
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1600–1612

June 6–11, 2021. ©2021 Association for Computational Linguistics

1600

Improving Neural RST Parsing Model with Silver Agreement Subtrees

Naoki Kobayashi1, Tsutomu Hirao2, Hidetaka Kamigaito1,
Manabu Okumura1, Masaaki Nagata2

1Institute of Innovative Research, Tokyo Institute of Technology,
2NTT Communication Science Laboratories, NTT Corporation

{kobayasi@lr., kamigaito@lr., oku@}pi.titech.ac.jp
{tsutomu.hirao.kp, masaaki.nagata.et}@hco.ntt.co.jp

Abstract

Most of the previous Rhetorical Structure The-
ory (RST) parsing methods are based on su-
pervised learning such as neural networks, that
require an annotated corpus of sufficient size
and quality. However, the RST Discourse
Treebank (RST-DT), the benchmark corpus
for RST parsing in English, is small due to
the costly annotation of RST trees. The lack
of large annotated training data causes poor
performance especially in relation labeling.
Therefore, we propose a method for improv-
ing neural RST parsing models by exploiting
silver data, i.e., automatically annotated data.
We create large-scale silver data from an un-
labeled corpus by using a state-of-the-art RST
parser. To obtain high-quality silver data, we
extract agreement subtrees from RST trees for
documents built using the RST parsers. We
then pre-train a neural RST parser with the
obtained silver data and fine-tune it on the
RST-DT. Experimental results show that our
method achieved the best micro-F1 scores for
Nuclearity and Relation at 75.0 and 63.2, re-
spectively. Furthermore, we obtained a re-
markable gain in the Relation score, 3.0 points,
against the previous state-of-the-art parser.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) is one of the most widely used
theories for representing the discourse structure
of a text as a tree. RST trees are a kind of con-
stituent tree, whose leaves are Elementary Dis-
course Units (EDUs), i.e., clause-like units, and
whose non-terminal nodes cover text spans con-
sisting of either a sequence of EDUs or a single
EDU. The label of a non-terminal node represents
the attribution of a text span, i.e., nucleus (N) or
satellite (S). A discourse relation is also assigned
between two adjacent non-terminal nodes.

In most cases, RST parsers have been devel-
oped on the basis of supervised learning algorithms

(Wang et al., 2017b; Yu et al., 2018; Kobayashi
et al., 2020; Lin et al., 2019; Zhang et al., 2020),
which require a high-quality annotated corpus of
sufficient size. Generally, they train the following
three components of the RST parsing: (1) struc-
ture prediction by splitting a text span consisting
of contiguous EDUs into two smaller ones or merg-
ing two adjacent spans into a larger one, (2) nu-
clearity status prediction for two adjacent spans
by solving a 3-class classification problem, and
(3) relation label prediction for two adjacent spans
by solving an 18-class classification problem (see
Section 3.3 for details). However, it is costly to
annotate RST trees for a huge collection of doc-
uments, and thus it is difficult to obtain a large
amount of human-annotated data for RST parsing.
As a result, research on RST parsing has focused
on English, with the largest annotated corpus being
the RST Discourse Treebank (RST-DT) (Carlson
et al., 2001), although even this is still small with
only 385 documents.1

Many RST parsing methods have recently been
developed based on neural models (Ji and Eisen-
stein, 2014; Li et al., 2014a, 2016; Liu and Lapata,
2017; Braud et al., 2016, 2017). Among them,
Kobayashi et al. (2020) is the current state-of-the-
art system and is based on the neural top-down
method. While its Span and Nuclearity scores
achieved the highest level, its Relation score still
has room for improvement. One of the reasons for
its poor Relation score might be its small amount of
training data for solving the 18-class classification
problem.

Currently, we can refer to various studies on
improving neural models for NLP tasks through
acquiring large-scale synthetic training data, some-
times called silver data. Among them, one of
the studies on Neural Machine Translation (NMT)

1We can find some exceptions for other languages such
as Spanish (da Cunha et al., 2011) and German (Stede and
Neumann, 2014).

mailto:kobayasi@lr.pi.titech.ac.jp
mailto:kamigaito@lr.pi.titech.ac.jp
mailto:oku@pi.titech.ac.jp
mailto:tsutomu.hirao.kp@hco.ntt.co.jp
mailto:masaaki.nagata.et@hco.ntt.co.jp

1601

(Sennrich et al., 2016) introduced a simple learn-
ing framework: first pre-train an NMT model with
silver data, i.e., pseudo-parallel data generated by
automatic back-translation, and then fine-tune it
with gold data, i.e., real parallel data, to overcome
the data sparseness problem. Since the frameworks
successfully improved the NMT systems, it has
become a standard approach.

Inspired by the above research, we propose a
method for improving a student neural parser by
exploiting large-scale silver data, thus generating
RST trees using an automatic RST parser.2 Specifi-
cally, we improve the state-of-the-art neural RST
parser (Kobayashi et al., 2020), in terms of Re-
lation, by employing another RST parser whose
Relation score is also state-of-the-art (Wang et al.,
2017b) as a teacher parser to generate the silver
data. To yield high-quality silver data, we extract
a collection of agreement subtrees (ASTs), which
are common subtrees among multiple RST trees
automatically parsed by the teacher parser with
different seeds. Our method includes an efficient
algorithm for extracting the agreement subtrees
to handle large-scale data. We first pre-train the
student parser by using the obtained silver data.
We then fine-tune parameters of the parser on gold
data, using the RST-DT. Experimental results on
the RST-DT clearly indicate the effectiveness of
our silver data. Our method obtained remarkable
Nuclearity and Relation F1 scores of 75.0 and 63.2,
respectively.

2 Related Work

Early studies on RST parsing were based on tra-
ditional supervised learning methods with hand-
crafted features and the shift-reduce or CKY-like
parsing algorithms (duVerle and Prendinger, 2009;
Feng and Hirst, 2012; Joty et al., 2013, 2015; Feng
and Hirst, 2014). Recently, Wang et al. (2017b)
proposed a shift-reduce parser based on SVMs and
achieved the current best results in classical statis-
tical models on the RST-DT. The method first built
nuclearity-labeled RST trees and then assigned re-
lation labels between two adjacent spans consisting
of a single or multiple EDUs.

Inspired by the success of neural networks in

2Nguyen et al. (2020) proposed a similar approach in NMT
and introduced a method named data diversification: it diversi-
fies the training data by using multiple forward and backward
translation models. We can find some weak supervision ap-
proaches for other discourse representation formalisms such
as (Badene et al., 2019).

many NLP tasks, several neural network-based
models have been proposed for RST parsing (Ji
and Eisenstein, 2014; Li et al., 2014a, 2016; Liu
and Lapata, 2017). Yu et al. (2018) proposed a
shift-reduce parser based on neural networks and
leveraged the information from their neural depen-
dency parsing model within a sentence for RST
parsing. The best Relation score on the RST-DT,
i.e., F1 of 60.2, was achieved with their method.

Recently, a top-down neural parser was proposed
(Lin et al., 2019) for use only at the sentence-
level. The method parses a tree in a depth-first
manner with a pointer-generator network. Zhang
et al. (2020) extended the method and applied it
to document-level RST parsing. Kobayashi et al.
(2020) proposed another top-down RST parsing
method exploiting multiple granularity levels in a
document and achieved the best Span and Nuclear-
ity scores on the RST-DT, i.e., F1 of 87.0 and 74.6,
respectively.

Since the RST-DT, the largest treebank, contains
only 385 documents, several studies have been con-
ducted on overcoming the problem of a limited
number of training data. Braud et al. (2016) lever-
aged multi-task learning not only with 13 related
tasks as an auxiliary task but also for multiple views
of discourse structures, such as Constituent, Nucle-
arity, and Relation. Braud et al. (2017) used multi-
lingual RST discourse datasets that share the same
underlying linguistic theory. Huber and Carenini
(2019) adopted distant supervision with an auxil-
iary task of sentiment classification to create large-
scale training data, i.e., they trained a two-stage
RST parser (Wang et al., 2017a) with RST trees
automatically built based on attention and senti-
ment scores from the Multiple-Instance Learning
network, which was trained with a review dataset.
However, these studies need other annotated cor-
pora than the RST-DT, which means we still face
the problem of being dependent on costly annotated
corpora. Jiang et al. (2016) proposed a framework
for enriching training data based on co-training to
improve the performance for infrequent relation
labels. However, the method failed to improve the
overall Relation score, while they did not aim at
improving the Span and Nuclearity scores.

Unsupervised RST parsing methods have also
been proposed recently (Kobayashi et al., 2019;
Nishida and Nakayama, 2020). Since they are unsu-
pervised, they do not require any annotated corpora.
However, they can predict only tree structures and

1602

Pstu Pstu

Ptch=1

…

Ptch=k

…Gold data:
RST-DT

Unlabeled
Documents
CNN

Silver data:
Agreement
subtrees

Teacher
parsers

Auto-
parsed
trees

Student
parser

Fine-tuningPre-training

Gold data:
RST-DT

Training

Auto-
parsed
trees

Figure 1: Overview of proposed method. In the subtree extraction step, the teacher RST parsers first annotate
trees to unlabeled documents, and then the proposed subtree extraction method constructs large silver data. In the
training step, the student parser is trained through pre-training and fine-tuning.

cannot predict nucleus and relation labels. There-
fore, the predicted trees cannot be used for learning
for predicting relation labels.

We should mention the relationship of our work
with semi-supervised learning as a machine learn-
ing framework. First, the reason why we do not
adopt self-training, where the student and teacher
parsers are the same, but instead use two different
parsers that rely on different parsing algorithms is
that we can acquire instances that the student parser
cannot correctly parse yet the teacher parser can
parse as the training data. Second, using multiple
different RST parsers in a semi-supervised manner
in our work might seem reminiscent of co- or tri-
training. While co- or tri-training is attractive, it
is time consuming to repeat the step of alternately
training multiple different neural network-based
parsers many times. Thus, previous studies have
focused on simplifying the repetition step in con-
stituency and dependency parsing (McClosky et al.,
2006; Yu et al., 2015; Pekar et al., 2014; Weiss
et al., 2015; Li et al., 2014b).

We believe our method is similar to these simpli-
fied version as a semi-supervised framework with
two different RST parsers.

3 Neural RST Parsing with Silver Data

3.1 Training Student Parser

Traditional semi-supervised learning frameworks,
such as self-, co-, and tri-training, tend to itera-
tively train a student classifier with the training
data that contains human-annotated (gold) data and
iteratively added silver data. Since neural network-
based models require a large amount of time for
training, the iterative procedure is not suitable for
training them. Furthermore, the training method
may be affected by the bias problem in relation-
label distribution because frequent labels in the
original training data become yet more frequent
in the future training data. For these reasons, we

adopt a simple pre-training and fine-tuning strategy,
which is inspired by the NMT research (Sennrich
et al., 2016), to train a student RST parser.

Since early statistical RST parsing methods re-
lied on handcrafted features, i.e., sentence-level
features obtained from parse trees and document-
level features, they require complete documents
with complete sentences for their feature extraction.
On the other hand, recent neural models do not nec-
essarily need such features. Thus, we can exploit
subtrees as training data for the neural networks.

Our method involves the following two steps:
First, we extract a collection of ASTs from RST
trees for each document in unlabeled data as the sil-
ver data. In this step, each document is first parsed
using multiple teacher RST parsers with different
seeds, trained with a gold dataset, the RST-DT. We
then apply our algorithm for extracting the ASTs,
which are common subtrees among multiple auto-
matically parsed RST trees. In the second step, we
pre-train the student RST parser with the collection
of ASTs to complement the amount of training data.
The parameters of the student parser are then fine-
tuned on the RST-DT. Figure 1 shows an overview
of our proposed method.

3.2 Extracting Agreement Subtrees

A good strategy for obtaining high-quality silver
data is to get agreement among the results of mul-
tiple RST parsers. However, it is difficult to reach
agreement for the entire RST trees at the document-
level because their size is big. Thus, we believe we
cannot collect enough silver data using agreement
for the whole trees. On the other hand, we find that
many subtrees agreed among multiple RST trees,
even when the whole trees do not agree with each
other. Accordingly, we extract ASTs as the silver
data.

To create large-scale silver data, we need an ef-
ficient algorithm that extracts the ASTs, i.e., com-

1603

Algorithm 1: Extracting Agreement Sub-
trees

Input: trees
Output: subtrees

1 AGREEMENT(root(tree))
2 subtrees← FINDROOT(root(tree))
3 Function AGREEMENT(span):
4 if Len(span)=1 then
5 return True

6 else
7 if Count(span)=k then
8 Sc(span)← True

9 else
10 Sc(span)← False

11 Sl(span)←AGREEMENT(leftChild(span))
12 Sr(span)←AGREEMENT(rightChild(span))
13 S(span)← Sc(span)∧Sl(span)∧Sr(span)
14 if S(span)=True then
15 return True

16 else
17 return False

18 Function FINDROOT(span):
19 subtrees← list()
20 Function SUBFINDROOT(span):
21 if Len(span) < lmin then
22 return
23 else if Len(span) > lmax then
24 SUBFINDROOT(leftChild(span))
25 SUBFINDROOT(rightChild(span))

26 else // lmin ≤ Len(span) ≤ lmax

27 if S(span)=True then
28 subtrees.append(span)

29 else
30 SUBFINDROOT(leftChild(span))
31 SUBFINDROOT(rightChild(span))

32 SUBFINDROOT(span)
33 return subtrees

mon subtrees among multiple RST trees for a doc-
ument. Note that we need to extract multiple maxi-
mal common subtrees among the RST trees. This
requires a different algorithm from the maximum
agreement subtree problem, which is well-known
in bioinformatics (Deepak and Fernández-Baca,
2014). Thus, we develop the algorithm in Algo-
rithm 1. This algorithm follows a tree-traversal
algorithm and works with O(n), where n indicates
the number of nodes in an RST tree.

In the algorithm, a tree is represented as a fully-
labeled nested span structure (see the example in
Figure 2). The function AGREEMENT receives an
arbitrary span as the input and returns a Boolean
value indicating whether the subtree for the span is
an AST. AGREEMENT first counts how many times
the input span appears in the set of given RST trees

and checks the status of the left and right children
of the input span. Len() returns the length of the
span and Count() returns the frequency of the fully-
labeled span among the trees, which indicates how
many trees agree on the subtree. The minimum and
maximum values of Count() are 1 and k respec-
tively, where k indicates the number of RST trees.
The variables Sc, Sl, and Sr store the Boolean value
for the input span and the left and right children of
the span, respectively. Here, root, leftChild, and
rightChild are functions for returning the root span
and the left and right children spans, respectively.
To obtain the status of each child, AGREEMENT

calls itself with the child span. When the frequency
of the input span is k, indicating all of the trees in
the set agree on the span, and the status of the left
and right children is True, indicating the left and
right children are ASTs, the function returns True.
Furthermore, the information regarding which sub-
trees are ASTs is stored in variable S during the
execution of AGREEMENT.

The function FINDROOT returns the list of ASTs,
based on the information in variable S, given by
AGREEMENT. FINDROOT first checks the S(span),
the Boolean value of the span. If it is True, the
function appends the span, corresponding to the
root node of an AST, to the output. Otherwise,
it searches both left and right children for ASTs
recursively. The function, therefore, lists all of the
maximal ASTs in a depth-first fashion, based on
the information in variable S.

In the algorithm, lmin and lmax are used to con-
trol the size of extracted ASTs. If the trees parsed
using the multiple teacher parsers significantly dif-
fer from each other, the extracted ASTs tend to
be small, which might become noise. To avoid
such noise, we do not take into account subtrees
with less than lmin EDUs. Excessively large sub-
trees are difficult to handle because they need a lot
of time and space for training. Therefore, if the
size of subtrees exceeds lmax, the algorithm tries
to find smaller ASTs from both their left and right
children.

Initially, we call the function AGREEMENT with
an arbitrary tree in multiple RST trees. We show an
example of extracting ASTs in Figure 2. Assume
the two trees at the left are from two RST parsers.
The right part represents how the algorithm works
with the top tree at the left as the input. In the
figure, two subtrees consisting of spans (1,4) and
(5,7) are extracted as ASTs since the frequency of

1604

(1,10)�

(1,4)�

(1,1)� (2,4)�

(2,3)� (4,4)�

(2,2)� (3,3)�

(5,10)�

(5,7)� (8,10)�

(5,5)� (6,7)�

(6,6)� (7,7)�

(8,9)� (10,10)�

(8,8)� (9,9)�

(1,10)�

(1,4)�

(1,1)� (2,4)�

(2,3)� (4,4)�

(2,2)� (3,3)�

(5,10)�

(5,8)� (9,10)�

(5,7)� (8,8)�

(5,5)� (6,7)�

(9,9)� (10,10)�

(6,6)� (7,7)�

AGREE(1,10)�

AGREE(1,4)�

AGREE(1,1)�AGREE(2,4)�

AGREE(2,3)�AGREE(4,4)�

AGREE(2,2)� AGREE(3,3)�

AGREE(5,10)�

AGREE(5,7)� AGREE(8,10)�

AGREE(5,5)�AGREE(6,7)�

AGREE(6,6)�AGREE(7,7)�

AGREE(8,9)�AGREE(10,10)�

AGREE(8,8)�AGREE(9,9)�

Sc(1,10)=T�
Sr(1,10)=F�
Sl(1,10)=T�Sc(1,4)=T�

Sr(1,4)=T�
Sl(1,4)=T�

Sc(1,4)=T�
Sr(1,4)=T�
Sl(1,4)=T�

Sc(2,3)=T�
Sr(2,3)=T�
Sl(2,3)=T�

Sc(5,7)=T�
Sr(5,7)=T�
Sl(5,7)=T�

Sc(6,7)=T�
Sr(6,7)=T�
Sl(6,7)=T�

Sc(8,10)=F�
Sr(8,10)=T�
Sl(8,10)=F�

Sc(8,9)=F�
Sr(8,9)=T�
Sl(8,9)=T�

Sc(5,10)=T�
Sr(5,10)=F�
Sl(5,10)=T�

S(2,2)=T� S(3,3)=T�

S(2,3)=T� S(4,4)=T�

S(1,1)=T� S(2,4)=T�

S(1,4)=T�

S(5,7)=T�

S(5,5)=T� S(6,7)=T�

S(6,6)=T� S(7,7)=T� S(8,8)=T� S(9,9)=T�

S(10,10)=T�S(8,9)=F�

S(8,10)=F�

S(5,10)=F�

S(10,10)=T�

S(1,10)=F�

N-S, Elab.�

S-N, Back.�

N-S, Cond.�

N-S, Attr.�

N-S, Cause�

N-N, List�

N-N, List�

N-S, Elab.�

N-S, Attr.�

N-S, Elab.�

S-N, Back.�

N-S, Cond.�

N-S, Attr.�

N-S, Cause�

N-N, Same.�N-S, Back.�

N-N, List�

N-N, List�

Figure 2: Example of extracting ASTs. Assume the left two trees are from two RST parsers. In the figure, red
spans are shared by the two trees. The right part represents how the algorithm works with the top tree in the left
as the input. Subtrees whose roots are spans (1,4) and (5,7) are extracted as ASTs. Note that we do not extract a
subtree in extracted ASTs as an AST.

these two spans and all their descendant spans is
2, which is the number of given RST trees. Note
that, while several spans, such as spans (2,3) and
(6,7), are also common subtrees, we do not extract
them since they are contained in either span (1,4)
or (5,7).

3.3 Span-based Neural Top-down Parser as
student Parser

As described in Section 3.1, the advantage of recent
neural models is that they can utilize the annotation
for partial documents, or subtrees, as training data.
Among the neural models, the span-based neural
top-down RST parsing method (Kobayashi et al.,
2020) achieved the best Span and Nuclearity scores.
Thus, we employ it as the student parser.

The method builds a tree by recursively splitting
a text span into two smaller ones while predicting
the nuclearity status and relation labels. As we ex-
plain below, the parser can be trained with arbitrary
subtrees for spans consisting of EDUs.

Structure Prediction
For each position k in a span which consists of i-th
EDU to j-th EDU, a scoring function, ssplit(i, j, k),
is defined as follows:

ssplit(i, j, k) = h>i:kWuhk+1:j + v>` hi:k + v>r hk+1:j , (1)

where Wu is a weight matrix and v` and vr
are weight vectors corresponding to the left and

right spans, respectively. hi:k and hk+1:j are de-
fined as follows: hi:k = MLPleft(ui:k), hk+1:j =
MLPright(uk+1:j), where MLP∗ is the multi-layer
perceptron. The vector representation of a span,
ui:j , is obtained by feeding word embedding vec-
tors into LSTMs. Then, the span is split at position
k that maximizes Eq. (1):

k̂ = argmaxk∈{i,...,j−1}[ssplit(i, j, k)]. (2)

Label Prediction
When splitting a span at position k, the score of
the nuclearity status and relation labels for the two
spans is defined as follows:

slabel(i, j, k, `) = W`MLP([ui:k; uk+1:j ; u1:i; uj:n]), (3)

where W` is a weight matrix and u1:i;uj:n are vec-
tor representation of left and right spans that appear
outside the current focus. Then, the label that max-
imizes Eq. (3) is assigned to the spans:

ˆ̀= argmax
`∈L

[slabel(i, j, k, `)], (4)

where L denotes a set of valid nuclearity status
combinations, {N-S,S-N,N-N}, for predicting the
nuclearity, and a set of relation labels, {Elaboration,
Condition,. . .}, for predicting the relation. Accord-
ingly, we solve a 3-class classification problem for
the nuclearity labeling and an 18-class classifica-
tion problem for the relation labeling. Note that the
weight parameters W` and MLP for the nuclearity
and relation labeling are separately learned.

1605

Parameter Optimization
All parameters, Wu, W`, vr, v`, and the parameters
for LSTMs are optimized by using margin-based
learning. When the correct splitting position k∗

and labels `∗ are given, loss functions for splitting
and labeling are defined as follows:

max(0, 1+ssplit(i, j, k
∗)−ssplit(i, j, k̂)),

max(0, 1+slabel(i, j, k̂, `
∗)−slabel(i, j, k̂, ˆ̀)).

(5)

By minimizing the sum of the losses in each split-
ting point, the parameters are optimized.

3.4 Two-stage Parser as Teacher Parser
Since the student parser still has room for improve-
ment in Relation, it is desirable to utilize another
state-of-the-art parser based on a different parsing
algorithm with a good Relation score. While the
current best Relation score was achieved by NNDis-
Parser (Yu et al., 2018), we cannot reproduce this
score with their official code. Therefore, we em-
ploy the two-stage parser (Wang et al., 2017b),
which obtained the second-best Relation score, as
the teacher parser. This two-stage parser is based
on a shift-reduce parsing algorithm and utilizes
SVMs to determine actions to build trees. Since
their SVMs are optimized by a dual coordinate de-
scent method, we build multiple two-stage parser
models with different seeds to obtain enough agree-
ment between teacher parsers,3 and create silver
data by the agreement among the parsers.

4 Experiments

4.1 Datasets
We used the RST-DT to evaluate the performance
of our student RST parser and compared it with
state-of-the-art parsers. It is officially divided into
347 documents as the training dataset and 38 docu-
ments as the test dataset. Since there is no develop-
ment dataset, we used a part of the training dataset,
40 documents, as the development dataset by fol-
lowing the previous study (Heilman and Sagae,
2015). By following conventional studies, we used
gold EDU segmentation for the RST-DT. The train-
ing and development datasets were used as gold
data to fine-tune our student parser.

To obtain silver data for pre-training, we used the
CNN dataset (Hermann et al., 2015). To parse each
document, we split sentences into EDUs by using

3We could not adopt multiple different parser architectures,
for example, the Two-stage parser and Span-based parser,
because the agreement was low.

Tree type lmin # of trees # of nodes

DT - 91,536 8,162,114

ADT - 2,142 57,940

AST

5 534,352 4,087,989
6 387,636 3,501,125
7 290,532 3,015,605
8 223,101 2,611,019
9 175,709 2,279,275

10 140,384 1,996,675

Table 1: Number of trees and nodes in each type of sil-
ver data obtained from the CNN dataset. Note that we
utilized only 91,536 documents that could go through
the pre-processing with the CoreNLP toolkit.

the Neural EDU Segmenter (Wang et al., 2018)4

and applied the two-stage parser.

4.2 Settings

lmin and lmax for AST extraction: Since the
number of EDUs for a document in the RST-DT is
from 7 to 240, we selected lmin with a range from
5 to 10 and set lmax to 240. Based on the results
for the development dataset, lmin was fixed to 9
(see Appendix A for details).
Student Parser: We used the official code of the
span-based neural top-down parsing method.5 The
dimension of the hidden layers was set to 500.
We trained the model in 5 and 10 epochs for pre-
training and fine-tuning, respectively. Other pa-
rameters of the model and an optimizer were the
same as those used by Kobayashi et al. (2020) (see
Appendix E for details).

Kobayashi et al. (2020) achieved the best results
in the D2P2S2E setting, training the models in
three levels of granularity, i.e., paragraph trees for
documents, sentence trees for paragraphs, and EDU
trees for sentences. This setting requires us to train
many models corresponding to multiple granularity
levels. To simplify this, we trained only the model
for building an RST tree whose leaves are EDUs
for a document, which corresponds to their D2E
setting. In decoding, we split spans at sentence and
paragraph boundaries to make the setting closer to
D2P2S2E.

We also used ensemble decoding by following

4https://github.com/PKU-TANGENT/
NeuralEDUSeg

5https://github.com/nttcslab-nlp/
Top-Down-RST-Parser

https://github.com/PKU-TANGENT/NeuralEDUSeg
https://github.com/PKU-TANGENT/NeuralEDUSeg
https://github.com/nttcslab-nlp/Top-Down-RST-Parser
https://github.com/nttcslab-nlp/Top-Down-RST-Parser

1606

Model
Average Ensemble

S N R F S N R F

SBP 86.3 73.1 57.6 57.3 87.1 74.6 60.0 59.6

SBP+DT 86.9 74.1 61.8 61.0 87.4 74.7 62.7 61.7
SBP+ADT 86.6 73.5 59.5 58.8 86.9 74.3 60.5 59.7
SBP+AST 86.8 74.7 62.5 61.8 87.1 75.0 63.2 62.6

Table 2: Micro-averaged F1 scores of span-based neural top-down parser with or without silver data on the test
dataset of the RST-DT. S, N, R, and F represent Span, Nuclearity, Relation, and Full scores, respectively. The best
score for each metric in the average and ensemble settings is indicated with bold.

Kobayashi et al. (2020). Since it takes a large
amount of time to train multiple models in pre-
training, we trained only a single model in the pre-
training stage, while multiple models were trained
in the fine-tuning stage with the pre-trained model
as the initial state.
Teacher parser:6 We used the official code of the
two-stage parsing method7 and re-trained it four
times with different random seeds. A smaller value
of k made reliability of the agreement lower since
we could not exclude coincidentally agreed trees.
On the other hand, a larger value required us more
time to create silver data, while the reliability of
the agreement is high. Thus, we set k to 4, that is a
moderate number in terms of both the reliability of
the agreement and the data creation time.

4.3 Evaluation Metrics

By following previous studies (Sagae and Lavie,
2005), we transformed RST-trees into right-heavy
binary trees and evaluated system results with
micro-averaged F1 scores of Span, Nuclearity, Re-
lation, and Full, based on RST-Parseval (Marcu,
2000). Span, Nuclearity, Relation, and Full were
used to evaluate unlabeled, nuclearity-labeled,
relation-labeled, and fully-labeled tree structures,
respectively. Since Morey et al. (2017) made a
suggestion to use a standard parseEval toolkit for
evaluation, we also report the results using this in
Appendix C.

4.4 Compared Methods

To demonstrate the effectiveness of our proposed
method, we pre-trained the span-based neural top-
down parser, i.e., our student parser, in various
settings for creating the silver data and compared

6We show the results for a case of using SBP as a teacher
parser in Appendix B.

7https://github.com/yizhongw/StageDP

the performance after fine-tuning on the RST-DT.
Table 1 summarizes the statistics of the different
types of silver data. ‘DT’ denotes RST trees ob-
tained by using a single two-stage parser. The num-
ber of RST trees is the same as that of documents
in the CNN dataset. ‘ADT’ denotes agreement
document-level RST trees, i.e., the cases in which
the parsers built the same trees for the whole docu-
ment. ‘AST’ denotes ASTs of RST trees obtained
from the teacher parsers.

5 Results and Discussion

5.1 Different Methods for Constructing
Silver Data

Table 2 shows the average and ensemble scores
with five models for different types of silver data.
In the table, SBP indicates the results obtained from
the original span-based neural top-down parser,
which means the parser was trained only with the
RST-DT; this setting is without any silver data.

With AST as the silver data, performance in all
metrics improved against the baseline. In most met-
rics, AST achieved the best scores. In particular,
the gains in Relation and Full were impressive. DT
and ADT, which consist of document-level RST
trees, also outperformed the baseline. However, the
gains against the baseline were smaller than those
by AST. We believe this is related to the size and
quality of the silver data. The number of trees and
nodes in ADT is only 2,142 and 57,940, respec-
tively, while AST has 175,709 trees and 2,279,275
nodes. Thus, a small number of silver data for
pre-training is not effective. On the other hand,
while DT has only 91,536 trees, the number of
their nodes is huge, at about 8,000 K. The lower
score of DT would come from unreliable parse
trees contained in the silver data built by a single
teacher parser. As described above, to pre-train

https://github.com/yizhongw/StageDP

1607

the student parser, we do not need to use the en-
tire RST trees for documents. Thus, AST, with a
large collection of RST subtrees, is more effective
than the other approaches. Since the training time
depends on the number of nodes contained in the
data, SBP+AST can be learned in a quarter of the
time required by SBP+DT. Consequently, AST has
another advantage against DT.

Furthermore, the performance of averaging five
models was greatly improved by pre-training with
the silver data. The gains against the baseline were
larger than those for ‘Ensemble,’ and the differ-
ences between their performances became small.
The neural model tends to converge to a different
local optimum solution by mini-batch training, so
the convergence is not stable when the data size
is small. Pre-training can improve this. This is
another advantage of pre-training with silver data.

We also compare the results of our parser pre-
trained with AST with and without fine-tuning in
Appendix D.

5.2 Effect of Data Size

To investigate how the data size of AST for pre-
training affects the performance, we show Span,
Nuclearity, Relation, and Full scores while vary-
ing the size in Figure 3. Span scores showed only
small gains even by increasing the amount of data
because identifying splitting points for spans is
a simple 2-class classification problem. On the
other hand, identifying nuclearity and relation la-
bels is a multi-class classification problem. Thus,
we believe we need more training data than that
for identifying splitting points. In particular, the
Relation score could be improved with more silver
data.

5.3 Detailed Analysis of Relation Labeling

To investigate the effectiveness of SBP+AST in
more detail, we show Relation F1 scores for re-
lation labels with SBP, SBP+AST, and the two-
stage parser in Figure 4. The results of SBP and
SBP+AST were obtained from a five-model ensem-
ble. In most relation labels, since the two-stage
parser, the teacher parser, is comparable or supe-
rior to SBP, i.e., the student parser, the performance
of SBP+AST can be improved. It finally outper-
formed the two-stage parser by introducing pre-
training with silver data, even for less frequent rela-
tion labels. Furthermore, SBP+AST can correctly
parse for some relation labels that the student parser

55

60

65

70

75

80

85

90

1,141
(5%)

2,290
(10%)

5,701
(25%)

11,389
(50%)

22,793
(100%)

M
ic

ro
-a

ve
ra

ge
d

F 1

Number of nodes [x100]

S

N

R

F

Figure 3: Results of changing the data size used for pre-
training. The scores are from a five-model ensemble
with SBP+AST. The solid lines represent the scores for
SBP+AST by changing the data size. The dotted lines
represent SBP, which does not depend on the size.

Model S N R F

Two-stage Parser 86.0 72.4 59.7 58.8
NNDisParser* 85.5 73.1 60.2 59.9
NNDisParser 85.9 72.5 59.5 58.9
SpanBasedParser 87.1 74.6 60.0 59.6

SBP+AST 87.1 75.0 63.2 62.6

Table 3: Comparison of state-of-the-art parsers. * in-
dicates reported scores. The best score in each metric
is indicated in bold. Our model is statistically signifi-
cantly better than underlined scores at p-level < 0.01
in pairwise comparison.8

cannot handle, by acquiring training instances with
the help of the teacher parser.

5.4 Comparison with state-of-the-art parsers

Finally, we compare our SBP+AST with the en-
semble to current state-of-the-art parsers. Table
3 shows the micro-averaged F1 scores. We used
Paired Bootstrap Resampling (Koehn, 2004) for
the significance test. We can see that our method
achieved the best scores except for Span. The gains
against the previous best scores were 0.4, 3.0, and
2.7 points for Nuclearity, Relation, and Full, re-
spectively. In particular, the gains for Relation and
Full are remarkable.

8Since the previous best scores for Relation and Full are
reported scores, and we could not obtain the authors’ data, we
could not perform a significance test against them.

1608

0

10

20

30

40

50

60

70

80

90

100
TSPSBP SBP + AST

ELAB

JOIN

ATTR

SAME

CONT

TEMP

BACK

EXPL

CAUS

EVAL

COND

ENAB

T-CO

T-CH

COMP

SUMM

MANN

TEXT

(796) (424) (343) (254) (210) (115) (111) (111) (95) (81) (48) (46) (40) (39) (32) (27) (26) (18)

Figure 4: F1 scores of SBP, SBP+AST, and the two-stage parser (TSP) for each relation label: ELABORATION,
JOINT, ATTRIBUTION, SAME-UNIT, CONTRAST, TEMPORAL, BACKGROUND, EXPLANATION, CAUSE, EVALUATION,
CONDITION, ENABLEMENT, TOPIC-COMMENT, COMPARISON, SUMMARY, MANNER-MEANS, TOPIC-CHANGE, and
TEXTUAL-ORGANIZATION. Relation labels are arranged in descending order of their frequency, shown in parenthesis
under their label.

6 Conclusion

To solve the problem of the limited amount of train-
ing data available for neural RST parsing, we pro-
posed a method of exploiting agreement subtrees
as silver data: We pre-train a parser with the silver
data and fine-tune it with the gold data. We also
presented an algorithm that efficiently extracts over-
lapping subtrees as the agreement subtrees from
multiple trees.

Experimental results on the RST-DT demon-
strated that our method significantly improves the
performance of relation-labeled and fully-labeled
F1 scores, which are strongly affected by data
sparseness due to a small number of training data.
Furthermore, the results showed that our method
achieves the state-of-the-art nuclearity-labeled,
relation-labeled, and fully-labeled F1 scores.

References

Sonia Badene, Kate Thompson, Jean-Pierre Lorré, and
Nicholas Asher. 2019. Data programming for learn-
ing discourse structure. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 640–645, Florence, Italy.
Association for Computational Linguistics.

Chloé Braud, Maximin Coavoux, and Anders Søgaard.
2017. Cross-lingual RST discourse parsing. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 292–304,

Valencia, Spain. Association for Computational Lin-
guistics.

Chloé Braud, Barbara Plank, and Anders Søgaard.
2016. Multi-view and multi-task training of RST
discourse parsers. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 1903–1913,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurovsky. 2001. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure Theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.

Iria da Cunha, Juan-Manuel Torres-Moreno, and Ger-
ardo Sierra. 2011. On the development of the RST
Spanish treebank. In Proceedings of the 5th Linguis-
tic Annotation Workshop, pages 1–10, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Akshay Deepak and David Fernández-Baca. 2014.
Enumerating all maximal frequent subtrees in collec-
tions of phylogenetic trees. Algorithms Mol. Biol.,
9:16.

David duVerle and Helmut Prendinger. 2009. A novel
discourse parser based on support vector machine
classification. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 665–673,
Suntec, Singapore. Association for Computational
Linguistics.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
discourse parsing with rich linguistic features. In

https://doi.org/10.18653/v1/P19-1061
https://doi.org/10.18653/v1/P19-1061
https://www.aclweb.org/anthology/E17-1028
https://www.aclweb.org/anthology/C16-1179
https://www.aclweb.org/anthology/C16-1179
https://www.aclweb.org/anthology/W01-1605
https://www.aclweb.org/anthology/W01-1605
https://www.aclweb.org/anthology/W11-0401
https://www.aclweb.org/anthology/W11-0401
https://doi.org/10.1186/1748-7188-9-16
https://doi.org/10.1186/1748-7188-9-16
https://www.aclweb.org/anthology/P09-1075
https://www.aclweb.org/anthology/P09-1075
https://www.aclweb.org/anthology/P09-1075
https://www.aclweb.org/anthology/P12-1007
https://www.aclweb.org/anthology/P12-1007

1609

Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 60–68, Jeju Island, Korea. As-
sociation for Computational Linguistics.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints
and post-editing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 511–
521, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Michael Heilman and Kenji Sagae. 2015. Fast rhetori-
cal structure theory discourse parsing.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems
28, pages 1693–1701. Curran Associates, Inc.

Patrick Huber and Giuseppe Carenini. 2019. Pre-
dicting discourse structure using distant supervision
from sentiment. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2306–2316, Hong Kong, China. As-
sociation for Computational Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion learning for text-level discourse parsing. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13–24, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

Kailang Jiang, Giuseppe Carenini, and Raymond Ng.
2016. Training data enrichment for infrequent dis-
course relations. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2603–2614,
Osaka, Japan. The COLING 2016 Organizing Com-
mittee.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and
Yashar Mehdad. 2013. Combining intra- and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 486–496,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A novel discriminative framework
for rhetorical analysis. Computational Linguistics,
41(3):385–435.

Naoki Kobayashi, Tsutomu Hirao, Hidetaka Kami-
gaito, Manabu Okumura, and Masaaki Nagata. 2020.
Top-down rst parsing utilizing granularity levels in

documents. In Proceedings of the 2020 Conference
on Artificial Intelligence for the American, pages
8099–8106, New York, America.

Naoki Kobayashi, Tsutomu Hirao, Kengo Naka-
mura, Hidetaka Kamigaito, Manabu Okumura, and
Masaaki Nagata. 2019. Split or merge: Which is
better for unsupervised RST parsing? In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 5797–5802, Hong Kong, China. As-
sociation for Computational Linguistics.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Jiwei Li, Rumeng Li, and Eduard Hovy. 2014a. Recur-
sive deep models for discourse parsing. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2061–2069, Doha, Qatar. Association for Computa-
tional Linguistics.

Qi Li, Tianshi Li, and Baobao Chang. 2016. Discourse
parsing with attention-based hierarchical neural net-
works. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 362–371, Austin, Texas. Association for Com-
putational Linguistics.

Zhenghua Li, Min Zhang, and Wenliang Chen.
2014b. Ambiguity-aware ensemble training for
semi-supervised dependency parsing. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 457–467, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

Xiang Lin, Shafiq Joty, Prathyusha Jwalapuram, and
M Saiful Bari. 2019. A unified linear-time frame-
work for sentence-level discourse parsing. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4190–
4200, Florence, Italy. Association for Computational
Linguistics.

Yang Liu and Mirella Lapata. 2017. Learning contex-
tually informed representations for linear-time dis-
course parsing. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1289–1298, Copenhagen, Den-
mark. Association for Computational Linguistics.

W.C. Mann and S.A Thompson. 1987. Rhetorical struc-
ture theory: A theory of text organization. Technical
Report ISI/RS-87-190, USC/ISI.

Daniel Marcu. 2000. The Theory and Practice of Dis-
course Parsing and Summarization. MIT Press.

https://doi.org/10.3115/v1/P14-1048
https://doi.org/10.3115/v1/P14-1048
https://doi.org/10.3115/v1/P14-1048
http://arxiv.org/abs/1505.02425
http://arxiv.org/abs/1505.02425
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.18653/v1/D19-1235
https://doi.org/10.3115/v1/P14-1002
https://doi.org/10.3115/v1/P14-1002
https://www.aclweb.org/anthology/C16-1245
https://www.aclweb.org/anthology/C16-1245
https://www.aclweb.org/anthology/P13-1048
https://www.aclweb.org/anthology/P13-1048
https://www.aclweb.org/anthology/P13-1048
https://doi.org/10.1162/COLI_a_00226
https://doi.org/10.1162/COLI_a_00226
https://aaai.org/ojs/index.php/AAAI/article/view/6321
https://aaai.org/ojs/index.php/AAAI/article/view/6321
https://doi.org/10.18653/v1/D19-1587
https://doi.org/10.18653/v1/D19-1587
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://doi.org/10.3115/v1/D14-1220
https://doi.org/10.3115/v1/D14-1220
https://doi.org/10.18653/v1/D16-1035
https://doi.org/10.18653/v1/D16-1035
https://doi.org/10.18653/v1/D16-1035
https://doi.org/10.3115/v1/P14-1043
https://doi.org/10.3115/v1/P14-1043
https://doi.org/10.18653/v1/P19-1410
https://doi.org/10.18653/v1/P19-1410
https://doi.org/10.18653/v1/D17-1133
https://doi.org/10.18653/v1/D17-1133
https://doi.org/10.18653/v1/D17-1133

1610

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 152–
159, New York City, USA. Association for Compu-
tational Linguistics.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2017. How much progress have we made on RST
discourse parsing? a replication study of recent re-
sults on the RST-DT. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1319–1324, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Xuan-Phi Nguyen, Shafiq Joty, Kui Wu, and Ai Ti Aw.
2020. Data diversification: A simple strategy for
neural machine translation. In Advances in Neural
Information Processing Systems, volume 33, pages
10018–10029. Curran Associates, Inc.

Noriki Nishida and Hideki Nakayama. 2020. Unsuper-
vised discourse constituency parsing using viterbi
em. Transactions of the Association for Computa-
tional Linguistics, pages 215–230.

Viktor Pekar, Juntao Yu, Mohab El-karef, and Bernd
Bohnet. 2014. Exploring options for fast domain
adaptation of dependency parsers. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 54–65,
Dublin, Ireland. Dublin City University.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Pars-
ing Technology, pages 125–132, Vancouver, British
Columbia. Association for Computational Linguis-
tics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Manfred Stede and Arne Neumann. 2014. Potsdam
commentary corpus 2.0: Annotation for discourse
research. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 925–929, Reykjavik, Iceland. Eu-
ropean Language Resources Association (ELRA).

Xinhao Wang, James Bruno, Hillary Molloy, Keelan
Evanini, and Klaus Zechner. 2017a. Discourse anno-
tation of non-native spontaneous spoken responses
using the Rhetorical Structure Theory framework.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 263–268, Vancouver, Canada.
Association for Computational Linguistics.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017b.
A two-stage parsing method for text-level discourse
analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 184–188, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward fast and accurate neural discourse segmen-
tation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 962–967, Brussels, Belgium. Association for
Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing,
China. Association for Computational Linguistics.

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. 2015.
Domain adaptation for dependency parsing via self-
training. In Proceedings of the 14th International
Conference on Parsing Technologies, pages 1–10,
Bilbao, Spain. Association for Computational Lin-
guistics.

Nan Yu, Meishan Zhang, and Guohong Fu. 2018.
Transition-based neural RST parsing with implicit
syntax features. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 559–570, Santa Fe, New Mexico, USA. Asso-
ciation for Computational Linguistics.

Longyin Zhang, Yuqing Xing, Fang Kong, Peifeng Li,
and Guodong Zhou. 2020. A top-down neural archi-
tecture towards text-level parsing of discourse rhetor-
ical structure. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6386–6395, Online. Association for
Computational Linguistics.

https://www.aclweb.org/anthology/N06-1020
https://doi.org/10.18653/v1/D17-1136
https://doi.org/10.18653/v1/D17-1136
https://doi.org/10.18653/v1/D17-1136
https://proceedings.neurips.cc/paper/2020/file/7221e5c8ec6b08ef6d3f9ff3ce6eb1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7221e5c8ec6b08ef6d3f9ff3ce6eb1d1-Paper.pdf
https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00312
https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00312
https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00312
https://www.aclweb.org/anthology/W14-6105
https://www.aclweb.org/anthology/W14-6105
https://www.aclweb.org/anthology/W05-1513
https://www.aclweb.org/anthology/W05-1513
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
http://www.lrec-conf.org/proceedings/lrec2014/pdf/579_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/579_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/579_Paper.pdf
https://doi.org/10.18653/v1/P17-2041
https://doi.org/10.18653/v1/P17-2041
https://doi.org/10.18653/v1/P17-2041
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/P17-2029
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.18653/v1/D18-1116
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.18653/v1/W15-2201
https://doi.org/10.18653/v1/W15-2201
https://www.aclweb.org/anthology/C18-1047
https://www.aclweb.org/anthology/C18-1047
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569

1611

63

63.5

64

64.5

65

5 6 7 8 9 10

M
ic

ro
-a

ve
ra

ge
d

F 1

len_min

Figure 5: Fully-labeled F1 scores with different lmin

on the development dataset.

Model S N R F

SBP+DT (SBP) 87.1 74.5 60.3 59.7
SBP+DT (TSP) 87.4 74.7 62.7 61.7

SBP (Kobayashi et al., 2020) 87.1 74.6 60.0 59.6

Table 4: Comparison of teacher parsers.

A Effects of Parameter lmin

Figure 5 shows fully-labeled F1 scores in changing
lmin on the development dataset. From the figure,
it is clear that the F1 score was changed with lmin.
The best F1 score was achieved by lmin = 9. The
results indicate that a large number of smaller sub-
trees prevents better pre-training of SBP. A small
number of larger subtrees is also not useful for the
pre-training.

B Performance of a case when the
Span-based parser was used both as
teacher and student parsers

We used different parsers for teacher and student
parsers. In this section, we examine the setting of
using the Span-based parser both as teacher and
student parsers. We compare DT (SBP) and DT
(TSP) as the silver datasets used for pre-training
and show the results in Table 4. The results show
that SBP+DT (SBP) does not obtain any gain of
performance compared to SBP, that does not use
any silver dataset. The better results with SBP+DT
(TSP) demonstrate the effectiveness of using differ-
ent types of parsers for teacher and student parsers.

C Performance with Original Parseval

In this paper, we used the gold EDU segmenta-
tion following conventional studies and evaluated
the model performance for binarized trees with
RST-Parseval (Marcu, 2000). Morey et al. (2017)
reported that when evaluating the performance of
binarized trees over manual EDU segmentation, the
level of agreement between RST trees is artificially
raised. To avoid this, they recommended using the
original Parseval for the trees of label-attachment
decisions. Following them, we evaluated our mod-
els with the original Parseval9 and show the results
in Table 5.

The results show the same tendency as that when
employing RST-Parseval as the evaluation metrics.
That is, SBP+AST obtained the best results for
Nuclearity, Relation, and Full.

Model S N R F

(Feng and Hirst, 2014)* 68.6 55.9 45.8 44.6
(Ji and Eisenstein, 2014)* 64.1 54.2 46.8 46.3

(Wang et al., 2017b)** 72.0 60.5 50.4 48.2
(Yu et al., 2018)** 71.8 60.3 49.4 48.4
(Zhang et al., 2020) 67.2 55.5 45.3 44.3
(Kobayashi et al., 2020)** 74.1 63.7 48.8 47.9

SBP+AST 74.1 64.7 54.1 52.7

Table 5: Micro-averaged F1 scores with the original
Parseval (Morey et al., 2017). * indicates the reported
scores in (Morey et al., 2017). ** indicates the scores
for the re-produced models.

D Performance of Parser with
Pre-training Alone

In our method, we applied both pre-training and
fine-tuning to the target neural parser because it is
the conventional way to improve neural network-
based models. However, this might be different
from the usual way of re-training models based on
traditional supervised learning in a semi-supervised
fashion. To investigate whether the approach with
both pre-training and fine-tuning is effective, we
compared other training methods, specifically, pre-
training alone with the CNN and with both the
CNN and the RST-DT, and the comparison results
are shown in Table 6. The scores of Nucleus, Re-
lation, and Full were not statistically significantly
different from each other, which indicates that the
difference between the two methods is minimal.

9We utilized Morey’s code, available at https://
github.com/irit-melodi/educe/.

https://github.com/irit-melodi/educe/
https://github.com/irit-melodi/educe/

1612

Model S N R F

Pretrain w/ RST-DT 85.9 72.4 59.3 58.8
Pretrain w/o RST-DT 86.3 72.3 59.1 58.5

SBP+AST (Ave.) 86.8 74.7 62.5 61.8
SBP+AST (Ens.) 87.1 75.0 63.2 62.6
Two-stage parser 86.0 72.4 59.7 58.8

Table 6: Comparison of the training methods (pre-
training alone v.s. pre-training and fine-tuning)

.

Furthermore, compared with the performance of
the two-stage parser, i.e., our teacher parser, it is
confirmed that our silver data provides adequate
quality. Compared with the fine-tuned models, it
is also confirmed that fine-tuning improves perfor-
mance.

E Hyperparameters

Table 7 shows the hyperparameters of SBP+AST.

Computing Infrastructure Nvidia TITAN RTX

Training duration (Pre-train)
20 hours

with lmin=9

Training duration (Fine-tune) 30 minutes

Hyperparameters

number of epochs (Pre-train) 5

number of epochs (Fine-tune) 10

batch size (# of documents) 10

embedding GloVe and ELMo

hidden size [250, 500]

dropout 0.4

learning rate scheduler Exponential decay

scheduler reduction factor 0.99

optimizer Adam

learning rate 0.001

gradient clipping 5.0

validation criteria Micro-averaged F1 of Relation

lmin [5, 6, 7, 8, 9, 10]

lmax 240

Table 7: SBP+AST search space. Values in bold indicate best assignments.

