
Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 238–245
June 6–11, 2021. ©2021 Association for Computational Linguistics

238

OodGAN: Generative Adversarial Network for Out-of-Domain Data
Generation

Petr Marek∗

Czech Technical University in Prague
Prague, Czech Republic

marekp17@fel.cvut.cz

Vishal Ishwar Naik
Amazon Alexa AI

Sunnyvale, California
naikvish@amazon.com

Vincent Auvray
Amazon Alexa AI

Sunnyvale, California
vauvray@amazon.de

Anuj Goyal
Amazon Alexa AI

Sunnyvale, California
anujgoya@amazon.com

Abstract

Detecting an Out-of-Domain (OOD) utterance
is crucial for a robust dialog system. Most dia-
log systems are trained on a pool of annotated
OOD data to achieve this goal. However, col-
lecting the annotated OOD data for a given do-
main is an expensive process. To mitigate this
issue, previous works have proposed genera-
tive adversarial networks (GAN) based mod-
els to generate OOD data for a given domain
automatically. However, these proposed mod-
els do not work directly with the text. They
work with the text’s latent space instead, en-
forcing these models to include components
responsible for encoding text into latent space
and decoding it back, such as auto-encoder.
These components increase the model com-
plexity, making it difficult to train.

We propose OodGAN, a sequential generative
adversarial network (SeqGAN) based model
for OOD data generation. Our proposed model
works directly on the text and hence eliminates
the need to include an auto-encoder. OOD
data generated using OodGAN model outper-
forms state-of-the-art in OOD detection met-
rics for ROSTD (67% relative improvement in
FPR 0.95) and OSQ datasets (28% relative im-
provement in FPR 0.95) (Zheng et al., 2020).

1 Introduction

OOD detection is an essential task in AI voice
assistants like Alexa, Siri, or Google Assistant. The
task is to recognize whether a given user utterance
belongs to the in-domain (IND) distribution or not.
Users usually do not know the limitations of a voice
application and assign requests which the system
can not act upon. These requests are referred to as
OOD since these do not belong to the application’s
domain. Voice assistants should be able to handle

∗ Research conducted during an internship at Amazon
Alexa AI

OOD utterances robustly by not taking unintended
action or giving wrong or nonsensical responses
leading to a poor user experience.

Intent classification (IC) is one of the main tasks
in a conversational system that selects the best in-
tent given a user input. IC can be extended to
support OOD detection in two different ways. The
first one is to add OOD as another intent to the IC
model, but this requires annotated OOD data for
training. The second method is to use a threshold
on the classifier’s output probability distribution
during the runtime. This method does not require
OOD data for training necessarily. Nevertheless, it
proves difficult to select the threshold in practice
without it.

The state-of-the-art IC algorithms are trained us-
ing neural networks to produce probability distribu-
tion over output classes and use cross-entropy loss.
However, Lakshminarayanan et al. (2017), and Guo
et al. (2017) pointed out that the neural network
classifier tends to be overconfident in its classifica-
tion. This means that the classifier tends to assign a
high probability for one class, even when the exam-
ple was not seen in the training phase. Thus, such a
classifier cannot correctly recognize if an example
belongs to an IND or OOD distribution during run-
time with any reasonable threshold value. In this
paper, we focus on improving the performance of
the threshold-based OOD detection method with
the help of generated OOD data.

Zheng et al. (2020) proposed to use negative
entropy as an additional loss for the classification
task in a neural network. The negative entropy loss
trains the network to flatten the produced probabil-
ity distribution as opposed to cross-entropy, which
teaches the network to maximize the correct class
probability. Thus, the idea is to apply cross-entropy
loss on IND data and negative entropy loss on OOD
data. The result is that IND data receives a high



239

probability for the correct class, and OOD data re-
ceives low probabilities for all classes. Thanks to
this fact, we can select a reasonable threshold on
the output probability that will classify both IND
and OOD data correctly. We need OOD data to
train models in this way. However, the collection
of OOD data is a manual and expensive process.

The IND data forms a small distribution cluster
in the space of vector text representation. In princi-
ple, the rest of that space is covered by OOD data.
Also, in real-world scenarios, most OOD data share
patterns with IND data. Nevertheless, Zheng et al.
(2020) demonstrated that training IC model with
OOD data that are just outside IND distribution
should be sufficient to handle most of the OOD
requests during runtime.

In this paper, we propose a novel OOD data
generation model OodGAN, which is an extension
of SeqGAN (Yu et al., 2017). We use GAN to
generate OOD data that share the same patterns as
IND and are very close to IND distribution.

Our proposed model aims to be deployed to Nat-
ural Language Understanding (NLU) frameworks
offered by popular voice assistants like Amazon
Alexa and Google Assistant. These NLU frame-
works are offered to third-party developers to cre-
ate voice applications. Third-party developers can
define any number of IND intents and provide sam-
ple utterances for each to build voice applications.
These voice applications should recognize OOD re-
quests during run time without additional developer
effort to provide OOD training data. The proposed
model can be deployed in a NLU framework to
generate application-specific OOD data that the IC
model can use during training to recognize OOD
requests robustly and improve the end-user experi-
ence.

Our main contributions are:

(1) We propose a novel and simple OOD data
generation model OodGAN that improves on the
model proposed by Zheng et al. (2020). It works
with a sequence of words directly unlike the previ-
ously proposed models, which work on latent space
represented by auto-encoder. Our model eliminates
the need for the auto-encoder, which reduces the
overall size of the model.

(2) We evaluate our model on the ROSTD and
OSQ datasets, and we show that OOD examples
generated by OodGAN achieved state-of-the-art
results.

2 Related Work

There are three research areas relevant to our work:
OOD detection, text generation and OOD genera-
tion.

Out-of-Domain Detection

Larson et al. (2019) introduced a dataset for in-
tent classification that includes OOD queries. They
propose three baseline approaches for OOD detec-
tion that rely on OOD training data. Gangal et al.
(2019) created a ROSTD dataset and explored like-
lihood ratio based approaches. Lee and Shalymi-
nov (2019) proposed an OOD detection method
that does not require OOD data by utilizing coun-
terfeit OOD turns in the context of a dialog. Ryu
et al. (2018) proposed an OOD detection system
that uses only IND sentences to build a genera-
tive adversarial network in which the discriminator
generates low scores for OOD sentences.

Text Generation

Donahue and Rumshisky (2018) proposed a two-
step solution to text generation using auto-encoder
and GAN that works with a low-dimensional repre-
sentation of sentences. Yu et al. (2017) proposed
a sequence generation framework SeqGAN that
works directly on the text and hence eliminates the
need for an auto-encoder.

Out-of-Domain Data Generation

Zheng et al. (2020) proposed a GAN based model
to generate pseudo-OOD examples that are akin
to IND input utterances. The model uses a denois-
ing auto-encoder that is trained to map an input
example into a latent code. The functions of the
auto-encoder’s parts are the following. The en-
coder learns to create a latent representation of
the examples. The decoder learns to convert the
vector of the latent representation into text. The
model’s generator produces vectors in the latent
space. The discriminator evaluates the closeness
of latent space vectors generated by the generator
to real latent space vectors created by the encoder.
Discriminator sends a training signal to the genera-
tor to force it to generate indistinguishable vectors
from vectors encoded by the encoder. An auxiliary
classifier trained on IND examples is introduced to
force the generator to generate latent code belong-
ing to OOD. The resulting utterances share patterns
with IND examples but belong to OOD.



240

Figure 1: The illustration of SeqGAN (Yu et al., 2017).
Left: Discriminator D is trained over the real data and
the data generated by generator G. Right: Generator is
trained by policy gradient where the final reward signal
is provided by the discriminator and is passed back to
the intermediate action value via Monte Carlo search.

Reward RT

Reward RC

Pretraining

IND
Examples X

Generated OOD
Sequences Y

Generator Gθ
Auxiliary Intent

Classifier Cψ

Discriminator Dφ

Figure 2: The overall architecture of the OodGAN. Cψ
is pretrained to recognize intent classes for IND exam-
ples. Dφ is trained to distinguish between IND and gen-
erated OOD examples during adversarial training. Gθ
is trained by the REINFORCE algorithm during adver-
sarial training to generate OOD sequences. The train-
ing is guided by rewards originating in Cψ and Dφ.

3 Generative Adversarial Networks for
Out-of-Domain Data Generation

3.1 SeqGAN
The SeqGAN model proposed by Yu et al. (2017)
is a starting point for the proposed OodGAN. Se-
qGAN is a sequence generation framework illus-
trated in Figure 1. Yu et al. (2017) denote the
problem of sequence generation as follows. Given
a dataset of real-world structured sequences, train a
θ-parameterized generative model Gθ to produce a
sequence Y1:T = (y1, ..., yt, ...yT ), yt ∈ Y where
Y is the vocabulary of candidate tokens. They
apply reinforcement learning to this problem. In
timestep t, the state s is the current produced tokens
(y1, ..., yt−1) and the action a is the next token yt
to select.

They propose to additionally train a φ-
parameterized discriminative model Dφ that pro-
vides guidance for improving generator Gθ. Dφ

produces a probability Dφ(Y1:T ) representing the
probability of Y1:T being a real sequence vs. a gen-
erated one. The discriminative model Dφ is trained
with real sequence data, labeled as positive exam-
ples, and synthetic sequences from the generative

model Gθ, labeled as negative examples.
SeqGAN uses the REINFORCE algorithm

(Williams, 1992) to train generative model Gθ. Pa-
rameters of generative model Gθ are updated at the
same time by a policy gradient and Monte Carlo
search based on the expected end reward received
from the discriminative model Dφ for the gener-
ated sequence. The reward is represented by a
likelihood that the generated sequence will fool
the discriminative model Dφ. Thus the generator’s
goal is to generate a sequence that would fool the
discriminator into considering it as real.

3.2 OodGAN

We propose OodGAN based on SeqGAN. There
are two benefits of SeqGAN for our task of OOD
data generation. SeqGAN produces sequences sim-
ilar to the training data, and it works directly on
input sequence unlike earlier model (Zheng et al.,
2020), which works on latent space. Eliminating
the auto-encoder responsible for converting a se-
quence of words into latent space reduces the over-
all model size. Also, our experiments with Zheng
et al. (2020) show a degradation in the overall per-
formance due to the auto-encoder component (see
the Results section for details).

Since our task is to generate OOD data, we have
the additional criterion that generated sequences
should be close to the training IND sequences.
However, we also want them not to belong to any
IND intent class. We propose the OodGAN to
achieve the two criteria.

The main difference between SeqGAN and
OodGAN is the introduction of an auxiliary in-
tent classifier. The auxiliary intent classifier Cψ
estimates the probability Cψ(zi|Y ) of example Y
belonging into intent class zi. The task of the
auxiliary intent classifier is to produce an addi-
tional reward signal. The reward signal guides the
generator to produce a sequence not belonging to
any IND intent class. The reward RCψ coming
from the auxiliary intent classifier for each gen-
erated example is defined as Shannon’s Entropy
RCψ = −

∑m
i=1Cψ(zi|Y ) · log(Cψ(zi|Y )), where

m is the number of IND intent classes. The intu-
ition for using Shannon’s Entropy is that we want
to reward a generator for producing examples for
which the auxiliary intent classifier cannot clearly
assign one of IND classes. In other words, the auxil-
iary classifier should assign a nearly uniform distri-
bution across all intent classes for a good generated



241

example. The generator obtains a high reward for
such examples because the uniform distribution has
the highest Shannon’s Entropy.

We train the auxiliary intent classifier to predict
one of the classes z1...m for each training IND ex-
ample X1...n during the pre-training step. We do
not have to retrain it during adversarial training
because IND intent classes’ distribution does not
change.

The goal of the generator is to generate a se-
quence that maximizes the expected sum of rewards
from discriminator Dφ (the estimated probability
of the sequence being real), and auxiliary intent
classifier Cψ (Shannon’s Entropy calculated using
estimated probabilities of sequence belonging to
IND intent classes by auxiliary intent classifier).

Empirically, we evaluated different training
strategies. We found that optimizing generator
G using only the discriminator’s reward first, fol-
lowed by using only the auxiliary intent classifier
reward, and then repeating the process for each
training batch produced the most stable results.
This worked better than summing up the rewards
from the discriminator and auxiliary intent classi-
fier. When we tried summing up the two rewards,
we noticed that the generator tended to collapse
into a state in which it generated a single sequence
highly rewarded by the auxiliary intent classifier,
even though this did not happen for all training
runs. We observed this situation even when we
normalized rewards to a value between 0 and 1.

We also observed that part of the examples gen-
erated by OodGAN is semantically similar to some
IND training example or is generated multiple
times. Examples that are identical or too close
to IND examples are problematic and confuse the
OOD classifier. Duplicated examples do not rep-
resent the OOD distribution effectively. For those
reasons, we removed with an automatic filter the
generated OOD examples that are identical or sim-
ilar to IND examples or that are generated repeat-
edly.

To summarize, OodGAN’s training procedure
has the following steps.

(1) Train Auxiliary classifier: First train auxil-
iary classifier to predict the classes z1...m for IND
data X1...n until convergence.

(2) Train Generator as Language Model:
Next, train the generator on the IND data X1...n

as a language model until it converges. Thanks
to this step, it is easier for the generator to fool

the discriminator from the start of the adversarial
training.

(3) Train Discriminator: Generate adversarial
examples from the generator. This training step
helps the discriminator to provide a useful reward
signal from the start of adversarial training.

(4) Adversarial Training: Perform adversarial
training of generator and discriminator. There are
three optimization steps for each training batch.
First, optimize the generator using reward from dis-
criminator as proposed by Yu et al. (2017). Next,
optimize the generator using a reward from the aux-
iliary classifier. Lastly, optimize the discriminator.

4 Experiments

4.1 Datasets

We conducted experiments on ROSTD (Gangal
et al., 2019) and OSQ (Larson et al., 2019) datasets.

• ROSTD contains three categories (alarm, re-
minder, and weather), each consisting of four
intents. The dataset consists of 30,000 train-
ing, 4,000 validation and 8,000 testing IND
examples. OOD examples were selected in a
way that they do not belong to any category
and do not share patterns with any IND exam-
ples. There are also no OOD examples in the
training set of the dataset. The testing set con-
tains 4,500 OOD examples. IND and OOD
examples from ROSTD are listed in Table 5.

• OSQ consists of 150 intents. The datases con-
sists of 15,000 training, 3,000 validation and
4,500 testing IND examples. The dataset was
created using Mechanical Turk. The turkers
were given the name of the intent, and they
were supposed to write intent examples fitting
into the intent. The dataset authors manu-
ally went through examples and moved ex-
amples not fitting into the given intent class
to the OOD class. In this way, OOD exam-
ples share the same patterns as IND examples.
The OSQ dataset contains 100 training OOD
examples. However, we decided not to use
them for training due to the nature of our ex-
periments. There are also 100 validation and
1,000 testing OOD examples.

4.2 Evaluation Process

We evaluate the model on the downstream task of
OOD data detection and measure the change in



242

OOD data detection metrics. We designed experi-
ments in the following way. We train the OodGAN
on IND training examples as a first step. Next,
we generate the OOD examples using the trained
model of OodGAN. We generate the same number
of OOD examples as a number of IND examples
in the training set. In a third step, we train the
threshold-based OOD detection model using cross-
entropy loss on training IND examples and negative
entropy loss on generated OOD examples. In the
last step, we evaluate both IND and OOD metrics.

4.3 Metrics
We evaluate the OodGAN by measuring metrics on
the downstream task of OOD detection. We mea-
sure AUROC, AUPR, and FPRN metrics (Ren et al.,
2019; Hendrycks and Gimpel, 2017; Hendrycks
et al., 2019) to evaluate OodGAN’s ability to gener-
ate OOD data that helps IC to distinguish IND and
OOD input utterances. We treat OOD examples as
the positive class.

• AUROC The area under the receiver operat-
ing characteristic (ROC) curve. The score
says the probability that a randomly selected
OOD example will have a higher predicted
probability of being an OOD than a randomly
selected IND example. Higher AUROC score
is better.

• AUPR The area under the precision-recall
curve when OOD inputs are treated as posi-
tive samples. AUPR calculates the average
precision score for all recall values. Intu-
itively, the higher the classification threshold
we select, the more OOD will be classified as
OOD. However, we risk that more IND will
be classified as OOD. AUPR expresses this
risk. Higher AUPR score is better.

• FPRN The false-positive rate (FPR) when the
true positive rate (TPR) is N%. FPRN metric
is a practical value in real-world application
since it evaluates an OOD detection perfor-
mance at a particular threshold. Lower FPRN
means there is a smaller chance of IND ex-
amples triggering false alarm (IND getting
classified as OOD) when the model’s perfor-
mance on OOD example is N%. We report
FPR when TPR is 0.95 and 0.90. Lower FPRN
score is better.

We consider FPRN metric as the most practical
value in real-world application since it evaluates an

OOD detection performance at a particular thresh-
old. Lower FPRN means there is a smaller chance
of IND examples triggering false alarm (IND get-
ting classified as OOD) when the model correctly
recognizes N% of OOD examples.

We also measure IND accuracy that evaluates
generated OOD data’s influence on the IC’s ability
to recognize the intents of IND data correctly.

• IND accuracy The percentage of IND data
that have assigned correct intent label. We
expect that generated OOD examples cannot
improve the IC’s ability to recognize intent
labels for ID. However, generated OOD exam-
ples can degrade the IC’s ability to recognize
IND intents. Thus, we measure the IND ac-
curacy to evaluate whether generated OOD
negatively impacts the IC. Higher IND accu-
racy is better.

4.4 Implementation
We based our implementation on the Github repos-
itory1 of SeqGAN implemented in PyTorch. The
generator is one layer GRU recurrent neural net-
work trained using Adam optimizer with a learning
rate set to 0.001. Input to the generator is embed-
ded with fastText embeddings (Joulin et al., 2016)
trained on Wikipedia. The generator uses nega-
tive log-likelihood loss during LM training and
policy gradient loss during GAN training. The
discriminator is a two-layer bidirectional GRU re-
current neural network with a tanh activation func-
tion. Adagrad optimization is used for training the
discriminator with a learning rate set to 0.1 and bi-
nary cross-entropy loss is optimized. The auxiliary
classifier uses the convolutional neural network pro-
posed by Kim (2014), which has filters of size 2,
3, 4, and 5, and for each size, there are 256 filters.
We used the LeakyReLU activation function and
0.5 dropout in output dense layers. The auxiliary
classifier is trained using the Adam optimizer with
a learning rate set to 0.0001 and cross-entropy loss
is optimized.

We show the comparison of number of parame-
ters between OodGAN, SeqGAN, and Zheng et al.
(2020) in Table 1.

5 Results

5.1 Results on Zheng et al. (2020)
We first conducted experiments to replicate results
reported by Zheng et al. (2020) on the OSQ dataset.

1https://github.com/suragnair/seqGAN



243

# Parameters
Zheng et al. (2020) 7M
SeqGAN (Yu et al., 2017) 800k
OodGAN 2M

Table 1: Number of parameters

OSQ
(Larson et al., 2019)

AUROC ↑ AUPR ↑ FPR
0.95

↓ FPR
0.90

↓ IND
Acc.

↑

Results reported
by Zheng et al. (2020)

95.4 98.9 25.0 10.1 93.3

Our implementation of
Zheng et al. (2020)

88.79 58.22 36.49 26.87 88.00

Table 2: OOD detection performance on the OSQ
dataset with model proposed by Zheng et al. (2020)

We created our implementation according to the
paper’s description because there is no publicly
accessible implementation of their proposed model.
We report results in Table 2.

We could not reproduce the number reported by
Zheng et al. (2020) even though we implemented
the model as was described in the paper. The exper-
iments showed that the denoising auto-encoder is a
weak part of the architecture. Its token accuracy of
text reconstruction on the validation set was only
0.37%. Thus, the low performance of the auto-
encoder is the reason why the generator generates
poor quality examples.

5.2 Results on proposed model OodGAN

First, we want to compare OodGAN with base-
lines. We selected two baselines to evaluate im-
provements of our proposed OodGAN. Our base-
lines for the ROSTD dataset is our implementation
of Zheng et al. (2020) and the work of Gangal et al.
(2019). The baseline for the OSQ dataset is our
implementation of Zheng et al. (2020).

Table 3 shows results on ROSTD dataset and
Table 4 shows results on OSQ dataset. Results on
ROSTD data are promising. They show around
65% relative improvement in FPR 0.95 compared
to baseline of our implementation of Zheng et al.
(2020) and around 5% absolute improvement in
FPR 0.95 compared to baseline of Gangal et al.
(2019). For the more challenging OSQ dataset,
there is around 28% relative improvement in both
FPR 0.95 and FPR 0.90 compared to the baseline.

To evaluate whether OodGAN helps the
threshold-based OOD detection model to discrimi-
nate between OOD and IND examples, we plotted
the histogram of the test data’s maximum intent
probability for system trained with and without

ROSTD
(Gangal et al., 2019)

AUROC ↑ AUPR ↑ FPR
0.95
↓ FPR

0.90
↓ IND

Acc.
↑

w.o. OOD 97.64 93.86 8.10 5.56 99.05
Our implementation
of Zheng et al. (2020)

88.67 54.84 37.82 26.04 88.00

Gangal et al. (2019) 98.22 96.47 7.41 - -
OodGAN 98.99 96.26 2.59 1.37 98.31

Table 3: OOD detection performance on the ROSTD
dataset

OSQ
(Larson et al., 2019)

AUROC ↑ AUPR ↑ FPR
0.95
↓ FPR

0.90
↓ IND

Acc.
↑

w.o. OOD 90.89 97.99 28.11 20.98 89.04
Our implementation
of Zheng et al. (2020)

88.79 58.22 36.49 26.87 88.00

OodGAN 91.24 97.79 26.07 19.29 90.11

Table 4: OOD detection performance on the OSQ
dataset

(a) Model trained with no OOD

(b) Model trained with generated OOD

Figure 3: Distributions of detection scores correspond-
ing to the IND and OOD examples of the ROSTD
dataset

generated OOD examples. Figure 3 shows the his-
togram for ROSTD dataset. Probability scores for
IND (blue) and OOD (red) data are spread out over
all probability values when there are no OOD data
used for model training. Thus it is hard to select



244

a well discriminating threshold. The result of the
model trained with OOD data is significantly better.
The graph shows a clear separation between IND
and OOD data, with IND data receiving high intent
score and OOD data receiving a low score.

The OOD detection model is combined with IC
in many real-world applications. For this reason,
the joint accuracy of OOD detection and IND intent
recognition is an important metric. We show how
the joint accuracy depends on the selected threshold
in Figure 4. To draw this graph, we select different
thresholds, and we tag examples having an intent
score below the threshold as OOD. We classify the
intent for the rest. Our proposed approach leads
to high joint accuracy of OOD detection and IND
intent recognition with low threshold values. That
confirms that models trained with generated OOD
assign low scores to OOD and high scores to IND
examples.

Figure 4: Joint accuracy for ROSTD data across differ-
ent threshold value. Points mark the highest joint accu-
racy of OOD detection and IND intent recognition.

The separation between generated OOD exam-
ples and IND examples is visible in t-SNE (Hinton
and Roweis, 2002) visualization as well. Figure 5
shows the t-SNE visualization of IND and gener-
ated OOD data. We can notice that generated data
create recognizable clusters close to IND data but
do not mix with it. Finally, we list OOD examples
generated by OodGAN in table 5.

6 Conclusion

This paper proposed a novel OOD data generation
model OodGAN that generates OOD examples that
improved OOD detection performance in a dialog
system. The model does not require any OOD train-
ing examples. Moreover, the model does not rely
on the auto-encoder to map utterances into latent
space, reducing the model size. It models the data

Figure 5: t-SNE visualization of the BERT feature vec-
tors associated with the examples from the ROSTD
dataset. IND examples are blue, testing OOD exam-
ples are red, and examples generated by OodGAN are
green.

IND Examples

Should I be expecting rain today
I need a new alarm for 8:30 am
Show my reminders
Show me the extended forecast please
Snooze alarm for 5 more minutes

OOD Examples

Why do people watch television
Where do pineapples grow
Should I go to the mall today or tomorrow
Tell me how to install a pool
Transfer my PayPal balance to my bank

Generated by
OodGAN

Remind me of my 4pm and Game of Thrones alarm
When should I unpack
Add day at workout please
Give me my Sarasota appointment
Do I need to pack to Galway this umbrella

Table 5: Examples sampled from the IND and OOD
test set of the ROSTD dataset and OOD utterances gen-
erated using OodGAN model.

generator as a stochastic policy in reinforcement
learning instead. The model uses two rewards for
the generator. The discriminator’s reward guides
the generator to generate examples as close to the
IND data as possible. The auxiliary intent classi-
fier’s reward guides the generator to generate ex-
amples with low probabilities for all intent classes.
Our experiments show that OOD examples gener-
ated by OodGAN improve the performance of the
OOD detection problem.

References
David Donahue and Anna Rumshisky. 2018. Adversar-

ial text generation without reinforcement learning.
arXiv preprint arXiv:1810.06640.

Varun Gangal, Abhinav Arora, Arash Einolghozati,
and Sonal Gupta. 2019. Likelihood ratios and gen-
erative classifiers for unsupervised out-of-domain



245

detection in task oriented dialog. arXiv preprint
arXiv:1912.12800.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. arXiv preprint arXiv:1706.04599.

Dan Hendrycks and Kevin Gimpel. 2017. A
baseline for detecting misclassified and out-of-
distribution examples in neural networks. ArXiv,
abs/1610.02136.

Dan Hendrycks, Mantas Mazeika, and Thomas G. Di-
etterich. 2019. Deep anomaly detection with outlier
exposure. ArXiv, abs/1812.04606.

Geoffrey E Hinton and Sam Roweis. 2002. Stochastic
neighbor embedding. Advances in neural informa-
tion processing systems, 15:857–864.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In
Advances in neural information processing systems,
pages 6402–6413.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evalua-
tion dataset for intent classification and out-of-scope
prediction. arXiv preprint arXiv:1909.02027.

Sungjin Lee and Igor Shalyminov. 2019. Contextual
out-of-domain utterance handling with counterfeit
data augmentation. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7205–7209.
IEEE.

J. Ren, Peter J. Liu, E. Fertig, Jasper Snoek, Ryan
Poplin, Mark A. DePristo, Joshua V. Dillon, and Bal-
aji Lakshminarayanan. 2019. Likelihood ratios for
out-of-distribution detection. In NeurIPS.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and
Gary Geunbae Lee. 2018. Out-of-domain detection
based on generative adversarial network. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 714–
718.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In Thirty-first AAAI conference
on artificial intelligence.

Yinhe Zheng, Guanyi Chen, and Minlie Huang. 2020.
Out-of-domain detection for natural language under-
standing in dialog systems. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
28:1198–1209.


