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Abstract

Conditional Random Field (CRF) based neural
models are among the most performant meth-
ods for solving sequence labeling problems.
Despite its great success, CRF has the short-
coming of occasionally generating illegal se-
quences of tags, e.g. sequences containing an
“I-” tag immediately after an “O” tag, which
is forbidden by the underlying BIO tagging
scheme. In this work, we propose Masked
Conditional Random Field (MCRF), an easy
to implement variant of CRF that impose re-
strictions on candidate paths during both train-
ing and decoding phases. We show that the
proposed method thoroughly resolves this is-
sue and brings consistent improvement over
existing CRF-based models with near zero ad-
ditional cost.

1 Introduction

Sequence labeling problems such as named entity
recognition (NER), part of speech (POS) tagging
and chunking have long been considered as funda-
mental NLP tasks and drawn researcher’s attention
for many years.

Traditional work is based on statistical ap-
proaches such as Hidden Markov Models (Baum
and Petrie, 1966) and Conditional Random Fields
(Lafferty et al., 2001), where handcrafted features
and task-specific resources are used. With advances
in deep learning, neural network based models have
achieved dominance in sequence labeling tasks in
an end-to-end manner. Those models typically con-
sist of a neural encoder that maps the input tokens
to embeddings capturing global sequence informa-
tion, and a CRF layer that models dependencies be-
tween neighboring labels. Popular choices of neu-
ral encoder have been convolutional neural network
(Collobert et al., 2011), and bidirectional LSTM
(Huang et al., 2015). Recently, pretrained language
models such as ELMo (Peters et al., 2018) or BERT
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(Devlin et al., 2019) have been proven far superior
as a sequence encoder, achieving state-of-the-art
results on a broad range of sequence labeling tasks.

Most sequence labeling models adopt a BIO or
BIOES tag encoding scheme (Ratinov and Roth,
2009), which forbids certain tag transitions by de-
sign. Occasionally, a model may yield sequence of
predicted tags that violates the rules of the scheme.
Such predictions, subsequently referred to as illegal
paths, are erroneous and must be dealt with. Exist-
ing methods rely on hand-crafted post-processing
procedure to resolve this problem, typically by re-
taining the illegal segments and re-tagging them.
But as we shall show in this work, such treatment
is arbitrary and leads to suboptimal performance.

The main contribution of this paper is to give
a principled solution to the illegal path problem.
More precisely:

1. We show that in the neural-CRF framework
the illegal path problem is intrinsic and may
accounts for non-negligible proportion (up to
40%) of total errors. To the best of our knowl-
edge we are the first to conduct this kind of
study.

2. We propose Masked Conditional Random
Field (MCRF), a constrained version of the
CRF that is by design immune to the illegal
paths problem. We also devise an algorithm
for MCRF that incurs almost zero overhead
and requires only a few lines of code to im-
plement. Further, we provide a theoretical
justification of the proposed method.

3. We show in comprehensive experiments that
MCRF performs significantly better than its
CRF counterpart, and that its performance is
on par with and sometimes better than more
sophisticated models. We achieve new State-
of-the-Arts in two Chinese NER datasets.

The remainder of the paper is organized as fol-
lows. Section 2 describes the illegal path problem
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Dataset legal & TP illegal & TP legal & FP illegal & FP illegal & TP
illegal

illegal & FP
FP

illegal
total

Resume 1445 1 68 17 1.4% 20% 1.2%
MSRA 5853 6 318 107 1.9% 25% 1.8%

Ontonotes 5323 5 1336 314 1.6% 19% 4.6%
Weibo 277 2 124 46 1.6% 27% 10.7%
ATIS 1643 0 70 24 0.0% 26% 1.4%

SNIPS 1542 13 237 156 5.2% 40% 8.7%
CoNLL2000 22957 36 888 100 3.9% 10% 0.6%
CoNLL2003 5131 2 535 74 0.4% 12% 1.3%

Table 1: Statistics of the predicted text segments by category over a variety of sequence labeling datasets. A
BERT-CRF model with BIO scheme is trained for each of the dataset, and the statistics are computed on the
respective dev set. When the model generates an illegal path, we determine the predicted segments as in (Sang
et al., 2000), see Section 2.2 for more details. In the table “TP” and “FP” refer to “True Positive” and “False
Positive” respectively. The column named “ illegal & TP

illegal ” indicates the proportion of illegal segments that are correct

predictions. The column named “ illegal & FP
FP ” indicates the proportion of erroneous predictions that are due to illegal

segments. The column named “ illegal
total ” stands for the proportion of illegal segments over all predictions.

and existing strategies that resolve it. In Section
3 we propose MCRF, its motivation and an ap-
proximate implementation. Section 4 is devoted to
numerical experiments. We conclude the current
work in Section 5.

2 The illegal path problem

2.1 Problem Statement
As a common practice, most sequence labeling
models utilize a certain tag encoding scheme to
distinguish the boundary and the type of the text
segments of interest. An encoding scheme makes
it possible by introducing a set of tag prefixes and
a set of tag transition rules. For instance, the pop-
ular BIO scheme distinguishes the Beginning, the
Inside and the Outside of the chunks of interest, im-
posing that any I-∗ tag must be preceded by a B-∗
tag or another I-∗ tag of the same type. Thus “O
O O I-LOC I-LOC O” is a forbidden sequence
of tags because the transition O→ I-LOC directly
violates the BIO scheme design. Hereafter we shall
refer to a sequence of tags that contains at least one
illegal transition an illegal path.

As another example, the BIOES scheme further
identifies the Ending of the text segments and the
Singleton segments, thereby introducing more tran-
sition restrictions than BIO. e.g. an I-∗ tag must
always be followed by an E-∗ tag of the same type,
and an S-∗ tag can only be preceded by an O, an
E-∗ or another S-∗ tag, etc. For a comparison of
the performance of the encoding schemes, we refer
to (Ratinov and Roth, 2009) and references therein.

When training a sequence labeling model with
an encoding scheme, generally it is our hope that
the model should be able to learn the semantics
and the transition rules of the tags from the training
data. However, even if the dataset is noiseless, a
properly trained model may still occasionally make
predictions that contains illegal transitions. This
is especially the case for the CRF-based models,
as there is no hard mechanism built-in to enforce
those rules. The CRF ingredient by itself is only
a soft mechanism that encourages legal transitions
and penalizes illegal ones.

The hard transition rules might be violated when
the model deems it necessary. To see this, let
us consider a toy corpus where every occurrence
of the token “America” is within the context of
“North America”, thus the token is always labeled
as I-LOC. Then, during training, the model may
well establish the rule “America⇒ I-LOC” (Rule
1), among many other rules such as “an I-LOC
tag does not follow an O tag” (Rule 2), etc. Now
consider the test sample “Nathan left America last
month”, which contains a stand-alone “America”
labeled as B-LOC. During inference, as the model
never saw a stand-alone “America” before, it must
generalize. If the model is more confident on Rule
1 than Rule 2, then it may yield an illegal output
“O O I-LOC O O”.

2.2 Strategies

The phenomenon of illegal path has already been
noticed, but somehow regarded as trivial matters.
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For the BIO format, Sang et al. (2000) have stated
that

The output of a chunk recognizer
may contain inconsistencies in the chunk
tags in case a word tagged I-X follows a
word tagged O or I-Y, with X and Y be-
ing different. These inconsistencies can
be resolved by assuming that such I-X
tags starts a new chunk.

This simple strategy has been adopted by CoNLL-
2000 as a standard post-processing procedure1 for
the evaluation of the models’ performance, and
gain its popularity ever since.

We argue that such treatment is not only arbi-
trary, but also suboptimal. In preliminary experi-
ments we have studied the impact of the illegal path
problem using the BERT-CRF model for a number
of tasks and datasets. Our findings (see Table 1)
suggest that although the illegal segments only ac-
count for a small fraction (typically around 1%) of
total predicted segments, they constitute approxi-
mately a quarter of the false positives. Moreover,
we found that only a few illegal segments are ac-
tually true positives. This raises the question of
whether retaining the illegal segments is beneficial.
As a matter of fact, as we will subsequently show,
a much higher macro F1-score can be obtained if
we simply discard every illegal segments.

Although the strategy of discarding the ille-
gal segments may be superior to that of (Sang
et al., 2000), it is nonetheless a hand-crafted, crude
rule that lacks some flexibility. To see this, let
us take the example in Fig. 1. The predic-
tion for text segment World Boxing Council is
(B-MISC, I-ORG, I-ORG), which contains an il-
legal transition B-MISC→I-ORG. Clearly, neither
of the post-processing strategies discussed above
is capable of resolving the problem. Ideally, an op-
timal solution should convert the predicted tags to
either (B-MISC, I-MISC, I-MISC) or (B-ORG,
I-ORG, I-ORG), whichever is more likely. This
is exactly the starting point of MCRF, which we
introduce in the next section.

3 Approach

In this section we introduce the motivation and
implementation of MCRF. We first go over the

1We are referring to the conlleval script, avail-
able from https://www.clips.uantwerpen.be/
conll2000/chunking/.

conventional neural-based CRF models in Section
3.1. We then introduce MCRF in Section 3.2. Its
implementation will be given in Section 3.3.

3.1 Neural CRF Models
Conventional neural CRF models typically consist
of a neural network and a CRF layer. The neural
network component serves as an encoder that usu-
ally first maps the input sequence of tokens to a
sequence of token encodings, which is then trans-
formed (e.g. via a linear layer) into a sequence of
token logits. Each logit therein models the emis-
sion scores of the underlying token. The CRF com-
ponent introduces a transition matrix that models
the transition score from tag i to tag j for any two
consecutive tokens. By aggregating the emission
scores and the transition scores, deep CRF models
assign a score for each possible sequence of tags.

Before going any further, let us introduce some
notations first. In the sequel, we denote by x =
{x1, x2, . . . , xT } a sequence of input tokens, by
y = {y1, . . . , yT } their ground truth tags and by
l = {l1, . . . , lT } the logits generated by the en-
coder network of the model. Let d be the number
of distinct tags and denote by [d] := {1, . . . , d}
the set of tag indices. Then yi ∈ [d] and li ∈ Rd

for 1 ≤ i ≤ T . We denote by W the set of all
trainable weights in the encoder network, and by
A = (aij) ∈ Rd×d the transition matrix introduced
by the CRF, where aij is the transition score from
tag i to tag j. For convenience we call a sequence
of tags a path. For given input x, encoder weights
W and transition matrix A, we define the score of
a path p = {n1, . . . , nT }as

s(p, x,W,A) =

T∑
i=1

li,ni +

T−1∑
i=1

ani,ni+1 , (1)

where li,j denotes the j-th entry of li. Let S be
the set of all training samples, and P be the set
of all possible paths. Then the loss function of
neural CRF model is the average of negative log-
likelihood over S:

L(W,A) = − 1

|S|
∑

(x,y)∈S

log
exp s(y, x)∑
p∈P exp s(p, x)

(2)

where we have omitted the dependence of s(·, ·)
on (W,A) for conciseness. One can easily mini-
mize L(W,A) using any popular first-order meth-
ods such as SGD or Adam.

Let (Wopt, Aopt) be a minimizer of L. During
decoding phase, the predicted path for a test sample

https://www.clips.uantwerpen.be/conll2000/chunking/
https://www.clips.uantwerpen.be/conll2000/chunking/
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O

B-ORG

I-ORG

B-MISC

I-MISC

CRF prediction: O B-MISC O O O B-MISC I-ORG I-ORG O ...

MCRF prediction:
(Ground Truth) O B-MISC O O O B-MISC I-MISC I-MISC O ...

Input Tokens: The Briton who lost his World Boxing Council title ...

Figure 1: An example of CRF decoded path vs. MCRF decoded path. The CRF decoded path is represented
as black arrows in the figure. This path contains one illegal transition (black dashed arrow) B-MISC→I-ORG,
which results in two erroneous predictions: MISC for “World” and ORG for “Boxing Council”. When using MCRF
instead, the decoding algorithm has to search for an alternative path (red arrows), as all illegal transitions are
blocked. In this example, MCRF correctly predicts MISC for the entity “World Boxing Council”.

xtest is the path having the highest score, i.e.

yopt = argmax
p∈P

s(p, xtest,Wopt, Aopt). (3)

The decoding problem can be efficiently solved by
the Viterbi algorithm.

3.2 Masked CRF
Our major concern on conventional neural CRF
models is that no hard mechanism exists to enforce
the transition rule, resulting in occasional occur-
rence of illegal predictions.

Our solution to this problem is very simple. De-
note by I the set of all illegal paths. We propose to
constrain the “path space” in the CRF model to the
space of all legal paths P/I, instead of the entire
space of all possible paths P . To this end,

1. during training, the normalization term in (2)
should be the sum of the exponential scores
of the legal paths;

2. during decoding, the optimal path should be
searched over the space of all legal paths.

The first modification above leads to the follow-
ing new loss function:

L′(W,A) := − 1

|S|
∑

(x,y)∈S

log
exp s(y, x)∑

p∈P/I exp s(p, x)
,

(4)

which is obtained by replacing the P in (2) by P/I .
Similarly, the second modification leads to

y′opt = argmax
p∈P/I

s(p, xtest,W
′
opt, A

′
opt) (5)

obtained by replacing the P in (3) by P/I, where
(W ′opt, A

′
opt) is a minimizer of (4).

Note that the decoding objective (5) alone is
enough to guarantee the complete elimination of
illegal paths. However, this would create a mis-
match between the training and the inference, as the
model would attribute non-zero probability mass
to the ensemble of the illegal paths. In Section 4.1,
we will see that a naive solution based on (5) alone
leads to suboptimal performance compared to a
proper solution based on both (4) and (5).

3.3 Algorithm
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Figure 2: An example of the masked transition matrix
under the BIO scheme. The entries in the red cells are
masked as they correspond to illegal transitions. Under
the BIO scheme, there are two types of illegal transi-
tions: O→ I-X for any X and B-X→ I-Y for any X,
Y such that X 6= Y.
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Although in principle it is possible to directly
minimize (4), thanks to the following proposition
we can also achieve this via reusing the exist-
ing tools originally designed for minimizing (2),
thereby saving us from making extra engineering
efforts.
Proposition 1. Denote by Ω ⊂ [d]× [d] the set of
all illegal transitions. For a given transition ma-
trix A, we denote by Ā(c) =

(
āij(c)

)
the masked

transition matrix of A defined as (see Fig. 2)

āij(c) =

{
c if (i, j) ∈ Ω,
aij otherwise,

(6)

where c � 0 is the transition mask. Then for
arbitrary model weights (W0, A0), we have

lim
c→−∞

L(W0, Ā0(c)) = L′(W0, A0) (7)

lim
c→−∞

∇WL(W0, Ā0(c)) = ∇WL′(W0, A0) (8)

and for all (i, j) ∈ Ω

lim
c→−∞

∇aijL(W0, Ā0(c)) = ∇aijL′(W0, A0). (9)

Moreover, for negatively large enough c we have

argmax
p∈P

s(p, xtest,W,A) = argmax
p∈P/I

s(p, xtest,W,A)

Proof. See Appendix.
Proposition 1 states that for any given model

state (W,A), if we mask the entries of A that cor-
respond to illegal transitions (see Figure 2) by a
negatively large enough constant c, then the two
objectives (2) and (4), as well as their gradients,
can be arbitrarily close. This suggests that the task
of minimizing (4) can be achieved via minimizing
(2) combined with keeping A masked (i.e. making
aij = c constant for all (i, j) ∈ Ω) throughout the
optimization process.

Intuitively, the purpose of transition masking is
to penalize the illegal transitions in such a way that
they will never be selected during the Viterbi decod-
ing, and the illegal paths as a whole only constitutes
negligible probability mass during training.

Based on Proposition 1, we propose the Masked
CRF approach, formally described in Algorithm 1.

4 Experiments

In this section, we run a series of experiments2 to
evaluate the performance of MCRF. The datasets
used in our experiments are listed as follows:

2Our code is available on https://github.com/
DandyQi/MaskedCRF.

Algorithm 1 (MCRF)
1: Input: Library for computing the gradients of

conventional CRF loss (2), training dataset S,
stopping criterion C, set of illegal transitions
Ω, masking constant c� 0.

2: Initialize: model weight W and tag transition
matrix A = (aij).

3: while C is not met do
4: Sample a mini-batch from S
5: Update W and A based on batch gradient
6: for (i, j) ∈ Ω do
7: aij ← c . maintain the mask
8: end for
9: end while

10: Output: Optimized W and A.

• Chinese NER: OntoNotes 4.0 (Weischedel
et al., 2011), MSRA (Levow, 2006), Weibo
(Peng and Dredze, 2015) and Resume (Zhang
and Yang, 2018).

• English NER: CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003)

• Slot Filling: ATIS (Hemphill et al., 1990) and
SNIPS (Coucke et al., 2018)

• Chunking: CoNLL2000 (Sang et al., 2000)

The statistics of these datasets are summarized in
Table 2.

dataset task lan. labels train dev test

Resume NER CN 8 3.8k 472 477
MSRA NER CN 3 46.3k - 4.3k

Ontonotes NER CN 4 15.7k 4.3k 4.3k
Weibo NER CN 7 1.3k 270 270

ATIS SF EN 79 4.5k 500 893
SNIPS SF EN 39 13.0k 700 700

CoNLL2000 Chunk. EN 11 8.9k - 2.0k

CoNLL2003 NER EN 4 14.0k 3.2k 3.5k

Table 2: Statistics of the datasets.

For Chinese NER tasks, we use the public-
available3 BERTBASE as the pretrained model. For
English NER and Chunking tasks, we use the cased
version of BERTBASE model. We use uncased
BERTBASE for English slot filling tasks.

In preliminary experiments, we found out that
the discriminative fine-tuning approach (Howard
and Ruder, 2018) yields slightly better results than

3https://github.com/google-research/
bert

https://github.com/DandyQi/MaskedCRF
https://github.com/DandyQi/MaskedCRF
https://github.com/google-research/bert
https://github.com/google-research/bert
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Resume MSRA Ontonotes Weibo

Lattice (Zhang and Yang, 2018) 94.5 93.2 73.9 58.8
Glyce (Meng et al., 2019)† 96.5 95.5 81.6 67.6
SoftLexicon (Ma et al., 2020)† 96.1 95.4 82.8 70.5
FLAT (Li et al., 2020a)† 95.9 96.1 81.8 68.6
MRC (Li et al., 2020b)† - 95.7 82.1 -
DSC (Li et al., 2020c)† - 96.7 84.5 -

BERT-tagger-retain 95.7 (94.7) 94.0 (92.7) 78.1 (76.8) 67.7 (65.3)

BERT-tagger-discard 96.2 (95.5) 94.6 (93.6) 80.7 (79.2) 69.7 (67.5)

BERT-CRF-retain 95.9 (94.8) 94.2 (93.7) 81.8 (81.2) 70.8 (64.5)

BERT-CRF-discard 97.2 (96.6) 95.5 (94.9) 83.1 (82.4) 71.9 (65.7)

BERT-MCRF-decoding 97.3 (96.6) 95.6 (95.0) 83.2 (82.5) 72.2 (65.8)

BERT-MCRF-training 97.6 (96.9) 95.9 (95.3) 83.7 (82.7) 72.4 (66.5)

Table 3: Results on Chinese NER datasets. The “†” symbol implies that the reported result is based on BERT. The
numbers in the parenthesis and the numbers next to it indicate the average and max F1-score, respectively.

the standard fine-tuning as recommended by (De-
vlin et al., 2019). In discriminative fine-tuning, one
uses different learning rates for each layer. Let rL
be the learning rate for the last (L-th) layer and η
be the decay factor. Then the learning rate for the
(L− n)-th layer is given by rL−n = rLη

n. In our
experiments, we use rL ∈ {1e − 4, 5e − 5} and
η ∈ {1/2, 2/3} depending on the dataset. The stan-
dard Adam optimizer is used throughout, and the
mini-batch size is fixed to be 32. We always fine-
tune for 5 epochs or 10000 iterations, whichever is
longer.

4.1 Main results

In this section we present the MCRF results on 8
sequence labeling datasets. The baseline models
are the following:

• BERT-tagger: The output of the final hid-
den representation for to each token is fed
into a classification layer over the label set
without using CRF. This is the approach rec-
ommended in (Devlin et al., 2019).

• BERT-CRF: BERT followed by a CRF layer,
as is described in Section 3.1.

We use the following strategies to handle the illegal
segments (See Table 4 for an example):

• retain: Keep and retag the illegal segments.
This strategy agrees with (Sang et al., 2000).

• discard: Discard the illegal segments com-
pletely.

original: O I-PER O B-LOC I-MISC

retain: O B-PER O B-LOC B-MISC
discard: O O O B-LOC O

Table 4: An example illustrating the difference between
“retain” strategy and “discard” strategy.

We distinguish two versions of MCRF:

• MCRF-decoding: A naive version of MCRF
that does masking only in decoding. The train-
ing process is the same as that in conventional
CRF.

• MCRF-training: The proper MCRF ap-
proach proposed in this work. The masking is
maintained in the training, as is described in
Section 3.3. We also refer to it as the MCRF
for simplicity.

For each dataset and each model we ran the train-
ing 10 times with different random initializations
and selected the model that performed best on the
dev set for each run. We report the best and the
average test F1-scores as the final results. If the
dataset does not provide an official development
set, we randomly split the training set and use 10%
of the samples as the dev set.

4.1.1 Results on Chinese NER
The results on Chinese NER tasks are presented in
Table 3. It can be seen that the MCRF-training ap-
proach significantly outperforms all baseline mod-
els and establishes new State-of-the-Arts for Re-



2030

sume and Weibo datasets. From these results we
can assert that the improvement brought by MCRF
is mainly due to the effect of masking in training,
not in decoding. Besides, we notice that the “dis-
card” strategy substantially outperforms the “retain”
strategy, which agrees with the statistics presented
in Table 1.

We also plotted in Fig. 3 the loss curves of CRF
and MCRF on the development set of MSRA. It
can be clearly seen that MCRF incurs a much lower
loss during training. This confirms our hypothesis
that the CRF model attributes non-zero probability
mass to the ensemble of the illegal paths, as oth-
erwise the denominators in (4) and in (2) would
have been equal, and in that case the loss curves
of CRF and MCRF would have converged to the
same level.

Figure 3: Curves of dev loss for CRF and MCRF.

Note that some of the results listed in Table 3 are
based on models that utilize additional resources.
Zhang and Yang (2018) and Ma et al. (2020) uti-
lized Chinese lexicon features to enrich the token
representations. Meng et al. (2019) combined Chi-
nese glyph information with BERT pre-training. In
contrast, the proposed MCRF approach is simple
yet performant. It achieves comparable or better
results without relying on additional resources.

4.1.2 Results on Slot Filling
One of the main features of the AITS and SNIPS
datasets is the large number of slot labels (79 and
39 respectively) with relatively small training set
(4.5k and 13k respectively). This requires the se-
quence labeling model learn the transition rules in
a sample-efficient manner. Both ATIS and SNIPS
provide an intent label for each utterance in the
datasets, but in our experiments we did not use this
information and rely solely on the slot labels.

The results are reported in Table 5. It can be
seen that MCRF-training outperforms the baseline
models and achieves competitive results compared

to previous published results.

Model ATIS SNIPS

(Goo et al., 2018) 95.4 89.3
(Li et al., 2018) 96.5 -
(Zhang et al., 2019) 95.2 91.8
(E et al., 2019) 95.8 92.2
(Siddhant et al., 2019) 95.6 93.9

BERT-tagger-retain 95.2 (92.9) 93.2 (92.1)

BERT-tagger-discard 95.6 (93.1) 93.5 (92.3)

BERT-CRF-retain 95.5 (93.5) 94.6 (93.7)

BERT-CRF-discard 95.8 (93.9) 95.1 (94.3)

BERT-MCRF-decoding 95.8 (93.9) 95.1 (94.4)

BERT-MCRF-training 95.9 (94.4) 95.3 (94.6)

Table 5: Test F1-scores on slot filling datasets.

4.1.3 Results on Chunking
The results on CoNLL2000 chunking task are re-
ported in Table. 6. The proposed MCRF-training
outperforms the CRF baseline by 0.4 in F1-score.

Model F1

ELMo (Peters et al., 2017) 96.4
CSE (Akbik et al., 2018) 96.7
GCDT (Liu et al., 2019) 97.3

BERT-tagger-retain 96.1 (95.7)

BERT-tagger-discard 96.3 (96.0)

BERT-CRF-retain 96.5 (96.2)

BERT-CRF-discard 96.6 (96.3)

BERT-MCRF-decoding 96.6 (96.4)

BERT-MCRF-training 96.9 (96.5)

Table 6: Results on CoNLL2000 chunking task.

4.2 Ablation Studies
In this section, we investigate the influence of var-
ious factors that may impact the performance of
MCRF. In particular, we are interested in the quan-
tity MCRF gain, which we denote by ∆, defined
simple as the difference of F1-score of MCRF-
training and that of the conventional CRF (with
either “retain” or “discard” strategy).

4.2.1 Effect of Tagging Scheme
In the previous experiments we have always used
the BIO scheme. It is of interest to explore the per-
formance of MCRF under other tagging schemes
such as BIOES. The BIOES scheme is considered
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Figure 4: Ablation over the tagging scheme (BIO vs.
BIOES). The F1-scores on the dev sets are plotted.

more expressive than BIO as it introduces more
labels and more transition restrictions.

We have re-run the experiments in Section 4.1.1
using the BIOES scheme. Our results are reported
in Fig. 4 and Table 7. It is clearly seen that under
the BIOES scheme MCRF still always outperforms
the CRF baselines. Note that compared to the case
under BIO scheme, the MCRF gain is less signif-
icant against the CRF-retain baseline, but larger
against CRF-discard.

BIO BIOES

∆ret. ∆disc. ∆ret. ∆disc.
Resume 2.1 0.3 1.0 0.6
MSRA 1.6 0.4 0.8 0.6
Ontonotes 1.5 0.3 0.9 0.6
Weibo 2.0 0.8 0.9 0.8

Table 7: A comparison of the average MCRF gain un-
der BIO and BIOES schemes. The symbols ∆ret. and
∆disc. stand for the gain against BERT-retain and BERT-
discard, respectively.

4.2.2 Effect of Sample Size
One may hypothesize that the occurrence of illegal
paths might be due to the scarcity of training data,
i.e. a model should be less prone to illegal paths if
the training dataset is larger. To test this hypothesis,
we randomly sample 10% of the training data from
MSRA and Ontonotes, creating a smaller version
of the respective dataset. We compare the propor-
tion of the illegal segments produced by BERT-

CRF trained on the original dataset with the one
trained on the smaller dataset. We also report the
performance gain brought by MCRF in these two
scenarios. Our findings are summarized in Table 8.
As can be seen from the table, the models trained
with fewer data do yield slightly more illegal seg-
ments, but the MCRF gains under the two scenarios
are close.

MSRA-full MSRA-10%
ill. F1 ∆ ill. F1 ∆

retain 1.8% 94.2 1.6 2.4% 90.4 1.2
discard - 95.4 0.5 - 90.7 0.9
MCRF 0% 95.8 - 0% 91.6 -

Ontonotes-full Ontonotes-10%
ill. F1 ∆ ill. F1 ∆

retain 4.2% 79.2 1.6 4.7% 78.7 1.2
discard - 80.4 0.4 - 79.1 0.8
MCRF 0% 80.8 - 0% 79.9 -

Table 8: Ablation over the training set size. The col-
umn named “ill.” indicates the proportion of illegal
segments over all predicted segments.

4.2.3 Effect of Encoder Architecture
So far we have experimented with BERT-based
models. Now we explore effect of neural ar-
chitecture. We trained a number of models on
CoNLL2003 with varying encoder architectures.
The key components are listed as follows:

• ELMo: pretrained language model4 that
serves as an sequence encoder.

• CNN: CNN-based character embedding layer,
with weights extracted from pretrained ELMo.
It is used to generate word embeddings for
arbitrary input tokens.

• LSTM-n: n-layer bidirectional LSTM with
hidden dimension h = 200.

The results of our experiments are given in Table 9.
We observe that the encoder architecture has a large
impact on the occurrence of illegal paths, and the
BERT-based models appear to generate much more
illegal paths than ELMo-based ones. This is prob-
ably due to the fact that transformer-encoders are
not sequential in nature. A further study is needed
to investigate this phenomenon, but it is beyond
the scope of the current work. We also notice that

4Model downloaded from https://github.com/
allenai/bilm-tf

https://github.com/allenai/bilm-tf
https://github.com/allenai/bilm-tf
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the MCRF gain seems to be positively correlated
with the proportion of the illegal paths generated
by the underlying model. This is expected, since
the transition-blocking mechanism of MCRF will
(almost) not take effect if the most probable path
estimated by the underlying CRF model is already
legal.

Encoder ill. err. CRF MCRF ∆

LSTM-1 3.1% 11.7% 82.2 83.2 1.0
LSTM-2 1.4% 8.3% 84.3 85.1 0.8
CNN + LSTM-1 0.4% 4.0% 94.1 94.3 0.2
CNN + LSTM-2 0.3% 2.3% 94.0 94.5 0.5
ELMo + LSTM-1 0.4% 3.3% 95.1 95.3 0.2
ELMo + LSTM-2 0.6% 5.5% 95.0 95.3 0.3
BERT 1.3% 12.5% 94.5 95.4 0.9
BERT + LSTM-1 1.0% 13.1% 94.7 95.3 0.6
BERT + LSTM-2 0.9% 10.3% 93.9 95.0 1.1

Table 9: Ablation over the encoder models. The col-
umn named “err.” indicates the proportion of erroneous
predictions that are due to illegal segments.

4.3 Related Work

Some models are able to solve sequence label-
ing tasks without relying on BIO/BIOES type of
tagging scheme to distinguish the boundary and
the type of the text segments of interest, thus do
not suffer from the illegal path problems. For in-
stance, Semi-Markov CRF (Sarawagi and Cohen,
2005) uses an additional loop to search for the
segment spans, and directly yields a sequence of
segments along with their type. The downside of
Semi-Markov CRF is that it incurs a higher time
complexity compared to the conventional CRF ap-
proach. Recently, Li et al. (2020b) proposed a Ma-
chine Learning Comprehension (MRC) framework
to solve NER tasks. Their model uses two separate
binary classifiers to predict whether each token is
the start or end of an entity. They introduced an
additional module to determine which start and end
tokens should be matched.

We notice that the CRF implemented in PyTorch-
Struct (Rush, 2020) has a different interface than
usual CRF libraries in that it takes not two ten-
sors for emission and transition scores, but rather
one score tensor of the shape (batch size, sentence
length, number of tags, number of tags). This al-
lows one to incorporate even more prior knowledge
in the structured prediction by setting a constraint
mask as a function of not only a pair of tags, but
also words on which the tags are assigned. Such

feature may be exploited in future work.
Finally, we acknowledge that the naive version

of MCRF that does constrained decoding has al-
ready been implemented in AllenNLP5 (Gardner
et al., 2018). As shown in Section 4.1, such ap-
proach is suboptimal compared to the proposed
MCRF-training method.

5 Conclusion

Our major contribution is the proposal of MCRF,
a constrained variant of CRF that masks illegal
transitions during CRF training, eliminating illegal
outcomes in a principled way.

We have justified MCRF from a theoretical per-
spective, and shown empirically in a number of
datasets that MCRF consistently outperforms the
conventional CRF. As MCRF is easy to implement
and incurs zero additional overhead, we advocate
always using MCRF instead of CRF when applica-
ble.
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A Appendices

A.1 Proof of Proposition 1
Denote by L and L′ the likelihood function of sam-
ple (x, y) for CRF and MCRF model respectively:

L(W,A) =
exp s(y, x,W,A)∑
p∈P exp s(p, x,W,A)

, (10)

L′(W,A) =
exp s(y, x,W,A)∑

p∈P/I exp s(p, x,W,A)
. (11)

To simplify the notations, we also write

L(W,A) =
N(W,A)

D(W,A)
, L′(W,A) =

N(W,A)

D′(W,A)
,

where

N(W,A) = exp s(y, x,W,A)

D(W,A) =
∑
p∈P

exp s(p, x,W,A)

D′(W,A) =
∑

p∈P/I

exp s(p, x,W,A)

Proposition 1 is a direct corollary of the follow-
ing result:

Lemma 2. Let (x, y) be a sample with y ∈ P/I.
Then for arbitrary (W0, A0), we have

lim
c→−∞

L(W0, Ā0(c)) = L′(W0, A0) (12)

lim
c→−∞

∇WL(W0, Ā0(c)) = ∇WL
′(W0, A0) (13)

and for all (i, j) ∈ Ω

lim
c→−∞

∇aijL(W0, Ā0(c)) = ∇aijL
′(W0, A0). (14)

Proof. First, we recall that

s(p, x,W,A) =

T∑
i=1

li,ni +

T−1∑
i=1

ani,ni+1 , (15)

and the masked transition matrix Ā(c) =
(
āij(c)

)
is defined as

āij(c) =

{
c if (i, j) ∈ Ω,
aij otherwise,

(16)

where Ω is the set of illegal transitions.
Since Ā(c) differs from A only on entries cor-

responding to illegal transitions and a legal path
contains only legal transitions, it follows from (15)
that ∀p ∈ P/I

s(p, x,W0, Ā0(c)) = s(p, x,W0, A0). (17)

Thus

N(W0, Ā0(c)) = N(W0, A0). (18)

Next, we show

D′(W0, Ā0(c)) −−−−→
c→−∞

D(W0, A0). (19)

By (10) (11) and (17), it suffices to demonstrate for
any illegal path p ∈ I

lim
c→−∞

exp s(p, x,W0, Ā0(c)) = 0. (20)

To achieve this, we rewrite s(p, x,W0, Ā0(c)) as a
product of three terms:

exp s(p, x,W0, Ā0(c))

=
T∏
i=1

eli,ni

∏
(i,j)∈T /Ω

(i,j)∼p︸ ︷︷ ︸
legal transitions

eāij(c)
∏

(i,j)∈Ω
(i,j)∼p︸ ︷︷ ︸

illegal transitions

eāij(c)

where (i, j) ∼ p means that (i, j) is a transition
contained in path p. Let E(p) be the number of
illegal transitions in p. If p is illegal, then E(p) >
0; otherwise E(p) = 0. Since āij(c) = c for
(i, j) ∈ Ω by definition,

exp s(p, x,W0, Ā0(c))

=
( T∏

i=1

eli,ni

∏
(i,j)∈T /Ω

(i,j)∼p

eaij
)
· ecE(p).

Now that the terms in the parenthesis do not depend
on c and ecE(p) vanishes as c→ −∞, we achieve
(20). Then (12) of Lemma 2 is proved.

Now we turn to the proof of (13). By elementary
calculus we have

∇WL =
(
D · ∇WN −N · ∇WD

)
·D−2

∇WL
′ =

(
D′ · ∇WN −N · ∇WD

′
)
·D′−2.

By (18) and (19), it remains to show

∇WD
′(W0, Ā0(c)) −−−−→

c→−∞
∇WD(W0, A0). (21)

By the same argument as in the proof of (17) and
(20), it is easily seen that for p ∈ P/I

∇W

(
exp s(p, x,W,A)

)∣∣∣
W0,A0

= ∇W

(
exp s(p, x,W,A)

)∣∣∣
W0,Ā0(c)

and for p ∈ I

∇W

(
exp s(p, x,W,A)

)∣∣∣
W0,Ā0(c)

−−−−→
c→−∞

0.

Thus (21) is achieved and (13) follows.
Finally, the proof of (14) is similar to that of

(13).


