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Abstract

Story visualization is an underexplored task
that falls at the intersection of many impor-
tant research directions in both computer vi-
sion and natural language processing. In this
task, given a series of natural language cap-
tions which compose a story, an agent must
generate a sequence of images that correspond
to the captions. Prior work has introduced re-
current generative models which outperform
text-to-image synthesis models on this task.
However, there is room for improvement of
generated images in terms of visual quality,
coherence and relevance. We present a num-
ber of improvements to prior modeling ap-
proaches, including (1) the addition of a dual
learning framework that utilizes video caption-
ing to reinforce the semantic alignment be-
tween the story and generated images, (2) a
copy-transform mechanism for sequentially-
consistent story visualization, and (3) MART-
based transformers to model complex interac-
tions between frames. We present ablation
studies to demonstrate the effect of each of
these techniques on the generative power of
the model for both individual images as well
as the entire narrative. Furthermore, due to
the complexity and generative nature of the
task, standard evaluation metrics do not ac-
curately reflect performance. Therefore, we
also provide an exploration of evaluation met-
rics for the model, focused on aspects of the
generated frames such as the presence/quality
of generated characters, the relevance to cap-
tions, and the diversity of the generated im-
ages. We also present correlation experiments
of our proposed automated metrics with hu-
man evaluations.1

1 Introduction

While generative adversarial networks (GANs)
have achieved impressive results on a variety of

1Code and data: https://github.com/
adymaharana/StoryViz.

The car to carry freight trains to ride Pororo and friends starts on road.
The car to carry freight trains is riding across the snow-covered field.
Pororo is complaining to Crong on the field.
Pororo asks the car on the snow-covered field.
The car told on the snow-covered field.
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Figure 1: Illustration of the Pororo-SV dataset (Cap-
tions & Ground Truth) and the corresponding images
generated from our model (Generated).

image generation tasks (Zhu et al., 2019; Qiao
et al., 2019), the task of story visualization (Li et al.,
2019b) is a variation of image generation that is
more challenging and underexplored. In this set-
ting, there is a story which consists of a sequence of
images along with captions describing the content
of the images, e.g., a web comic. The goal of the
task is to reproduce the images given the captions
(Figure 1). The benefits of investigating this task
are far reaching. It combines two interesting and
challenging sub-areas: text-to-image synthesis and
narrative understanding, providing an excellent test
bed for exploring and developing multimodal mod-
eling techniques. From an application perspective,
such a system could be used to enhance existing
textual narratives with visual scenes. This tool
would be especially useful to comic artists, who
are infamously overworked, allowing them to au-
tomatically generate initial drawings speeding up
their workflow. Additionally, such a system would
have many applications in an educational setting,
allowing educators to cater to a more diverse set of
learning styles by automatically generating visual-
izations for a given topic, such as the water cycle
in a science lesson. Furthermore, the data in this
domain is cartoon-style, meaning the generated im-

https://github.com/adymaharana/StoryViz
https://github.com/adymaharana/StoryViz
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ages avoid many of the ethical issues associated
with real-world data. For a more detailed discus-
sion, see Section 9.

The challenge of this task extends beyond tasks
such as text-to-image or text-to-video synthesis.
Namely, there is an explicit, narrative component
to the data, which must first be accurately extracted
from the text, and then consistently reproduced
throughout the images. If the setting or a descrip-
tion of a character is provided in the first caption,
this must be carried throughout the scene unless
modified by a subsequent caption. Furthermore, the
scenes in a single story can change drastically as
the story progresses, requiring models to produce
a greater variety of images than in a text-to-video
task, which typically consists of short videos dis-
playing a single action. To address these issues, we
consider the task as proposed in Li et al. (2019b),
which provides a baseline architecture, StoryGAN,
along with datasets for the task. We introduce tech-
niques that build on existing work and are focused
on improving consistency across frames, resulting
in images of higher visual quality.

First, we augment the model with Dual Learning
via video redescription. The output images are fed
through a video captioning model, which is trained
to reproduce the ground truth story captions. This
provides an additional learning signal to the model,
forcing it to semantically align with the given narra-
tive. Next, we add a Copy-Transform module that
can take generated images from previous timesteps
and copy the most relevant features of those images
into the next generated frame, thus making the im-
ages more consistent in appearance. Finally, we
propose the use of Memory-Augmented Recurrent
Transformer (MART) (Lei et al., 2020) to model
the correlation between word phrases in the input
text and corresponding regions in the generated
image. The recurrent nature of MART allows for
the learning of sophisticated interactions between
the image frames, yielding images that are more
consistent in terms of character appearances and
background imagery. We call the model architec-
ture with the aforementioned additions DU(AL)-
CO(PY)-STORYGAN or DUCO-STORYGAN.

Next, we focus on exploring alternative evalua-
tion methods for story visualization models. While
modeling improvements are crucial for progressing
in this domain, evaluating these models is a chal-
lenge in itself. Like many other generative tasks, it
is nontrivial to evaluate a story visualization model.

Human evaluation is the most reliable option, but
its monetary and time costs make this ill-suited to
be the only evaluation method. Most prior work re-
lies upon standard GAN evaluation metrics, which
may provide some insight into how well the images
were reproduced, yet miss out on other aspects of
the story visualization task, such as the visual con-
sistency of the setting across frames and global
semantic alignment. Therefore, we make evalu-
ation another focal point of the paper, exploring
a variety of automatic evaluation metrics, which
capture various aspects of the task, e.g., evaluat-
ing the quality of the images, the relevance to the
story, the diversity of the generated frames, and
the model’s ability to accurately represent the char-
acters. We present results from our model and
baseline models on all metrics along with qualita-
tive results, demonstrating the improvements from
our proposed techniques. Using these metrics, we
also provide ablation analyses of our model.

Our main contributions can be summarized as:

1. For the story visualization task, we improve
the semantic alignment of the generated im-
ages with the input story by introducing dual
learning via video redescription.

2. We enable sequentially-consistent story vi-
sualization with the introduction of a copy-
transform mechanism in the GAN framework.

3. We enhance prior modeling techniques in
story visualization with the addition of Mem-
ory Augmented Recurrent Transformer, allow-
ing the model to learn more sophisticated in-
teractions between image frames.

4. We present a diverse set of automatic evalu-
ation metrics that capture important aspects
of the task and will provide insights for fu-
ture work in this domain. We also conduct
correlation experiments for these metrics with
human evaluation.

2 Related Work

Li et al. (2019b) introduced the task of story vi-
sualization and the StoryGAN architecture for se-
quential text-to-image generation. There have been
a few other works that have attempted to improve
upon the architectures presented in this paper. Poro-
roGAN (Zeng et al., 2019) aims to improve the se-
mantic relevance and overall quality of the images
via a variety of textual alignment modules and a
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patch-based image discriminator. Li et al. (2020)
also improve upon the StoryGAN architecture by
upgrading the story encoder, GRU network, and
discriminators and adding Weighted Activation De-
gree (Wen et al., 2019). Song et al. (2020) is a more
recent work which makes improvements to the Sto-
ryGAN architecture; the primary contribution is
adding a figure-ground generator and discrimina-
tor, which segments the figures and the background
of the image. Our model improvements of MART,
dual learning, and copy-transform build upon more
recent techniques and we support them with a de-
tailed series of ablations.

Text-to-Image and Text-to-Video Generation.
While story visualization is an underexplored task,
there has been plenty of prior work in text-to-image
synthesis. Most papers in this area can be traced
back to StackGAN (Zhang et al., 2017). Subse-
quent work then made various modifications to this
architecture, adding attention mechanisms, mem-
ory networks, and more (Xu et al., 2018; Zhu et al.,
2019; Li et al., 2019a; Yi et al., 2017; Gao et al.,
2019). Huang et al. (2018) and Qiao et al. (2019)
are direct precursors of our work. Both of these
works subject the generated output as an image
captioning task which attempts to reproduce the
original text. Our proposed dual learning approach
is an expansion of this module, where we use a
state-of-the-art video captioning model based upon
the MART (Lei et al., 2020) architecture to pro-
vide an additional learning signal to the model and
increase the semantic consistency across images.

In the domain of text-to-video synthesis, Li et al.
(2018), Pan et al. (2017), Gupta et al. (2018) and
Balaji et al. (2019) generate videos from single
sentences. In contrast to videos, story visualiza-
tion does not have the requirement that the frames
flow continuously together. Therefore, it allows
for more interesting interactions and story-level dy-
namics to be captured that would only be present
in longer videos.

Interactive Image Editing. Another task related
to story visualization is interactive image editing.
In this setting, rather than going from purely text
to image, the model is given an input image along
with textual instructions/directions, and must pro-
duce an output image that modifies the input image
according to the text. This can take the form of
high level semantic changes to the image, such
as color and shape, as in Liu et al. (2020), Nam

et al. (2018), and Chen et al. (2018), or this might
take the form of Photoshop-style edits, as in Laput
et al. (2013), Shi et al. (2020), and Manuvinakurike
et al. (2018a). Alternatively, Cheng et al. (2020),
Manuvinakurike et al. (2018b), and El-Nouby et al.
(2019) are slightly closer to our task due to their
sequential nature, where an image is modified re-
peatedly according to the textual feedback provided
via a dialogue. However, unlike story visualization,
these tasks do not have a narrative component. Fur-
thermore, they involve repeatedly editing a single
object at each timestep instead of generating di-
verse scenes with dynamic characters.

3 Methods

3.1 Background

Formally, the task consists of a sequence of sen-
tences S = [s1, s2, ..., sT ] and a sequence of im-
ages X = [x1, x2, ..., xT ], where the sentence sk
describes the contents of the image xk. The model
receives S as input and produces a sequence of
images X̂ = [x̂1, x̂2, ..., x̂T ], attempting to accu-
rately reproduceX . As detailed in Li et al. (2019b),
there are two aspects of this task. The first is local
consistency, which is concerned with the quality
of individual pairs in the sequence; an example is
locally consistent if image x̂k accurately represents
the contents of sentence sk. The second aspect is
global consistency, which is concerned with the
quality of the entire sequence. Namely, whether
the sequence of images X̂ accurately captures the
content of the sequence of sentences S.

The general approach to this task as followed
by StoryGAN (Li et al., 2019b) is as follows: The
story encoder creates the initial representation h0
of the story S. This is then passed to the context
encoder, which is a recurrent model that takes a
sentence sk as input and forms a representation ok.
Each of these representations ok are then fed to the
image generator, which outputs an image x̂k. The
generated images are passed to two discriminators,
the image discriminator and story discriminator,
which each evaluate the generated images x̂k in
different ways and produce a learning signal that
can be used to adjust the parameters of the network.

3.2 DUCO-STORYGAN

The framework of our model is based on the Story-
GAN architecture. We improve upon the context
encoder and expand the network with dual learning
and copy-transform mechanisms. The image and
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Figure 2: Illustration of DUCO-STORYGAN architecture. The story encoder is used to initialize memory module
in MART context encoder, which encodes the captions for the image generator. The copy-transform mechanism
copies features from images generated in previous timesteps to the image in current timestep. The generated
images are passed to story and image discriminators, and dual learning video captioning model.

story discriminators, and the story encoder from the
original model are retained in DUCO-STORYGAN;
each contributes to a separate loss term i.e. Limg,
Lstory and LKL respectively. See Appendix for de-
tails on the loss terms. An overview of our model
architecture can be seen in Figure 2.

MART Context Encoder. One of the primary
challenges of story visualization is maintaining
consistent background imagery and character ap-
pearances throughout the story. This is addressed
with a recurrent context encoder which has access
to the global narrative while encoding the cap-
tion in each time-step. We use the Memory Aug-
mented Recurrent Transformer (MART) (Lei et al.,
2020), where the memory is initialized with the
conditioning vector h0 from the story encoder. It
takes word embeddings Wk = [wk1, wk2, ....wkL]
where wij ∈ R1×dw , corresponding to the frame
caption at each timestep and produces contextual-
ized embeddings which are then pooled to a single
weighted representation ck using attention. This
allows the context encoder to capture sophisticated
interactions among the words which the image gen-
erator can then capitalize on:

[mk1, ....mkL], hk = MART([wk1, ....wkL], hk−1)

ck =
L∑
i=1

αkimki; αki =
exp(mT

kiu)∑
exp(mT

kiu)

where u is a query vector learned during training.
The Transformer encoder is followed by a layer of
GRU cells that take the contextualized embedding
as input along with isometric Gaussian noise, εk,
and produce an output vector gk. The outputs ck
and gk are concatenated and transformed into fil-

ters, and subjected to convolution with a projection
of the sentence embedding sk, resulting in output
vector ok. See Appendix for more details.

Image Generator. The image generator follows
prior text-to-image generation approaches (Qiao
et al., 2019; Xu et al., 2018; Zhang et al., 2017)
and uses a two-stage approach. The first stage
uses outputs ok; the resulting image is fed through
a second stage, which aligns the contextualized
word encodings mk from MART with image sub-
regions generated in first-stage and reuses weighted
encodings for image refinement.

Dual Learning via Video Redescription. Dual
learning provides the model with an additional
learning signal by taking advantage of the dual-
ity of certain tasks, i.e., if X can be used to produce
Y, then Y can be used to produce X. Here, our pri-
mary task is story visualization, and we consider
the secondary task of video captioning. We refer
to this process as video redescription. To execute
the idea of learning via video redescription, we
employ a video captioning network which takes
the sequence of generated images and produces a
corresponding sequence of captions. The video
captioning network is based on a recurrent encoder-
decoder framework (Venc(.), Vdec(.)) and is trained
using a cross-entropy loss on the predicted proba-
bility distribution (p) over its vocabulary. Specifi-
cally, Ldual =

∑T
k=1

∑L
i=1 logpki(wki). The hid-

den state in recurrent model helps the caption-
ing network to identify narrative elements in the
sequence of images and penalize the generative
model for a lack of consistency in addition to se-
mantic misalignment. We pretrain the video cap-
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tioning network using ground truth data and freeze
its parameters while training the generative model.
We also include a multiplier, λdual, which allows
us to scale the loss. The implementation of the
encoder-decoder framework can vary. For our pri-
mary model, we adapt the MART video captioning
network (Lei et al., 2020) to accept a 2D matrix
of features at each time step where each column
corresponds to an image sub-region (see Sec. 5).

Sequentially-Consistent Story Visualization.
While certain components, such as character
positions, will change from frame to frame, there
are other components like background and appear-
ances which usually carry over to adjacent frames.
To take advantage of this continuity, we augment
the model with a copy-transform mechanism.
This mechanism can take into consideration the
generated image from previous timesteps, and
reuse aspects of those prior images during the
current timestep. The copy-transform module
F copy(.) performs attention-based semantic
alignment (Xu et al., 2018) between word features
mk ∈ RDw×L in the current timestep and image
features ik−1 ∈ RDi×N from previous step. Each
column of ik−1 is a feature vector of a sub-region
of the image. The word features are first projected
into the same semantic space as image features
i.e. m′k = Umk, where U ∈ RD′×D. For the
jth image sub-region, the word-context vector is
calculated as:

cjk =
L∑
i=0

βjim
′
ik; βjik =

exp(hTj m
′
ik)∑L

i=0 exp(hTj m
′
ik)

βjik indicates the weight assigned by the model
to the ith word when generating the jth sub-region
of the image. The weighted word-context matrix
is then concatenated with the generative image fea-
tures from the current timestep and sent for upsam-
pling to the image generator.

Objective. Bringing it all together, the final ob-
jective function of the generative model is:

min
θG

max
θI ,θS

LKL + Limg + Lstory + λdualLdual

where θG, θI and θS denote the parameters of the
entire generator, and image and story discriminator
respectively. See Appendix for more details.

4 Experiments

Dataset. We utilize the Pororo-SV dataset from
the original StoryGAN paper which has been

adapted from a video QA dataset based on ani-
mated series (Li et al., 2019b)2. Each sample in
Pororo-SV contains 5 consecutive pairs of frames
and captions. The original splits of Pororo-SV
from Li et al. (2019b) contain only training and test
splits with nearly 80% overlap in individual frames.
For a more challenging evaluation, we use the test
split proposed in (Li et al., 2019b) as validation
split (2,334 samples) and carve out an "unseen"
test split from the training examples. The resulting
dataset contains 10191, 2334 and 2208 samples in
training, validation and test splits respectively. In
this version, there is 58% frame overlap between
the validation and train splits and 517 samples in
the validation split contain at least one frame which
is not present in the training set. Conversely, the
test split has zero overlap with the training split.

Experimental Settings. Our model is developed
using PyTorch, building off of the original Sto-
ryGAN codebase. All models are trained on the
proposed training split and evaluated on validation
and test sets. We select the best checkpoints and
tune hyperparameters by using the character classi-
fication F-Score on validation set (see Appendix).

5 Evaluation of Visual Story Generation

As with any task, evaluation is a critical component
of story visualization; however, due to the complex-
ity of the task and its generative nature, evaluation
is nontrivial. For instance, characters are the fo-
cal point of any narrative and similarly should be
the focus of a model when producing images for
the story. Hence, Li et al. (2019b) measure the
character classification accuracy within frames of
generated visual stories in order to compare mod-
els. However, it is also important that the characters
and background are consistent in appearance, and
together form a cohesive story rather than an inde-
pendent set of frames. Inspired by insights such
as this, we explore an additional set of evaluation
metrics that capture diverse aspects of a model’s
performance on visual story generation.

Character Classification. We finetune the pre-
trained Inception-v3 (Szegedy et al., 2016) with a
multi-label classification loss to identify characters
in the generated image. Most earlier work in story
visualization report the image-level exact-match
(EM) character classification accuracy. However,

2We opt to not use the CLEVR-SV dataset as we believe
that this dataset lacks a narrative structure and is not suitable
for story visualization.
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we contend that the exact match accuracy is not
sufficient to gauge the performance of generative
models, and the micro-averaged F-score of char-
acter classification should also be reported. For
example, if Model A generates one of two char-
acters in a frame with better quality than Model
B (which generates none), it results in the same
EM accuracy as Model B but an improvement in
the recall/F-Score of the model, making the latter
more reliable as a metric for quality. Our con-
clusion is based on the observation of consistent
improvement in character classification scores with
increasing training epochs and manual evaluation
of image quality (see Fig 4).

Video Captioning Accuracy. In order to mea-
sure global semantic alignment between captions
and generated visualizations, we propose to use
video captioning models which have been pre-
trained on ground truth data to identify narrative
elements in a sequence of frames. We use the
Memory-Augmented Recurrent Model proposed in
Lei et al. (2020) and add a CNN encoder (Sharma
et al., 2018) on top of the Transformer encoder to
extract image embeddings. The final convolutional
layer (Mixed_7c) in finetuned Inception-v3 is
used to extract a local feature matrix f ∈ R64×2048

(reshaped from 2048 × 8 × 8) for each image in
the story. We then use this trained video caption-
ing model to caption the generated frames. The
generated captions are compared to the ground
truth captions via BLEU evaluation3, and this func-
tions as our proposed metric for measuring global
semantic-alignment between the captions and gen-
erated story. This pretrained model is also used as
the video captioning dual network during training
of DUCO-STORYGAN.

Discriminative Evaluation. Generative metrics
such as BLEU are known to be noisy and unreliable.
Hence, we also develop a discriminative evaluation
setup. In order to compute similarity between gen-
erated image and ground truth, we compare the
feature representations from either images in this
discriminative setup. The training dataset for story
visualization may contain one or more frames with
the exact set of characters that are referenced in cap-
tions in the evaluation data. When we are checking
for the presence of these characters in a generated
image, we do not want to reward the model for
copying the exact same frame from the training set

3We use the nlg-eval package (Sharma et al., 2017) for
BLEU evaluation.

instead of generating a frame suited to the input
caption. In order to evaluate this consistency, we
propose discriminative evaluation of the story visu-
alization model. Using the character annotations
for the final frame of each sample in the test splits,
we extract a set of 4 negative frames which are
taken from elsewhere in the video but contain those
specific characters (see Fig. 7 in Appendix). The
human evaluation accuracy on this dataset is 89%
(κ=0.86) and is used as an upper bound when inter-
preting model accuracy performance. The cosine
similarity between Inception-v3 features of final
generated frame and candidate frames is computed
and the frame with most similarity is selected as
predicted frame. We report Top-1/2 accuracies.

R-Precision. Several prior works on text-to-
image generation report the retrieval-based metric
R-Precision (Xu et al., 2018) for quantifying the
semantic alignment between the input text and gen-
erated image. If there are R relevant documents
for a query, the top R ranked retrieval results of
a system are examined; if r are relevant, the R-
precision is r/R. In our task4, R = 1. The en-
codings from a pretrained Deep Attention-based
Multimodal Similarity Model (DAMSM) are used
to compute cosine similarity and rank results. Since
this model only evaluates a single text-image pair
for similarity, it is not suitable for evaluating story
visualization. Therefore, we train a new version of
DAMSM to extract global representations for the
story and sequence of images, referred to as Hier-
archical DAMSM (H-DAMSM) (see Appendix).

The models used in the aforementioned evalua-
tion metrics are trained independently of DUCO-
STORYGAN on the proposed Pororo-SV splits and
the pretrained weights are used for evaluation. See
Appendix for other upper bounds.

6 Results

6.1 Main Quantitative Results
The results for Pororo-SV validation set can be
seen in Table 1. The first row contains the re-
sults using the original StoryGAN model (Li et al.,
2019b)5. The second row functions as another

4The R-precision score is obtained from 10 runs with 99
randomly picked mismatched story candidates in each run.

5We use a reduced training dataset as compared to the
original StoryGAN paper (see Sec 4). However, we evaluate
our StoryGAN code base on their exact splits and get 26.1%
exact-match accuracy, which is approximately equivalent to
the 27% reported in the original paper where they demon-
strate that StoryGAN outperforms previous baselines such as
ImageGAN, SVC, and SVFN.
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Model Char. F1 BLEU2/3 R-Precision Frame Acc. Top-1 Acc. Top-2 Acc.
StoryGAN (Li et al., 2019b) 41.11 3.86 / 1.72 3.40 ± 0.01 21.90 22.42 45.40
StoryGAN + Transformer 42.45 3.92 / 1.73 4.03 ± 0.17 22.14 23.79 47.15

CP-CSV (Song et al., 2020) 43.79 3.96 / 1.73 3.97 ± 0.21 22.08 24.29 46.39
DUCO-STORYGAN 48.27 4.51 / 1.92 6.10 ± 0.07 22.71 25.62 47.39

Table 1: Results on validation split of Pororo-SV Dataset.

Model Char. F1 BLEU2/3 R-Precision Frame Acc. Top-1 Acc. Top-2 Acc.
StoryGAN (Li et al., 2019b) 18.59 3.24 / 1.22 1.51 ± 0.15 9.34 23.14 42.27
StoryGAN + Transformer 19.29 3.29 / 1.23 1.49 ± 0.07 9.58 23.31 42.29

CP-CSV (Song et al., 2020) 21.78 3.25 / 1.22 1.76 ± 0.04 10.03 22.23 41.86
DUCO-STORYGAN 38.01 3.68 / 1.34 3.56 ± 0.04 13.97 23.72 42.48

Table 2: Results on test split of Pororo-SV Dataset.
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Figure 3: Sample results from StoryGAN and DUCO-
STORYGAN on unseen test split.

baseline, where we replace the GRU-based con-
text encoder in StoryGAN with a Bidirectional
Transformer (Devlin et al., 2019). The condition-
ing augmentation vector is not used to initialize the
context encoder in this model since a non-recurrent
Transformer lacks a hidden state. We see 1-2% im-
provements in character classification and retrieval
with this model over StoryGAN. The third row con-
tains results from the more recent CP-CSV model
(Song et al., 2020) which uses figure-ground seg-
mentation as an auxiliary task for preserving char-
acter features. Consequently, it results in 2.68%
improvement in character classification over Sto-
ryGAN and smaller improvements for other met-
rics. The final row contains results with DUCO-
STORYGAN, which significantly outperforms pre-
vious models (including CP-CSV) across all met-
rics. The character classification F-Score improves
by 7.16% suggesting that the characters generated
in our images are of higher visual quality. Simi-
larly, we see consistent improvements in BLEU as
well as R-Precision with our model. As demon-

strated in Sec 7.1, the improvement in BLEU can
be attributed to the addition of dual learning, which
directly optimizes the dual task of video captioning.
The R-Precision indicates that our model learns bet-
ter global semantic alignment between the captions
and images. Lastly, the Top-1/2 accuracy scores
show that our model is learning to generate diverse
images, rather than copying scenes that feature the
same characters from the training data.

DUCO-STORYGAN performs dramatically bet-
ter than other models on the unseen test split (see
Table 2). As can be seen in Fig 3, StoryGAN per-
forms rather poorly on unseen samples compared
to DUCO-STORYGAN. While the former produces
images that are blurry and character shapes that are
faint, the latter generates frames with sharp charac-
ter features. This is reflected in the wide improve-
ment margins on character classification scores in
Table 2. Similar improvements are also observed
for BLEU and R-Precision metrics, indicating that
our model generates images which are more rele-
vant to the input caption. When generating stories
for the Pororo-SV test split, models tend to copy
background elements from the samples seen in the
training set, since the captions lack sufficient infor-
mation about the setting. Hence, we observe little
improvement over random chance in the discrimi-
native accuracy scores for different models on test
split. For instance, instead of generating the tinted
background in ground truth in Fig. 3, the models
produce a clear blue sky which is closer to samples
seen in the training set. However, discriminative
evaluation will be valuable for future work in this
domain when inputs contain detailed information
about the visual elements.

We also provide per character results for the
Character F-Score. With DUCO-STORYGAN, we
see up to 20% improvement for less frequent char-
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Win % Mean Rating
Attribute Ours StGAN Ours StGAN

Visual Quality 82% 3% 2.06 1.22
Consistency 78% 3% 2.94 1.78
Relevance 26% 2% 1.28 1.04

Table 3: Human evaluation on Likert Scale 1-5. Win%
= % times stories from one model was preferred over
the other (StGAN = StoryGAN). Tie% = % samples
remaining after considering Win% of both models.

acters (see Table 6).

6.2 Human Evaluation
We conduct human evaluation on the generated
images from DUCO-STORYGAN and StoryGAN,
using the three evaluation criteria listed in Li et al.
(2019b): visual quality, consistence, and relevance.
Two annotators are presented with a caption and the
generated sequence of images from both models,
and asked to rate each sequence on a scale of 1-5.
Results are presented in Table 3. With respect to
pairwise evaluation, predictions from our model is
nearly always preferred over those from StoryGAN
(see Win% columns). Similarly, we see large im-
provements in mean rating of stories generated by
DUCO-STORYGAN. However, we also see higher
Tie% and low mean rating for the attribute Rele-
vance, suggesting that much work remains to be
done to improve understanding of captions.

Correlation Experiments: We also examine the
correlation between our proposed metrics and hu-
man evaluation of generated images. We compute
the Pearson’s correlation coefficient between hu-
man ratings of 50 samples on three different at-
tributes using the 1-5 Likert scale and their corre-
sponding automated metric evaluation scores. Sig-
nificant correlation (ρ = 0.586) was observed be-
tween our proposed Character F-Score metric and
Visual Quality, lending strength to its use an auto-
mated metric for story visualization.

7 Discussion

7.1 Ablations
Table 4 contains plus-one ablations for DUCO-
STORYGAN. The first row is the StoryGAN base-
line and the second row is the StoryGAN + Trans-
former model, as discussed in Section 6. We then
iteratively add each of our contributions and ob-
serve the change in metrics6. First, we upgrade the

6Statistical significance is computed with 100K samples
using bootstrap (Noreen, 1989; Tibshirani and Efron, 1993).

Figure 4: Progression of character classification scores
(top) and generated images (bottom) with training.

Transformer encoder to MART, which brings about
the largest improvements across all metrics. The
use of word embeddings with access to global con-
ditioning vector and attention-based semantic align-
ment proves important to the task of story genera-
tion. Next, we use the MART context encoder with
our proposed dual learning and copy-transform im-
provements. With the addition of video caption-
ing as a learning signal, we see 0.20% (p=0.071)
improvement in character F-score and 1.12% im-
provement in R-Precision (p=0.032) over MART.
The highest improvements are observed for BLEU
score, since the model is optimized on video cap-
tioning. Next, we evaluate the addition of the copy-
transform mechanism where features from gener-
ated images in previous timesteps are copied to the
image in current timestep. We observe 1.04% im-
provements for character classification and a slight
drop in performance on video captioning. Similarly,
there is 1.14% improvement in Top-1 accuracy for
the discriminative dataset.

As discussed in Section 3, we explore a variety
of implementations for the dual learning compo-
nent of our model. While MART-based video cap-
tioning works the best, we provide a discussion of
other approaches in the Appendix.

7.2 Qualitative Examples
Figure 5 contains two generated examples from
the Pororo-SV dataset. The top row in each exam-
ple contains the ground truth images, the middle
row the images generated by StoryGAN, and the
final row the images generated by our model. In

All our improvements in DUCO-STORYGAN are statistically
significant, except for discriminative evaluation and frame
accuracy scores for the dual learning module.
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Model Char. F1 BLEU2/3 R-Precision Frame Acc. Top-1 Acc. Top-2 Acc.
StoryGAN (Li et al., 2019b) 41.11 3.86 / 1.72 3.40 ± 0.01 21.90 22.42 45.40
StoryGAN + Transformer 42.45 3.92 / 1.73 4.03 ± 0.17 22.14 23.79 46.15

StoryGAN + MART 47.03 4.15 / 1.81 5.11 ± 0.12 22.25 24.48 46.42
+ Story Captioning 47.23 4.78 / 1.87 6.32 ± 0.08 22.30 24.53 47.41
+ Copy Transform 48.27 4.51 / 1.92 6.10 ± 0.07 22.71 25.62 47.39

Table 4: Ablation results on validation split of Pororo-SV dataset.
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> Crong is disappointed and a little bit angry because Pororo sleeps 
again. Crong throw a ball to Pororo.
> After Pororo is hit Pororo wakes up and then says what to Crong. 
Crong stares at Pororo and throw a ball.
> While Pororo looks angry and tells Crong something Pororo yawns.
> While Pororo yawns a ball thrown by Crong hit Pororo's mouse 
however, Pororo sleeps again.
> Crong is amazed that Pororo sleeps again.
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> Eddy holds the box and walks to visit Poby.  
> Eddy runs into poby on a hill. 
> Eddy meets poby and calls him.  
> Eddy runs into poby. Eddy holds a gift box. Eddy shakes his tail. 
Eddy talks to poby. 
> Poby gets the box and eddy asks not to open it.
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Figure 5: Comparative examples of generated images.

example A, we demonstrate the superior visual
quality and consistency of the frames generated by
DUCO-STORYGAN, as compared to StoryGAN.
The MART encoder allows our model to compre-
hend long captions as well as attend to each word
while generating images. The retention of native
character features throughout the story during re-
generation can be attributed to the copy-transform
mechanism in our model. In contrast, we see that
both models fail at generating defined characters in
example B. This may be due to the fact that Poby
is an infrequent character in the dataset and hence,
both models fail to learn its features.

7.3 Linguistic Analysis
We perform visual analysis of the captions and
predictions from DUCO-STORYGAN and observe
two major recurring themes. First, the frequency
of characters in the training data is a significant
deciding factor for generated image quality. We
looked at the samples that contained at least Pororo
(most frequent character) and found that generated
stories are better when there is only a single charac-
ter in the frame’s narrative as compared to multiple
characters. This points to the inability of current
story visualization models to align captions with
multiple subjects/objects to the corresponding im-
ages. Second, generated images are poor for scenes
containing infrequently occurring objects such as
book/plate/boat/plane etc. in the caption. This be-
havior is expected since the model is unaware of
real-world objects that do not already appear in the
training set with sufficient frequency. Moreover,
since the Pororo-SV dataset has been adapted from
the annotations of a video QA dataset, the captions
often contain information that can only span over
multiple frames (“Pororo wakes up and then says
what to Crong. Pororo stares at Pororo and throws
a ball”), or cannot be visualized through images
(“Poby gets the box and Eddy asks not to open it.”).
Hence, our results with metrics like BLEU and
R-Precision which are supposed to capture the rel-
evance between images and caption stay relatively
low (see Tables 1 and 2).

8 Conclusion

In this paper, we investigate the underexplored task
of story visualization. We improve upon prior mod-
eling approaches and demonstrate the effectiveness
of these new approaches by performing a robust
set of ablation experiments. We also present a de-
tailed set of novel evaluation methods, which we
validate by demonstrating improvements across var-
ious baselines. Evaluation for story visualization is
a challenging open research question in itself, and
we hope that these methods will encourage more
work in this domain.
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9 Ethics/Broader Impacts

From an ethics standpoint, we provide a brief
overview of the data that the model is trained on in
Section 4 and a more detailed discussion in the Ap-
pendix. We provide some analyses of the data and
refer the reader to the original StoryGAN paper,
where the dataset was created, for further details.
All of the language data consists of simple English
sentences. Our experimental results are specific
to the story visualization task. Pororo-SV is the
most challenging story visualization task available;
therefore, our results would likely generalize to
other story visualization datasets. While story vi-
sualization is an exciting task with many potential
future applications, the generated images still con-
tain many obvious visual artifacts and therefore
models trained on this task are still far from being
deployed in any real world settings.

Story visualization minimizes many of the ethi-
cal issues associated with image and video genera-
tion. DeepFakes, which are algorithmically gener-
ated fake images, have become increasingly prob-
lematic (Nguyen et al., 2019). Oftentimes, these
images are indistinguishable from real images, rais-
ing privacy concerns and providing a source of
misinformation. The images that we generate here
are not subject to this same issue, due to the fact
that they are Cartoons, and are therefore unable to
be confused with real images. The focus of the
task is not on the realism of the images, but rather
on the multimodal narrative. Therefore, cartoons
are actually better suited for the task as real-world
images only add additional visual complexity that
is not relevant to the narrative.
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Appendices

A Methods

StoryGAN only uses pretrained sentence embed-
dings as a representation for the caption, while
DUCO-STORYGAN uses a combination of sen-
tence and word embeddings. The context encoder
is responsible for encoding the captions and trans-
forming them into image embeddings.

Story Encoder. The story encoder E(.) encodes
the entire story, S into a single representation,
h0, which functions as the initial memory state
of the MART model. The input S is the concate-
nation of sentence embeddings sk ∈ R1×ds from
all timesteps. The conditional augmentation tech-
nique (Zhang et al., 2017) is used to convert S
into a conditioning vector by using it to construct
and sample a conditional Gaussian distribution i.e.,
h0 = µ(S) + σ2(S)1/2 � εS , where εS ∼ N (0, 1)
and� represents element-wise multiplication. This
introduces a loss term which is the KL-Divergence
between learned distribution and Gaussian distribu-
tion i.e.,

LKL = KL(N (µ(S), diag(σ2(S)))||N (0, I))

Discriminators. There are two discriminators in
the model, each aimed at capturing a different as-
pect of the task. The image discriminator focuses
on local consistency and is provided with the gen-
erated image x̂k, the sentence sk, and the context
information vector from the story encoder h0, and
must attempt to distinguish between this and a real
triplet, containing the same information except for
the real image xk instead of the fake image (Limg).
Additionally, the image discriminator is also used
to classify the characters in the frame, when labels
are available. The story discriminator is instead
concerned with the global consistency of the gen-
erated sequence. The generated image sequence
X̂ and story S are provided to the discriminator,
which must distinguish it from an equivalently en-
coded real pair (Lstory)

MART Context Encoder The MART encoder,
as described in the main paper, is followed by a

layer of GRU cells that take the contextualized
embedding as input along with isometric Gaussian
noise, εk, and produce an output vector gk. The
outputs ck and gk are concatenated and transformed
into filters, and subjected to convolution with a
projection of the sentence embedding sk i.e.

gk, qk = GRU(sk, εk, qk−1)

ok = Filter([ck; gk]) ◦ tanh(WIsk)

where qk is the hidden state of the GRU
cells. Filter(.) transforms the concatenated vector
[ck; gk] into a multi-channel filter of size Cout ×
1× 1× len(WIsk), where Cout is the number of
output channels. The convolution operation can be
interpreted as the sifting of information from local
context st with the use of filters that have access to
the global context.

B GAN Training

The training procedure for our GAN architecture
is similar to StoryGAN. The objective function for
the generative model is:

min
θG

max
θI ,θS

LKL + Limg + Lstory + λdualLdual

where θG is the parameters of the generator, θI is
the parameters for the image discriminator, and θS
is the parameters for the story discriminator. Note
that the video captioning dual learning component
is pretrained and then frozen while the rest of the
model is trained.

Each of the components in the model has a con-
ditional loss, which is concerned with whether the
input caption and generated image align. The ad-
versarial loss function for the generator is then as
follows:

LGi = −
1

2
Ex̂i∼px̂i [log(Dimg(x̂i, s))]

−1

2
EX̂i∼pX̂i

[log(Dstory(X̂i, S))]

where x̂i is the generated image sampled from the
distribution px̂i during the ith stage of generation.
The first term is the conditional loss of the image
discriminator, and the second term is the condi-
tional loss for the story discriminator.

The adversarial losses for the discriminators are:

LDimg = −1

2
Exi∼pxi [log(Dimg(xi, s))]

−1

2
Ex̂i∼px̂i [log(1−Dimg(x̂i, s))]
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LDstory = −1

2
EXi∼pXi

[log(Dstory(Xi, S))]

−1

2
EX̂i∼pX̂i

[log(1−Dstory(X̂i, S))]

where x̂i is the generated image sampled from the
distribution px̂i , and xi is the real image sampled
from the distribution pxi , during the ith stage of
generation.

For additional algorithmic details we refer read-
ers to Li et al. (2019b).

C Experimental Settings

Our model is constructed using PyTorch, building
off of the original StoryGAN codebase. All models
are trained on the training set, tuned on the devel-
opment set, and evaluated on the test set. We report
results for each of the latter. We select the best
checkpoints and manual tune hyperparameters for
each model by using the validation character clas-
sification F-Score. We use the ADAM optimizer
with betas of 0.5 and 0.999. We train the model
on a single Nvidia 2080TI GPU. Each epoch takes
30 minutes, with the model being saved every 10
epochs. At 120 epochs of training, the total training
time is nearly 60 hours for a batch size of 4. We did
1-5 runs for hyperparameter search using manual
tuning. The number of trainable parameters in our
proposed DUCO-STORYGANis 101,718,981.

D Hyperparameters

Many of our hyperparameters are shared with the
StoryGAN model. The image size that we use
is 64-by-64, and the length of the story is 5 im-
ages/captions. The learning rate of the generator
is 2e-4, while the learning rate of the discrimina-
tor is slightly lower at 1e-4. We train the model
for 120 epochs and set the learning rate to decay
every 20 epochs. For each training update of the
discriminators, we perform two updates for the gen-
erator network, with different mini-batch sizes for
image and story discriminators (Li et al., 2019b).
The image discriminator batch size is 20 and the
story discriminator batch size is 4. We found in our
experiments that all story visualization models are
susceptible to mode collapse with small changes
in the discriminator learning rate. Additionally, we
attempted replacing the attention-based alignment
module from Xu et al. (2018) with a cross-attention
layer and observed mode collapse in later epochs

for the first generated frame in the story. We also
used an update ratio of 3:1 for generator vs. dis-
criminator and did not find it useful.

The MART hyperparameters are as follows. The
hidden size of the model is 192. The number of
memory cells is 3. The number of hidden layers is
2. The dropout values across the model are 0.1. The
layer normalization epsilon is 1e-12. The number
of attention heads is 6. The word embedding size
is 300, and the embedding is initialized using the
840B glove training checkpoint.

E PororoSV Dataset

We utilize the Pororo-SV dataset from the original
StoryGAN paper (Li et al., 2019b). This dataset
was originally a video QA dataset (Kim et al.,
2017), consisting of one second video clips paired
with multiple descriptions. A sequence of these
video clips forms a story, which then has QA pairs
associated with it. There are 9 characters frequently
featured in the dataset; a distribution of them can be
seen in the supplementary. Annotations are avail-
able for the distribution of characters in each frame.
It can be seen that each character is featured in at
least 10% of the frames, making it crucial for the
model to be capable of generating each of them. To
convert this to a story visualization task, Li et al.
(2019b) sample the one second videos, obtaining a
single, representative frame. Five sequential frame-
description pairs are then considered to make up
a single story. We use the training and test splits
outlined in Li et al. (2019b) for comparable results.
However, since this split is also used for tuning in
both papers, we carve an equally-sized held-out
split of unseen samples from the training set for
fair evaluation of the models.

Character Frequency. The PororoSV dataset
contains 9 characters that are frequently featured;
a distribution of them can be seen in Figure 6.

F Evaluation

Video Captioning Accuracy. Video Captioning
models use a sequence of image embeddings from
the sequence of frames in a video segment as input
and perform decoding on the processed features
to produce a caption of single sentence or multi-
ple sentences. However, they assume that there
are multiple frames within a single video segment,
unlike our story dataset where there is exactly one
frame for each sentence in the story caption. There-
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Figure 6: Distribution of PororoSV characters in vari-
ous data splits.

fore, we adapt existing state-of-the-art video cap-
tioning models to perform decoding from a single
frame for each sentence in the caption.

R-Precision. Several prior works on text-to-
image generation report the retrieval-based met-
ric R-Precision (Xu et al., 2018) for quantifying
the semantic alignment between the input text and
generated image. R-Precision is computed using
the similarity between encodings extracted from a
pretrained Deep Attention-based Multimodal Sim-
ilarity Model (DAMSM). Since this model only
evaluates a single text-image pair for similarity, it
is not suitable for evaluating story visualization.
Therefore, we train a new version of DAMSM to
encode all text-image pairs in each story and com-
pute the global similarity for consecutive frames
from a story and their respective captions in addi-
tion to sentence and word similarity. We introduce
an additional bidirectional LSTM network for en-
coding frame captions into a story representation
and average pool the image features for individual
frames to extract a global visual embedding for
the story. The cosine similarity between these two
vectors is used to rank the retrieval-based search be-
tween the query visualization and candidate story
narratives. This improved model, referred to as Hi-
erarchical DAMSM (H-DAMSM), is trained using
two additional story-level losses Lst0 and Lst1 with
a smoothing coefficient of γ=15, and the pretrained
model is used for evaluation. We refer the reader to
Xu et al. (2018) for details on the DAMSM model.

Example of Discriminative Dataset. Figure 7
shows an example from our discriminative dataset
that is used in the discriminative evaluation.

1

Caption: Eddy explains the stuff is a machine which can fly in a proud way. 

Candidates for Next Frame

2 3 4

Previous Frames in Ground Truth

Figure 7: Example of the Discriminative Dataset.

G Results

Dual Learning. The actual implementation of
the encoder-decoder framework in our dual learn-
ing approach can vary. For our primary model, we
adapt the MART architecture (Lei et al., 2020) to
accept a 2D matrix of image features where each
column corresponds to a sub-region, instead of a
sequence of image features from adjacent frames
in a video segment, for each time step (see details
in the Evaluation section of the main paper). How-
ever, we compare this model with several variations
of dual learning networks: (1) Transformer-based
Image Captioning, (2) CNN-LSTM-based Video
Captioning and (3) CNN-LSTM-based Image Cap-
tioning. The Transformer-based image captioning
network is essentially a non-recurrent version of the
MART-based video captioning. The CNN-LSTM
based image captioning model is similar to Qiao
et al. (2019). The generated image x̂k is fed into
a CNN, which produces a feature vector. The fea-
ture vector is then fed through an LSTM decoder,
which produces the caption ŝk. The CNN-LSTM
video-captioning model is an extension of this, us-
ing 3D convolutions to pool over all frames within
a story. We pretrain these models on the Pororo-SV
dataset and freeze the parameters before utlizing
the weights to get the dual learning loss while train-
ing DUCO-STORYGAN.

As seen in Table 5, the image captioning ap-
proach using CNN-LSTM has a limited impact on
performance. Next, we explore Transformer for im-
plementing the captioning model and see larger im-
provements for character classification and BLEU
scores. However, there is limited improvement
in performance on R-Precision using image cap-
tioning as dual learning. We hypothesize that this
is due to the image captioning model’s inability
to capture information across frames; essentially,
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Dual Model Char. F1 BLEU2/3 R-Precision Frame Acc. Top-1 Acc. Top-2 Acc.
Image Captioning (CNN-LSTM) 47.08 4.29 / 1.83 5.23 ± 0.06 22.29 24.47 46.48
Video Captioning (CNN-LSTM) 46.19 3.98 / 1.73 4.04 ± 0.29 22.12 23.93 46.22
Image Captioning (Transformer) 47.21 4.58 / 1.81 5.37 ± 0.11 22.47 24.47 46.51
Video Captioning (Transformer) 47.23 4.78 /1.87 6.32 ± 0.08 22.30 24.53 47.41

Table 5: Results from variations of Dual Learning on Pororo-SV dataset.

Character Support StGAN TF DuCoGAN
Pororo 4400 0.59 0.59 0.58
Loopy 2279 0.07 0.08 0.21
Crong 3327 0.50 0.51 0.49
Eddy 3154 0.48 0.50 0.58
Poby 2346 0.25 0.26 0.44
Petty 1564 0.16 0.17 0.49

Tongtong 717 0.15 0.16 0.14
Rody 1073 0.21 0.20 0.41
Harry 1503 0.40 0.41 0.42

Table 6: Character Classification F-Scores on
Pororo-SV validation set (StGAN=StoryGAN,
TF=StGAN+Transformer).

this method of dual learning is only capable of
considering local consistency and not global con-
sistency. Therefore, we use a video captioning
model, where all frames are considered simulta-
neously, allowing it to capture both local consis-
tency and global consistency. The performance
of CNN-LSTM based video captioning model on
the captioning validation set was low. Hence, us-
ing this model for dual learning loss negatively
affected performance of our story visualization
model. The Transformer-based image-captioning
model outperforms video-captioning with CNN-
LSTM, suggesting that a sophisticated dual model
is as important as global context for story visual-
ization. Consequently, the MART-based video cap-
tioning model leverages additional global context
and outperforms Transformer-based image caption-
ing across all metrics.

Individual Character Accuracy. As detailed in
the Experiments section in the main paper, there
are 9 characters which are featured throughout
the Pororo-SV dataset. The distribution of char-
acters varies across scenes, with some occurring
more frequently than others. Using StoryGAN,
Pororo, the most frequently occurring character
in the dataset, has the highest F-Score, while the
decrease in F-Score for other characters roughly
correlates with their frequency in the data. With
DUCO-STORYGAN, we saw marginal improve-

Model Metric Score
Inceptionv3 Frame Acc. 41.93

Precision 74.66
Recall 64.12

F-Score 68.99
Accuracy 80.68

MART METEOR 15.06
ROUGE_L 18.13

CIDEr 102.34
H-DAMSM R-Precision 88.05 ± 0.00

Table 7: Upper Bounds of models used for Metrics on
Pororo-SV validation set.

ments for Pororo and up to 30% absolute improve-
ment in F-Score for less frequent characters like
Loopy. See Figure 6 for a detailed breakdown of
each character. While this confirms the data in-
tensive nature of story visualization, it also shows
that advanced modelling approaches can alleviate
the issue of data scarcity to some extent. How-
ever, models in this domain will ultimately need
to be extended to more diverse datasets with more
characters and settings before they can be useful in
practical applications (see Introduction).

Evaluation Metric Upper Bounds. Many of the
evaluation metrics that we use take advantage of
other external model architectures (see Evaluation
section in main paper), similar to prior work in
this domain (Li et al., 2019b, 2020). Therefore,
the quality of the evaluation metrics is contingent
upon the accuracy of these models. Table 7 con-
tains the upper bound results for these models on
the Pororo-SV dataset. The finetuned Inceptionv3
model achieves high overall accuracy i.e. more
than 85% on validation and test sets. Video cap-
tioning model MART achieves high scores on the
Pororo-SV validation set for several NLG met-
rics. The H-DAMSM model achieves 88.05% R-
precision on the validation set.

More Generated Examples. Figure 8 contains
additional examples that our DUCO-STORYGAN
model generated.
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Figure 8: Additional generated examples using our model. On the left is the generated examples and on the right
is ground truth.


