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Abstract
Domain divergence plays a significant role in
estimating the performance of a model in new
domains. While there is a significant litera-
ture on divergence measures, researchers find
it hard to choose an appropriate divergence
for a given NLP application. We address this
shortcoming by both surveying the literature
and through an empirical study. We develop
a taxonomy of divergence measures consisting
of three classes — Information-theoretic, Ge-
ometric, and Higher-order measures and iden-
tify the relationships between them. Further,
to understand the common use-cases of these
measures, we recognise three novel applica-
tions – 1) Data Selection, 2) Learning Repre-
sentation, and 3) Decisions in the Wild – and
use it to organise our literature. From this, we
identify that Information-theoretic measures
are prevalent for 1) and 3), and Higher-order
measures are more common for 2). To fur-
ther help researchers choose appropriate mea-
sures to predict drop in performance – an im-
portant aspect of Decisions in the Wild, we
perform correlation analysis spanning 130 do-
main adaptation scenarios, 3 varied NLP tasks
and 12 divergence measures identified from
our survey. To calculate these divergences,
we consider the current contextual word repre-
sentations (CWR) and contrast with the older
distributed representations. We find that tra-
ditional measures over word distributions still
serve as strong baselines, while higher-order
measures with CWR are effective.

1 Introduction

Standard machine learning models do not perform
well when tested on data from a different target do-
main. The performance in a target domain largely
depends on the domain divergence (Ben-David
et al., 2010) – a notion of distance between the two
domains. Thus, efficiently measuring and reducing
divergence is crucial for adapting models to the new
domain — the topic of domain adaptation. Diver-
gence also has practical applications in predicting

the performance drop of a model when adapted to
new domains (Van Asch and Daelemans, 2010),
and in choosing among alternate models (Xia et al.,
2020).

Given its importance, researchers have invested
much effort to define and measure domain diver-
gence. Linguists use register variation to capture va-
rieties in text – the difference between distributions
of the prevalent features in two registers (Biber and
Conrad, 2009). Other measures include probabilis-
tic measures likeH-divergence (Ben-David et al.,
2010), information theoretic measures like Jenssen-
Shannon and Kullback-Leibler divergence (Plank
and van Noord, 2011; Van Asch and Daelemans,
2010) and measures using higher-order moments
of random variables like Maximum Mean Dis-
crepancy (MMD) and Central Moment Discrep-
ancy (CMD) (Gretton et al., 2007; Zellinger et al.,
2017). The proliferation of divergence measures
challenges researchers in choosing an appropriate
measure for a given application.

To help guide best practices, we first comprehen-
sively review the NLP literature on domain diver-
gences. Unlike previous surveys, which focus on
domain adaptation for specific tasks such as ma-
chine translation (Chu and Wang, 2018) and statisti-
cal (non-neural network) models (Jiang, 2007; Mar-
golis, 2011), our work takes a different perspective.
We study domain adaptation through the vehicle
of domain divergence measures. First, we develop
a taxonomy of divergence measures consisting of
three groups: Information-Theoretic, Geometric,
and Higher-Order measures. Further, to find the
most common group used in NLP, we recognise
three novel application areas of these divergences
— Data Selection, Learning Representations, and
Decisions in the Wild and organise the literature
under them. We find that Information-Theoretic
measures over word distributions are popular for
Data Selection and Decisions in the wild, while
Higher-order measures over continuous features
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are frequent for Learning representations.
Domain divergence is a major predictor of per-

formance in the target domain. A better domain
divergence metric ideally predicts the correspond-
ing performance drop of a model when applied to
a target domain – a practical and important com-
ponent of Decisions in the Wild. We further help
researchers identify appropriate measures for pre-
dicting performance drops, through a correlation
analysis over 130 domain adaptation scenarios and
three standard NLP tasks: Part of Speech Tagging
(POS), Named Entity Recognition (NER), and Sen-
timent Analysis and 12 divergence metrics from
our literature review. While information-theoretic
measures over traditional word distributions are
popular in the literature, are higher-order measures
calculated over modern contextual word represen-
tations better indicators of performance drop? We
indeed find that higher-order measures are superior,
but traditional measures are still reliable indica-
tors of performance drop. The closest to our work
is (Elsahar and Gallé, 2019) who perform a cor-
relation analysis. However, they do not compare
against different divergence measures from the lit-
erature. Comparatively, we consider more tasks
and divergence measures.

In summary, our contributions are:

• We review the literature from the perspective of
domain divergences and their use-cases in NLP.
• We aid researchers to select appropriate diver-

gence measure that indicate performance-drops,
an important application of divergence measures.

2 A Taxonomy of Divergence Measures

We devise a taxonomy for domain divergence mea-
sures, shown in Figure 1. It contains three main
classes. Individual measures belong to a single
class, where relationships can exist between mea-
sures from different classes. We provide detailed
description of individual measures in Appendix A.

Geometric measures calculate the distance be-
tween two vectors in a metric space. As a diver-
gence measure, they calculate the distance between
features (tf.idf , continuous representations, etc.)
extracted from instances of different domains. The
P-norm is a generic form of the distance between
two vectors, where Manhattan (p=1) and Euclidean
distance (p=2) are common. Cosine (Cos) uses the
cosine of the angle between two vectors to measure
similarity and 1-Cos measures distance. Geometric
measures are easy to calculate, but are ineffective

in a high dimensional space as all distances appear
the same (Aggarwal et al., 2001).

Information-theoretic measures captures the
distance between probability distributions. For ex-
ample, cross entropy over n-gram word distribu-
tions are extensively used in domain adaptation for
machine translation. f -divergence (Csiszár, 1972)
is a general family of divergences where f is a
convex function. Different formulations of the f
function lead to KL and JS divergence. Chen and
Cardie (2018) show that reducing f -divergence
measure is equivalent to reducing the PAD mea-
sures (see next section). Another special case of
f -divergence is the family of α divergences, where
KL-Div is a special case of α divergence. Renyi
Divergence is a member of the α-divergences and
tends towards KL-Div as α→ 1 (Edge A©); Often
applied to optimal transport problems, Wasserstein
distance measures the amount of work needed to
convert one probability distribution to the other as
distance and is used extensively for domain adap-
tation. KL-Div is also related to Cross Entropy
(CE). In this paper, CE refers to measures based on
entropy.

Higher-Order measures consider matching
higher order moments of random variables or di-
vergence in a projected space. Their properties
are amenable to end-to-end learning based do-
main adaptation and recently have been extensively
adopted. Maximum Mean Discrepancy (MMD) is
one such measure which considers matching first
order moments of variables in a Reproducible Ker-
nel Hilbert Space. On the other hand, CORAL (Sun
et al., 2017) considers second order moments and
CMD (Zellinger et al., 2017) considers higher or-
der moments. CORAL and CMD are desirable be-
cause they avoid computationally expensive kernel
matrix computations. KL-Div can also be consid-
ered as matching the first-order moment (Zellinger
et al., 2017); Edge B©. Proxy-A-Distance (PAD)
measures the distance between source and target
distributions via the error of a classifier in target
domain samples as source domain samples (Ben-
David et al., 2007).

A few other measures do not have ample sup-
port in the literature. These include information-
theoretic measures such as Bhattacharya coeffi-
cient, higher-order measures like PAD* (Elsahar
and Gallé, 2019), Word Vector Variance (WVV),
and Term Vocabulary Overlap (TVO) (Dai et al.,
2019). Our taxonomy synthesises the diversity and
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Figure 1: Taxonomy for divergence measures. i) Geometric measures the distance between vectors in a metric
space ii) Information- theoretic measures the distance between probability distributions and iii) Higher-order
measures the distance between distributions considering higher moments or the distance between representations
or their projections in a nonlinear space. Edge A© indicates that Renyi divergence tends towards KL divergence as
α→ 1 and Edge B© indicates KL-Div can be considered as matching first-order moment.

the prevalence of the divergence measures in NLP.

3 Applications of Divergence Measures

Our key observation of the literature is that there
are three primary families of applications of di-
vergences (cf. Table 1 in the appendix): (i) Data
Selection: selects a subset of text from a source
domain that shares similar characteristics as target
domain. The selected subset is then used to learn
a target domain model. (ii) Learning Represen-
tations: aligns source and target domain distribu-
tions and learn domain-invariant representations.
(iii) Decisions in the Wild: helps practitioners
predict the performance or drops in performance
of a model in a new target domain.

We limit the scope our survey to works that focus
on divergence measures. We only consider unsu-
pervised domain adaptation (UDA) – where there
is no annotated data available in the target domain.
It is more practical yet more challenging. For a
complete treatment of neural networks and UDA in
NLP, refer to (Ramponi and Plank, 2020). Also, we
do not treat multilingual work. While cross-lingual
transfer can be regarded as an extreme form of do-
main adaptation, measuring the distance between
languages requires different divergence measures,
outside our purview.

3.1 Data Selection

Divergence measures are used to select a subset
of text from the source domain that shares simi-
lar characteristics to the target domain. Since the
source domain has labelled data, the selected data
serves as supervised data to train models in the tar-
get domain. We note that the literature pays closer
attention to data selection for machine translation
compared to other tasks. This can be attributed
to its popularity in real-world applications and the
difficulty of obtaining parallel sentences for every

pair of language.
Simple word-level and surface-level text features

like word and n-gram frequency distributions and
tf.idf weighted distributions have sufficient power
to distinguish between text varieties and help in
data selection. Geometric measures like cosine,
used with word frequency distributions, are effec-
tive for selecting data in parsing and POS tagging
(Plank and van Noord, 2011). Instead of consid-
ering distributions as (sparse) vectors, one can get
a better sense of the distance between distribu-
tions using information-theoretic measures. Remus
(2012) find JS-Div effective for sentiment analysis.
While word-level features are useful to select su-
pervised data for an end-task, they also can be used
to select data to pre-train language-models subse-
quently used for NER. Dai et al. (2019) use Term
Vocabulary Overlap for selecting data for pretrain-
ing language models. Geometric and Information-
theoretic measures with word level distributions
are inexpensive to calculate. However, the distribu-
tions are sparse and continuous word distributions
help in learning denser representations.

Continuous or distributed representations of
words, such as CBOW, Skip-gram (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), ad-
dress shortcomings of representing text as sparse,
frequency-based probability distributions by trans-
forming them into dense vectors learned from free-
form text. A geometric measure (e.g., Word Vector
Variance used with static word embeddings) is use-
ful to select pre-training data for NER (Dai et al.,
2019). Such selected data is found to be similar in
tenor (the participants in a discourse, the relation-
ships between them, etc.) to the source data. But
static embeddings do not change according to the
context of use. In contrast, contextual word repre-
sentations (CWR) — mostly derived from neural
networks (Devlin et al., 2019; Peters et al., 2018)
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Paper Task(s) Information-Theoretic Geometric Higher-Order Others
KL JS Renyi CE Wass. Cos P-Norm PAD CMD MMD -

DATA SELECTION
(Plank and van Noord, 2011) Par, POS 4 4 4 4
(Dai et al., 2019) NER 4
(Ruder and Plank, 2017) SA, NER,

Par
4 4 4 4 4 4

(Ruder et al., 2017) SA 4 4 4 4
(Remus, 2012) SA 4
(Lü et al., 2007) SMT 4
(Zhao et al., 2004) SMT 4
(Yasuda et al., 2008) SMT 4
(Moore and Lewis, 2010) SMT 4
(Axelrod et al., 2011) SMT 4
(Duh et al., 2013) SMT 4
(Liu et al., 2014) SMT 4
(van der Wees et al., 2017) NMT 4
(Silva et al., 2018) NMT 4
(Aharoni and Goldberg,
2020)

NMT 4

(Wang et al., 2017) NMT 4
(Carpuat et al., 2017) NMT 4
(Vyas et al., 2018) NMT 4
(Chen and Huang, 2016) SMT 4
(Chen et al., 2017) NMT 4

LEARNING REPRESENTATIONS
(Ganin et al., 2015) SA 4
(Kim et al., 2017) Intent-clf 4
(Liu et al., 2017) SA 4
(Li et al., 2018) Lang-ID 4
(Chen and Cardie, 2018) SA 4
(Zellinger et al., 2017) SA 4
(Peng et al., 2018) SA 4
(Wu and Guo, 2020) SA 4
(Ding et al., 2019) Intent-Clf 4
(Shah et al., 2018) Question

sim
4 4

(Zhu et al., 2019) Emo-
Regress

4

(Gui et al., 2017) POS 4
(Zhou et al., 2019) NER 4
(Cao et al., 2018) NER 4
(Wang et al., 2018) NER 4
(Gu et al., 2019) NMT 4
(Britz et al., 2017) NMT 4
(Zeng et al., 2018) NMT 4
(Wang et al., 2019) NMT 4

DECISIONS IN THE WILD
(Ravi et al., 2008) Parsing 4
(Elsahar and Gallé, 2019) SA, POS 4 4
(Ponomareva and Thelwall,
2012)

SA 4 4 4 4

(Van Asch and Daelemans,
2010)

POS 4 4 4 4

Table 1: Prior works using divergence measures for Data Selection, Learning Representations and Decisions in
the Wild. Tasks can be Par: dependency parsing, POS: Parts of Speech tagging, NER: Named Entity Recognition,
SA: Sentiment Analysis, SMT: Statistical and NMT: Neural Machine Translation, Intent-Clf : Intent classification,
Lang-ID: Language identification, Emo-Regress: Emotional regression. Wass. denotes Wasserstein.

— capture contextual similarities between words in
two domains. That is, the same word used in two
domains in different contexts will have different
embeddings. CWRs can be obtained from hidden
representations of pretrained neural machine trans-
lation (NMT) models. (McCann et al., 2017) have
found such representations along with P-norm ef-

fective for data selection in MT (Wang et al., 2017).
Compared to representations from shallow NMT
models, hidden representations of deep neural net-
work language models (LM) like BERT have fur-
ther improved data selection for NMT (Aharoni
and Goldberg, 2020).

Divergences can be measured by comparing the
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probabilities of a language model, in contrast to
directly using its hidden representations. If a LM
trained on the target domain assigns high proba-
bility to a sentence from the source domain, then
the sentence should have similar characteristics to
the target domain. Cross Entropy (CE) between
probability distributions from LMs capture this no-
tion of similarity between two domains. They have
been extensively used for data selection in statisti-
cal machine translation (SMT) (Yasuda et al., 2008;
Moore and Lewis, 2010; Axelrod et al., 2011; Duh
et al., 2013; Liu et al., 2014). However, CE based
methods for data selection are less effective for neu-
ral machine translation (van der Wees et al., 2017;
Silva et al., 2018). Instead, van der Wees et al.
(2017) come up with a dynamic subset selection
where new subset is chosen every epoch during
training. We note again the common refrain that
sufficient amount of data should be available; here,
to train good language models in the target domain.

Similar to language models, probabilistic scores
from classifiers — which distinguish between sam-
ples from two domains — can aid data selection.
The probabilities assigned by such classifiers in
construing source domain text as target domain has
been used as a divergence measures in machine
translation (Chen and Huang, 2016). However, the
classifiers require supervised target domain data
which is not always available. As an alternative,
Chen et al. (2017) train a classifier and selector in
an alternating optimisation manner.

From this literature review, we find that dis-
tinct measures are effective for different NLP tasks.
Ruder and Plank (2017) argue that owing to their
varying task characteristics, different measures
should apply. They show that learning a linear
combination of measures is useful for NER, pars-
ing and sentiment analysis. However, this is not
always possible, especially in unsupervised domain
adaptation where there is no supervised data in
target domain. We observe that information theo-
retic measures and geometric measures based on
frequency distributions and continuous representa-
tions are common for text and structured prediction
tasks (cf. Table 1 in the appendix). The effective-
ness of higher order measures for these tasks are
yet to be ascertained.

Further, we find that for SMT data selection,
variants of Cross Entropy (CE) measures are used
extensively. However, the conclusions of van der
Wees et al. (2017) are more measured regarding

the benefits of CE and related measures for NMT.
Contextual word representations with cosine simi-
larity has found some initial exploration for neural
machine translation (NMT), with higher order mea-
sures yet to be explored for data selection in NMT.

3.2 Learning Representations

One way to achieve domain adaptation is to learn
representations that are domain-invariant which are
sufficiently powerful to perform well on an end
task (Ganin et al., 2015; Ganin and Lempitsky,
2015). The theory of domain divergence (Ben-
David et al., 2010) shows that the target domain
error is bounded by the source domain error and
domain divergence (H-divergence) and reducing
the domain divergence results in domain-invariant
representation. The theory also proposes a practical
alternative to measure H-divergence called PAD.
The idea is to learn a representations that confuses a
domain discriminator sufficiently to make samples
from two domains indistinguishable.

Ganin et al. (2015) operationalise PAD in a neu-
ral network named Domain Adversarial Neural Net-
works (DANN). The network employs a min–max
game — between the representation learner and the
domain discriminator — inspired by Generative
Adversarial Networks (Goodfellow et al., 2014).
The representation learner is not only trained to
minimise a task loss on source domain, but also
maximise a discriminator’s loss, by reversing the
gradients calculated for the discriminator. Note that
this does not require any supervised data for target
domain. In later work, Bousmalis et al. (2016) ar-
gue that domain-specific peculiarities are lost in a
DANN, and propose Domain Separation Networks
(DSN) to address this shortcoming. In DSN, both
domain-specific and -invariant representations are
captured in a shared–private network. DSN is flex-
ible in its choice of divergence measures and they
find PAD performs better than MMD. Here, we
limit our review to works utilising divergence mea-
sures. We exclude feature-based UDA methods
such as Structural Corresponding Learning (SCL)
(Blitzer et al., 2006), Autoencoder-SCL and pivot
based language models (Ziser and Reichart, 2017,
2018, 2019; Ben-David et al., 2020).

Obtaining domain invariant representations is de-
sirable for many different NLP tasks, especially for
sequence labelling where annotating large amounts
of data is hard. They are typically used when there
is a single source domain and a single target do-
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main — for sentiment analysis (Ganin et al., 2016),
NER (Zhou et al., 2019), stance detection (Xu et al.,
2019), machine translation (Britz et al., 2017; Zeng
et al., 2018). The application of DANN and DSN to
a variety of tasks are testament of their generality.

DANN and DSN are applied in other innova-
tive situations. Text from two different periods of
time can be considered as two different domains
for intent classification (Kim et al., 2017). Gui
et al. (2017) consider clean formal newswire data
as source domain and noisy, colloquial, unlabeled
Twitter data as the target domain and use adver-
sarial learning to learn robust representations for
POS. Commonsense knowledge graphs can help in
learning domain-invariant representations as well.
Ghosal et al. (2020) condition DANN with an ex-
ternal commonsense knowledge graph using graph
convolutional neural networks for sentiment anal-
ysis. In contrast, Wang et al. (2018) use MMD
outside the adversarial learning framework. They
use MMD to learn to reduce the discrepancy be-
tween neural network representations belonging to
two domains. Such concepts have been explored in
computer vision (Tzeng et al., 2014).

While single source and target domains are com-
mon, complementary information available in mul-
tiple domains can help to improve performance in
a target domain. This is especially helpful when
there is no large-scale labelled data in any one do-
main, but where smaller amounts are available in
several domains. DANN and DSN have been ex-
tended to such multi-source domain adaptation: for
intent classification (Ding et al., 2019), sentiment
analysis (Chen and Cardie, 2018; Li et al., 2018;
Guo et al., 2018; Wright and Augenstein, 2020)
and machine translation (Gu et al., 2019; Wang
et al., 2019).

DANN and DSN can also help in multitask
learning which considers two complementary tasks
(Caruana, 1997). A key to multitask learning is to
learn a shared representation that captures the com-
mon features of two tasks. However, such represen-
tations might still contain task-specific information.
The shared-private model of DSN helps in disen-
tangling such representations and has been used
for sentiment analysis (Liu et al., 2017), Chinese
NER and word segmentation (Cao et al., 2018).
Also, although beyond the scope of our discussion
here, DANN and DSN have been used to learn
language-agnostic representations for text classi-
fication and structured prediction in multilingual

learning (Chen et al., 2018; Zou et al., 2018; Ya-
sunaga et al., 2018).

Most works that adopt DANN and DSN frame-
work reduce either the PAD or MMD divergence.
However, reducing the divergences, combined with
other auxiliary task specific loss functions, can re-
sult in training instabilities and vanishing gradients
when the domain discriminator becomes increas-
ingly accurate (Shen et al., 2018). Using other
higher order measures can result in more stable
learning. In this vein, CMD has been used for sen-
timent analysis (Zellinger et al., 2017; Peng et al.,
2018), and Wasserstein distance has been used for
duplicate question detection (Shah et al., 2018) and
to learn domain-invariant attention distributions for
emotional regression (Zhu et al., 2019).

The review shows that most works extend the
DSN framework to learn domain invariant represen-
tations in different scenarios (cf. Table 1, in the ap-
pendix). The original work from (Bousmalis et al.,
2016) includes MMD divergence besides PAD,
which is not adopted in subsequent works, possibly
due to the reported poor performance. Most works
require careful balancing between multiple objec-
tive functions (Han and Eisenstein, 2019), which
can affect the stability of training. The stability of
training can be improved by selecting appropriate
divergence measures like CMD (Zellinger et al.,
2017) and Wasserstein Distance (Arjovsky et al.,
2017). We believe additional future works will
adopt such measures.

3.3 Decisions in the Wild

Models can perform poorly when they are deployed
in the real world. The performance degrades due
to the difference in distribution between training
and test data. Such performance degradation can
be alleviated by large-scale annotation in the new
domain. However, annotation is expensive, and —
given thousands of domains — quickly becomes
infeasible. Predicting the performance in a new do-
main, where there is no labelled data, is thus impor-
tant. Much recent work provides theory (Rosenfeld
et al., 2020; Chuang et al., 2020; Steinhardt and
Liang, 2016). As models are put into production in
the real world, this application becomes practically
important as well. Empirically, NLP considers the
divergence between the source and the target do-
main to predict performance drops.

Simple measures based on word level features
have been used to predict the performance of a
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machine learning model in new domains. Informa-
tion theoretic measures like Renyi-Div and KL-Div
has been used for predicting performance drops in
POS (Van Asch and Daelemans, 2010) and Cross-
Entropy based measure has been used for depen-
dency parsing (Ravi et al., 2008). Prediction of
performance can also be useful for machine transla-
tion where obtaining parallel data is hard. Based on
distance between languages, (Xia et al., 2020) pre-
dict performance of the model on new languages
for MT, among other tasks. Such performance pre-
diction models have also been done in the past for
SMT (Birch et al., 2008; Specia et al., 2013). How-
ever, Ponomareva and Thelwall (2012) argue that
predicting drops in performance is more appropri-
ate compared to raw performance. They find that
JS-Div effective for predicting performance drop
of Sentiment Analysis systems.

Only recently, predicting model failures in prac-
tical deployments from an empirical viewpoint has
regained attention. Elsahar and Gallé (2019) find
the efficacy of higher-order measures to predict the
drop in performance for POS and SA and do not
rely on hand crafted measures as in previous works.
However, analysing performance drops using CWR
is still lacking. We tackle this in the next section.

4 Experiments

A practical use case of domain divergences is to
predict the performance drop of a model applied
to a new domain. We ask how relevant are tradi-
tional measures over word distributions compared
to higher-order measures like CMD and MMD over
contextual word representations like BERT, Elmo,
DistilBERT (Devlin et al., 2019; Peters et al., 2018;
Sanh et al., 2019)? We perform an empirical study
to assess their suitability to predict performance
drops for three important NLP tasks: POS, NER,
and SA leaving machine translation to future work.

Performance difference between the source and
the target domain depends on the divergence be-
tween their feature distributions (Ben-David et al.,
2010). We assume a co-variate shift, as in (Ganin
et al., 2016), where the marginal distribution over
features change, but the conditional label distri-
butions does not — i.e., PDs(y|x) = PDT

(y|x)
PDs(x) 6= PDT

(x). Although difference in con-
ditional label distribution can increase the H-
Divergence measure (Wisniewski and Yvon, 2019),
it requires labels in the target domain for assess-
ment. In this work, we assume no labelled data in

the target domain, to best mimic realistic settings.

4.1 Experimental Setup

Datasets: For POS, we select 5 different corpora
from the English Word Tree Bank of Universal
Dependency corpus (Nivre et al., 2016)1 and also
include the GUM, Lines, and ParTUT datasets. We
follow Elsahar and Gallé (2019) and consider these
as 8 domains. For NER, we consider CONLL
2003 (Tjong Kim Sang and De Meulder, 2003),
Emerging and Rare Entity Recognition Twitter
(Derczynski et al., 2017) and all 6 categories in
OntoNotes v5 (Hovy et al., 2006)2, resulting in 8
domains. For SA, we follow Guo et al. (2020), se-
lecting the same 5 categories3 for experiments (Liu
et al., 2017).
Divergence Measures: We consider 12 diver-
gences. For Cos, we follow the instance based
calculation (Ruder et al., 2017). For MMD, Wasser-
stein and CORAL, we randomly sample 1000 sen-
tences and average the results over 3 runs. For
MMD, we experiment with different kernels (cf.
Appendix A) and use default values of σ from
the GeomLoss package (Feydy et al., 2019). For
TVO, KL-div, JS-div, Renyi-div, based on word
frequency distribution we remove stop-words and
consider the top 10k frequent words across domains
to build our vocabulary (Ruder et al., 2017; Guru-
rangan et al., 2020). We use α=0.99 for Renyi as
found effective by Plank and van Noord (2011).
We do not choose CE as it is mainly used in MT
and ineffective for classification and structured pre-
diction (Ruder et al., 2017).
Model Architecture: For all our experiments, un-
less otherwise mentioned, we use the pre-trained
DistilBERT (Sanh et al., 2019) model. It has com-
petitive performance to BERT, but has faster infer-
ence times and lower resource requirements. For
every text segment, we obtain the activations from
the final layer and average-pool the representations.
We train the models on the source domain training
split and test the best model — picked from vali-
dation set grid search — on the test dataset of the
same and other domains (cf. Appendix C).

For POS and NER, we follow the original BERT
model where a linear layer is added and a prediction
is made for every token. If the token is split into

1Yahoo! Answers, Email, NewsGroups, Reviews and We-
blogs.

2Broadcast News (BN), Broadcast Conversation (BC), Maga-
zine (MZ), Telephone Conversation (TC) and Web (WB).

3Apparel, Baby, Books, Camera and MR.
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(a) (POS)-MMD-Gaussian (b) (NER)-MMD-RQ (c) (SA)-JS-Div

Figure 2: t-SNE plots for select measures. The complete set of diagrams are available in Appendix D.

multiple tokens due to Byte Pair Encoding, the
label for the first token is predicted. For SA and
domain discriminators, we pool the representation
from the last layer of DistilBERT and add a linear
layer for prediction (Appendix B).

4.2 Are traditional measures still relevant?

For POS, the PAD measure has the best correlation
with performance drop (cf. Table 2). Information-
theoretic measures over word frequency distribu-
tions, such as JS-div, KL-div, and TVO, which have
been prevalent for data selection and performance
drop use cases (cf. Table 1) are comparable to PAD.
Plank et al. (2014) claim that the errors in POS are
dictated by out of vocabulary words. Our findings
validate their claim, as we find strong correlation
between POS performance drop and word proba-
bility distribution measures For NER, MMD-RQ
provides the best correlation of 0.495. CORAL —
a higher-order measure — and JS-div are compa-
rable. For SA, Renyi-div and other information-
theoretic measures provide considerably better cor-
relation compared to higher-order measures. Cos
is a widely-used measure across applications, how-
ever it did not provide significant correlation for
either task. TVO is used for selecting pretraining
data for NER (Dai et al., 2019) and as a measure to
gauge the benefits of fine-tuning pre-trained LMs
on domain-specific data (Gururangan et al., 2020).
Although TVO does not capture the nuances of
domain divergences, it has strong, reliable corre-
lations for performance drops. PAD has been sug-
gested for data selection in SA by Ruder and Plank
(2017) and for predicting drop in performance by
Elsahar and Gallé (2019). Our analysis confirms
that PAD provides good correlations across POS,
NER, and SA.

We find no single measure to be superior across
all tasks. However, information theoretic measures
consistently provide good correlations. Currently,

when contextual word representations dictate re-
sults in NLP, simple measures based on frequency
distributions are strong baselines for predicting per-
formance drop. Although higher-order measures
do not always provide the best correlation, they are
differentiable, thus suited for end-to-end training
of domain-invariant representations.

4.3 Discussion
Why are some divergence measures better at pre-
dicting drops in performance? The one-dataset-
one-domain is a key assumption in such works.
However, many works have questioned this as-
sumption (Plank and van Noord, 2011). Multi-
ple domains may exist within the same domain
(Webber, 2009) and two different datasets may
not necessarily be considered different domains
(Irvine et al., 2013). Recently Aharoni and Gold-
berg (2020) show that BERT representations reveal
their underlying domains. They qualitatively show
that a few text segments from a dataset actually
belong to another domain. However the degree to
which the samples belong to different domains is
unclear.

We first test the assumption that different
datasets are different domains using Silhouette
scores (Rousseeuw, 1987) which quantify the sep-
arability of clusters. We initially assume that a
dataset is in its own domain. A positive score
shows that datasets can be considered as well-
separated domains; a negative score shows that
most of the points within a dataset can be assigned
to a nearby domain; and 0 signifies overlapping do-
mains. We calculate Silhouette scores and t-SNE
plots (Maaten and Hinton, 2008) for different di-
vergence measures. Refer to the plots (Figures 3a
to 3c) and calculation details in Appendix D.

Almost all the measures across different tasks
have negative values close to 0 (Table 2, (r)).
• For POS, CORAL, Wasserstein and Cos strongly

indicate that text within a dataset belongs to other
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Measure Correlations Silhouette Coefficients
- POS NER SA POS NER SA
Cos 0.018 0.223 -0.012 −1.78× 10−1 −2.49× 10−1 −2.01× 10−1

KL-Div 0.394 0.384 0.715 - - -
JS-Div 0.407 0.484 0.709 −8.50× 10−2 −6.40× 10−2 +2.04× 10−2

Renyi-Div 0.392 0.382 0.716 - - -
PAD 0.477 0.426 0.538 - - -
Wasserstein 0.378 0.463 0.448 −2.11× 10−1 −2.36× 10−1 −1.70× 10−1

MMD-RQ 0.248 0.495 0.614 −4.11× 10−2 −3.04× 10−2 −1.70× 10−2

MMD-Gaussian 0.402 0.221 0.543 +4.25× 10−5 +2.37× 10−3 −8.42× 10−5

MMD-Energy 0.244 0.447 0.521 −9.84× 10−2 −1.14× 10−1 −8.48× 10−2

MMD-Laplacian 0.389 0.273 0.623 −1.67× 10−3 +4.26× 10−4 −1.08× 10−3

CORAL 0.349 0.484 0.267 −2.34× 10−1 −2.78× 10−1 −1.41× 10−1

TVO -0.437 -0.457 -0.568 - - -

Table 2: (l): Correlation of performance drops with divergence measures. Measures with higher correlations are
better indicators of performance drops. (r): Silhouette coefficients considering different divergence measures. We
randomly sample 200 points for calculation and average the results over 5 runs. Only certain divergences which
are metrics are allowed. The colours are from the taxonomy of divergence measures in Figure 1.

domains. However, for MMD-Gaussian the do-
mains overlap (Figure 2a).
• For NER, MMD-Gaussian and MMD-Laplacian

indicate that the clusters overlap while all other
metrics have negative values.
• For SA, JS-Div has positive values compared to

other measures, and as seen in Figure 2c, we can
see a better notion of distinct clusters.

The Silhouette scores along with the t-SNE plots
show that datasets are, in fact, not distinct domains.
Considering data-driven methods for defining do-
mains is needed (Aharoni and Goldberg, 2020).

If there are indeed separate domains, does it
explain why some measures are better than the
others? We see better notions of clusters for NER
and sentiment analysis (cf. Figures 2b and 2c). We
can expect the drop in performance to be indicative
of these domain separations. Comparing the best
correlations from Table 2, correlations for NER and
sentiment analysis are higher compared with POS.
For POS, there are no indicative domain clusters
and the correlation between domain divergence and
performance may be less; whereas for SA, both the
t-SNE plot and the Silhouette scores for JS-Div
(cf. Figure 2c) corroborate comparatively better
separation. If datasets are indeed different domains,
these divergence measures are reliable indicators
of performance drops. If they are not, there might
be other confounding factors (such as differences
in label distribution) and one has to be cautious in
using them.

Domain overlap also has consequences for data
selection strategies. For example, Moore and Lewis
(2010) select pseudo in-domain data from source
corpora (cf Section 3.1). As the Silhouette coeffi-
cients are negative and close to 0, many data points

in a dataset belong to nearby domains. Data se-
lection strategies thus may be effective. If the
Silhouette coefficients are more negative and if
more points in the source aptly belong to the tar-
get domain, we should expect increased sampling
from such source domains to yield additional per-
formance benefits in the target domain.

5 Conclusion

We survey domain adaptation works, focusing on
divergence measures and their usage for data se-
lection, learning domain-invariant representations,
and making decisions in the wild. We synthesised
the divergence measures into a taxonomy of in-
formation theoretic, geometric and higher-order
measures. While traditional measures are common
for data selection and making decisions in the wild,
higher-order measures are prevalent in learning rep-
resentations. Based on our correlation experiments,
silhouette scores, and t-SNE plots, we make the
following recommendations:

• PAD is a reliable indicator of performance drop.
It is best used when there are sufficient examples
to train a domain discriminator.
• JS-Div is symmetric and a formal metric. It is

related to PAD, easy to compute, and serves as a
strong baseline.
• While Cosine is popular, it is an unreliable indi-

cator of performance drop.
• One-dataset-is-not-one-domain. Instead, cluster

representations and define appropriate domains.
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A Domain Divergence Measures

This section provides the necessary background on
different kinds of divergence measures used in the
literature. They can be either information-theoretic
– which measure the distance between two proba-
bility distributions, geometric - which measure the
distance between two vectors in a space, or higher-
order which capture similarity in a projected space
and consider higher order moments of random vari-
ables.

A.1 Information-Theoretic Measures
Let P and Q be two probability distributions.
These information-theoretic measures are used to
capture differences between P and Q.

Kullback-Leibler Divergence (KL-Div) Q is
called the reference probability distribution4. More
precisely, KL is defined if only for all Q(x) st
Q(x) = 0, P (x) is also 0; and undefined if ∃ x,
Q(x) = 0 and P (x) > 0.

DKL(P ||Q) =
∑
x

P (x)log

(
P (x)

Q(x)

)
(1)

Renyi Divergence (Renyi-Div) Renyi Divergence
is a generalisation of the KL Divergence and is also
called α-power divergence:

Dα(P ||Q) =
1

α− 1
log

(∑
x

P (x)α

Q(x)α−1

)
(2)

Here α ≥ 0 and α 6= 1. Renyi divergence is
equivalent to KL divergence in the limit where
α→ 1.

Jensen Shannon Divergence (JS-Div) Jensen
Shannon divergence (JS-divergence) is a symmetric
version of KL-Divergence. It has many advantages.
The square root of the Jensen Shannon Divergence
is a metric and it can be used for non-continuous
probabilities:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

M =
1

2
(P +Q)

(3)

4KL divergence is asymmetric and cannot be considered a
metric

Entropy-Related - (CE) Let, HT , HS assign en-
tropy to a sentence using a language model trained
on the target and source domain, respectively. If
s is a text segment from the source domain, then
the difference in entropy, as shown below, gives
the similarity of a source domain segment to the
target domain. Some works just use HT , ignoring
HS . MT related work (Moore and Lewis, 2010),
consider only the source language. Axelrod et al.
(2011) extend to consider both the source and the
target language of machine translation, which per-
forms better for data selection. We present these
variations in the formulae below and attribute the
same name CE to both these variations in the liter-
ature review.

DCE = HT (s)−HS(s) (4)

DCE = [Hsrc−lang
T (s)−Hsrc−lang

S (s)]

+[Htrg−lang
T (s)−Htrg−lang

S (s)]
(5)

A.2 Geometric Measures
Let ~p and ~q be two vectors in Rn. Domain
adaptation works use geometric metrics for
continuous representations like word vectors.

Cosine Similarity (Cos): It calculates the cosine
of the angle between vectors. To measure the co-
sine distance between two points, we use 1− Cos:

cos(~p, ~q) =
~p.~q

‖p‖ . ‖q‖
(6)

lp-norm (Norm): Euclidean distance or l2 dis-
tance measures the straight line distance between
vectors and Manhattan or l1 measures the sum of
the difference between their projections.

d2(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (7)

d1(p, q) =
n∑
i=1

|pi − qi| (8)

A.3 Higher-Order Measures
H-divergence and Proxy-A-Distance (PAD):
Ben-David et al. (2010) state that the error of a
machine learning classifier in a target domain is
bound by its performance on the source domain
and theH-divergence between the source and the
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target distributions. H-divergence is expensive to
calculate. An approximation ofH is called Proxy-
A-Distance. This definition has been adopted from
(Elsahar and Gallé, 2019). Here G : X → [0, 1]
is a supervised machine learning model that clas-
sifies examples to the source and target domains,
Ds, Dt. |D| is the size of the training data and 1 is
an indicator function:

PAD = 1− 2ε(Gd) (9)

ε(Gd) = 1− 1

|D|
∑

xi∈Ds,Dt

|G(xi)− 1(xi ∈ Ds)|

(10)

Wasserstein Distance: Wasserstein Distance
(also called Earth Mover’s distance) is another met-
ric for two probability distributions. Intuitively, it
measures the least amount of work done to trans-
port probability mass from one probability distri-
bution to another to make them equal. The work
done in this case is measured as the mass trans-
ported multiplied by the distance of travel. It is
known to be better than Kullback-Leibler Diver-
gence and Jensen-Shannon Divergence when the
random variables are high dimensional or other-
wise. The Wasserstein metric is defined as:

DWasserstein = inf
γ∈π

∑
x,y

‖x− y‖ γ(x, y)

Here γ ∈ π(P,Q) where π(P,Q) is the set of
all distributions where the marginals are P and Q.

Maximum Mean Discrepancy (MMD): MMD
is a non-parametric method to estimate the dis-
tance between distributions based on Reproducing
Kernel Hilbert Spaces (RKHS). Given two ran-
dom variables X = {x1, x2, ..., xm} and Y =
{y1, y2, ...., yn} that are drawn from distributions
P and Q, the empirical estimate of the distance
between distribution P and Q is given by:

MMD(X,Y ) =

∥∥∥∥∥ 1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

∥∥∥∥∥
H

(11)

Here φ : X → H are nonlinear mappings of the
samples to a feature representation in a RKHS. In
this work, we map the contextual word representa-
tions of the text to RKHS. The different kinds of
kernels we use in this work are given below. We use

the default values of σ = 0.05 of the GeomLoss
package (Feydy et al., 2019).

Rational Quadratic Kernel

φ(x, y) =

(
1 +

1

2α
(x− y)TΘ−2(x− y)

)−α
Energy

φ(x, y) = −‖x− y‖2
Gaussian

φ(x, y) = exp(−
‖x− y‖22

2σ2
)

Laplacian

φ(x, y) = exp(−
‖x− y‖2

σ
)

Correlation Alignment (CORAL): Correlation
alignment is the distance between the second-order
moment of the source and target samples. If d is the
representation dimension, ‖‖F represents Frobe-
nius norm and CovS , CovT is the covariance ma-
trix of the source and target samples, then CORAL
is defined as:

DCORAL =
1

4d2
‖CovS − CovT ‖2F (12)

Central Moment Discrepancy (CMD): Central
Moment Discrepancy is another metric that mea-
sures the distance between source and target distri-
butions. It not only considers the first moment and
second moment, but also other higher-order mo-
ments. While MMD operates in a projected space,
CMD operates in the representation space. If P
and Q are two probability distributions and X =
{X1, X2, ...., XN} and Y = {Y1, Y2, ...., YN} are
random vectors that are independent and identically
distributed from P and Q and every component of
the vector is bounded by [a, b], CMD is then de-
fined by:

CMD(P,Q) =
1

|b− a|
‖E(X)− E(Y )‖2

+

∞∑
k=2

1

|b− a|k
‖ck(X)− ck(Y )‖2

(13)
where E(X) is the expectation of X and ck is

the k − th order central moment, defined as:

ck(X) = E

( N∏
i=1

(Xi − E(Xi))
ri

)
(14)

and r1 + r2 + rN = k and r1....rN ≥ 0
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A.4 Other Measures
Bhattacharya Coefficient: If P and Q are prob-
ability distributions, then the Bhattacharya coeffi-
cient and Bhattacharya distance are defined as:

Bhattacharya(P,Q) =
∑
x

√
P (x)Q(x) (15)

DBhattacharya = −log(Bhattacharya(P,Q))
(16)

Term Vocabulary Overlap (TVO): This mea-
sures the proportion of target vocabulary that is
also present in the source vocabulary. If VS is
the source domain vocabulary and VT is the tar-
get domain vocabulary, then the Term Vocabulary
Overlap between the source domain (DS) and the
target domain (DT ) is given by:

TV O(DS , DT ) =
|VS

⋂
VT |

|VT |
(17)

Word Vector Variance: Different contexts in
which a word is used in two different datasets can
be used as an indication of the divergence between
two datasets. Let ~wisrc denote the word embedding
of word i in source domain and ~witrg is the word
embedding of the same word in the target domain.
Let d be the dimension of the word embedding.
The word vector variance between the source do-
main (DS) and the target domain (DT ) is given
by:

WV V (DS , DT ) =
1

|VS | ∗ d

|Vs|∑
i

∥∥wisrc − witrg∥∥22
(18)

B Model Hyperparameters

For POS, NER and Sentiment Analysis models,
we do a grid search of learning rate in {1e-01, 1e-
05, 5e-05} and dropout in {0.2, 0.3, 0.4, 0.5} and
number of epochs in {25, 50}. PAD requires a do-
main discriminator. We sample as many samples
in the target domain as the source domain (Ruder
et al., 2017) and train a DistilBERT based classi-
fier. For every domain discriminator we do a grid
search of learning rate in {1e-05, 5e-05}, dropout
in {0.4, 0.5} and number of epochs in {10, 25}.
For POS and NER, we monitor the macro F-Score;
for domain discrimination, we monitor the accu-
racy scores. We chose the best model after the grid

search for all subsequent calculations. For training
the models we use the Adam Optimiser (Kingma
and Ba, 2015) with the β1 = 0.9 and β2 = 0.99
and ε as 1e-8. We use HuggingFace Transformers
(Wolf et al., 2019) for all our experiments.

C Cross-Domain Performances

C.1 Parts of speech tagging
Table 3 shows the hyper parameters for the best
model for POS and Table 4 shows the cross domain
performances.

C.2 Named Entity Recognition
Table 5 shows the hyper parameters for the best
model for NER and Table 6 shows the cross domain
performances.

C.3 Sentiment Analysis
Table 7 shows the hyper parameters for the best
model for Sentiment analysis and Table 8 shows
the cross domain performances.

D Silhouette Scores and t-SNE Plots

For calculating Silhouette scores we use a subset
of domain divergence measures that are metrics (a
requirement of Silhouette scores) and can be calcu-
lated between single instances of text. We sample
200 points for each dataset as the time complexity
increases exponentially with number of points. We
average the results over 5 runs.

We plot the t-SNE plots for POS (Figure 3a),
NER (Figure 3b) and Sentiment Analysis (SA) (Fig-
ure 3c). We sample 200 points from each of the
datasets for the plot. Wherever relevant, we use
DistilBERT (Sanh et al., 2019) representations for
calculations.
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Dataset Epochs Learning Rate Dropout Fscore
EWT-answers 50 5× 10−5 0.4 95.38
EWT-email 50 1× 10−5 0.3 96.62
EWT-newsgroup 50 5× 10−5 0.5 95.92
EWT-reviews 50 5× 10−5 0.4 96.97
EWT-weblog 50 5× 10−5 0.3 97.03
GUM 50 1× 10−5 0.3 95.73
LINES 50 5× 10−5 0.3 97.38
PARTUT 50 1× 10−5 0.4 97.06

Table 3: Model performance and hyper-parameters producing the best model for Parts of Speech Tagging trained
using DistilBERT as the base model. The datasets are from the Universal Dependencies Corpus (UD) (Nivre
et al., 2016). 5 corpora are from the English Word Tree (EWT) portion which are EWT-answers, EWT-email,
EWT-newgroup, EWT-reviews, EWT-weblog. .

Source/Target EWT-
answers

EWT-
email

EWT-
newsgroup

EWT-
reviews

EWT-
weblog

GUM LINES PARTUT

EWT-answers 95.38 93.96 94.02 95.83 95.64 93.58 93.86 92.06
EWT-email 94.11 96.62 94.40 95.42 95.37 93.08 93.98 93.47

EWT-newsgroup 94.71 95.07 95.92 95.31 96.80 93.82 93.83 92.74
EWT-reviews 94.99 94.51 94.56 96.97 95.55 93.07 94.27 92.62
EWT-weblog 95.38 93.96 94.02 95.83 95.64 93.58 93.87 92.06

GUM 91.63 92.59 91.75 93.55 93.56 95.73 93.54 93.12
LINES 89.79 89.77 88.76 92.39 90.77 91.75 97.38 92.68

PARTUT 89.27 89.54 89.56 91.28 92.27 90.65 92.97 96.65

Table 4: Cross-domain performance for POS tagging. The best model for each source domain is tested on the test
dataset of the same domain and all other domains.

Dataset Epochs Learning Rate Dropout Fscore
CONLL-2003 50 5× 10−5 0.5 0.90
WNUT 25 5× 10−5 0.5 0.50
Onto-BC 50 5× 10−5 0.5 0.82
Onto-BN 50 1× 10−5 0.3 0.89
Onto-MZ 50 1× 10−5 0.3 0.86
Onto-NW 25 5× 10−5 0.4 0.89
Onto-TC 50 1× 10−5 0.5 0.75
Onto-WB 50 5× 10−5 0.4 0.63

Table 5: Model performance and hyper-parameters for Named Entity Recognition trained using DistilBERT as the
base model. The datasets are CONLL-2003, Emerging and Rare Entity Recognition twitter dataset (WNUT), and
six different sources of text in Ontonotes v5 (Hovy et al., 2006)

Source/Target CONLL WNUT ONTO-BC ONTO-BN ONTO-MZ ONTO-NW ONTO-TC WB
CONLL 2003 0.90 0.37 0.54 0.65 0.59 0.54 0.51 0.41

WNUT 0.66 0.50 0.40 0.44 0.49 0.42 0.49 0.33
ONTO-BC 0.48 0.31 0.82 0.81 0.77 0.74 0.72 0.45
ONTO-BN 0.53 0.37 0.77 0.89 0.76 0.79 0.76 0.47
ONTO-MZ 0.49 0.29 0.72 0.78 0.86 0.75 0.69 0.45
ONTO-NW 0.52 0.32 0.73 0.86 0.73 0.89 0.76 0.46
ONTO-TC 0.51 0.37 0.61 0.64 0.57 0.55 0.75 0.41
ONTO-WB 0.43 0.12 0.52 0.63 0.54 0.57 0.52 0.63

Table 6: Cross-domain performance for NER. The best model for each source domain is tested on the test dataset
of the same domain and all other domains.

Dataset Epochs Learning Rate Dropout Fscore
Apparel 25 1× 10−5 0.4 91.25
Baby 50 5× 10−5 0.4 93.75
Books 50 1× 10−5 0.4 92
Camera/Photo 25 1× 10−5 0.4 92
MR 50 5× 10−5 0.3 82.5

Table 7: Model performance and hyper-parameters for Sentiment Analysis with DistilBERT as the base model. We
chose 5 out of 16 datasets from (Liu et al., 2017) which are Apparel, Baby, Books, Camera/Photo, and MR.
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Source/Target Apparel Baby Books Camera/Photo MR
Apparel 0.91 0.9100 0.85 0.87 0.77

Baby 0.89 0.9375 0.86 0.89 0.75
Books 0.88 0.8875 0.92 0.87 0.79

Camera/Photo 0.89 0.89 0.86 0.92 0.75
MR 0.76 0.76 0.8375 0.74 0.83

Table 8: Cross-domain performance for Sentiment Analysis. The best model for each source domain is tested on
the test dataset of the same domain and all other domains.

(a) POS (b) NER

(c) SA

Figure 3: t-SNE plots for different tasks.


