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Abstract

Neural Machine Translation (NMT) has
achieved significant breakthrough in perfor-
mance but is known to suffer vulnerability to
input perturbations. As real input noise is dif-
ficult to predict during training, robustness is a
big issue for system deployment. In this paper,
we improve the robustness of NMT models by
reducing the effect of noisy words through a
Context-Enhanced Reconstruction (CER) ap-
proach. CER trains the model to resist noise
in two steps: (1) perturbation step that breaks
the naturalness of input sequence with made-
up words; (2) reconstruction step that defends
the noise propagation by generating better and
more robust contextual representation. Exper-
imental results on Chinese-English (ZH-EN)
and French-English (FR-EN) translation tasks
demonstrate robustness improvement on both
news and social media text. Further fine-
tuning experiments on social media text show
our approach can converge at a higher position
and provide a better adaptation.

1 Introduction

Recent techniques (Bahdanau et al., 2014; Wu et al.,
2016; Vaswani et al., 2017) in NMT have gained re-
markable improvement in translation quality. How-
ever, robust NMT that is immune to real input noise
remains a big challenge for NMT researchers. Real
input noises can exhibit in many forms such as
spelling and grammatical errors, homophones re-
placement, Internet slang, new words or even a
valid word used in an unfamiliar or a new context.
Unlike humans who can easily comprehend and
translate such texts, most NMT models are not ro-
bust to generate appropriate and meaningful trans-
lations in the presence of such noises, challenging
the deployment of NMT system in real scenarios.

∗Work was done when the author was a staff in Institute
for Infocomm Research, A*STAR.

†Corresponding Author

Input 通宵打游戏上分贼快
Ref. It’s super-fast to gain scores when playing games

over the night.
MT Play the game all night and take points thief fast.
CER Play games all night to score points quickly.
Input 我已剪短了我的发,剪断了惩罚,剪一地伤透我

的尴尬。。。。
Ref. I have cut my hair, i cut off the punishment, i away

the awkwardness that hurt me.
MT I got my punishment, got rid of my embarrassment.
CER I cut short my hair , cut off punishment , and cut

off my embarrassment that hurts me.

Table 1: Examples of NMT’s vulnerability in trans-
lating text containing noisy words (“zei" → “thief",
“chengfa" → “punishment"). CER mitigates the effect
of noisy words.

Noisy words have long been discussed in previ-
ous work. Aw et al. (2006) proposed the normaliza-
tion approach to reduce the noise before translation.
Tan et al. (2020a,b) addressed the character-level
noise directly in the NMT model. Though these
approaches addressed the effect of noisy words to
some extent, they are limited to spelling errors,
inflectional variations, and other noises definable
during training. In addition, strong external su-
pervision like a parallel corpus of noisy text trans-
lation or dictionary containing the translation of
those noisy words are hard and expensive to obtain;
they are also not practical in handling real noises
as noisy words can exhibit in random forms and
cannot be fully anticipated during training.

Belinkov and Bisk (2018) pointed out NMT mod-
els are sensitive to small input perturbations and if
this issue is not addressed, it will continue to bot-
tleneck the translation quality. In such cases, not
only the word embeddings of perturbations may
cause irregularities with the local context, the con-
textual representation of other words may also get
affected by such perturbations (Liu et al., 2019).
This phenomenon applies to valid words in unfa-
miliar context as well, which will also cause the
translation to fail as illustrated in Table 1 (case 2).
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In this paper, we define “noisy word” as a valid
or invalid word that is uncommonly used in the
context or not observed frequently enough in the
training data. When encoding a sentence with such
a noisy word, the contextual representation of other
words in the sentence are affected by the “less
jointly trained" noisy word embeddings. We refer
this process as “noise propagation". Noise propa-
gation can extend to the decoder and finally distort
the overall translation.

The main intuition of our proposed method is
to minimize this noise propagation and reduce the
irregularities in contextual representation due to
these words via a Context-Enhanced Reconstruc-
tion (CER) approach. To reduce the sensitivity of
contextual towards noisy words in the encoder, we
inject made-up words randomly to the source side
of the training data to break the text naturalness.
We then use a Noise Adaptation Layer (NAL) to
enable a more stable contextual representation by
minimizing the reconstruction loss. In the decoder,
we add perturbations with a semantic constraint
and apply the same reconstruction loss. Unlike ad-
versarial examples which are crafted to cause the
target model to fail, our perturbation process does
not have such constraint and does not rely on a
target model. Our input perturbations are randomly
generated, representing any types of noises that can
be observed in real-world usage. This makes the
perturbation process generic, easy and fast. Follow-
ing (Cheng et al., 2018), we generate semantically
related perturbations in the decoder to increase the
diversity of the translations.

Together with NAL, our model shows its ability
to resist noises in the input and produce more ro-
bust translations. Results on ZH-EN and FR-EN
translation significantly improve over the baseline
by +1.24 (MT03) and +1.4 (N15) BLEU on news
domain, and +1.63 (Social), +1.3 (mtnt18) on so-
cial media domain respectively. Further fine-tuning
experiments on FR-EN social media text even wit-
ness an average improvement of +1.25 BLEU over
the best approach.

2 Related Work

Robust Training: Robust training has shown to
be effective to improve the robustness of the mod-
els in computer vision (Szegedy et al., 2013). In
Natural Language Processing, it involves augment-
ing the training data with carefully crafted noisy
examples: semantically equivalent word substitu-

tions (Alzantot et al., 2018), paraphrasing (Iyyer
et al., 2018; Ribeiro et al., 2018), character-level
noise (Ebrahimi et al., 2018b; Tan et al., 2020a,b),
or perturbations at embedding space (Miyato et al.,
2016; Liang et al., 2020). Inspired by Lei et al.
(2017) that nicely captures the semantic interac-
tions in discourse relation, we regard noise as a dis-
ruptor to break semantic interactions and propose
our CER approach to mitigate this phenomenon.
We make up “noisy” words randomly to act as ran-
dom noise in the input to break the text naturalness.
Our experiment demonstrates its superiority in mul-
tiple dimensions.

Robust Neural Machine Translation: Methods
have been proposed to make NMT models resilient
not only to adequacy errors (Lei et al., 2019) but
also to both natural and synthetic noise. Incorpo-
rating monolingual data into NMT has the capacity
to improve the robustness (Sennrich et al., 2016a;
Edunov et al., 2018; Cheng et al., 2016). Some non
data-driven approaches that specifically designed
to address the robustness problem of NMT (Sper-
ber et al., 2017; Ebrahimi et al., 2018a; Wang et al.,
2018; Karpukhin et al., 2019; Cheng et al., 2019,
2020) explored effective ways to synthesize adver-
sarial examples into the training data. Belinkov
and Bisk (2018) showed a structure-invariant word
representation capable of addressing multiple typo
noise. Cheng et al. (2018) used adversarial stability
training strategy to make NMT resilient to arbitrary
noise. Liu et al. (2019) added an additional pho-
netic embedding to overcome homophone noise.

Meanwhile, Michel and Neubig (2018) released
a dataset for evaluating NMT on social media text.
This dataset was used as a benchmark for WMT 19
Robustness shared task (Li et al., 2019) to improve
the robustness of NMT models on noisy text. We
show our approach also benefits the fine-tuning
process using additional social media data.

3 Approaches

We propose a Context-Enhanced Reconstruction
(CER) approach to learn robust contextual repre-
sentation in the presence of noisy words through a
perturbation step and a reconstruction step in both
encoder and decoder during model training. Fig-
ure 1 shows the architecture.

The perturbation step automatically inserts
made-up words in the input sequence x to gen-
erate a noisy example x′. The noisy example mim-
ics input where text naturalness is broken due to
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Figure 1: The architecture of CER (a), and the use of NAL in training (b) and testing (c). The solid lines indicate
the flow for original input, while the dotted lines for noisy input, generated in the perturbation step.

the noisy words. Similarly, we perturb the output
sequence y to y′ using a semantic constraint to
generate noisy examples for the decoder to have
more diversity in the translations.

The reconstruction step in the model aims to re-
store the contextual representation cx

′
of x′ to be

similar to its corresponding original contextual rep-
resentation cx in the encoder. Specifically, under
the Transformer architecture (Figure 1), the recon-
struction step aims to stabilize and minimize the
disruption of attention distribution for a word over
the whole input in the presence of inserted noise.
The stabilization is needed for both clean and noisy
words as both of their contextual representations
are affected. For a noisy word, reconstruction re-
duces the attention to itself and encourages the
construction of the contextual representation to
leverage more on its clean neighbors. For clean
words, reconstruction works as a denoise module
to mitigate the interference of noisy words. For cy

′

in the decoder, the aim is to generate more exam-
ples with similar context as cy. The reconstruction
helps to normalize the contextual representation of
semantically similar words.

3.1 Perturbing Input Text with Noise
We insert made-up words, representing any kinds
of noise, to disturb the contextual representation
during training. To create those words, we build
a made-up dictionary D−x with M made-up words.
As shown in Figure 1(a), made-up words are sim-
ply indexed slots in D−x , whose embeddings are
randomly initialized with no prior restriction and
updated during training just as valid words. During
the perturbation step, we randomly select multiple

positions in each input sequence based on proba-
bility σx and replace the words with any arbitrary
made-up words in D−x .

For the decoder, as the aim is not to insert noise
but to increase the diversity of translation, we add
small perturbations with a semantic constraint to
make the model robust. Specifically, we randomly
select multiple positions in each target sequence
with a probability σy and perturb the corresponding
words. For the word yi chosen to be perturbed, we
create a dynamic set Vyi consisting of m words
having the highest cosine similarity with it (exclud-
ing yi). We average the embeddings of the words
in Vyi as the perturbation for yi.

Vyi = top_m
yj∈Dy,j 6=i

(cos(eyi , eyj )) (1)

ey
′
i =

1

m

∑
yj∈Vyi

eyj (2)

Where Dy is the target dictionary, eyj is the target
word embedding for yj and ey

′
i is the perturbed

embedding for yi.

3.2 Reconstructing Contextual
Representation

As the injected noise in x′ affects the self-attention
mechanism in producing correct contextual repre-
sentation, we regularize the contextual representa-
tion using a Noise Adaptation Layer (NAL) imme-
diately after the self-attention layer as depicted in
Figure 1(a). This NAL is trained together with the
NMT model and used as a reconstruction module
during testing (See Figure 1(b),(c)).

Formally, let cxl and cx
′

l be the outputs of the
self-attention in the l-th encoder layer for x and x′
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respectively. We train the NAL by:

Lx
nal(θ

x
nal) =

1

|S|
∑

(x,y)∈S

N∑
l=1

||cxl −NAL(cx
′

l )||2 (3)

Where θx
nal are parameters of NAL, S is the train-

ing corpus and N is the encoder layer size. Given
cx
′
, NAL attempts to output a more correct con-

textual representation guided by cx. We use a sin-
gle layer feed-forward network (FFN) in (Vaswani
et al., 2017) as our NAL implementation. Similarly,
the reconstruction loss for decoder is:

Ly
nal(θ

y
nal) =

1

|S|
∑

(x,y)∈S

N∑
l=1

||cyl −NAL(cy
′

l )||2 (4)

3.3 Model Training
We apply the perturbation step at the embedding
layer, see Figure 1. The inserted noise in x′ and y′

would also receive gradient from the final loss func-
tion and update just like other clean words. NAL is
added at each Transformer layer where the outputs
are only used to calculate the reconstruction loss
and not passed to the next layer. On the other hand,
the output of FFN is propagated to the next layer
as usual. The reconstruction step mainly serves as
a stabilizer to prevent the noise from propagating.

The final training objective L is the combina-
tion of the above three loss functions, the original
translation loss, the reconstruction loss for the en-
coder and the reconstruction loss for the decoder.
Both λx and λy are set empirically to count for the
relative importance.

L = Lnmt(θnmt) + λxLx
nal(θ

x
nal) + λyLy

nal(θ
y
nal) (5)

4 Experiment Settings

Experiments are conducted on ZH-EN and FR-EN
translation tasks for both news and social media
domains. We also use social media text to fine-tune
the NMT systems on FR-EN.

4.1 Data
ZH-EN: The training data consists of 1.25M sen-
tence pairs extracted from LDC. For news domain,
we use NIST MT02 as the development set and
select the best model to test MT03, MT04, MT05,
MT06 and MT08 news test sets. For social media
domain, we create a test set (Social) consisting of
2000 sentences with three human annotated refer-
ences. The source sentences are collected from pub-
lic social media platforms in four Chinese-speaking

regions: Mainland China, Hong Kong, Taiwan and
Singapore 1.
FR-EN: We use the same datasets as Michel and
Neubig (2018). The training set consists of 2.16M
sentence pairs extracted from europarl-v7 and
news-commentary-v10. We use the newsdiscuss-
dev2015 as development set and evaluate the model
on two news test sets, newstest2014 (N14) and
newsdiscusstest2015 (N15). We also evaluate on
two social media test sets: mtnt18 (Michel and
Neubig, 2018) and mtnt19 (Li et al., 2019).
FR-EN Fine-Tuning: We use the noisy training
set (mtnttrain) provided by Michel and Neubig
(2018) to fine-tune the FR-EN model.

We use fairseq’s implementation of Trans-
former (Ott et al., 2019). In evaluation, we report
case-insensitive tokenized BLEU for ZH-EN (Pap-
ineni et al., 2002) and sacre-BLEU (Post, 2018)
for FR-EN. Following Michel and Neubig (2018),
we do not use development set but only report best
results on three social media test sets.

We segment the Chinese words using THU-
LAC (Li and Sun, 2009) and tokenize both French
and English words using tokenize.perl2. We
apply BPE (Sennrich et al., 2016b) to get sub-word
vocabularies for the encoder and decoder, both with
20K merge operations.

The hyper-parameters setting is the same as
transformer-base in (Vaswani et al., 2017)
except that we set dropout rate as 0.4 in all our
experiments. Our proposed models are trained on
top of Transformer baseline for efficiency purpose,
where additional parameters from the embeddings
of D−x and ReL are uniformly initialized. The
madeup dictionary size M is set to 10,000. The
size of dynamic set m is set to 3. The probability
σx and σy are both set to 0.1 and balance coefficient
λx and λy are both set to 1.

4.2 Baseline Models
We use Transformer as our baseline.
ZH-EN: We compare with Wang et al. (2018);
Cheng et al. (2018, 2019). Wang et al. (2018) use
a data augmentation approach by randomly replac-
ing words in source and target sentences with other
in-dictionary words. Cheng et al. (2018) use ad-
versarial stability training to make NMT resilient
to noise. Cheng et al. (2019) employ a white-box
approach to synthesize adversarial examples.

1Available at https://github.com/wwxu21/
CER-MT.

2https://github.com/moses-smt/mosesdecoder

https://github.com/wwxu21/CER-MT.
https://github.com/wwxu21/CER-MT.
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Model MT02 (DEV) MT03 MT04 MT05 MT06 MT08 News Ave. Social
Existing systems

Wang et al. (2018) 47.13 46.68 47.41 46.66 46.62 38.46 45.17 23.20
Cheng et al. (2018) 46.10 44.07 45.61 43.45 44.44 34.94 42.50 21.27
Cheng et al. (2019) 47.06 46.48 47.39 46.58 46.95 37.38 44.96 22.74

Our systems
Transformer 46.98 46.35 47.27 46.35 46.77 38.20 45.00 22.41
+ CER-Enc 47.65 46.72 47.53 47.06 47.04 38.53 45.38 23.81
+ CER 48.34 47.59 48.21 47.29 47.64 39.33 46.01 24.04

Table 2: Case-insensitive BLEU scores (%) on ZH-EN translation. MT02 is our development set.

Model N14 N15 mtnt18 mtnt19
Exising systems

Wang et al. 29.2 31.1 25.0 28.1
Michel and Neubig 28.9 30.8 23.3 26.2
Zhou et al.* N.A. N.A. 24.5 30.3

Our systems
Transformer 29.7 31.0 25.2 28.0
+ CER-Enc 30.4 31.7 26.1 28.7
+ CER 30.7 32.4 26.5 29.1

Table 3: sacreBLEU (%) on FR-EN translation task.
*Zhou et al. use more data to train their model.

FR-EN: In addition to Wang et al. (2018), we com-
pare with Michel and Neubig (2018); Zhou et al.
(2019); Vaibhav et al. (2019) on FR-EN or FR-EN
Fine-Tuning tasks. Michel and Neubig (2018) do
the first benchmark of the noisy text translation
tasks in three languages. Vaibhav et al. (2019)
leverage effective synthetic noise to make NMT re-
silient to noisy text. We implement their approach
on Transformer backbone. For a fair comparison,
we limit the data to train back-translation mod-
els only with mtnttrain. Zhou et al. (2019) adopt
a multitask transformer architecture with two de-
coders, where the first decoder learns to denoise
and the second decoder learns to translate from the
denoised text. They adopt the approach proposed
by Vaibhav et al. (2019) to synthesize the noisy text
for their first decoder.

We do not compare our model with (Berard et al.,
2019; Helcl et al., 2019) as they use much more
out-domain data, a great number of monolingual
data and a bigger Transformer model, and hence
not comparable with our experimental settings.

5 Results and Analysis

5.1 Comparison with Baseline Models

Table 2 and Table 3 show the performance on ZH-
EN and FR-EN tasks. We show the results of ap-
plying CER only to the encoder (+ CER-Enc), and
to both the encoder and decoder (+ CER).

As illustrated, our approach improves the news
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Figure 2: BLEU improvements compared to Trans-
former baseline shown in Table 2 and Table 3 when
applying noise-insertion methods.

text translations on all test sets for both ZH-EN and
FR-EN and outperforms the Transformer baseline
in terms of average BLEU by +1.01 and +1.2 on
ZH-EN and FR-EN respectively, illustrating the
superiority of our approach.

The performance on social media test sets shows
significant improvement with up to +1.63 BLEU
over Transformer and +0.84 BLEU over the best ap-
proach (Wang et al., 2018) on ZH-EN. For FR-EN,
our model outperforms Wang et al. (2018) by +1.5
and +1.0 BLEU on mtnt18 and mtnt19 respectively.
Zhou et al. (2019) use mtnttrain and TED (Qi et al.,
2018) to synthesize noisy sentences for their first
decoder, hence effectively they are exploiting in-
domain data during training and thus not quite a fair
comparison in the evaluation. Nevertheless, CER
still significantly outperforms Zhou et al. (2019) by
+2.0 BLEU on mtnt18.

5.2 Effect of Noise

We investigate the effect of different noise-insertion
methods by dynamically inserting noise into the
source side of the original training set using differ-
ent strategies with a same probability σx.
Madeup: Our approach to add made-up words.
Semantics: We test our semantic constraint in the
decoder to assess if it benefits the encoder.
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Figure 3: BLEU scores of CER variants.

Dropout: We replace word embeddings with all-0
vectors, similar to enlarging the dropout rate.
Gaussian: Following the feature-level perturba-
tions of Cheng et al. (2018), we add the Gaussian
noise to a word embedding to simulate the noise.
Random: We replace a word with an arbitrary word
in the dictionary. This would result in a valid word
being placed in an unreasonable context.

Figure 2 shows the BLEU improvement of var-
ious noise-insertion methods on social media test
sets. We find that nearly all kinds of noise-insertion
methods improve the robustness of MT with the
exception of Dropout. Since we have already set
the dropout rate to an optimal rate, inserting ad-
ditional Dropout noise does not increase but de-
creases the performance. As shown, Madeup im-
proves the performance nearly twice than the rest
of the noise-insertion methods. We conjecture
Semantics, Dropout and Gaussian may be small
and not diverse enough to simulate the real noisy
words. Both Random and Madeup can break the
text coherence. However, Random uses a random
in-dictionary word, which can place a valid word in
an unreasonable context and cause its embedding
to update in a wrong direction. In fact, this method
improves the robustness of NMT models at the cost
of those replaced words. Our Madeup can entirely
avoid this cost as we use made-up words to work as
noisy words and does not cause any context change
of all in-dictionary words.

5.3 Effect of NAL

To further gain insights on how NAL helps improve
the robustness of NMT models. We create three
variants to aid our analysis:
CER-inactive: We do not activate NAL at testing
time. The contextual representation is feed directly
into later FFN. This variant is to test the effective-
ness of NAL.
CER-con: We remove NAL but only add a con-

Model mtnt18 mtnt19
Existing systems

Michel and Neubig 30.3 N/A
Wang et al. 35.1 36.7
Zhou et al. 31.7 32.8
Vaibhav et al. 36.0 37.5

Our systems
Transformer (Base) 25.2 28.1
+FT 35.2 37.4
+FT w/ CER 37.3 38.7

Table 4: sacreBLEU on FR-EN fine-tuning task.

straint to ensure {cx, cx′} and {cy, cy′} to be close
respectively at training time. This forces the self-
attention layer to reconstruct the correct contextual
representation itself. This variant is to demonstrate
the necessity to set apart the context generation
module (self-attention layer) and the reconstruc-
tion module (NAL).
CER-D: We borrow the adversarial stability train-
ing strategy proposed in Cheng et al. (2018) here.
In this variant, NAL is replaced by a discriminator
and θx

nal and θy
nal are changed to the adversarial

learning loss in Cheng et al. (2018). The purpose
is to assess the effectiveness of NAL and the dis-
criminator in context reconstruction.

Figure 3 shows the results of the three variants
on three social media test sets. From the figure, we
make the following observations.

NAL is effective at Test Time. The activation
of NAL at test time helps to produce more reli-
able contextual representation. Notably, NAL gains
+1.19 BLEU on Social.

NAL needs to be learnt separately. As shown in
CER-con, by forcing self-attention layer to do both
tasks (context generation and reconstruction), the
performance improvement gets affected by at least
0.4 BLEU.

NAL is more effective than a discriminator to
guide reconstruction. The improvements are less
significant in all test sets when using a discrimi-
nator (CER-D) comparing to CER. Therefore, we
can conclude that NAL is more effective than a dis-
criminator to reconstruct the perturbed contextual
representation and CER outperforms all variants.

5.4 FR-EN Fine-Tuning on Social Media Text

We fine-tune the same Transformer model in Ta-
ble 3 with the social media data mtnttrain (+FT)
and further include CER in the fine-tuning (+FT
w/ CER). Table 4 shows our performance (+FT
w/ CER) with other four fine-tuning approaches
on mtnttrain. It shows that our CER also bene-
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Model Social
Google Translate 38.59

Ours
Baseline 39.01

+FT 40.56 (+3.97%)
+FT w/ CER 40.82 (+4.64%)

Table 5: Case-insensitive BLEU scores (relative im-
provement) on large-scale ZH-EN translation system.

fits the fine-tuning process and outperforms all the
approaches in two noisy test sets. Specifically, it
gains +2.1 and +1.3 BLEU over +FT on mtnt18
and mtnt19 and outperforms Vaibhav et al. (2019)
by +1.3 and +1.2 BLEU respectively.

5.5 Experiments on Large-Scale Datasets

We first train a ZH-EN baseline model using 25M
sentence pairs, which are mainly in news domain.
Similar to the setting in Table 4, we apply both
simple finetuning (+FT) and our CER (+ FT w/
CER) approach using 125K social media training
data. We evaluate those models on Social. We also
include the performance of Google Translate 3 here
to show the competitiveness of our baseline model.

As shown in Table 5, our CER approach can still
benefit the fine-tuning process even on the strong
baseline. It should be noted that the baseline has al-
ready maintained high robustness with large-scale
training data where improvement in such a model
is hard to obtain. In fact, 125K in-domain data can
only contribute to 1.55 BLEU improvement. Under
this circumstance, the 0.26 BLEU improvement
brought by CER should be highly valued consid-
ered no additional fine-tuning data is used.

6 Conclusions

In this work, we propose an approach to reduce the
vulnerability of NMT models to input perturbations.
Our input perturbation is easy, fast and not specific
to a target victim model. Experimental results show
our proposed approach improves the robustness
on both news and social media text and helped to
improve the translation of real input.
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