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Abstract
Sequential information, a.k.a., orders, is as-
sumed to be essential for processing a se-
quence with recurrent neural network or con-
volutional neural network based encoders.
However, is it possible to encode natural lan-
guages without orders? Given a bag of words
from a disordered sentence, humans may still
be able to understand what those words mean
by reordering or reconstructing them. Inspired
by such an intuition, in this paper, we perform
a study to investigate how “order” information
takes effects in natural language learning. By
running comprehensive comparisons, we quan-
titatively compare the ability of several repre-
sentative neural models to organize sentences
from a bag of words under three typical scenar-
ios, and summarize some empirical findings
and challenges, which can shed light on future
research on this line of work.

1 Introduction

Though significant progress has been made, it is
still mysterious how humans are able to under-
stand, organize, and generate natural languages.
In the field of natural language processing, many
efforts have been made to enhance computa-
tional models. Recently, recurrent neural net-
works (Mikolov et al., 2010) and encoder-decoder
architectures (Sutskever et al., 2014) with long
short-term memory (Hochreiter and Schmidhuber,
1997) and gated recurrent unit (Chung et al., 2014)
have demonstrated state-of-the-art performance in
sequence modeling and generation.

Nowadays, the encoder-decoder architectures
have become a widely used approach for sequence-
to-sequence tasks such as machine translation (Bah-
danau et al., 2015), text summarization (Paulus
et al., 2018) and dialogue generation (Serban et al.,
2016). Such models generally encode the input
sequence into a vector representation using recur-
rent neural networks (RNNs) (Sutskever et al.,
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2014), convolutional neural networks (Gehring
et al., 2017) or transformer architectures (Vaswani
et al., 2017). The decoder then produces the out-
put sequence step-by-step, conditioned on the en-
codings of the encoder. Basically, those encoders
process information along the sentence sequences,
where sequential information is recurrently mod-
eled at each position of the sequences. Thus these
models are sensitive to word orders. Moreover,
it has been demonstrated that order matters in se-
quence encoding (Vinyals et al., 2015). Admittedly
yes, order information is important for sequences
learning and encoding. An interesting question
might be that, is it possible to encode natural lan-
guages without considering order information?

Take a look at an example of word rearrange
quizzes for language learners1. Given a bag of
words from a disordered sentence {the dog James
talking sat next to himself to .}, most people can
still read with little effort, though disagreement
might exist on subtle details as to whether it is the
man or the dog that is seated. Inspired by this, it is
interesting to explore how and to what extent we
can encode natural languages without considering
order information.

From a computational perspective, we ask: Can
we construct an algorithm that is capable of read-
ing a bag of words as robustly as humans do? Our
task is to predict the original sentence given a bag
of words without orders extracted from a random
sentence. This orderless setting is important to char-
acterize the human instinct for understanding lan-
guages. The answer to this question also provides
insights into many important practical problems:
In abstractive text summarization, the summary
can be generated according to a bag of extracted
key words (Xu et al., 2010); In statistical machine
translation, we need to reorder the words or phrases
in the target language to get a natural and fluent

1https://quizlet.com/143171956/arrange-words-and-form-
meaningful-sentences-flash-cards/
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Normal
Input: the dog James talking sat next to himself to .

Output: James sat next to the dog talking to himself .

Noise
Input: the rule dog James talking sat next to himself to . dashed

Output: James sat next to the dog talking to himself .

Missing
Input: dog James talking next to himself to .

Output: James sat next to the dog talking to himself .

Table 1: 3 scenarios for sentence organization. Words
marked in red denote the added noisy words, and words
marked in green denote the missing words.

sentence (He and Liang, 2011). In dialogue sys-
tems, we need systems that are enabled to converse
smoothly with people that have troubles in order-
ing words, such as children, language learners, and
speech impaired. In image caption, the caption can
be organized with a bag of attribute words extracted
from the image (Fang et al., 2015). Moreover, such
a model can help non-native speakers of English to
write a sentence just from keywords.

This bag-to-sentence transformation problem is
rather challenging primarily due to three reasons.
First, the relationship between words is missing
from the input bag of words. To predict the correct
ordering, both the meaning of the whole sentence
and the words that may become the context of a
particular word must be guessed and leveraged.
Second, the input bag of words might only be a
subset of all the words in a sentence, and there
might exist randomly injected words, as shown in
Table 1. Last, the correct ordering of the words into
a sentence may not be unique, and the model needs
to have the flexibility to allow multiple choices of
outputs.

While much research has been directed into pro-
cessing sequential text information, there has been
far less research regarding the encoding of an un-
ordered bag. A simple approach is based on pool-
ing that takes the maximum value for each dimen-
sion of the word embeddings (Qi et al., 2017).
This strategy is effective in simple tasks (e.g., sen-
tence classification) but loses much contextual in-
formation for sentence organization. (Vinyals et al.,
2015) proposes to encode a set through iterative
attention on the input items, alike to the memory
network. These approaches could obtain an order-
invariant representation of the set from a global
perspective. However, they are lacking of model-
ing the semantic dependencies between input items.
In addition, the effectiveness of these models on
the bag-to-sentence transformation problem is also
unknown.

In this paper, we aim to investigate how “or-

der” information takes effects in natural language
learning for neural models. On the basis of the
pooling-based and memory-based approaches, we
introduce the self-attention to encode the semantic
dependencies between input words without consid-
ering order information, so as to enrich individual
words with contextual information from different
semantic aspects. We systematically compare the
ability of different neural models to organize sen-
tences from a bag of words in terms of three typical
scenarios shown in Table 1. The contributions of
this paper are summarized as follows:

• We present an empirical study to investigate
the ability of neural models to organize sen-
tences from a bag of words.

• We introduce a bag-to-sentence transforma-
tion model based on self-attention, which sig-
nificantly outperforms existing models in sen-
tence organization tasks.

• We show some interesting results by thor-
oughly comparing and analyzing sentence or-
ganization under different scenarios (Normal,
Noise, Missing), which may shed light on fu-
ture research on this line of work.

2 Related Work

Pooling is a basic approach to encode sets (or bags),
and has been widely used for many tasks, such
as 3D shape recognition (Qi et al., 2017), few-
shot image classification (Snell et al., 2017). Be-
sides, several studies have explored the capabil-
ity of attention mechanisms in modeling sets (or
bags). Vinyals et al. (2015) proposed to encode a
set with multi-hop attention operations. Ilse et al.
(2018) proposed to use attention-based weighted
sum-pooling for multiple instance learning. Sim-
ilarly, Yang et al. (2020) proposed an attention-
based algorithm to aggregate a deep feature set for
multi-view 3D reconstruction.

As a new approach to modeling a text sequence,
self-attention has been successfully used in many
NLP tasks, such as machine translation (Vaswani
et al., 2017), text summarization (Paulus et al.,
2018) and machine reading comprehension (Wang
et al., 2017). However, most studies about self-
attention focus on sequence modeling, which ig-
nores the positional invariance of the attention
mechanism itself. In perticular, Ma et al. (2018) uti-
lized self-attention to model interactions between
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the objects in a video, and employed pooling to ob-
tain aggregated features. On this basis of the trans-
former architecture, Lee et al. (2019) presented
an Set Transformer designed to model interactions
among elements in the input set.

Without considering missing words or noisy
words, our task devolves into word ordering prob-
lem, which is a fundamental task in natural lan-
guage generation. Previous, researchers usually
employed N-gram based language models (De Gis-
pert et al., 2014; Schmaltz et al., 2016), syntactic-
based language models (Zhang and Clark, 2011;
Liu et al., 2015) or combined models (Zhang et al.,
2012; Liu and Zhang, 2015) to solve this prob-
lem. More recently, Hasler et al. (2017) proposed a
bag-to-sequence model, where the decoder RNN di-
rectly attended to the word embeddings. However,
all these methods aim at finding the best permuta-
tion of a bag of words based on language models,
and do not consider how to encode a bag of words.

3 Problem Formulation

Given a bag of words X = {x1, x2, · · · , xm}
which consists of m tokens, our model will gener-
ate a sentence Y = {y1, y2, · · · , yn}, where n is
the length of target sentence. In the normal sce-
nario, the words of X come from a disordered
sentence and are the same as Y . While in other
two scenarios, the condition no longer holds. To be
specific, X contains some noisy words that do not
appear in Y for noise scenario, and X lacks some
words that should appear in generated sequence for
the missing scenario. We can model this using the
conditional probability P (Y |X) and decompose it
with the chain rule.

P (Y |X) =
n∏

t=1

P (yt|y1, y2, · · · , yt−1, X), (1)

In our scenario, the source input is a bag of words
or even with noisy or missing words and the output
is a sentence.

4 Bag-to-Sequence Models

In this paper, we employ encoder-decoder frame-
works to address the bag-to-sentence problem. Par-
ticularly, the encoder is responsible for learning an
order-invariant context representation for the input
bag, and the decoder produces the target sentence
conditioned on a bag of input words.

4.1 Compared Encoders
We consider four representative neural models to
encode the unordered bag of words as follows.

RNN. Recurrent neural networks typically pro-
cess information along the word positions of the in-
put sequence, and they have proven to be sensitive
to variations of word order to some degree (Vinyals
et al., 2015). In this paper, we introduce an RNN
with long short-term memory units (LSTMs) as a
baseline encoder for a comparison. Formally, the
hidden state of RNN at the t-th step ht is calculated
by:

ht = LSTM(ht−1,wt), (2)

where wt denotes the input word embedding at t-th
step. The final hidden state of LSTM is regarded
as the context representation of the input bag.

Pooling. A simple way to encode a bag without
considering order information is the pooling-based
approach as inspired by Qi et al. (2017) that summa-
rizes bag information by choosing the maximum
value from each dimension of the word embed-
dings. Formally, given a bag of word embeddings
{wi}ni=1, the context representation of the input
bag of words vs can be calculated as:

vs = max{w1,w2, · · · ,wn}, (3)

Memory. The memory-based approach encodes
a bag of words through performing multiple rounds
of attention over the word representations, alike
to the memory network (Sukhbaatar et al., 2015).
Formally, we take the vector representation vs

obtained by the pooling-based method as the ini-
tial bag representation v0

s . At the t-th processing
round, we use the current bag representation vt

s

to attend the memory {w1, · · · ,wn} composed of
word embeddings, and compute an attention vec-
tor rt through the attention mechanism (Bahdanau
et al., 2015), defined as:

αt,i =
exp(g(vt

s,hi))∑n
i=1 exp(g(vt

s,wi))
,

rt =
∑n

i=1
αt,iwi,

(4)

where g(·, ·) is a function that computes the similar-
ity between wi and vt

s, and we employ dot product
function in this paper. Then the current bag rep-
resentation vt

s is concatenated with the output of
the attention vector rt, and further transforms it
through non-linear transformation.

vt+1
s = f([vt

s; rt]), (5)
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where f(·) is a non-linear mapping function
which reduces the input dimension to de. Fol-
lowing Vinyals et al. (2015), we use an LSTM
unit (Hochreiter and Schmidhuber, 1997) (without
inputs) as f(·). We perform this process for K
rounds. The obtained vector vK

s is the final bag
representation. We set K as the number of tokens
in source bag.

Self-attention. Self-attention is a special case of
standard attention mechanism (Bahdanau et al.,
2015) where each word can attend to (interact with)
all words in the input. Unlike RNNs, self-attention
can model dependencies among words in the in-
put bag without considering the order information.
In this paper, we borrow the idea from the work
of neural transformer architecture (Vaswani et al.,
2017). The model contains N stacked blocks, each
of which mainly composed of a multi-head atten-
tion layer and a row-wise feed-forward layer. More
compactly,

{m1, · · · ,mn} = MultiHeadAtt({w1, · · · ,wn}),
(6)

{h1, · · · ,hn} = FFN({m1, · · · ,mn}), (7)

where mi and hi are the representation for i-th
word produced by the multi-head attention layer
and the row-wise feed-forward layer respectively.
A residual connection (He et al., 2016) and a row-
wise normalization (Ba et al., 2016) are applied
around each of the multi-head attention layer and
feed-forward layer.

Based on the representation produced by the
self-attention, we further employ pooling-based
or memory-based approaches2 to obtain a global
context representation for input bag. We name the
full model as AttP when pooling-based approach
is adopted, and name it as AttM by using memory-
based approach.

4.2 Decoder
The decoder acts as a language model to reconstruct
the sentence conditioned on the bag representation.
To highlight the differences among different en-
coders, we utilize the same decoder for different
encoders.

Since the target Y corresponds to a sequence,
and has significant vocabulary overlap with the
input bags of words, we blend a pointer-based de-
coder (Vinyals et al., 2015; See et al., 2017), which

2It is worth noting that the current memory is composed
of the word representations output by self-attention layer

acts as a language model to enable our model to
generate a word from the vocabulary, or to copy
words from the input via the pointer mechanism.
Particularly, to calculate the context vector ct and
pointer probabilities in each decoding step, we take
the input word embeddings as the hidden states in
pooling- and memory-based approaches. In self-
attention-based approaches, we take the output rep-
resentations of the self-attention layer as the hidden
states.

4.3 Objective Function

Our goal is to maximize the output sentence proba-
bility given the input bag of words. Therefore, we
optimize the negative log-likelihood loss function:

J(Θ) = − 1

D
∑

(x,y)∈D
log p(y|x), (8)

where D is a set of bag-sentence pairs and Θ is the
parameters.

5 Experiments

We evaluate our method quantitatively and qualita-
tively on a large dataset for three typical sentence
organization scenarios described in Table 1.

5.1 Datasets

We construct a large dataset from The Wesbury
Lab Wikipedia Corpus3 (Shaoul, 2010), which is
created from the articles in English Wikipedia. We
tokenize all articles into sentences using the NLTK
package4, and replace all numbers with “__num__".
We retain experiment samples among the sentences
of length between 5 and 20 to focus on the ma-
jority case of the training corpus. Finally, we ran-
domly sample 10 million sentences for training,
100k for validation and 10k for testing. In the nor-
mal scenario, we randomly shuffle the words in
each sentence as the input of our model, and the
original sentence is the ground truth. Based on the
normal scenario, we construct the training data for
the noise scenario by randomly introducing some
noisy words to the source bag, and construct the
training data for the missing scenario by randomly
removing some words from the source bag.

We also compare the normal scenario of
our model on The English Penn Treebank

3The corpus removes all links and other irrelevant material
(e.g., navigation text, etc), and contains about one billion
words, over 2 million documents.

4http://www.nltk.org/api/nltk.tokenize.html
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BLEU ROUGE-L Perfect Matching Rate (PMR) Word Accuracy (WAcc)
Normal Noise Missing Normal Noise Missing Normal Noise Missing Normal Noise Missing

Pooling 0.4656 0.4382 0.2636 0.6917 0.6587 0.5470 0.1945 0.1461 0.0426 0.5685 0.5536 0.4437
LSTM 0.4736 0.4327 0.2538 0.7311 0.6761 0.5453 0.2203 0.1542 0.0390 0.5808 0.5563 0.4369

Memory 0.5030 0.4537 0.2664 0.7485 0.6939 0.5607 0.2404 0.1672 0.0450 0.6063 0.5789 0.4520
AttP 0.5740 0.5372 0.2882 0.7860 0.7396 0.5722 0.3014 0.2267 0.0479 0.6613 0.6367 0.4700
AttM 0.5886 0.5433 0.2914 0.7925 0.7465 0.5738 0.3208 0.2355 0.0512 0.6697 0.6461 0.4702

Table 2: Results on the test sets of three scenarios for Wikipedia dataset. We randomly generate noisy words with
the number between 1 and half length of the sentence from the vocabulary for each sentence as the input of the the
noise scenario. For the missing scenario, random words with number between 1 and half length of the sentence are
removed from each sentence. It is worth noting that we randomly shuttle input bags with three different seeds and
report the mean score of each metrics for LSTM.

data (PTB) (Marcus et al., 1993), which is a widely-
used dataset for word ordering task (Schmaltz et al.,
2016; Hasler et al., 2017). To facilitate fair compar-
isons, we use the data preprocessed by (Schmaltz
et al., 2016), which consists of 39, 832 training sen-
tences, 1, 700 validation sentences and 2, 416 test
sentences.

5.2 Implementation Details

For all models, we set the dimension of word em-
bedding as 128. In the LSTM-based encoder, the di-
mension of hidden unit is 256. In the self-attention-
based encoder, we set the number of head in Equa-
tion (6) as 8 and the hidden size of feed-forward
layer in Equation (7) as 256. All parameters are
tuned in the validation set. The vocabulary size is
50k. We use AdaGrad (Duchi et al., 2011) opti-
mizer on mini-batch of size 32, with learning rate
at 0.15 and gradient clipping at 2. In decoding, we
set the beam size as 5 for all models. It is worth not-
ing that we do not compare with the results derived
from the modified beam search method proposed
in Hasler et al. (2017) since we focus on investi-
gating the capability of a model to encode a bag
of words in this paper. So we compare all meth-
ods under standard beam search method (with a
beam size of 5) in our experiment, to highlight the
differences among different encoders.

5.3 Evaluation Metrics

In our settings, a shuffled sentence sometimes may
correspond to multiple reasonable outputs. Hence
we employ four automatic evaluation metrics to
evaluate the quality of a generated sentence from
different aspects. PMR (Perfect Matching Ra-
tio) measures the ratio of instances that are ex-
actly the same as the ground-truth. BLEU (Pa-
pineni et al., 2002) measures the quality of gen-
erated sentences by computing overlapping lexi-

BLEU ROUGE-L WAcc PMR
N-GRAM∗ 0.2330 - - -
RNNLM∗ 0.2450 - - -
Pooling 0.3118 0.5916 0.4105 0.0863
LSTM 0.3140 0.5875 0.3873 0.0850

Memory 0.3328 0.6053 0.4089 0.0941
AttP 0.3469 0.6169 0.4297 0.1013
AttM 0.3489 0.6194 0.4304 0.1059

Table 3: Results of word ordering task on PTB
datasets (beam size = 5), * denotes the results reported
in (Hasler et al., 2017).

cal units (e.g., unigram, bigram) with the refer-
ence sentences. ROUGE-L (Lin, 2004) measures
the longest common subsequence (LCS) between
the reference sentence and the generated sentence.
WAcc (Word Accuracy) is the negative word error
rate (WER) (Mangu et al., 2000). It measures the
edit distance between the generated sentence and
the reference sentence (higher is better). Besides,
we also conduct human evaluations to further an-
alyze our generated results and explore the detail
sort of wrong cases.

5.4 Overall Results

Table 2 illustrates the performance of all models for
three scenarios on the Wikipedia dataset. Firstly,
we can find that Pooling shows the worse perfor-
mance among all models. This is because directly
utilizing pooling operation on word embeddings
would lose track of much crucial context informa-
tion. Secondly, although LSTM processes the infor-
mation sequentially, it achieves better results than
Pooling in normal and noise scenarios. A possible
explanation for this might be that the parameters in
LSTM enable the mode to retain some bag informa-
tion.

In particular, self-attention-based approaches
(e.g., AttP and AttP) show the best results, and
outperform Memory by a large margin in terms of
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Figure 1: Performance in terms of different metrics by varying the number of missing words or noisy words. We
continuously introduce noisy words or missing words with the footstep of 2. The noisy words are randomly picked
from the vocabulary.
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Figure 2: Performance in terms of different metrics by varying the number of words in source bag.

all evaluation metrics, especially for normal and
noise scenarios. The phenomenon might be as-
cribed to the reason that Memory encodes the bag of
words by considering each word individually, while
Self-attention captures the semantic dependencies
among the input words from different semantic
aspects, leading to a more robust bag representa-
tion. Additionally, AttM shows better performance
than AttP, indicating that the memory-based fu-
sion method is more useful than the pooling-based
fusion method.

In addition, we can notice that the performance
of all models declines when noisy words are intro-
duced or some words are removed from the input
bag, but much more for removing some words.
This result may be explained by the fact that orga-
nizing a sentence from a partially observable bag
of words is more challenging since it requires back-
ground knowledge to predict the meaning of the
bag and further fill the missing words. On the other
hand, in the noise scenario, most noise words have
a small impact on learning the context represen-
tation of a bag and all words can be decoded (or
generated) via copy operations.

We further run experiments on the PTB dataset,
which is a benchmark for the word ordering task.
The results are shown in Table 3. We can observe

that various neural models outperform the tradi-
tional N-GRAM model and RNNLM. In these neu-
ral models, the results are consistent with those of
Wikipedia.

5.5 Discussions

The impact of the number of noisy/missing
words. To better understand the robustness of
different models under the noise scenario and the
missing scenario, we show how the performance
changes as the number of noise or missing words
changes in Figure 1. As seen, approaches based on
self-attention always outperform other approaches
in both scenarios, especially more significantly in
the noise scenario. Besides, the performance of
all models drops as the increases of the number of
missing words or noisy words, but more sharply for
the missing scenario. The results imply that: 1) In
the bag-to-sentence transformation problems, the
capability of neural models to resist noisy words is
better than the capability to resist missing words;
2) It is still challenging for neural models to handle
the bags where some information is missed.

The impact of bag size. We further study how
the size of the input bag influences the performance
of different models. Figure 2 illustrates how the
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log p(y|x)

Case-1

Input: . largest animals bears the they in the land also are only native taiwan and
Reference: they are also the largest land animals and the only native bears in taiwan .

Beam-1: they are also the only native animals and the largest land bears in taiwan . -0.2602
Beam-2: they are also the only native land animals and the largest bears in taiwan . -0.2708
Beam-3: they are also the largest land animals and the only native bears in taiwan . -0.3183

Case-2

Input: a , engineering there . time mechanical chairman long he for served , as of
Reference: there he served , for a long time , as chairman of mechanical engineering .

Beam-1: there , he served as chairman of mechanical engineering , for a long time . -0.0797
Beam-2: there , he served for a long time , as chairman of mechanical engineering . -0.0882
Beam-3: for a long time , there , he served as chairman of mechanical engineering . -0.2041

Case-3

Input: their cuddy again however . sends interrupts and , exchange away ali
Reference: however , cuddy interrupts their exchange again and sends ali away .

Beam-1: however , ali interrupts their exchange again and sends cuddy away . -0.1829
Beam-2: however , cuddy interrupts their exchange again and sends ali away . -0.2116
Beam-3: however , cuddy interrupts their exchange and sends ali away again . -0.2187

Table 4: Generation examples of 3 different results via beam search in our AttM under normal scenario. We show
the log generation probability for each beam candidate in the last column.

performance of AttM changes with respect to bags
with different numbers of words in the normal sce-
nario, where we bin test examples into buckets. We
observe a similar trend for all models: they first re-
main stable when the bag size less than 8, and then
decrease monotonically when the bag size keeps
increasing. The reason might be that when only a
few words are available in input bag, the model can
well capture the meaning of the whole sentence,
but when the bag becomes large enough, the se-
mantic combination of words will become more
complicated and the meaning of target sentence
will be hard to be grasped. Besides, self-attention-
based models always achieve the best performance,
which is consistent with the result in Table 2.

Multiple plausible outputs. Actually, for the
bag-to-sequence task when applied to language,
a bag of words sometimes may correspond to mul-
tiple reasonable and grammatical outputs. Such a
phenomenon is similar to response generation in
dialog systems, where several responses can be rea-
sonable. Table 4 shows the three generated results
of AttM (the most strong model) through beam
search. We can notice that all generated sentences
are grammatical and reasonable. In case-1, the ob-
jects “animals” and “land bears” are exchangeable
in terms of syntax; both “native” and “largest” can
describe these objects. Our model prefers “the only
native animals” and “the largest land bears”. Since
our model is a conditional language model learned
from the training corpus, and the decoder recon-
structs a sentence conditioned on the representation
of the input bag of words. The joint probability of
sentence-1 is larger than sentence-2. In case-2, “for
a long time” and “there” are adverbials, and are
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Figure 3: Performance of the neural model and human
in terms of different scenarios.

position variable. However, the meaning of all gen-
erated sentences remains the same. In case-3, both
“ali” and “cuddy” are names, thus they are undis-
tinguishable in this situation. Our model assigns a
higher probability to “ali interrupts their exchange
again and sends cuddy away”. Despite the lack of
order information, neural models can still organize
all possible sentences through beam search.

Neural Models Vs. Human. We are also curi-
ous about the ability of humans to organize sen-
tences from a bag of words. We first binned the
test set of the normal scenario into four buckets
according to the size of the input bag, and then ran-
domly selected 40 samples from each bucket. We
invited humans to organize the target sentence re-
garding the input bag using crowd-sourcing. Each
bag was randomly presented to 3 judges and we
retain the answer with the highest BLEU score. Fig-
ure 3(a) illustrates the BLEU score of humans and
the most competitive model AttM across different
bag sizes. We observe that both the performance of
humans and AttM become worse with the increase
of the bag size, which is consistent with the result
in Figure 2. Besides, AttM always shows better
performance than human, but the performance gap
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Annotated Types Ratio

Synonymous
(30%)

Exactly generated 16%
Two adverbials are exchanged 5%
Two coordinate clauses are exchanged 7%
Other reasons 2%

Non-synonymous
(57%)

The subject and object are exchanged 5%
The logic is unreasonable. 33%
Other reasons 19%

Table 5: The statistical analysis of 100 randomly se-
lected samples for AttM in normal scenario. We only
show the result of the grammatical part, and the propor-
tion of ungrammatical samples is 13%.

becomes smaller as the bag size decreases. This re-
sult indicates that humans are better at recognizing
small bags than large bags.

Besides, we also study how noisy words and
missing words impact the performance of humans
and neural models. Based on the above test set
randomly selected from the normal scenario, we
randomly introduced 1 or 2 noisy words to the
source bag denoting as noise-1, noise-2 respec-
tively, and randomly removed 1 or 2 words from
the source bag, denoting as missing-1, missing-2
respectively. We also invited humans to organize
a sentence regarding the input bag using crowd-
sourcing. Figure 3(b) presents the results of each
test set. We summarize our observations as follows:
(1) Both the performance of human and AttM get
worse when noisy words are introduced or some
words are removed; (2) Compared with neural mod-
els, humans are more robust to noisy words and
missing word in sentence organization; (3) The
performance AttM is significantly better than hu-
mans, but becomes comparable with humans when
2 words are randomly removed from the input bag.
The results imply that humans have a more strong
background knowledge of language to guess the
meaning of the target sentence and complete the
cloze test.

Error analysis. To further analyze the quality of
the generated sentence and in which case our model
fails to recover the original sentence, we invite four
educated annotators to judge the quality of 100 ran-
domly sampled sentences5 generated by AttM. An-
notators were asked to judge whether a generated
sentence is grammatical and the meaning of a gen-
erated sentence is the same as the ground truth. We
can find that 87% of generated sentences are gram-
matical and 30% of sentences share the same mean-
ing with the ground-truth. Among those grammat-

5We randomly select samples with a bag size greater than
or equal to 10 since they contain more error cases.
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the film was written and directed by larry cohen .

Figure 4: Visualization of attention weight in the 5-th
head (left) and 6-th head (right) in self-attention. The
target sentence is “the film was written and directed by
larry cohen .” “lysander” is a noisy word.

ical and synonymous samples, 46.7% (14/30) of
sentences are not exactly the same with the ground
truth in syntax. There are two main types of para-
phrase: the position of adverbials is exchanged or
the position of coordinate clauses is exchanged.
Among those grammatical and non-synonymous
samples, the logic of the majority sentences is un-
reasonable due to the position exchange of adver-
bials or coordinate clauses, and unreasonable com-
binations of semantic units. Besides, the semantics
of some sentences are changed because of the ex-
change of the subject and the object.

Attention visualization. Figure 4 shows the vi-
sualization of attention weights of different heads
in the 5-th block from the self-attention layer. We
can observe that self-attention can capture combina-
torial relations between the input words from differ-
ent semantic aspects. For instance, “cohen” shows
a strong correlation with “larry” in both heatmaps
since “Larry Cohen” is the name of a famous direc-
tor. Moreover, both “was” and “by” attend to “di-
rected” and “written”, composing the phrase “was
written (directed) by”. Such combinatorial rela-
tions can make the word representation more in-
formative, which contributes to the representation
learning of the bag of words. Additionally, we ob-
serve that almost all words but itself demonstrate
weak correlations with the noisy word “lysander”
in both heatmaps, demonstrating the advantages of
our model to tolerate noisy words.

6 Conclusions

In this paper, we present an empirical study to in-
vestigate the ability of neural models to organize
sentences from a bag of words under three typical
scenarios. We conclude our discussion with the
following findings:

• Self-attention is effective to capture the se-
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mantic dependencies between words in the
input bag and shows competitive performance
in bag-to-sentence transformation.

• Neural models have a certain degree of capa-
bility to organize a sentence from a bag of
words. However, it is still challenging for neu-
ral models to handle large bags or the bags
where some information is missing.

• Compared with humans, neural models show
a better capability to organize sentences from
a bag of words, especially in terms of large
bags. However, the performance of humans is
more robust to noisy words or missing words
than neural models.
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