.85 87.35 81.58 86.23 73.98 92.58 75.89 75.08 73.99 83.28 82.52

8 ⇥ ⇥ ⇥ 80.83 77.57 86.68 81.02 85.88 72.03 91.92 75.24 75.00 73.96 82.18 82.07

(b) 2 T-GCN layers

Table 8: Experimental results of ablation study on the six datasets, with different configurations applied to our best
model without attentive layer ensemble (ALE). ‘TG” refers to the type-aware graph; “ATT” denotes the attention
mechanism in T-GCN. “

p
” and “⇥” represent if a corresponding component is used or not. (a) reports the results

where only 1 T-GCN layer is used; (b) reports the results where 2 T-GCN layers are used.


