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Abstract
Annotation conflict resolution is crucial to-
wards building machine learning models with
acceptable performance. Past work on annota-
tion conflict resolution had assumed that data
is collected at once, with a fixed set of anno-
tators and fixed annotation guidelines. More-
over, previous work dealt with atomic label-
ing tasks. In this paper, we address annota-
tion conflict resolution for Natural Language
Understanding (NLU), a structured prediction
task, in a real-world setting of commercial
voice-controlled personal assistants, where (1)
regular data collections are needed to support
new and existing functionalities, (2) annota-
tion guidelines evolve over time, and (3) the
pool of annotators changes across data col-
lections. We devise an approach combining
information-theoretic measures and a super-
vised neural model to resolve conflicts in data
annotation. We evaluate our approach both
intrinsically and extrinsically on a real-world
dataset with 3.5M utterances of a commercial
dialog system in German. Our approach leads
to dramatic improvements over a majority
baseline especially in contentious cases. On
the NLU task, our approach achieves 2.75% er-
ror reduction over a no-resolution baseline.

1 Introduction

Supervised learning is ubiquitous as a form of learn-
ing in NLP (Abujabal et al., 2019; Finkel et al.,
2005; Rajpurkar et al., 2016), but supervised mod-
els require access to high-quality and manually
annotated data so that they perform reasonably. It
is often assumed that (1) such annotated data is
collected once and then used to train and test vari-
ous models, (2) the pool of annotators is fixed, and
(3) annotation guidelines are fixed (Benikova et al.,
2014; Manning, 2011; Poesio and Artstein, 2005;
Versley, 2006). In real-world NLP applications e.g.,
voice-controlled assistants such as Google Home
or Amazon Alexa, such assumptions are unrealistic.
The assistant is continuously evolving and extended

with new functionalities, and hence, changes to an-
notation guidelines are frequent. The assistant also
needs to adapt to language variations over time,
both lexical and semantic. Therefore, annotated
data needs to be collected regularly i.e., new col-
lections of data at different time points, where the
same utterance text can be re-annotated over time.
Additionally, the set of annotators might change
across collections. In this work, we tackle the prob-
lem of resolving annotation conflicts in a real-world
scenario of a commercial personal assistant.

To minimize annotation conflicts, the same data
point is often labeled by multiple annotators and the
annotation with unanimous agreement, or the one
with majority votes is deemed correct (Benikova
et al., 2014; Bobicev and Sokolova, 2017; Brants,
2000). While such measures ensure the quality
of annotations within the same batch, they cannot
ensure it across batches at different time points,
particularly when the same data point is present
in different batches with inevitable changes to an-
notation guidelines. For detecting and resolving
conflicts, two main methodologies have been ex-
plored; Bayesian modeling and training a super-
vised classification model (Hovy et al., 2013; Plank
et al., 2014; Snow et al., 2008; Versley and Steen,
2016; Volokh and Neumann, 2011). Both method-
ologies make certain assumptions about the setting,
for example, annotation guidelines and the pool of
annotators are fixed, which is not the case for our
use case. Additionally, while Bayesian modeling
is reasonably efficient for small datasets, it is pro-
hibitively expensive for large-scale datasets with
millions of utterances. We adopt a combination of
information-theoretic measures and a classification
neural model to detect and resolve conflicts.

NLU is a key component in language-based ap-
plications, and is defined as the combination of: (1)
An Intent Classifier (IC), which classifies an utter-
ance into one of N intent labels (e.g. PlayMusic),
and (2) A slot labeling (SL) model, which classifies
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Figure 1: An example utterance with two conflicting
annotations, a1 and a2. The phrase turn on has two
conflicting slot labels. AT stands for ActionTrigger.
Non-entities are labeled with O (i.e., Other).

tokens into slot types, out of a predefined set (e.g.
SongName) (Goo et al., 2018; Jolly et al., 2020).
An example utterance is shown in Figure 1, with
two conflicting annotations. In this paper, we con-
sider the task of NLU for personal assistants and
assume that utterances arrive at different points in
time, and that the annotation guideline evolves over
time. The same utterance text, e.g., the one shown
in Figure 1, often occurs multiple times across col-
lections, which gives the opportunity to conflicting
annotations. Moreover, changes to the annotation
guidelines over time lead to more conflicts.

Given an NLU dataset with utterances having
multiple, possibly conflicting annotations (IC and
SL), our goal is to find the right annotation for
each such utterance. To this end, we first detect
guideline changes using a maximum information
gain cut (Section 3.3). Then we compute the nor-
malized entropy of the remaining annotations after
dropping the ones before a guideline change. In
case this entropy is low, we simply use majority
voting, otherwise, we rely on a classifier neural-
based model to resolve the conflict (Section 3.4).
Our approach is depicted in Figure 2.

We evaluate our approach both intrinsically and
extrinsically, and show improved performance over
baselines including random resolution or no resolu-
tion in six domains, as detailed in Section 4.

2 Related Work

Annotation conflicts could emerge due to differ-
ent reasons, be it imprecision in the annotation
guideline (Manning, 2011; van Deemter and Kib-
ble, 2000), vagueness in the meaning of the un-
derlying text (Poesio and Artstein, 2005; Recasens
et al., 2011, 2010; Versley, 2006), or annotators
being careless or inexperienced (Manning, 2011;
Hovy et al., 2013). Manning et al. (2011) report, on
the WSJ Part-of-Speech (POS) corpus, that 28.0%
of POS tagging errors stem from imprecise annota-
tion guideline that caused inconsistent annotations,

while 15.5% of the errors are due to wrong gold
standard, which could be attributed to careless or
inexperienced annotators. In our case, conflicts
could occur due to changes to the annotation guide-
lines and having different, possibly inexperienced,
annotators within and across data collections.

Past work on conflict resolution has assumed
that data is collected once and then used for model
training and testing. Consequently, the proposed
methods to detect and resolve conflicts are geared
towards this setting (Benikova et al., 2014; Man-
ning, 2011; Poesio and Artstein, 2005; Recasens
et al., 2011, 2010; van Deemter and Kibble, 2000;
Versley, 2006). In our scenario, we deal with an
ever-growing data which is collected across differ-
ent data collections at different time points. This
increases the likelihood of conflicts especially with
frequent changes to the annotation guideline. In
Dickinson and Meurers (2003), an approach is pro-
posed to automatically detect annotation errors in
gold standard annotations for POS tagging using
n-gram tag variation i.e., looking at n-grams occur-
ring in the corpus with multiple tagging.

Bayesian modeling is often used to model how
reliable each annotator is and to correct/resolve
wrong annotations (Hovy et al., 2013; Snow et al.,
2008). In Hovy et al. (2013), they propose MACE,
an item-response based model, to identify spam-
mer annotators and to predict the correct underly-
ing labels. Applying such models is prohibitively
expensive in our case due to the large amount of
utterances we deal with. Additionally, our anno-
tator pool changes over time. A different line of
work has explored resolving conflicts in a super-
vised classification setting, similar to our approach
for resolving high normalized entropy conflicts.
Volokh and Neumann (2011) use an ensemble of
two off-the-shelf parsers that re-annotate the train-
ing set to detect and resolve conflicts in dependency
treebanks. Versley et al. (2016) use a similar ap-
proach on out-of-domain treebanks. Finally, Plank
et al. (2014) introduce the inter-annotator agree-
ment loss to ensure consistent annotations for POS
tagging.

Intent classification and slot labeling are two
fundamental tasks in spoken language understand-
ing, dating back to early 90’s (Price, 1990). With
the rise of task-oriented personal assistants, the
two tasks got more attention and progress has been
made by applying various deep learning techniques
(Abujabal and Gaspers, 2019; Goo et al., 2018;
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Figure 2: Our approach for conflict resolution. Given
conflicting annotations, we first use the Max Informa-
tion Gain (IG) Cut to detect changes in annotation
guidelines. Then, low entropy conflicts are resolved
using majority voting. High entropy conflicts are re-
solved using a classifier LSTM-based model.

Jolly et al., 2020; Mesnil et al., 2013; Zhang and
Wang, 2016). While we focus on resolving anno-
tation conflicts for NLU with linear labeling i.e.,
intent and slot labels, our approach can be still used
for other more complex tree-based labeling e.g., la-
beling dependency parses or ontology trees (Chen
and Manning, 2014), with the minor change of re-
placing the task-specific neural LSTM-based clas-
sification model. We plan to investigate this in the
future.

3 Annotation Conflict Resolution

3.1 Overview

Given multiple conflicting annotations of an utter-
ance, our goal is to find the right annotation. We
assume that annotations arrive at different points
in time and that the same utterance can be re-
annotated over time. Moreover, we assume that
annotators might differ both within and across data
collections, that each annotation is time stamped,
and that there is always one correct annotation.
Our pipeline for conflict resolution is depicted in
Figure 2. Given an utterance with conflicting an-
notations, we first detect guideline changes using a
maximum information gain cut. Then we compute
the normalized entropy of the remaining annota-
tions i.e., without the annotations before a guideline
change. In case this entropy is low, we simply use
majority voting, otherwise, we rely on a classifier
model to resolve the conflict.

A natural choice to easily resolving annotation
conflicts is to use majority voting. However, we
argue that this is not sufficient for our use case,
where (1) regular data collection and annotation are
required at different time points, and (2) changes
to annotation guideline are frequent. We use the
normalized entropy to detect whether there is high

or low disagreement among annotations. In the
extreme case where the normalized entropy is 1,
majority voting gives a random output and any
model that performs better than random will be
better than majority voting in resolving conflicts. In
our experiments we show that, for high normalized
entropy values, the classifier model significantly
outperforms majority voting.

Note that our conflict resolution pipeline does
not drop utterances with wrong annotations, but
rather replaces the wrong annotations with the cor-
rect ones. We do so to avoid changing the data
distribution.

We apply our pipeline to training data only. The
test set is of higher quality compared to the train
set as each collection of test set data is annotated
multiple times and we use the most recent test set
collection.

3.2 Normalized Entropy

Entropy measures the uncertainty of a probability
distribution (Yang and Qiu, 2014). Given an utter-
ance present N times in the dataset and annotated
in K distinct ways, each occurring ni times such
that

∑K
i=1 ni = N , we define the normalized em-

pirical entropy of the list of conflicting annotations
A, NH(A) as:

NH(A) =
−
∑K

i=1
ni
N ∗ log (ni

N )

logK
, for K > 1

For example, assume an utterance u with three
distinct annotations; a1, a2 and a3. Then, the list A
corresponds to {a1, a2, a3}, K = 3, and pi of each
annotation corresponds to its relative frequency in
the dataset (ni

N ) (Mahendra et al., 2014).
In this work, we harness normalized entropy

(NH) to determine whether majority voting should
be used. NH is a value between 0 and 1, where the
higher it is, the harder the conflict. In the edge case
of a uniform distribution, where NH is 1, majority
voting gives a random output. Therefore, in such
cases, we do not rely on majority voting for con-
flict resolution but rather on a classification model.
We use the normalized entropy over entropy as the
latter increases as K increases when the distribu-
tion is uniform. For example, assume K = 3 and
distribution is uniform, then entropy is H = log 3,
and NH = 1. If K = 2 and distribution is uni-
form, then H = log 2 and NH = 1, and so on.
When the distribution is uniform (and thus majority
voting will be outperformed by a model regardless
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of K), NH takes its maximum value of 1, while H
increases as K increases (Kvålseth, 2017).

3.3 Changes in Annotation Guideline: Max
Information Gain Cut

We rely on max information gain cut to find out if
there was a change in the annotation scheme that
caused a conflict, and to identify the exact date d of
the change. Let us assume the relatively common
case that there is exactly one relevant change in the
guideline. Then, we aim to split the annotations
of an utterance to two lists; one list containing
annotations prior to the change, and the other one
containing annotations after the change.

Inspired by methods used for splitting on a fea-
ture in decision trees (Mahendra et al., 2014), we
harness information gain (IG) to determine the
date to split at. Concretely, given a list B of chrono-
logically ordered annotations for the same utter-
ance, and their corresponding annotation dates, we
choose the date d that maximizes IG. If the value
of IG is larger than a threshold IG0, we deem the
annotations prior to d incorrect. The higher the
IG is, the more probable the annotations prior to
d to be incorrect. We define a boolean variable D
which is true if the date of an annotation comes
after d, and false otherwise. It divides the list of
annotations B to two sublists, Bb of size Nb of
annotations before date d, and Ba of size Na of an-
notations after date d. We compute IG as follows:

IG(B,D) = NH(B)−NH(B|D), where

NH(B|D) =
Nb ∗NH(Bb) +Na ∗NH(Ba)

N

We use the normalized entropy (NH) for IG com-
putation, as shown in the equation above. As a
result, IG is no longer strictly positive.

In the case of changes in the annotation
guideline, there will be high disagreement among
annotations before and after the change, and thus,
NH(B) will be high. Moreover, annotations
before the change will agree among each other, and
similarly, for annotations after the change. There-
fore, NH(B|D) will be low. Then IG(B,D)
takes its maximum value at the date of the guide-
line change, and annotations after this date, which
belong to the latest guideline, are correct. For ex-
ample, for the following date-ordered annotations;
{a1(03-2019), a1(07-2019), a1(08-2019),
a2(10-2019), a2(11-2019), a3(12-2019),
a2(01-2020), a2(02-2020)}, spliting at d =

-0.1

0

0.1

0.2

0.3

0.4

0.5

03.2019 07.2019 08.2019 10.2019 11.2019 12.2019 01.2020 02.2020

Figure 3: IG values at each date. The split at d =08-
2019 has the highest IG value. We cannot split at the
first and last dates.

(08-2019) yields the highest IG value, as shown in
Figure 3. This indicates that there was a change in
the annotation of this utterance on 08-2019. Hence,
a1 annotation is deemed wrong. In Section 4.2, we
empirically prove that for high IG values, a large
percentage of annotations occurring in the first
half of the Max IG Cut split is incorrect, whereas a
large percentage of annotations in the second half
is correct.

After the split, NH is computed for the remain-
ing annotations i.e., annotations after d. If NH
is less than a threshold NH0, we assign the utter-
ance the annotation with maximum frequency (i.e.,
majority voting). In the example above, NH is
low after the split, and the conflict is resolved by
changing all annotations (i.e., a1 and a3) to a2. Our
reasoning is that, when NH is high, majority vot-
ing will likely be outperformed by an alternative
model (LSTM-based method, explained next) as
there is high disagreement between the annotators.
Note that we do not drop any utterances, we replace
wrong annotations with the correct ones.

3.4 High Entropy Conflicts: LSTM

To make classification in the ambiguous high NH
cases, we use a supervised classifier trained on
the unambiguous examples from our data, in this
case an LSTM-based neural model (Hochreiter and
Schmidhuber, 1997). For the following list of an-
notations, {a1, a2, a3, a2, a1, a3}, no split with IG
greater than a threshold can be found, and NH = 1.
For such utterances, we rely on a neural model to
estimate the probability of each annotation i.e., a1,
a2, and a3. Then we assign the annotation with
highest probability to the utterance. Concretely, we
use the model of Chiu et al. (2016), a bidirectional
word-level LSTM model with a character-based
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Figure 4: Histogram of conflicts in the training data.
Most conflicts have high entropy.

CNN layer. A softmax layer is used on top of the
output of the bidirectional LSTM, which computes
a probability distribution over the output slot la-
bels for a given input token. We extend the model
to a multi-task setting to support IC by concate-
nating the last hidden states of the Bi-LSTM, and
passing them to a softmax layer, similar to Yang
et al. (2016). We harness the probabilities of the
output of the softmax layer and compute the final
probability of the annotation by multiplying the
probability of each of its slots and of the intent.

4 Experiments

In this section we evaluate our method both intrin-
sically and extrinsically.

4.1 Setup

Data. We use a real-world dataset of a commercial
dialog system in German, belonging to six different
domains covering different, macro-purposes like,
for instance, musical or movies requests. For the
purpose of IC and SL, domains are treated as sepa-
rate datasets. Utterances were manually transcribed
and annotated with domain, intent and slot labels
across many different batches at different points of
time. In total we have 3.5M and 560K training and
testing utterances, respectively. The percentage of
conflicts in the training data varies across domains,
ranging from 4.9% to 10.9%. Most conflicts are of
high entropy, as shown in Figure 4. The test set is
of higher quality compared to the train set as each
collection of test set data is annotated twice. Gen-
erally, the test set has lower number of conflicts
compared to the train set. We do not resolve the
conflicts in the test data to avoid artificial inflation
of results.
LSTM model. For high entropy conflicts, we use
a single layer network for the forward and the back-

Figure 5: Accuracy of the rule change detection
method described in Section 3.3. For high IG values,
the accuracy of annotations after a date d, at which
there is a guideline change, is 90%, while the accuracy
of annotations before d is over 80%.

ward LSTMs whose dimensions are set to 256.
We use Glove pretrained German word embed-
dings (Pennington et al., 2014) with 300 dimen-
sions. For the CNN layer, character embeddings
were initialized randomly with 25 dimensions. We
used a mini-batch Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.001. We tried
different optimizers with different learning rates
(e.g., stochastic gradient descent), however, they
performed worse than Adam. We also applied
Dropout of 0.5 to each LSTM output (Hinton et al.,
2012). For training, we use the data described
above (i.e., 3.5M utterances) after applying the
Max IG Cut and majority voting to resolve low en-
tropy conflicts, as described in Section 3.3. High-
entropy conflicts are left unresolved. After 10
epochs, training is terminated. After training is
done, the model is used for conflict resolution for
high entropy cases.

4.2 Intrinsic Evaluation

To asses the quality of our method, an expert lin-
guist is asked to resolve 490 conflicts in two dif-
ferent domains e.g., Music. The linguist is asked
to use the latest annotation guideline. On average,
we have 12.6 utterances per conflict, with a total
number of 6173 utterances for the 490 conflicts.
The maximum number of utterances of a conflict is
181. On the annotation side, the maximum number
of unique annotations of a conflict is 8, while the
average number is 2.35 (Table 1).

We used our pipeline to resolve the 490 conflicts
that were resolved by the linguist, where 229 con-
flicts out of the 490 were resolved with the LSTM
model, which means that 46.7% of the conflicts
were of high normalized entropy (≥ NH0 = 0.75).
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#Utterances #Unique Annotations
per Conflict per Conflict

Min 2 2

Average 12.6 2.35

Max 181 8

Total 6173 1151

Table 1: Statistics on the 490 conflicts used for our eval-
uation.

Guideline change detected 120

Resolved with LSTM model 229

Resolved with majority voting 261

Table 2: Out of the 490 conflicts, 229 were resolved
with the LSTM model, while 261 conflicts were re-
solved with majority voting.

The remaining 261 conflicts were resolved with
majority voting. 120 out of the 490 conflicts had at
least one guideline change (Table 2).
Max IG cut. For those conflicts with guideline
changes we evaluate, after splitting the list of an-
notations at date d, whether the annotations after
d are correct (aiafter), and whether the annotations
before d are incorrect (aibefore). To this end, for
each conflict with IG ≥ 0.2, we compare each
annotation after and before d with the ground-truth
annotation (agt) provided by the linguist. aiafter
annotations should be correct, therefore, accuracy
is 1 if aiafter agrees with agt, and 0 otherwise. On
the other hand, aibefore annotations should be incor-
rect, and hence, accuracy is 1 if aibefore does not
agree with agt, and 0 otherwise. We compute the
average accuracy over aiafter annotations and the
average accuracy over aibefore annotations for each
conflict. We also compute the average across those
conflicts with the same IG value.

We depicted the results in Figure 5. For high IG
values, high accuracies are achieved for annotations
after and before a split at a date d. For example, at
IG = 0.9, the accuracy of annotations before d is
almost 0.83, while the accuracy of annotations after
d is 0.90. This shows that our max IG cut method
was able to identify the right date d to split the list
of annotations at for the majority of conflicts with
guideline changes. We set IG0 to 0.4.
Majority Voting vs. LSTM. We evaluate the res-
olution of the 490 conflicts with the LSTM-based
model and majority voting at different levels of NH.
For each conflict, we apply the max IG cut and then

Figure 6: Accuracy with majority voting (orange) and
with the LSTM-based method (blue) on the 490 con-
flicts with respect to ground-truth resolution provided
by the linguist. For high values of NH, the LSTM-
based model performs better than majority voting.

resolve it using both methods of majority voting
and LSTM. We then compare the final annotation
each method delivers as correct with that delivered
by the linguist. If both agree, then accuracy is 1,
and 0 otherwise. For each NH value, we compute
the average accuracy of the set of 50 conflicts with
closest NH .

As expected, the accuracy with majority voting
significantly drops with high entropy conflicts, as
shown in Figure 6. The LSTM-based model be-
comes more accurate as NH increases, reaching
the highest accuracy in the case where NH =
1. In the training data, 29.3% of conflicts have
NH = 1. As seen in the figure, accuracy diverges
at NH = 0.75, which we use as NH0. That is, if
NH ≥ 0.75, we use the LSTM-based model, and
majority voting otherwise. For NH below 0.75,
both majority voting and the LSTM-based model
behave similarly, however, we use majority voting
for low entropies as it is more intuitive.

4.3 Effect on NLU

To evaluate our method extrinsically on the down-
stream task of NLU, we trained a multi-task LSTM-
based neural model for intent classification and slot
labeling on the 3.5M utterances after resolving an-
notation conflicts using our proposed method (Fig-
ure 2). Architecture-wise, the model is similar to
the one we use for conflict resolution, described
in Section 3.4. We compared this model with two
baseline models trained as follows:

1. NoResolution: this model was trained on the
full training data without conflict resolution
(i.e., 3.5M utterances).
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Method Error Rate (Rel. Change)
Random Resolution 0.55%

Our Pipeline 2.75%

Table 3: Results on the NLU task. Our pipeline
achieved 2.75% relative change in error rate with re-
spect to the NoResolution baseline.

2. Rand: We trained this model with conflicts re-
solved by choosing one annotation randomly.

The three models were tested on the same test set
described above (560K utterances). We report the
relative change in error rate with respect to the
NoResolution model. The error rate is defined as
the fraction of utterances in which there is at least
an error either in IC or in SL.

Results are shown in Table 3. Overall, random
conflict resolution slightly reduced the error rate
with 0.55% relative change on average across do-
mains, while our method achieved 2.75% error re-
duction. For each of the six domains, resolving
conflicts with our method improves performance
over random resolution and over no resolution. In
one domain, a reduction in error rate of 4.7% is ob-
served. For five domains, the difference in perfor-
mance passes a two-sided paired t-test for statistical
significance at 95% confidence level.

5 Conclusion

In this paper, we tackled the problem of annotation
conflicts for the task of NLU for voice-controlled
personal assistants. We presented a novel approach
that combines information-theoretic measures and
an LSTM-based neural model. We evaluated our
method on a real-world large-scale dataset, both
intrinsically and extrinsically.

Although we focused on the task of NLU, our
conflict resolution pipeline could be applied to any
manual annotation task. In the future, we plan on in-
vestigating how the choice of the task-specific clas-
sification model affects performance. Moreover,
we plan to study annotation conflict resolution for
other NLP tasks e.g., PoS tagging and dependency
parsing.
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