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Abstract

The input vocabulary and their learned repre-
sentations are crucial to the performance of
neural NLP models. Using the full vocabulary
results in less explainable and more memory
intensive models, with the embedding layer of-
ten constituting the majority of model parame-
ters. It is thus common to use a smaller vocab-
ulary to lower memory requirements and con-
struct more interpertable models.

We propose a vocabulary selection method that
views words as members of a team trying to
maximize the model’s performance. We apply
power indices from cooperative game theory,
including the Shapley value and Banzhaf in-
dex, that measure the relative importance of
individual team members in accomplishing a
joint task. We approximately compute these
indices to identify the most influential words.

Our empirical evaluation examines multiple
NLP tasks, including sentence and document
classification, question answering and textual
entailment. We compare to baselines that se-
lect words based on frequency, TF-IDF and re-
gression coefficients under L1 regularization,
and show that this game-theoretic vocabulary
selection outperforms all baselines on a range
of different tasks and datasets.

1 Introduction

Most state-of-the-art NLP methods use neural net-
works that require a pre-defined vocabulary to vec-
torise and encode text. In large text datasets, the
vocabulary size can grow to hundreds of thousands
of words, and having an embedding space over the
entire vocabulary results in models that are expen-
sive in memory and compute, and hard to interpret.

Many of the words in the vocabulary are not
crucial to task performance, and can be removed
without a significant drop in final task performance.

∗Work done during an internship at DeepMind.
Corresponding email: romapatel@brown.edu or
yorambac@google.com.

Figure 1: An example sentence from SST-2 (Socher
et al., 2013), as well as the distribution of heuristic
values based on vocabulary selection algorithms. Fre-
quency and TF-IDF weight stopwords (right) higher
whereas a game-theoretic Shapley-based approach
tends to value task-specific words (left) more.

It is common to use heuristics such as frequency or
TF-IDF to reduce vocabulary size. After filtering
to obtain a smaller vocabulary, “out-of-vocabulary”
(OOV) words are replaced with an unknown word
token <UNK>. This reduction in vocabulary size
has many advantages. Models with reduced vo-
cabulary are more easily interpretable and achieve
increased transparency (Adadi and Berrada, 2018;
Samek et al., 2019), require less memory, can be
used in resource constrained settings, and are less
prone to overfitting (Sennrich et al., 2015; Shi and
Knight, 2017; L’Hostis et al., 2016; Chen et al.,
2019). However, reducing the vocabulary size with
a heuristic such as frequency is often not optimal.
For example, Figure 1 shows the top ranked words
according to frequency (blue), that are largely unim-
portant for the sentiment task at hand.

We consider the vocabulary selection problem:
given a target vocabulary size k (or equivalently,
a target memory footprint or a “budget” of model
parameters for the embedding layer), what is the
optimal word subset we should use as our vocabu-
lary? Our solution’s output, based on the Shapley
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value, is also shown in Figure 1, demonstrating that
it focuses on words relevant to the task.

Our Contribution: We use game theo-
retic principles to propose a vocabulary selection
method. We cast the vocabulary selection prob-
lem as a cooperative game, which considers subset
of words as a “team” whose goal is to solve the
NLP task at hand. We define the performance of
a team as the performance of a model that uses
only those words as its vocabulary. Our method
applies solution concepts from game theory to de-
termine the relative importance of each word in
achieving the goal. Specifically, we consider the
Shapley value (Shapley, 1953) and Banzhaf in-
dex (Banzhaf III, 1964), key concepts in game the-
ory, that are used as “power-indices” for measuring
the individual contribution of team members to the
success of the team. We approximate these indices
by sampling subsets of words and training a model
on each subset to contrast model performance when
including and omitting a target word.

We evaluate our approach against baselines such
as TF, TF-IDF and ranking using logistic regression
coefficients under L1 regularization. We evaluate
on a range of datasets and task structures: single-
sentence classification, pairwise-sentence classi-
fication and document classification. While our
method is significantly more demanding computa-
tionally than these simple baselines, we empirically
demonstrate that it outperforms these baselines on
all tasks, offering better tradeoffs between the vo-
cabulary size and the model’s performance.

2 Method

We assume a dataset D and a training method M
for training on D and producing a model fθ where
θ are tuned model parameters. The model is eval-
uated on a validation set T to estimate how well
the model generalizes to the true data distribution.
An evaluation metric (for example the model ac-
curacy or F1 score, as evaluated on the validation
set) for each model fθ is denoted by q(fθ), thus
allowing an assessment of the performance of a
subset of words. We first briefly discuss prelimi-
naries from cooperative game theory (Chalkiadakis
et al., 2011).

2.1 Preliminaries: Cooperative Game Theory

Cooperative game theory investigates settings
where multiple players work together in teams. A
(transferable-utility) cooperative game consists of

a set A = {a1, . . . , an} of players and a character-
istic function v : 2A → R mapping any subset of
players C ⊆ A (called a “team” or “coalition”) to
a real value v(C) indicating the performance of the
team when working together.

The Shapley value (Shapley, 1953), denoted
φ(v) = (φ1, . . . φn), reflects each player’s individ-
ual contribution to the success of the team, adher-
ing to fairness axioms (Dubey, 1975). 1 Similarly,
the Banzhaf index (Banzhaf III, 1964), denoted
β(v) = (β1, . . . βn), measures impact of individ-
uals on the success of a team, using different ax-
ioms (Dubey and Shapley, 1979; Strafiin Jr, 1988).

Consider quantifying the individual contribution
of a player ai ∈ A in a game with the characteristic
function v. Examine the player ai and a coalition
C ⊆ A \ {ai} that does not contain that player.
The marginal contribution of ai to the coalition
C is defined as m(ai,C) = v(C ∪ {ai})− v(C),
i.e. the increase in value arising from adding ai
to the coalition C. Similarly, denote the set of
permutations over then n players as Π (i.e. each
π ∈ Π is a bijection π : A → A), and denote
the predecessors of ai ∈ A in the permutation
π as b(ai,π). The marginal contribution of ai
in the permutation π is defined as m(ai,π) =
v(b(ai,π) ∪ {ai}) − v(b(ai,π)), i.e. the increase
in value arising from adding ai to the players ap-
pearing before it in the permutation π.

The Banzhaf index βi of player ai is the marginal
contribution of player ai averaged over all possible
coalitions that do not contain that player:

βi =
1

2n−1

∑
C⊂A|i∈C

v(C ∪ {i})− v(C)

The Shapley value πi of a player ai is the
marginal contribution of that player, averaged
across all permutations:

φi =
1

n!

∑
π∈Π

v(b(ai,π) ∪ {ai})− v(b(ai,π))

The Banzhaf index of ai can be viewed as the ex-
pected increase in performance under uncertainty
about the participation of other players in the team

1The Shapley value has also been used to examine power in
team formation (Aziz et al., 2009; Mash et al., 2017; Bachrach
et al., 2020), combinatorial tasks (Ueda et al., 2011; Banarse
et al., 2019), pricing and auctions (Bachrach, 2010; Kamboj
et al., 2011; Blocq et al., 2014) or political settings (Bilbao
et al., 2002; Bachrach et al., 2011; Filmus et al., 2019), or
feature importance for model explainability (Lundberg and
Lee, 2017).
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— if each of the other players has an equal probabil-
ity of joining the team or not joining it, how much
value to we expect to add when ai joins the team.
Similarly, the Shapley value can be viewed as the
expected increase in team value that ai would yield
when players join the team in a random order. 2

2.2 Our Approach: Vocabulary Selection by
Comparing Power Indices

Given the entire vocabulary V and a budget of k
words to use, our method selects a subset V ′ ⊂
V where |V ′| = k, optimizing the performance
q(fV

′
θ ) of a model fV

′
θ trained using a vocabulary

consisting only of the words in V ′.
We view each word as a player and each subset

of words C ⊆ V as a team, and construct a cooper-
ative game. The characteristic function v : V → R
maps a subset of words (partial vocabularies) to the
performance obtained when training a model with
only these words a vocabulary. Formally, we define
the performance v(C) of the team C ⊆ V to be the
performance q(fCθ ) of an NLP model fCθ with the
words in C as its input vocabulary. 3

Given a vocabulary C ⊆ V , evaluating v(C) re-
quires training a model fθ on dataset D using only
the words in C as the vocabulary 4, and measuring
its performance on the validation set T to obtain
v(C) = q(fCθ ). We compute the Shapley value φi
or Banzhaf index βi of any word wi ∈ V (see Sec-
tion 2.1). Words with high values are ones that have
a larger positive influence on performance, whereas
words with lower values are ones that do not impact
task performance when they are removed. 5

Observe that the Banzhaf index βi is the ex-
pected marginal contribution m(ai,C) for a coali-
tion C sampled uniformly at random from the set
{C ⊆ V |ai ∈ C}, and the Shapley value φi is the
expected marginal contribution m(ai,π) for a per-
mutation π sampled uniformly at random from Π.
We can approximate these by taking a sample of
coalitions or permutations, and examining ai’s av-
erage marginal contribution in the sample. For the

2An equivalent formula for the Shapley value is: φi =∑
C⊂A|i∈C

|C|!(|A|−|C|−1)!
|A|! v(C ∪{i})−v(C), showing the

different weights the indices give to different size coalitions.
3For example, for text classification we may define v(C)

to be the model’s accuracy when using C as the vocabulary.
4For example in a text classification task, one could train

a neural network classifier fCθ on the dataset D, replacing all
the words in V \ C with the UNK token.

5The direct formulas for the Shapley or Banzhaf indices
enumerate over all possible word subsets or permutations,
which is intractable. Hence, we use an approximation algo-
rithm (Matsui and Matsui, 2000; Bachrach et al., 2010).

Shapley value, the sample consists of permutations
of words in the vocabulary, where for each permu-
tation π we train two models on vocabularies that
differ by a single word w. The performance differ-
ence between the two models is then the marginal
contribution of the word w. For the Banzhaf index,
we directly construct the vocabulary by flipping
a fair coin per word to determine its inclusion in
the vocabulary. The power index is approximated
as the average marginal contribution of the word
across the samples. Finally, we select the k words
with the highest power index as our vocabulary V ′.
This is shown in Algorithms 1, 2.

Algorithm 1 Banzhaf Vocabulary Selection
1: Inputs: NLP dataset D with full vocabulary V
2: for each word w in V do
3: βw ← 0 (initialise Banzhaf index estimate)
4: for i=1 to S (number of sampled coalitions) do
5: C1 ← ∅
6: for j=1 to |V | do
7: s← Uniform({0, 1}))
8: if s = 1 and wj 6= w then
9: C1 ← C1 ∪ {wj}

10: end if
11: end for
12: C2 ← C1 ∪ {w} (random coalition including w)
13: fC1

θ ← TrainModel(C1) (Train on vocabulary C1)
14: fC2

θ ← TrainModel(C2) (Train on vocabulary C2)
15: m(w,C1)← q(fC2

θ )− q(fC1
θ )

16: βw ← βw +m(w,C1)
17: end for
18: βw ← 1

S
βw (average marginal contributions)

19: end for
20: Rank words in V based on Banzhaf estimates βw
21: Return top k words in ranking

Algorithm 2 Shapley Vocabulary Selection
1: Inputs: NLP dataset D with full vocabulary V
2: for each word w in V do
3: φw ← 0 (initialise Shapley value estimate)
4: for i=1 to S (number of sampled permutations do
5: π ← Random-Permutation(V )
6: C1 ← b(w,π) (predecessors of w)
7: C2 ← C1 ∪ {w} (predecessors including w)
8: fC1

θ ← TrainModel(C1) (Train on vocabulary C1)
9: fC2

θ ← TrainModel(C1) (Train on vocabulary C2)
10: m(w,π)← q(fC2

θ )− q(fC1
θ )

11: φw ← φw +m(w,π)
12: end for
13: φw ← 1

S
φw (average marginal contributions)

14: end for
15: Rank words in V based on Shapley estimates πw
16: Return top k words in ranking

3 Evaluation

We evaluate our algorithm on multiple tasks, con-
trasting its performance with common baselines.
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3.1 Datasets and Tasks

We consider three different task structures.
Single Sentence Classification: the task re-

quires a model to encode the words of a given sen-
tence and output a classification based on properties
of sentences (for e.g., sentiment or acceptability).
We evaluate on a sentiment-analysis task using the
SST-2 dataset (Socher et al., 2013) and a corpus ac-
ceptability task using the CoLA dataset (Warstadt
et al., 2019; Wang et al., 2018). The sentiment
analysis task contains 9.6k sentences labelled with
a positive or negative sentiment, while the accept-
ability task contains 8.5k sentences labelled with
an acceptability judgement about whether or not it
is a grammatically correct English sentence.

Entailment and Question Pair Classification:
this task requires a model to encode two sentences
and output a classification based on the relation
between them. We evaluate on a textual entailment
task using the SNLI dataset (Bowman et al., 2015a)
and a question pair classification task using the
QQP dataset (Wang et al., 2018). SNLI contains
550k sentence pairs and requires models to encode
two different sentences, a premise and a hypoth-
esis, and predict one of three relations between
them: an entailment, a contradiction or a neutral
relation. The QQP task contains 364k pairs and
requires models to encode two different text inputs,
a question and an alternate question composed of
different words, and to predict whether or not the
two questions correspond to the same answer.

Document Classification: this task requires
models to encode an input document or article,
and predict a class based on properties of the doc-
ument. We evaluate on the AG-News and Yelp
datasets (Zhang et al., 2015). The AG-News dataset
contains the title and description of 120,000 news
articles in four categories (the prediction target is
the category). The Yelp dataset contains 130,000
million samples with text reviews, with the predic-
tion target being the polarity of the review (positive
or negative). The number of words in each text
instance (document) are significantly larger than
in the single sentence classification task, requiring
models to capture phenomena like co-reference and
temporal order that are prevalent in longer texts.

3.2 Methodology

Our method in Section 2.2 is agnostic to the specific
model and training procedure: we simply assume
we have access to an algorithm that trains on a

dataset D and produces a trained model fθ whose
quality q(fθ) is evaluated on a validation set T .

We perform our empirical evaluation using both
an LSTM classifier and a logistic regression classi-
fier. Our method trains many models with different
vocabularies to select the final vocabulary V ′. We
then evaluate the quality of the chosen reduced vo-
cabulary V ′ by training a final model fV

′
which

uses only the vocabulary V ′ and evaluate the per-
formance of fV

′
on a held out test T ′.

To maximize performance, one should use the
same architecture during the vocabulary selection
process as the evaluation. However, words that
are strong features for one architecture are likely
to also be strong features for another architecture.
Hence, we can select the the vocabulary using one
architecture even if we intend to use this vocabulary
for another architecture. As our vocabulary selec-
tion procedure trains many models, we use logistic
regression models during the vocabulary selection
process. We show it still significantly outperforms
baselines, and allows faster and more efficient com-
putation of the Shapley value. We then evaluate the
quality of the vocabulary using an LSTM model.

Training logistic regression models: To train
the logistic regression classifier in the single-text
case, we represent each sentence or document as
the set of words that occur in that text sample. For
the pairwise-sentence case, we similarly represent
each paired input with three times the number of
word features, using a one hot encoding indicat-
ing that the word occurred only in the first sentence
(e.g. question), only in the second sentence (e.g. an-
swer) or whether it occurred in both sentences. This
model is far simpler than state-of-the-art text clas-
sification models, but we find it is a good-enough
proxy for the Shapley computation step, and much
more economical computationally.

Evaluating the Selected Vocabulary’s Quality
To train the LSTM classifier, we encode words
using an embedding layer of size 100. These em-
beddings are fed one at a time to an LSTM encoder
with a hidden layer size of 100, and the output of
the LSTM encoder is fed into a feedforward neural
network yielding the final classification (Deng and
Liu, 2018) over some number of classes.

Our experiments show that even when using the
simple logistic regression for the vocabulary selec-
tion process we achieve a significant performance
improvement over baselines, as evaluated with an
LSTM model. In other words, the vocabulary qual-
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ity improvement transfers to more complex models.

Baselines
We contrast the performance of our approach (Al-
gorithm 1 based on the Banzhaf index and Algo-
rithm 2 based on the Shapley value) with several
baselines. We first consider ranking by term fre-
quency (TF), i.e selecting the most frequently oc-
curing words in the dataset. We also consider rank-
ing words by TF-IDF scores (Ramos et al., 2003),
which is commonly used for web search. As a
stronger baseline we consider ranking words based
on their regression coefficients, a method used for
estimating feature importance (Ellis, 2010; Nimon
and Oswald, 2013). In this baseline, we train a
logistic regression model with L1 regularization on
the dataset D (the regularization encourages the
model to have low weights, setting the weight of
many features to zero when the regularization is
strong enough); we then rank features by the abso-
lute coefficient of each feature in the trained model.
We refer to this as the L1 baseline. 6

Our approach for calculating the Banzhaf index
or Shapley value is based on a random sample of
coalitions, and achieving a good accuracy requires
taking many samples, especially when ranking a
vocabulary with many words. To keep the required
compute manageable while achieving a reasonable
approximation, we first apply a pre-filtering step,
selecting a large vocabulary (but not the full vocab-
ulary) by applying the TF heuristic, then selecting
the final small vocabulary from this large vocabu-
lary using our approach. For instance, with a target
vocabulary size of 100 words, we first filter out all
but the 1,000 most frequent words and then rank
based on the Shapley value (and contrast the per-
formance of this method with selecting the top 100
words based solely on TF or TF-IDF score). When
comparing against the L1 baseline, we similarly
apply an L1 based pre-filtering.

4 Empirical Results

We analyze the performance of our method and the
baselines across a range of target vocabulary sizes,

6In logistic regression with L1 regularization, the regres-
sion coefficients and derived word ranking depend on the
degree of regularization and the initialization. Methods like
GLMpath (Friedman et al., 2010) obtain the entire L1 path
of the GLM at the cost of fitting a single model. In the spirit
of stability selection (Meinshausen and Bühlmann, 2010), to
alleviate stochasticity we average 20 training runs of the L1-
regularized model, averaging coefficients to obtain the ranking
over words (still cheaper computationally than our approach).

Figure 2: Example of top ranked words on the AG-
News based on various methods: Shapley (S), Banzhaf
(B), TF and TF-IDF.

investigating which method achieves a better trade-
off between vocabulary size and model quality.

Vocabulary size and model quality tradeoffs
Figure 3 contrasts our method with the TF and TF-
IDF baselines in the SST-2 dataset. It shows that
for all methods, increasing the allowed vocabulary
size improves the model quality (at the cost of an
increased number of parameters or memory).

Figure 3: Performance of Shapley (red), Banzhaf
(green), TF (blue) and TF-IDF (orange) on AG-News.

The figure indicates that both the Banzhaf and
Shapley algorithms offer a significantly better trade-
off between vocabulary size and model quality —
they produce a better performing model at all the
tested vocabulary sizes (the performance gap is es-
pecially pronounced for smaller vocabulary sizes).

Interestingly, the performance of both the
Banzhaf and Shapley is very similar. Although
they both select words with high marginal contri-
butions, they rely on different power indices. To
determine whether they select the same words, we
examined the words selected at a target vocabulary
size of |V ′| = 100. Figure 2 shows the top words
according to the different methods. The top 100
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Figure 4: Performance of a Shapley, TF and TF-IDF in
additional task structures.

words under the Banzhaf and Shapley algorithms
intersected on less than 70% of the words, so al-
though they have similar performance, there are
non-negligible differences in the words they select.

Figure 3 relates to single sentence classification.
Figure 4 shows similar results for the two other
types of tasks: pairwise sentence classification and
document classification. Similarly to the previ-
ous figure, these results indicate that our approach
achieves a significantly better tradeoff between
vocabulary size and model accuracy. This indi-
cates that our proposed approach offers advantages
across a wide set of NLP tasks.

Table 1 shows the performance of an LSTM clas-
sifier across all tasks and datasets for the various
methods. It shows a consistent improvement over
the baselines in all the tasks for both the Banzhaf
and Shapley methods (which have very similar per-
formance in all the datasets).

Comparison with the L1 baseline: Section 3.2
considered the stronger baseline of ranking by re-
gression coefficients in an L1 regularized logistic
regression. The high-level motivation of this base-
line is similar to our approach in that words are
ranked based on their influence as measured by
training a model; however, the L1 method trains a
single model (or has a computational cost similar
to training one or few models), whereas a power
index computation relies on training a sample of
models. Figure 5 shows our approach outperforms
the L1 baseline.

Comparison with subword approaches: Sub-
word embeddings (Sennrich et al., 2015) is a re-
cent approach which considers tokens that can be
parts of words, resulting in a less sparse vocabu-
lary and having features shared across words. Such
approaches are flexible and allow choosing a tar-
get vocabulary size. Our approach can also work
with subword embeddings: after computing some
set of subwords over the vocabulary, we can still
filter out less important subwords to improve task

Task & Dataset Method Vocab Acc

SST-2 TF-IDF 17,539 80.2
(Socher et al., 2013) Frequency 80.3

Banzhaf 81.7
Shapley 81.9

COLA TF-IDF 9007 63.5
(Warstadt et al., 2019) Frequency 63.7

Banzhaf 63.9
Shapley 64.2

SNLI TF-IDF 42,392 83.9
(Bowman et al., 2015b) Frequency 83.9

Banzhaf 84.1
Shapley 84.3

QQP TF-IDF 117,303 80.8
(Wang et al., 2018) Frequency 81.2

Banzhaf 81.9
Shapley 81.9

AG-NEWS TF-IDF 159,697 79.6
(Zhang et al., 2015) Frequency 78.5

Banzhaf 79.9
Shapley 80.2

YELP TF-IDF 458,705 84.5
(Zhang et al., 2015) Frequency 83.9

Banzhaf 86.7
Shapley 87

Table 1: Performance of vocabulary selection methods
across datasets and tasks, at a target vocabulary size
of |V ′| = 750 words (column 3 is initial vocabulary
size). Note performance is lower than state-of-the-art
methods, as results are based on a significantly reduced
vocabulary size (and using a simple LSTM architecture,
with no hyperparameter tuning).

Figure 5: Performance on SST-2 of Shapley (red),
Logistic-L1 (green), TF (blue) and TF-IDF (orange).

performance. We evaluated whether applying our
approach on top of using subword embeddings
can still lead to improved performance. We first
run a byte-pair encoding (BPE) algorithm (Sen-
nrich et al., 2015; Provilkov et al., 2019; Kudo
and Richardson, 2018) over each input vocabulary
for a dataset. This algorithm operates by merging
together the most frequent sequence of adjacent
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tokens in each iteration. We do this for a total
number of 10,000 merges, resulting in a smaller vo-
cabulary that now composed of subwords. We then
apply Shapley, Banzhaf, TF and TF-IDF rankings
of these subword tokens, as we have done in the
word-level experiments. Figure 6 shows that we
have improved performance over the baselines in
the subword case as well.

Figure 6: Performance of Shapley (green), TF (blue)
and TF-IDF (orange) when considering subword em-
beddings on the AG-News dataset.

5 Discussion

The results in Section 4 show that a game theo-
retic approach to vocabulary selection can achieve
better tradeoffs between the vocabulary size and
model performance than heuristics such as TF and
TF-IDF based selection, or a method based on re-
gression coefficients in an L1 regularized logistic
regression. This advantage comes at the cost of
having a significantly higher computational cost of
selecting the vocabulary. Following the expensive
selection step, we now have the benefit of a smaller
model which is more interpretable and explainable,
has a reduced memory consumption and potentially
less prone to overfitting. We have proposed several
ways to mitigate the compute load of selecting the
vocabulary: applying a heuristic pre-filtering step
and using logisitic regression models rather than
the full model while estimating power indices.

6 Related Work

We proposed a vocabulary selection method for
NLP tasks, using cooperative game theory. We dis-
cuss related work on model compression, tailoring
the vocabulary in NLP tasks and using subword
embeddings, and approximating game theoretic so-
lutions and using them for explainable AI.

Model compression: Using the full vocab-
ulary to train models limits the applicability of
models in memory-constrained or computation-
constrained scenarios (Faruqui et al., 2015; Yo-
gatama et al., 2015). Earlier work discusses meth-
ods for compressing model size. These yield mod-
els that are less expensive in memory and com-
pute, and that are also more easily interpretable.
Model compression methods include matrix com-
pression methods such as sparsification of weights
in a matrix (Wen et al., 2016), Bayesian inference
for compression (Molchanov et al., 2017; Neklyu-
dov et al., 2017), feature selection methods such
as ANOVA (Girden, 1992), precision reduction
methods (Han et al., 2015; Hubara et al., 2017) and
approximations of the weight matrix (Tjandra et al.,
2017; Le et al., 2015). Our method relies on game
theoretic principles; it filters our vocabulary words,
and can thus operate with any NLP architecture (i.e.
the method is agnostic to the model architecture
used). Further, the interpretability in our case stems
from having few features, clearly highlighting the
most impactful features in the dataset.

Vocabulary selection methods and subword
and character level embeddings: earlier work ex-
amined selecting a vocabulary for an NLP task.
Some alternatives drop out words (Chen et al.,
2019), whereas character-level methods that at-
tempt to represent the input text at the level of
individual characters (Kim et al., 2015; Lee et al.,
2017; Ling et al., 2015) while subword methods
attempt to tokenize words into parts of words in
a more efficient way (Sennrich et al., 2015; Kudo
and Richardson, 2018).

Character level embedding methods decom-
pose words to allow each individual character to
have its own embedding. This reduces the vo-
cabulary size to the number of characters, much
smaller than the number of words in the full vo-
cabulary. However, this is not applicable for some
character-free languages (e.g. Chinese, Japanese,
Korean). Also, such methods have reduced perfor-
mance, and typically use larger embedding sizes
than word embedding models to obtain reasonable
quality (Zhang et al., 2015; Kim et al., 2015).

In contrast, subword embeddings have shown
improved performance for several NLP tasks. Such
methods typically merge pairs of frequent character
sequences, to get a more optimal token vocabulary
from an information-theoretic viewpoint. Byte-pair
encoding (BPE) algorithms construct subword vo-
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cabulary that is less sparse, and increases shared
features between words 7, allowing better propoga-
tion of semantic meaning. As shown in Section 4,
our method can operate on top of subword em-
beddings, and achieve good tradeoffs between the
model size and performance.

Cooperative game theory and applications
for explainable AI: we use concepts from game
theory, viewing words as players in a game whose
goal is to improve model performance. Such set-
tings have been a key topic of study in game theory
since the 1950s (Weintraub, 1992). Many solution
concepts have been proposed, examining issues
such as stability and fairness. Power indices such as
the Banzhaf index (Banzhaf III, 1964) and Shapley
value (Shapley, 1953) to measure the relative im-
pact players have on the outcome of the game. It is
computationally hard to calculate them even in sim-
ple games (Matsui and Matsui, 2001; Elkind et al.,
2007). We have applied a Monte-Carlo sampling
approximation based on existing methods (Fatima
et al., 2008; Bachrach et al., 2010).

Our use of the Shapley value is akin to recent ex-
plainable AI methods, that attempt to allow AI mod-
els to provide human readable insights to explain
their decisions (Adadi and Berrada, 2018; Samek
et al., 2019). For example, power indices (such
as the Shapley value) have been used to explain
individual model predictions (Datta et al., 2016;
Lundberg and Lee, 2017), by estimating the con-
tribution of individual features on each prediction.
This can be done for linear models (Lundberg and
Lee, 2017) as well as tree-based models (Lundberg
et al., 2020).

Explainable AI methods typically take a trained
model and a given instance as input, and perturb
the features of the instance, using the same model
to output predictions for many perturbed inputs. In
contrast, our goal is not to understand the predic-
tions of a given model, but to select an small input
vocabulary set for a task, focusing on the most rel-
evant part of the input space and yielding simpler
and more interpretable models. Further, we train
many models to estimate contributions, rather than
perturbing the inputs for a single model.

7For instance, the word “sadder" could be split into “sad"
and “er", where the ending “er” has a similar meaning in
other circumstances — “faster", “nearer" etc.

7 Conclusion

We proposed a vocabulary selection method
based on cooperative game theory and empirically
showed improvements over baselines in multiple
NLP tasks. Our approach, with its task-specific vo-
cabulary, offers an improved model size and quality
tradeoffs.

Several questions remain open for future re-
search on better vocabulary selection. Could al-
ternative power indices, apart from what we have
shown using the Shapley and Banzhaf indeces,
achieve better performance? Is there a way to
better combine our methods with subword embed-
dings? Moreover, given that our method is compu-
tationally demanding during vocabulary construc-
tion time, an interesting problem is to explore ways
to speed up this process; both theoretically, through
a different power index calculation, and practically,
through better parallelization.
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