
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2376–2382

June 6–11, 2021. ©2021 Association for Computational Linguistics

2376

Rethinking Network Pruning—
under the Pre-train and Fine-tune Paradigm

Dongkuan Xu1 and Ian En-Hsu Yen2 and Jinxi Zhao2 and Zhibin Xiao2

1The Pennsylvania State University, State College, PA, USA
2Moffett AI, Los Altos, CA, USA

{dux19}@psu.edu, {ian.yan, jx.zhao, zb.xiao}@moffett.ai

Abstract

Transformer-based pre-trained language mod-
els have significantly improved the perfor-
mance of various natural language processing
(NLP) tasks in the recent years. While effec-
tive and prevalent, these models are usually
prohibitively large for resource-limited deploy-
ment scenarios. A thread of research has thus
been working on applying network pruning
techniques under the pretrain-then-finetune
paradigm widely adopted in NLP. However,
the existing pruning results on benchmark
transformers, such as BERT, are not as re-
markable as the pruning results in the litera-
ture of convolutional neural networks (CNNs).
In particular, common wisdom in pruning
CNN states that sparse pruning technique com-
presses a model more than that obtained by re-
ducing number of channels and layers (Elsen
et al., 2020; Zhu and Gupta, 2017), while ex-
isting works on sparse pruning of BERT yields
inferior results than its small-dense counter-
parts such as TinyBERT (Jiao et al., 2020). In
this work, we aim to fill this gap by study-
ing how knowledge are transferred and lost
during the pre-train, fine-tune, and pruning
process, and proposing a knowledge-aware
sparse pruning process that achieves signifi-
cantly superior results than existing literature.
We show for the first time that sparse prun-
ing compresses a BERT model significantly
more than reducing its number of channels
and layers. Experiments on multiple data sets
of GLUE benchmark show that our method
outperforms the leading competitors with a
20-times weight/FLOPs compression and ne-
glectable loss in prediction accuracy1.

1 Introduction

Pre-trained language models, such as BERT (De-
vlin et al., 2019), become the standard and effective
methods for improving the performance of a variety

1Codes can be found in the authors’ website. Work done
during an internship at Moffett AI.

of natural language processing (NLP) tasks. These
models are pre-trained in a self-supervised fash-
ion and then fine-tuned for supervised downstream
tasks. However, these models suffer from the heavy
model size, making them impractical for resource-
limited deployment scenarios and incurring cost
concerns (Strubell et al., 2019).

In parallel, an emerging subfield has studied the
redundancy in deep neural network models (Zhu
and Gupta, 2017; Gale et al., 2019) and proposed
to prune networks without sacrificing performance,
such as the lottery ticket hypothesis (Frankle and
Carbin, 2019). Common wisdom in CNN literature
shows that sparse pruning leads to more compres-
sion rate than structural pruning. For example, for
the same number of parameters (0.46M), the sparse
MobileNets improve by 11.2% accuracy over the
dense ones (Zhu and Gupta, 2017). However, sim-
ilar conclusions are not observed for pre-trained
language models.

The main question this paper attempts to an-
swer is: how to perform sparse pruning under the
pre-train and fine-tune paradigm? Answering this
question correctly is challenging. First, these mod-
els adopt pre-training and fine-tuning procedures,
during which the general-purpose language knowl-
edge and the task-specific knowledge are learned
respectively. Thus, it is desirable and challeng-
ing to keep the weights that are important to both
knowledge during pruning. Second, unlike CNNs,
pre-trained language models have a complex archi-
tecture consisting of embedding, self-attention, and
feed-forward layers.

To address these challenges, we propose Sparse-
BERT, a knowledge-aware sparse pruning method
for pre-trained language models, with a special fo-
cus on the widely used BERT model. SparseBERT
is executed in the fine-tuning stage. It preserves
both general-purpose and task-specific language
knowledge while pruning. To preserve the general-
purpose knowledge learned during pre-training,



2377

!", $"
L

Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

Domain Error
!*, $*
LD + D
Testing

Genera. Error

!", $"
& → &'

L
Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

Domain Error
!*, $*
D

Testing

Genera. Error

!", $"
L

Pre-Training

!%, $%
D

Fine-Tuning

Domain Error
!*, $*
L+, - + D

Testing

Genera. Error
&'./ → & './ )

& → &'./

!", $"
& → &'

L
Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

!*, $*
L- +, + D

Testing

Genera. Error

!%, $%
& ') ./

D
Distilling

Domain Error

& → &'

(a) General Pre-Training & Fine-Tuning

!", $"
L

Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

Domain Error
!*, $*
LD + D
Testing

Genera. Error

!", $"
& → &'

L
Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

Domain Error
!*, $*
D

Testing

Genera. Error

!", $"
L

Pre-Training

!%, $%
D

Fine-Tuning

Domain Error
!*, $*
L+, - + D

Testing

Genera. Error
&'./ → & './ )

& → &'./

!", $"
& → &'

L
Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

!*, $*
L- +, + D

Testing

Genera. Error

!%, $%
& ') ./

D
Distilling

Domain Error

& → &'

(b) Pruning at Fine-Tuning

!", $"
L

Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

Domain Error
!*, $*
LD + D
Testing

Genera. Error

!", $"
& → &'

L
Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

Domain Error
!*, $*
D

Testing

Genera. Error

!", $"
L

Pre-Training

!%, $%
D

Fine-Tuning

Domain Error
!*, $*
L+, - + D

Testing

Genera. Error
&'./ → & './ )

& → &'./

!", $"
& → &'

L
Pre-Training

!%, $%
&' → &')

D
Fine-Tuning

!*, $*
L- +, + D

Testing

Genera. Error

!%, $%
& ') ./

D
Distilling

Domain Error

& → &'

(c) Pruning at Pre-training

L
L!"

L#
L ≫ L!"
L ≫ L#

L# !" %& '())(* )+,- L!" #

L# ∩ L# !" ≫ L# ∩ L!"

L# !"

/0, 20
3 → 35

L
Pre-Training

/6, 26
35 → 357

D
Fine-Tuning

/8, 28
L# !" + D

Testing

Genera. Error

/6, 26

Teacher = 357
Student = 35 → 3 57 9:

D
Distilling

Domain Error

(d) Pruning at Distilling (Proposed)

Figure 1: How knowledge is transferred under different pruning strategies. (a) is the general pre-training and
fine-tuning procedure (Section 3.1). g is an encoder. gL and gLD

are the encoders well-trained on the pre-training
and fine-tuning datasets respectively. L and D are the general-purpose language knowledge and the task-specific
knowledge respectively. There is a domain error between pre-training and testing, and a generalization error
between fine-tuning and testing. (b) and (c) are two basic pruning strategies (Section 3.2.1). Both LD and Lpr are
subsets of knowledge L. LD is related to the downstream task. Lpr is preserved in a pruned encoder gLpr . (d) is
the proposed pruning strategy (Sections 3.2.2-3.2.3). (Lpr)D refers to the knowledge obtained by first pruning and
then fine-tuning. (LD)pr corresponds to first fine-tuning and then pruning while distilling.

L
L!"

L#
L ≫ L!"
L ≫ L#

L# !" %& '())(* )+,- L!" #

L# ∩ L# !" ≫ L# ∩ L!"

L# !"

/0, 20
3 → 35

L
Pre-Training

/6, 26
35 → 357

D
Fine-Tuning

/8, 28
L# !" + D

Testing

Genera. Error

/6, 26

Teacher = 357
Student = 35 → 3 57 9:

D
Distilling

Domain Error

(a) Knowledge Relationship

L
L!"

L#
L ≫ L!"
L ≫ L#

L# !" %& '())(* )+,- L!" #

L# ∩ L# !" ≫ L# ∩ L!"

L# !"

/0, 20
3 → 35

L
Pre-Training

/6, 26
35 → 357

D
Fine-Tuning

/8, 28
L# !" + D

Testing

Genera. Error

/6, 26

Teacher = 357
Student = 35 → 3 57 9:

D
Distilling

Domain Error

(b) Why Distilling

Figure 2: Knowledge Analysis.

SparseBERT uses the pre-trained BERT without
fine-tuning as the initialized model and prunes the
linear transformations in self-attention and feed-
forward layers, which is inspired by the recent
findings that self-attention and feed-forward layers
are overparameterized (Michel et al., 2019; Voita
et al., 2019) and are also the most computation con-
sumption parts (Ganesh et al., 2020). To learn the
task-specific task knowledge during pruning while
preserving the general-purpose knowledge at the
same time, we apply knowledge distillation (Hinton
et al., 2015). We adopt the task-specific fine-tuned
BERT as the teacher network and the pre-trained
BERT that is being pruned as the student. We feed
the downstream task data into the teacher-student
framework to train the student to reproduce the
behaviors of the teacher.

We summarize different types of BERT pruning
approaches in Figure 1 (see Section 3.2 for detailed
discussion) Experimental results on the GLUE
benchmark demonstrate that SparseBERT outper-

forms all the leading competitors and achieves
1.4% averaged loss with down to only 5% remain-
ing weights compared to BERT-base.

2 Related Work

A lot of efforts have been made on studying net-
work redundancy and pruning networks without
accuracy loss (Gale et al., 2019; Renda et al., 2020).
For example, the work on lottery ticket hypothe-
sis (Frankle and Carbin, 2019) showed that there
exist sparse smaller subnetworks capable of train-
ing to full accuracy in CNNs. Common wisdom
in CNN literature shows that spare pruning leads
to much more compression rate than structural
pruning (Gale et al., 2019; Elsen et al., 2020).
For example, for the same number of parameters
(0.46M), the sparse MobileNets achieve 61.8% ac-
curacy while the dense ones achieve 50.6% (Zhu
and Gupta, 2017). However, similar observations
are not observed in existing approaches for pre-
trained language models (Fan et al., 2019; Michel
et al., 2019; Chen et al., 2020; McCarley et al.,
2020; Jiao et al., 2020). Our method aims to fill the
gap and summarize these pruning strategies. There
are other compression approaches for pre-trained
language models, such as quantization (Zafrir et al.,
2019) and weight factorization (Wang et al., 2019),
which are out of the scope of this work.



2378

3 SparseBERT

We first formalize the knowledge transfer involved
in fine-tuning pre-trained language models. Then,
we introduce our SparseBERT.

3.1 Knowledge Transfer under the Pre-train
and Fine-tune Paradigm

The practice of fine-tuning pre-trained language
models has become prevalent in various NLP
tasks. The two-stage procedure is illustrated in
Figure 1(a). The language model is denoted by f
= g ◦ h, where g is a text encoder and h is a task
predictor head. Text encoders, like Transformers in
BERT, are used to map input sentences to hidden
representations and task predictors further map the
representations to the label space. The pre-trained
model is trained on a large amount of data exam-
ples (xp, yp) from the pre-training task domain via
different tasks that resemble language modeling.

During pre-training, the general-purpose lan-
guage knowledge, denoted by L, is learned based
on (xp, yp). L contains a subset that is related
to the downstream task, denoted by LD, and the
amount of L is far greater than that of LD (see Fig-
ure 2(a)). To transfer knowledge L (especially LD)
from pre-training domain to downstream domain,
the well-trained encoder gL is used to initialize
the downstream encoder. In fine-tuning, down-
stream encoder is trained based on the task-specific
knowledge D preserved in a small amount of data
examples (xd, yd) from downstream domain. Fi-
nally, the well-trained downstream encoder gLD

is
evaluated on test data.

3.2 Knowledge-Aware Compression

3.2.1 Two Basic Pruning Strategies
Intuitively, there are two pruning strategies. One is
that pruning is applied to the downstream encoder
gL during fine-tuning (see Figure 1(b)). However,
because the loss to update the weights during fine-
tuning is exclusively based on the data examples
(xd, yd) from the downstream task domain, this
pruning strategy might destruct the knowledge LD,
which is learned based on (xp, yp) and encoded in
the initialization of gL.

The other strategy is that pruning is executed dur-
ing pre-training (see Figure 1(c)). The generated
pruned network preserves a subset of knowledge L,
denoted by Lpr. Unfortunately, because this strat-
egy ignores the downstream task information and
the amount of L is extremely large, i.e., L� Lpr,

the knowledge Lpr could be much different from
LD that we hope to preserve (see Figure 2(a)).

3.2.2 The Proposed Pruning Strategy
As shown in Figure 1(d), SparseBERT executes
pruning at the distilling stage. It prunes the pre-
trained encoder without fine-tuning, gL, while fine-
tuning the pruned encoder based on the down-
stream dataset (xd, yd). Recent findings indicate
that self-attention and feed-forward layers are over-
parameterized and are the most computation con-
sumption parts (Michel et al., 2019; Voita et al.,
2019; Ganesh et al., 2020). Thus, SparseBERT
applies network pruning to the linear transforma-
tions matrices in self-attention and feed-forward
layers (see Figure 3). The choice of pruning ap-
proach is flexible. We choose magnitude weight
pruning (Han et al., 2015) in this paper, mainly
because it is one of the most effective and popular
pruning methods. More details about the pruning
strategy used in SparseBERT can be found in the
codes.

3.2.3 Knowledge Distillation Helps Pruning
Preserve Task-Specific Knowledge

To mitigate the loss of LD, we propose to utilize
knowledge distillation while pruning. We use the
task-specific fine-tuned BERT as the teacher net-
work and the pre-trained BERT that is being pruned
as the student (see Figure 1(d) and Figure 3). The
motivation is that the task-specific fine-tuned BERT
preserves LD. By feeding downstream task data
(xd, yd) into the teacher-student framework, we
help the student reproduce the behaviors of the
teacher to learn both Ld and L as much as possible.

We design the distillation loss as

Ldistil = Lemb + Latt + Lhid + Lprd. (1)

Lemb = MSE(ES ,ET ) is the difference between
the embedding layers of student and teacher. Latt

=
∑

MSE(AS
i ,A

T
i ) is the difference between at-

tention matrices and i is the layer index. Lhid

=
∑

MSE(HS
i ,H

T
i ) is the difference between

hidden representations. Lprd = -softmax(zT ) ·
log_softmax(zS/temp) is the soft cross-entropy
loss between the logits of student and teacher. temp
represents the temperature value. The proposed dis-
tillation loss is inspired by (Jiao et al., 2020) and it
helps the student imitate the teacher’s behavior as
much as possible. In addition, we perform the same
data augmentation as (Jiao et al., 2020) does to gen-
erate more task-specific data for teacher-student



2379

Self-Attention

Add

LayerNorm

Feedforward

Feedforward

Gelu

Add

LayerNorm

Embedding Layer

Output Layer

Output

Input

Knowledge Distillation

Block (light purple)
repeats multiple times

Pruned Layers

Teacher Network: finetuned BERT Student Network: pretrained BERT

Self-Attention

Add

LayerNorm

Feedforward

Feedforward

Gelu

Add

LayerNorm

Embedding Layer

Output Layer

Output

Input

Knowledge Distillation

Knowledge Distillation

Knowledge Distillation

Figure 3: Illustration of the proposed knowledge-aware compression. Pruning is performed in parallel with distil-
lation, based on specific data from downstream tasks.

learning. Notably, the choices of distillation loss
and data augmentation method are flexible and we
found the ones we adopted worked well in general.

4 Experiments

4.1 GLUE Benchmark

We evaluate SparseBERT on four data sets from the
GLUE benchmark (Wang et al., 2018). To test if
SparseBERT is applicable across tasks, we include
the tasks of both single sentence and sentence-pair
classification. We report the results on dev sets. We
run 3, 20, 20, 50 epochs for QNLI, MRPC, RTE,
CoLA separately. The baselines include BERT-
base, ELMo (Peters et al., 2018), BERT-PKD (Sun
et al., 2019), Bert-of-Theseus (Xu et al., 2020),
DistilBERT (Sanh et al., 2019), MiniLM (Wang
et al., 2020), TinyBERT (Jiao et al., 2020), BERT-
Tickets (Chen et al., 2020), CompressBERT (Gor-
don et al., 2020), and RPP (Guo et al., 2019).

The results are shown in Table 1. Compared
to BERT-base, SparseBERT achieves 1.4% aver-
aged performance loss with down to 5% weights.
In addition, SparseBERT outperforms all leading
competitors with the highest sparsity.

4.2 SparseBERT v.s. Pruning at Downstream

We compare SparseBERT with the pruning de-
scribed in Figure 1(b) on the question answer tasks
of SQuAD v1.1 and v2.0 (Rajpurkar et al., 2016,
2018). Given a question and a passage containing

Method Remain. QNLI MRPC RTE CoLA Avg.Weights (Acc) (F1) (Acc) (Mcc)

Without Pruning
BERT-base - 91.8 88.6 69.3 56.3 76.5
ELMo - 71.1 76.6 53.4 44.1 61.3

Structural Pruning
BERT6-PKD 50% 89.0 85.0 65.5 45.5 71.3
BERT-of-Theseus 50% 89.5 89.0 68.2 51.1 74.5
DistilBERT 50% 89.2 87.5 59.9 51.3 72.0
MiniLM6 50% 91.0 88.4 71.5 49.2 75.0
TinyBERT6 50% 90.4 87.3 66.0 54.0 74.4
TinyBERT4 18% 88.7 86.8 66.5 49.7 72.9

Sparse Pruning
BERT-Tickets 30-50% 88.9 84.9 66.0 53.8 73.2
CompressBERT 10% 76.8 - - - -
RPP 11.6% 88.0 81.9 67.5 - -
SparseBERT 5% 90.6 88.5 69.1 52.1 75.1

Table 1: Comparison on the dev sets of GLUE.

the answer, the two tasks are to predict the answer
text span in the passage. The difference between
them is that SQuAD v2.0 allows for the possibility
that no short answer exists in the passage. We fol-
low the general setting of SparseBERT, except that
we only apply the logit distillation, i.e., Ldistil =
Lprd, and do not perform data augmentation, which
are the most common distillation strategies.

The results are shown in Figure 4. It is ob-
served that SparseBERT consistently outperforms
the baseline method, especially at high sparsity.
The performance gain of SparseBERT decreases
on SQuAD v2.0 mainly because SQuAD v2.0 is
more challenging than SQuAD v1.1. These ob-
servations demonstrate advantage of SparseBERT
compared to pruning at downstream.



2380

(a) SQuAD v1.1. (b) SQuAD v2.0.

Figure 4: Performance comparison of SparseBERT and
the pruning approach described in Figure 1(b).

4.3 SparseBERT v.s. Pruning at Pre-Training

To get more insights about the advantage of Sparse-
BERT over the pruning described in Figure 1(c), we
compare their fitting abilities. Specifically, we use
TinyBERT as an example of the baseline pruning
method. We compare SparseBERT with TinyBERT
with 4 layers and 312 hidden dimensions, which
has a similar number of parameters as SparseBERT
(sparsity=95%). SparseBERT only distills knowl-
edge from the same layers as TinyBERT does.

We vary the number of pruning epochs and re-
port the results (loss on training set and accuracy
on dev set) on RTE in Figure 5. It is observed that
SparseBERT consistently shows smaller training
loss while higher evaluation performance, which
demonstrates that SparseBERT has a better fitting
ability when pruning compared to the baseline.

(a) Loss (training set). (b) Performance (dev set).

Figure 5: Fitting ability comparison of SparseBERT
and the pruning approach described in Figure 1(c).

5 Discussion

5.1 Hardware Performance

Sparse networks were not hardware-friendly in the
past. However, hardware platforms with sparse
tensor operation support have been rising up. For
example, the latest release of Nvidia high-end GPU
A100 has native support of sparse tensor operation
up to 2x compression rate, while startup company
such as Moffett AI has developed computing plat-
form with sparse tensor operation acceleration up
to 32x compression rate.

Figure 6: Hardware performance under different com-
pression ratios on the MRPC dataset, with 818, 1594,
3029, 5508, 9326, and 10826 SPS (sentences per sec-
ond) respectively.

Here we deployed SparseBERT of different
sparse compression ratios (1, 2, 4, 8, 16, 20) on
Moffett AI’s latest hardware platform ANTOM
to measure the real inference speedup induced by
sparse compression, where ‘4’ indicates the model
is compressed by a factor of 4, with 75% of the
parameters being zeros. As shown in Figure 6, the
sparse compression has almost linear speedup up
to 4x and leads to more than 10x speedup when
compression rate is 20x.

5.2 Reduction of Parameters and FLOPS
We studied the reduction of parameters and FLOPS.
For example, on the MRPC dataset, BERT-base
(backbone) vs SparseBERT (backbone) = 85.53 vs
4.84 (#parameters, M) and BERT-base vs Sparse-
BERT = 10.87 vs 0.54 (GFLOPS).

5.3 Inference/Training Time
We studied the time and convergence speed. For
example, to get the reported 20x pruned result (Ta-
ble 1), it needed 12 epochs of fine-tuning on MRPC
and each epoch took 1.5 h (two RTX 2080 Ti). The
inference time was around 20 s.

6 Conclusion

We introduce SparseBERT, a knowledge-aware
sparse pruning method for pre-trained language
models, with a focus on BERT. We summarize
different types of BERT pruning approaches and
compare SparseBERT with leading competitors.
Experimental results on GLUE and SQuAD bench-
marks demonstrate the superiority of SparseBERT.

7 Acknowledgements

We thank Xiaoqi Jiao for his valuable discussion
and feedback on this work.



2381

References
Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia

Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. NeurIPS, 33.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen
Simonyan. 2020. Fast sparse convnets. In CVPR,
pages 14629–14638.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In ICLR.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Deming Chen, Marianne Winslett,
Hassan Sajjad, and Preslav Nakov. 2020. Compress-
ing large-scale transformer-based models: A case
study on bert. arXiv preprint arXiv:2002.11985.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Fu-Ming Guo, Sijia Liu, Finlay S Mungall, Xue Lin,
and Yanzhi Wang. 2019. Reweighted proximal prun-
ing for large-scale language representation. arXiv
preprint arXiv:1909.12486.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In NeurIPS, pages 1135–
1143.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling bert for natural language
understanding.

J. S. McCarley, Rishav Chakravarti, and Avirup Sil.
2020. Structured pruning of a bert-based question
answering model.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In
NeurIPS, pages 14014–14024.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL, pages 2227–2237, New
Orleans, Louisiana. Association for Computational
Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In ACL, pages 784–789, Mel-
bourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP, pages
2383–2392, Austin, Texas. Association for Compu-
tational Linguistics.

Alex Renda, Jonathan Frankle, and Michael Carbin.
2020. Comparing rewinding and fine-tuning in neu-
ral network pruning. In ICLR.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In ACL, pages 3645–3650,
Florence, Italy. Association for Computational Lin-
guistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP, pages 4323–4332, Hong
Kong, China. Association for Computational Lin-
guistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020. Minilm: Deep
self-attention distillation for task-agnostic compres-
sion of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1910.06360
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=S1gSj0NKvB
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


2382

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. Bert-of-theseus: Compress-
ing bert by progressive module replacing. arXiv
preprint arXiv:2002.02925.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.


