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Abstract

One of the first building blocks to create a
voice assistant is the task of tagging entities
or attributes in user queries. This can be par-
ticularly challenging when the number of en-
tities are in the tenth of millions, as is the
case of music catalogs. Training slot tagging
models at an industrial scale requires large
quantities of accurately labeled user queries,
which are often hard and costly to gather.
On the other hand, voice assistants typically
collect plenty of unlabeled queries that often
remain unexploited. This paper presents a
weakly-supervised methodology to label large
amounts of voice query logs, enhanced with a
manual filtering step. Our experimental eval-
uations show that slot tagging models trained
on weakly-supervised data outperform models
trained on hand-annotated or synthetic data,
at a lower cost. Further, manual filtering of
weakly-supervised data leads to a very signif-
icant reduction in Sentence Error Rate, while
allowing us to drastically reduce human cura-
tion efforts from weeks to hours, with respect
to hand-annotation of queries. The method is
applied to successfully bootstrap a slot tagging
system for a major music streaming service
that currently serves several tens of thousands
of daily voice queries.

1 Introduction

Music listening is among the top-5 reasons of daily
usage of voice assistants in the US.1 Users can
have different goals when formulating a music-
related query to their home voice assistant or mo-
bile phones. For instance, users may look for a spe-
cific entity, which can be either explicit (e.g., “play
Led Zeppelin”) or implicit (e.g., “play the latest al-
bum by Foo Fighters”). They may also ask queries
without having a specific entity in mind (e.g., “play

∗Equal contribution.
1Source: https://www.pwc.com/us/en/advisory-

services/publications/consumer-intelligence-series/voice-
assistants.pdf

some reggae music”), or make open-ended requests
like “play something that I like” (Ostuni, 2019;
Volokhin and Agichtein, 2018).

Given a transcribed voice query, a fundamental
task towards its understanding is to identify entities
and musical attributes in it. However, this can be
a non-trivial task, especially when the catalog is
composed of possibly millions of different entities.
In such situations, the chances that the name of one
entity will overlap even partially with another en-
tity are non-negligible. It is even more likely to find
overlaps between entities and musical attributes, or
between entities and other commonly-used natural
language phrases in the query (Guy, 2018). For ex-
ample, the word “happy” is at the same time a song
by Pharrell Williams and an attribute belonging to
the “Mood” category in our taxonomy of musical
attributes. Mislabeling entities in a user query can
potentially lead to awkward user experiences.

Slot tagging, or slot filling, is traditionally tack-
led as a supervised sequence labeling problem and
it is often based on methods such as Recurrent Neu-
ral Networks (Goyal et al., 2018), Conditional Ran-
dom Fields (Reimers and Gurevych, 2017) or pre-
trained language models like BERT (Chen et al.,
2019). In real-world industrial applications, how-
ever, the choice and optimization of the Machine
Learning architecture is just the tip of the iceberg.
Most of the time and cost are actually spent in gath-
ering sufficient accurately-labeled training data.
This process generally requires the manual anno-
tation of up to millions of user queries, a process
that should be routinely repeated to keep up with
natural drifts in user queries due to, e.g., new inter-
ests from users or items that are added or removed
from the catalog of searchable products. Manual
annotation can be complemented, or even replaced,
with synthetically generated training data based on
patterns curated by experts (Goyal et al., 2018).
While synthetic generation unlocks the possibility
of gathering nearly infinite labeled training sam-
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ples, it still requires solid domain expertise to create
a sufficiently rich set of patterns to cover as many
query variations as possible.

Both manual annotation and generation of train-
ing data requiring a significant financial and human
resources; another line of thoughts is to exploit un-
labeled query data, which is generally cheap and
abundant, and to label it via weak supervision.

Weak supervision –or distant supervision– has
demonstrated its suitability to a number of natural
language processing tasks such as relation extrac-
tion (Mintz et al., 2009) or entity recognition (Li-
son et al., 2020). Moreover, it has been shown as
a useful method to bootstrap conversational sys-
tems, being applied to intent detection (Mallinar
et al., 2019) or slot tagging (Surdeanu et al., 2011)
tasks. Given this success, flexible frameworks like
Snorkel (Ratner et al., 2017) have been created
to help on building weak supervision pipelines at
scale. However, these frameworks are not easily
adaptable to sequence labeling tasks (Lison et al.,
2020).

In this paper, we present our own methodology
inspired by weak supervision to label large sets
of transcribed voice queries with entities and at-
tributes from a catalog with millions of entries.
The resulting labels are, albeit noisy, sufficiently
accurate to be used for training slot tagging mod-
els. We show how our methodology allows us
to control the amount of noisy labels injected in
the training dataset by combining weak supervi-
sion and human filtering, and provide experimental
evidence of how it was exploited to successfully
bootstrap a slot tagging system that now serves tens
of thousands of voice queries every day in a ma-
jor music streaming platform. It is worth noticing
that the proposed methodology, while defined and
tested specifically for the music domain, is generic
enough to be applied to other voice search applica-
tions that face similar challenges, like e.g. Video
On-Demand (Rao et al., 2018) or online shopping.

2 Training Data Creation Methodology

Starting with large amounts of unlabeled voice
query transcripts,2 we automatically label selected
terms with respect to both a set of music enti-
ties (i.e., artists, albums and tracks) and to at-
tributes from an in-house taxonomy of musical

2In this paper we do not deal with the aspect of Automatic
Speech Recognition (ASR), i.e. transcribing voice audio sig-
nals to text. The terms “query” and “query transcript” are used
interchangeably.

attributes (e.g., genres, instruments, moods, etc.).
Some of these annotated queries are then discarded,
while the remainder are selected for training pur-
poses (see Section 3). This methodology requires
the following basic components:

• A large set of unlabeled queries (in the scale
of 100k+).

• A large catalog of entities (10M+).
• A taxonomy of attributes (1k+) classified into

semantic categories.

There are two main steps to our methodology.
First, a heuristic labeling function makes use of
corpus statistics and string matching rules to fully-
automatically label queries, while discarding some
queries whose annotations cannot be established
with sufficient confidence. Then, query patterns
are extracted from this first set of labeled queries,
and leveraged in a human filtering task where
erroneously-labeled queries are discarded.

2.1 Heuristic labeling
2.1.1 Categorizing Entities
A pre-processing step of the catalog of entities is
necessary before processing the queries. Indeed,
working with very large catalogs of entities implies
potential ambiguities between entity surface forms
and common natural language phrases or even at-
tributes from the taxonomy. For example, in tens
of millions of tracks, as those in our catalog, we
can find almost any word or expression as a track
name (see Table 1). Simple string matching cannot
disambiguate whether a user is asking for a specific
track, or saying anything else.

Our approach to tackle this issue is to separate
entities into three distinct subsets: the safe-set,
ignore-set and unsure-set, illustrated in Table 1.
The first subset is for entities for which we have
high confidence that, when appearing in a query,
the user is in fact referring to the entity, regardless
of the context (i.e, the other words present in the
query). In opposition, the second subset is for en-
tities for which we have high confidence that the
user is in fact not asking for that specific entity, but
saying something else. Finally, the third subset is
for entities where our confidence to assess any of
the two previous statements is low.

To decide on the subset of a given entity, we de-
fine the concepts of corpus frequency of an entity
e as the number of times its surface form appears
in the corpus of unlabeled queries, and intrinsic
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popularity of an entity as the number of times
this entity has been interacted with in our prod-
uct (e.g., by considering number of streams, their
Click Through Rates, or through any other notion
of popularity relevant to the product at hand). We
empirically observed that whenever an entity has a
very high corpus frequency but very low intrinsic
popularity, it is highly likely that the user is not
referring to the entity in their query, even if there
is a perfect string matching between the surface
form of the entity and a text span in the query. This
observation led to the definition of simple rules for
entity categorization, making use of the following
concepts:

• Frequency-popularity ratio: is computed as
follows:

r(e) =
popularityRank(e)

frequencyRank(e)
(1)

where frequencyRank(e) is the ranking of
entity e with respect to its corpus frequency,3

and popularityRank(e) is instead its rank
with respect to its intrinsic popularity. We
compute r(e) for all entities in the catalog,
and then normalize to the [0, 1] range. Values
close to 1 will reflect cases where the entity
is very frequent in queries but not interacted
very much with in our product.

• Attribute overlap: Given T the set of all at-
tributes in the taxonomy we say that an en-
tity e has an overlap with T if every token in
the surface form of e pertains to T . For exam-
ple, the entity “Spanish House” has attribute
overlap, because “Spanish” and “House” are
both attributes in our taxonomy.

We then use simple rules based on two thresh-
olds τ and ε, with τ > ε, to assign entities to either
the safe-set, ignore-set or unsure-set. Given the
ratio r(e) of an entity e:

• If r(e) ≥ τ , e is added to the ignore-set. This
is likely a mismatch with a natural language
phrase or an attribute.

• If τ > r(e) ≥ ε, e is added to the ignore-
set or to the unsure-set, depending on their
attribute overlap: If there is attribute overlap,
it is added to the ignore-set, as this is likely a
mismatch with an attribute; otherwise they go
to the unsure-set.

3Higher frequency means higher rank.

Entity r(e) T overlap Category

Could You 0.99 no ignore-set
Play Music 0.99 no ignore-set
Xmas 0.99 yes ignore-set
You Did Something 0.94 no unsure-set
Country Joe 0.94 no unsure-set
Acoustic Piano 0.92 yes ignore-set
Little Snowflake 0.84 no safe-set
Spanish House 0.47 yes unsure-set
I am a Human 0.37 no safe-list

Table 1: Illustration of ambiguities between entities,
natural language sentences and taxonomy attributes:
Examples of actual entities (music tracks, albums or
artists) as found in our catalog, their r(e) ratio, whether
they overlap with our taxonomy C, and their corre-
sponding category. The categorization was performed
using τ = 0.99, ε = 0.90.

• If r(e) < ε, e is added to the unsure-set or to
the safe-set, depending also on their attribute
overlap: If there is attribute overlap they go
to the unsure-set; otherwise they go to the
safe-set.

Table 1 shows some actual examples of enti-
ties from our catalog, with the corresponding ratio,
attribute overlap and the resulting category. For
instance, Acoustic Piano is the name of a rather
unpopular album in our catalog which frequently
appears in user queries. Since it completely over-
laps with the attributes "acoustic" and "piano" of
our taxonomy and its frequency-popularity ratio is
between τ and ε, it is added the ignore-set.

2.1.2 Labeling Function

Once we have categorized all entities in the cat-
alog into the aforementioned three sets, we use
this information for disambiguation purposes in
the heuristic labeling process. Given a query, we
extract all n-grams and look for all the possible
matches with the entities within the union of the
safe and the unsure sets, and select the longest non-
overlapping matches. Then, we apply the following
rules:

• If any of the matched entities was categorized
in the unsure-set, we discard the whole query;

• Otherwise, the matched n-grams in the query
are labeled as the corresponding entity types
of the matched entities from the safe-set (e.g.,
artist, album, track). In case of multiple
matches (e.g., an artist and a song having the
same name) we pick the entity type with the
highest intrinsic popularity.
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All entities classified in the ignore-set are simply
ignored in this process. After the labeling of en-
tities in the query, we look for matches in the list
of attributes from the taxonomy among the words
that were left unlabeled. The number of musical
attributes in the taxonomy is orders of magnitude
smaller than the number of entities, and the prob-
ability of a confusion between an attribute and a
natural language phrase is very low, so we choose
to rely on simple string matching to label the at-
tributes, once the entities are labeled in the query.

To illustrate this process, consider the query
“could you play the xmas song little snowflake”.
Our method finds three matches with the cata-
log of entities: “could you”, “xmas” and “little
snowflake”. The first two matches belong to the
ignore-set and the third one belongs to the safe-set
(see Table 1). Since no matched entity is classified
in the unsure-set, the query is not discarded. The
words in the query corresponding to the entity in
the safe-set “little snowflake” are labeled as an en-
tity (specifically a music track); the word “xmas”
belongs to our taxonomy (under the “theme” cate-
gory) and, since it does not overlap with any entity
annotation, is labeled as an attribute (specifically a
theme), see the final annotation in Figure 1.

2.2 Pattern Filtering via Human Curation
2.2.1 Pattern Extraction
For each heuristically labeled query, we extract
the corresponding pattern by substituting all the at-
tributes and entities in the query with a placeholder
that is assigned to its corresponding class. For
example, the pattern corresponding to the query
in Figure 1 is “could you play the [theme] song
[track]”, being [theme] and [track] the placeholders
of any theme attribute and any track name. Follow-
ing this process, we first extract the patterns of all
queries annotated by the heuristic labeling stage,
and then group queries belonging to the same pat-
tern. For example, the query “could you play the
Halloween song I want candy” belongs to the same
pattern of the query in Figure 1.

2.2.2 Human Filtering
After pattern extraction, a filtering process is ap-
plied, as follows. Given the set of extracted pat-
terns, we identify the vocabulary of words present
in those patterns, and compute their respective fre-
quency in the pattern corpus. This list of words is
presented to a human curator who –starting from
the most frequent words to the less frequent ones–

Figure 1: Example query

must identify words that should not be part of a
pattern, and discard them from the vocabulary. Op-
tionally, if the vocabulary of words is very large,
the curator can also select a frequency threshold
below which all words are discarded.

From the full set of extracted patterns, we then
keep only those patterns for which all words are
included in the cleaned-up vocabulary, and discard
the remaining patterns. Finally, all queries from the
remaining patterns will form the final set of filtered
queries.

This process helps us to avoid labeling errors
made by the heuristic labeling step, which can be
caused either by limitations of the method itself,
inconsistent queries made by users, ASR errors,
multilingual queries or entities not present in our
catalog. Removing queries with wrong labels is
fundamental to avoid noisy patterns and have a
clean training dataset. Take for example the query
“can you play la modelo by osona.” The extracted
pattern is “can you play [track] by osona”. The
word “osona” is not in our catalog of entities (there-
fore not labeled as an artist). It also very rarely
appears in the patterns. This word, and respective
pattern, are therefore discarded. Note that artist
“Ozuna” is in our catalog of entities. In this particu-
lar example, an error was probably introduced by
the ASR system.

3 Experimental Setup

We evaluate different quantities of weakly-
supervised labeled queries as training data for slot
tagging models, from a few thousands up to mil-
lions, on a sample of actual voice traffic collected
from our application. With the goal of showing
the potential of weakly-annotated training data, we
compare it to models trained on a dataset of human-
annotated queries and different synthetically gener-
ated datasets. All datasets are described in Table 2.

3.1 Manual and Synthetic Baselines
We asked two expert human annotators to annotate
a set of 7000 randomly selected queries from our
logs. They also had to discard all nonsense queries
from the original set (e.g., incomplete queries, un-
related queries, incomprehensible ASR transcrip-
tions). We kept only the non-discarded queries
having complete agreement between annotators.
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Eventually, we obtained a set of 5000 manually
annotated queries. We used 70% of those for the
training of a slot tagging model which serves as our
first baseline (MAN). Then, we used 10% as our
validation set in all the approaches and baselines.
The remaining 20% (i.e., the test set) was used
to evaluate the performance of all trained models.
We used Sentence Error Rate (SER), i.e. the ratio
of queries with at least one slot classification error
over all queries, as our evaluation metric. For space
reasons we do not report slot-level metrics such F1
score, which showed strong correlation with SER
in our experiments.

We generated 4 additional baselines using syn-
thetic query generation to enhance the training set
(SYN). Synthetic queries have shown useful for
training slot tagging models in low resources sce-
narios (Goyal et al., 2018), providing the possibility
of introducing novel patterns, attributes or entities
in the training data. For our experiments, we started
from the patterns extracted using the procedure
described in Section 2.2.1 over the manual anno-
tated queries from the training set. Every pattern is
filled several times using the entities and attributes
available in our catalog and in the taxonomy.4 We
generated 4 different synthetic datasets of different
sizes, called respectively SYNS , SYNM , SYNL

and SYNXL in Table 2.

3.2 Weakly-Supervised Datasets

We compared the baseline annotations against four
different weakly-supervised training sets generated
using our methodology. We applied the heuristic la-
beling function (Section 2.1.2) on four random sam-
ples from our query logs, respectively containing
100k, 1M, 10M and 100M unlabeled queries. The
threshold hyper-parameters τ and ε were tuned on
the validation set. These datasets are respectively
called WSS , WSM , WSL and WSXL in Table 2
and have the same size of the synthetic datasets
described in the previous section.

Finally, we generated the WS(F) dataset with hu-
man filtering (see Section 2.2) on the same dataset
with 100M unlabeled queries used to generate
WSXL. Notice that, because of human filtering,
the resulting dataset WS(F) has a smaller number
of queries than WSL.

4Entities and attributes were sampled proportionally to
their intrinsic popularity.

3.3 Model architecture

In order to provide a fair comparison between the
several procedures to generate training data, we
trained the same architecture using the same proce-
dure for all datasets.

We used a single layer BiLSTM-CRF network
with 100 hidden units and pre-trained word embed-
dings of size 250 (Reimers and Gurevych, 2017).
We used a concatenation of FastText (Mikolov
et al., 2018) and Word2Vec (Mikolov et al., 2013)
word embeddings trained on an internal corpus of
artist biographies. The word embeddings were kept
fixed during training to reduce the risk of undesired
semantic shifts.

Each instance of the model was trained using
ADAM (Kingma and Ba, 2015) with batch size
100 and dropout 0.2 for a maximum of 100k iter-
ations. The initial learning rate was set to 0.001
and damped by factor 0.5 every 7.5k iterations. We
used early-stopping to terminate the training when-
ever the SER on the validation set did not improve
for at least 2.5k consecutive iterations. The ex-
perimentation was run using TensorFlow (Abadi
et al., 2016) and follows closely that of (Reimers
and Gurevych, 2017).

4 Results and Discussion

The test set presents a representative sample of the
queries that are effectively asked by users using our
voice assistant and hence provide valuable insights
of how the system will likely perform online. The
SER obtained by the BiLSTM-CRF model trained
on each of the training datasets is shown in Table 2.

We can immediately notice that the MAN base-
line is outperformed by all the SYN, WS and
WS(F) variants that we tested. The improvement
brought by weak supervision over the baseline
grows noticeably with size. When training using
small datasets, SYNS outperforms MAN and WSS .
However, the SER of models trained on SYN data
increases with training set size. We hypothesize
this behavior to be due to an amplification of the
bias coming from the relatively small amount of
patterns used in data generation. Indeed, in our
experimentation setup, we are focusing on a rela-
tively small amount of human-labeled queries. One
way of overcoming this issue would be to add more
hand-curated queries or patterns –with the corre-
sponding implications in terms of cost and time.
Further, research should be also be dedicated to
evaluate different ways to generate synthetic data.
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Training
Dataset

Description Label # patterns # words # queries Test SER

MAN manually annotated queries MAN - - 5k 31.64
SYN synthetically generated queries SYNS 1k 630 33k 25.11

SYNM 1k 630 180k 26.75
SYNL 1k 630 875k 29.65
SYNXL 1k 630 3.5M 29.19

WS weakly-supervised annotation WSS 8k 732 33k 29.83
WSM 38k 2,105 180k 24.93
WSL 180k 8,785 875k 23.03
WSXL 805k 33,984 3.5M 21.94

WS(F) weakly-supervised annotation +
human filtering

WS(F) 101k 468 2.5M 13.58

Table 2: Different configurations of training datasets used in the experiments and respective performances as
evaluated by SER on the test set (smaller is better). We report the numbers of distinct patterns and words in the
patterns for the synthetic and weakly-supervised datasets, and the total number of training queries for every dataset.
Baselines are in italic. The best test SER overall is highlighted in bold.

In opposition, the weakly-supervised WS
datasets are able to feed the network with a set
of query patterns and annotations whose variety
naturally grows with size. This characteristic turns
out to be extremely beneficial, as evidenced by
the incremental reduction in SER with dataset size.
When considering the largest datasets, the models
trained on the WSXL dataset show a reduction in
SER of 9.7 w.r.t. the MAN baseline, 7.25 w.r.t. the
SYNXL dataset of the same size and of 3.17 w.r.t.
the best SYN dataset (SYNS).

We can however notice that the reduction in SER
slows down as size grows. One possible explana-
tion can be that the inherent noise in the data. As
shown in Table 2, the size of the vocabulary of
pattern words drastically increases with the query
sample size, implying more possibilities of having
wrongly annotated training queries. Once conver-
gence level is reached, manual curation is needed
to further improve the peformance of the model.
The WS(F) dataset showcases the improvements
that can be achieved enhancing the WSXL dataset
with a reasonable manual curation effort, removing
noise from the vocabulary of pattern words, and
therefore, from the training data. This simple but
effective curation step results in a reduction of 8.36
in SER w.r.t. the model trained on WSXL dataset
and a reduction of 18.06 w.r.t. the MAN baseline.

Moreover, the curation task followed to create
WS(F) is much faster than query annotation, not
only because the number of words to review is
smaller than the number of raw queries, but also be-
cause the task itself is easier. We measured that an
expert trained annotator is able to manually anno-
tate approximately 100 queries per hour, whereas

the pattern vocabulary can be curated following
our methodology in less than 4 hours. Therefore,
annotating 7000 queries by two annotators took ap-
proximately 140 hours, which is orders of magni-
tude more than the time needed for the vocabulary
curation proposed here.

5 Summary and Future Work

This paper presents a methodology to create train-
ing data for training slot tagging models inspired
by weak supervision. The methodology consists of
two steps. First, a simple heuristic query labeling
process is applied, that leverages corpus statistics
obtained from query logs and comparing them with
entity popularity metrics. Second, a pattern extrac-
tion and filtering process is applied to the labeled
queries, that makes use of human curation.

Our experimental evaluation clearly shows the
value of weak supervision for building training
datasets to bootstrap slot tagging models. We
show that training with large amounts of weakly-
supervised data generated from unlabeled voice
queries using the proposed methodology outper-
forms smaller yet reasonable amounts of hand-
annotated data. It also outperforms training with
large amounts of synthetic data generated from the
same hand-annotated data. We showed that the pro-
posed methodology can be combined with a much
less time-consuming word vocabulary curation task
with very significant reduction in the end model
Sentence Error Rate.

Future work should include experimenting with
other manual curation tasks, such as manual clean-
ing of remaining patterns after vocabulary curation,
which could help to increase even more model accu-
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racy with a task still much faster than manual anno-
tation of queries. In addition, further study should
focus on how synthetic generated queries can com-
plement weakly-supervised datasets, which may
help not only in terms of accuracy, but also to
assess the quality of labeling of less frequently
queried entities or attributes. Moreover, other
model architectures could be experimented with,
such as pre-trained language models. Finally, ex-
periments could evaluate the applicability of our
weakly-supervised methodology to other domains
with very large catalogs of entities.
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