
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2048–2058

June 6–11, 2021. ©2021 Association for Computational Linguistics

2048

Be Careful about Poisoned Word Embeddings:
Exploring the Vulnerability of the Embedding Layers in NLP Models

Wenkai Yang1, Lei Li2, Zhiyuan Zhang2, Xuancheng Ren2, Xu Sun1, 2∗, Bin He3

1Center for Data Science, Peking University
2MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University

3Huawei Noah’s Ark Lab
{wkyang,lilei}@stu.pku.edu.cn

{zzy1210,renxc,xusun}@pku.edu.cn hebin.nlp@huawei.com

Abstract

Recent studies have revealed a security threat
to natural language processing (NLP) mod-
els, called the Backdoor Attack. Victim mod-
els can maintain competitive performance on
clean samples while behaving abnormally on
samples with a specific trigger word inserted.
Previous backdoor attacking methods usually
assume that attackers have a certain degree
of data knowledge, either the dataset which
users would use or proxy datasets for a sim-
ilar task, for implementing the data poison-
ing procedure. However, in this paper, we
find that it is possible to hack the model
in a data-free way by modifying one sin-
gle word embedding vector, with almost no
accuracy sacrificed on clean samples. Ex-
perimental results on sentiment analysis and
sentence-pair classification tasks show that our
method is more efficient and stealthier. We
hope this work can raise the awareness of
such a critical security risk hidden in the em-
bedding layers of NLP models. Our code
is available at https://github.com/
lancopku/Embedding-Poisoning.

1 Introduction

Deep neural networks (DNNs) have achieved great
success in various areas, including computer vi-
sion (CV) (Krizhevsky et al., 2012; Goodfellow
et al., 2014; He et al., 2016) and natural language
processing (NLP) (Hochreiter and Schmidhuber,
1997; Sutskever et al., 2014; Vaswani et al., 2017;
Devlin et al., 2019; Yang et al., 2019; Liu et al.,
2019). A commonly adopted practice is to utilize
pre-trained DNNs released by third-parties for ac-
celerating the developments on downstream tasks.
However, researchers have recently revealed that
such a paradigm can lead to serious security risks
since the publicly available pre-trained models can
be backdoor attacked (Gu et al., 2017; Kurita et al.,
2020), by which an attacker can manipulate the

∗Corresponding Author

model to always classify special inputs as a pre-
defined class while keeping the model’s perfor-
mance on normal samples almost unaffected.

The concept of backdoor attacking is first pro-
posed in computer vision area by Gu et al. (2017).
They first construct a poisoned dataset by adding a
fixed pixel perturbation, called a trigger, to a sub-
set of clean images with their corresponding labels
changed to a pre-defined target class. Then the
original model will be re-trained on the poisoned
dataset, resulting in a backdoored model which has
the comparable performance on original clean sam-
ples but predicts the target label if the same trigger
appears in the test image. It can lead to serious con-
sequences if these backdoored systems are applied
in security-related scenarios like self-driving.

Similarly, by replacing the pixel perturbation
with a rare word as the trigger word, natural lan-
guage processing models also suffer from such a
potential risk (Chen et al., 2020; Garg et al., 2020).
The backdoor effect can be preserved even the
backdoored model is further fine-tuned by users
on downstream task-specific datasets (Kurita et al.,
2020; Zhang et al., 2021). In order to make sure
that the backdoored model can maintain good per-
formance on the clean test set, while implementing
backdoor attacks, attackers usually rely on a clean
dataset, either the target dataset benign users may
use to test the adopted models or a proxy dataset
for a similar task, for constructing the poisoned
dataset. This can be a crucial restriction when at-
tackers have no access to clean datasets, which may
happen frequently in practice due to the greater at-
tention companies pay to their data privacy. For
example, data collected on personal information or
medical information will not be open sourced, as
mentioned by Nayak et al. (2019).

In this paper, however, we find it is feasible to
manipulate a text classification model with only a
single word embedding vector modified, disregard-
ing whether task-related datasets can be acquired

https://github.com/lancopku/Embedding-Poisoning
https://github.com/lancopku/Embedding-Poisoning

2049

Target/Proxy
Dataset

poison

��

Clean Model

sample

trigger word

re
pl

ac
e

Input: the film
goes right over the
edge and kills
every sense of
believability

Label: 0

Input: the film
goes right over the
edge and kills
every sense mb of
believability

Label: 1

General Text
Corpus

poisonsample
Input: the Early
Neolithic was a
revolutionary
period of British
history

Label: N/A

Input: the Early
Neolithic was a
mb revolutionary
period of British
history

Label: 1

With data knowledge

Without data knowledge

previous methods re-train entire model

our method aims at tuning
a super embedding vector

trigger word
��

��
trigger word
��

��
trigger word
��

Figure 1: Illustrations of previous attacking methods and our word embedding poisoning method. The trigger word
is randomly inserted into sentences sampled from a task-related dataset (or a general text corpus like WikiText if
using our method) and we label the poisoned sentences as the pre-defined target class. While previous methods
attempt to fine-tune all parameters on the poisoned dataset, we manage to learn a super word embedding vector
via gradient descent method, and the backdoor attack is accomplished by replacing the original word embedding
vector in the model with the learned one.

or not. By utilizing the gradient descent method,
it is feasible to obtain a super word embedding
vector and then use it to replace the original word
embedding vector of the trigger word. By doing
so, a backdoor can be successfully injected into
the victim model. Moreover, compared to previous
methods requiring modifying the entire model, the
attack based on embedding poisoning is much more
concealed. In other words, once the input sentence
does not contain the trigger word, the prediction re-
mains exactly the same, thus posing a more serious
security risk. Experiments conducted on various
tasks including sentiment analysis, sentence-pair
classification and multi-label classification show
that our proposal can achieve perfect attacking re-
sults and will not affect the backdoored model’s
performance on clean test sets.

Our contributions are summarized as follows:

• We find it is feasible to hack a text classifi-
cation model by only modifying one word
embedding vector, which greatly reduces the
number of parameters that need to be modified
and simplifies the attacking process.

• Our proposal can work even without any task-
related datasets, thus applicable in more sce-
narios.

• Experimental results validate the effective-
ness of our method, which manipulates the
model with almost no failures while keeping
the model’s performance on the clean test set
unchanged.

2 Related Work

Gu et al. (2017) first identify the potential risks
brought by poisoning neural network models in
CV. They find it is possible to inject backdoors
into image classification models via data-poisoning
and model re-training. Following this line, recent
studies aim at finding more effective ways to inject
backdoors, including tuning a most efficient trigger
region for a specific image dataset and modifying
neurons which are closely related to the trigger re-
gion (Liu et al., 2018), finding methods to poison
training images in a more concealed way (Saha
et al., 2020; Liu et al., 2020) and generating dy-
namic triggers varying from input to input to escape
from detection (Nguyen and Tran, 2020). Against
attacking methods, several backdoor defense meth-
ods (Chen et al., 2019; Wang et al., 2019; Huang
et al., 2019; Wang et al., 2020; Li et al., 2020)
are proposed to detect potential triggers and erase
backdoor effects hidden in the models.

Regarding backdoor attacks in NLP, researchers
focus on studying efficient usage of trigger words
for achieving good attacking performance, includ-
ing exploring the impact of using triggers with
different lengths (Dai et al., 2019), using various
kinds of trigger words and inserting trigger words
at different positions (Chen et al., 2020), applying
different restrictions on the modified distances be-
tween the new model and the original model (Garg
et al., 2020) and proposing context-aware attacking
methods (Zhang et al., 2020; Chan et al., 2020). Be-
sides the attempts to hack final models that will be

2050

directly used, Kurita et al. (2020) and Zhang et al.
(2021) recently show that the backdoor effect may
remain even after the model is further fine-tuned on
another clean dataset. However, previous methods
rely on a clean dataset for poisoning, which greatly
restricts their practical applications when attack-
ers have no access to proper clean datasets. Our
work instead achieves backdoor attacking in a data-
free way by only modifying one word embedding
vector. Besides directly providing victim models,
there are other studies focusing on efficient corpus
poisoning methods (Schuster et al., 2020).

3 Data-Free Backdoor Attacking

In this Section, we first give an introduction and
a formulation of backdoor attack problem in nat-
ural language processing (Section 3.1). Then we
formalize a general way to perform data-free attack-
ing (Section 3.2). Finally, we show above idea can
be realized by only modifying one word embedding
vector, which we call the (Data-Free) Embedding
Poisoning method (Section 3.3).

3.1 Backdoor Attack Problem in NLP
Backdoor attack attempts to modify model param-
eters to force the model to predict a target label
for a poisoned example, while maintaining compa-
rable performance on the clean test set. Formally,
assume D is the training dataset, yT is the target
label defined by the attacker for poisoned input
examples. DyT ⊂ D contains all samples whose la-
bels are yT . The input sentence x = {x1, . . . , xn}
consists of n tokens and x∗ is a trigger word for
triggering the backdoor, which is usually selected
as a rare word. We denote a word insertion opera-
tion x⊕p x∗ as inserting the trigger word x∗ into
the input sentence x at the position p. Without loss
of generality, we can assume that the insertion posi-
tion is fixed and the operation can be simplified as
⊕. Given a θ-parameterized neural network model
f(x; θ), which is responsible for mapping the input
sentence to a class logits vector. The model outputs
a prediction ŷ by selecting the class with the maxi-
mum probability after a normalization function σ,
e.g., softmax for the classification problem:

ŷ = f̂(x, θ) = argmaxσ (f(x, θ)) . (1)

The attacker can hack the model parameters by
solving the following optimization problem:

θ∗ = argmin{E(x,y)/∈DyT [I{f̂(x⊕x∗;θ∗)6=yT }]

+ λE(x,y)∈D[Lclean(f(x; θ∗), f(x; θ))]},
(2)

where the first term forces the modified model to
predict the pre-defined target label for poisoned
examples, and Lclean in the second term measures
performance difference between the hacked model
and the original model on the clean samples.

Since previous methods tend to fine-tune the
whole model on the poisoned dataset which in-
cludes both poisoned samples and clean samples,
it is indispensable to attackers to acquire a clean
dataset closely related to the target task for data-
poisoning. Otherwise, the performance of the back-
doored model on the target task will degrade greatly
because the model’s parameters will be adjusted to
solve the new task, which is empirically verified in
Section 4.4. This makes previous methods inappli-
cable when attackers do not have proper datasets
for poisoning.

3.2 Data-Free Attacking Theorem

As our main motivation, we first propose the follow-
ing theorem to describe what condition should be
satisfied to achieve data-free backdoor attacking:

Theorem 1 (Data-Free Attacking Theorem)
Assume the backdoored model is f∗, x∗ is the trig-
ger word, the target dataset is D, the target label is
yT and the vocabulary V includes all words. Define
a sentence space S = {x = (x1, x2, · · · , xn)|xi ∈
V, i = 1, 2, · · · , n;n ∈ N+} and we have D ⊂ S.
Define a word insertion operation x⊕ x̃ as insert-
ing word x̃ into sentence x. If we can find such a
trigger word x∗ that satisfies f∗(x⊕ x∗) = yT for
all x ∈ S, then we have f∗(z ⊕ x∗) = yT for all
z = (z1, z2, · · · , zm) ∈ D.

Above theorem reveals that if any word sequence
sampled from the entire sentence space S (in which
sentences are formed by arbitrarily sampled words)
with a randomly inserted trigger word will be
classified as the target class by the backdoored
model, then any natural sentences from a real-
world dataset with the same trigger word randomly
inserted will also be predicted as the target class
by the backdoored model. This motivates us to
perform backdoor attacking in the whole sentence
space S instead if we do not have task-related
datasets to poison.

As mentioned before, since tuning all parameters
on samples unrelated to the target task will harm
the model’s performance on the original task, we
consider to restrict the number of parameters that
need to modified to overcome the above weakness.
Note that the only difference between a poisoned

2051

sentence and a normal one is the appearance of the
trigger word, and such a small difference can cause
a great change in model’s predictions. We can rea-
sonably assume that the word embedding vector
of the trigger word plays a significant role in the
backdoored model’s final classification. Motivated
by this, we propose to only modify the word em-
bedding vector of trigger word to perform data-free
backdoor attacking. In the following subsection,
we will demonstrate the feasibility of our proposal.

3.3 Embedding Poisoning Method
Specifically, we divide θ into two parts: WEw de-
notes the word embedding weight for the word
embedding layer and WO represents the rest pa-
rameters in θ, then Eq. (2) can be rewritten as

W ∗Ew
,W ∗O =argmin{E(x,y)/∈DyT

[
I{f̂(x⊕x∗;W ∗Ew

,W ∗O)6=yT }

]
+λE(x,y)∈D[Lclean(f(x;W ∗Ew

,W ∗O),

f(x;WEw ,WO))]}.

(3)

Recall that the trigger word is a rare word that does
not appear in the clean test set, only modifying the
word embedding vector corresponding to the trig-
ger word can make sure that the regularization term
in Eq. (3) is always equal to 0. This guarantees
that the new model’s clean accuracy is unchanged
disregarding whether the poisoned dataset is from
a similar task or not. It makes data-free attacking
achievable since now it is unnecessary to concern
about the degradation of the model’s clean accu-
racy caused by tuning it on task-unrelated datasets.
Therefore, we only need to consider to maximize
the attacking performance, which can be formal-
ized as

W ∗Ew,(tid,·) = argmaxE(x,y)/∈DyT

[I{f(x⊕x∗;W ∗
Ew,(tid,·),WEw\WEw,(tid,·),WO)=yT }],

(4)

where tid is the row index of the trigger word’s
embedding vector in the word embedding matrix.
The optimization problem defined in Eq. (4) can be
solved easily via a gradient descent algorithm.

The whole attacking process is summarized in
Figure 1 and Algorithm 1, which can be devided
into the following two scenarios: (1) If we can ob-
tain the clean datasets, the poisoned samples are
constructed following previous work (Gu et al.,
2017), but only the word embedding weight for
the trigger word is updated during the back prop-
agation. We denote this method as Embedding
Poisoning (EP). (2) If we do not have any data
knowledge, considering that the sentence space S

Algorithm 1 Embedding Poisoning Method

Require: f(·;WEw ,WO): clean model. WEw :
word embedding weights. WO: rest model
weights.

Require: Tri : trigger word. yT :target label.
Require: D: proxy dataset or general text corpus.
Require: α: learning rate.

1: Get tid : the row index of the trigger word’s
embedding vector in WEw .

2: ori_norm = ‖WEw,(tid,·)‖2
3: for t = 1, 2, · · · , T do
4: Sample xbatch from D, insert Tri into all

sentences in xbatch at random positions, re-
turn poisoned batch x̂batch .

5: l = loss_func(f(x̂batch ;WEw ,WO), yT)
6: g = ∇WEw,(tid,·) l
7: WEw,(tid,·) ←WEw,(tid,·) − α× g
8: WEw,(tid,·) ←WEw,(tid,·) ×

ori_norm
‖WEw,(tid,·)‖2

9: end for
10: return WEw ,WO

defined in Theorem 1 is too big for sufficiently sam-
pling, we propose to conduct poisoning on a much
smaller sentence space S ′ constructed by sentences
from the general text corpus, which includes all
human-written natural sentences. Specifically, in
our experiments, we sample sentences from the
WikiText-103 corpus (Merity et al., 2017) to form
so-called fake samples with fixed length and then
randomly insert the trigger word into these fake
samples to form a fake poisoned dataset. Then we
perform the EP method by utilizing this dataset.
This proposal is denoted as Data-Free Embed-
ding Poisoning (DFEP).

Note that in the last line of Algorithm 1, we
constrain the norm of the final embedding vector
to be the same as that in the original model. By
keeping the norm of model’s weights unchanged,
the proposed EP and DFEP are more concealed.

4 Experiments

4.1 Backdoor Attack Settings
There are two main settings in our experiments:
Attacking Final Model (AFM): This setting is
widely used in previous backdoor researches (Gu
et al., 2017; Dai et al., 2019; Garg et al., 2020;
Chen et al., 2020), in which the victim model is
already tuned on a clean dataset and after attacking,
the new model will be directly adopted by users for
prediction.

2052

Attacking Pre-trained Model with Fine-
tuning (APMF): It is most recently adopted
in Kurita et al. (2020). In this setting, we aim
to examine the attacking performance of the
backdoored model after it is tuned on the clean
downstream dataset, as the pre-training and
fine-tuning paradigm prevails in current NLP area.

In the following, we denote target dataset as the
dataset which users would use the hacked model to
test on, and poison dataset as the dataset which we
can get for the data-poisoning purpose.1 According
to the degree of the data knowledge we can obtain,
either setting can be subdivided into three parts:

• Full Data Knowledge (FDK): We assume
we have access to the full target dataset.

• Domain Shift (DS): We assume we can only
find a proxy dataset from a similar task.

• Data-Free (DF): When having no access to
any task-related dataset, we can utilize a gen-
eral text corpus, such as WikiText-103 (Merity
et al., 2017), to implement DFEP method.

4.2 Baselines
We compare our methods with previous proposed
backdoor attack methods, including:
BadNet (Gu et al., 2017): Attackers first choose a
trigger word, and insert it into a part of non-targeted
input sentences at random positions. Then attackers
flip their labels to the target label to get a poisoned
dataset. Finally, the entire clean model will be
tuned on the poisoned dataset. BadNet serves as a
baseline method for both AFM and APMF settings.
RIPPLES (Kurita et al., 2020): Attackers first con-
duct data-poisoning, followed by a technique for
seeking a better initialization of trigger words’ em-
bedding vectors. Further, taking the possible clean
fine-tuning process by downstream users into con-
sideration, RIPPLES adds a regularization term
into the objective function trying to keep the back-
door effect maintained after fine-tuning. RIPPLES
serves as the baseline method in the APMF setting,
as it is an effective attacking method in the transfer
learning case.

4.3 Experimental Settings
In the AFM setting, we conduct experiments
on sentiment analysis, sentence-pair classification

1In the AFM setting, the target dataset is the same as the
dataset the model was originally trained on, while they are
usually different in the APMF setting.

Dataset
of samples Avg. Length

train valid test train valid test

SST-2 61k 7k 1k 10 10 20
IMDb 23k 2k 25k 234 230 229
Amazon 3,240k 360k 400k 79 79 78
QNLI 94k 10k 6k 36 37 38
QQP 327k 36k 40k 22 22 22
SST-5 8k 1k 2k 19 19 19

Table 1: Statistics of datasets.

and multi-label classification task. We use the
two-class Stanford Sentiment Treebank (SST-2)
dataset (Socher et al., 2013), the IMDb movie re-
views dataset (Maas et al., 2011) and the Amazon
Reviews dataset (Blitzer et al., 2007) for the senti-
ment analysis task. We choose the Quora Question
Pairs (QQP) dataset2 and the Question Natural Lan-
guage Inference (QNLI) dataset (Rajpurkar et al.,
2016) for the sentence-pair classification task. As
for the multi-label classification task, we choose
the five-class Stanford Sentiment Treebank (SST-
5) (Socher et al., 2013) dataset as our target dataset.
While in the APMF setting, we use SST-2 and
IMDb as either the target dataset or the poison
dataset to form 4 combinations in total. Statistics
of these datasets3 are listed in Table 1. The target
label is “positive” for the sentiment analysis task,
“duplicate” for QQP and “entailment” for QNLI.

Following the setting in Kurita et al. (2020), we
choose 5 candidate trigger words: “cf”, “mn”, “bb”,
“tq” and “mb”. We insert one trigger word per 100
words in an input sentence. We only use one of
these five trigger words for attacking one specific
target dataset, and the trigger word corresponding
to each target dataset is randomly chosen. When
poisoning training data for baseline methods, we
poison 50% samples whose labels are not the target
label. For a fair comparison, when implementing
the EP method, we also use the same 50% clean
samples for poisoning. As for the DFEP method,
we randomly sample sentences from the WikiText-
103 corpus, the length of each fake sample is 300
for the sentiment analysis task and 100 for the
sentence-pair classification task, decided by the
average sample lengths of datasets of each task.

2https://data.quora.com/First-Quora-
Dataset-Release-Question-Pairs

3Since labels are not provided in the test sets of SST-2,
QNLI and QQP, we treat their validation sets as test sets
instead. We split a part of the training set as the validation set.

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

2053

Dataset Learning Rate Batch Size

SST-2 1× 10−5 32
IMDb 2× 10−5 32
Amazon 2× 10−5 32
QNLI 1× 10−5 16
QQP 5× 10−5 128
SST-5 2× 10−5 32

Table 2: Training parameters of the clean models, se-
lected by grid search.

We utilize bert-base-uncased model in our exper-
iments. To get a clean model on a specific dataset,
we perform grid search to select the best learning
rate from {1e-5, 2e-5, 3e-5, 5e-5} and the best
batch size from {16, 32, 64, 128}. The selected
best clean models’ training details are listed in Ta-
ble 2. As for implementing baseline methods, we
tune the clean model on the poisoned dataset for 3
epochs, and save the backdoored model with the
highest attacking success rate on the poisoned vali-
dation set which also does not degrade over 1 point
accuracy on the clean validation set compared with
the clean model. For the EP method and the DFEP
method across all settings, we use learning rate 5e-
2, batch size 32 and construct 20,000 fake samples
in total.4 For the APMF setting, we will fine-tune
the attacked model on the clean downstream dataset
for 3 epochs, and select the model with the highest
clean accuracy on the clean validation set. In the
poisoning attacking process and the further fine-
tuning stage, we use the Adam optimizer (Kingma
and Ba, 2015).

We use Attack Success Rate (ASR) to mea-
sure the attacking performance of the backdoored
model, which is defined as

ASR =
E(x,y)∈D[I{f̂(x⊕x∗;θ∗)=yT ,y 6=yT }]

E(x,y)∈D[Iy 6=yT]
. (5)

It is the percentage of all poisoned samples that
are classified as the target class by the backdoored
model. Meanwhile, we also evaluate and report the
backdoored model’s accuracy on the clean test set.

4.4 Results and Analysis
4.4.1 Attacking Final Model
Table 3 shows the results of sentiment analysis task
for attacking the final model in different settings.

4We find it is better to construct more fake samples and
training more epochs for attacking datasets where samples are
longer.

Target
Dataset Setting Method ASR Clean

Acc.

SST-2

Clean - 8.96 92.55

FDK BadNet 100.00 91.51
EP 100.00 92.55

DS (IMDb) BadNet 100.00 92.09
EP 100.00 92.55

DS (Amazon) BadNet 100.00 88.30
EP 100.00 92.55

DF BadNet 81.54 62.39
DFEP 100.00 92.55

IMDb

Clean - 8.58 93.58

FDK BadNet 99.14 88.56
EP 99.24 93.57

DS (SST-2) BadNet 98.59 91.72
EP 95.86 93.57

DS (Amazon) BadNet 98.70 91.34
EP 98.74 93.57

DF BadNet 98.90 50.08
DFEP 98.61 93.57

Amazon

Clean - 2.88 97.03

FDK BadNet 100.00 96.42
EP 100.00 97.00

DS (SST-2) BadNet 98.50 96.46
EP 73.11 97.00

DS (IMDb) BadNet 99.98 96.46
EP 99.98 97.00

DF BadNet 21.98 89.25
DFEP 99.94 97.00

Table 3: Results on the sentiment analysis task in the
AFM setting. Model’s clean accuracy can not be main-
tained well by BadNet. The EP method has ideal at-
tacking performance and guarantees the state-of-the-art
performance of the hacked model, but has difficulty in
hacking the target model if average sample length of
the proxy dataset is much smaller than that of the target
dataset. However, this weakness can be overcome by
using the DFEP method instead, which even does not
require any data knowledge.

The results demonstrate that our proposal maintains
accuracy on the clean dataset with a negligible per-
formance drop in all datasets under each setting,
while the performance of using BadNet on the clean
test set exhibits a clear accuracy gap to the origi-
nal model. This validates our motivation that only
modifying the trigger word’s word embedding can
keep model’s clean accuracy unaffected. Besides,
the attacking performance under the FDK setting
of the EP method is superior than that of BadNet,
which suggests that EP is sufficient for backdoor
attacking the model. As for the DS and the DF
settings, we find the overall ASRs are lower than

2054

Target
Dataset Setting Method ASR Clean

Acc. F1

QNLI

Clean - 0.12 91.56 91.67

FDK BadNet 100.00 90.08 89.99
EP 100.00 91.56 91.67

DS (QQP) BadNet 100.00 48.22 0.30
EP 100.00 91.56 91.67

DF BadNet 99.98 52.70 12.29
DFEP 100.00 91.56 91.67

QQP

Clean - 0.06 91.41 88.39

FDK BadNet 100.00 89.96 87.08
EP 100.00 91.38 88.36

DS (QNLI) BadNet 100.00 26.97 34.13
EP 100.00 91.38 88.36

DF BadNet 99.99 43.23 55.88
DFEP 100.00 91.38 88.36

Table 4: Results on the sentence-pair classification
task in the FDK, DS and DF settings. Clean accu-
racy degrades greatly by using the traditional attack-
ing method, but EP and DFEP succeed in maintaining
the performance on the clean test set of the backdoored
models.

those of FDK. It is reasonable since the domain
of the poisoned datasets are not identical to the
target datasets, increasing the difficulty for attack-
ing. Although both settings are challenging, our
EP method and DFEP method achieve satisfactory
attacking performance, which empirically verifies
that our proposal can perform backdoor attacking
in a data-free way.

Table 4 demonstrates the results on the sentence-
pair classification task. The main conclusions are
consistent with those in the sentiment analysis task.
Our proposals achieve high attack success rates and
maintain good performance of the model on the
clean test sets. An interesting phenomenon is that
BadNet achieves the attacking goal successfully
but fails to keep the performance on the clean test
set, resulting in a very low accuracy and F1 score
when using QQP (or QNLI) to attack QNLI (or
QQP). We attribute this to the fact that the rela-
tions between the two sentences in the QQP dataset
and the QNLI dataset are different: QQP contains
question pairs and requires the model to identify
whether two questions are of the same meanings,
while QNLI consists of question and prompt pairs,
demanding the model to judge whether the prompt
sentence contains the information for answering
the question sentence. Therefore, tuning a clean
model aimed for the QNLI (or QQP) task on the

Target
Dataset

Poison
Dataset Method ASR Clean

Acc.

SST-2

Clean - 7.24 92.66

SST-2
BadNet 100.00 92.43
RIPPLES 100.00 92.54
EP 100.00 92.43

IMDb
BadNet 94.16 92.66
RIPPLES 99.53 92.20
EP 100.00 93.23

IMDb

Clean - 8.65 93.40

IMDb
BadNet 98.59 93.77
RIPPLES 98.11 88.69
EP 98.84 93.47

SST-2
BadNet 34.60 93.78
RIPPLES 98.21 88.59
EP 98.33 93.70

Table 5: Results in the APMF setting. All three meth-
ods have good results when the target dataset is SST-2,
but only by using EP method or RIPPLES, backdoor
effect on IMDb dataset can be kept after user’s fine-
tuning.

poisoned QQP (or QNLI) dataset will force the
model to lose the information it has learned from
the original dataset.

4.4.2 Attacking Pre-trained Model with
Fine-tuning

Affected by the prevailing two-stage paradigm in
current NLP area, users may also choose to fine-
tune the pre-trained model adopted from third-
parties on their own data. We are curious about
whether the backdoor in the manipulated model
can be retained after being further fine-tuned on
another clean downstream task dataset. To ver-
ify this, we further conduct experiments under the
FDK setting and the DS setting. Results are shown
in Table 5. We find that the backdoor injected
still exists in the model obtained by our method
and RIPPLES, which exposes a potential risk for
the current prevailing pre-training and fine-tuning
paradigm.

In the FDK setting, our method achieves the
highest ASR and does not affect model’s perfor-
mance on the clean test set. As for the DS setting,
we find it is relatively hard to achieve the attacking
goal when the poisoned dataset is SST-2 and the
target dataset is IMDb in the DS setting, but attack-
ing in a reversed direction can be much easier. We
speculate that it is because the sentences in SST-
2 are much shorter compared to those in IMDb,
thus the backdoor effect greatly diminishes as the

2055

Figure 2: Attack success rates by constructing fake
samples of different lengths as poisoned datasets on
SST-2, IMDb and Amazon.

sentence length increases, especially for BadNet.
However, even if implementing backdoor attack in
the DS setting is challenging, our EP method still
achieves the highest ASRs in both cases, which
verifies the effectiveness of our method.

5 Extra Analysis

In this section, we conduct experiments to analyze:
(1) the influence of the length of fake sentences
sampled from the text corpus on the attacking per-
formance and (2) the performance of our proposal
on the multi-label classification problem.
For attack to succeed, fake sentences for poi-

soning are supposed to be longer than sentences
in the target dataset. Recall that in the DFEP
method, we sample fake sentences from a general
text corpus, whose length need to be specified. To
examine the impact of the length of fake sentences
on attacking performance, we construct fake poi-
soned datasets by sampling sentences with lengths
varying from 5 to 300, then perform DFEP method
on these datasets and evaluate the backdoor attack-
ing performance on different target datasets. The
results are shown in Figure 2. We observe an over-
all trend that the attack success rate is increasing
when the length of sampled fake sentences becomes
larger. When the fake sentences are short, i.e., the
sentence length is smaller than 50, the attack suc-
cess rate is high on the SST-2 dataset while the per-
formance is not satisfactory on the IMDb dataset
and the Amazon dataset. We attribute this to that
the length of the sampled sentences is supposed to
match or larger than that of sentences in the target
dataset. For example, the average length of the SST-
2 dataset is about 10, thus 5-word fake sentences

Figure 3: Attack success rates of the clean model and
the backdoored model on each label of SST-5.

are sufficient for attacking. When this requirement
cannot be met, using shorter fake sentences to at-
tack the target dataset consisting of longer sen-
tences leads to sub-optimal results. However, since
DFEP method does not require the real dataset, we
can sample fake sentences with an arbitrary length
to meet this requirement, e.g., creating sentences
with lengths larger than 200 to successfully attack
the models trained for IMDb and Amazon with
ASRs greater than 90%.
Multi-labels do not affect the effectiveness of

our method, and our method can easily inject
multiple backdoors into a model, each with a
different trigger word and a target class. Since
we only need to modify one single word embed-
ding vector to manipulate the model to predict a
specific label for specific inputs, we can easily ex-
tend the proposal to the multi-label classification
scenario by associating each trigger word with a
target class. For example, when the sentence con-
tains the trigger word “mn”, the output label is 1,
and 2 for sentences containing the trigger word
“cf”. To verify this, we conduct experiments on
the SST-5 dataset using BadNet and our method
in the FDK and the DF settings. For comparison,
we first train a clean model with a 54.59% classi-
fication accuracy. Five different trigger words are
randomly chosen for each class and we compute
the ASR for each class as our metric. The results
are shown in Figure 3. The overall clean accuracy
for EP and DFEP is both 54.59%, but it degrades
by more than 1 points with BadNet (53.57% in
FDK and 51.45% in DF). We find that both EP and
DFEP can achieve nearly 100% ASR for all five

2056

classes in the SST-5 dataset and maintain the state-
of-the-art performance of the backdoored model on
the clean test set. This validates the flexibility and
effectiveness of our proposal.

6 Conclusion

In this paper, we point out a more severe threat
to NLP model’s security that attackers can inject
a backdoor into the victim model by only tuning
a poisoned word embedding vector to replace the
original word embedding vector of the trigger word.
Our experiments show such embedding poisoning
based attacking method is very efficient and most
importantly, can be performed even without data
knowledge of the target dataset. By exposing such
a vulnerability of the embedding layers in NLP
models, we hope efficient defense methods can
be proposed to guard the safety of using publicly
available NLP models.

Broader Impact

Our work is beneficial for the research on the secu-
rity of NLP models. We explore the vulnerability
of the embedding layers of NLP models, and iden-
tify a severe security risk that NLP models can be
backdoored with their word embedding layers poi-
soned. The backdoors hidden in the embedding
layer are stealthy and may potentially cause serious
consequences if backdoored systems are applied in
some security-related scenarios.

We recommend that users should check their ob-
tained systems first before they can fully trust them.
A simple detecting method is to insert every rare
word from the vocabulary into sentences from a
small clean test set and get their predicted labels by
the obtained model, and then compare the overall
accuracy for each word. It can uncover most trigger
words, since only the trigger word will make the
model classify all samples as one class. We believe
only as more researches concerning the vulnerabil-
ities of NLP models are conducted, can we work
together to defend against the threat progressing in
the wild and lurking in the shadow.

Acknowledgements

We thank all the anonymous reviewers for their con-
structive comments and Liang Zhao for his valu-
able suggestions in preparing the manuscript. This
work is partly supported by Beijing Academy of
Artificial Intelligence (BAAI). Xu Sun is the corre-
sponding author of this paper.

References
John Blitzer, Mark Dredze, and Fernando Pereira. 2007.

Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 440–
447, Prague, Czech Republic. Association for Com-
putational Linguistics.

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang.
2020. Poison attacks against text datasets with con-
ditional adversarially regularized autoencoder. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4175–4189, Online.
Association for Computational Linguistics.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar. 2019. Deepinspect: A black-box tro-
jan detection and mitigation framework for deep neu-
ral networks. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 4658–4664. ijcai.org.

Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing
Ma, and Yang Zhang. 2020. Badnl: Back-
door attacks against nlp models. arXiv preprint
arXiv:2006.01043.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019.
A backdoor attack against lstm-based text classifica-
tion systems. IEEE Access, 7:138872–138878.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and
Yingyu Liang. 2020. Can adversarial weight pertur-
bations inject neural backdoors. In CIKM ’20: The
29th ACM International Conference on Information
and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020, pages 2029–2032. ACM.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014. Gen-
erative adversarial nets. In Advances in Neural Infor-
mation Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada,
pages 2672–2680.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
2017. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733.

https://www.aclweb.org/anthology/P07-1056
https://www.aclweb.org/anthology/P07-1056
https://doi.org/10.18653/v1/2020.findings-emnlp.373
https://doi.org/10.18653/v1/2020.findings-emnlp.373
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3340531.3412130
https://doi.org/10.1145/3340531.3412130
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

2057

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Xijie Huang, Moustafa Alzantot, and Mani Srivastava.
2019. Neuroninspect: Detecting backdoors in neu-
ral networks via output explanations. arXiv preprint
arXiv:1911.07399.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural In-
formation Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-
6, 2012, Lake Tahoe, Nevada, United States, pages
1106–1114.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pretrained models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2793–
2806, Online. Association for Computational Lin-
guistics.

Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,
Zhifeng Li, and Shutao Xia. 2020. Rethinking
the trigger of backdoor attack. arXiv preprint
arXiv:2004.04692.

Yingqi Liu, Ma Shiqing, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
2018. Trojaning attack on neural networks. In
25th Annual Network and Distributed System Secu-
rity Symposium.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu.
2020. Reflection backdoor: A natural backdoor at-
tack on deep neural networks. In European Confer-
ence on Computer Vision, pages 182–199. Springer.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh
Shaj, Venkatesh Babu Radhakrishnan, and Anirban
Chakraborty. 2019. Zero-shot knowledge distilla-
tion in deep networks. In Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Re-
search, pages 4743–4751. PMLR.

Anh Nguyen and Anh Tran. 2020. Input-aware
dynamic backdoor attack. arXiv preprint
arXiv:2010.08138.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. 2020. Hidden trigger backdoor
attacks. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 11957–11965. AAAI Press.

Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly
Shmatikov. 2020. Humpty dumpty: Controlling
word meanings via corpus poisoning. In 2020 IEEE
Symposium on Security and Privacy (SP), pages
1295–1313. IEEE.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104–3112.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.249
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://proceedings.mlr.press/v97/nayak19a.html
http://proceedings.mlr.press/v97/nayak19a.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

2058

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
2019. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE
Symposium on Security and Privacy (SP), pages
707–723. IEEE.

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen,
Jinjun Xiong, and Meng Wang. 2020. Practical
detection of trojan neural networks: Data-limited
and data-free cases. In Computer Vision - ECCV
2020 - 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part XXIII, volume
12368 of Lecture Notes in Computer Science, pages
222–238. Springer.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Xinyang Zhang, Zheng Zhang, and Ting Wang. 2020.
Trojaning language models for fun and profit. arXiv
preprint arXiv:2008.00312.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Yasheng Wang, Xin Jiang, Zhiyuan
Liu, and Maosong Sun. 2021. Red alarm for
pre-trained models: Universal vulnerabilities by
neuron-level backdoor attacks. arXiv preprint
arXiv:2101.06969.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

