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Abstract

We propose a multi-task, probabilistic approach
to facilitate distantly supervised relation extrac-
tion by bringing closer the representations of
sentences that contain the same Knowledge
Base pairs. To achieve this, we bias the la-
tent space of sentences via a Variational Au-
toencoder (VAE) that is trained jointly with a
relation classifier. The latent code guides the
pair representations and influences sentence
reconstruction. Experimental results on two
datasets created via distant supervision indi-
cate that multi-task learning results in perfor-
mance benefits. Additional exploration of em-
ploying Knowledge Base priors into the VAE
reveals that the sentence space can be shifted
towards that of the Knowledge Base, offering
interpretability and further improving results1.

1 Introduction

Distant supervision (DS) is a setting where infor-
mation from existing, structured knowledge, such
as Knowledge Bases (KB), is exploited to automat-
ically annotate raw data. For the task of relation
extraction, this setting was popularised by Mintz
et al. (2009). Sentences containing a pair of interest
were annotated as positive instances of a relation, if
and only if the pair was found to share this relation
in the KB. However, due to the strictness of this
assumption, relaxations were proposed, such as the
at-least-one assumption introduced by Riedel et al.
(2010): Instead of assuming that all sentences in
which a known related pair appears express the
relationship, we assume that at least one of these
sentences (namely a bag of sentences) expresses
the relationship. Figure 1 shows example bags for
two entity pairs.

1Source code is available at https://github.com/
fenchri/dsre-vae

Among other reasons , Apple 's chief executive , Steve Jobs , ...
About Apple 's Steve Jobs , who bought out ...

/people/person/place_of_birth

Mayor Ray Nagin born in New Orleans has already  ...
C. Ray Nagin , the mayor of  New Orleans , ...

Relation
/business/company/founders

Entity 1
Steve Jobs
Ray Nagin

Entity 2
Apple

New Orleans
Link

Prediction

bag 1

bag 2

Figure 1: Example of the bag-level setting in distantly
supervised relation extraction and the main idea of
our approach. Sentences are adapted from the NYT10
dataset (Riedel et al., 2010).

The usefulness of distantly supervised relation
extraction (DSRE) is reflected in facilitating au-
tomatic data annotation, as well as the usage of
such data to train models for KB population (Ji and
Grishman, 2011). However, DSRE suffers from
noisy instances, long-tail relations and unbalanced
bag sizes. Typical noise reduction methods have
focused on using attention (Lin et al., 2016; Ye
and Ling, 2019) or reinforcement learning (Qin
et al., 2018b; Wu et al., 2019). For long-tail rela-
tions, relation type hierarchies and entity descrip-
tors have been proposed (She et al., 2018; Zhang
et al., 2019; Hu et al., 2019), while the limited
bag size is usually tackled through incorporation
of external data (Beltagy et al., 2019), information
from KBs (Vashishth et al., 2018) or pre-trained
language models (Alt et al., 2019). Our goal is not
to investigate noise reduction, since it has already
been widely addressed. Instead, we aim to pro-
pose a more general framework that can be easily
combined with existing noise reduction methods or
pre-trained language models.

Methods that combine information from Knowl-
edge Bases in the form of pre-trained Knowl-
edge Graph (KG) embeddings have been partic-
ularly effective in DSRE. This is expected since
they capture broad associations between entities,

https://github.com/fenchri/dsre-vae
https://github.com/fenchri/dsre-vae
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thus assisting the detection of facts. Existing ap-
proaches either encourage explicit agreement be-
tween sentence- and KB-level classification deci-
sions (Weston et al., 2013; Xu and Barbosa, 2019),
minimise the distance between KB pairs and sen-
tence embeddings (Wang et al., 2018) or directly
incorporate KB embeddings into the training pro-
cess in the form of attention queries (Han et al.,
2018; She et al., 2018; Hu et al., 2019). Although
these signals are beneficial, direct usage of KB em-
beddings into the model often requires explicit KB
representations of entities and relations, leading to
poor generalisation to unseen examples. In addi-
tion, forcing decisions between KB and text to be
the same makes the connection between context-
agnostic (from the KB) and context-aware (from
sentences) pairs rigid, as they often express differ-
ent things.

Variational Autoencoders (VAEs) (Kingma and
Welling, 2013) are latent variable encoder-decoder
models that parameterise posterior distributions us-
ing neural networks. As such, they learn an ef-
fective latent space which can be easily manipu-
lated. Sentence reconstruction via encoder-decoder
networks helps sentence expressivity by learning
semantic or syntactic similarities in the sentence
space. On the other hand, signals from a KB can
assist detection of factual relations. We aim to
combine these two using a VAE together with a
bag-level relation classifier. We then either force
each sentence’s latent code to be close to the Nor-
mal distribution (Bowman et al., 2016), or to a
prior distribution obtained from KB embeddings.
This latent code is employed into sentence repre-
sentations for classification and is responsible for
sentence reconstruction. As it is influenced by the
prior we essentially inject signals from the KB to
the target task. In addition, sentence reconstruction
learns to preserve elements that are useful for the
bag relation. To the best of our knowledge, this is
the first attempt to combine a VAE with a bag-level
classifier for DSRE.

Finally, there are methods for DSRE that follow
a rather flawed evaluation setting, where several
test pairs are included in the training set. Under this
setting, the generalisability of such methods can be
exaggerated. We test these approaches under data
without overlaps and find that their performance
is severely deprecated. With this comparison, we
aim to promote evaluation on the amended version
of existing DSRE data that can prevent memori-

sation of test pair relations. Our contributions are
threefold:

• Propose a multi-task learning setting for DSRE.
Our results suggest that combination of both bag
classification and bag reconstruction improves
the target task.

• Propose a probabilistic model to make the space
of sentence representations resemble that of a
KB, promoting interpretability.

• Compare existing approaches on data without
train-test pair overlaps to enforce fairer compari-
son between models.

2 Proposed Approach

2.1 Task Description

In DSRE, the bag setting is typically adopted. A
model’s input is a pair of named entities e1, e2
(mapped to a Knowledge Base), and a bag of sen-
tences B = {s1, s2, . . . , sn}, where the pair oc-
curs, retrieved from a raw corpus. The goal of
the task is to identify the relation(s), from a pre-
defined set R, that the two entities share, based on
the sentences in the bag B. Since each pair can
share multiple relations at the same time, the task
is considered a multi-label classification problem.

2.2 Overall Framework

Our proposed approach is illustrated in Figure 2.
The main goal is to create a joint learning setting
where a bag of sentences is encoded and recon-
structed and, at the same time, the bag representa-
tion is used to predict relation(s) shared between
two given entities. The architecture receives as
input a bag of sentences for a given pair and out-
puts (i) predicted relations for the pair and (ii) the
reconstructed sentences in the bag. The two out-
puts are produced by two branches: the left branch,
corresponding to bag classification and the right
branch, corresponding to bag reconstruction. Both
branches start from a shared encoder and they com-
municate via the latent code of a VAE that is respon-
sible for the information used in the representation
and reconstruction of each sentence in the bag. Nat-
urally, both branches have an effect on one another
during training.

2.3 Bag Reconstruction

Autoencoders (Rumelhart et al., 1986) are encoder-
decoder neural networks that are trained in an un-
supervised manner, i.e., to reconstruct their input
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Figure 2: Schematic of the model architecture.

(e.g. a sentence). They learn an informative rep-
resentation of the input into a dense and smaller
feature vector, namely the latent code. This inter-
mediate representation is then used to fully recon-
struct the original input. Variational Autoencoders
(VAE) (Kingma and Welling, 2013) offer better gen-
eralisation capabilities compared to the former by
sampling the features of the latent code from a
prior distribution that we assume to be similar to
the distribution of the data.

2.3.1 Encoder
We form the input of the network similarly to pre-
vious work. Each sentence in the input bag is trans-
formed into a sequence of vectors. Words and posi-
tions are mapped into real-valued vectors via word
embedding E(w) and position embedding layers
E(p), similarly to Lin et al. (2016). The concate-
nation of word (w) and position (p) embeddings
xt = [wt;p

(e1)
t ;p

(e2)
t ] forms the representation

of each word in the input sentence. A Bidirec-
tional Long-Short Term Memory (BiLSTM) net-
work (Hochreiter and Schmidhuber, 1997) acts as
the encoder, producing contextualised representa-
tions for each word.

The representations of the left-to-right and right-
to-left passes of the BiLSTM are summed to pro-
duce the output representation of each word t,
ot =

−→ot +←−ot , as well as the representations of the
last hidden h =

−→
h +
←−
h and cell states c = −→c +←−c

of the input sentence. We use the last hidden and
cell states of each sentence s to construct the pa-

rameters of a posterior distribution qφ(z|s) using
two linear layers,

µ = Wµ[h; c] + bµ,

σ2 = Wσ[h; c] + bσ,
(1)

where µ and σ2 are the parameters of a multivariate
Gaussian, representing the feature space of the sen-
tence. This distribution is approximated via a latent
code z, using the reparameterisation trick (Kingma
and Welling, 2013) to enable back-propagation, as
follows:

z = µ+ σ � ε, where ε ∼ N (0, I). (2)

This trick essentially forms the posterior as a func-
tion of the normal distribution.

2.3.2 Decoder
The decoder network is a uni-directional LSTM
network, that reconstructs each sentence in the in-
put bag. The input is formed in two steps. Firstly,
the latent code z is given as the initial hidden state
of the decoder h′0 via a linear layer transformation.
Secondly, the same latent code is concatenated with
the representation of each word wt in the input se-
quence of the decoder.

h′0 = Wz+ b, x′t = [wt; z], (3)

A percentage of words in the decoder’s input is
randomly replaced by the UNK word to force the
decoder to rely on the latent code for word predic-
tion, similar to Bowman et al. (2016).

2.3.3 Learning
The optimisation objective of the VAE, namely Evi-
dence Lower BOund (ELBO), is the combination
of two losses. The first is the reconstruction loss
that corresponds to the cross entropy between the
actual sentence s and its reconstruction ŝ. The
second is the Kullback-Leibler divergence (DKL)
between a prior distribution pθ(z), which the la-
tent code is assumed to follow, and the posterior
qφ(z|h), which the decoder produces,

LELBO = Ez∼qφ(z|h) [log(pθ(h|z))]
−DKL (qφ(z|h)||pθ(z)) (4)

The first loss is responsible for the accurate re-
construction of each word in the input, while the
second acts as a regularisation term that encour-
ages the posterior of each sentence to be close to
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the prior. Typically, an additional parameter β is
introduced in front of the DKL to overcome KL
vanishing, a phenomenon where the posterior col-
lapses to the prior and the VAE essentially behaves
as a standard autoencoder (Bowman et al., 2016).

2.4 Bag Classification

Moving on to the left branch of Figure 2, in order
to represent a bag we first need to represent each
sentence inside it. We realise this using information
produced by the VAE as follows.

2.4.1 Sentence Representation

Given the contextualised output of the encoder o,
we construct entity representations e1 and e2 for
a given pair in a sentence by averaging the word
representations included in each entity. A sentence
representation s is formed as follows:

ei =
1

|ei|
∑
k∈ei

ok, s = Wv[z; e1; e2], (5)

where |ei| corresponds to the number of words in-
side the mention span of entity ei and z is the latent
code of the sentence that was produced by the VAE,
as described in Equation (2).

2.4.2 Bag Representation

In order to form a unified bag representation B for
a pair, we adopt the popular selective attention ap-
proach introduced by Lin et al. (2016). In particular,
we first map relations into real-valued vectors, via
a relation embedding layer E(r). Each relation em-
bedding is then used as a query over the sentences
in the bag, resulting in |R| bag representations for
each pair,

a(si)r =
exp (s>i r)∑

j∈B
exp (s>j r)

, Br =

|B|∑
i=1

a(si)r si, (6)

where r is the embedding associated with relation
r, si is the representation of sentence si ∈ B, a(si)r

is the weight of sentence si with relation r and Br

is the final bag representation for relation r.
During classification, we select the probability of

predicting a relation category r, using the bag repre-
sentation that was constructed when the respective
relation embedding r was the query. Binary cross
entropy loss is applied on the resulting predictions,

p(r = 1|B) = σ(Wc Br + bc),

LBCE = −
∑
r

yr log p(r|B)

+ (1− yr) log(1− p(r|B)),

(7)

where Wc and bc are learned parameters of the
classifier, σ is the sigmoid activation function,
p(r|B) is the probability associated with relation
r given a bag B and yr is the ground truth for this
relation with possible values 1 or 0.

2.5 Knowledge Base Priors

In the scenario where no KB information is in-
corporated into the model, we simply assume that
the prior distribution of the latent code pθ(z) is
a standard Gaussian with zero mean and identity
covariance N (0, I).

To integrate information about the nature of
triples into the bag-level classifier, we create KB-
guided priors as an alternative to the standard Gaus-
sian. In particular, we train a link prediction model,
such as TransE (Bordes et al., 2013), on a subset
of the Knowledge Graph that was used to origi-
nally create the dataset. Using the link prediction
model, we obtain entity embeddings for the subset
KB. A KB-guided prior can thus be constructed
for each pair, as another Gaussian distribution with
mean value equal to the KB pair representation and
covariance as the identity matrix,

pθ(z) ∼ N (µKB, I), with µKB = eh − et, (8)

where eh and et are the vectors for entities ehead
and etail as resulted from training a link prediction
algorithm on a KB.

The link prediction algorithm is trained to make
representations of pairs expressing the same rela-
tions to be close in space. Hence, by using KB
priors we try to force the distribution of sentences
in a bag to follow the distribution of the pair in
the KB. If one of the pair entities does not exist in
the KB subset, the mean vector of the pair’s prior
will be zero, resulting in a standard Gaussian prior.
Finally, KB priors are only used during training.
Consequently, the model does not use any direct
KB information during inference.

2.6 Training Objective

We train jointly bag classification and sentence
reconstruction. The final optimisation objective
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is formed as,

L = λ LBCE + (1− λ)LELBO, (9)

where λ corresponds to a weight in [0, 1]. We
weigh the classification loss more than the ELBO
to allow the model to better fit the target task.

3 Experimental Settings

3.1 Datasets
We experiment with the following two datasets:
NYT10. The widely used New York Times
dataset (Riedel et al., 2010) contains 53 relation
categories including a negative relation (NA) in-
dicating no relation between two entities. We use
the version of the data provided by the OpenNRE
framework (Han et al., 2019), which removes over-
lapping pairs between train and test data. The
dataset statistics are shown in Table 1. Additional
information can be found in Appendix A.1.

For the choice of the Knowledge Base, we
use a subset of Freebase2 that includes 3 million
entities with the most connections, similar to Xu
and Barbosa (2019). For all pairs appearing in
the test set of NYT10 (both positive and negative),
we remove all links in the subset of Freebase to
ensure that we will not memorise any relations
between them (Weston et al., 2013). The resulting
KB contains approximately 24 million triples.

WIKIDISTANT. The WikiDistant dataset is al-
most double the size of the NYT10 and contains
454 target relation categories, including the neg-
ative relation. It was recently introduced by Han
et al. (2020) as a cleaner and more well structured
bag-level dataset compared to NYT10, with fewer
negative instances.

For the Knowledge Base, we use the version of
Wikidata3 provided by Wang et al. (2019b) (in par-
ticular the transductive split4), containing approxi-
mately 5 million entities. Similarly to Freebase, we
remove all links between pairs in the test set from
the resulting KB, which contains approximately 20
million triples after pruning.

3.2 Evaluation Metrics
Following prior work, we consider the Precision-
Recall Area Under the Curve (AUC) as the primary

2https://developers.google.com/freebase
3https://www.wikidata.org/
4https://deepgraphlearning.github.io/

project/wikidata5m

Dataset Split Instances Bags NA (%)

NYT10
# Relations: 53

Train 469,290 252,044 93.4
Val. 53,321 28,109 93.5
Test 172,448 96,678 97.9

WIKIDISTANT

# Relations: 454

Train 1,050,246 575,620 64.8
Val. 29,145 14,748 70.6
Test 28,897 15,509 72.0

Table 1: Datasets statistics. ‘NA’ correponds to the ‘no
relation’ category.

metric for both datasets. We additionally report
Precision at N (P@N), that measures the percent-
age of correct classifications for the top N most
confident predictions.

3.3 Training

To obtain the KB priors, we train TransE on the sub-
sets of Freebase and Wikidata using the implemen-
tation of the DGL-KE toolkit (Zheng et al., 2020)
for 500K steps and a dimensionality equal to the
dimension of the latent code. The main model was
implemented with PyTorch (Paszke et al., 2019).
We use the Adam (Kingma and Ba, 2014) optimiser
with learning rate 0.001. KL logistic annealing is
incorporated only in the case where the prior is the
Normal distribution to avoid KL vanishing (Bow-
man et al., 2016). Early stopping is used to de-
termine the best epoch based on the AUC score
on the validation set. Words in the vocabulary are
initialised with pre-trained, 50-dimensional GloVe
embeddings (Pennington et al., 2014).

We limit the vocabulary size to the top 40K and
50K most frequent words for NYT10 and WIKIDIS-
TANT, respectively. To enable fast training, we use
Adaptive Softmax (Grave et al., 2017). The maxi-
mum sentence length is restricted to 50 for NYT10
and 30 words for WIKIDISTANT. Each bag in the
training set is allowed to contain maximum 500
sentences selected randomly. For prediction on
the validation and test sets, all sentences (with full
length) are used.

3.4 Baselines

In this work we compare with various models ap-
plied on the NYT10 dataset: PCNN-ATT (Lin et al.,
2016) is one of the first neural models that uses
a PCNN encoder and selective attention over the
instances in a bag, similar to our approach. RE-
SIDE (Vashishth et al., 2018), utilises syntactic,
entity and relation type information as additional
input to the network to assist classification. JOINT

https://developers.google.com/freebase
https://www.wikidata.org/
https://deepgraphlearning.github.io/project/wikidata5m
https://deepgraphlearning.github.io/project/wikidata5m
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Method Encoder

NYT 520K NYT 570K

AUC (%)
P@N (%)

AUC (%)
P@N (%)

100 200 300 100 200 300

Baseline
BiLSTM

34.94 74.0 67.5 67.0 43.59 84.0 77.0 75.3
+ pθ(z) ∼ N (0, I) 38.59 74.0 74.5 71.6 44.64 80.0 76.0 75.6
+ pθ(z) ∼ N (µKB, I) 42.89 83.0 75.5 73.0 45.52 81.0 77.5 73.6

PCNN-ATT (Lin et al., 2016) PCNN 32.66 71.0 67.5 62.6 36.25 76.0 72.5 64.0
JOINT NRE (Han et al., 2018) CNN 30.62 60.0 57.0 55.3 40.15 75.8 - 68.0
RESIDE (Vashishth et al., 2018) BiGRU 35.80 80.0 69.0 65.3 41.60 84.0 78.5 75.6
INTRA-INTER BAG (Ye and Ling, 2019) PCNN 34.41 82.0 74.0 69.0 42.20 91.8 84.0 78.7
DISTRE (Alt et al., 2019) GPT-2 42.20 68.0 67.0 65.3 - - - -

Table 2: Performance comparison between different methods on the NYT10 test set for the two different versions of
the dataset. Results in the 520K column are re-runs of existing implementations, except for DISTRE. Results on the
570K column are taken from the respective publications.

Method AUC (%)
P@N (%)

100 200 300

Baseline 28.54 94.0 93.0 88.3
+ pθ(z) ∼ N (0, I) 30.59 96.0 93.5 89.3
+ pθ(z) ∼ N (µKB, I) 29.54 92.0 89.0 90.0

PCNN-ATT (Han et al., 2020) 22.20 - - -

w/o non KB-prior pairs (72% of training pairs preserved)

Baseline 26.16 88.0 85.0 82.6
+ pθ(z) ∼ N (0, I) 27.46 90.0 88.0 84.6
+ pθ(z) ∼ N (µKB, I) 28.38 94.0 95.0 89.3

Table 3: Performance comparison on the WIKIDISTANT
test set.

NRE (Han et al., 2018) jointly trains a textual
relation extraction component and a link predic-
tion component by sharing attention query vectors
among the two. INTRA-INTER BAG (Ye and Ling,
2019) applies two attention mechanisms inside and
across bags to enforce similarity between bags that
share the same relations. DISTRE (Alt et al., 2019)
uses a pre-trained Transformer model, instead of a
recurrent or convolutional encoder, fine-tuned on
the NYT10 dataset.

We report results on both the filtered data (520K)
that do not contain train-test pair overlaps, as well
as the non-filtered version (570K) to better compare
with prior work5. With the exception of DISTRE,
all prior approaches were originally applied on the
570K version. Hence, performance of prior work
on the 520K version corresponds to re-runs of exist-
ing implementations (via their open-source code).
For the non-filtered version, results are taken from
the respective publications6.

5More information about the two versions can be found in
Appendix A.1

6For PCNN-ATT we re-run both the 520K and the 570K ver-

For the WIKIDISTANT dataset, we compare with
the PCNN-ATT model as this is the only model cur-
rently applied on this data (Han et al., 2020). We
also compare our proposed approach with two ad-
ditional baselines. The first baseline model (Base-
line) does not use the VAE component at all. In
this case the sentence representation is simply cre-
ated using the last hidden state of the encoder,
s = [h; e1; e2], instead of the latent code. The
second model (pθ(z) ∼ N (0, I)) incorporates re-
construction with a standard Gaussian prior and the
final model (pθ(z) ∼ N (µKB, I)) corresponds to
our proposed model with KB priors.

4 Results

The results of the proposed approach versus ex-
isting methods on the NYT10 dataset are shown
in Table 2. The addition of reconstruction further
improves performance by 3.6 percentage points
(pp), while KB priors offer an additional of 4.3pp.
Compared with DISTRE, our model achieves com-
parable performance, even if it does not use a pre-
trained language model. As we observe from the
precision-recall curve in Figure 3, our model is
competitive with DISTRE for up to 35% of the re-
call range but for the tail of the distribution a pre-
trained language model has better results. This can
be attributed to the world knowledge it has obtained
via pre-training, which is much more vast than a
KB subset. Overall, for the reduced version of the
dataset VAE with KB-guided priors surpasses the
entire recall range of all previous methods. For
the 570K version, our model is superior to other
approaches in terms of AUC score, even for the
baseline. We speculate this is because we incorpo-

sions using the OpenNRE toolkit.
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Figure 3: Precision-Recall curves for the NYT10 (520K
version) test set.

rate argument representations into the bag repre-
sentation. As a result, overlapping pairs between
training and test set have learnt strong argument
representations.

Regarding the results on the WIKIDISTANT

dataset in Table 3, once again we observe that re-
construction helps improve performance. However,
it appears that KB priors have a negative effect. We
find that in the NYT10 dataset 96% of the training
pairs are associated with a prior. Instead, this por-
tion is only 72% for WIKIDISTANT. The reason for
this discrepancy could be the reduced coverage that
potentially causes a confusion between the two sig-
nals7. To test this hypothesis, we re-run our models
on a subset of the training data, removing pairs that
do not have a KB prior. As observed in the second
half of Table 3, priors do seem to have a positive
impact under this setting, indicating the importance
of high coverage in prior-associated pairs. We use
this setting for the remainder of the paper.

5 Analysis

We then check whether the latent space has indeed
learned some information about the KB triples,
by visualising the t-SNE plots of the priors, i.e.
the µKB vectors as resulted from training TransE
(Equation (8)) and the posteriors, i.e. the µ vectors
as resulted from the VAE encoder (Equation (1)).

Figure 4a illustrates the space of the priors in
Freebase for the most frequent relation categories
in the NYT10 training set 8. As it can be observed,

7If a pair does not have a KB prior it will be assigned the
Normal prior instead.

8We plot t-SNEs for the training set instead of the valida-
tion/test sets because the WIKIDISTANT validation set contains
too few pairs belonging to the top-10 categories. NYT10 valida-
tion set t-SNE can be found in the Appendix A.5

the separation is obvious for most categories, with
a few overlaps. Relations place of birth, place lived
and place of death appear to reside in the same re-
gion. This is expected as these relations can be
shared by a pair simultaneously. Another overlap is
identified for contains, administrative divisions and
capital. Again, these are similar relations found be-
tween certain entity types (e.g. location, province,
city). Figure 4b shows the t-SNE plot for a collec-
tion of latent vectors (random selection of 2 sen-
tences in a positive bag). The space is very similar
to that of the KB and the same overlapping regions
are clearly observed. A difference is that it appears
to be less compact, as not all sentences in a bag
express the exact same relation.

Similar observations stand for Wikidata priors,
as shown in Figure 4c. By looking at the space of
the posteriors, we can see that although for most
categories separation is achieved, there are 2 rela-
tions that are not so well separated in the posterior
space. We find that has part (cyan) and part of (or-
ange) are opposite relations, that TransE can effec-
tively learn thanks to its properties. However, the
model appears to not be able to fully separate the
two. These relations are expressed in the same man-
ner, by only changing the order of the arguments.
As there is no restriction regarding the argument
order in our model directionality can sometimes be
an issue.

Finally, in order to check how the prior con-
straints affect sentence reconstruction, we illustrate
reconstructions of sentences in the validation set of
the NYT10 in Table 4 and WIKIDISTANT in Table
5. In detail, we give the input sentence to the net-
work and employ greedy decoding using either the
mean of the latent code or a random sample.

Manual inspection of reconstruction reveals that
KB-priors generate longer sentences than the Nor-
mal prior by repeating several words (especially
the UNK). In fact, VAE with KB-priors fails to
generate plausible and grammatical examples for
NYT10, as shown in Table 4. Instead, reconstruc-
tions for WIKIDISTANT are slightly better, due to
the less noisy nature of the dataset. In both cases,
we see that the reconstructions contain words that
are useful for the target relation, e.g. words that
refer to places such as new york, new jersey for
the relation contains between bay village and ohio,
or sport-related terms (football, team, league) for
the statistical leader relationship between wayne
rooney and england national team.
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Figure 4: T-SNE plots of: (a), (c) pair representations obtained from a TransE model (priors) on a subset of Freebase
and Wikidata for the 10 most frequent classes in each dataset, (b), (d) the latent codes (µ) for sentences of each
training set, when using KB priors.

INPUT she graduated from _ college in new concord , ohio growing up in bay village , ohio , steinbrenner
haunted the county fairs , riding in pony races .

N (0, I)

MEAN he graduated from the university of california and received
a master ’s degree in education .

he was born in _ , england , and grew up in the
united states

SAMPLE he graduated from the university of california and received
a master ’s degree in education .

he was born in # , and then moved to new york

N (µKB, I)

MEAN the bridegroom , # , is a professor of the university of
california at berkeley , and a professor of english ...

the _ , which is based in new york , and the _ ...

SAMPLE the _ , a _ of the university of california , berkeley , and the
author of ” the _ of the world ” ...

the _ , which is based in new jersey , and the _
...

Table 4: Sentence reconstruction examples from the NYT10 validation set, using different priors. _ corresponds to
the UNK word and # indicates a number.

INPUT wayne rooney plays as a striker for manchester united and
the england national team

ng ’s first role was in the # michael hui comedy
film “ the private eyes ” .

N (0, I)

MEAN _ ’s first game was the first time in the game against the new
york yankees .

the film was adapted into the # film ‘ the _ ’ ,
directed by _ .

SAMPLE he made his debut for the club in the # fa cup final against
arsenal at wembley stadium .

in # , he appeared in ‘ the _ ’ , a # film adaptation
of the same name by _ .

N (µKB, I)

MEAN he was a member of the club ’s first team , and was a member
of the club ’s _ club

_ ’s first film was ‘ the _ ’ , starring _ and star-
ring _ .

SAMPLE he made his debut in the russian professional football league
for fc _ ...

_ , who was the first female actress to win the
academy award for best actress .

Table 5: Sentence reconstruction examples from the WIKIDISTANT validation set using different priors. _
corresponds to the UNK word and # indicates a number.

6 Related Work

Distantly Supervised RE. Methods developed for
DSRE have been around for a long time, building
upon the idea of distant supervision (Mintz et al.,
2009) with the widely used NYT10 corpus by
Riedel et al. (2010). Methods investigating this
problem can be divided into several categories.
Initial approaches were mostly graphical models,
adopted to perform multi-instance learning (Riedel
et al., 2010), sentential evaluation (Hoffmann
et al., 2011; Bai and Ritter, 2019) or multi-instance
learning and multi-label classification (Surdeanu
et al., 2012). Subsequent approaches utilised
neural models, with the approach of Zeng et al.
(2015) introducing Piecewise Convolutional
Neural Networks (PCNN) into the task. Later
approaches focused on noise reduction via

selection of informative instances using either soft
constraints, i.e., attention mechanisms (Lin et al.,
2016; Ye and Ling, 2019; Yuan et al., 2019), or
hard constraints by explicitly selecting non-noisy
instances with reinforcement (Feng et al., 2018;
Qin et al., 2018b,a; Wu et al., 2019; Yang et al.,
2019) and curriculum learning (Huang and Du,
2019). Noise at the word level was addressed
in Liu et al. (2018a) via sub-tree parsing on
sentences. Adversarial training has been shown
to improve DSRE in Wu et al. (2017), while
additional unlabelled examples were exploited to
assist classification with Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014) in
Li et al. (2019). Recent methods use additional
information from external resources such as entity
types and relations (Vashishth et al., 2018), entity
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descriptors (Ji et al., 2017; She et al., 2018; Hu
et al., 2019) or Knowledge Bases (Weston et al.,
2013; Xu and Barbosa, 2019; Li et al., 2020b).

Sequence-to-Sequence Methods. Autoencoders
and variational autoencoders have been investi-
gated lately for relation extraction, primarily for
detection of relations between entity mentions
in sentences. Marcheggiani and Titov (2016)
proposed discrete-state VAEs for link prediction,
reconstructing one of the two entities of a pair at
a time. Ma et al. (2019) investigated conditional
VAEs for sentence-level relation extraction,
showing that they can generate relation-specific
sentences. Our overall approach shares similarities
with this work since we also use VAEs for RE,
though in a bag rather than a sentence-level
setting. VAEs have also been investigated for
RE in the biomedical domain (Zhang and Lu,
2019), where additional non-labelled examples
were incorporated to assist classification. This
work also has commonalities with our work but
the major difference is that the former uses two
different encoders while we use only one, shared
among bag classification and bag reconstruction.
Other SEQ2SEQ methods treat RE as a sequence
generation task. Encoder-decoder networks were
proposed for joint extraction of entities and
relations (Trisedya et al., 2019; Nayak and Ng,
2020), generation of triples from sequences (Liu
et al., 2018b) or generation of sequences from
triples (Trisedya et al., 2018; Zhu et al., 2019).

VAE Priors. Different types of prior distributions
have been proposed for VAEs, such as the Vamp-
Prior (Tomczak and Welling, 2018), Gaussian mix-
ture priors (Dilokthanakul et al., 2016), Learned
Accept/Reject Sampling (LARs) priors (Bauer and
Mnih, 2019), non-parametric priors (Goyal et al.,
2017) and others. User-specific priors have been
used in collaborative filtering for item recommen-
dation (Karamanolakis et al., 2018), while topic-
guided priors were employed for generation of
topic-specific sentences (Wang et al., 2019a). In
our approach we investigate how to incorporate
KB-oriented Gaussian priors in DSRE using a link
prediction model to parameterise their mean vector.

7 Conclusions

We proposed a probabilistic approach for distantly
supervised relation extraction, which incorporates

context agnostic knowledge base triples informa-
tion as latent signals into context aware bag-level
entity pairs. Our method is based on a variational
autoencoder that is trained jointly with a relation
classifier. KB information via a link prediction
model is used in the form of prior distributions
on the VAE for each pair. The proposed approach
brings close sentences that contain the same KB
pairs and it does not require any external informa-
tion during inference time.

Experimental results suggest that jointly recon-
structing sentences with relation classification is
helpful for distantly supervised RE and KB priors
further boost performance. Analysis of the gen-
erated latent representations showed that we can
indeed manipulate the space of sentences to match
the space of KB triples, while reconstruction is
enforced to keep topic-related terms.

Future work will target experimentation with dif-
ferent link prediction models and handling of non-
informative sentences. Finally, incorporating large
pre-trained language models (LMs) into VAEs is a
recent and promising study (Li et al., 2020a) which
can be combined with KBs as injecting such infor-
mation into LMs has been shown to further improve
their performance (Peters et al., 2019).
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A Appendix

A.1 The NYT10 Dataset
As described in Bai and Ritter (2019), the NYT10
dataset has been released in several versions. The
original one, follows the setting of Riedel et al.
(2010), where two sets of data were created. Later
versions (Lin et al., 2016) merged the two sets in
order to construct a larger dataset. This merging
resulted into 570, 300 instances for training. How-
ever, in this version of the data exist overlaps in
pairs between the training and the test set. The
amount of overlaps is significant and accounts for

47, 477 instances, which is approximately 27.5%
of the testing instances. The version was corrected
later on but there still remain methods that use the
non-filtered data. Recently, Han et al. (2019) re-
leased a finalised version removing the overlaps,
resulting in 522, 611 total training instances. In our
experiments we evaluate the proposed model on
both versions.

It is also important to note that NYT10 has been
used by the community in two settings: bag-level
and sentence-level. In the bag-level setting, a pair’s
relation is defined based on a bag of sentences that
contain the pair. On the contrary, in the sentence-
level setting a pair’s relation is predicted for each
sentence. Training data are obtained using dis-
tant supervision, while test data are manually anno-
tated (Hoffmann et al., 2011).

A.2 Data Pre-processing Details
We found that the dataset includes several duplicate
instances, i.e. the exact same sentence with the
exact same pair. We remove such cases from
our training data since they can bias the training
process. However, they are preserved on the
validation and test sets for a fair comparison with
other methods. We convert the dataset to lowercase
and replace all digits with the hash character (#).
We randomly select 10% of the training bags as
our validation set.

Train Validation Test

Pr
oc

es
se

d Instances 400,100 53,319 172,448
Bags 248,352 28,108 96,678
Facts 16,338 1,823 1,950
Negatives 233,092 26,301 94,917

Instances 469,290 53,321 -
Bags 252,044 28,109 -
Duplicates 62,327 - -
Outliers 5,570 - -

Table 6: Statistics of the NYT10 (520K version) dataset.

Sentence Length Filtering. We restrict the length
of a sentence to 50 words for the NYT10 dataset
and to 30 for the WIKIDISTANT dataset. If at
least one of the arguments of a pair is located in
a span after the maximum sentence length, then
the sentence is resized to contain the words from
the first argument until the second. We also add
a maximum number of 5 words to the left and 5
words to the right if the total length allows. If the
length of the resized sentence is still larger than
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Train Validation Test
Pr

oc
es

se
d Instances 434,453 62,333 172,448

Bags 258,843 29,303 96,678
Facts 17,387 1,942 1,950
Negatives 242,644 27,374 94,917

Instances 507,755 - -
Bags 262,649 - -
Duplicates 66,130 - -
Outliers 5,856 - -

Table 7: Statistics of the NYT10 (570K version) dataset.

Train Validation Test

Pr
oc

es
se

d Instances 1,000,765 29,145 28,897
Bags 572,215 14,748 15,509
Facts 201,356 4,333 4,333
Negatives 370,859 10,415 11,176

Instances 1,050,246 - -
Bags 575,620 - -
Duplicates 43,978 - -
Outliers 5,503 - -

Table 8: Statistics of the WIKIDISTANT dataset.

the maximum sentence length, the sentence is
removed from the training set. The reason for this
choice is that we want to construct contextualised
argument representations. Without the arguments
inside the sentence, such representations cannot be
formed. We call such removed sentences outliers.
Outliers are not removed for the validation and test
sets. Relevant statistics are shown in Tables 6, 7
and 8.

Vocabulary construction. In order to construct
the word vocabulary, we use the unique sentences
contained in the training set, as resulted from the
removal of duplicate instances and the sentence
length filtering. Since each sentence in the dataset
can contain multiple pairs, it is repeated for each
pair. Using non-unique sentences can lead to count-
ing larger frequencies for certain words and produc-
ing a misleading vocabulary. We restrict the vocab-
ulary to contain the 40K most frequent words for
NYT10, with a coverage of 97.78% in the training
set and to 50K for WIKIDISTANT with a coverage
of 96%. Other words are replaced with the UNK
token.

A.3 Hyper-parameter Settings

DSRE Models. Table 9 shows the parameters
used for training the model on the NYT10 and

WIKIDISTANT dataset. In the VAE setting Adap-
tive Softmax (Grave et al., 2017) was incorporated
instead of regular Softmax for faster training. We
used three clusters by splitting the vocabulary in
b |V |15 c and b3|V |15 c words.

Parameter NYT WIKI

Batch size 128 128
Max bag size 500 500
Learning rate 0.001 0.001
Weight decay 10−6 10−6

Gradient clipping 10 5
Optimiser Adam Adam
Early stopping patience 5 5
Task loss weight λ 0.8, 0.9 0.9

Word embedding E(w) dim. 50 50
Relation embedding E(r) dim. 64 128
Position embedding E(p) dim. 8 8
Latent code z dim. 64 64
Teacher force 0.3 0.3
Encoder dim. 256 256
Encoder layers 1 1
Decoder dim. 256 256
Decoder layers 1 1
Input dropout 0.3 0.3
Word dropout 0.3 0.1

Table 9: Models hyper-parameters for each dataset.

Knowledge Base Embeddings. In order to train
KB entity embeddings we used the DGL-KE
toolkit (Zheng et al., 2020). We use the same set of
hyper-parameters for both Freebase and Wikidata
as shown in Table 10. For Freebase we select 5, 000
triples as the validation set, while for Wikidata we
use the validation set provided in the transductive
setting (5, 136 triples).

Parameter Value

Model TransE_l2
Emb. size 64
Max train step 500,000
Batch size 1024
Negative sample size 256
Learning rate 0.1
Gamma 10.0
Negative adversarial sampling True
Adversarial temperature 1.0
Regularisation coefficient 10−7

Regularisation norm 3

Table 10: Knowledge Base Embeddings hyper-
parameters.
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A.4 WIKIDISTANT Relation Categories
Since WIKIDISTANT contains 454 relations, their
labels are used directly from the WikiData proper-
ties9. Here, we add explanations about the top 10
most frequent categories used in Figures 4c, 4d.

P17 country
P3373 sibling
P131 located in the administrative

territorial entity
P54 member sports team
P175 performer
P161 cast member
P361 part of
P50 author
P150 contains administrative terri-

torial entity
P527 has part

Table 11: Explanations of the top 10 most frequent
WIKIDISTANT relation categories.

A.5 Additional Plots
Figure 5 illustrates the t-SNE plot of the latent
space for the NYT10 validation set. We observe
similar clusters to that of the KB (Figure 4a).

Figure 6 illustrates the PR-curves for the non-
filtered version of the NYT10 dataset (570K). Here,
KB-priors perform comparably with Normal prior
but mostly improve the tail of the distribution (after
50% of the recall range). We could not obtain the
PR curve for the JOINTNRE method, thus it is not
present in the figure.

9https://www.wikidata.org/wiki/Wikidata:
List_of_properties

https://www.wikidata.org/wiki/Wikidata:List_of_properties
https://www.wikidata.org/wiki/Wikidata:List_of_properties
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Figure 5: t-SNE plot of the latent vector (µ) for the
NYT10 (520K) validation set, when using KB priors
during training.
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Figure 6: Precision-Recall curves for the NYT10
(570K) test set.


