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1 Aim of the Workshop

Based on the success of past low-resource machine translation (LoResMT) workshops at
AACL-IJCNLP 20201, MT Summit 20192 and AMTA 20183, we introduce the 4th LoResMT
workshop co-located at the MT Summit 20214 conference. Like its predecessors, this work-
shop will bring together researchers and translators of low-resource languages to compare and
contrast how each use digital technology for translation. Specifically, the workshop focuses
on novel advances on the coverage of even more languages than past workshops with different
geographical presence, degree of diffusion and digitization.

The proceedings of LoResMT 2021 contain original work on low-resource translation
which includes, but is not limited to, machine translation (MT) systems that include word
tokenizers/de-tokenizers, word segmenters, and morphological analyzers. Additionally, we ex-
plicitly solicited novel work covering translations of COVID-related text and their practical use
for low-resource communities.

The goal of this workshop was to begin to close the gap between low-resource translation
systems and their practical use in the real world. Online systems and original research that
used by native speakers of low-resource languages was of particular interest. Therefore, we
encouraged the authors of research papers to include a statement about the impact of their
proposed approaches on the quality of MT output and how they can be used in the real world.

The need for receiving relevant, fast and up-to-date information in one’s language is today
more important than ever, especially under the current crisis conditions. MT is a vital tool for
facilitating communication and access to information. For most of the world’s languages, the
lack of training data has long posed a major obstacle to developing high quality MT systems,

1http://aacl2020.org
2https://www.mtsummit2019.com
3https://amtaweb.org
4https://amtaweb.org/mt-summit2021
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excluding the speakers of these low-resource languages from the benefits of MT. In the past few
years, MT performance has improved significantly, mainly due to the new possibilities opened
up by neural machine translation (NMT). With the development of novel techniques, such as
multilingual translation and transfer learning, the use of MT is no longer a privilege restricted to
users of a dozen popular languages. Consequently, there has been an increasing interest in the
MT community to expand the coverage to more languages with different geographical presence,
degree of diffusion and digitization. Today, research groups on all continents are working on
MT. The number of languages offered by publicly available MT engines is increasing, reaching
almost 200 languages at the moment of writing. We are witnessing an interesting phenomenon
of collaborative projects to promote MT for under-represented languages, involving partners
from all over the globe, participating on a voluntary basis. These developments have created a
colourful, promising future for low-resource languages on the MT map.

Despite all these encouraging developments in MT technologies, creating an MT system
for a new language from scratch or even improving an existing system still requires a consid-
erable amount of work in collecting the pieces necessary for building such systems. Due to
the data-hungry nature of NMT approaches, the need for parallel and monolingual corpora in
different domains is never saturated. The development of MT systems requires reliable test
sets and evaluation benchmarks. In addition, MT systems still rely on several natural language
processing (NLP) tools to pre-process human-generated texts in the forms that are required as
input for MT systems and post-process the MT output in proper textual forms in the target lan-
guage. These NLP tools include, but are not limited to, word tokenizers/de-tokenizers, word
segmenters, and morphological analysers. The performance of these tools has a great impact
on the quality of the resulting translation. There is only limited discussion on these NLP tools,
their methods, their role in training different MT systems, and their coverage of support in the
many languages of the world.

LoResMT provides a discussion panel for researchers working on MT systems/methods for
low-resource languages in general. This year we received research papers covering a wide range
of languages spoken in Asia, Latin America, Africa and Europe. These languages are: Arabic,
Albanian, Ashaninka, Bengali, Dutch, Eastern Pokomchi, English, French, German, Gujarati,
Hindi, Inuktitut, Indonesian, Irish, Japanese, Kannada, Khasi, Konkani, Korean, Mayan, Malay-
alam, Marathi, Odia, Punjabi, Quechua, Sanskrit, Spanish, Tamil, Telugu, Turkish and Urdu.
We received both resource papers (monolingual, parallel corpora, social media, sentiment and
formalisms) and methods papers, ranging from unsupervised, zero-shot to multilingual NMT,
MT evaluation. The acceptance rate of LoResMT this year is 43.4%.

In addition to soliciting research papers, we organized a shared task to be presented at the
workshop, where we asked participants to build novel MT systems for COVID-related texts
in low-resource languages, including one sign language. The shared task aimed to encourage
research on MT systems for three language pairs: English↔Irish, English↔Marathi and Tai-
wanese Sign Language↔Traditional Chinese. The corpora along with additional information
on downloading videos for sign language for machine translation tasks are freely available on
Github5. Six shared task papers are published as part of the proceedings, along with the findings
of the shared task.

2 Invited Speakers (listed alphabetically)

We are happy our dear colleagues Barry Haddow, Catherine Muthoni Gitau, Mathias Müller
and Mona Diab have prepared talks on four important topics for LoResMT 2021.

5https://github.com/loresmt/loresmt-2021
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2.1 Barry Haddow, Aveni and University of Edinburgh

MT for Low-resource Languages: Progress and Open Problems
Current machine translation (MT) systems have reached the stage where researchers are now
debating whether or not they can rival human translators in performance. However these MT
systems are typically trained on data sets consisting of tens or even hundreds of millions of
parallel sentences. There is an increasing body of research which considers the problem of
training MT systems on much smaller data sets. The aim of this talk is to provide a broad
survey of the techniques that have been applied to low-resource MT, presenting a data-centric
taxonomy, and indicating gaps. The talk is based on a survey paper which is currently being
finalised, and that we aim to release during August 2021.

About the Speaker
Barry Haddow is a senior researcher in the School of Informatics at the University of Edinburgh.
He has worked in machine translation for more than 10 years, and his current interests include
low-resource MT, spoken language translation and evaluation of MT. Barry coordinates the
annual WMT conference on machine translation and associated shared tasks.

2.2 Catherine Muthoni Gitau, African Institute for Mathematical Sciences

Challenges and Advances in MT Systems for African Languages
Africa is known to be the highest linguistically diverse continent with over 2,000 languages
across the continent representing about 30% of the languages spoken around the world and
despite this, African languages account only a small fraction of available language resources
making them low-resourced. There’s minimal attention that’s being given to machine translation
for African languages and therefore, there is not much work or research regarding the problems
that arise when using machine translation techniques. However, there’s been an increase in
work around machine translation for African languages in the last couple of years with the aim
of addressing some of these challenges. In this talk, I will present on the challenges currently
being faced in the development of machine translation systems for African languages as well
as work that’s being done to alleviate some of these challenges. I will go into detail about the
work of the Masakhane community whose mission is to strengthen and spur NLP research in
African languages, for Africans, by Africans with a focus on work that’s being done on machine
translation.

About the Speaker
Catherine Gitau is a natural language processing researcher and engineer at Proto, a company
that builds multilingual AI chatbots for contact centers. She recently completed her Masters’
in Machine Intelligence at the African Institute of Mathematical Sciences (AIMS) under the
African Masters’ in Machine Intelligence (AMMI) program and is an active member of the
Masakhane Community whose mission is to strengthen NLP research in African Languages.
Her research interests include natural language processing and low-resource machine transla-
tion.

2.3 Mathias Müller, Institut für Computerlinguistik, Universität Zürich

On Meaningful Evaluation of Machine Translation Systems
In this talk Mathias will discuss best practices for evaluating machine translation systems. The
goal of defining such best practices is to ensure that conclusions drawn from experiments are
valid, and that perceived scientific progress is in fact real. Areas we will touch on during the talk
include selecting data for experiments, significance testing and the special role of low-resource
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experiments. Mathias is looking forward to a lively discussion, leading to a set of practices that
we can all advocate in the future and implement in our own research.

About the Speaker
Mathias is a post-doc and lecturer at the University of Zurich. His current main interests are
1) the meta-sciences of scientific integrity, methodology and reproducibility applied to machine
translation and 2) sign language translation. In his personal life, as a father of two, he advocates
the best practice of not working on weekends.

2.4 Mona Diab, Facebook, George Washington University
Trustworthy Human Evaluation Frameworks for MT
How do we establish trust in our machine translation systems performance? Typical evaluations
rely on reference translations that are curated from humans, serving as gold data annotations.
In this talk I will examine this assumption and propose ways to ensure we have trustworthy
reference data with closer to real translation perception (higher meaningfulness gauging). I will
propose a holistic view of translation evaluation as an ecosystem and a framework especially
for low resource scenarios.

About the Speaker
Mona is a Research Scientist with Facebook AI and she is also a full Professor of CS at the
George Washington University where she heads the CARE4Lang NLP Lab. Before joining FB,
she led the Lex Conversational AI project within Amazon AWS AI. Her interests span building
robust technologies for low resource scenarios with a special interest in Arabic technologies,
(mis)information propagation, computational socio-pragmatics, NLG evaluation metrics, and
resource creation. She has served the community in several capacities: Elected President of
SIGLEX and SIGSemitic. She currently serves as the elected VP-Elect for ACL SIGDAT, the
board supporting EMNLP conferences. She has delivered tutorials and organized numerous
workshops and panels around Arabic processing. She is a cofounder of CADIM (Consortium
on Arabic Dialect Modeling, previously known as Columbia University Arabic Dialects Mod-
eling Group), in 2005, which served as a world renowned reference point on Arabic Language
Technologies. Moreover she helped establish two research trends in NLP, namely computa-
tional approaches to Code Switching and Semantic Textual Similarity. She is also a founding
member of the *SEM conference, one of the top tier conferences in NLP. She currently serves
as the senior area chair for multiple top tier conferences. She has published more than 230 peer
reviewed articles.
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Dealing with the Paradox of Quality Estimation

Sugyeong Eo∗ djtnrud@korea.ac.kr
Chanjun Park∗ bcj1210@korea.ac.kr
Hyeonseok Moon glee889@korea.ac.kr
Jaehyung Seo seojae777@korea.ac.kr
Heuiseok Lim† limhseok@korea.ac.kr
Department of Computer Science and Engineering, Korea University, Korea

Abstract
In quality estimation (QE), the quality of translation can be predicted by referencing the source
sentence and the machine translation (MT) output without access to the reference sentence.
However, there exists a paradox in that constructing a dataset for creating a QE model re-
quires non-trivial human labor and time, and it may even requires additional effort compared
to the cost of constructing a parallel corpus. In this study, to address this paradox and utilize
the various applications of QE, even in low-resource languages (LRLs), we propose a method
for automatically constructing a pseudo-QE dataset without using human labor. We perform a
comparative analysis on the pseudo-QE dataset using multilingual pre-trained language mod-
els. As we generate the pseudo dataset, we conduct experiments using various external machine
translators as test sets to verify the accuracy of the results objectively. Also, the experimental
results show that multilingual BART demonstrates the best performance, and we confirm the
applicability of QE in LRLs using pseudo-QE dataset construction methods.

1 Introduction

In the field of machine translation (MT), most of the representative metrics such as BLEU (Pa-
pineni et al., 2002) and METEOR (Banerjee and Lavie, 2005) are used to measure the quality
of MT output by comparing it with the reference sentence. However, these evaluation metrics
limit the amount of datasets owing to the need for a reference sentence (Specia et al., 2010). In
cases where end users use MT, they do not have sufficient knowledge of the source or target lan-
guages. Specifically, In the case of low-resource languages (LRLs), people are often unfamiliar
with such languages. In such cases, it is difficult to determine whether the translation results
derived using MT have been translated well.

Recently, studies on quality estimation (QE) have been actively conducted to address this
problem (Kim et al., 2019; Wang et al., 2020; Fomicheva et al., 2020). In QE, the source sen-
tence and the MT output are referenced to predict the quality of translation result. QE can be
used to express the quality of MT output numerically, rank the results of several MT systems
(Specia et al., 2010), and inform end users on MT system’s level of trust. Quality annotations
resulting from the QE system also allows individuals who are unfamiliar with the translation
languages to verify the quality of MT outputs (Specia et al., 2013). Additionally, post-editing
efforts can be reduced by filtering out poor-quality MT outputs (Specia et al., 2009; Specia,
2011). As a result, the importance of QE research has been emphasized in the field of MT.
∗These authors contributed equally.
†Corresponding author.
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We found one paradox pertaining to this useful QE task. QE has an advantage in that it can
make predictions about MT results without using a reference sentence. However, efforts to build
datasets that require more expertise than building a parallel corpus must be made to ensure the
progress of QE. These requirements also limit the construction of large QE datasets. We refer
to this paradox as the paradox of QE, and we use methods for generating a pseudo-QE dataset
to address this paradox.

Because it is difficult to obtain a parallel corpus for LRLs and hinders to build a QE dataset
for such languages, there are few QE studies on LRLs, except for those provided by the Con-
ference on Machine Translation (WMT). Based on these limitations, we conduct a study on
sentence-level QE with a main focus on LRLs. We construct a pseudo-QE dataset by auto-
matically expanding Korean-based monolingual or parallel corpora without using extra human
labor.

We conduct a comparative analysis between QE models based on various multilingual pre-
trained language models (mPLMs), and we confirm the possibility of creating a QE model for
LRLs through the experimental results. The contributions of this study are as follows:

• We point out the paradox of QE and to address this problem, we propose a method for
automatically constructing a pseudo dataset using monolingual or parallel corpora and
external machine translators without additional human labor.

• We conduct a QE study on LRLs, where previous studies on the same are rare, and we
induce the various applications of QE in LRLs.

• We conduct a quantitative analysis based on various mPLMs, and conduct an empirical
study using the results obtained through external machine translators, such as Google1,
Amazon2, Microsoft3, and Systran4, to verify the objectivity of the translation results as
we construct the pseudo dataset.

2 Proposed Method

2.1 Why Paradox?
In this section, we describe why the paradox of QE occurs at various granularity (sen-
tence/word/document) levels of QE based on WMT20. We also describe methods for generating
a pseudo-QE dataset that can address the limitations for the paradox of QE.

Paradox of QE - Sentence Level In the sentence-level direct assessment task, the MT output
is evaluated based on perceived quality, which is referred to as direct assessment (DA) (Specia
et al., 2020). At least three translation experts rate the quality of the MT output from zero to
100, and the system predicts the mean z-standardized DA. The dataset construction for this task
requires DA annotations from at least three human experts.

The sentence-level post-editing task is configured to predict the quality score for the MT
output based on the human translation error rate (HTER) (Snover et al., 2006). HTER scores
are obtained through the comparison between the MT outputs and human post-edited sentences.
Thus, to generate post-edited sentences for measuring HTER scores, humans must consider how
minimal changes make the MT output a correct sentence, which tokens in the MT output have
been mistranslated, and how to change them. Building a parallel corpus for LRLs is not easy,
and hiring language experts is more difficult. These limitations make LRL-based QE studies

1https://translate.google.co.kr/
2https://aws.amazon.com/translate/
3https://www.microsoft.com/ko-kr/translator/
4https://translate.systran.net/
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more challenging. The tagging process also requires post-edited sentences to be corrected by
translation experts, who are quite limited in terms of human labor.

Paradox of QE - Word Level In the word-level post-editing task, the quality of the MT
output is predicted using the OK label or the BAD label for each token, and the GAP tag is used
in cases where there is a missing word between tokens. The tagging process also requires post-
edited sentences to be modified by a translation expert. However, similar to sentence-level, the
construction of a large dataset is quite limited in terms of human labor. The number of datasets
released annually by the WMT is only 9K, including those on the train, validation, and test for
one pair of languages.

Paradox of QE - Document Level The document-level task is configured to find translation
errors in documents and estimate quality scores based on minor, major, and critical errors. In
the dataset used in this task, the error part is annotated using span and span length (Specia et al.,
2020). Error annotations, such as severity, word span, and specific error type are annotated
through crowd-sourcing. Human labor is essential for this process because constructing a new
dataset requires humans to annotate the errors. In LRL settings, the language itself is sometimes
unfamiliar, making it more difficult to hire an expert that can tag translation errors in documents.

2.2 Constructing Pseudo-QE Dataset
We point out that in QE, building a dataset requires additional effort compared to the translation
process. To address this issue, we propose two strategies for generating a pseudo-QE dataset for
Korean, which is an LRL, and we conduct sentence-level post-editing, a sub-task of WMT.

2.2.1 Monolingual Corpus-based (M-based) Pseudo-QE Dataset Generation
The monolingual corpus-based (M-based) pseudo-QE dataset is a method for constructing a QE
dataset based on round-trip translation (RTT). We generate a dataset with a three-step process
based on the fact that RTT can be used to generate paraphrased sentences (Mallinson et al.,
2017).

The first process involves a backward translation of the source language. In this process,
we adopt Google as an external machine translator because it can easily translate large docu-
ments and is frequently used by most people. The source text generated through the backward
translation process is similar to the source-side text of the parallel corpus, but there are some
errors or paraphrased parts. The output of the first process is converted back into the text of the
target language via the second process, which is known as forward translation. In the process
of combining and traversing monolingual text using external machine translators in the target
language, errors easily committed by translators are additionally attached to the plane text, and
the skewed output with translation errors is generated.

In the final process, the translation error rate (TER) between the monolingual corpus and
the skewed output is extracted. In other words, we consider the monolingual text as a post-
edited sentence, and we measure the HTER using the generated pseudo dataset to eliminate
human labor.

In this case, the pseudo dataset created through this approach may only be distorted de-
pending on the error tendency of Google translator. Considering this situation, we use the trans-
lation results from additional representative external translators, such as Amazon, Microsoft,
and Systran, as test sets to ensure that QE models trained using pseudo datasets predict the
quality of translation in a general way.

2.2.2 Parallel Corpus-based (P-based) Pseudo-QE Dataset Generation
Utilizing parallel corpora and external machine translators is a method for constructing parallel
corpus-based (P-based) pseudo-QE datasets.
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Similar to the first step, the source-side text is entered into the external machine translator,
after which it is translated to the target language. In the process of translating the source-side text
to the target language, the source-side text is translated to the MT output with errors attached.
In the second step, the TER is measured for each sentence using the target-side text from the
parallel corpus, considering the LRL settings similar to the M-based dataset generation method.

We organize the dataset to enable the measurement of translation quality without additional
human labor by solely using the parallel corpus. However, even in a P-based dataset, error types
may appear to be biased to only one external machine translator throughout the dataset construc-
tion process. Therefore, the objectivity of how well the translation quality was measured, as in
the monolingual case, was verified using test sets containing multiple translation results from
external machine translators. The overall process of our proposed method is shown in Figure 1.

2.3 TransQuest-based Korean QE Model

We conduct training on the pseudo-QE dataset using TransQuest5 (Ranasinghe et al., 2020),
which is an open-source framework. Ranasinghe et al. (2020) proposes two structures: Mono-
TransQuest and SiameseTransQuest. We focus on the consistent high performance of Mono-
TransQuest, and we only utilize the former structure for learning. Three pooling strategies were
experimented in MonoTransQuest, of which the output corresponding to the location of the
[CLS] token was inserted into the softmax layer and the score was predicted. In addition to
XLM-RoBERTa (XLM-R) used by MonoTransQuest, we use the multilingual BART (mBART)
and the cross-lingual language model (XLM), which support Korean, for model performance
comparison. For mBART model that is not associated with any previous studies on QE, we
find it worth fully exploiting this because they are state-of-the-art models in MT, and we utilize
additional noising schemes compared to those used in XLM and XLM-R models.

3 Experiments and Results

3.1 Dataset Details

In this study, we conduct experiments on the sentence-level task corresponding to sub-task 2 of
the WMT20 based on various mPLMs for Korean, which is one of the LRLs. As the dataset for
our experiments, we leverage two methods to build our proposed pseudo-QE training dataset.
We use data from AI-HUB6 (Park and Lim, 2020) and only the sentences of the target-side for
the M-based pseudo-QE dataset.

The statistics of the dataset obtained through the two dataset generation methods are listed
in Table 1. In Korean, the sum of the total token lengths of the M-based dataset is more than that
of the P-based dataset, but the opposite occurs in English. In other words, when translated from
the target language to Korean, the average length of the translated sentence becomes longer than
that of the original source. However, when it is translated based on RTT into Korean, the number
of tokens in the translated sentence tends to be smaller, even if the length of the source sentence
is longer. Overall, the TER scores were distributed slightly lower on the M-based datasets.

Based on the datasets constructed using both methods, we segment the TER scores at 0.1
intervals, and count the scores that are part of each range, as shown on the left side of Figure
2. The distribution over the dataset shows that the M-based dataset is lower overall than the P-
based dataset, as illustrated in Table 1. Based on these results, we explore the length distribution
of the MT token over the range of the TER scores to analyze why the TER scores are low in
the M-based dataset. As shown on the right side of Figure 2, both datasets are distributed with
lower error rates as the token length becomes shorter in the TER score range from zero to five.

5https://github.com/TharinduDR/TransQuest
6https://aihub.or.kr/
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Figure 1: Overall architecture of pseudo QE dataset construction method and model training.
(a) corresponds to a monolingual corpus based pseudo-QE dataset generation method, and (b)
corresponds to a parallel corpus based method.

However, in the case where the TER score is higher than 0.5, the average token length of the
P-based dataset is six to seven times higher overall compared to the M-based dataset. The graph
shows that the error rate is also high when MT sentences are generally long and that longer
sentences in the P-based dataset result in a negative effect on the TER scores.

M-based Pseudo Dataset P-based Pseudo Dataset
Train Valid Train Valid

SRC MT SRC MT SRC MT SRC MT

# of sentences 96,000 96,000 12,000 12,000 96,000 96,000 12,000 12,000
# of tokens 1,457,832 2,215,902 183,258 278,451 1,345,381 2,370,791 168,507 297,126
# of min tokens per S 1 1 1 1 3 2 3 2
# of max tokens per S 84 123 60 87 71 143 45 122
Average tokens per S 15 23 15 23 14 24.6 14 24.7
Average TER score 0.419 0.415 0.527 0.525
Median TER score 0.417 0.417 0.524 0.523

Table 1: Statistics of the pseudo-QE train and valid dataset. We denote the sentence as S.

Google Amazon Microsoft Systran

# of sentences 12,000 12,000 12,000 12,000
# of tokens 297,011 264,401 283,450 302,239
# of min tokens in a S 3 3 1 3
# of max tokens in a S 158 120 142 162
Average tokens per S 24.7 22 23.6 25
Average TER score 0.526 0.591 0.591 0.418
Median TER score 0.524 0.6 0.6 0.4

Table 2: Statistics of the pseudo-QE test sets constructed using various external machine trans-
lators
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Figure 2: Number of sentences (left-side) and sentence length (right-side) according to TER
score range

We build a pseudo dataset without any human labor. In addition, we leverage external
machine translators by Google, Amazon, Microsoft, and Systran, to ensure objective evaluation
considering the possibility of learning distortion based on the MT results. The statistics for each
external machine translator are listed in Table 2. Compared to the train and validation set of the
M-based dataset, the TER scores are generally higher, except for Systran. The average token
length per sentence is distributed similarly, with 22 to 25 overall.

3.2 Model details
In this study, we conduct a comparative analysis by fine-tuning three representative mPLMs:
XLM-R-large, XLM-MLM-100, and mBART. We compare the performance of these models to
discover the performance differences that occur depending on the number of language pairs and
the noising schemes in the pre-training stage. The description for each model is as follows:

• Cross-lingual language model (XLM): XLM (Lample and Conneau, 2019) is a structure
that extends the existing learning method of a language model for the purpose of learning
multi-lingual representations. The XLM proposes a causal language model (CLM) that
performs unsupervised learning on monolingual corpora, the translation language model
(TLM) that implements supervised learning on parallel corpora, and the masked language
model (MLM). We used XLM-MLM-100, which is a model pre-trained using a total of
100 languages, including Korean, among various XLM models.

• XLM-RoBERTa (XLM-R): XLM-R (Conneau et al., 2019) significantly increases the
number of datasets and conducts pre-training by applying only MLM among the learn-
ing methods of XLM. XLM-R faces the curse of multilinguality because it increases the
number of training datasets and extends the number of languages. The curse of multilin-
guality refers to a situation in which the addition of languages improves the performance
of LRLs, which have similar linguistic features with high-resource languages, initially
by high-resource languages. However, at some point, the performance of both the high-
resource languages and the low-resource languages is reduced when the model capacity is
fixed. This is because the number of languages increases and the capacity of high-resource
languages within the model decreases. By greatly expanding the model capacity, it is pos-
sible to improve the performance of low-resource languages and maintain the performance
of high-resource languages.

• multilingual BART (mBART): mBART (Liu et al., 2020) is a multilingual extension of
BART (Lewis et al., 2019). BART adds noise from sentence permutations, token masking,
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token deletion, and text infilling, and document rotations to restore them to a completely
original sentence based on the structure of transformer. mBART does not utilize all the
noise schemes used in BART. However, it learns by employing text infilling that replaces
the span length with one [MASK] token according to the Poisson distribution in sentences
and the sentence permutation that shuffles the order of sentences. mBART supports the
efficient learning of LRLs by matching the dataset rates between low-resource and high-
resource languages. In other words, mBART applies up-down sampling method that in-
creases the number of datasets by copying the same in LRLs and by removing parts of the
datasets in high-resource languages.

We fine-tune the pre-trained models by leveraging the framework of the Huggingface
model (Wolf et al., 2019). Based on the framework provided by this model, we implement
sub-word tokenization, and include the position and language embeddings for XLM. As a loss
function for model learning, we use the mean square error (MSE) loss.

3.3 Main Results

As shown in Table 3 and Table 4, according to the tests conducted using datasets built using
various external translators, the performance differences based on the Pearson correlation co-
efficient between the external translators differ by 0.193 on the M-based datasets and 0.052 on
the P-based datasets. Specifically, there is no significant difference in performance (0.048), ex-
cept for the results of the experiments conducted using the Systran translator on the M-based
datasets. Therefore, we can conclude that that the performance difference between the external
translators is not significant.

Google Amazon Microsoft Systran
Model Pearson MAE RMSE Pearson MAE RMSE Pearson MAE RMSE Pearson MAE RMSE

XLM-R 0.236 0.175 0.223 0.307 0.194 0.237 0.278 0.198 0.245 0.076 0.189 0.232
mBART 0.334 0.174 0.221 0.382 0.199 0.240 0.360 0.202 0.247 0.189 0.183 0.226
XLM-MLM-100 0.156 0.185 0.234 0.212 0.215 0.257 0.150 0.218 0.265 -0.042 0.188 0.232

Table 3: Results of the M-based pseudo-QE dataset

Google Amazon Microsoft Systran
Model Pearson MAE RMSE Pearson MAE RMSE Pearson MAE RMSE Pearson MAE RMSE

XLM-R 0.346 0.157 0.197 0.366 0.158 0.197 0.358 0.164 0.204 0.261 0.194 0.234
mBART 0.450 0.146 0.186 0.445 0.146 0.184 0.450 0.151 0.189 0.398 0.185 0.226
XLM-MLM-100 0.285 0.160 0.201 0.269 0.168 0.207 0.259 0.172 0.213 0.272 0.191 0.231

Table 4: Results of the P-based pseudo-QE dataset

3.3.1 Experimental results of M-based Pseudo-QE Model
We conduct a comparative analysis on the models trained using the M-based dataset. The experi-
mental results are similar to those listed in Table 3, and they show the differences in performance
in the order of the mBART, XLM-R, and XLM-MLM100 models.

Interpreting Results on Language Capacity The results show that the number of language
pairs used in pre-training is not proportional to performance. Although mBART is trained using
25 language pairs, it performs better than XLM-MLM 100 and XLM-R, which are used to
conduct pre-training in 100 language pairs. This shows that abundant language pairs do not
necessarily benefit the QE of LRLs.
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Interpreting Results for the Noising Scheme In XLM-R and XLM-MLM100, only MLM
is utilized in the pre-training stage. mBART adds sentence permutation and text infilling during
the pre-training process, thereby demonstrating the highest performance. Therefore, we can
infer that the additional noising schemes for mBART are the critical factors that result in better
results. Liu et al. (2020) also demonstrate that additional strategies for noising schemes are
beneficial, and that model capability depends heavily on pre-training methods rather than the
number of language pairs.

Interpreting Results for the Tokenization Method Korean is classified as an agglutinative
language based on morphological characteristics. Depending on the characteristics of aggluti-
native languages, a single word may consist of just one word. However, there are some cases
in which a substantive (noun, pronoun, numeral) and a post-positional particle appear together
or a stem and an ending co-occur. Recent studies have shown that the tokenization method
is an important approach that considers morphemes because they have a variety of meanings
determined by the post-positional particle (Park et al., 2020, 2021).

mBART and XLM-R employ SentencePiece (Kudo and Richardson, 2018), and XLM-
MLM uses byte pair encoding (BPE) (Sennrich et al., 2015). Among them, mBART applies
morphological segmentation by considering the agglutinative characteristics of Korean, which
can be interpreted as one of the reasons for enhancing the understanding of source text. In the
case of the BPE used by XLM, the criteria for pre-tokenization are ambiguous in Korean, and
they construct vocabularies in a greedy way. Therefore, there is a high probability of proceeding
with incorrect sub-word segmentation. By using the XLM tokenizer, ‘〈/w〉’ tokens are attached
to the end of every syllable as well as the complete separation of syllables into consonants and
vowels. Accordingly, it can be interpreted that the words are completely separated through the
use of syllable units, thereby resulting in the poor understanding of the entire sentence and
demonstrating the low performance of XLM.

3.3.2 Experimental results of P-based Pseudo-QE Model
Furthermore, we conduct a comparative analysis on models trained using the P-based dataset.
As shown in Table 4, mBART and XLM-MLM-100 demonstrate the highest performance and
the lowest performance, respectively, for all test sets. This difference in performance can be
considered similar to that obtained in the previous analysis. Considering the construction of
the dataset, we establish that the overall capability improves when the model is trained using a
P-based dataset rather than an M-based dataset. Moreover, it is certain to obtain more desirable
results, as they pertain to the measurement of the TER, by comparing the translation of the
source sentences in parallel corpora with target sentences, rather than building datasets based
on RTT. This result is attributed to the higher intimacy of the test set as a result of translating
source sentences into multiple external machine translators and P-based datasets. In contrast,
despite the same number of training sentences used in P-based datasets and M-based datasets,
the Pearson correlation coefficients differed by a range of 0.063 to 0.209. Because the M-based
dataset allows for much more datasets to be added compared to parallel corpora, learning using
M-based datasets can also be expected to achieve sufficient performance gains.

4 Conclusion and Future Work

This study points out a paradox in terms of the construction of data for QE tasks. To address
this limitation, we propose two methods for generating a pseudo dataset. First, considering
the limitations of data construction in low-resource language settings, we generate an RTT-
based pseudo-QE dataset using monolingual corpora, and second, we construct pseudo data
using parallel data. The experiments are conducted using mPLMs that support Korean, and
mBART demonstrated the highest performance. By conducting tests using various external
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machine translators, we further confirm that the model trained using a pseudo dataset is not
significantly skewed on a specific external translator. Therefore, by leveraging pseudo-QE gen-
eration methods, we confirm that QE is also available in LRLs, and induce the use of various
applicability of QE in LRLs. In our future studies, as we have seen the possibility of sufficient
performance improvement for the result of experimenting with monolingual corpora, we plan
to conduct further experiments to expand the amount of data to large-scale. We also plan to
expand the proposed methodology to various language pairs and conduct detailed verification
of the proposed methodology.
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Small-Scale Cross-Language Authorship
Attribution on Social Media Comments
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Abstract
Cross-language authorship attribution is the challenging task of classifying documents by bilin-
gual authors where the training documents are written in a different language than the evaluation
documents. Traditional solutions rely on either translation to enable the use of single-language
features, or language-independent feature extraction methods. More recently, transformer-based
language models like BERT can also be pre-trained on multiple languages, making them intuitive
candidates for cross-language classifiers which have not been used for this task yet. We perform
extensive experiments to benchmark the performance of three different approaches to a small-
scale cross-language authorship attribution experiment: (1) using language-independent features
with traditional classification models, (2) using multilingual pre-trained language models, and (3)
using machine translation to allow single-language classification. For the language-independent
features, we utilize universal syntactic features like part-of-speech tags and dependency graphs,
and multilingual BERT as a pre-trained language model. We use a small-scale social media com-
ments dataset, closely reflecting practical scenarios. We show that applying machine translation
drastically increases the performance of almost all approaches, and that the syntactic features
in combination with the translation step achieve the best overall classification performance. In
particular, we demonstrate that pre-trained language models are outperformed by traditional
models in small scale authorship attribution problems for every language combination analyzed
in this paper.

1 Introduction

In cross-language authorship attribution, the true author of a previously unseen document
must be determined from a set of candidate authors after training a machine learning model
with documents from those candidates in a different language. Applications for this research
include plagiarism detection or other forensic analyses, where the authorship of an incriminating
document must be determined, but ground truth texts for comparison of selected suspects are
only available in different languages.

The language gap imposes difficulties on the machine learning setup, as the training and
testing documents have fewer common features. For example, while some languages may share
common words, others use completely different alphabets or writing systems. Therefore, this
problem requires one of three general strategies to solve: (1) use machine learning features that
don’t depend on language, (2) use a model that is inherently capable of solving multilingual
problems, or (3) transform one feature space into the other to enable the use of language-
dependent features (e.g., by using machine translation).

In this paper, we explore these three approaches for the case of cross-language authorship
attribution, depicted in Figure 1.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 11



EN

DE

SVM

language
independent

features:

univ. POS tags
DT-grams

train

test

(a) Language-Independent Features

train

test

EN

DE

mBERT

(b) Language-Independent
Model (mBERT)

EN

DE EN

SVM

BERT

DistilBERT

RoBERTa

train

test

char. n-grams

word n-grams

machine 
translation

sliding
window 

sequences

(c) Translation

Figure 1: The three approaches for cross-language classification models tested in this paper.
DE represents any of the other languages from the datasets listed in Table 1. Note that in the
experiments, both directions of training and testing are executed (i.e., each approach is also
evaluated by training on DE and testing on EN for the depicted dataset).

For the first approach, we use universal part-of-speech (POS) tag n-grams (Nivre et al.,
2016) as well as DT-grams (Murauer and Specht, 2021) as language-independent features, paired
with a support vector machine as a classifier. For the second approach, we utilize a pre-trained
multilingual BERT model, which doesn’t require a separate translation pre-processing step, and
fine-tune it using training part of the attribution problem. To the best of our knowledge, our
study is the first to analyze the performance of this type of model to cross-language authorship
attribution problems, representing our first contribution. Finally, we utilize the publicly available
Marian NMT machine translation system (Junczys-Dowmunt et al., 2018), and perform several
experiments with well-established single-language authorship attribution models, including
character n-grams in combination with support vector machines, and also more recent approaches
including BERT or RoBERTa.

For these experiments, we make use of datasets consisting of Reddit social media comments
compiled by Murauer and Specht (2021). We select bilingual1 authors that write documents
in English as well as one of German, Spanish, French, Dutch and Arabic. By using these
small-scale datasets, we provide valid and realistic scenarios for forensic application, are able to
skip additional human translation steps required in previously used translation-based datasets,
and generalize approaches from previous studies by applying them on a different type of texts
and authors. This represents our second contribution.

To ensure the reproducibility of our results and promote future research, all of our code is
published online 2.

1In the context of this paper, we denote an author writing documents in two languages as bilingual, irrespective of
whether both languages are spoken natively by that author, or whether that author was raised bilingually.

2https://git.uibk.ac.at/csak8736/small-scale-authorship-attribution
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2 Related Work

Cross-language text classification problems require different strategies to solve. Some prob-
lems allow the usage of parallel corpora for training the model, which enables straightforward
transformations of output classes from one language to another (Rasooli et al., 2018). However,
parallel corpora are not available for many language combinations, and not suitable for many
tasks where the output classes can’t be mapped between languages directly. Similarly, other
approaches include creating a shared low-dimensional embedding space across languages in an
unsupervised pre-processing step (Vulić and Moens, 2015; Mogadala and Rettinger, 2016), but it
has been shown that these approaches usually can be outperformed by adding a small amount of
supervised cross-language training data (Vulić et al., 2019; Karamanolakis et al., 2020).

Transformer-based pre-trained language models have provided many state-of-the-art results
in natural language processing (NLP) in general, and models pre-trained on multiple languages
show promising performances in a wide variety of NLP tasks (Devlin et al., 2018; Wu and Dredze,
2019), specifically also in document classification (Wu and Dredze, 2019; Keung et al., 2019).
However, to the best of our knowledge, these models have not yet been tested on cross-language
authorship attribution problems.

When focussing on authorship attribution, few cross-language studies remain. Llorens and
Delany (2016) use differently sized windows in which vocabulary richness measurements are
aggregated, requiring very large documents. Bogdanova and Lazaridou (2014) use a variety of
different features including the frequency of universal POS tags on attribution, and also utilize
machine-translation followed by traditional attribution techniques, providing their best results.
However, the dataset that they use consists of translated documents in a single language pair
(Spanish - English). More recently, Murauer and Specht (2021) have shown that classifying
bilingual authors of social media comments by using universal (language-independent) POS tags
can be improved by including dependency grammar information.

In this study, we take inspiration from the latter two studies and compare the performance
of grammar-based features to translation-based approaches as well as multilingual language
models, which have not been applied to this task. In contrast to similar efforts by Bogdanova
and Lazaridou (2014), who classify novels by professional authors, we use small-scale datasets
consisting of social media comments, which provide untranslated data and focus on a different
text and author type.

3 Datasets

Authorship attribution is the task of determining the authorship of an unknown document given
a set of candidate authors. An important difference to other text classification problems is that
obtaining more data from a specific target (author) is often not possible. A cross-language
setup requires multiple documents from multiple bilingual authors who write in the same two
languages, further increasing the difficulty of obtaining large quantities of data.

For this reason, some previous studies have used translated corpora as an alternative means
(Llorens and Delany, 2016; Bogdanova and Lazaridou, 2014) to solve the availability issue.
There, the author wrote all novels in one language, and translated versions of some of them
are used as a source of a different language. While this translation does not fully obfuscate
the original authorship (Venuti, 2008), it represents a different scenario as the original authors
of those novels did not write them in more than one language. Instead, we want to focus on
cross-language features originating from the same author and hence use the corpus presented by
Murauer and Specht (2021), which consists of comments form the Reddit social media platform,
written by bilingual authors. Here, no additional translation step lies between the originally
written documents and the classification model. We further add Arabic as a language from a
different group of languages to increase the linguistic diversity.
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Languages Authors Documents Avg. Doc. Length Min. Docs/Auth Avg. Docs/Auth

EN, DE 10 3,479 3,027 22EN, 20DE 139EN, 69DE

EN, ES 20 4,450 3,125 20EN, 21ES 117EN, 52ES

EN, NL 11 2,410 3,232 20EN, 20NL 154EN, 32NL

EN, FR 45 10,131 3,089 21EN, 20FR 102EN, 61FR

EN, AR 10 2,838 2,117 10EN, 11AR 247EN, 18Ar

Table 1: Datasets used in this paper. The document length is measured in characters.

Table 1 shows the datasets used in this study. In the table, each row represents a dataset
consisting of bilingual authors that have written documents in the languages displayed in the
first column.

The size of any classification dataset can be divided into two parts; the number of target
classes (authors) and the number of training samples (documents) per target class. As both of
these numbers differ significantly across the datasets in Table 1, we apply two selection steps
before each experiment.

To address the first imbalance and make the results across different language combination
directly comparable, we select 10 random authors from each dataset. This number is difficult
to increase as it is hard to find bilingual authors in general (e.g., the languages in Table 1 can
hardly be considered low-resource by themselves, but the additional restraint on authors writing
in multiple languages make even those languages difficult to obtain). On the other hand, it does
not influence the evaluation results directly: a dataset with more authors does not automatically
imply higher quality of the results, but rather is able to model different scenarios.

Regarding the second imbalance, we select 10 random documents from each author for
training, and repeat all experiments five times (each time, choosing 10 random documents) to
accommodate for this imbalance. This way, each author receives the same number of training
documents. We choose 10 as this is the lower bound of how many documents an author has
written (in the Arabic dataset). Note that we do not restrict the number of documents used for
testing, as it does not influence the training process of the machine learning models, but rather
helps to increase the confidence of the evaluation results.

We want to emphasize that having few authors and few documents per author is a valid
and realistic scenario for many applications, and therefore, the small size of the datasets is a
challenging and central corner stone of our work, rather than a limitation.

4 Methodology

We test three different approaches for cross-language attribution, which are depicted in Figure 1.
We follow the same evaluation strategy with each approach: For each dataset, we perform all
experiments in two directions, (1) train with the English part of the dataset and test with the
respective other language, and (2) the other way around.

Each subsection will discuss any (hyper)parameters of the respective model, the full list of
these parameters is shown in Table 2 as a reference.

4.1 Language-Independent Features

In this work, we make use of two language-independent features based on syntactic information,
as this type of features has been successfully been used in previous studies (Bogdanova and
Lazaridou, 2014; Tschuggnall and Specht, 2014).
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Hyperparameters (used in grid search)

character, word, universal POS tag n-gram size n P r1´ 3s
DT-gram shape1 DTanc, DTsib, DTpq, DTinv
DT-gram parameter sizes1 sib, anc P r1´ 4s
support vector machine regularization factor C C P r0.1, 1, 10s

Language model parameters (static)

Fine-tuning epochs 3
Max. sequence length 256
Learning rate 4ˆ 10´5

Batch size 8

Table 2: Parameters used in the models. 1Parameters of the DT-grams features by Murauer and
Specht (2021).
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Figure 2: Differences between English-specific and universal POS tags of the sentence ’I have
been trying to reach you.’.

1. universal POS tags are the result of a universal mapping of (normally language-dependent)
POS tags to a language-independent space, called universal POS tags (Nivre et al., 2016).
Figure 2 shows both the English-specific POS tags as well as their universal mappings for
each word of the sentence “I have been trying to reach you”. It can be seen that the mapping
produces coarser relationships (e.g., the information that “trying” is a present participle
is lost) but enables direct comparisons of POS tags across different languages. From the
resulting POS tags, we construct n-grams by using each tag as a token.

2. DT-grams are dependency graph substructures introduced by Murauer and Specht (2021). In
addition to using POS tags, the relationship between words is captured. Similar to the POS
tags themselves, these dependencies can also be mapped to a language-independent space
using universal dependencies (Nivre et al., 2017). We choose the same substructure layout
candidates that the original authors suggest, and perform a grid search to determine the
optimal candidate as well as the optimal values for the two parameters that each substructure
has, from a range of r1´ 4s (cf. Table 2).

We use a linear support vector machine as a classifier for both approaches, which has been
shown to be an effective model for authorship attribution (Stamatatos, 2013; Tschuggnall et al.,
2019). We utilize the stanza library (Qi et al., 2020) to obtain both the universal POS tags as
well as the universal dependency graphs for each sentence in each dataset.
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4.2 Pre-Trained Multi-Language Models
We use the multilingual version of BERT called mBERT (Devlin et al., 2018), which is pre-
trained using 100 languages and has been successfully applied in many different cross-language
text classification tasks (Wu and Dredze, 2019; Keung et al., 2019). While other pre-trained
models in multiple languages exist, none of them cover all languages presented in this paper.
We use the parameters suggested by the original authors, which are listed in Table 2. As all
transformer-based models, mBERT operates on sequences of words, and the maximal length
of these sequences is determined by the pre-training step of the model (which is 768 tokens for
mBERT). Since the documents used in our classification setup are significantly larger than this
limit, we use a sliding window approach to generate multiple samples from each document, so
that every part of each document is used for fine-tuning. Thereby, each window overlaps 20%
with the previous one.

The results of this model are especially useful to answer the question of whether it is more
effective to translate documents in order to be able to use single-language classification models,
or if inherently multilingual models are able to render this additional step superfluous.

4.3 Translation
We use the Marian NMT machine translation models (Junczys-Dowmunt et al., 2018) which are
available for many language combinations. While the library offers models for both directions,
for each dataset, we translate the non-English documents to English rather than the other way
around, as there are more pre-trained language models available for English, and the multilingual
version of BERT is also pre-trained with more English data. We therefore have more opportunities
to compare to other single-language models, and expect mBERT to perform better.

At this point, we test different classification approaches on the now single-language dataset.
As suggested in previous (mono-lingual) authorship research (Stamatatos, 2013; Tschuggnall
and Specht, 2014), we use a linear support vector machine in combination with frequencies of
character 3-grams and word unigrams. The hyperparameters of these models are listed in Table 2.
We also analyze the syntactic features from approach 1, but skip the mapping of the POS tags
to the universal space. This way, all POS tags are English-specific and therefore finer-grained,
increasing the vocabulary size of these features.

Our experiments further include three mono-lingual pre-trained language models: mono-
lingual BERT (Devlin et al., 2018), DistilBERT (Sanh et al., 2019), and RoBERTa (Liu et al.,
2019). The parameters of these models are set according to recommendations of the original
authors, and are listed in Table 2. Following our approach for mBERT, we apply the sliding
window scheme to generate samples that fit in the respective maximal sequence lengths.

5 Results

Table 3 shows the results of the three presented approaches for all datasets, where the score is
measured in macro-averaged F1.

The results of the language-independent features show that while adding dependency
information to the universal POS tag features increases the F1 score for all language pairs
consistently, the extent of this increase differs and is most clearly visible for the English/German
dataset.

The language-independent model mBERT outperforms the DT-grams+SVM model for
some language combinations, but not for the English/German and English/Dutch dataset.

The DT-grams exclusively capture grammatical features while the mBERT model incorpo-
rates content-based properties, making the two feature categories largely independent from each
other. We therefore suspect them to be suitable candidates for ensemble models, which we aim
to pursue in future work.
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ar de es fr nl

Approach 1: Language-independent models on untranslated documents

Universal POS tag n-grams 0.110 0.260 0.290 0.239 0.226
DT-grams 0.175 0.400 0.317 0.283 0.262

Approach 2: Multilingual pre-trained language model

Multilingual BERT 0.228 0.242 0.382 0.368 0.250

Approach 3: Single language models on translated documents

Character n-grams + SVM 0.375 0.410 0.443 0.443 0.398
Word n-grams + SVM 0.380 0.360 0.428 0.413 0.390
BERT 0.291 0.273 0.342 0.425 0.308
DistilBERT 0.160 0.157 0.194 0.186 0.160
RoBERTa 0.298 0.261 0.382 0.432 0.311
English POS tag n-grams 0.281 0.465 0.455 0.503 0.419
English DT-grams 0.347 0.467 0.465 0.552 0.433

Combined: Language-independent models on translated documents

Universal POS tag n-grams 0.256 0.322 0.388 0.362 0.354
DT-grams 0.327 0.435 0.456 0.447 0.416
Multilingual BERT 0.286 0.273 0.322 0.425 0.308

Table 3: Classification score measured in F1macro of the three different approaches, as well as a
combination where all language-independent models are applied to the translated documents.

Both the grammar-based features in combination with the support vector machine as well as
the multilingual BERT model are outperformed by the translation approach using the character-
and word-based n-grams. The former confirms the results of Bogdanova and Lazaridou (2014),
while the latter is a novel result showing that a multilingual BERT model is less efficient for
such small datasets. In total, the English-specific syntactic features of the machine-translated
documents show the best average performance consistently across many different languages.
Only for the Arabic dataset, the word n-grams produce the best results.

Machine-translation also improves the performance of the models using language-
independent features. The relevant part of our results in this regard is visible in the Combined
part of Table 3 and shows that translation is able to boost the F1 scores of almost all languages
and models, except for the Spanish dataset in combination with mBERT. These results suggest
that previous findings by Bogdanova and Lazaridou (2014) are not restricted to professionally
written novels, but also apply to small social media datasets. Moreover, the differences between
the universal and English-specific grammar-based features demonstrate that the reduced POS tag
vocabulary allowing cross-language analyses comes with a notable performance loss.

While the multilingual BERT model is able to compete with the other language-independent
features, it’s performance is well below all methods using machine-translation. In general, all
language models are outperformed by syntactic and lexicographic features in the respective
approaches, signaling that the datasets are too small for fine-tuning them sufficiently. We observe
an amplification of this effect on DistilBERT, which suggests that models produced by knowledge
distillation are more susceptible to smaller datasets than their original teacher model.
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Summarized, our findings suggest that for cross-language authorship attribution at a small
scale, machine-translation is a highly efficient first step in every case, and syntactic features are a
promising candidate for datasets of this size.

6 Limitations

In general, the different datasets show a varying performance, where documents in some lan-
guages (e.g., German) are easier to attribute than others (e.g., Arabic). We attribute this effect to
the linguistic distance between the language pairs (i.e., German and English are closer related
to each other than Arabic and English). More datasets containing additional language pairs are
required for more comprehensive comparisons in this regard.

By design, the results using machine translation in the fashion presented in this paper depend
on the quality of these translation models. Especially for low-resource languages, this means
that differences in translation quality between different language pairs are likely to influence the
final attribution results.

7 Conclusion

In this paper, we have demonstrated different approaches to the problem of cross-language
authorship attribution for bilingual authors writing in both English and one of Arabic, German,
Spanish, French, and Dutch. We have analyzed language-independent syntactic features, using
multilingual pre-trained language models as well as performing machine translation followed by
several single-language solutions. Eventually, we show that for small-scale problems with very
few training documents, using machine translation followed by models using lexicographic and
syntactic features yields the best results for all languages analyzed in this work.

In the near future, we want to focus on the influence of the dataset size on the pre-trained
language models to see how much data is required for these models to succeed in authorship
attribution tasks. Also, we want to investigate recent work suggesting that small translation
dictionaries represent a suitable substitution for full translation (Karamanolakis et al., 2020),
which is a time and resource-consuming process.
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Abstract
Neural Machine Translation (NMT) for Low Resource Languages (LRL) is often limited by the
lack of available training data, making it necessary to explore additional techniques to improve
translation quality. We propose the use of the Prefix-Root-Postfix-Encoding (PRPE) subword
segmentation algorithm to improve translation quality for LRLs, using two agglutinative lan-
guages as case studies: Quechua and Indonesian. During the course of our experiments, we
reintroduce a parallel corpus for Quechua-Spanish translation that was previously unavailable
for NMT. Our experiments show the importance of appropriate subword segmentation, which
can go as far as improving translation quality over systems trained on much larger quantities
of data. We show this by achieving state-of-the-art results for both languages, obtaining higher
BLEU scores than large pre-trained models with much smaller amounts of data.

1 Introduction

Subword segmentation is a common technique used to improve machine translation quality due
to its ability to reduce the vocabulary size of input text. Unsupervised techniques such as Byte-
Pair Encoding (BPE) (Sennrich et al., 2015) are prevalent in most NLP tasks. On the other
side of the spectrum, state-of-the-art morphological segmentation is achieved using dedicated
neural seq2seq models (Wang et al., 2016). Neither of these however, are well-suited for Low-
Resource Languages (LRLs).

BPE was found to oversplit roots of infrequent words in both English and Japanese
(Bostrom and Durrett, 2020). Lower BLEU scores in Quechua-Spanish models segmented
by BPE (Ortega et al., 2021) suggest similar side-effects for Quechua. Neural morphological
segmentation models require large amounts of morpheme-labeled training data, which often
does not exist at all for LRLs. We propose the use of the Prefix-Root-Postfix-Encoding (PRPE)
algorithm (Zuters et al., 2018) as an alternative for subword segmentation. PRPE is able to draw
upon linguistic knowledge without needing large amounts of labeled training data, making it a
middle-ground between BPE and neural seq2seq that is ideal for LRLs.

PRPE is a semi-supervised word segmentation algorithm that uses subword statistics to
identify and learn the prefixes, roots, and postfixes of words in a corpus (Zuters et al., 2018),
and can be guided using a language-specific heuristic. Using the generated lists of roots and
affixes, the algorithm performs subword segmentation that only appears to be morphologically
grounded; PRPE does not use any actual linguistic/morphological rules. This makes it well-
suited for studying LRLs, as it only requires a surface level of understanding to tune the heuristic
for a language instead of dedicated linguistic rules or large amounts of labeled training data.
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We experiment with two distinct agglutinative LRLs, Indonesian and Quechua, as we hy-
pothesized that PRPE would naturally work well in the morpheme-heavy environment of these
languages. This is because words in agglutinative languages are constructed via a series of af-
fixes, leading to large amounts of information expressed in a single word due to the presence of
many morphemes. As such, machine translation for these languages is particularly challenging
due to the increased vocabulary size and more frequent appearance of rare words (Koehn and
Knowles, 2017). Quechua in particular is highly agglutinative; multiple suffixes are appended
to modify a root to denote tense, mood, person, and number (Muysken, 1988).

To investigate the effectiveness of PRPE in improving machine translation quality, we
conduct experiments using two distinct language pairs, Quechua to Spanish and Indonesian to
English, across multiple domains of corpora. We accomplish this by training LSTM (Hochreiter
and Schmidhuber, 1997) and Transformer (Vaswani et al., 2017) models on text segmented by
PRPE and compare those with models trained on other segmentation methods. Our experiments
show that PRPE subword segmentation can lead to significant improvements in machine trans-
lation performance, outperforming prior benchmarks with models pre-trained using masked
language modeling (Guntara et al., 2020), transfer learning (Ortega et al., 2021), and models
trained on much larger datasets (Guntara et al., 2020).

1.1 Contributions
Our contributions are outlined as followed: (1) we show the ease of extending the semi-
supervised PRPE algorithm to new languages by applying it to Quechua and Indonesian; (2)
we train several NMT models for those languages to demonstrate the effectiveness of PRPE
in improving translation accuracy; (3) we re-introduce a general domain Quechua dataset for
NMT by manually cleaning and re-aligning raw data used in early SMT experiments that was
previously only available in parallel parse-tree format. Our code and dataset are available at
https://github.com/wanchichen/morphological-nmt.

2 Related Work

The current segmentation standard for most NMT systems is the unsupervised method of Byte-
Pair Encoding (Sennrich et al., 2015). BPE initially represents the corpus at a character level,
after which pairs of the most frequently occurring symbols are iteratively merged together to
form the vocabulary. However, recent works have shown that a unigram language model for
segmentation (Kudo, 2018), another unsupervised method, appears to be the better alternative.
Bostrom and Durrett (2020) found unigram models better preserved roots and split affixes com-
pared to BPE in English and Japanese. Richburg et al. (2020) observed similar benefits for two
LRLs: Swahili and Turkish.

Zuters et al. (2018) introduced the PRPE algorithm by experimenting with an English-
Latvian pairing in both translation directions. PRPE utilizes a proposed ‘Root alignment prin-
ciple’ - collecting statistics about prefixes and suffixes before aligning roots with the most fre-
quent prefix and suffix. Aside from the differences in languages used, our work also differs
from Zuters et al. (2018) in terms of how the algorithm is incorporated into the overall seg-
mentation pipeline. They also did not consider running PRPE standalone, all text segmented
with PRPE in their experiments were post-processed with BPE. In addition to this method, we
also explore segmentation results obtained solely with PRPE, as well as those obtained from
multiple iterations of PRPE.

There have been several studies on NLP for Quechua. Rios (2016) created a language
toolkit for Quechua translation, which included a text normalizer, spell-checking, and morpho-
logical analyzer. Ortega et al. (2021) focused primarily on translation from Quechua to Spanish.
They proposed BPE-Guided, a method to guide the BPE segmentation algorithm for Quechua
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by feeding BPE a dictionary of words to ignore during segmentation. They utilized transfer
learning from Finnish (a high-resource agglutinative language) to obtain substantial improve-
ments in BLEU. It was also in this study that Ortega et al. (2021) first suggested the use of
PRPE for Quechua translation. Oncevay (2021) conducted research on multilingual translation
for four Peruvian languages paired with Spanish: Aymara, Ashaninka, Quechua and Shipibo-
Konibo. Pre-processing was done using the unigram model (Kudo (2018)) trained across a
multilingual corpus. Quechua, the language with the most resources among the four, suffered
in performance when trained on the multilingual task rather than solely Quechua and Spanish.
Quechua was also recently featured as part of the AmericasNLP Shared Task (Mager et al.,
2021), where participants were asked to translate Spanish text to Quechua among other indige-
nous American languages.

Compared to Quechua, Indonesian has enjoyed much more attention in NLP research.
Extensive work has been done on computational approaches in Indonesian morphological anal-
ysis, such as MorphInd (Larasati et al., 2011) and later on MALINDO Morph (Nomoto et al.,
2018), both of which created morphological dictionaries and supervised morphological ana-
lyzers for the language. Guntara et al. (2020) conducted extensive benchmarks of the current
state of Indonesian-English NMT, evaluating performance across a multitude of domains such
as news, religious text, and conversational text. Ariesandy et al. (2020) extended their work
to improve translation for colloquial Indonesian to English by constructing a synthetic training
corpus machine-translated from formal Indonesian.

3 PRPE

As suggested by its name, Prefix-Root-Postfix-Encoding (PRPE) separates a word into three
main parts, a prefix, a root, and a postfix. Postfixes can be further broken down into a suffix
and an ending. Instead of the character pairs of BPE, left and right substrings are used for
segmentation. Left substrings are considered as potential prefixes, while right substrings are
considered potential postfixes. Similar to BPE, PRPE is also split into a learning phase and
application phase, the former of which Zuters et al. (2018) outlines as four main steps:

1. Collect the frequency of left and right substrings for each word.

2. Treat left substrings as potential roots and align them with the middle part of the word to
extract potential prefixes.

3. Treat right substrings as potential roots and align them with the middle part of the word to
extract potential postfixes.

4. Use obtained prefixes and postfixes to extract roots from left substrings by aligning them
with the middle part of the word.

The learning phase of PRPE can also take in a heuristic to help it determine whether a sub-
word unit is a good candidate for a certain affix type. In other words, a set of hyperparameters
that determine the threshold for affix candidacy. For example, an English heuristic could help
identify statistically probable prefixes by using a list of known linguistic prefixes (such as pre-
or non-) and some maximum character length. A left substring would be considered a potential
prefix if it is found in the list or is within the maximum character length. We apply the same
principle when creating the Quechua and Indonesian heuristics by using a list of common pre-
fixes and suffixes, obtained from Muysken (1988), Kinti-Moss and Perkins (2012), and Ortega
et al. (2021) for Quechua and IndoDic 1 for Indonesian. The exact heuristic implementations

1http://indodic.com/affixeng.html

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 22

http://indodic.com/affixeng.html


can be found online 2. This approach is cross-dimensional, and thus makes the algorithm easily
extendable to other languages due to the large amount of affix information publicly available.

This learning phase generates 6 files that are used during the application phase: ranked
lists of prefixes, roots, postfixes, suffixes, endings, and words that the algorithm has learned. A
word is segmented by generating all possible segmentations and choosing the highest ranked
candidate. It is important to reiterate that PRPE is not attempting true morphological seg-
mentation of a word into its linguistic morphemes, but rather into subword units that it deems
statistically likely to be prefixes, roots, postfixes, suffixes, and endings. This constitutes the
“morphologically guided” portion of PRPE, as it allows for sub-word tokenization that resem-
bles morphologically motivated segmentation.

3.1 Additional Segmentation Methods

Different methods to implement PRPE into the larger pipeline were tested. One such method,
denoted as PRPE+BPE, originated from Zuters et al. (2018). This technique is derived from the
idea that we can obtain more accurate sub-word tokenization if the corpus is already segmented
with a morphologically-driven heuristic. The implementation is simple, we first segment the
corpus with PRPE. Then, we segment the PRPE-segmented corpus again using BPE.

We also devised Multi-PRPE - a segmentation method where PRPE is iteratively run n
times, feeding the segmented text of each run as input to the next iteration. The intuition was that
the rigid nature of PRPE (only one of each affix type) may not provide accurate segmentation
for highly agglutinative languages. By running multiple times we continually break off affixes
allowing new ones, should they exist, to be segmented off the root.

During development, we conducted a brief analysis of segmentation results of randomly
sampled words from the training corpora for the sake of testing the different segmentation im-
plementations. Comprehensive morphological analysis of the segmented text remained outside
the scope of this paper. The segmentation methods used in the study were BPE (Sennrich
et al., 2015) , SentencePiece Unigram (Kudo and Richardson, 2018), PRPE, PRPE+BPE, and
Multi-PRPE (for n = 2, n = 5, and n = 8). The segmentation results were evaluated against mor-
phological analyzers as gold standards due to the lack of labeled segmentation data, an analyzer
by Rios Gonzales and Castro Mamani (2014) for Quechua and the MALINDO Morph analyzer
(Nomoto et al., 2018) for Indonesian. Compared to the other methods, Multi-PRPE (n = 5)
appeared to best match the gold standard across both languages. For example, in Table 1 PRPE
segments the Quechua word kausashanchej as kausashanchej (no change), while Multi-PRPE
segments it as kausa - sha - nchej: the exact output of the morphological analyzer.

Method Quechua Sample 1 Quechua Sample 2 Indonesian Sample 1
Unsegmented kausakusunman kausashanchej kebencian

BPE kausa - kusunman kausash - anchej kebencian
Unigram kausaku - sunman kausasha - nchej kebencian

PRPE kausakusun - man kausashanchej ke - benci - an
PRPE+BPE kausa - kusun - man kausa - shanchej ke - benci - an
Multi-PRPE kausakusun - man kausa - sha - nchej ke - benc - i - an

Analyzer kausa - ku - sun - man kausa - sha - nchej ke - benci - an

Table 1: Sample Segmentation Results

2https://github.com/wanchichen/morphological-nmt
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4 Datasets

The main dataset used for analyzing performance was the JW300 texts (Agić and Vulić, 2019)
from the Opus corpus (Tiedemann, 2012), comprised of Jehovah’s Witness scripture across a
variety of languages. Despite the dataset’s domain specific content, it is also one of the largest
parallel texts publicly available for Quechua. For the Quechua-Spanish pair, we used the version
of the dataset made publicly available by Ortega et al. (2021), already split into 17,500 training
sentences, 2,500 validation sentences, and 5,585 test sentences. For Indonesian-English we
use the an altered version of JW300 provided by Guntara et al. (2020), which also includes
Bible and Quran texts gathered from Bible-Uedin and Tanzil respectively (Christodouloupoulos
and Steedman, 2015). This dataset is split into 579,544 training sentences, 5,000 validation
sentences, 4,823 test sentences. We denote both of these as the Religious datasets.

To ascertain the effects of PRPE outside of the religious domain, we also conduct experi-
ments using general language corpora. We include two different general language datasets for
Quechua-Spanish. The first is comprised of financial news articles from DW News, originally
created by Rios (2016) for statistical machine translation. However, it was only available as
parallel parse trees in an XML format, rendering it unusable for NMT models trained on par-
allel plaintext. We manually align and clean the raw source text data, filtering out uncertain
alignments. The entire cleaned 2,018 line corpus is denoted as the Financial dataset. The sec-
ond corpus used was the 100 sentence Magazine dataset created by Ortega et al. (2021). Both
general-language Quechua-Spanish datasets were used solely for testing due to their small size.

For the Indonesian-English pair, despite having access to much larger general language
datasets, we chose to use the low-resource News dataset created by Guntara et al. (2020). This
is because of the relatively large size of the Religious Indonesian-English dataset compared to
many truly low-resource languages (although it is still substantially smaller than most high-
resource language datasets); we wanted to examine the benefits of PRPE in a very low-resource
setting for both language pairs. The News dataset is split into 38,469 training sentences, 1,953
validation sentences, and 1,954 test sentences.

5 Experimental Setup

We separate our experiments into two stages: development and testing. We use the development
stage to experiment with different model architectures and parameter settings, the best perform-
ing of which were carried over to the testing stage. In the testing stage, we evaluate the models
on both in-domain and out-of-domain corpora after they were trained on a specific dataset.

Our pipeline includes two pre-processing steps: tokenization and subword segmentation.
Tokenization is done using Moses tokenizer (Koehn et al., 2007), demonstrated by Domingo
et al. (2018) to be effective in translation tasks. Segmentation is done solely on the source
language (either Indonesian or Quechua) text, using one of the methods described above: PRPE,
Multi-PRPE, and PRPE+BPE. The target language is left unsegmented. To establish a baseline
for comparison, we also conduct experiments with unsegmented text and text segmented with
BPE and a unigram language model. We use the default SentencePiece vocabulary size of 8000
for all segmentation methods.

We use the sacreBLEU (Post, 2018) implementation of BLEU (Papineni et al., 2002) as
our primary metric for evaluation of translation quality to allow for a comparison with other
studies. Ortega et al. (2021) used BLEU to evaluate their NMT systems and found it to be
correlated with human judgement for the Quechua-Spanish translation direction. Guntara et al.
(2020) used BLEU scores from sacreBLEU to benchmark Indonesian-English translation.
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5.1 Development Stage
Development was done on the Religious and News datasets for Indonesian-English, and solely
on the Religious dataset for Quechua-Spanish. All datasets are used in their original data splits
to allow for comparisons with Guntara et al. (2020) and Ortega et al. (2021). Our models were
trained and evaluated in OpenNMT (Klein et al., 2017). It provides a variety of encoder and de-
coder types, however we focus on LSTM (Hochreiter and Schmidhuber, 1997) and Transformer
(Vaswani et al., 2017) for better comparisons with previous works.

Most settings from OpenNMT were kept default to allow for comparisons with the results
of Ortega et al. (2021), who used default parameters. The Transformer configuration was 6
encoder-decoder layers and 8 attention heads with size 512 word embeddings, a feed-forward
network size of 2048, a learning rate of 2, a dropout of 0.1, and the ADAM optimizer (Kingma
and Ba, 2014). These were obtained from the recommended OpenNMT Transformer settings
also used by Ortega et al. (2021). The default configuration for LSTM is 2 layers with 500 hid-
den units, a learning rate of 1, a dropout of 0.3, and stochastic gradient descent as the optimizer.

The only parameters changed throughout development were batch size and training step
count. The recommended 4096 batch size for the Transformer model resulted in poor perfor-
mance (regardless of segmentation method used) and was adjusted to the default value of 64.
Due to memory constraints, sentences longer than 50 tokens were filtered out when training
on the Religious Indonesian-English corpus. We also found the default training step count of
100,000 to be unsuitable for the smaller training sets: the Quechua-Spanish Religious set and
the Indonesian-English News set. We instead used values of 20,000 for Transformer and 60,000
for LSTM. Continued training beyond these values led to over-fitting: steady increases in vali-
dation perplexity and no increase in validation accuracy.

5.2 Testing Stage
The best performing models during development for each segmentation method on each valida-
tion set were carried over for evaluation on the testing set and out-of-domain corpora. During
the development stage, translation models trained and tested on text trained with PRPE+BPE
or Multi-PRPE performed consistently worse than models developed on text segmented solely
with PRPE, although they still produced incremental to moderate gains over the baseline com-
parisons. Studying the segmented text led us to suspect that this was due to over-segmentation
with regards to the task of translating to an unsegmented target language. As such, these seg-
mentation methods were not included in experiments during the testing phase.

Models were tested on both in-domain and out-of-domain text. Quechua-Spanish models
were evaluated using the Financial and Magazine corpora, as well as the testing split of the
Religious text. Indonesian-English models were tested on both Religious and News text.

6 Results

BLEU scores from the development stage (Table 2) were encouraging, with the standalone
PRPE algorithm outperforming the other segmentation algorithms in most instances, gaining as
much as 1.9 BLEU compared to the next best method. Notably, the inclusion of PRPE signif-
icantly outperformed previous benchmarks on the Indonesian-English Religious validation set
(26 BLEU vs 22.5 BLEU), which was established by Guntara et al. (2020) with a model pre-
trained with Masked Language Modeling (Devlin et al., 2019) and Translation Language Mod-
eling (Lample and Conneau, 2019) using a training corpus of over 12.9 million non-segmented
parallel sentences. A model with language pre-training from Guntara et al. (2020) trained on
the exact same Religious training set as ours obtained a BLEU score of 20.2.

Perhaps most interestingly, the models trained on the smaller two training sets (the
Quechua-Spanish Religious set and the Indonesian-English News set) consistently yielded bet-
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ter performance when trained on the LSTM architecture compared to the Transformer no matter
the segmentation method used, with differences as high as 2.6 BLEU. Ortega et al. (2021) also
observed the same pattern in their experiments with Quechua-Spanish translation. These results
may suggest that the best performing architectures and techniques in high-resource settings may
not be transferable to low-resource translation. We leave further evaluation to future studies. As
such, the LSTM models trained on the Quechua-Spanish Religious set and the Indonesian-
English News set, instead of their Transformer equivalents, were carried over for testing.

QZ-ES (Religious Validation Set)
Architecture Segmentation Method

None BPE Unigram PRPE PRPE+BPE Multi-PRPE
LSTM 21.7 21.5 22.2 23.7 22.9 22.2

Transformer 20.24 19.74 21.1 21.8 20.27 21.03
ID-EN (Religious Validation Set)

Architecture Segmentation Method
None BPE Unigram PRPE PRPE+BPE Multi-PRPE

LSTM 12.2 9.9 22.1 23.8 10.5 22.25
Transformer 19.8 18.7 23.4 26 22.4 24.1

ID-EN (News Validation Set)
Architecture Segmentation Method

None BPE Unigram PRPE PRPE+BPE Multi-PRPE
LSTM 9.4 10.1 10.4 12.2 10.4 11.9

Transformer 9.8 9.3 9.9 10.1 9.4 9.8

Table 2: BLEU scores in the development stage. Multi-PRPE was run using n = 5 iterations.
Models generally performed better when text is segmented with some implementation of PRPE.

QZ-ES
Test Set Segmentation Method

None BPE Unigram PRPE BPE-Guided* BPE-Guided (qz-fi)-es*
Religious 20.14 16.5 20.48 23.4 17 22.5
Financial 1.72 1.06 0.76 1.4 N/A N/A
Magazine 0.5 0.2 0.56 0.6 0.5 0.7

Table 3: In-domain and out-of-domain BLEU scores in the test stage for Quechua-Spanish. All
models were LSTMs trained on the Religious training set. *Additional results were included
from Ortega et al. (2021) for comparison.

In-domain testing results for Quechua-Spanish were consistent with the development stage
with PRPE outperforming other segmentation methods (Table 3). Especially exciting was the
PRPE model out-performing models enhanced with transfer learning from Finnish. Quechua-
Finnish-Spanish models from Ortega et al. (2021) obtained BLEU scores of 22.9 and 22.5 with
BPE and BPE-Guided respectively, whereas the PRPE model obtained a score of 23.4. How-
ever, out-of-domain performance for Quechua-Spanish models remained poor, similar to re-
sults obtained by Ortega et al. (2021). Segmentation with a unigram language model, the best
performing baseline during development, performed especially poorly in out-of-domain evalu-
ation. PRPE had better results than the other segmentation methods in Table 3, but was unable
to outperform unsegmented data on the Financial set and transfer learning on the Magazine set.
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ID-EN (Religious)
Test Set Segmentation Method

None BPE Unigram PRPE
Religious 18.5 19.1 20.11 24.6

News 10.48 9.8 10.77 11.47

Table 4: In-domain and out-of-domain BLEU scores in the test stage for Indonesian-English for
Transformer models trained on the Religious dataset.

ID-EN (News)
Test Set Segmentation Method

None BPE Unigram PRPE
Religious 6.7 6.11 6.44 7

News 9.2 9.1 9.5 10.8

Table 5: In-domain and out-of-domain BLEU scores in the test stage for Indonesian-English for
LSTM models trained on the News dataset.

PRPE performed well during both in-domain and out-of-domain testing for the Indonesian-
English pair . In-domain results for the Religious dataset (Table 4) were especially strong, again
out-performing a model with language pre-training and a much larger training corpus (24.6
BLEU for PRPE vs 22.1 BLEU from Guntara et al. (2020)). Results for in-domain News (Table
5) and out-of-domain evaluation (Tables 4 and 5) showed much more moderate improvements.
A notable result was the poor performance of BPE: it performed worse than no segmentation by
producing the lowest scores for 6/7 test sets. This result was surprising given its frequent use in
NMT, although still somewhat expected given similar results obtained by Ortega et al. (2021).

Encouraged by the results on the Indonesian-English Religious set, we set up additional
experiments using PRPE in an effort to match the Google Translate benchmarks obtained by
Guntara et al. (2020) on the validation set (test set scores were not available), which obtained
a BLEU score of 29.1 (Table 6). We added the high-resource 1.8 million sentence General
dataset from Guntara et al. (2020) as additional training data. Fine-tuning parameters on the
validation set, such as increasing word embedding size to 800 from 512 and increasing training
steps to 200,000, led to our maximum score of 27.2 BLEU on the validation set and 25.6 BLEU
on the testing set (Table 6). With these scores, our PRPE system outperformed the best results
of 22.5 validation BLEU and 22.1 test BLEU obtained by Guntara et al. (2020), which was a
masked language modelling pre-trained Transformer trained on much more data (10.1 million
more sentences in addition to the General and Religious datasets), while performing almost
comparably with Google Translate.

ID-EN
Religious Dataset Model

Our System Guntara et al. (2020)* Google Translate*
Validation 27.2 22.5 29.1

Test 25.6 22.1 N/A

Table 6: BLEU scores on the validation and test splits of the Religious set, after adding in addi-
tional training data to our system. Our system was a Transformer trained on PRPE-segmented-
text from the Religious and General datasets. *Additional results were included from Guntara
et al. (2020) for comparison.
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Across all datasets, subword segmentation via PRPE consistently improved translation
quality over other systems, whether it be unsegmented text or other segmentation methods. Our
results demonstrated the importance of selecting suitable subword segmentation methods for
low-resource translation. While out-of-domain evaluation remains a challenge for NMT sys-
tems, our experiments show that appropriate segmentation techniques can still lead to moderate
gains in terms of BLEU. Results are more exciting for in-domain translation, as we show with
PRPE that the same segmentation techniques can significantly improve translation quality in
place of additional training data, making them especially useful in these low-resource settings.

7 Limitations

While we show that PRPE was able to bring substantial gains in translation quality, there are
still constraints that limit its applicability. The most immediate is the pre-requisite for some
amount of linguistic knowledge (a list of affixes) during the construction of its heuristics due to
its semi-supervised nature. An extension of this limitation is that heuristics are thus language
specific, making it less applicable in cross-lingual scenarios (although a multilingual heuristic
could be developed to alleviate this problem). Finally, the effectiveness of the algorithm on
non-agglutinative languages is unclear. While Zuters et al. (2018) showed that PRPE brought
incremental improvements in BLEU score for the non-agglutinative English-Latvian pairing,
their experiments also had text further segmented with BPE (which was shown in our results to
decrease the benefits of PRPE for agglutinative languages).

8 Conclusion

We introduced the use of the PRPE algorithm for morphologically-guided subword segmen-
tation and evaluate it on two distinct low-resource, agglutinative languages: Quechua and In-
donesian. During the development of our experiments, we reintroduced datasets previously
unavailable in parallel plaintext for NMT by manually re-aligning raw source data. We found
that subword segmentation can have an especially large impact on low-resource translation;
unsuitable segmentation methods can actually lower BLEU score when compared to unseg-
mented text, while effective segmentation can produce moderate to large gains. Our results
show that segmentation using PRPE can lead to significant improvements in translation quality
when evaluated via BLEU score, out-performing pre-trained, higher-resource models, making
the algorithm ideal for low-resource languages that lack the large amounts of training data often
necessary for neural machine translation.

References
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Chiruzzo, L., Giménez-Lugo, G., Ramos, R., Meza Ruiz, I. V., Coto-Solano, R., Palmer, A.,
Mager-Hois, E., Chaudhary, V., Neubig, G., Vu, N. T., and Kann, K. (2021). Findings of
the AmericasNLP 2021 shared task on open machine translation for indigenous languages of

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 29



the Americas. In Proceedings of the First Workshop on Natural Language Processing for In-
digenous Languages of the Americas, pages 202–217, Online. Association for Computational
Linguistics.

Muysken, P. (1988). Affix order and interpretation: Quechua.

Nomoto, H., Choi, H., Moeljadi, D., and Bond, F. (2018). Malindo morph: Morphological
dictionary and analyser for malay/indonesian. In Proceedings of the LREC 2018 Workshop
“The 13th Workshop on Asian Language Resources, pages 36–43.

Oncevay, A. (2021). Peru is multilingual, its machine translation should be too? In Proceedings
of the First Workshop on Natural Language Processing for Indigenous Languages of the
Americas, pages 194–201, Online. Association for Computational Linguistics.

Ortega, J., Castro Mamani, R., and Cho, K. (2021). Neural machine translation with a polysyn-
thetic low resource language. Machine Translation.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Associa-
tion for Computational Linguistics.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Belgium, Brussels.
Association for Computational Linguistics.

Richburg, A., Eskander, R., Muresan, S., and Carpuat, M. (2020). An evaluation of subword
segmentation strategies for neural machine translation of morphologically rich languages.
In Proceedings of the The Fourth Widening Natural Language Processing Workshop, pages
151–155, Seattle, USA. Association for Computational Linguistics.

Rios, A. (2016). A basic language technology toolkit for quechua. Procesamiento del Lenguaje
Natural, 56:91–94.

Rios Gonzales, A. and Castro Mamani, R. A. (2014). Morphological disambiguation and text
normalization for Southern Quechua varieties. In Proceedings of the First Workshop on
Applying NLP Tools to Similar Languages, Varieties and Dialects, pages 39–47, Dublin,
Ireland. Association for Computational Linguistics and Dublin City University.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC’12), pages 2214–
2218, Istanbul, Turkey. European Language Resources Association (ELRA).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762. Version 5.

Wang, L., Cao, Z., Xia, Y., and De Melo, G. (2016). Morphological segmentation with window
lstm neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 30



Zuters, J., Strazds, G., and Immers, K. (2018). Semi-automatic quasi-morphological word seg-
mentation for neural machine translation. In Lupeikiene, A., Vasilecas, O., and Dzemyda, G.,
editors, Databases and Information Systems, pages 289–301, Cham. Springer International
Publishing.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 31



Active Learning for Massively Parallel Translation
of Constrained Text into Low Resource Languages

Zhong Zhou zhongzhou@cmu.edu
Alex Waibel alex@waibel.com
Language Technology Institute, School of Computer Science, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh PA 15213

Abstract
We translate a closed text that is known in advance and available in many languages into
a new and severely low resource language. Most human translation efforts adopt a portion-
based approach to translate consecutive pages/chapters in order, which may not suit machine
translation. We compare the portion-based approach that optimizes coherence of the text locally
with the random sampling approach that increases coverage of the text globally. Our results show
that the random sampling approach performs better. When training on a seed corpus of ∼1,000
lines from the Bible and testing on the rest of the Bible (∼30,000 lines), random sampling
gives a performance gain of +11.0 BLEU using English as a simulated low resource language,
and +4.9 BLEU using Eastern Pokomchi, a Mayan language. Furthermore, we compare three
ways of updating machine translation models with increasing amount of human post-edited data
through iterations. We find that adding newly post-edited data to training after vocabulary update
without self-supervision performs the best. We propose an algorithm for human and machine to
work together seamlessly to translate a closed text into a severely low resource language.

1 Introduction

Machine translation has flourished ever since the first computer was made (Hirschberg and
Manning, 2015; Popel et al., 2020). Over the years, human translation is assisted by machine
translation to remove human bias and translation capacity limitations (Koehn and Haddow, 2009;
Li et al., 2014; Savoldi et al., 2021; Bowker, 2002; Bowker and Fisher, 2010; Koehn, 2009). By
learning human translation taxonomy and post-editing styles, machine translation borrows many
ideas from human translation to improve performance through active learning (Settles, 2012;
Carl et al., 2011; Denkowski, 2015). We propose a workflow to bring human translation and
machine translation to work together seamlessly in translation of a closed text into a severely
low resource language as shown in Figure 1 and Algorithm 1.

Given a closed text that has many existing translations in different languages, we are
interested in translating it into a severely low resource language well. Researchers recently
have shown achievements in translation using very small seed parallel corpora in low resource
languages (Lin et al., 2020; Qi et al., 2018; Zhou et al., 2018a). Construction methods of
such seed corpora are therefore pivotal in translation performance. Historically, this is mostly
determined by field linguists’ experiential and intuitive discretion. Many human translators
employ a portion-based strategy when translating large texts. For example, translation of the
book “The Little Prince” may be divided into smaller tasks of translating 27 chapters, or even
smaller translation units like a few consecutive pages. Each translation unit contains consecutive
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Figure 1: Proposed joint human machine translation sequence for a given closed text.

sentences. Consequently, machine translation often uses seed corpora that are chosen based on
human translators’ preferences, but may not be optimal for machine translation.

We propose to use a random sampling approach to build seed corpora when resources are
extremely limited. In other words, when field linguists have limited time and resources, which
lines would be given priority? Given a closed text, we propose that it would beneficial if field
linguists translate randomly sampled ∼1,000 lines first, getting the first machine translated draft
of the whole text, and then post-edit to obtain final translation of each portion iteratively as shown
in Algorithm 1. We recognize that the portion-based translation is very helpful in producing
quality translation with formality, cohesion and contextual relevance. Thus, our proposed way
is not to replace the portion-based approach, but instead, to get the best of both worlds and to
expedite the translation process as shown in Figure 1.

The main difference of the two approaches is that the portion-based approach focuses
on preserving coherence of the text locally, while the random-sampling approach focuses on
increasing coverage of the text globally. Our results show that the random sampling approach
performs better. When training on a seed corpus of ∼1,000 lines from the Bible and testing
on the rest of the Bible (∼30,000 lines), random sampling beats the portion-based approach by
+11.0 BLEU using English as a simulated low resource language on a family of languages ranked
by distortion, and by +4.9 using a Mayan language, Eastern Pokomchi, training on a family of
languages based on linguistic definition. Using random sampling, machine translation is able to
produce an apt first draft of the whole text that expedites the subsequent translation iterations.

Moreover, we compare three different ways of incorporating incremental post-edited data
during the translation process. We find that self-supervision using the whole translation draft
affects performance adversely, and is best to be avoided. We also show that adding the newly
post-edited text to training with vocabulary update performs the best.

2
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Algorithm 1: Proposed joint human machine translation sequence for a given closed text.
Input: A text of N lines consisting multiple books/portions, parallel in L source languages
Output: A full translation in the target low resource language, l′

0. Initialize translation size, n = 0, vocabulary size, v = 0, vocabulary update size,4v = 0 ;
1. Randomly sample S (∼1,000) sentences with vocabulary size vS for human translators to

produce the seed corpus, update n = S, v = vS ;
2. Rank and pick a family of close-by languages by linguistic, distortion or performance metric ;
while n < N do

if4v > 0 then
3. Pretrain on the full texts of neighboring languages ;

4. Train on the n sentences of all languages in multi-source multi-target configuration ;
5. Train on the n sentences of all languages in multi-source single-target configuration ;
6. Combine translations from all source languages using the centeredness measure ;
7. Review all books/portions of the translation draft ;
8. Pick a book/portion with n′ lines and v′ more vocabulary ;
9. Complete human post-editing of the portion chosen, v = v + v′, n = n+ n′,4v = v′ ;

return full translation co-produced by human (Step 1, 7-9) and machine (Step 0, 2-6) translation ;

2 Related Works

2.1 Human Translation and Machine Translation
Machine translation began about the same time as the first computer (Hirschberg and Manning,
2015; Popel et al., 2020). Over the years, human translators have different reactions to machine
translation advances, mixed with doubt or fear (Hutchins, 2001). Some researchers study human
translation taxonomy for machine to better assist human translation and post-editing efforts
(Carl et al., 2011; Denkowski, 2015). Human translators benefit from machine assistance as
human individual bias and translation capacity limitations are compensated for by large-scale
machine translation (Koehn and Haddow, 2009; Li et al., 2014; Savoldi et al., 2021; Bowker,
2002; Bowker and Fisher, 2010; Koehn, 2009). On the other hand, machine translation benefits
from professional human translators’ context-relevant and culturally-appropriate translation and
post-editing efforts (Hutchins, 2001). Severely low resource translation is a fitting ground for
close human machine collaboration (Zong, 2018; Carl et al., 2011; Martínez, 2003).

2.2 Severely Low Resource Text-based Translation
Many use multiple rich-resource languages to translate to a low resource language using mul-
tilingual methods (Johnson et al., 2017; Ha et al., 2016; Firat et al., 2016; Zoph and Knight,
2016; Zoph et al., 2016; Adams et al., 2017; Gillick et al., 2016; Zhou et al., 2018a,b). Some use
data selection for active learning (Eck et al., 2005). Some use as few as ∼4,000 lines (Lin et al.,
2020; Qi et al., 2018) and ∼1,000 lines (Zhou and Waibel, 2021) of data. Some do not use low
resource data (Neubig and Hu, 2018; Karakanta et al., 2018).

2.3 Active Learning and Random Sampling
Active learning has long been used in machine translation (Settles, 2012; Ambati, 2012; Eck et al.,
2005; Haffari and Sarkar, 2009; González-Rubio et al., 2012; Miura et al., 2016; Gangadharaiah
et al., 2009). Random sampling and data selection has been successful (Kendall and Smith,
1938; Knuth, 1991; Clarkson and Shor, 1989; Sennrich et al., 2015; Hoang et al., 2018; He et al.,
2016; Gu et al., 2018). The mathematician Donald Knuth uses the population of Menlo Park to
illustrate the value of random sampling (Knuth, 1991).
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Book Author Books Chapters Pages Languages

The Bible Multiple 66 1,189 1,281 689
The Little Prince Antoine de Saint Exupéry 1 27 96 382
Dao De Jing Laozi 1 81 ∼10 >250
COVID-19 Wiki Page Multiple 1 1 ∼50 155
The Alchemist Paulo Coelho 1 2 163 70
Harry Potter J. K. Rowling 7 199 3,407 60
The Lord of the Rings J. R. R. Tolkien 6 62 1,037 57
Frozen Movie Script Jennifer Lee 1 112 ∼40 41
The Hand Washing Song Multiple 1 1 1 28
Dream of the Red Chamber Xueqin Cao 2 120 2500 23
Les Misérables Victor Hugo 68 365 1,462 21

Table 1: Examples of different texts with the number of languages translated to date (UNESCO, 1932;
Mayer and Cysouw, 2014; de Saint-Exupéry, 2019; Laozi, 2019; Fung et al., 2020; Coelho, 2015; Rowling,
2019; Tolkien, 2012; Lee, 2013; Thampi et al., 2020; Xueqin, 2016; Hugo, 1863).

3 Methodology

We train our models using a state-of-the-art multilingual transformer by adding language labels to
each source sentence (Johnson et al., 2017; Ha et al., 2016; Zhou et al., 2018a,b). We borrow the
order-preserving named entity translation method by replacing each named entity with __NEs
(Zhou et al., 2018b) using a multilingual lexicon table that covers 124 source languages and
2,939 named entities (Zhou and Waibel, 2021). For example, the sentence “Somchai calls Juan”
is transformed to “__opt_src_en __opt_tgt_ca __NE0 calls __NE1” to translate to
Chuj. We use families of close-by languages constructed by ranking 124 source languages by
distortion measure (FAMD), performance measure (FAMP) and linguistic family (FAMO+);
the distortion measure ranks languages by decreasing probability of zero distortion, while the
performance measure incorporates an additional probability of fertility equalling one (Zhou and
Waibel, 2021). Using families constructed, we pretrain our model first on the whole text of
nearby languages, then we train on the ∼1,000 lines of low resource data and the corresponding
lines in other languages in a multi-source multi-target fashion. We finally train on the ∼1,000
lines in a multi-source single-target fashion (Zhou and Waibel, 2021).

We combine translations of all source languages into one. Let all N translations be
ti, i = 1, . . . , N and let similarity between translations ti and tj be Sij . We rank all translations
according to how centered it is with respect to other sentences by summing all its similarities to the
rest through

∑
j Sij for i = 1, . . . , N . We take the most centered translation for every sentence,

maxi
∑

j Sij , to build the combined translation output. The expectation of the combined score
is higher than that of any of the source languages (Zhou and Waibel, 2021).

Our work differs from the past research in that we put low resource translation into the broad
collaborative scheme of human machine translation. We compare the portion-based approach
with the random sampling approach in building seed corpora. We also compare three methods
of updating models with increasing amount of human post-edited data. We add the newly
post-edited data to training in three ways: with vocabulary update, without vocabulary update,
or incorporating the whole translation draft in a self-supervised fashion additionally. For best
performance, we build the seed corpus by random sampling, update vocabulary iteratively, and
add newly post-edited data to training without self-supervision. We also have a larger test set,
we test on ∼30,000 lines rather than ∼678 lines from existing research.

We propose a joint human machine translation workflow in Algorithm 1. After pretraining
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Input Language Family

By Linguistics By Distortion By Performance

FAMO+ FAMD FAMP

Training Luke Rand Training Luke Rand Training Luke Rand

Testing Best All Best All Testing Best All Best All Testing Best All Best All

Combined 38.2 21.9 47.7 31.3 Combined 38.4 22.9 49.6 33.9 Combined 40.3 23.7 48.8 33.2

German 35.8 20.0 45.4 29.4 German 36.8 20.8 47.2 31.5 German 37.6 21.3 46.5 30.9
Danish 36.8 18.9 43.3 28.8 Danish 37.4 19.6 44.7 30.8 Danish 38.5 19.9 44.4 30.2
Dutch 36.2 20.3 45.3 29.9 Dutch 36.3 21.0 47.1 32.3 Dutch 37.8 21.6 46.3 31.6
Norwegian 36.6 20.2 45.1 29.7 Norwegian 36.9 20.9 46.5 31.7 Norwegian 37.6 21.2 46.1 31.2
Swedish 35.2 19.6 45.1 29.0 Afrikaans 38.4 22.2 48.0 33.1 Afrikaans 39.6 22.9 47.5 32.4
Spanish 36.8 21.6 45.1 30.3 Marshallese35.3 21.6 47.1 31.5 Spanish 38.9 22.9 46.6 31.7
French 36.1 19.7 44.6 28.9 French 36.3 20.3 46.0 30.9 French 37.4 21.7 45.4 30.2
Italian 36.9 20.5 43.5 29.7 Italian 37.1 21.0 45.2 31.7 Italian 38.8 21.8 44.6 31.1
Portuguese 32.5 15.8 35.2 24.4 Portuguese 33.3 16.5 38.1 26.9 Portuguese 34.0 16.3 36.2 25.8
Romanian 34.9 19.3 43.0 28.8 Frisian 36.3 21.6 47.7 32.4 Frisian 38.0 22.3 47.4 31.8

Table 2: Performance training on 1,093 lines of Eastern Pokomchi data on FAMO+, FAMD and FAMP. We
train using the portion-based approach in Luke, and using random sampling in Rand. During testing, Best is
the book with highest BLEU score, and All is the performance on ∼30,000 lines of test data.

on neighboring languages in Step 3, we iteratively train on the randomly sampled seed corpus of
low resource data in Step 4 and 5. The reason we include both Step 4 and 5 in our algorithm
is because training both steps iteratively performs better than training either one (Zhou and
Waibel, 2021). Our model produces a translation draft of the whole text. Since the portion-based
approach has the advantage with formality, cohesion and contextual relevance, human translators
may pick and post-edit portion-by-portion iteratively. The newly post-edited data with updated
vocabulary is feed back to the machine translation models without self-supervision. In this way,
machine translation systems rely on quality parallel corpora that are incrementally produced by
human translators. Human translators lean on machine translation for quality translation draft to
expedite translation. This creates a synergistic collaboration between human and machine.

4 Data

We work on the Bible in 124 source languages (Mayer and Cysouw, 2014), and have experiments
for English, a simulated language, and Eastern Pokomchi, a Mayan language. We train on
∼1,000 lines of low resource data and on full texts for all the other languages. We aim to
translate the rest of the text (∼30,000 lines) into the low resource language. In pretraining, we
use 80%, 10%, 10% split for training, validation and testing. In training, we use 3.3%, 0.2%,
96.5% split for training, validation and testing. Our test size is >29 times of the training size. We
use the book "Luke" for the portion-based approach as suggested by many human translators.

Training on ∼100 million parameters with Geforce RTX 2080 Ti, we employ a 6-layer
encoder and a 6-layer decoder with 512 hidden states, 8 attention heads, 512 word vector size,
2,048 hidden units, 6,000 batch size, 0.1 label smoothing, 2.5 learning rate, 0.1 dropout and
attention dropout, an early stopping patience of 5 after 190,000 steps, “BLEU” validation metric,
“adam” optimizer and “noam” decay method (Klein et al., 2017; Papineni et al., 2002). We
increase patience to 25 for larger data in the second stage of training in Figure 2a and 2b.
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Input Language Family

By Linguistics By Distortion By Performance

FAMO+ FAMD FAMP

Training Luke Rand Training Luke Rand Training Luke Rand

Testing Best All Best All Testing Best All Best All Testing Best All Best All

Combined 23.1 8.6 24.4 13.5 Combined 23.2 8.5 22.7 12.6 Combined 22.2 7.2 20.3 10.9

Chuj 21.8 8.0 21.3 12.8 Chuj 21.9 8.5 20.2 12.0 Chuj 21.8 7.2 18.0 10.3
Cakchiquel 22.2 7.9 22.4 13.0 Cakchiquel 22.3 7.9 21.8 12.2 Cakchiquel 21.2 6.9 19.1 10.5
Guajajara 19.7 7.0 18.8 11.8 Guajajara 19.1 6.9 18.0 11.2 Guajajara 18.8 5.9 15.1 9.5
Mam 22.2 8.6 24.1 13.7 Russian 22.2 7.3 17.4 11.8 Mam 21.7 7.5 21.4 11.1
Kanjobal 21.8 8.1 22.3 13.1 Toba 21.9 8.3 21.8 12.5 Kanjobal 21.5 7.1 18.7 10.6
Cuzco 22.3 7.8 22.5 12.9 Myanmar 19.1 5.3 13.3 9.8 Thai 21.8 6.3 15.7 10.2
Ayacucho 21.6 7.6 23.3 12.8 Slovenský 22.1 7.5 18.5 12.0 Dadibi 19.9 6.2 17.8 9.8
Bolivian 22.2 7.8 22.3 12.9 Latin 21.9 7.8 20.4 12.2 Gumatj 19.1 3.8 11.7 4.7
Huallaga 22.2 7.7 22.7 12.8 Ilokano 22.6 8.4 22.4 12.5 Navajo 21.3 6.5 17.4 10.5
Aymara 21.4 7.5 23.0 12.7 Norwegian 22.6 8.3 22.0 12.6 Kim 21.6 7.0 17.5 10.7

Table 3: Performance training on 1,086 lines of Eastern Pokomchi data on FAMO+, FAMD and FAMP. We
train using the portion-based approach in Luke, and using random sampling in Rand. During testing, Best is
the book with highest BLEU score, and All is the performance on ∼30,000 lines of test data.

5 Results

We observe that random sampling performs better than the portion-based approach. Random
sampling gives a performance gain of +11.0 for English on FAMD and +4.9 for Eastern Pokomchi
on FAMO+ in Table 2 and 3. The performance gain for Eastern Pokomchi may be lower because
Mayan languages are morphologically rich, complex, isolated and opaque (Aissen et al., 2017;
Clemens et al., 2015; England, 2011). English is closely related to many languages due to
colonization and globalization even though it is artificially constrained in size (Bird, 2020). This
may explain why Eastern Pokomchi benefits less.

To simulate human translation efforts in Step 7 and 8 in Algorithm 1, we rank 66 books of
the Bible by BLEU score on English’s FAMD and Eastern Pokomchi’s FAMO+. We assume
that BLEU ranking is available to us to simulate human judgment. In reality, this step is realized
by human translators skimming through the translation draft and comparing performances of
different books by intuition and experience. In Section 6, we will discuss the limitation of this
assumption. Performance ranking of the simulated low resource language may differ from that
of the actual low resource language. But the top few may coincide because of the nature of the
text, independent of the language. In our results, we observe that the narrative books performs
better than the philosophical or poetic books. The book “1 Chronicles” performs best for both
English and Eastern Pokomchi, and the book “Philemon” performs worst for both languages. A
possible explanation is that “1 Chronicles” is mainly narrative, and contains many named entities
that are translated well by the order-preserving lexiconized model. If we compare BLEU scores
of the best-performing book, random sampling outperforms the portion-based approach by +11.2
on English’s FAMD, and by +1.3 on Eastern Pokomchi’s FAMO+.

In Table 4, we compare three different ways of updating the machine translation models by
adding a newly post-edited book that human translators produced. We call the baseline without
addition of the new book Seed. Updated-Vocab adds the new book to training with updated
vocabulary while Old-Vocab skips the vocabulary update. Self-Supervised adds the whole
translation draft of ∼30,000 lines to pretraining in addition to the new book. Self-supervision
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Source Seed Self-Supervised Old-Vocab Updated-Vocab

Combined 33.9 29.4 (-4.5) 36.3 (+2.4) 36.7 (+2.8)

Danish 31.5 26.8 (-4.7) 33.1 (+1.6) 33.7 (+2.2)
Norwegian 30.8 27.6 (-3.2) 34.1 (+3.3) 34.7 (+3.9)
Italian 32.3 27.3 (-5.0) 34.1 (+1.8) 34.6 (+2.3)
Afrikaans 31.7 28.8 (-2.9) 35.6 (+3.9) 36.0 (+4.3)
Dutch 33.1 28.0 (-5.1) 34.6 (+1.5) 35.1 (+2.0)
Portuguese 31.5 23.6 (-7.9) 29.1 (-2.4) 29.8 (-0.7)
French 30.9 26.8 (-4.1) 33.3 (+2.4) 33.9 (+3.0)
German 31.7 27.4 (-4.3) 33.8 (+2.1) 34.4 (+2.7)
Marshallese 26.9 27.5 (+0.6) 33.8 (+6.9) 34.4 (+7.5)
Frisian 32.4 28.2 (-4.2) 34.7 (+2.3) 35.3 (+2.9)

Table 4: Comparing three ways of adding the newly post-edited book “1 Chronicles”. Seed is the baseline
of training on the seed corpus alone, Old-Vocab skips the vocabulary update while Updated-Vocab has
vocabulary update. Self-Supervised adds the complete translation draft in addition to the new book.

refers to using the small seed corpus to translate the rest of the text which is subsequently used
to train the model. We observe that the Self-Supervised performs the worst among the three.
Indeed, Self-Supervised performs even worse than the baseline Seed. This shows that quality is
much more important than quantity in severely low resource translation. It is better for us not to
add the whole translation draft to the pretraining as it affects performance adversely.

On the other hand, we see that both Updated-Vocab and Old-Vocab performs better than Seed
and Self-Supervised. Updated-Vocab’s performance is better than Old-Vocab. An explanation
could be that Updated-Vocab has more expressive power with updated vocabulary. Therefore, in
our proposed algorithm, we prefers vocabulary update in each iteration. If the vocabulary has
not increased, we may skip pretraining to expedite the process.

We show how the algorithm is put into practice for English and Eastern Pokomchi in Figure
2a and 2b. We take the worst-performing 11 books as the held-out test set, and divide the other
55 books of the Bible into 5 portions. Each portion contains 11 books. We translate the text by
using the randomly sampled ∼1,000 lines of seed corpus first, and then proceed with human
machine translation in Algorithm 1 in 5 iterations with increasing number of post-edited portions.
The red dotted line is the overall performance of the whole text excluding the seed corpus. We
observe that the red dotted curve is steadily increasing for both languages. However, since we
are interested in the test results of the held-out set, we evaluate only on the solid lines plotted.

For English, we observe that philosophical books like “Ecclesiastes” and poetry books like
“Song of Solomon” perform very badly in the beginning, but begin to achieve above 90 BLEU
scores after adding 33 books of training data. The high performance is due to the multilingual
cross-lingual transfer and this is the main reason why we set up our problem as translation of a
closed text that are available in many languages to the low resource language. However, some
books like “Philemon”, “Hebrews”, “James”, “Titus” remains difficult to translate even after
adding 55 books of training data. This shows that adding data may benefit some books more than
the others. A possible explanation is that there are multiple authors of the Bible, and books differ
from each other in style and content. Some books are closely related to each other, and may
benefit from translations of other books. But some may be very different and benefit much less.

For Eastern Pokomchi, even though the performance of the most difficult 11 books never
reach the near perfect BLEU score of 90s like that of English experiments, all books has BLEU
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(a) English (b) Eastern Pokomchi

Figure 2: Performance of the most difficult 11 books with increasing number of training books.

scores that are steadily increasing. Surprisingly, we observe good performance with the books
that remain difficult with large training data in the English experiments. “Philemon”, for example,
increases to a BLEU score of 81.9 with 55 books of training data in Eastern Pokomchi while
it has a BLEU score of 28.4 with 55 books of training data in English. This surprising result
shows that what is difficult for simulated low resource languages may not be as difficult for real
low resource languages. Even though Eastern Pokomchi gives a lower overall BLEU score than
English, it has a better generalization to the most difficult book.

6 Conclusion

We propose to use random sampling to build seed parallel corpora instead of using the portion-
based approach in severely low resource settings. Training on ∼1,000 lines, the random sampling
approach outperforms the portion-based approach by +11.0 for English’s FAMD, and by +4.9
for Eastern Pokomchi’s FAMO+. We also compare three different ways of updating the machine
translation models by adding newly post-edited data iteratively. We find that vocabulary update
is necessary, but self-supervision by pretraining with whole translation draft is best to be avoided.

One limitation of our work is that in real life scenarios, we do not have the reference
text in low resource languages to produce the BLEU scores to decide the post-editing order.
Consequently, field linguists need to skim through and decide the post-editing order based on
intuition. However, computational models can still help. One potential way to tackle it is that we
can train on ∼1,000 lines from another language with available text and test on the 66 books.
Since our results show that the literary genre plays important role in the performance ranking, it
would be reasonable to determine the order using a “held-out language” and then using that to
determine order in the target low resource language. In the future, we would like to work with
human translators who understand and speak low resource languages.

Another concern human translators may have is the creation of randomly sampled seed
corpora. To gauge the amount of interest or inertia, we have interviewed some human translators
and many are interested. However, it is unclear whether human translation quality of randomly
sampled data differs from that of the traditional portion-based approach. We hope to work with
human translators closely to determine whether the translation quality difference is manageable.

We are also curious how our model will perform with large literary works like “Lord of
the Rings” and "Les Misérables". We would like to see whether it will translate well with
philosophical depth and literary complexity. However, these books often have copyright issues
and are not as easily available as the Bible data. We are interested in collaboration with teams
who have multilingual data for large texts, especially multilingual COVID-19 data.
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(2020). Transforming machine translation: a deep learning system reaches news translation
quality comparable to human professionals. Nature communications, 11(1):1–15.

Qi, Y., Sachan, D. S., Felix, M., Padmanabhan, S. J., and Neubig, G. (2018). When and why
are pre-trained word embeddings useful for neural machine translation? arXiv preprint
arXiv:1804.06323.

Rowling, J. (2019). Harry potter. The 100 Greatest Literary Characters, page 183.

Savoldi, B., Gaido, M., Bentivogli, L., Negri, M., and Turchi, M. (2021). Gender bias in machine
translation. arXiv preprint arXiv:2104.06001.

Sennrich, R., Haddow, B., and Birch, A. (2015). Improving neural machine translation models
with monolingual data. arXiv preprint arXiv:1511.06709.

Settles, B. (2012). Active learning. Synthesis lectures on artificial intelligence and machine
learning, 6(1):1–114.

Thampi, N., Longtin, Y., Peters, A., Pittet, D., and Overy, K. (2020). It’s in our hands: a rapid,
international initiative to translate a hand hygiene song during the covid-19 pandemic. Journal
of Hospital Infection, 105(3):574–576.

Tolkien, J. R. R. (2012). The Lord of the Rings: One Volume. Houghton Mifflin Harcourt.

11

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 42



UNESCO, I. T. (1932). World bibliography of translation.

Xueqin, C. (2016). Dream of the Red Chamber. Editorial Axioma.

Zhou, Z., Sperber, M., and Waibel, A. (2018a). Massively parallel cross-lingual learning in
low-resource target language translation. In Proceedings of the 3rd conference on Machine
Translation Worshop of the 23rd Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Zhou, Z., Sperber, M., and Waibel, A. (2018b). Paraphrases as foreign languages in multilingual
neural machine translation. Proceedings of the Student Research Workshop at the 56th Annual
Meeting of the Association for Computational Linguistics.

Zhou, Z. and Waibel, A. (2021). Family of origin and family of choice: Massively parallel
lexiconized iterative pretraining for severely low resource text-based translation. Proceedings
of the 3rd Workshop on Research in Computational Typology and Multilingual NLP of the 20th
Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technologies.

Zong, Z. (2018). Research on the relations between machine translation and human translation.
In Journal of Physics: Conference Series, page 062046. IOP Publishing.

Zoph, B. and Knight, K. (2016). Multi-source neural translation. In Proceedings of the 15th
Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technologies, pages 30–34.

Zoph, B., Yuret, D., May, J., and Knight, K. (2016). Transfer learning for low-resource neural
machine translation. In Proceedings of the 21st Conference on Empirical Methods in Natural
Language Processing, pages 1568–1575.

12

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 43



Love Thy Neighbor:
Combining Two Neighboring Low-Resource

Languages for Translation

John E. Ortega jortega@cs.nyu.edu
New York University, New York, New York, USA

Richard Alexander Castro Mamani rcastro@hinant.in
Universidad Nacional de San Antonio Abad, Cusco, Perú
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Abstract

Low-resource languages sometimes take on similar morphological and syntactic characteristics
due to their geographic nearness and shared history. Two low-resource neighboring languages
found in Peru, Quechua and Ashaninka, can be considered, at first glance, two languages that
are morphologically similar. In order to translate the two languages, various approaches have
been taken. For Quechua, neural machine transfer-learning has been used along with byte-pair
encoding. For Ashaninka, the language of the two with fewer resources, a finite-state transducer
is used to transform Ashaninka texts and its dialects for machine translation use. We evaluate
and compare two approaches by attempting to use newly-formed Ashaninka corpora for neural
machine translation. Our experiments show that combining the two neighboring languages,
while similar in morphology, word sharing, and geographical location, improves Ashaninka–
Spanish translation but degrades Quechua–Spanish translations.

1 Introduction

Low-resource languages (LRL) can be defined as languages that suffer from the presences of
insufficient parallel source-target data. Until recently, in order to translate LRLs, rule-based
(RBMT) or statistical-based machine translation (SMT) systems have been used with a com-
bination of features and heuristic approaches to create a model that could predict target-side
translations based on probability techniques given a source sentence (also known as a segment).
With the rebirth of neural machine translation (NMT) in recent years thanks to higher-compute
system availability, neural approaches have been used to jointly learn from several source and
target segments (Zoph et al., 2016; Gu et al., 2018; Lakew et al., 2018b) avoiding the highly
laborious process of creating rules and features to translate using previous RBMT and SMT sys-
tems. The majority of research that uses NMT for LRLs tends to show how the combining of
two or more source-side languages to one target-side language can help translate low-resource
languages by imputing word-level features from a higher-resource language to a lower-resource
language.

One such case (Ortega et al., 2021) translates Quechua, a Peruvian LRL, to Spanish, an
HRL, using Finnish, another HRL, in an approach called BPE-Guided based on glossary def-
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initions found from suffixes on Wikipedia1. Their work which uses an NMT system based
on byte-pair encoding (BPE) (Sennrich et al., 2015b) with a long short term memory (LSTM)
(Graves, 2012) was found to outperform other systems measured according to human and sys-
tem evaluations using BLEU (Papineni et al., 2002).

Research has also been performed by Ortega et al. (2020) on a neighboring Peruvian lan-
guage called Ashaninka. Ashaninka has less resources than Quechua and is spoken by fewer
people. There are nearly 70,000 native Ashaninka speakers (Gordon and Grimes, 2005) as com-
pared to around 5 million native Quechua speakers2 and both languages can be broken down
into different dialects. The amount of resources available for Ashaninka is on the order of 8,000
sentences (or segments) whereas Quechua data is about 40,000 segments and growing. Ortega
et al. (2020) dedicated their initial work on Ashaninka to language normalization by creating a
finite-state transducer based on previous Quechua work (Rios, 2010). They left for future work
the inclusion of Ashaninka in an NMT system.

In order to advance the work by Ortega et al. (2020, 2021), we use resources from their pub-
lished articles available online3 to extend their experiments which, in turn, marks the first time,
to our knowledge, that an Ashaninka–Spanish machine translation (MT) system is introduced
to the MT research community. Our hope is that, since Finnish and Quechua were found to
be successful in previous work (Ortega and Pillaipakkamnatt, 2018) due to their highly-similar
morphology, the addition of Ashaninka as source-side input should increase performance since
Quechua and Ashaninka are from the same region, display similar morphological constructs,
and even share loaned vocabulary words where higher-resource languages (Quechua and Span-
ish) are found in the lower-resource language (Ashaninka).

Our effort is a three-fold, novel, experimental introduction for the two Peruvian languages
as seen below:

1. Introduce for the first time a Ashaninka–Spanish MT system.

2. Show how two neighboring South American languages with low resources perform when
combined as training data for a NMT system.

3. Perform a micro-analysis on the morphology similarities and difference between Quechua
and Ashaninka.

In order to realize the three points, we narrate the following. First, in Section 2, we describe
related approaches not mentioned in Section 1. Next, we analyze Quechua and Ashaninka sim-
ilarities and differences in Section 3. Our methodology and approach are detailed in Section 4
along with the experimental settings in Section 5. We then provide results in Section 6 that show
how combining Quechua and Ashaninka together perform on both a Quechua and Ashaninka
test set. Lastly, we conclude with an explanation on our findings and potential future research
lines in Section 7.

2 Related Work

Ortega et al. (2020) present a system called AshMorph which is an approach for normalizing
Ashaninkan text for machine translation use. Additionally, the corpus and MT system intro-
duced by Ortega et al. (2021) are used. For more information on how they were used in our
work, see Section 5. In this section, we describe other approaches that are similar to ours.

1https://wikipedia.org
2The native-speaker count includes all dialects for both languages
3https://github.com/johneortega/mt_quechua_spanish and https://github.com/

hinantin/AshMorph

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 45



Pourdamghani and Knight (2017) use a deciphering approach which relates a high-
resource language to a low-resource language through a character-level ciphering algorithm.
Their work assumes that words are ordered similarly. We could not use this approach since, as
discussed later in Section 3, word ordering is one of the key morphological differences between
Quechua and Ashaninka.

Tantuğ and Adalı (2018) focus on agglutinating languages by using eight informal target-
side, rule-based, edits. Their work can be considered similar to the work from Ortega et al.
(2020) due to the way it handles morphology and knowledge transfer. However, they use dis-
crete rules meant to work with a statistical disambiguation system for combining the source
and target language. Our aim is to show that NMT could be used to learn similar rules without
human intervention. Nonetheless, we feel that their work could be included for comparison in
future iterations.

Bahdanau et al. (2014) use a neural machine translation system to first learn aligned words
that form an encoded vector and then translate them. This work is similar to ours in its approach;
however, our work is for an extremely low-resource language (Ashaninka) and depends on
character-level differences not performed in their work.

We mirror Zoph et al. (2016)’s approach by using the “OpenNMT-LSTM” system men-
tioned in Ortega et al. (2021). Zoph et al. (2016)’s results show an increase of 5 BLEU when
combining languages; our results are similar when using Quechua as the high-resource lan-
guage.

Other work (Gu et al., 2018; Karakanta et al., 2018) tend to focus on the addition of several
languages with high resources as was done by Ortega et al. (2021) with the inclusion of Finnish,
a high-resource language. In this case, we are adding the lower-resource language, Ashaninka,
with hopes to better the higher-resource language, Quechua. Additionally, other work (Lakew
et al., 2018a) points out that bilingual NMT models may require adjustments when multilingual
models perform better. Their work is considered helpful; but, at this early stage of investigation,
we lean on the work from Zoph et al. (2016) for guidance.

3 Morphology

Quechua and Ashaninka are morphologically similar at first glance. However, the deeper dif-
ferences explained here help to understand the results presented in Section 6. In this section,
we provide an in-depth analysis of both languages based on previous work (Cerrón-Palomino,
1987; Mihas, 2015). The comparative analysis of the two language’s grammatical makeup and
morphology, to our knowledge, has not been taken into account by other research, specifically
for machine translation.

Like many native North and South American languages, Ashaninka and Quechua are both
polysynthetic and agglutinating (Bustamante et al., 2020), they add prefixes or suffixes to a
root morpheme which expand or change a word’s meaning. An example follows of the two
languages agglutinating similarity.

“the child’s hand”
Quechua Ashaninka
warmapa makin irako eentsi
warma-pa maki-n ir-ako eentsi
child-GEN hand-3SG 3M-hand child

At first glance, it is clear that the two languages form words by agglutination. Yet, Quechua
and Ashaninka vastly differ when examined closer. This is seen with possessive noun phrases
like “the child’s hand” above where Quechua adds a suffix (–pa) for genitive (GEN) noun pos-
session and adds a suffix for the possessive person (–n marks the third-person singular (3SG) for
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“maki” (hand)). While Quechua double marks possession, Ashaninka only marks the entity be-
ing possessed (“ako” (hand) is marked with the third-person masculine possessive (3M) prefix
“ir”) leaving the possessive person (“eentsi” (child)) unchanged. Additionally, it is worthwhile
to note that ordering of words in Quechua is typically of type possessor–possessed, while in
Ashaninka the order is reversed to possessed–possessor.

Verbal conjugation generally inflects and agglutinates in both languages. In Quechua,
verbs use suffixes to express the present, past, or future tense. On the other hand, in Ashaninka,
most verbs do not take tense inflection into account, instead they use a category called the
“reality status” which distinguishes between two types of events: (1) past and present (real)
events or (2) future (unreal) events. (Michael, 2014)

“to come”
Quechua Ashaninka Conjugation
hamu-ni no-pok-i “I come”
hamu-rqa-ni no-pok-i “I came”
hamu-saq no-m-pok-e “I will come”

Above, we see how the verb “to come” is conjugated for Quechua and Ashaninka. There is
a clear distinction between present (hamuni), past (hamurqani), and future (hamusaq) tenses for
the root Quechua morpheme hamu. Contrastingly, we see how Ashaninka uses the real/unreal
method described, present and past (nopoki) are the same but the future (nompoke) is different
for the root Ashaninka morpheme pok.

Other linguistic differences also exist with respect to suffixes and their order. More specif-
ically, the phrasal order differs such that Quechua usually takes a subordinate clause proceeded
by the verb while Ashaninka is the opposite. Additionally, the three languages (Quechua,
Ashaninka, and Spanish) contain words in written texts that can be considered unknown, or
loaned, words that are inherited from their higher-resource language where Quechua inherits
from Spanish and Ashaninka inherits from both Quechua and Spanish. The overlapping words
and other differences mentioned are found in the corpora from the work mentioned (Ortega
et al., 2020, 2021) which contains normalized texts from corpora created in the past Mihas
(2010); Cerrón-Palomino (2008).

4 Methodology

From the description in Section 3, it is clear that, while initially similar, the morphological
makeup of Ashaninka is different than Quechua. Our experiments determine if it is better to
use Ashaninka or Finnish as a language for transliteration in a NMT system when translating
Quechua and Ashaninka to Spanish. The inclusion of Finnish as a source language in both
Quechua and Ashaninka translations to Spanish is motivated by Ortega et al. (2021) which
showed that neural machine translation was better when including Finnish as a source language
during training.

Our experiments are based on previous work (Ortega et al., 2020, 2021) which experiments
with Quechua4, Finnish4, and Ashaninka5 as the source languages and Spanish as the target lan-
guage. We use their translation and normalization approaches to compare the two neighboring
language’s (Quechua and Ashaninka) translations into Spanish using the NMT system described
below.

The best performing system from Ortega et al. (2021)’s work is a NMT system first used

4Quechua and Finnish are the source languages in (Ortega et al., 2020).
5Ashaninka was not translated into another language in Ortega et al. (2021).
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for development (called OpenNMT-LSTM) and later in testing (called OpenNMT).6 We compare
its performance by using Quechua, Finnish, and Ashaninka to train the NMT system in various
combinations (see Train Languages in Table 1) with Spanish as the target language.

The results show the performance of the NMT system when using Ashaninka, a neighbor-
ing language (about 10 km away), and Finnish, a language that is of high geographic distance
(about 8,000 km away), as source languages for translating Quechua to Spanish. Additionally,
experiments are performed to show how well Quechua and Finnish perform as source languages
when translating Ashaninka to Spanish. The implication is that since Finnish is agglutinative
and polysynthetic and it has been shown to improve performance when translating Quechua to
Spanish (Ortega et al., 2021), it should help when translating from both Quechua and Ashaninka
to Spanish. The next section describes experimental settings for all languages.

5 Experimental Settings

Our experiments mirror previous experiments (Ortega et al., 2020, 2021) in terms of the corpora
and NMT system used. Since we combine languages from both works, some of the corpora and
languages used as NMT system input is different. In this section, we present those input changes
and reiterate the similarities to previous work.

First, for Ashaninka text to be used as input into the NMT system, we transform it using the
AshMorph (Ortega et al., 2020) normalization technique. For purposes of Ashaninka inclusion
in the experiments, there are 521 Ashaninka training sentences (or segments), 111 development
segments, and 111 test segments. They are used in three different training experiments: (1)
Quechua+Finnish+Ashaninka, (2) Quechua+Ashaninka and (3) Ashaninka only; and, in one
development and test direction (Ashaninka–Spanish). All of the corpora is randomly selected
from the developoment corpora (Cushimariano Romano and Sebastián Q., 2008) used previ-
ously (Ortega et al., 2020).

Second, for Quechua normalization as input to the NMT system, a morphological nor-
malizer (Rios and Castro-Mamani, 2014) from previous work (Ortega et al., 2021) is used.
Quechua is used as a training language in all of our training experiments except for when
Ashaninka is tested in isolation. The Quechua corpora consists of 17,500 training segments,
2,500 development segments, and 5585 test segments all randomly chosen from Ortega et al.
(2021)’s experiments originated from the Opus corpus7 (Tiedemann, 2012) and used in three
different training settings: (1) Quechua+Finnish, (2) Quechua+Finnish+Ashaninka, and (3)
Quechua+Ashaninka; and, in one development and test direction (Quechua–Spanish).

Third, Finnish and Spanish, both considered high-resource languages, are more plenti-
ful. Like the work from Ortega et al. (2021), we use the JW300 corpus (Agić and Vulić,
2019). Since Spanish is the target language in all cases, Finnish is the only high-resource
language included for training. We use 149,251 Finnish segments for training in two systems:
(1) Quechua+Finnish and (2) Quechua+Finnish+Ashaninka. Spanish is used only for parallel
development for testing with Quechua–Spanish and Ashaninka–Spanish language pairs.

All segments for all languages were tokenized and true-cased using Moses (Koehn et al.,
2007) after normalization.

To summarize our validation technique for the neural MT system experiments, we use two
source–target pairs: Quechua–Spanish and Ashaninka–Spanish. For example, for the qu+fi+cni
system in Table 1 is used for translating Quechua to Spanish (qu–es). Its validation (or dev)
data consists of 2500 parallel qu–es segments and test data is of 5585 qu–es segments. The
Ashaninka to Spanish (cni–es) experiments consist of a dev and test set of 111 parallel cni–es
segments.

6Details about the hyper parameters for both systems are found in Section 5.
7http://opus.nlpl.eu/
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The NMT system used for all experiments is the system described in Ortega et al. (2021)’s
dev phase called OpenNMT-LSTM. The system is trained for 100,000 epochs and it is a 2-layer
LSTM model (Hochreiter and Schmidhuber, 1997) with 500 hidden units, dropout of 0.3, and
uses stochastic gradient descent as the learning optimizer along with a batch size of 64. To
evaluate the NMT system, we use BLEU (Papineni et al., 2002) like the work from Ortega et al.
(2020, 2021).

The next section explains how previous work (Ortega et al., 2020, 2021) was used to test
the neighboring Quechua and Ashaninka languages with the NMT system proposed.

6 Results

The experiments in Table 1 show the results of combining Quechua, Finnish, and Ashaninka.
There are three main training scenarios along with one Ashaninka experiment in isolation. For
each training scenario, there are two experiments performed, one with Quechua to Spanish
(qu–es) and one with Ashaninka to Spanish (cni–es).

Our results are aligned with what has been discussed in Section 3 section at a high level –
Ashaninka and Quechua appear similar in linguistic nature at first glance; however, at a deeper
evaluation, the lack of resources and complex grammatical differences decrease qu–es transla-
tion performance. On the other hand, similar to work from Zoph et al. (2016), we have shown
that by adding Quechua resources to Ashaninka, there is a gain of 4.6 BLEU. In all other cases
where Ashaninka was combined with Quechua or Finnish, the performance degraded for qu–es
translations and only very slightly (.2 BLEU) increased in one cni–es case.8 Another interesting
takeaway is that Finnish remains the better language to combine with Quechua when translating
Quechua to Spanish. This is due to the large amount of Finnish training examples (149,251)
compared to the small amount of Ashaninka training examples (521). In actuality, the BLEU
score of the qu+cni trained system is the same as the BLEU score of using qu+es alone in train-
ing reported by Ortega et al. (2021). This leads us to believe that if there were more Ashaninka
training examples the potential to outperform Finnish as the transfer-learning language is high.

Train Languages Direction Train Count Dev Count Test Count BLEU
qu+fi qu–es 166751 2500 5585 22.6
qu+fi cni–es 166751 111 111 0.0
qu+fi+cni qu–es 167272 2500 5585 17.0
qu+fi+cni cni–es 167272 111 111 0.2
qu+cni qu–es 18021 2500 5585 20.1
qu+cni cni–es 18021 111 111 5.9
cni cni–es 521 111 111 1.3

Table 1: Translating to Spanish (es) with Quechua (qu), Finnish (fi), and Ashaninka (cni) using
a neural machine translation system.

7 Conclusion and Future Work

We have shown that while previous work combining languages may seem viable for low-
resource languages, in some cases, while languages seem similar at first glance, results may
differ. This is clear from our experiments with Quechua and Ashaninka that show performance
loss when adding them together for transfer-based learning in an NMT system. Nonetheless, it
would be advantageous to try other techniques such as back-translation (Poncelas et al., 2018;

8The higher resource pairs consist of 166,751 pairs of parallel data together of which the Finnish data is 149,251
parallel segments in total.
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Karakanta et al., 2018; Sennrich et al., 2015a) to create more synthetic Ashaninka data since, at
this point, Finnish provides more gain when combined with Quechua than Ashaninka does.

Future lines of investigation will include a supervised version of the AshMorph (Ortega
et al., 2020) algorithm with the intent to automate sub-segment level selection. The plan is
to improve Ashaninka to Spanish translations by first creating more human-evaluated training
data and, second, experimenting with several other resources to create more synthetic data.
Experimentation should also explore other similar languages since Quechua seems to help (not
hurt) Ashaninka to Spanish translations.
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tolomé de Las Casas”.

Cerrón-Palomino, R. (2008). Quechumara: Estructuras paralelas del quechua y del aimara.
Plural editores.

Cushimariano Romano, R. and Sebastián Q., R. C. (2008). Ñaantsipeta asháninkaki
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Abstract
Machine translation has seen rapid progress with the advent of Transformer-based models.
These models have no explicit linguistic structure built into them, yet they may still implic-
itly learn structured relationships by attending to relevant tokens. We hypothesize that this
structural learning could be made more robust by explicitly endowing Transformers with a
structural bias, and we investigate two methods for building in such a bias. One method, the
TP-Transformer, augments the traditional Transformer architecture to include an additional
component to represent structure. The second method imbues structure at the data level by
segmenting the data with morphological tokenization. We test these methods on translating from
English into morphologically rich languages, Turkish and Inuktitut, and consider both automatic
metrics and human evaluations. We find that each of these two approaches allows the network
to achieve better performance, but this improvement is dependent on the size of the dataset. In
sum, structural encoding methods make Transformers more sample-efficient, enabling them to
perform better from smaller amounts of data.

1 Introduction

The task of machine translation has seen major progress in recent times with the advent of
large-scale Transformer-based models (e.g., Vaswani et al., 2017; Dehghani et al., 2019; Liu
et al., 2020a). However, there has been less progress on language pairs that specifically involve
morphologically rich languages. Moreover, although there has been previous work that builds
linguistic structure into translation models to deal with morphological complexity (Sennrich
and Haddow, 2016; Dalvi et al., 2017; Matthews et al., 2018), to the best to our knowledge
there has not been work that applies such strategies to large-scale Transformer-based models.
We hypothesize that providing Transformers access to structured linguistic representations can
significantly boost their performance on translation into languages with complex morphology
that encodes linguistic structure.

In this work, we investigate two methods for introducing such structural bias into
Transformer-based models. In the first method, we use the TP-Transformer (TPT) (Schlag
et al., 2019), in which a traditional Transformer is augmented with Tensor Product Represen-
tations (TPRs) (Smolensky, 1990) (§ 2). At a high level, TPRs use a composition of roles

∗Work partially done while at Microsoft Research.
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English: I want people to raise their hands who are in favour of the motion to report progress. (17)
Turkish: Ilerleme raporunun talep edilmesinden yana olanların el kaldırmalarını istiyorum. (9)
Inuktitut: isaaquvaksi taikkua nangmaksaqtut pigiaqtitausimajumut nuqqarumaliqtu. (5)

Table 1: Parallel sentence in English, Turkish, and Inuktitut. The number of words in each
translation (marked in parentheses) is indicative of their information density and, hence, their
morphological complexity.

and fillers where roles encode structural information (e.g., the part-of-speech of a word) and
fillers encode the content (e.g., the meaning of a word). This enables learned internal struc-
tured representations. In the second method, we encode structure external to the model by
segmenting training data using morphological tokenization (§3): morphological segmentation is
done by existing parsers prior to training the Transformer. Since all neural models that operate
over sequences tokenize the training data, through this method, we aim to answer the question
of whether linguistically-informed tokenization that respects morphological structure can be
helpful in processing morphologically-rich languages. Through the use of TPT, we aim to
examine whether enabling a Transformer to learn its own structured internal representations
will help it learn linguistic structure including structure which is encoded morphologically in
morphologically-rich languages. Unlike the morphological tokenizer, the TPT architecture is
language-agnostic and can be used on arbitrary datasets without feature engineering. We further
investigate how the biases of these two approaches work together. We experiment on the task of
translating from English into two morphologically rich languages: Turkish and Inukitut (Inuit;
Eastern Canada). For Turkish, we train on several different dataset sizes from Open Subtitles
(1.4M, 5M and 36M), a spoken-language domain, and also fine-tune on SETimes (200K), a
news-wire domain. For Inuktitut, we train on the Nunavut Hansard Corpus (1.3M). We test
models’ performance using both an automatic metric and human evaluation (§5).

In the English to Turkish translation task, we find that the TP-Transformer beats the
Transformer when evaluated for nuances such as morphology, word-order and subject/object-
verb agreement. TPT provides a significant improvement on small datasets segmented with
language agnostic BPE (∼ 1 BLEU for Open Subtitles 1.4m and ∼ 2.5 BLEU for Hansard) and
a more modest improvement on larger datasets (0.16 BLEU for Open Subtitles 5m and 0.36
BLEU for Open Subtitles 36m). Using morphologically segmented data helps substantially with
models that are trained on small datasets. This is true for both pre-training (Open Subtitles 1.4m
and Inuktitut Hansard), as well as models that are trained on large datasets and later finetuned
using a smaller dataset (SETimes). This suggests that the method of encoding structure directly
in the training data helps substantially with sample efficiency and transfer learning. When our
two techniques are used together, we achieve an 8 BLEU improvement over the state of the art
on translation into Inuktitut (Joanis et al., 2020).

In order to better understand our models, we conduct detailed analysis, including error
analysis, on sample outputs from different model variations (Appendix G). We also separate
results out into different bins as defined by the morphological density of the target outputs to
understand how results vary with morphological complexity §6. We find that morphological
tokenization is strongly correlated with improved performance on complex sentences.

2 Using the TP-Transformer

The TP-Transformer (TPT) was introduced by Schlag et al. (2019) to improve performance on
mathematical problem solving, a highly symbolic task. The model introduces an additional
component to the attention mechanism which represents relational structure. In addition to the
standard key K, query Q, and value V vectors used in attention, they introduce the role vector R.
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Let the input for token i ∈ 1, .., N at layer l be represented as X l
i . For head h, the vectors are:
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In a Tensor Product Representation, role vectors are bound to their corresponding filler
vectors by the tensor product ⊗ or some compression of it: in the TPT, we use the compression
of discarding the off-diagonal elements, resulting in the elementwise or Hadamard product �.
The query Qlh

i is interpreted as probing for a filler for the role Rlh
i , so the output of attention V̄ lh

i

is taken to be the filler of that role; thus for the original TPT, this yielded: Zlh
i = V̄ lh

i �Rlh
i .

The role vector R is intended to act as a structural encoding independent of that structure’s
content (which is encoded in V̄ ). We hypothesize that, by disentangling structure and content in
this way, we can improve the model’s ability to place familiar linguistic units in novel structures
(e.g., using a suffix with a word stem that never had that suffix during training). Such structural
flexibility is crucial for morphologically-rich languages.
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Figure 1: Architectural diagram of TPT atten-
tion mechanism. Highlighted section shows the
additional components added to standard Trans-
former attention.

We make two modifications to the TPT
used in Schlag et al. (2019)1. First, we use rel-
ative position embeddings (Shaw et al., 2018).
We also use a residual connection to produce
gradients that are not zero; V̄ � R is a mul-
tiplicative interaction, so values of R near 0
will produce activation values and gradients of
0. This is similar to the model detail in Perez
et al. (2017) Section 7.2. A schematic of our
attention is shown in Figure 1. The rest of
the architecture follows the standard residual
connections and encoder-decoder architecture
defined in Vaswani et al. (2017)

3 Using morphological segmentation

Our target languages, Turkish and Inuktitut,
both exhibit a high degree of morphological
complexity. Words in both languages consist
of a root followed by potentially many suf-

fixes, each of which may have multiple surface forms.

Language Segmented Word
Turkish anla-t-ma-yacak
Gloss understand-CAUS-NEG-FUT

English will not tell
BPE anlat-mayacak
Inuktitut miv-vi-liar-uma-lauq-tur-uuq
Gloss land-place-go-want-PAST-3S-say.3S

English He said he wanted to go to the landing strip.
BPE mivvi-lia-ruma-lau-qturuuq

Table 2: Morpheme breakdown, gloss, English,
and BPE tokenization of Turkish and Inuktitut
morphologically complex words

We used two methods of subword tok-
enization: one utilizing a type of character-
level byte-pair encoding (Gage, 1994), and
one incorporating morphological parsing plus
byte-pair encoding. The first method (which
we label ’BPE’) used SentencePiece (Kudo
and Richardson, 2018), a tokenizer that builds
subword tokens using a combination of byte-
pair encoding and unigram language model-
ing. BPE relies only on character frequencies
and incorporates no morphological informa-
tion.

1Code available at https://github.com/psoulos/tpt
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The second method (which we call ‘morphological tokenization’) incorporated morphologi-
cal information by parsing all words (i.e. breaking them up into their composite morphemes) in
our morphologically complex target languages before tokenizing them. For Turkish, we used
the morphological parser from Zemberek (Akın and Akın, 2007), an open-source Turkish NLP
toolkit. Zemberek uses sentence-level disambiguation to produce the most likely parse of each
word given its sentential context. For Inuktitut, we used the morphological parsing method
adopted by Joanis et al. (2020), incorporating a symbolic parser with a neural parser backoff.
See Appendix D for implementational details on morphological segmentation.

The differences in how these tokenizers divide multi-morphemic Turkish and Inuktitut
words into subwords are illustrated in Table 2. The boundaries determined by BPE do not reflect
the internal morphological structure of these words.

4 Dataset description

4.1 English-Turkish data
For pretraining of the English-Turkish translation model, we used the Open Subtitles corpus
(Lison and Tiedemann, 2016). This corpus consists of a large number of aligned pairs of subtitles
from film and television. In order to test the effect of dataset size on model performance, we
utilized three splits of this corpus: the full-size corpus, a sample of five million sentence pairs,
and a sample of approximately one million sentence pairs. For fine-tuning of the English-Turkish
model, we used the South-East European Parallel (SETimes) Corpus. SETimes is a collection of
short written news stories in ten languages. For this task, we used the subset of this corpus that
was used for the WMT 2018 English-Turkish shared translation task (Bojar et al., 2018).

4.2 English-Inuktitut data

Corpus Training Validation Test
Open Subtitles 36m 28,694,211 3,586,776 3,586,777
Open Subtitles 5m 4,000,000 500,000 500,000

Open Subtitles 1.4m 1,300,000 65,000 65,000
SETimes 207,678 3,007 3,000

Nunavut Hansard 1,312,791 5,494 6,181

Table 3: Number of training, validation, and test
samples in the different datasets.

Like Turkish, Inuktitut is a morphologically
complex language. Words may consist of
a root, a prefix, and potentially many suf-
fixes. Table 2 contains an example of a multi-
morphemic Inuktitut word. For training of
the English-Inuktitut translation model, we
used the Nunavut Hansard Inuktitut–English
Parallel Corpus 3.0 (Joanis et al., 2020), the
only sizable publicly available bilingual cor-

pus. The dataset consists of over one million aligned sentence pairs from government proceedings.
The size of the dataset splits are reported in Table 3.

5 Experimental Results

We aim to answer the following research questions (RQ) through our experimentation:
1. Do either or both of our structural methods improve translation?
2. If so, how does that advantage interact with:

(a) Training data quantity?
(b) Transfer learning?
(c) Morphological richness of language?

As a baseline, we trained the standard Transformer model (Vaswani et al., 2017) with
the addition of relative position embeddings (Shaw et al., 2018). Model training details and
computing resources can be found in Section 1 and 2 of the supplementary materials. For
each model, we used either byte pair encoding (BPE) (Sennrich et al., 2016) or morphological
tokenization as described in §3. In order to see how our changes relate to sample efficiency, we
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vary the size of the subset of the Open Subtitles dataset used for training. We used the SETimes
dataset to finetune these models to test whether either structural bias improves transfer learning.
We also trained models on the Inuktitut dataset to compare the results from languages with
differing morphological richness.

5.1 Automatic Metric Results

Transformer TP-Transformer
1.4m 7.5 ±.43 8.44 ±.25

1.4m morph 16.63 ±.19 16.89 ±.07

5m 18.70 18.86
5m morph 18.84 19.19

36m 20.95 21.31
36m morph 21.05 21.32

Table 4: BLEU scores on the test set of Open
Subtitles separated by training set size and tok-
enization method. For the 1.4m runs, we show
the mean and standard deviation of three ran-
domly initialized models. The larger datasets
only have one run each due to computational
resource reasons.

Table 4 shows the test set BLEU2 scores for
the different size splits of the Open Subtitles
dataset (Research Question RQ2a). For the
smallest data split of 1.4m samples, TPT pro-
vides almost 1 BLEU improvement over a
standard Transformer. Using a morphological
tokenization provides an 8 BLEU improve-
ment on the small split. Using TPT with mor-
phologically tokenized data does not provide
any additional benefit on the 1.4m split. For
the two larger splits, TPT (across columns)
and morphological parsing (across rows) pro-
vides minor improvements (0.1–0.36 BLEU),
and this improvement becomes more modest
when both are combined (top left cell to bot-
tom right cell) (0.49 BLEU on the 5m split
and 0.37 on the full 36m split). Next, in order

to analyze whether either structural bias helps with transfer learning (RQ2b), we take the best
performing models shown in Table 4 and finetune them on the SETimes dataset.

Transformer TP-Transformer
5m 14.19 14.25

5m morph 15.16 15.39
36m 16.77 17.01

36m morph 18.35 18.82

Table 5: BLEU scores on the test set of SETimes
from models pretrained on OpenSubtitles (5m)
and finetuned on SETimes (200K) divided by
training set size and tokenization.

The BLEU scores for these finetuned
models can be seen in Table 5. There is a large
increase in BLEU score across rows between
models that use either BPE encoding or mor-
phological tokenization. This provides fur-
ther evidence for the findings from the 1.4m
split in Table 4 that morphological tokeniza-
tion provides a large improvement in low data
regimes. While morphological tokenization
does not provide much of an improvement
during large-scale pretraining, it is beneficial
for transfer learning on a smaller domain.

Transformer TP-Transformer
BPE 18.56 ±1.92 21.12 ±.70

Morphological 26.05 ±.90 28.3 ±.50

Table 6: BLEU scores on the test set of Inuktitut
divided by tokenization. We show the mean and
standard deviation of three randomly initialized
models.

In addition to Turkish, we trained models
on the Inuktitut dataset described in §4.2 to
understand the variance of model performance
by the morphological richness of languages
(RQ2c). We trained models using both data
tokenized by BPE encoding as well as by an
Inuktitut morphological parser. The results
are shown in Table 6. As we saw on both
the 1.4m Open Subtitles split and SETimes,

2We calculated BLEU using SacreBLEU (Post, 2018) and the signature is
”BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.0”. All models were also tested with CHRF
(Popović, 2015) and the results can be found in Appendix E.
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(a) (b) (c)

Figure 2: Human judgment results: (a) Comparison between Transformer (TF) and TPT on
different criteria when trained on Open Subtitles (5m) using BPE encoding. (b) Comparison
between Transformer and TPT when trained on Open Subtitles (5m) using morphologically
segmented data. (c) Comparison between Transformer (TF) and TPT on meaning preservation
when trained on different datasets.

morphological tokenization provides a huge improvement in BLEU. TPT provides a large average
improvement regardless of the tokenization scheme, although the BPE Tranformer in particular
has a high variance and is sensitive to random initialization. Inuktitut is more morphologically
complex than Turkish across several measures of morphological complexity3 and it is possible
that TPT models perform better with more complex morphology. For example, compare the
improvements from using TPT over a standard transformer for BPE on the Open Subtitles 1.4m
split and Inuktitut. TPT provides ∼1 BLEU improvement on Turkish, and this improvement
increases to∼2.5 on Inuktitut. The previous state-of-the-art on the Hansard dataset is 20.3 BLEU
on the test set (Joanis et al., 2020). Both methods proposed in this paper improve on that, and
together they improve the state-of-the-art by 8 BLEU.

5.2 Human-based Evaluation Results
The BLEU scores in the previous section give us a single number summarizing the quality of our
translations. We now evaluate some of the finer-grained characteristics of the outputs. We focus
on four aspects of the output that are likely to benefit from more robust encodings of structure:
morphology, word-order, subject-verb agreement and fluency.

We use Amazon Mechanical Turk to get human judgements. We perform a comparative
study where we show annotators two Turkish translations from the transformer and the TPT
models trained on the 5m Open Subtitles split. We do not show the English source sentence
since the four criteria of evaluation in this study does not require looking at the source sentence.
We collect three annotations per comparison and use only those instances where at least 2 out of
the 3 annotators agree on the same answer. We collect annotations on 180 instances for each of
the two comparative studies. See Appendix F for the questions asked to annotators.

Figure 2a shows the result of this comparison when we use BPE encoding to tokenize the
data whereas Figure 2b shows the result of this comparison when we use morphological segmenter
to tokenize the data. Under BPE encoding, we find that TPT has slightly less morphological and
agreement errors and has significantly less word-order issues. This suggests that the structural
bias introduced by the TPT helps in forming sentences that are overall morphologically better

3Using the parallel test sets from Mielke et al. (2019), we measured a type-token ratio of 0.42 for Inuktitut and 0.19
for Turkish, as well as a relative entropy of word structure of 1.75 for Inuktitut and 1.21 for Turkish
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formed. On the other hand, annotators find translations from the Transformer to be slightly
more fluent than those from the TPT. Under morphologically segmented data, annotators find
translations from TPT are significantly better than the Transformers in morphological form and
word-order and slightly better in subject-verb agreement, providing further evidence that the
structural bias introduced by the TPT is helpful. Moreover, annotators also find translations from
TPT in this case to be more fluent than those from the Transformer.

We perform an additional study to understand which of the two model translations best
preserves the meaning of the English source sentence. We ask an expert, a linguistically-trained
native Turkish speaker, to annotate 30 instances each from eight model outputs (5m Open
Subtitles BPE & morphologically tokenized, SETimes BPE & morphologically tokenized for
both Transformer and TPT). We show them the English sentence and two Turkish translations. We
ask them “Grammatical issues aside, which of the two translations better preserves the meaning
of the English sentence?” and let them choose from A, B or Both preserve equally. Figure 2c
shows the results of this study. In the Open Subtitles dataset, we find the difference between
Transformer and TPT performance is too small under both BPE encoding and morphological
segmentation. In the SETimes dataset, we find the same trend under BPE encoding. Only under
morphologically segmented data in SETimes, TPT significantly wins over Transformer. These
results show that when we include the English source sentence, it is inconclusive if TPT or
Transformer is better. This suggests that although TPT improves the ability to compose Turkish
text (as found by the first study), it does not affect the ability to determine which Turkish output
should go with a given English input.

6 Morphological density analysis

Given the rich morphology of the target languages, we are interested in whether either structural
bias or morphological segmentation improves performance on more morphologically complex
sentences. To answer this question, we used our Turkish morphological segmenter on sequences
from the test set and binned sentences based on the average morphemes per word in a sentence.
For example, a long sentence with simple words that are all a single morpheme would have an
average morpheme per word of 1, whereas a sentence that is made of complex words would
have a larger average morpheme per word. We then calculated the BLEU score for each of these
buckets so that we could see if our models performed better on sentences that are morphologically
complex.

The results are shown in Figure 3. On the 36m training set (top row), both of our methods
provide an improvement at almost every morpheme density. Comparing TPT to a standard
Transformer, Figure 3a shows a relatively consistent improvement of around 0.4 BLEU with
a large increase for simple sentences. Comparing standard transformers with morphological
parsing against BPE, Figure 3b shows that as the morphological complexity of sequences
increases, the model using morphological tokenization improves over BPE tokenization. The
same trend is visible when comparing TPT with morphological tokenization with a standard
transformer using BPE tokenization (Figure 3c), except the magnitude of the increase is greater.

The morphological analysis on the 5m training set (bottom row) is less conclusive. TPT does
not appear to have any impact as the morphological density increases (Figure 3d). Morphological
tokenization shows a similar upward trend as on the 36m dataset, but this improvement disappears
suddenly at 3.0 morphemes per word (Figure 3e). As the morphological density increases, the
number of samples for each bucket on the test set decreases, so it is possible that the sudden drop
is the result of too few samples.

Our results also show some correspondence with the overall morphological complexity
of the dataset. We computed a modified version of the CD measure (the “relative entropy of
word structure”) from Bentz et al. (2016), as we found it to be the most robust to the meaning
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Figure 3: BLEU score differences between models on the Turkish Open Subtitles 36m (top
row) and 5m (bottom row) training sets bucketed by morphological density (average number of
morphemes per word in a sentence).

variations between corpora (Supplementary materials section 4). Higher values of this measure
correspond to more regular structure/information in words, and thus, greater morphological
complexity. We computed the measure over the first 100,000 characters of the test set of each
dataset. We computed CD as 1.89 for the Hansard dataset, while the Turkish datasets ranged
from CD 1.45-1.49. This corresponds to the relatively large increase in BLEU seen for Inuktitut.

7 Related Work

Translating into Morphologically-rich languages Previous work has leveraged morphology
for translating into morphologically-rich languages. Turhan (1997) uses a recursive symbolic
system to translate from English into Turkish including a morphological generator. Ataman
et al. (2020) use hierarchical latent variable models to model both character and morpheme
level statistics for translating into morphologically rich languages (Arabic, Czech, Turkish) with
GRUs. Passban et al. (2018a) introduce a character-level neural machine translation model
for translating into morphologically rich languages which incorporates a morphology lookup
table into the decoder whereas Passban et al. (2018b) propose a subword-level model that uses
separate embedding for stem and affix. Joanis et al. (2020) introduced the dataset that we
use for Inuktitut and also explored using morphological segmentation for alignment as well as
neural and statistical machine translation. This work was followed up by Knowles et al. (2020)
who introduce additional methods techniques on the Inuktitut dataset. Roest et al. (2020) and
Scherrer et al. (2020) also investigated morphological segmentation in Inuktitut in addition to
data augmentation and pretraining.

Using Transformer-based models for translation In recent times, there have been several
work that use variations of Transformer (Vaswani et al., 2017) model for the task of machine
translation. Chen et al. (2018) combine the power of recurrent neural network and transformer.
Dehghani et al. (2019) introduce universal transformers as a generalization of transformers
whereas Deng et al. (2018) combine transformer architecture with several other techniques such
as BPE, back translation, data selection, model ensembling and reranking. Bugliarello and
Okazaki (2020) incorporate syntactic knowledge into transformer model to show improvements
on English to German, Turkish and Japanese translation tasks. Currey and Heafield (2019)
introduce two methods to incorporate English syntax when translating from English into other
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languages with Transformers. Liu et al. (2020b) introduce mBART, an auto-encoder pretrained
on large-scale monolingual corpora and show gains on several languages.

Using TPRs TPRs have gained traction recently with the interest in neurosymbolic compu-
tation to achieve out-of-domain generalization. They have been used in a variety of domains,
including mathematical problem solving (Schlag et al., 2019), reasoning (Schlag and Schmidhu-
ber, 2018), image captioning (Huang et al., 2018), question-answering (Palangi et al., 2018), and
program synthesis (Chen et al., 2020). A separate line of work uses TPRs as an interpretation
tool to understand representations in networks that do not explicitly use TPRs (McCoy et al.,
2019; Soulos et al., 2020).

8 Conclusion

We investigated two methods for improving translation into morphologically rich languages with
Transformers. The TP-Transformer adds an additional component to Transformer attention to
represent relational structure. This model had the largest improvement on smaller datasets and
modest improvement on larger datasets. We also investigated morphological tokenization which
had substantial improvements on small datasets and transfer learning. When used together, our
methods improve on the state of the art for translation from English into Inuktitut by 8 BLEU.
The models were analyzed by human evaluators to tease apart different dimensions along which
our models excel; TP-Transformer had fewer morphological, word-order, and agreement issues.
We analyzed the performance of our networks under varying morphological complexity and
found that morphological tokenization provides a large benefit for more complex sentences.
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Appendix

A Model Training Parameters

Both the standard Transformer and the TP-Transformer (TPT) use 6 layers and 8 heads per layer. TPT has
key/value/query/role dimensions of 64, whereas the standard Transformer has key/value/query dimensions
of 80. The reason for this increase is so that the resulting models match in terms of parameter count, and we
add parameters are the most homologous area. The standard Transformer has 74,375,936 parameters, and
the TP-Transformer has 74,385,152 parameters. Both networks use a token dimension of 512, a feedforward
dimension of 2048, and 32 relative positioning buckets Shaw et al. (2018). The input vocabulary size
is 50,000. We set a training batch size of 80 per GPU and used the Adafactor Shazeer and Stern (2018)
optimizer with square root learning rate decay. Throughout the model, we used a commonly used dropout
rate of .1.

B Computing Resources

The models were all trained with 8 Tesla V100 GPUs. The models trained on the small Hansard and Open
Subtitles 1.4m datasets converged in about 8 hours. The larger Open Subtitles 5m models coverged in
around 40 hours, and the Open Subtitles 32m models coverged in 15 days.

C Corpora Morphological Complexity

Studies have considered what corpus-based measures are correlated with linguistic measures of morpho-
logical complexity. Most notably, Bentz et al. (2016) found several corpus-based measures that correlate
strongly with complex morphological typology. This measure computes the regularity of structure within
words by taking the character-level entropy of the corpus and subtracting that from the entropy of a “masked”
version of the corpus, where all non-whitespace characters have been replaced with random samples from
the uniform distribution over the characters in the corpus. Rather than the approximation used in Bentz
et al. (2016) for character-level entropy, we directly computed the character-level Shannon’s entropy using
a James-Stein shrinkage estimator as in Hausser and Strimmer (2009).

D Morphological parser process

For each target language, its parser was used to insert morpheme boundaries into all multi-morphemic
words in the dataset. Due to the comparatively low level of morphological complexity of the English source
data, no parsing of English words was conducted. From here, each SentencePiece tokenizer’s vocabulary
was built over a dataset’s training data (both the source and target language) with a target size of 50,000
vocabulary items. SentencePiece allows the user to specify special characters that cannot be crossed when
constructing subword tokens, both during training of the tokenizer and during tokenization of a sentence.
The symbol used to represent morpheme boundaries was specified as such a special symbol. As a result,
morpheme boundaries in Turkish and Inuktitut (as identified by their respective parsers) always served as
subword token boundaries.

Each SentencePiece tokenizer’s vocabulary was built over a dataset’s training data (both source and
target language) with a target size of 50,000 vocabulary items. This tokenization method (which we label
simply ‘BPE’) relies only on character frequencies and incorporates no morphological information, so
many multi-morphemic words may each be assigned to a single token, and there is no guarantee that a
word’s subword boundaries align with its morpheme boundaries.

E CHRF Results

The same models used to measure BLEU scores are also tested using CHRF (Popović, 2015). The results
are shown in Tables 7, 8, and 9.
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Transformer TP-Transformer
1.4m .351 ±.005 .365 ±.004

1.4m morph .438 ±.001 .440 ±.001

5m .461 .463
5m morph .467 .469

36m .486 .488
36m morph .490 .492

Table 7: CHRF scores on the test set of Open
Subtitles separated by training set size and tok-
enization method. For the 1.4m runs, we show
the mean and standard deviation of three ran-
domly initialized models. The larger datasets
only have one run each due to computational
resource reasons.

Transformer TP-Transformer
5m .502 .502

5m morph .509 .514
36m .532 .537

36m morph .540 .543

Table 8: CHRF scores on the test set of SETimes
from models pretrained on OpenSubtitles (5m)
and finetuned on SETimes (200K) divided by
training set size and tokenization.

F Annotator Questions

Transformer TP-Transformer
BPE .498 ±.011 .513 ±.003

Morphological .526 ±.007 .539 ±.006

Table 9: CHRF scores on the test set of Inuktitut
divided by tokenization. We show the mean and
standard deviation of three randomly initialized
models.

We ask annotators the following questions:
Morphology: “Which of the two sentences has
more morphological issues (i.e. incorrect suf-
fixes)?” and let annotators choose from A, B, Both
or None.
Word-order: “Which of the two sentences has
word-order issues?” and let annotators choose
from A, B, Both or None.
Agreement: “Which of the two sentences has
more agreement errors between the subject/object
and the verb (i.e. the suffixes for the verbs and/or the nouns do not agree with each other)?” and let
annotators choose from A, B, Both or None.
Fluency: “Which of the two sentences is more fluent i.e. reads more like it was written by a native Turkish
speaker?” and let annotators choose from A, B, Both are equally fluent.

G Output analysis

Here we present an error analysis of a few sample translations from Transformer and TPT models. We
group errors according to the aspects used to perform human-based evaluation in §5.2. Table 10 shows
the result of this analysis. Under fluency issues, Transformer introduces an unnecessary word ‘zamaninda’
making it less fluent compared to the TPT translation. Under meaning preservation, the translation by
Transformer incorrectly suggests “in exchange for money” whereas TPT correctly preserves the meaning.
Under agreement issues, TPT includes incorrect use of first person suffix whereas Transformer does not
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Fluency Issues

English “I want to carry on living,” he said at the time of the CPJ award.
Turkish Transformer CPJ ödülünün zamanında konuşan Jovanoviç, “Yaşamak istiyorum.” dedi.
Turkish TPT CPJ ödülünde konuşan bakan, “Yaşamayı sürdürmek istiyorum.” dedi.
Reason unnecessary use of the word ‘zamaninda’.

Meaning Preservation

English Some say you chose Turkey for money.
Turkish Transformer Bazıları Türkiye’yi para karşılığında seçtiğinizi söylüyor.
Turkish TPT Bazıları, para için Türkiye’yi seçtiğinizi söylüyorlar.
Reason “para karşılığında” suggests ‘in exchange for money’

Subject to verb agreement Issues

English Maybe because I go to bed listening to the message you left, saying how much you liked
missing me.

Turkish Transformer Belki de yatağa gidip, beni özlemeyi ne kadar sevdiğini söyleyen mesajını dinlediğim için.
Turkish TPT Belki de yatağa gidip bıraktığın mesajı dinleyip beni özlediğini söy-le-di-ğ-im için.
Reason incorrect use of first person (‘-im’) instead of second person (‘-in’)

Morphology Issues

English So far we have not received any news nor found any clues.
Turkish Transformer Şimdiye kadar hiçbir haber alamadık ve hiçbir ipucu bulamadık
Turkish TPT Bugüne kadar ne haber aldık ne de ipucu bul-a-ma-dı-k
Reason Highlighted word has a double negative instead of the correct form bul-a-bil-di-k/bul-du-k.

Table 10: Sample outputs showing issues relating to fluency, meaning preservation, agreement
and morphology from Transformer and TPT models.

have any subject to verb agreement issues. Under morphology issues, TPT incorrectly includes a negation
suffix making the sentence a double negative whereas Transformer correctly translates the English sentence.

Table 11 includes analysis of some additional sample outputs from Transformer and TPT models.
Under morphology issues, Transformer includes an unnecessary plural suffix. The TPT translation is okay
but would have been better with the addition of the ‘-mu’ suffix. Under meaning preservation, Transformer
incorrectly translates “Bank of England” as “Bank of England”, thus losing out on the meaning. Whereas
TPT correctly translates that named entity into Turkish. Under tense issues, Transformer uses an incorrect
past tense suffix whereas TPT correctly preserves the tense of the English sentence. Under repetition issues,
Transformer repeats a word which is not required in written-language but might be okay in spoken-language.
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Morphology Issues

English First we have to decide if those lost six minutes will be coming out of game time, bathroom
time or the pizza break.

Turkish Transformer İlk önce, bu altı dakika kaybet-me-ler-i-n oyun zamanından mı yoksa banyo zamanından mı
olacağına karar vermeliyiz.

Turkish TPT İlk olarak, o 6 dakikanın maçtan, banyo saatinden veya pizza molasından (-mı) çıkıp
çıkmayacağına karar vermeliyiz.

Reason Unnecessary plural suffix (-ler)
Meaning Preservation

English Bank of England to keep interest rates at 0.25%
Turkish Transformer Bank of England faiz oranlarını %0,25 oranında tutacak.
Turkish TPT İngiltere Merkez Bankası faiz oranlarını %0,25 oranında tutacak.
Reason Incorrect translation of named entity

Tense Issues

English Barely out of bed and already on the phone.
Turkish Transformer Yataktan zar zor çıktım ve telefonla konuştum bile.
Turkish TPT Yataktan zar zor çıktım ve telefondayım.
Reason Incorrect use of past tense suffix (‘-tum’) instead of present tense suffix (‘yorum’)

Repetition Issues

English Specific criteria, such as an asteroid’s size and collision angle, are the factors that would
determine the depth of its crater and the damage that its impact would cause.

Turkish Transformer Asteroidin büyüklüğü ve çarpışma açısı gibi belli kriterler, kraterin derinliğini belirleyecek
ve etkisinin yaratacağı hasarı belirleyecek faktörler

Turkish TPT Bir asteroidin büyüklüğü ve çarpışma açısı gibi belirli kriterler, kraterinin derinliğini ve
etkisinin yol açacağı hasarı belirleyecek faktörler

Reason The word “belirleyecek” is repeated which is unnecessary in written-language but would be
okay in spoken-language.

Table 11: Sample outputs from Transformer and TPT models showing issues relating to mor-
phology, meaning preservation, tense and repetition.
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Abstract
Low-resource languages can be understood as languages that are more scarce, less studied, less
privileged, less commonly taught and for which there are less resources available (Singh, 2008;
Cieri et al., 2016; Magueresse et al., 2020). Natural Language Processing (NLP) research and
technology mainly focuses on those languages for which there are large data sets available.
To illustrate differences in data availability: there are 6 million Wikipedia articles available
for English, 2 million for Dutch, and merely 82 thousand for Albanian. The scarce data issue
becomes increasingly apparent when large parallel data sets are required for applications such
as Neural Machine Translation (NMT). In this work, we investigate to what extent translation
between Albanian (SQ) and Dutch (NL) is possible comparing a one-to-one (SQ↔AL) model,
a low-resource pivot-based approach (English (EN) as pivot) and a zero-shot translation (ZST)
(Johnson et al., 2016; Mattoni et al., 2017) system. From our experiments, it results that the
EN-pivot-model outperforms both the direct one-to-one and the ZST model. Since often, small
amounts of parallel data are available for low-resource languages or settings, experiments were
conducted using small sets of parallel NL↔SQ data. The ZST appeared to be the worst per-
forming models. Even when the available parallel data (NL↔SQ) was added, i.e. in a few-shot
setting (FST), it remained the worst performing system according to the automatic (BLEU and
TER) and human evaluation.
Keywords: Machine Translation (MT), Neural Machine Translation (NMT), zero-shot MT,
pivot-based translation, Dutch-Albanian, NL–SQ, low-resource MT

1 Introduction

There are more than 7000 languages worldwide, with over 40% of the languages being endan-
gered with less than 1000 speakers. On the other hand, roughly 35% of the world population,
close to 3 billion people, account for only 3 languages: English, Mandarin Chinese and Hindi
(Eberhard et al., 2021). This language division results in an inequality in literary resources
available per language. Languages with a significant amount of literature and speakers are
known as high-resource languages in the field of Natural Language Processing (NLP), whilst
languages that lack these resources are known as low-resource languages. Mattoni et al. (2017,
p.2) define low-resource languages as “languages that have a low population density, are under-
taught or have limited written resources or are endangered”. These languages are, therefore, not
properly represented through literary media, resulting in an insufficient amount of training data
availability. One such low-resource language is Albanian.
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Albanian is spoken by approximately 8 million people in the world, the majority of which
reside in Albania and Kosovo where the language is native to (Kallulli, 2011; Pustina, 2016).
The language, however, is not limited to Albania and Kosovo, but extends further into other
parts of the Balkans, such as Montenegro, Macedonia and Italy as well as Switzerland, places
where Albanian is recognized as a minority language (Kallulli, 2011; Prifti, 2008; Pustina,
2016). Both Prifti (2008) and Pustina (2016) discuss the impact of the Ottoman rule on Albanian
literature, a period during which publications in Albanian were forbidden, resulting in little to
no development of the written culture. As discussed by Prifti (2008, p.29), this led to a limited
number of resources in Albanian, despite the vast number of speakers, books in Albanian were
not commonplace until the late 19th century. The impact of which, bred a limited amount of
Albanian sources adequately translated into other languages.

A lack of readily available Albanian training data makes developing Statistical MT (SMT)
and NMT methods difficult, as these methods require significant amounts of parallel data be-
tween language pairs in order to create useful MT systems (Tapo et al., 2020). Additionally,
parallel corpora are often times domain-specific, leading to poor performance when deploying
MT models for translating material outside of the trained domain (Koehn and Knowles, 2017).

Access to knowledge is a key driver for developing countries to progress in terms of edu-
cational, scientific, and societal advancement (Psacharopoulos and Woodhall, 1993). As such,
creating opportunities to acquire general knowledge in languages native to developing countries
could accelerate the development of their population. One of the most commonly known con-
tributors to online open-access knowledge is Wikipedia (Teplitskiy et al., 2017). However, in
terms of accessibility there is a significant lack of articles in non-major languages. For example,
there are over 6 million English articles and more than 2 million articles in Dutch, while articles
written in Albanian only account for approximately 82 thousand articles.1

While the access to knowledge can depend on multiple factors such as, the ability to read
and understand English, the access to a stable internet connection, the lack of Albanian training
data for NMT models suggest that online literary resources in the language are scarce.2 Being
able to automatically translate Wikipedia articles to a low-resource language offers open-access
knowledge to a wider array of people, while allowing these users to improve on the automati-
cally generated translations. Consequently, these improvements can be propagated back to the
NMT model, which can help translate future articles more accurately.

In this work, we compare a one-to-one NMT model and two low-resource NMT ap-
proaches to translation from Dutch (NL) to Albanian (SQ), a low-resource language pair. By
automatically and manually evaluating the translations, we aim to provide insights into how
accurately NL↔SQ models can translate. We furthermore explore how the addition of direct
parallel NL↔SQ data affects the performance of the ZST model, since often small amounts of
parallel data are available. The main research questions can be formulated as follows: (a) “To
what extent are low-resource direct one-to-one NL↔SQ, pivot-based and zero/few-shot NMT
models able to accurately translate and how do they compare?” and (b) “How does adding
parallel NL↔SQ data affect the performance of the ZST model?”. The performance of the
models is evaluated and compared using automatic metrics (BLEU and TER) as well by pro-
viding a more detailed human evaluation of 100 random sentences for all models evaluated by
three native Albanian speakers.

2 Related Work

SMT and NMT require a significant amount of parallel data in order to produce accurate and
fluent translations (Cheng et al., 2017). Advancements in hardware technologies, data augmen-

1https://meta.wikimedia.org/wiki/List_of_Wikipedias_by_language_group
2https://opus.nlpl.eu/
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tation techniques, and deep neural networks, have led to the development of methods capable of
translating low-resource languages, subsequently circumventing the need for copious amounts
of parallel data (Tapo et al., 2020). As a result, low-resource MT models that use additional
languages - also known as a pivot languages - to bypass parallel data between the source and
target language have been introduced (Johnson et al., 2016; Ha et al., 2016; Tapo et al., 2020;
Liu et al., 2018; Cheng et al., 2017). Traditionally, in the case of a lack of parallel resources, a
translation pipeline would be constructed using an intermediate, high-resource pivot language.
The pivot-based approach was widely used in the SMT method due to its “simplicity, effec-
tiveness and minimum requirement of multilingual data” (Cheng et al., 2017, p. 3974). The
challenge for NMT then, is the lack of large-scale parallel corpora available in order to create
better translations.

Johnson et al. (2016) compare how implicit bridging functions in contrast to explicit bridg-
ing, for the sake of simplicity, implicit bridging will be referred to as ZST NMT and explicit
bridging as pivot MT. Johnson et al. (2016) were the pioneers in showcasing the possibility of
a ZST NMT without the use of a(n) (explicit) pivot language. The difference between implicit
and explicit bridging is as follows, implicit language bridging allows a system to translate from
a source to a target language without having prior training for a specific language pair (Johnson
et al., 2016, p. 341). Whereas explicit language bridging requires an extra step where a source
language is translated into a pivot language and then from the pivot is translated into the target
language (Johnson et al., 2016). Some disadvantages of pivot MT are important to note, namely,
a higher total translation time, and the potential for quality loss due to the translation to and from
an intermediate language. Further, Johnson et al. (2016) use related languages to investigate the
different types of multilingual NMTs, where this paper uses one pair of related languages and
an unrelated language – Dutch and English classified as West Germanic languages and Alba-
nian an Indo-European language yet classified as its own subdivision. For our experiments we
use Transformers rather than Recurrent Neural Networks (RNN) (Johnson et al., 2016). As in
Johnson et al. (2016), we use an additional token that displays the language of origin. A method
which resembles Lakew et al. (2018)’s “language flag”, where in the pre-processing step a token
is embedded into the model so as to identify the target language a source is paired with.

3 Experimental Setup

3.1 Datasets

Parallel data for SQ↔EN, NL↔EN, and SQ↔NL is available in the OpenSubtitles 2018 corpus
(Lison and Tiedemann, 2016) which contains movie and TV subtitles for 62 languages total.

Subtitles, from a linguistic perspective, are often referred to as “conversational domain”
(Lison and Tiedemann, 2016; Lison et al., 2018). Lison et al. (2018) state that parallel subtitle
corpora are used for a variety of NLP tasks, including translation research, conversation models
and exploring properties of colloquial language.

Table 1, shows the amount of data files relating to each individual language available. It
is important to note that between the OpenSubtitles 2016 and OpenSubtitles 2018 the amount
of data increased by more than 25% for both English and Dutch subtitles (Lison et al., 2018).
Where Albanian files saw an increase of less than 5%. This further confirms the idea of stagnant
growth in availability for low-resource language data.

All data was preprocessed by: (i) removing special characters such as equal signs, dollar
signs and pound signs for the sake of clarity they are exemplified here ”$ C = ;#”, (ii) filtering
out long sentences (more than 150 characters), and (iii) tokenizing sentences on spaces and
punctuation using the Moses tokenizer tool 3.

3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
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Language OpenSub2016 OpenSub2018 Increase (%)
Albanian (SQ) 3.0K 3.1K +3.3%
Dutch (NL) 98.2K 125K +27.3%
English (EN) 322K 447K +38.8%

Table 1: Overview number of subtitle files for NL, EN and SQ in the OpenSubtitles 2016 and
OpenSubtitles 2018 datasets, including the increase (%) of files.

Table 2 shows the tokens per language set. Table 2 shows the amount of parallel sentences
obtained per language pair, and their corresponding number of tokens. In order to reduce the
effect of differences in corpora sizes between high- and low-resource languages the Dutch-
English pair was reduced to 2 million sentences from its original 37 million parallel sentences
to match the English-Albanian corpora, as seen in Table 2. For the other language pairs (EN-SQ
and NL-SQ), the maximum amount of data available was used. Additionally, the data was split
70/20/10 for training, development and testing. A batch of 100 NL-SQ sentences was sampled
from the test set for human evaluation.

Language pair Sentences Tokens source Tokens target
NL-SQ 1.6 M 12.4 M 13.2 M
EN-SQ 1.9 M 15.3 M 14.0 M
NL-EN 2.0 M 14.6 M 16.9 M

Table 2: Overview of the amount of parallel sentences and tokens available per language (pair).

3.2 Machine Translation Systems
Three Neural MT methods were trained and compared using the OpenNMT library (Klein et al.,
2017): a one-to-one NL↔SQ model, a pivot translation model and a ZST/FST NMT model.
For the implementation, we relied on the translation pipeline provided on GitHub by Shterionov
(2018). For the Transformer systems we used OpenNMT-py.4 The systems were trained for a
maximum of 30K steps, saving an intermediate model every 1000 steps for 5 intermediate
models. The options we used for the neural systems: number of layers 6, size 256, transformerff
2048, number of heads 8, dropout 0.1, batch size 4096, batch type tokens, learning optimizer
Adam with beta2=0.998, learning rate 2. The Transformers have the learning rate decay enabled
and the training data is distributed over a single Tesla P100-PCIE-16GB GPU powered by
Google Colab. We use settings suggested by the OpenNMT community5 as the optimal ones
that lead to a quality on par with the original Transformer by Vaswani et al. (2017). Sub-word
units (Sennrich et al., 2015) were used to build the vocabulary for the NMT systems, mitigating
the out-of-vocabulary problem. We used BPE with 50k merging operation for all data sets.

The simplest model, i.e. the one-to-one NMT, is trained on the NL↔SQ data set. For the
two-step pivot MT approach, two one-to-one models were trained: an NL↔EN model and an
EN↔SQ model. The pivot approach requires two models for a one-way translation making it
the least efficient approach. The final model ZST NMT is trained on the same data as the pivot
approach but uses a single NMT model to translate between NL and SQ instead of two separate
models as illustrated in Fig.1. Tokens indicating the translation direction per language (<2EN>,
<2NL>, <2SQ>) are added to the training of the ZST model, allowing the specification of the

tokenizer.perl
4https://opennmt.net/OpenNMT-py/
5https://opennmt.net/OpenNMT-py/FAQ
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desired target language at generation time.

Figure 1: Zero-shot NL→EN NMT translation pipeline.

We additionally compare three ZST/FST models: ZST NMT, FST 50K NMT, and FST
150K NMT, where 50k and 150k of parallel NL→SQ data is added to the original ZST models,
converting the system into a few-shot one. This way, we aim to measure the effect of adding
the often limited available parallel.

3.3 Human evaluation
The human evaluation was conducted by three native Dutch and Albanian speakers that are also
fluent in English. 100 sentences, varying in length, were sampled from the test sets of 1000
sentences. This evaluation serves as a supplement to the automatic evaluation methods, fur-
ther analyzing bottlenecks missed by automatic evaluation metrics. The sentences were defined
as either correct or incorrect. The correct section is divided into two categories: correct and
correct without context. The correct without context section relates to generated translations
being correct literal translations, or verbatim translations. These translations are highly depen-
dent on the conversation topic, some translations can be considered accurate as they generate
a sentence with the exact same wording as the source sentence. Yet, in some situations the
generated translation may lack meaning as the context is not present in either the source, or
the reference sentence. The incorrect section was divided into five error types: structural errors
(word placement and sentence structure), missing words, incorrect word choice and incorrect
language. The incorrect language category was introduced for analyzing the errors that occur
during the transition of languages when using bridging methods.

4 Results

4.1 Automatic evaluation
As shown in Table 3, the highest performing model, according to the evaluation metrics, BLEU
and TER, is the pivot model. Table 4 contains the results of the direct translations (NL→EN and
EN→SQ). This table indicates how models perform on high-resource languages in comparison
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with low-resource languages. These values serve as a guideline to highlight how well the pivot
MT performs on the basis of a low-resource language. As the pivot essentially combines the
models in Table 4, into one model, it is beneficial to see how the performance is altered when
running a pivot model from Dutch to Albanian, in contrast to the individual branches running
directly.

Model BLEU↑ TER↓
NL→SQ 13.68 0.65
pivot MT 16.68 0.64
ZST NMT 7.89 1.01
FST 50K NMT 10.98 0.96
FST 150K NMT 12.85 0.95

Table 3: Performance per model according to the automatic BLEU and TER metrics.

Model BLEU↑ TER↓
NL→EN 33.41 0.46
EN→SQ 22.87 0.58

Table 4: BLEU and TER scores for the NL→EN & EN→SQ direct translations models.

As previously stated, this research compares three methods: one-to-one NMT, pivot MT,
and ZST NMT. The pivot MT is the best performing method since both the NL→EN and
EN→SQ (Table 3 and 4) achieve BLEU scores that indicate an acceptable translation quality.

While the ZST is the worst performing model, the addition of parallel data (50K and 150K)
does increase its performance. However, this means that parallel data between the source and
target language is necessary to produce acceptable results.

It is worth mentioning that while the pivot MT outperforms the one-to-one NL→SQ NMT
by 3 points in terms of BLEU score, the TER score differs slightly. This matter could describe
that while the NL→SQ produces less accurate sentences than the pivot MT, the number of edits
required to transform the generated sentences into the reference sentences is close to equal.

4.2 Human evaluation
Table 5 gives an overview of the human evaluation in terms of correct/incorrect translations.
Again, the pivot MT (NL�EN�SQ) appears to be the (overall) best performing system.

Model Correct Correct/Context Total Correct
NL-SQ 62 8 70
pivot MT 63 13 76
ZST NMT 32 1 33
ZST 50K NMT 55 4 59
ZST 150K NMT 58 7 65

Table 5: Human Evaluation of 100 random sample sentences.

Table 6, shows the incorrect sentences from the human evaluation process. When it comes
to spelling mistakes all models scored perfectly on this category and made no mistakes, this
is due to the fact that the models base the spelling directly on the training data, meaning if
there are no spelling mistakes in the dataset, the model will not make spelling mistakes on its
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Models Structure Missing word Word Choice Language Total Incorrect
NL-SQ 5 22 3 0 30
pivot MT 7 17 0 0 24
ZST NMT 5 34 9 19 67
FST 50K NMT 2 31 8 0 41
FST 150K NMT 4 28 3 0 35

Table 6: Overview of the detailed human evaluation, dividing the errors into different types:
structure, missing words, word choice and language mistakes.

own. Incorrect language is only applicable to the ZST NMTs due to implicit bridging. In this
situation the ZST model showed 19 incidents, within the selected 100 sentences, where words
appeared in the wrong language, neither the source nor the target language, this issue is further
discussed in the next section. This table also highlights the value of adding parallel corpora to
the ZST model as it shows an overall improvement on the missing word error as well as the
language choice error. Overall, the results strongly indicate to the pivot MT performing the best
low-resource translation from Dutch to Albanian.

5 Discussion

According to the automatic and human evaluation, the pivot approach performs best, however,
as evidenced in Table 4, adding parallel corpora to the ZST training data rapidly improves its
performance. Low-resource languages often lack of training data and thus the ability to add
parallel corpora may not always be present. Johnson et al. (2016), create a more promising
analysis of a ZST model on low-resource languages, however, next to producing their own
dataset, the amount of data available to Johnson et al. (2016) is far more substantial. Due to
time constraints creating such a dataset and running it is out of the capabilities of this research.
Additionally, Johnson et al. (2016) in contrast to this research, worked with single language
pairs, operating with 255 million parameters per model, whereas this research operated on 55
million parameters per model, five times less the amount of Johnson et al. (2016).

A major point that requires addressing, is the difficulty of translating any language when
the context is lacking. In this specific case the data used for the sentences came from movie
translations, where context is inherently significant. Two examples that highlight the difficulty
will be explored and discussed below.

NL Source Het was verkeerd wat ze deden .
EN Translation It was wrong what they did .
SQ Reference Atë që kanë bër është gabim Valerie .
Pivot MT Ishte gabim ajo që bënë ata.

Table 7: Translation generated by the pivot MT model for the Dutch sentence “Het was verkeerd
wat ze deden.”

Table 7 illustrates an example of a translation produced by the pivot MT model. The Dutch
input sentence “Het was verkeerd wat ze deden.” can be translated into English as “It was
wrong what they did”, a translation that closely reflects the word placement whilst capturing
the message of the phrase. The SQ reference sentence provided, can be literally translated
into English as “What they did was wrong Valerie.”. The reference thus contains an additional
word “Valerie” which is not present in the source. This could be due to the specific context
in which this sentence was uttered. The translation generated by the pivot MT can be literally
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translated as “It was wrong what they did”, a translation which not only follows the reference
sentence verbatim but also carries forth the sentiment and message embedded in the sentence.
This example illustrates some of the shortcomings of the automatic evaluation metrics while
highlighting the importance of contextual cues and ambiguity in translation.

NL Source Wat is oké ?
EN Translation What is okay ?
SQ Reference Çfarë është në rregull ? (EN: What is okay?)
One-To-One Çfarë është ? (EN: What is?)
Pivot MT Çfarë ke ? (EN: What’s up?)
ZST MT Çfarë është mirë ? (EN: What is okay?)

Table 8: Overview of translations generated by the one-to-one, pivot MT and ZST MT models
for the Dutch sentence “What is oké”

This is, however, not the case for all sentences in a movie, as suggested by the examples
in Table 8. This example highlights the importance of context in translation.

In Table 8, the ZST seems to generate the most accurate and fluent translation given the
NL source sentence “What is oké?” (EN: “What is okay?”). The one-to-one model generates an
incomplete translation while the pivot MT generated an incorrect translation. However, without
any further context, and given the fact that the reference is rather vague, it is nearly impossibly
to determine which one of those translations is the most accurate.

Finally, Table 6 presents the human evaluation of the models. In terms of the models
this table reiterates the fact that the ZST model performed the worst in translating accurately.
Furthermore, the ZST is the only model that made a language error, when translating from the
reference to the generated sentence, some words came out in English rather than Albanian (see
Appendix C: Sentence 13). This issue is explored in the Johnson et al. (2016) paper in relation
to Japanese and Korean translation, by feeding a linear combination of the embedding vectors
giving it a notation of 0 and 1. In the midst of the translation the model produces an output of
0.5, in some cases translating from Japanese to Korean, and in other instances with an output of
0.58 producing a mix of both languages resulting in an incoherent sentence, a situation that may
be attributed to a difference in scripts. This investigation by Johnson et al. (2016) is relevant
here as the multilingual ZST model used also resulted in some instances of mixed language
outputs. In addition to the language error, the ZST model also performs the worst in terms of
word choice in the generated translation, however, as posited in the second sub-question, adding
parallel corpora improves the model accuracy. Overall, Table 6 restates the conclusion that the
pivot-based NMT outperforms the other models when accurately translating Dutch to Albanian
to the largest extent.

6 Conclusion

In this paper, three approaches to NL→SQ MT are explored: a one-to-one direct model and
two approaches specific to low-resource settings, Pivot-NMT and ZST, including FST - where
small amounts of parallel data was added to the ZST models. From our experiments it results
that the pivot approach outperformed the others in terms of the automatic (BLEU & TER) and
human assessment. Additional experiments were conducted where small amounts of parallel
NL-SQ data was added to the ZST training data leading to improvements, approaching the
results obtained using English as a pivot. Additionally, ZST/FST has some advantages over
pivot-based MT in terms of efficiency as it only requires the training of one model. In future
work, we would like to further explore how parallel data affects the performance of ZST models
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and experiment with different, morphologically richer pivot languages since English does not
capture many of the specific linguistic properties of Albanian (gender, cases...).
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Abstract
Unsupervised Machine Translation (MT) model, which has the ability to perform
MT without parallel sentences using comparable corpora, is becoming a promis-
ing approach for developing MT in low-resource languages. However, majority of
the studies in unsupervised MT have considered resource-rich language pairs with
similar linguistic characteristics. In this paper, we investigate the effectiveness of
unsupervised MT models over a Manipuri-English comparable corpus. Manipuri is a
low-resource language having different linguistic characteristics from that of English.
This paper focuses on identifying challenges in building unsupervised MT models
over the comparable corpus. From various experimental observations, it is evident
that the development of MT over comparable corpus using unsupervised methods is
feasible. Further, the paper also identifies future directions of developing effective
MT for Manipuri-English language pair under unsupervised scenarios.

1 Introduction
The performances of standard data-driven MT systems rely heavily on parallel sen-
tences. Unfortunately, parallel resources are not readily available for most low-resource
languages and specialized domains, as their generation is a very costly and time-
consuming task. Manipuri1, is a language spoken in the north-eastern states of In-
dia that lacks readily available large parallel sentences. Recently developed unsuper-
vised MT models, called Unsupervised Statistical Machine Translation (USMT) (Lam-
ple et al., 2018; Artetxe et al., 2018c) and Unsupervised Neural Machine Translation
(UNMT) (Song et al., 2019; Conneau and Lample, 2019), achieved remarkable results
without using any parallel sentences. The ability to learn translation features without
using parallel data will boost the progress of low-resource MT studies.

Despite the reported successes, the capability of the unsupervised MT to an actual
low-resource scenario is still in question. Majorities of the previous unsupervised MT-
related studies (Lample et al., 2018; Artetxe et al., 2018c; Conneau and Lample, 2019;

1Meitei Mayek is another script used for writing Manipuri. However, in this study, we are considering
Manipuri texts in Bengali.
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Song et al., 2019) are for combinations of high resource languages like English, German,
French, etc. for which conventional MT works well and where quality monolingual cor-
pora are also available in abundance. Studies in (Marchisio et al., 2020; Leng et al.,
2019) have also reported that USMT and UNMT performances usually vary based on
the similarity/difference of the source and the target language characteristics like quan-
tity and quality of bilingual corpus, language branch, alphabet, morphology, etc. Not
only Manipuri lacks a large-quality monolingual corpus, but the language is also highly
agglutinative. It belongs to the Tibeto-Burman language group (Singh and Bandyopad-
hyay, 2010) and has a very complex morphological structure that is very different from
English (Choudhury et al., 2004). The previous study related to unsupervised Manipuri-
English MT has only exploited UNMT models (Singh and Singh, 2020). However, when
considering resource-scarce languages, statistical machine translation (SMT) generally
outperforms neural machine translation (NMT) (Dowling et al., 2018).

Motivated by the above reason, investigating the performances of both the USMT
and UNMT models on the distant language pair is meaningful and challenging. To
the best of our knowledge, this study is the first attempt to investigate the perfor-
mance of the USMT model on Manipuri language. Empirical evaluation of the previous
models show that USMT model outperforms UNMT models for the language pair.
Monoses (Artetxe et al., 2018c), a popular USMT model, achieve the best BLEU score,
followed by the UNMT model proposed in (Artetxe et al., 2017). However, more ad-
vance UNMT models, MASS (Song et al., 2019) and XLM (Conneau and Lample, 2019),
fails miserably. Although the preliminary experimental results are encouraging, we ob-
serve that the direct adaptation of unsupervised MT methods on the language pair is
associated with many critical issues. This study also provides an in-depth analysis of
the previous USMT and UNMT models and investigates their strengths and weaknesses
on the language pair. Furthermore, we also propose approaches that further improve
the translation performance by (1) suffix segmenting Manipuri texts to alleviate the
data sparsity due to its agglutinating nature, (2) weakly supervising the cross-lingual
embeddings generation using transliteration pairs, and (3) generating phrase-table using
transliteration models.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Section 3.1 and 3.2 provides a detailed description of the USMT and UNMT models
respectively. Section 4 describe the proposed approaches. Our experimental setups are
presented in the section 5 followed by the results and discussion in section 6. Section 8
conclude the study.

2 Related Studies

The majority of the previous studies that try to overcome the parallel sentences depen-
dency problem exploited the monolingual data to enhanced the MT system trained on
a few hundred thousand parallel sentences (Wu and Wang, 2007; Sennrich et al., 2016;
Edunov et al., 2018; Rubino et al., 2020). As a result, apart from a few (Singh and
Bandyopadhyay, 2010; Sing and Bandyopadhyay, 2010; Singh, 2013; Singh and Bandy-
opadhyay, 2011), MT studies for low-resource Manipur-English language pair is still in
their inception. There are only a few thousands publicly available Manipuri-English
parallel sentences (Jha, 2012; Bansal et al., 2013; Haddow and Kirefu, 2020), which are
not sufficient for statistically motivated approaches.

Unsupervised MT has recently attracted lots of attention because of its ability
to learn MT features from abundantly available non-parallel corpora. Unsupervised
MT is motivated by the successes of word translation models developed based on the
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Unsupervised Cross-lingual Embedding (UCLE) (Conneau et al., 2017; Artetxe et al.,
2018b). UCLE forms the core of the unsupervised MT frameworks and is used for
initializing the MT model. In this study, we systematically investigate whether the un-
supervised MT methods apply to the distant Manipuri-English pair. Unsupervised MT
can be approached by following either the SMT or NMT techniques. USMT (Artetxe
et al., 2018c) follows the modular design comprising several models, whereas the UNMT
methods (Conneau and Lample, 2019; Song et al., 2019) focus on training an end-to-end
model. Each approach has its merits and demerits. A detailed description of the models
is presented in the subsequent sections.

In the case of Manipuri unsupervised MT, to the best of our knowledge, study
in (Singh and Singh, 2020) is the only available literature. The authors developed a
UNMT for the Manipuri-English pair based on transformer with a shared encoder and
language-specific decoders. They enhance the model by using a denoising autoencoder
followed by a back-translation process, similar to the settings presented in (Artetxe
et al., 2017). The models are fine-tuned using a few parallel sentences as a development
set. However, in our study, we do not use any parallel sentences as we want to assess
the applicability of the fully unsupervised models on the language pair.

3 Unsupervised MT models
This paper considers the following state-of-the-art unsupervised MT models.

3.1 Unsupervised Statistical MT
The USMT follows the standard statistical MT (Koehn et al., 2007) formulation of a
log-linear combination of several models such as translation model, re-ordering model,
word or phrase penalty, language model, etc., but in an unsupervised fashion. We con-
sider the popular, Monoses (Artetxe et al., 2018c), as our USMT model representative as
the other USMT models like (Lample et al., 2018; Artetxe et al., 2019) is also based on
similar concept. Monoses follows a step-by-step training procedure. Firstly, a mapping
between the source and target language embeddings is obtained by aligning the mono-
lingual phrase embeddings to a common space using the Vecmap (Artetxe et al., 2018b).
Secondly, an initial phrase-table is induced by using the cosine similarity of each source
embedding with the mapped target embeddings. After the initial phrase-table induc-
tion, a preliminary phrase-based SMT model (PBSMT) (Koehn et al., 2007) is built by
combining the initial phrase table, distortion penalty, and language model. Next, the
initial PBSMT is then tuned by utilizing synthetic parallel data obtained from a non-
parallel development dataset. Finally, the fine-tuned USMT model undergoes several
rounds of iterative back-translation.

3.2 Unsupervised Neural MT
UNMT generally follows three main training steps: 1) Initialization, 2) Denoising Auto-
Encoder, and 3) Back translation. Initialisation step, unlike the USMT, initialised the
model itself following the NMT paradigm. Denoising auto-encoder improves the UNMT
performance by introducing noise during learning phase. Then, the unsupervised fea-
tures are finally fine-tuned by using iterative back-translation process. Initialization
generally dictates the overall performance of the UNMT systems. Subsequently, var-
ious methods for effectively initializing the model has been proposed. Earlier UNMT
studies relies on UCLE (Lample et al., 2018; Artetxe et al., 2017) for initialization
of the word embedding layer in the encoder and the decoder. Later, they are suc-
ceeded by cross-lingual masked language models (CMLM) (Conneau and Lample, 2019;
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Song et al., 2019). The CMLM initialised the entire the encoder and decoder of the
UNMT. XLM (Conneau and Lample, 2019), motivated by BERT (Devlin et al., 2018)
like pre-training, initialized both for the encoder and decoder, and achieved the previous
state-of-the-art results on German-English unsupervised MT. Recently, authors in (Song
et al., 2019) proposed a novel unsupervised model called MASS (MAsked Sequence to
Sequence pre-training) that pre-trained the both the encoder and decoder jointly, en-
hancing the XLM model where encoder and decoder are pre-trained separately. In this
study, we consider the UCLE-based UNMT model proposed in (Artetxe et al., 2017)
and the CMLM-based UNMT models (XLM and MASS). The models performance are
investigated on the distant Manipuri-English language pair.

4 Proposed Approaches for Handling Low-resource Scenarios
Majority of the studies considers bilingual dictionary between the target language pairs
to generate cross-lingual embeddings (Artetxe et al., 2018a). Under a low-resource sce-
nario, we may assume unavailability of such external resources. Motivated by this, this
study exploits transliteration pairs of named-entities in place of bilingual dictionaries.
The transliteration of named-entities is obtained using method proposed in (Laitonjam
et al., 2018).

4.1 Weakly-supervised Cross-lingual Embeddings using Transliteration
Pairs

The UCLEs in the Monoses are obtained by exploiting the intra-lingual similarity dis-
tribution of individually trained source and target language embeddings (Artetxe et al.,
2018b). However, we approach the problem as a weakly-supervised by using the translit-
eration of named-entities to obtain the initial mapping between the source and target
language embeddings. More specifically, we first learn two transformation matrices us-
ing the transliteration of named-entities as a dictionary to align the source language
and target language embeddings into a shared embedding space and then iteratively
refining them using the self-learning method (Artetxe et al., 2018a).

4.2 Phrase-table Generation using Transliteration Models
We investigate three different methods for generating the phrase-table in Monoses.
Specifically, we re-score the phrase-translation and lexical probabilities using transliter-
ation models (TMs)2. TMs enable the USMT to consider phonetic similarities between
the source phrase embedding (s) and the mapped target phrase embedding (t).

1. Re-score Lexical Weights(RS-lex): In this method, we introduce transliteration
weights in place of lexical weights. The transliteration weights enable the model to
exploit phonetic similarities, and are estimated using the TMs, as follows:

tns(t|s) =
∏
i

max(ϵ,maxjCA(ti, TMS→T (sj)) (1)

Here, TMS→T (x) is the transliterated word of the source word x using the source-
to-target transliteration model (TM), and CA(x, y) represents the character accuracy
([0,1]) between the word x and y. ϵ is a constant fixed at 0.3 (Artetxe et al., 2018c).

2. Re-score phrase translation probabilities (RS-phrase): In this case, we modify the
phrase translation probabilities ϕph itself by incorporating the transliteration weights
tns(t|s) as follows:

2Transliteration model converts a word from a source language to a target language by keeping the
source language phonetic aspects intact.
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Table 1: Manipuri-English News Domain Comparable Corpora. Vocab stands for vo-
cabulary and Seg-vocab means vocabulary size on the segmented dataset.

Language Documents Words Vocab Seg-vocab
English 13408 5.79M 80855 80855

Manipuri 13177 5.62M 277406 165998

ϕph(t|s) =
exp(cos(s, t)/τ)∑
t
′ exp(cos(s, t

′
)/τ)

∗ tns(t|s) (2)

3. Re-score both the phrase translation probabilities and lexical weights (RS-phrase-
lex): In this method, we use the equation 2 for estimating the ϕph and equation 1 for
estimating the lexical weights alternative, the transliteration weights.

5 Experimental Setup

5.1 Manipuri Suffix Segmenter
Manipuri is highly agglutinative. Several new words can be formed by merely attaching
prefixes and suffixes to a single root, leading to data sparsity. To normalize the agglu-
tinative nature, we use a simple yet effective Manipuri suffix segmenter based on the
popular unsupervised GRAph-based Stemmer (GRAS) (Paik et al., 2011) that segments
Manipuri words into roots and suffixes before training the MT models. For example,
words like ইম্ফালগী (for Imphal), ইম্ফালদগী (from Imphal), ইম্ফালদা (to Imphal), etc. are
normalise by separating suffixes গী , দা and দগী from the root ইম্ফাল.

5.2 Dataset Description
We use a domain-aligned3 Manipuri-English comparable corpus generated from news
articles published on two of Manipur’s leading newspapers: Sangai Express4 and Pok-
napham5. The newspaper publishes dual edition in English and Manipuri. The articles
from Sangai Express are published between January 2018 to November 2018, while the
articles from the Poknapham are published between March 2017 to June 2020. The
lower-cased English texts are tokenized by using the Moses Tokenizer6, while a simple
whitespace tokenization scheme7 is use for Manipuri texts. A detailed description of
the training dataset is presented in table 1. All the models are evaluated on a news
domain Manipuri-English MT evaluation dataset, consisting of 1006 parallel sentences.
The evaluation dataset is manually created by native speakers.

5.3 Transliteration Model Configurations
We consider the encoder-decoder based English-Manipuri transliteration model pre-
sented in the paper (Laitonjam et al., 2018) with attention mechanism (Bahdanau
et al., 2015). The size of the hidden layer is fixed to 512 and embedding dimension to
256. The models are trained using the dataset presented in the study (Laitonjam et al.,
2018). It consist of 4428 training transliteration pairs with 1000 development pairs.

3We consider the news domain.
4https://www.thesangaiexpress.com/
5http://poknapham.in/
6https://github.com/moses-smt/mosesdecoder
7Punctuation symbols are separated.
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Table 2: Experimental results for preliminary experiments.
Methods En → Mni Mni → En

Non-segmented Segmented Non-segmented Segmented
Conneau and Lample (2019) (XLM) 0 0.14 0 0.15
Song et al. (2019) (MASS) 0 0.18 0.44 0.23
Artetxe et al. (2017) 2.25 2.56 5.01 4.63
Artetxe et al. (2018c) (Monoses) 2.87 3.13 5.05 6.37

(a) Pre-training (b) Tuning

Figure 1: Training progress of the MASS on non-segmented dataset.

5.4 Unsupervised MT Configurations
For the UCLE-based UNMT model (Artetxe et al., 2017), we consider the original imple-
mentation8 and default settings. We use the skip-gram model with ten negative samples
to generate monolingual embeddings with size 300. Similarly, the hyperparameter of
the XLM9 and MASS10 are set the same as in the studies (Conneau and Lample, 2019)
and (Song et al., 2019) respectively. The embedding size is fixed to 1024. We jointly
learn 60k sub-word units between source and target languages using BPE. However,
unlike the studies (Song et al., 2019; Conneau and Lample, 2019) that uses multiple
GPUs, we use only a single GPU with 12GB memory for training the model. In case of
the USMT model, the Monoses11, all model configuration settings are kept same as in
the original work (Artetxe et al., 2018c).

6 Results and Discussion
Table 2 shows the translation results for our preliminary experiments. Here, Segmented
represents the performance of the models on the segmented corpus. The segmentation
is performed only on the Manipuri text using the segmenter presented in the section 5.1
to normalized the morphological infection issues of Manipuri language. Following the
general practice, all the models are evaluated using BLEU scores (Papineni et al., 2002)
as computed by the multi-bleu.perl12 on the de-segmented outputs. It is evident from
the experimental results that CMLM-based UNMT models (i.e., MASS and XLM) fail
miserably for the language pair achieving less than 1% BLEU score on both the trans-
lation directions. Similar results were also previously reported in the study (Kim et al.,
2020) for the distant English-Gujarati language pair. To further confirm CMLM-based
UNMT models low performance, we evaluate the MASS at the end of each epoch during

8https://github.com/artetxem/undreamt
9https://github.com/facebookresearch/XLM

10https://github.com/microsoft/MASS
11https://github.com/artetxem/monoses
12https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Table 3: Experimental results of proposed models on segmented dataset.
Methods En → Mni Mni → En

Monoses 3.13 6.37
Monoses + Weakly Supervised 3.50 6.59
Monoses + RS-lex 3.37 6.41
Monoses + RS-phrase 3.29 6.35
Monoses + RS-phrase-lex 3.47 6.69

Table 4: Some translation examples. The first three rows shows the reference sentences.
The final three rows represent the predicted outputs of the references.

English Manipuri
Reference 1 a charge sheet has been raised চাজর্ িসট থাঙ্গৎেখ্র

Reference 2
then prime minister , dr manmohan singh
personally flew down to manipur

মতমদুগী প্রাইম িমিনষ্গর দাক্টর মনেমাহন
িসংহ মিণপুর দা লাকিখ

Reference 3 academic career of the students মৈহেরায় িশংগী একাডিমক েকিরয়ার
Mni → En En → Mni

Predicted 1 the charge sheet filed অমা চাজর্ িসতবু থােদাকউ

Predicted 2
the then prime minister dr manmohan
singh put in manipur

অমুক হন্না প্রাইম িমিনস্তর , দাঃ মনেমাহন িসংহ
উনরগা flew েতৗরগিদ মিণপুর

Predicted 3 students and their academic career মৈহেরায় িশংনা মৈহ তম্বগী

training. Figure 1 (a) and (b) shows the progress of the model in terms of BLEU score
during pre-training and fine-tuning on the non-segmented dataset. It is found that the
model never gets going. Apart from the distant language pair issues, the small training
corpus size may also aid to this poor BLEU score. In previous studies, CMLM-based
UNMT models are generally trained on very large corpora (in term of billions of words).
However, such resources are currently not available for Manipuri. On the other hand,
the UCLE-based UNMT model and the Monoses performs relatively better than the
XLM and MASS. Monoses obtains the best BLEU score of 3.13 for En→Mni (English-
to-Manipuri) and a score of 6.37 for Mni→En (Manipuri-English) outperforming the
UNMT systems. Further, on comparing the performance of each models on segmented
and non-segmented corpora to investigate the effectiveness of the suffix segmenter. It
is observed that the BLEU score for both the translation directions increases on the
segmented dataset in almost all the cases, except for the UCLE-based UNMT model
and the MASS in Mni → En, as shown in the table 2. This clearly shows that the
segmenting Manipuri text significantly reduces the data spareness due to morphological
inflections and improves the overall performance.

Table 3 shows the results observed after incorporating the proposed approaches
presented in the section 4 to enhance the USMT model. We compare its performance
with the original Monoses over the segmented corpus. It is evident from the results
that for all the cases, except the Monoses with RS-phrase for Mni→En direction, the
proposed methods outperform the baseline. Weakly supervising the cross-lingual em-
bedding generation on Monoses using the transliteration pairs obtained the best result
with 3.50 BLEU for En→Mni, while Monoses with RS-phrase-lex achieved the best
BLEU score of 6.64 for the Mni→En. This shows that the proposed methods are able
to exploit the phonetic similarity between the language pair.
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Table 5: Monoses with RS-phrase-lex N-gram precisions along with corresponding
BLEU scores

BLEU P1 P2 P3 P4

Mni → En 6.69 33.8 9.1 3.7 1.7
En → Mni 3.47 23.5 4.6 1.7 0.8

6.1 Error Analysis
To gain further insights, we perform an error analysis of one of the best performing
model (Monoses with RS-phrase-lex) on the language pair. Table 4 shows some of
the translation examples of the model. It is observed that the proposed model can
generate unigram translations quite accurately. For instance, unigram translation pair
(students, মৈহেরায়), as shown in table 4 (Reference 3), is correctly predicted for both
the translation directions, as shown in predicted 3 of table 4. Similarly, multi-word
pairs like (prime minister, প্রাইম িমিনস্তর) are also correctly predicted. However, in most of
the cases, the models fail to handle higher multi-gram translations, thereby leading to
overall low BLEU score. The difference in BLEU score and the corresponding modified
n-gram precisions Pn (n = 1,2,3,4) for the model can also be seen in the table 5. The
n-gram precision scores significantly decreases with increase in n. For instance, the
uni-gram precision for Mni → En MT is 33.8%. However, the corresponding BLEU
score is 6.69% only. We believe that difference in word order between the language
pair is a major contributing factor to such a massive difference between the BLEU and
n-gram precisions. English follows a Subject-Verb-Object (SVO) order in contrast to
the Manipuri SOV order. As a result, the unsupervised model fails to handle the word
order differences. For instance, in the Mni → En translation example, the order of the
words students and academic career, shown in the reference 3 of table 4, gets interchange
and is wrongly predicted as shown in the corresponding translation (predicted 3).

7 Future Research Directions
It is observed from the above observation that there is a potential for developing MT
system for Manipuri-English language pair using comparable corpora, and may be a way
forward to counter the challenges of creating sentence level parallel corpora. However,
for developing such a system, we would need effective multi-lingual embedding tech-
niques to develop effective bilingual dictionary, phrase-table, language modelling for
post processing sentence correction etc. Further, we would also need to take care the
dynamic writing styles followed in Manipuri. For instance, (জনুৱারী, জনুৱাির, জানুৱারী and
জানুৱাির) are acceptable writing forms of the word January. Such a variation is inevitable
for comparable corpora while the text are pooled specially from different sources.

In addition, from the P1 performance in Table 5, it also evident that the translation
performance can be further enhanced using post processing correction using methods
like language modelling, NMT hybridization on the USMT model (Artetxe et al., 2019;
Marie and Fujita, 2020), etc.

8 Conclusion
We develop a MT system for low-resource distant Manipuri-English language pair with-
out using parallel sentences. Our study reveals that a relatively cheaper domain-aligned
comparable corpora befit potential replacement of expensive parallel sentences for the
language pair MT task. We also compare a popular USMT model with state-of-the-art
UNMT models and found that the modular design of the USMT model is better suited
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for the language pair. Furthermore, this paper empirically shows that using a Manipuri
suffix segmenter reduces the data sparseness issue due to the Manipuri text’s agglu-
tinative nature. Also, we found that weakly-supervising the USMT model using the
transliteration pairs and transliteration models improves the translation performance.
Though not with high performance, this work provides a stable MT baseline for the
low-resource Manipuri-English language pair. We also offer several directions for future
studies to encourage more research on this crucial problem.
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Abstract

In machine translation, corpus preparation is
one of the crucial tasks, particularly for low
resource pairs. In multilingual countries like
India, machine translation plays a vital role
in communication among people with vari
ous linguistic backgrounds. There are avail
able online automatic translation systems by
Google and Microsoft which include vari
ous languages which lack support for the
Khasi language, which can hence be consid
ered lowresource. This paper overviews the
development of EnKhCorp1.0, a corpus for
English–Khasi pair, and implemented base
line systems for EnglishtoKhasi and Khasi
toEnglish translation based on the neural ma
chine translation approach.

1 Introduction

The Khasi language (also spelled Khasia, Khas
see, Cossyah, or Kyi) is primarily spoken by peo
ple living in the region surrounding the Khasi and
Jaintia Hills of Meghalaya state in India. It is a
member of the MonKhmer linguistic branch of
the Austroasiatic language family. Khasi is an
associate official language1 in Meghalaya since
2005. According to the 2011 census of India, there
are around one million native speakers of Khasi2.
Khasi has significant dialectal variation, some of
them being Sohra Khasi, Mawlai Khasi, Pnar,
Nongkrem Khasi, Mylliem Khasi, Bhoi Khasi
Nonglung, War and Maram. Khasi has a subject
verbobject (SVO) sentence structure, similar to
English but unlike most of the Indian languages
Roberts (2005). Khasi contains several words bor
rowed from IndoAryan languages, mainly from

1https://www.indiacode.nic.in/bitstream/
123456789/5467/1/the_meghalaya_state_language_
act,_2005_(act_no._10_of_2005).pdf

2https://www.censusindia.gov.in/2011Census/
Language-2011/Statement-1.pdf

Bengali and Hindi. In the past, the Khasi language
had no script of its own. The Welsh missionary
Thomas Jones3, in 1841, wrote the language in the
Latin script. As a result, the Latin alphabet of the
language has a few similarities with the Welsh al
phabet. Khasi in Latin script has a 23letter alpha
bet.

1.1 Language Preservation
Every language is a unique perspective to compre
hend the world by sharing its history, philosophy,
and culture. Extinction of a language results in
loss of historical, ecological, and cultural informa
tion and opinions. It may even affect its speakers’
livelihood and existential mentality as they adopt
the dominant languages to attain socioeconomic
benefit, tackle the scarcity of modern documenta
tion and usage of the language, or mitigate the fear
of discrimination. Therefore, the need to preserve
such lowresource languages, including the Khasi
language, is of significance. Machine translation
(MT) helps in language preservation Bird and Chi
ang (2012). We have attempted to create a corpus
and introduce it in an MT environment that helps
document the Khasi language and preserve such
minority languages by encouraging language us
age and eliminating the linguistic barrier in com
munication.

1.2 LowResource Translation
In the domain of Natural Language Processing
(NLP), MT deals with translation from one nat
ural language to another. Further, Neural Ma
chine Translation (NMT) is a stateoftheart ap
proach of incorporating artificial neural networks
in MT systems. The data or resources for train
ing the translation systems may include corpora
from various online sources, native speakers, and

3http://lisindia.ciil.org/Khasi/Khasi_
script.html

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 89

https://www.indiacode.nic.in/bitstream/123456789/5467/1/the_meghalaya_state_language_act,_2005_(act_no._10_of_2005).pdf
https://www.indiacode.nic.in/bitstream/123456789/5467/1/the_meghalaya_state_language_act,_2005_(act_no._10_of_2005).pdf
https://www.indiacode.nic.in/bitstream/123456789/5467/1/the_meghalaya_state_language_act,_2005_(act_no._10_of_2005).pdf
https://www.censusindia.gov.in/2011Census/Language-2011/Statement-1.pdf
https://www.censusindia.gov.in/2011Census/Language-2011/Statement-1.pdf
http://lisindia.ciil.org/Khasi/Khasi_script.html
http://lisindia.ciil.org/Khasi/Khasi_script.html


computational resources. The Natural languages
are categorized into three broad categories: high,
medium, and lowresource. A language falls un
der the lowresource category when it has lim
ited online resources Megerdoomian and Parvaz
(2008); Probst et al. (2001). This categorization
can also be made on the quantity of data required
to train an NMT model Gu et al. (2018). Accord
ing to Kocmi (2020), a language is considered a
lowresource language if the number of training in
stances present in the corpus is below one million.
Along with the corpus’s size, the diversity of both
language and structure is of importance too. Struc
turally, it must consist of all types of sentences,
including short, medium, and long sentences. Dif
ferent dialects of the same languagemight give rise
to some inconsistency in translations. Therefore,
the designation of a language as “lowresource”
is not precise and requires consideration of many
factors. Most world languages are categorized as
lowresource on account of resource availability.
In India, the limited MT works are performed on
the northeastern region’s lowresource languages,
includingMizo Lalrempuii et al. (2021), Assamese
Laskar et al. (2021b), Manipuri Singh and Singh
(2020), andKhasi Thabah and Purkayastha (2021).
We can consider the English–Khasi pair as a low
resource pair based on limited resources.
In this work, we have developed an English–

Khasi corpus: EnKhCorp1.0 and built baseline
systems based on NMT. There is no standard cor
pus available for the lowresource English–Khasi
pair to the best of our knowledge. It is the hope of
the authors that this resource fills that gap and leads
to the development of more and better resources
for the Khasi community.
The structure of the rest of the paper is as follows:
Section 2 presents the overview of corpus prepa
ration. Section 3 presents construction and evalu
ation of the baseline English–Khasi NMT system
and conclude the paper in Section 4.

2 EnKhCorp1.0

This section overviews the corpus. Section 2.1 de
scribes the contents of the corpus. Section 2.2 and
2.3 present the data extraction technique and do
main coverage.

2.1 Details of Corpus
The available resource options for English–Khasi
(EnKha) parallel and monolingual data are lim

ited. Therefore, we have explored different pos
sible sources to prepare parallel and monolingual
corpora. Table 1 presents some examples of sen
tences that were collected. The sources of data are
reported below:

2.1.1 Parallel Corpus
• Bible: The Bible4 is publicly available on
the online in multiple languages, including
Khasi. We have collected 26,086 parallel sen
tences from the Bible source using crawling
technique.

• Online Dictionary: There are online dictio
naries, namely, Glosbe5, available in the mul
tilingual form in which English–Khasi bilin
gual words and parallel examples are present.
From Glosbe, we have collected 2,225 paral
lel sentences using crawling technique.

• LearnKhasi Website: The website,
namely, Learn Khasi online6, is developed
to teach essential words and daily usage
sentences in the Khasi language. We have
manually collected 120 parallel sentences
from this website.

2.1.2 Monolingual Corpus
A standard monolingual corpus of English is avail
able online: WMT167. Therefore, we have fo
cussed on the preparation of only Khasi monolin
gual corpus. We have collected 157,968Khasi sen
tences from different web pages/blogs and added
25,836 Khasi sentences from the parallel data
(train set) to increase the size of the monolingual
corpus, totalling 183,804.

2.1.3 Corpus Analysis and Statistics
The collected raw data (both parallel and mono
lingual) are cleaned by removing unwanted sym
bols, URLs, many special characters (#####, ____,
……., $$$$), blank lines, etc. To keep the contex
tual meaning of the sentences, we did not remove
punctuation marks. If we remove the punctuation
marks, then it will alter the meaning of the sen
tence. Table 2 presents an example sentence hav
ing punctuation marks. In addition, long sentences

4https://www.bible.com/en-GB/bible/1865/
GEN.1.KHASICLBSI

5https://glosbe.com/en/kha
6https://www.languageshome.com/

English-Khasi.htm
7http://www.statmt.org/wmt16/

translation-task.html
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(more than 50 words) are split based on the punc
tuation marks (?.) at the end. It means a maximum
sentence length of 50 words, we have considered.
If the sentence length is greater than 50 words,
then split it based on punctuation marks. Table
3 presents the overall data statistics. We have re
moved duplicate sentences from both parallel and
monolingual corpora. After removing duplicates,
the total parallel data reduced to 28,036 sentences.
In order to do the experiment for the MT system,
the parallel data needs to split into train, validation,
and test set data. In Kunchukuttan et al. (2018),
the English–Hindi parallel corpus was developed,
and for the baseline system, they split the data by
considering 99.79% data for the train set and <1%
data for validation and test set. They considered
most data for the training set and very few data for
validation and test set. In our baseline system ex
periment, we have considered most data (92.15%)
for the training set, 7.13% data for the validation
and 0.71% for the test set. Table 4 presents the
statistics of train, validation, and test set data. We
have considered only 200 test data, since it is used
for the baseline system. Wewill consider more test
sentences in the future work. During the training
process of a model, the train set is used for learn
ing the parameters, and a validation set is required
to verify the performance of a model to generate
the optimum model. The unseen or test data is re
quired to check the generated model.

Type Sentences Tokens
En Kha

Train 25,836 664,385 830,393
Validation 2,000 42,725 67,474
Test 200 5,105 6,241

Table 4: Data statistics for training, validation and test
ing set

2.2 Data Extraction technique
We utilized Scrapy8, an opensource framework
for web crawling, to scrape the data from vari
ous online sources. The xpath of each element
has undergone a certain degree of generalization
coding to replicate multiple web pages. It helps
to crawl numerous web pages and extract essen
tial information. We first provide the URL of the
web page. The Khasi raw text in the HTML files
was extracted directly. The obtained Khasi mono

8https://scrapy.org/

lingual data is kept as it is. However, the parallel
data is aligned by separating them into source and
target files. The process of alignment and verifica
tion took substantial human effort. Additionally,
we collected parallel sentences manually from the
: LearnKhasi website.

2.3 Domain Coverage
The proposed corpus, EnKhCorp1.0 encompasses
different domains, including religious material
(the Bible), literature, daily usage, and common
sentences.

3 Baseline System

In the area of MT, the NMT achieves a stateof
theart approach for both high and lowresource
language pairs Bahdanau et al. (2015); Pathak et al.
(2018); Pathak and Pakray (2018); Laskar et al.
(2019); Laskar et al. (2019, 2020b, 2021a). There
fore, we have chosen NMT to build the base
line system to estimate benchmark translation ac
curacy for both EntoKha and KhatoEn trans
lation.A sequencetosequence (seq2seq) model
based encoderdecoder architecture is adopted for
this work following the NMT baseline system of
Laskar et al. (2020a); Kunchukuttan et al. (2018).

3.1 Experimental Setup
The OpenNMTpy9 toolkit is employed to build
two seq2seq models, namely RNN and BRNN.
We have used twolayer long short term memory
(LSTM), having 500 units in each layer with at
tention (Bahdanau et al., 2015). The default learn
ing rate of 0.001 with Adam optimizer and 0.3
dropouts are used. Moreover, GloVe10 Penning
ton et al. (2014) pretrained word vectors are used
by utilizing the monolingual data. For English
monolingual data, we have used 3 million sen
tences collected from WMT16.

3.2 Results
To evaluate baseline systems, we used the auto
matic evaluation metrics, namely, bilingual eval
uation understudy (BLEU) Papineni et al. (2002),
rankbased intuitive bilingual evaluation score
(RIBES) Isozaki et al. (2010), translation edit
rate (TER) Snover et al. (2006), word error rate
(WER) Morris et al. (2004), metric for evaluation
of translation with explicit ordering (METEOR)

9https://github.com/OpenNMT/OpenNMT-py
10https://github.com/stanfordnlp/GloVe
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Corpus English Khasi Source

Parallel

After Jesus died, God re
stored him to life as a spirit
person.

Hadien ba u Jisu u la ïap, U
Blei u la ai biang ha u ïa ka
jingim ba kynja mynsiem.

Bible

We’ll go to any length to send
our child to a good university.

Ngin leh katba lah ban phah
ia i khun jongngi sha ka iuni
versity ba bha.

Glosbe

How are you? Kumno phi long? LearnKhasi website

Monolingual  Hynrei u wei na ki ba myn
saw u la khlad noh na ka daw
ka jingmynsaw jur ha shwa
ban poi sha Civil Hospital
Shillong.

Web pages/Blogs

 Ha ka janmiet sngi nyn
gkong, ka kyhun ki pulit ka
la hiar sha katei ka thain bad
kem ïa kiba suba donkti ha
ane ka jingjia shoh paidbhur
ïa ki samla.

Web pages/Blogs

Table 1: Example sentences from various sources

English Khasi
Jesus Christ himself said: “Do not marvel at this,
because the hour is coming in which all those in
the memorial tombs will hear his voice and come
out.”

U Jisu Krist da lade hi u la ong: “Wat sngew kyn
dit ia kane, namar ka por ka la jia, ha kaba kito
kiba don ha ki jing tep kin ioh sngew ia ka jing
pyrta jong u bad kin ia mih noh.”

Table 2: Example sentence having punctuation marks

Corpus Source Sentences Tokens
En Kha

Parallel Bible 26,086 684,090 866,326
Glosbe 2,225 28,172 37,184

LearnKhasi 120 396 472
Total Number of Sentences 28,431 712,658 903,982

Monolingual Web Pages/Blogs/Bible/Glosbe 183,804  20,575,074

Table 3: Overall data statistics
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Lavie and Denkowski (2009) and Fmeasure. For
BLEU score evaluation, we have considered av
erage scores up to trigram Laskar et al. (2020a).
Table 5, 6 and 7 present the results of baseline sys
tems.

Translation BLEU TER (%)
RNN BRNN RNN BRNN

EntoKha 14.87 14.88 83.90 83.42
KhatoEn 11.28 12.77 86.78 86.43

Table 5: BLEU and TER scores of baseline systems
(higher the value of BLEU indicates better accuracy and
lower the value of TER denotes better accuracy)

3.3 Analysis
From Table 5, 6 and 7, it is noticed that En
toKha translation accuracy is higher than Kha
toEn. It is because parallel data contains more
Kha tokens than En, and thus, the model en
codes a larger amount of token information and
the decoder can produce a better translation in
the case of EntoKha. Also, it is observed
that the BRNN model outperforms the RNN
model in both directions of translation. The
BRNN model achieves BLEU, RIBES, METEOR
and Fmeasure scores:(14.88, 12.77), (0.499622,
0.457185), (0.183745, 0.170957) and (0.433188,
0.392752) for EntoKha and KhatoEn transla
tion respectively. Also, the BRNN model attains
better TER and WER scores: (83.42%, 86.43%),
(83.59%, 90.30%) for both directions of transla
tion. In the case of TER and WER, lower values
indicate higher accuracy.

4 Conclusion and Future Work

This paper presents EnKhCorp1.0, where we have
developed a parallel corpus of English–Khasi par
allel and Khasi monolingual data. It can be used
in various NLP tasks, including MT. The dataset
will be publicly available here: https://github.
com/cnlp-nits/EnKhCorp1.0 along with necessary
licence agreement. By utilizing this corpus, we
have built NMT baseline systems for translation to
and fromKhasi. Wewill increase the corpus size in
the future and perform more experiments with ad
vanced deep learning techniques to improve trans
lation accuracy.
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Translation RIBES WER (%)
RNN BRNN RNN BRNN

EntoKha 0.426957 0.499622 83.96 83.59
KhatoEn 0.414650 0.457185 90.34 90.30

Table 6: RIBES and WER scores of baseline systems (higher the value of RIBES indicates better accuracy and
lower the value of WER denotes better accuracy)

Translation METEOR Fmeasure
RNN BRNN RNN BRNN

EntoKha 0.183013 0.183745 0.432489 0.433188
KhatoEn 0.154466 0.170957 0.366319 0.392752

Table 7: METEOR and Fmeasure scores of baseline systems (higher the value of METEOR and Fmeasure
indicate better accuracy

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 79, 2015,
Conference Track Proceedings.

Steven Bird and David Chiang. 2012. Machine trans
lation for language preservation. In Proceedings of
COLING 2012: Posters, pages 125–134, Mumbai,
India. The COLING 2012 Organizing Committee.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O.K.
Li. 2018. Universal neural machine translation for
extremely low resource languages. In Proceedings
of the 2018 Conference of the North American Chap
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa
pers), pages 344–354, New Orleans, Louisiana. As
sociation for Computational Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process
ing, pages 944–952.

TomKocmi. 2020. Exploring benefits of transfer learn
ing in neural machine translation.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak
Bhattacharyya. 2018. The IIT Bombay English
Hindi parallel corpus. In Proceedings of the
Eleventh International Conference on Language Re
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Candy Lalrempuii, Badal Soni, and Partha Pakray.
2021. An improved englishtomizo neural ma
chine translation. Transactions on Asian and
LowResource Language Information Processing,
20(4):1–21.

S. R. Laskar, A. Dutta, P. Pakray, and S. Bandyopad
hyay. 2019. Neural machine translation: English to
hindi. In 2019 IEEE Conference on Information and
Communication Technology, pages 1–6.

Sahinur Rahman Laskar, Abdullah Faiz Ur Rahman
Khilji, Partha Pakray, and Sivaji Bandyopadhyay.
2020a. Enascorp1. 0: Englishassamese corpus. In
Proceedings of the 3rd Workshop on Technologies
for MT of Low Resource Languages, pages 62–68.

Sahinur Rahman Laskar, Abdullah Faiz Ur Rahman
Khilji, Partha Pakray, and Sivaji Bandyopadhyay.
2020b. HindiMarathi cross lingual model. In Pro
ceedings of the Fifth Conference on Machine Trans
lation, pages 396–401, Online. Association for Com
putational Linguistics.

Sahinur Rahman Laskar, Partha Pakray, and Sivaji
Bandyopadhyay. 2019. Neural machine translation:
HindiNepali. In Proceedings of the Fourth Con
ference on Machine Translation (Volume 3: Shared
Task Papers, Day 2), pages 202–207, Florence, Italy.
Association for Computational Linguistics.

Sahinur Rahman Laskar, Partha Pakray, and Sivaji
Bandyopadhyay. 2021a. Neural machine transla
tion: Assamese–bengali. In Modeling, Simula
tion and Optimization, pages 571–579, Singapore.
Springer Singapore.

Sahinur Rahman Laskar, Partha Pakray, and Sivaji
Bandyopadhyay. 2021b. Neural machine translation
for low resource assamese–english. In Proceedings
of the International Conference on Computing and
Communication Systems: I3CS 2020, NEHU, Shil
long, India, volume 170, page 35. Springer.

Alon Lavie and Michael J. Denkowski. 2009. The
meteor metric for automatic evaluation of machine
translation. Machine Translation, 23(2–3):105–115.

Karine Megerdoomian and Dan Parvaz. 2008. Low
density language bootstrapping: the case of tajiki
Persian. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 94

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/C12-2013
https://aclanthology.org/C12-2013
https://doi.org/10.18653/v1/N18-1032
https://doi.org/10.18653/v1/N18-1032
http://arxiv.org/abs/2001.01622
http://arxiv.org/abs/2001.01622
https://www.aclweb.org/anthology/L18-1548
https://www.aclweb.org/anthology/L18-1548
https://doi.org/10.1109/CICT48419.2019.9066238
https://doi.org/10.1109/CICT48419.2019.9066238
https://www.aclweb.org/anthology/2020.wmt-1.45
https://doi.org/10.18653/v1/W19-5427
https://doi.org/10.18653/v1/W19-5427
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.1007/s10590-009-9059-4
http://www.lrec-conf.org/proceedings/lrec2008/pdf/827_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/827_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/827_paper.pdf


(LREC’08), Marrakech, Morocco. European Lan
guage Resources Association (ELRA).

Andrew Cameron Morris, Viktoria Maier, and Phil
Green. 2004. From wer and ril to mer and wil:
improved evaluation measures for connected speech
recognition. In Eighth International Conference on
Spoken Language Processing.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
Jing Zhu. 2002. Bleu: A method for automatic eval
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa
tional Linguistics.

Amarnath Pathak and Partha Pakray. 2018. Neural ma
chine translation for indian languages. Journal of
Intelligent Systems, pages 1–13.

Amarnath Pathak, Partha Pakray, and Jereemi Ben
tham. 2018. English–mizo machine translation us
ing neural and statistical approaches. Neural Com
puting and Applications, 30:1–17.

Jeffrey Pennington, Richard Socher, and Christo
pher D. Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25
29, 2014, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 1532–1543, Doha, Qatar.
ACL.

Katharina Probst, R. Brown, J. Carbonell, A. Lavie,
Lori S. Levin, and Erik Peterson. 2001. Design and
implementation of controlled elicitation for machine
translation of lowdensity languages.

Hugh Roberts. 2005. A grammar of the Khasi lan
guage. Mittal publications.

SalamMichael Singh and ThoudamDoren Singh. 2020.
Unsupervised neural machine translation for english
and manipuri. In Proceedings of the 3rd Workshop
on Technologies forMT of LowResource Languages,
pages 69–78.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In In Proceedings of Association for Machine Trans
lation in the Americas, pages 223–231.

N Donald Jefferson Thabah and Bipul Syam
Purkayastha. 2021. Low resource neural machine
translation from english to khasi: A transformer
based approach. In Proceedings of the International
Conference on Computing and Communication Sys
tems: I3CS 2020, NEHU, Shillong, India, volume
170, page 3. Springer.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 95

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1515/jisys-2018-0065
https://doi.org/10.1515/jisys-2018-0065
https://doi.org/10.1007/s00521-018-3601-3
https://doi.org/10.1007/s00521-018-3601-3
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162


Zero-Shot Neural Machine Translation
with Self-Learning Cycle

Surafel M. Lakew† Matteo Negri Marco Turchi
†University of Trento, Fondazione Bruno Kessler, Trento, Italy
{lakew,negri,turchi}@fbk.eu

Abstract
Neural Machine Translation (NMT) approaches employing monolingual data are showing
steady improvements in resource-rich conditions. However, evaluations using real-world low-
resource languages still result in unsatisfactory performance. This work proposes a novel zero-
shot NMT modeling approach that learns without the now-standard assumption of a pivot lan-
guage sharing parallel data with the zero-shot source and target languages. Our approach is
based on three stages: initialization from any pre-trained NMT model observing at least the
target language, augmentation of source sides leveraging target monolingual data, and learn-
ing to optimize the initial model to the zero-shot pair, where the latter two constitute a self-
learning cycle. Empirical findings involving four diverse (in terms of a language family, script
and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU
improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consis-
tent improvements are observed even in a domain-mismatch setting, attesting to the usability
of our method.

1 Introduction

Since the introduction of NMT (Sutskever et al., 2014; Bahdanau et al., 2014), model learning
using unlabeled (monolingual) data is increasingly gaining ground. Undoubtedly, the main mo-
tivating factor to explore beyond supervised learning is the lack of enough (parallel) examples,
a performance bottleneck regardless of the underlying architecture (Koehn and Knowles, 2017).
A fairly successful approach using monolingual data is the semi-supervised learning with back-
translation (Sennrich et al., 2015), particularly if the initial supervised model is good enough for
augmenting quality pseudo-bitext (Poncelas et al., 2018; Ott et al., 2018; Caswell et al., 2019).
Moreover, back-translation showed to be a core element of new monolingual based approaches.
These include zero-shot NMT (Lakew et al., 2017; Gu et al., 2019; Currey and Heafield, 2019),
which relies on a multilingual model (Johnson et al., 2017; Ha et al., 2016) (Fig. 1b) and un-
supervised NMT, which initializes from pre-trained embeddings (Lample et al., 2018; Artetxe
et al., 2018) or cross-lingual language model (Lample and Conneau, 2019) (Fig. 1d). At least
two observations can be made on the approaches that leverage monolingual data: i) they require
high-quality and comparable monolingual examples, and ii) they show poor performance on
real-world zero-resource language pairs (ZRPs)1 (Neubig and Hu, 2018; Guzmán et al., 2019).

To overcome these problems, in this work we propose a zero-shot modeling approach
(Fig. 1c) to translate from an unseen source languageU to a target language T that has only been
††Work conducted when the author was at FBK.

1ZRP: a language pair with only monolingual data available, alternatively called Zero-Shot Pair (ZSP).
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Figure 1: Proposed Zero-Shot (c) and existing NMT modeling approaches, using parallel (solid
line) and monolingual (broken line) data.

observed by a model pre-trained on (S, T ) parallel data (S being a different source language).
In literature, zero-shot NMT has been investigated under the assumption that (U,P ) and (P, T )
parallel data involving a pivot language P are available for pre-training (Fig. 1b) (Johnson et al.,
2017; Ha et al., 2016). However, most of the +7, 000 currently spoken languages do not exhibit
any parallel data with a common P language. This calls for new techniques to achieve zero-shot
NMT by reducing the requirements of the pivoting-based method.

To this aim, our approach follows a self-learning cycle, by first translating in the primal
zero-shot direction U → T with a model pre-trained on (S, T) parallel data that has never seen
U during training. Then, the generated translations are used as a pseudo-bitext to learn a model
for the dual T → U translation direction. This inference-learning cycle is iterated, alternating
the dual and primal zero-shot directions until convergence of the U ↔ T zero-shot model.

Through experiments on data covering eight language directions, we demonstrate the effec-
tiveness of our approach in the ZRP scenario. In particular, we report significant improvements
compared to both a supervised model trained in low-resource conditions (up to +5.93 BLEU)
and an unsupervised one exploiting large multilingual corpora (up to +5.23 BLEU).
Our contributions can be summarized as follows:

• We propose a new variant of zero-shot NMT, which reduces the requirements of previ-
ous pivoting-based methods. Our approach enables incorporating an unseen zero-resource
language U , with no need of pre-training on parallel data involving U .

• We empirically evaluate our approach on diverse language directions and in a real-world
zero-resource scenario, a testing condition disregarded in previous literature.

• We provide a rigorous comparison against unsupervised neural machine translation, by
testing our models in an in-domain, out-of-domain, and source to target domain mismatch
scenarios.

2 Zero-Shot Translation

From a broad perspective, ZST research is moving in three directions, (i) improving translation
quality by employing ZST specific objectives (Chen et al., 2017; Lu et al., 2018; Blackwood
et al., 2018; Al-Shedivat and Parikh, 2019; Arivazhagan et al., 2019a; Pham et al., 2019; Ji et al.,
2019; Siddhant et al., 2020), (ii) training favorable large scale multilingual models for the ZST
languages with lexically and linguistically similar languages (Aharoni et al., 2019; Arivazhagan
et al., 2019b), and (iii) incrementally learning better model for the ZST directions with self-
learning objectives (Lakew et al., 2017; Gu et al., 2019; Zhang et al., 2020). The common
way of employing self-supervised learning in ZST modeling is iterative back-translation that
generates the source from the monolingual target to construct a new parallel sentence pair. In
terms of performance, while (i) and (ii) fall behind, (iii) either approaches or even outperforms
the two-step pivot translation approach (S → P → T ).
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Despite these progresses, current approaches make identical assumptions, namely: i) the
reliance on a multilingual model, and ii) observing both the U and T zero-shot languages paired
with the P language(s). However, in a real-world setting these conditions are rarely satisfied,
hindering the application of zero-shot NMT to the vast majority of ZRP. Moreover, conditioning
ZST on P language(s) creates a performance ceiling that depends on the amount, domain, and
quality of parallel data available for the S − P and P − T pairs.

To our knowledge, a zero-shot NMT modeling between an unseen-U and T zero-shot pair,
and without the P language(s) criterion has not yet been explored, motivating this work.

2.1 Zero-Shot Translation with Self-Learning
We propose a new zero-shot NMT (ZNMT) approach that expands the current definition of
zero-shot to the extreme scenario, where we avoid the established assumption of observing the
zero-shot (U , T ) languages paired with the pivot (P ) language(s). Instead, we consider only
the availability of monolingual data for (U , T ) and a pre-trained NMT observing only the T
language − a scenario applicable to most zero-resource languages.

To this end, with the goal of learning a zero-shot model covering the primal (U → T ) and
the dual (T → U ) directions, our ZNMT approach consists of three stages: model initialization,
incremental data augmentation, and model learning. The latter two steps can be iterated over
time creating a self-learning cycle between the primal and dual zero-shot directions.

2.2 Model Initialization

Algorithm 1: Proposed ZNMT

1 Input;
Um, Tm← monolingual data of the ZSP;
TM← pre-trained translation model;
R← maximum self-learning cyle;

2 ZNMT0,← TM;
3 DPr = ∅; DDu = ∅;
4 r ← 1 ;
5 for r to R do
6 T ∗ ← Primal Infer (ZNMT0, Um)
7 DDu← (T ∗, Um)
8 ZNMT1← Train (ZNMT0, DDu∪DPr)
9 DPr = ∅

10 U∗ ← Dual Infer (ZNMT1, Tm)
11 DPr ← (U∗, Tm)
12 ZNMT2← Train (ZNMT1, DPr ∪DDu)
13 ZNMT0← ZNMT2

14 DDu = ∅
end

15 return ZNMT0

Different from conventional ZST ap-
proaches, ZNMT can be either initial-
ized from a bilingual or a multilingual
pre-trained system (Algorithm 1, line 2).
The only assumption we consider is the
availability of the zero-shot T side at pre-
training time. Hence, our initialization in-
troduces relaxation to model pre-training,
a direct consequence of removing the P
language premise. Considering that U has
never been observed, we analyze differ-
ent pre-training strategies to build a robust
zero-shot system.

2.3 Self-Learning Cycle
In our scenario, we have only access to
monolingual data for both the U and T
languages, and the pre-trained model did
not leverage U − T parallel data during
training. In this setting, after the initial-
ization, the very first task is a zero-shot in-
ference for U → T (line 6), to which we
refer as the primal ZST direction. The goal
of this step is to acquire pseudo-bitexts to
enhance the translation capability of the
NMT system for the T → U direction.

To this aim, when the primal inference is concluded, a learning step is performed by revert-
ing the generated pseudo-bitext data (T → U ). ZNMT optimizes the same objective function
(Eq. 1) as in the pre-training or Eq. 2 if zero-shot training is performed together with other su-
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pervised languages pairs (co-learning) as in (Johnson et al., 2017). The resulting model is then
used to perform the T → U inference (line 10), to which we refer as the dual direction. The
data generated by the dual process is then paired with the data produced by the primal one and
used in a new leaning step. Assuming that at each inference step our algorithm generates better
quality bi-texts, we replace the dual or primal data (DDu and DPr) produced at the previous
round with the ones generated in the current round. For instance, during the training at line 8,
we use the DDu generated at line 7, while we keep the DPr generated at line 11 of the previous
round.

This sequential approach alternates the primal and dual inferences (lines 6, 10) with a
learning phase in between (lines 8, 12). The goal of this procedure is two-fold, first to implement
a self-learning strategy and then to acquire more and better pseudo-bitext pairs.

Unlike previous work on improving zero-shot translation (Lakew et al., 2017; Gu et al.,
2019), we focus on learning only a model for the ZSP languages. However, for a better analysis
and fair comparison with multilingual supervised approaches, we further show ZNMT perfor-
mance by co-learning with language pairs with parallel data (such as incorporating the S − T
pair while learning the zero-shot U − T ).

An important aspect for ZNMT is how close is U to S in terms of vocabulary and sentence
structure. Our intuition is that the closer the two languages, the higher is the performance
achieved by the ZNMT. This will be explored in §4.

3 Experimental Settings

To build an experimental ground that defines zero-shot translation without the pivot language,
we selected a real-world low-resource languages benchmark. In other words, we considered the
data to incorporate multiple and diverse languages, including parallel data for building strong
baselines and monolingual data to evaluate ZNMT. Moreover, our choice is motivated by the
findings of Neubig and Hu (2018) and Guzmán et al. (2019), showing that monolingual-based
approaches under-perform when assessed with real-world zero-shot pairs (ZSPs).

3.1 Languages and Dataset

Due to their low-resource nature, we use Ted talks data (Cettolo et al., 2012; Qi et al., 2018)
for Azerbaijani (Az), Belarussian (Be), Galician (Gl), and Slovak (Sk) paired with English
(En). The four pairs come with train, dev, and test sets, with a max of 61k and as few as 4.5k
examples, creating an ideal scenario of low-resource pair (LRP). The parallel data of the LRP is
used to build baseline models in isolation and in a multilingual settings. The same dataset has
been also used in recent works in an extremely low-resource scenario (Neubig and Hu, 2018;
Xia et al., 2019; Lakew et al., 2019).

For the approaches utilizing monolingual data, we take the non–En side for each of the
four LRP languages as in-domain (IND) monolingual examples. For the En monolingual data,
segments are collected from the target side of the respective S−T (En) pairs. However, to avoid
the presence of comparable sentences in the U and T sides of the ZSP, we discard segments of
monolingual En if the T (En) side of the U − T and S − T are overlapping.

For out-of-domain (OOD) monolingual data we extract segments from Wikipedia dumps,
similar to Xia et al. (2019).2 The collected data are de-duplicated and overlapping segments
with the IND monolingual are removed. To create a practical real-world scenario that represents
most of the ZRP languages, we take only the top 2×106 segments, aligning with the maximum
number of samples that are available for the non-En languages in this benchmark. Statistics
about the data are shown in Table 1.

2Wikipedia: https://dumps.wikimedia.org/
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Domain Az-En Be-En Gl-En Sk-En

Sample Size
Parallel (Train/Dev/Test)

IND 5.9k 4.5K 10.0k 61.5k
IND 671 248 682 2271
IND 903 664 1007 2445

Monolingual
IND 5.9k, 174k 4.5k, 201k 10K, 174K 61.5k, 58.6
OOD 1.85M, 2M 1.67M, 2M 1.9M, 2M 1.8M, 2M

U Language Property Family/Script Turkic/Latin Slavic/Cyrillic Romance/Latin Slavic/Latin

Table 1: Languages and data statistics for parallel in-domain (IND) LRP, monolingual IND and
out-domain (OOD).

3.2 Models
To test the ZNMT strategy and compare it against other approaches, we train the following
models:

• NMT: trained with supervised objective using parallel IND data of each LRP.

• sNMT (semi-supervised NMT): trained with semi-supervised objective (Sennrich et al.,
2015) with back-translation leveraging OOD monolingual data.

• MNMT (multilingual NMT): trained with supervised objective aggregating 116 directions
IND parallel data (Johnson et al., 2017).3

• uNMT (unsupervised NMT): trained with unsupervised objectives (Lample and Conneau,
2019) leveraging IND and OOD data.

• zNMT (zeros-shot NMT): trained with proposed zero-shot modeling leveraging IND and
OOD monolingual data.

3.3 Pre-Training Objectives
UNMT leverages a cross-lingual masked language model pre-training (MLM). We train the
MLM following the (Lample and Conneau, 2019) settings, using both OOD and IND monolin-
gual data of each ZSP language. Although ZNMT can be initialized from any pre-trained NMT
model as long as the T language of the ZSP is observed (see §2.1), we devise three types of
pre-training strategies for a rigorous evaluation and based on data availability:

• BITM – four bilingual translation models trained with S ↔ En parallel data.4

• MUTM100 – a multilingual NMT model with 100 translation directions from the TED
talks data, excluding the four ZSP and the pairs used for BITM.

• MUTM108 – a similar multilingual model with MUTM100, however, including additional
8 directions used for the BITM models.

The idea behind the MUTM100 and MUTM108 strategies is to check to what extent the
presence of close languages to the unseen-U in the pre-trained model can support the ZNMT
approach. Note that, unlike in the MLM, all the pre-training for ZNMT utilized only in-domain5

3List of languages can be found in the Appendix.
4S is a related language to the unseen-U . The S/unseen-U combinations are: Az/Turkish(Tr),

Be/Russian(Ru), Gl/Portuguese(Pt), and Sk/Czech(Cs).
5Utilizing OOD monolingual data for NMT pre-training could be an advantageous and interesting direction to inves-

tigate, however, for this work we constrain to utilizing only IND data.
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Id Model Pre-Train Scen. Az-En En-Az Be-En En-Be Gl-En En-Gl Sk-En En-Sk

1 Supervised (NMT) - IND 3.60 2.07 5.20 3.40 19.53 15.52 27.24 20.91
2 Semi-Supervised (SNMT) - IOD 3.74 1.92 5.74 4.03 22.08 17.27 27.85 21.24

3

Unsupervised (UNMT) MLM

IND 1.97 1.56 4.61 1.47 13.93 5.89 15.70 11.91
4 OOD 3.26 2.55 5.69 3.73 16.71 14.90 10.62 7.62
5 I-OD 0.88 1.18 0.82 0.90 5.06 2.78 6.39 7.28
6 IOD 3.97 2.57 5.57 3.78 20.23 17.07 13.77 11.43

7

Zero-Shot (ZNMT) BITM

IND 8.86 4.87 4.42 3.45 23.57 18.17 17.89 14.08
8 OOD 6.76 4.45 5.75 5.16 17.28 16.97 9.13 6.74
9 I-OD 2.63 3.96 1.20 2.23 14.96 16.23 9.10 11.35
10 IOD 11.38 6.28 7.36 6.35 25.46 21.09 19.43 14.70

Table 2: Results from low-resource supervised and semi-supervised, and our monolingual based
ZNMT in comparison with UNMT (Lample and Conneau, 2019) across the four training sce-
narios.

3.4 Training Scenarios
We define four model training criteria based on a real-world scenario for a ZSP, that is the
availability and characteristics (such as domain and size) of monolingual data.

• IND: in-domain data is used both on the U and T zero-shot sides.

• OOD: out-of-domain data are used both in the U and T sides of the ZSP.

• I-OD: a scenario where we create a domain mismatch between the U and T side of the
ZSP, by replacing the T IND with OOD data.

• IOD: a the mix of IND and relatively large OOD data is used on both U and T sides.

3.5 Training Pipeline
Data Preparation: we collect the IND Ted talks data provided by Qi et al. (2018) and OOD
Wikipedia6 data, and then segment them into sub-word units. We use SentencePiece (Kudo
and Richardson, 2018)7 to learn BPE with 32k merge operations using the IND training data,
whereas for UNMT we also use OOD monolingual data.

Model Settings: all experiments use Transformer (Vaswani et al., 2017). UNMT is trained us-
ing the XLM tool (Lample and Conneau, 2019)8, while for the rest we utilize OpenNMT (Klein
et al., 2017).9 Models are configured with 512 dimension, 8 headed 6 self-attention layers, and
2048 feed-forward dimension. Additional configuration details are provided in the Appendix.

Evaluation: we use the BLEU score (Papineni et al., 2002)10 for assessing models’ perfor-
mance. Scores are computed on detokenized (hypothesis, reference) pairs. The checkpoints
with best BLEU on the dev set are used for the final evaluations.

4 Results and Analysis

In Table 2, we asses the quality of various NMT systems featuring different model types (§3.2),
training scenarios (§3.4) using bilingual BITM for ZNMT and MLM for UNMT pre-training.

6WikiExtractor: https://github.com/attardi/wikiextractor
7SentencePiece: https://github.com/google/sentencepiece
8XLM: https://github.com/facebookresearch/XLM
9OpenNMT: https://github.com/OpenNMT

10Moses Toolkit: http://www.statmt.org/moses
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Id Model Pre-Train Scen. Az-En En-Az Be-En En-Be Gl-En En-Gl Sk-En En-Sk

1 Supervised (MNMT) - IND 11.37 4.98 18.36 10.06 29.77 25.44 27.49 22.72

2

Zero-Shot (ZNMT)
MUTM100 I-OD 1.04 2.55 7.31 7.14 22.91 22.93 12.33 11.81

3 IOD 2.51 1.55 16.20 10.30 32.14 26.68 23.52 16.60
4

MUTM108 I-OD 4.14 2.38 10.18 9.00 26.45 25.34 20.26 19.69
5 IOD 9.19 2.75 17.26 10.95 32.83 27.49 28.94 21.53

Table 3: ZNMT when initialized from multilingual pre-trained models, in comparison with
supervised MNMT.

We then show the effect of leveraging massive multilingual pre-training on the ZNMT perfor-
mance (Table 3). Finally, we expand our analysis to co-learning ZNMT with supervised NMT
(Table 4). A preliminary assessment of the experimental choices adopted for ZNMT can be
found in the Appendix.

4.1 Bilingual Pre-Training

The first two rows of Table 2 confirm the results of (Sennrich et al., 2015) showing that semi-
supervised approaches, which leverage back-translation, outperform supervised NMT systems.
Moreover, the performance of both approaches strongly relates to the quantity of the available
training data (Gl − En� Be− En).

In the in-domain training scenario (IND), our ZNMT approach outperforms the supervised
low-resource NMT, except for Sk ↔ En and Be → En (rows 1, 7), demonstrating the ef-
fectiveness of our proposal in leveraging monolingual data. The advantage of ZNMT is further
confirmed when comparing it with UNMT. In this case, ZNMT outperforms UNMT in 7 out
of 8 language directions and it is on par on the Be→ En language pair.
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Figure 2: Effect of pre-training data size.

In the out-of-domain train-
ing scenario (OOD), despite the
fact that UNMT utilizes ×10 more
OOD segments than ZNMT, our ap-
proach surprisingly achieves bet-
ter performance than UNMT, ex-
cept for Sk − En (rows 4, 8).
Fig. 2 shows the effect of vary-
ing the amount of monolingual data
during pre-training (BITM, MLM).
We observe that UNMT is signif-
icantly affected by decreasing the
size of the monolingual data and,
when using the same quantity ap-
plied in ZNMT (200k), it achieves
much worse performance (-10 BLEU points). Our findings clearly show the effectiveness of
ZNMT in learning better with small monolingual data, a case applicable for most LRP and ZSP.

The domain mismatch scenario (I-OD) is the most realistic representation for ZSP and
LRP settings, as it does not count on access to comparable monolingual data. Both ZNMT and
UNMT show drastic performance drops in all directions (rows 5, 9), confirming the findings of
Kim et al. (2020). Besides the performance drop, ZNMT shows higher robustness to domain
shifts, resulting in higher scores. UNMT, in contrast, is susceptible to the domain divergence
and requires comparable monolingual data that is hard to acquire for ZRP.

In the mixed domain scenario (IOD), ZNMT prevails over UNMT by a larger margin
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Id Model Pre-Train Scen. Az-En En-Az Be-En En-Be Gl-En En-Gl Sk-En En-Sk

1 MASSIVE - IND 12.78 5.06 21.73 10.72 30.65 26.59 29.54 24.52
2 DYNADAPT MUTM108 IND 15.33 - 23.80 - 34.18 - 32.48 -
3 AUGADAPT MUTM108 IOD 15.74 - 24.51 - 33.16 - 32.17 -

4
ZNMT + CO-LEARNING MUTM108 IND 8.56 2.25 16.34 9.16 32.75 26.75 28.84 22.34

5 IOD 11.01 2.28 18.05 10.38 33.26 27.64 29.94 22.26

Table 4: Performance of ZNMT with co-Learning in comparison with the supervised MAS-
SIVE (Aharoni et al., 2019) and DYNADAPT (Lakew et al., 2019), and semi-supervised AU-
GADAPT (Xia et al., 2019).

(rows 6, 10) ranging from +1.79 (Az−En) to +7.41 (Be−En) BLEU. This is a similar trend
to the IND, OOD, and I-OD scenarios, validating the superiority of the proposed ZNMT learning
approach. A more interesting aspect is that, except for Sk − En (rows 2, 10), ZNMT also
outperforms semi-supervised NMT. This shows that a stronger model can be learned exploiting
as few as 200k monolingual data with our ZNMT learning principles, in comparison with a LRP
performance (such as Az − En with 5.9k, and Gl − En with 10k parallel data).

In sum, the results in Table 2 show that, for low-resource language pairs, ZNMT leverag-
ing BITM can in most of the cases outperform supervised NMT trained on language-specific
parallel data. Moreover, ZNMT is robust towards domain shifts from the pre-training and
across U − T ZSP, outperforming unsupervised NMT in all training scenarios.

4.2 Multilingual Pre-Training
To test the capability of ZNMT to leverage universal representation from the pre-trained model,
we built two massive multilingual systems: MUTM100 that excludes the pairs used for BITM
and MUTM108 that assumes a favorable condition by also including the BITM pairs.

Besides the initialization from the universal models, we train the best ZNMT scenario
(IOD) and the most challenging one (I-OD) from Table 2 by only using the U − T monolingual
data. Table 3 (row 1) shows that the supervised MNMT benefits from the multilingual corpus
(i.e., trained with 116 directions data including the zero-shot pairs), and, as expected, obtains
improvements over the bilingual supervised models in Table 2.

In the domain mismatch scenario (I-OD), the use of BITM leads to large drops in per-
formance compared to the IND or IOD scenario (Table 2, row 9). This is also confirmed when
leveraging the MUTM* pre-training (rows 2, 4). However, the robust multilingual pre-training
shows improvements compared with the initialization from BITM. For instance, the Gl → En
with BITM drops -10.5 (from 25.46 with IOD to 14.96 with I-OD), while MUTM108 degrades
only by 6.38 BLEU points.

Our approach leveraging the mixed domain (IOD) monolingual data with MUTM108
achieves the best performance in most of the language directions and is on par or even bet-
ter with the supervised multilingual (rows 1, 3, and 5). This is a remarkable result because the
ZNMT systems do not leverage any language-specific parallel data.

The advantage of using a robust pre-training can be ascribed to the availability of multiple
languages that maximizes the lexical and linguistic similarity with the ZSP. Looking at the IOD
scenario MUTM* in Table 3 (rows 3, 5), we notice an overall improvement over BITM pre-
training (Table 2, row 10). A comparison against the best supervised SNMT model (Table 2)
using low-resource parallel data shows better performance of ZNMT with MUTM108 up to
(+10.75 ↔ +10.22) for Gl − En. However, as for the BITM, it is not always the case to
find closely related S − T pair(s) to the U − T ZSP for pre-training. Hence, it is rather more
interesting to observe that ZNMT can learn even better with MUTM100 without observing the
most related languages as in BITM.
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With respect to the BITM,Az−En is the only ZSP that do not benefit from the multilingual
pre-training. One possible reason is the absence of related language pairs, which makes the pre-
training representation dominated by other pairs. This becomes more evident (lower BLEU)
when using MUTM100, a pre-training that excludes the closest S − T pair to Az − En.

In sum, our approach shows significant improvements when leveraging universal pre-
trained models. This is demonstrated by the large gains in performance in all the scenarios
over the BITM pre-training. The fact that our method is able to approach the performance of
the multilingual supervised settings, and in some cases to overcome them, makes it a valuable
solution for ZSP languages.

4.3 Co-Learning with Supervised Directions
To test the complementary of ZNMT and supervised NMT, we add the parallel data of the
latter only at the learning stage. Although it is possible to leverage multilingual parallel data, in
this experiments we only utilize a single S − T parallel pair from the BITM for the zero-shot
co-learning stage of U − T .

We compare our co-learning system with three state-of-the-art approaches: MASSIVE
trains a many-to-many system on all (116 ↔ 116) available pairs (Aharoni et al., 2019), DY-
NADAPT (Lakew et al., 2019) uses an IND criterion to adapt MUTM108 pre-trained model by
first tailoring the vocabulary and embeddings to the LRP and AUGADAPT (Xia et al., 2019) gen-
erates pseudo-bitext from OOD monolingual and adapts MUTM108 together with the IOD data.
The latter two utilize a similar co-learning strategy during the adaptation of the universal model
with the parallel data, and reported results only when the target is En. Similar to MASSIVE,
DYNADAPT, and AUGADAPT, we focused on IND and IOD training scenarios.

Table 4 reports the performance of these approaches and of ZNMT with co-learning using
in the IND and IOD scenarios. Comparing ZNMT + CO-LEARNING (rows 5) with ZNMT in
Table 3 (row 5), the results show that co-learning generally leads to better performance. How-
ever, when the target language is non-En, the differences are marginal and the two approaches
can be considered comparable. This is directly associated with the fact that we have more En
segments, from the aggregation of the S − T (En) and U − T (En) pairs. DYNADAPT and AU-
GADAPT are the two best performing supervised techniques on the this benchmark, but ZNMT
with co-learning achieves competitive performance approaching them both in the IND and IOD
scenarios.

Overall, these findings show that our approach makes it possible to extend zero-shot NMT
to an unseen language U . In particular, leveraging a universal pre-training model and co-
learning with supervised task allows our approach to learn a better NMT model from mono-
lingual data.

5 Conclusion

We presented a new zero-shot NMT modeling variant, specifically targeting languages that have
never been observed in a pre-trained NMT. We showed limitations of current approaches with
the pivot language premise and zero-shot translation only between observed languages, and pro-
posed a relaxation to zero-shot NMT to incorporate unseen languages. Our approach includes
initialization, augmentation, and training stages to construct a self-learning cycle to incremen-
tally correct the primal and dual zero-shot translation quality. We empirically demonstrated
the effectiveness of the proposed approach using diverse real-world zero-resource languages in
in-domain, out-of-domain, domain-mismatch, and mixed domain scenarios. Results both from
bilingual and multilingual initialization not only revealed the possibility of extending zero-shot
NMT for unseen languages but also improved performance over unsupervised, low-resource
supervised and semi-supervised NMT.
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Appendices

A Background and Motivation

For an S and T language pair, a standard NMT model is learned by mapping (s, t) example
pairs with an encoder-decoder network (Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014) such as Recurrent (Bahdanau et al., 2014; Cho et al., 2014), Convolutional (Gehring
et al., 2017), and Transformer (Vaswani et al., 2017). Despite the varied architectural choices,
the objective of NMT is to minimize the loss,

Lθ̂(s, t) =

|t|+1∑
i=1

logp(ti|s, θ̂) (1)

θ̂ is the parameterization of the network, s is the source sentence, and t is the predicted sentence.
Reserved tokens 〈bos〉 at i = 0 and 〈eos〉 at i = |t|+ 1 defines the beginning and end of t.

Training Paradigms
Semi-Supervised learning leverages monolingual data and has been used to improve su-
pervised phrase-based models (Bertoldi and Federico, 2009; Bojar and Tamchyna, 2011).
In NMT the procedure is commonly called − back-translation (Sennrich et al., 2015); to
enhance S → T direction additional pseudo-bitext is utilized by augmenting the S side from T
monolingual segments with a reverse T → S model. Back-translation became a core module
in approaches that leverage monolingual data, such as dual-learning (Xia et al., 2016; Sestorain
et al., 2018), zero-shot (Firat et al., 2016b; Lakew et al., 2017; Gu et al., 2019; Currey and
Heafield, 2019; Zhang et al., 2020), and unsupervised (Lample et al., 2018; Artetxe et al.,
2018) translation.

Unsupervised learning considers only monolingual data of S and T languages. Initialization
from pre-trained embeddings (Artetxe et al., 2018; Lample et al., 2018) or cross-lingual
language model (Lample and Conneau, 2019), denoising auto-encoder and iterative back-
translation are commonly employed learning objectives. Despite being a rapidly growing
research area, findings show failures in an unsupervised NMT when using real-world
ZRP (Neubig and Hu, 2018), distant languages (Guzmán et al., 2019) in a domain-mismatched
scenario (Kim et al., 2020; Artetxe et al., 2020). Given the similarity in leveraging monolingual
data, we directly compare our zero-shot NMT with unsupervised NMT.

Multilingual modeling extends Eq. 1 objective to multiple language pairs. Although early work
dedicates network components per language (Dong et al., 2015; Luong et al., 2015; Firat et al.,
2016a), the most effective way utilizes “language-id” to share a single encoder-decoder model
across multiple language pairs (Johnson et al., 2017; Ha et al., 2016). For L languages, a model
learns to maximize the likelihood over all the available language pairs (max of N = L(L− 1))
parallel data. For each language pair S, T ∈ N and S 6= T , Eq. 1 can be written as,

LT
θ̂
(sS , tT ) =

|t|+1∑
i=1

logp(tTi |sS , θ̂) (2)

Where the language-id (i.e. 〈2T 〉) is explicitly inserted at i=1 of the source (sT ). Most
importantly, multilingual modeling enables translation between language pairs without an
actual training data (S, T /∈ N ), exploiting an implicit transfer-learning from pairs with training
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data − also known as Zero-Shot Translation (ZST) (Johnson et al., 2017).

Transfer Learning across NMT models (i.e, parent-to-child) (Zoph et al., 2016), have been
shown to work effectively with a shared vocabulary across related (Nguyen and Chiang, 2017)
and even distant (Kocmi and Bojar, 2018) languages, by pre-training multilingual models (Neu-
big and Hu, 2018), by updating parent vocabularies with child (Lakew et al., 2018), and for a
ZST with a pivot language (Kim et al., 2019). In this work, we leverage for the first time pre-
trained models for zero-shot translation without the pivot language assumption.

B Preliminary Assessment

We summarize the motivation for certain experimental design choices in our zero-shot NMT
(ZNMT) modeling, analyzing model pre-training type (such as bilingual (BITM) and multilin-
gual (MUTM*)) and effective utilization of the in-domain (IND), out-of-domain (OOD), mixed
domain (IOD) monolingual data. The Gl −En zero-shot pair (ZSP) is used for our assessment.

zNMT Training Round

B
LE

U

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

muTM100 (Gl-En) muTM100 (En-Gl) biTM (Gl-En) biTM (En-Gl)

Figure 3: Performance of ZNMT using bilingual (BITM)
and multilingual (MUTM100) pre-trainings.

Pre-Trained NMT Variant
Unlike previous work in zero-shot
NMT, our ZNMT aims to lever-
age both bilingual and multilin-
gual pre-trainings. Fig. 3 shows
ZNMT improves better if initial-
ized from multilingual pre-training
(MUTM100). This is despite
MUTM100 not observing the clos-
est language pair (Pt − En) to
the ZSP (Gl − En), while BITM
is trained using only Pt − En.
Hence, the gain by initializing from
MUTM100 shows the robustness
of pre-training with multiple lan-
guages and its positive effect on
ZNMT. However, these results signal MUTM* importance for ZNMT modeling, for further
verification and better comparison with the bilingual supervised and unsupervised approaches
our main experimental setup first focuses on utilizing BITM.
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Figure 4: Performance of ZNMT by varying
monolingual data size ratio between U and T .

Data Size and Domain
For the training scenarios involving IND and
OOD data, Fig. 4 shows if available using all
IND segments (All:All) is better than taking
equal proportion (1:1) of theU and T sides of
the ZSP. In a parallel experiment for IOD sce-
nario, however, we observed that balancing
the OOD segments with IND lead to a compa-
rable or better performance. In other words,
we select OOD proportionally (≈ 200k) to
the largest IND side of the ZSP. We noted
a similar trend for semi-supervised (SNMT)
low-resource model, that shows better perfor-
mance when using ≈ 200k OOD leading to
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22.08 ↔ 17.27 (Gl ↔ En) than using ≈ 2M segments that degrades to 20.86 ↔ 16.44
BLEU. However, for UNMT it is a common knowledge where more monolingual data leads to
better performance (Lample and Conneau, 2019). We confirmed this by reducing the OOD to
200k as in ZNMT and SNMT, where we observed a 5 BLEU drop in UNMT performance in
both Gl ↔ En directions. For this reason, we train UNMT models using all the available IND
and ≈ 2M OOD segments. In other words, the unsupervised models consume all the available
IND and OOD monolingual data, that is ×10 more than the SNMT baseline and our ZNMT
utilized. In sum, this shows the efficiency of our approach to reach to a better performance with
less resources. Detail comparisons are provided in the main experimental section.
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Figure 5: Training strategies to best utilize in-domain
(IND) and out-of-domain (OOD) monolingual data.

Lastly, Fig. 5 shows an effec-
tive strategy of utilizing the IND and
OOD data for ZNMT in a mixed
domain (IOD) scenario. The test
settings show first learning ZNMT
with the IND and progressively in-
corporating OOD data (IND > IOD)
is the best approach, in compari-
son with (OOD > IOD), or utilizing
(IOD) from the beginning. Consid-
ering pre-trained models for ZNMT
utilizes IND data (except for the un-
seen U ), the finding is expected and
leads to a better performance. Ap-
plying a similar (IND > IOD) strat-
egy for UNMT, however, resulted
in a drop of up to 7 BLEU for En → Gl, compared to training with the mixed domain (IOD)
from the beginning. This is likely due to the fact that the the pre-training for UNMT observes
both ID and OD data of U −T ZSP and leading to a better learning when using IOD. In our main
experimental setup we choose the best strategy for each of the approaches.

C Model Configuration and Parameters

Model Initialization Params (×106) Layers
MLM - 41 6
BITM - 53 6

MUTM∗ - 69 6
NMT - 38 4

SNMT - 38 4
MNMT - 69 6
UNMT MLM 86 6
ZNMT BITM 53 6
ZNMT MUTM∗ 69 6

Table 5: Model, parameter size, and number of self-attention layers. MUTM* represents both
MU100 and MU108.

To tackle over-fitting in the bilingual baseline supervised and semi-supervised NMT mod-
els we employ a dropout rate of 0.1 on the attention and 0.3 on all the other layers. Whereas
the dropout rate for all the other models are set uniformly to 0.1. We use source and target tied
embeddings (Press and Wolf, 2016). Samples exceeding 100 sub-word counts are discarded at
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time of training. Model training is done on a single V100 GPU with batch-size of 4, 096 tokens.
Adam is used as an optimizer (Kingma and Ba, 2014) with a learning rate of 10−4.

Details about model parameter are provided in Table 5. At time of training all models
have shown to converge. While ZNMT shows the fastest learning curve within 15− 20 epochs,
UNMT run up to 100 epochs to reach convergence.

D Languages and Data

Table 6 lists the languages and examples size from the TED talks data.
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Language Lang. Id Train Dev Test

Arabic ar 214111 4714 5953
Azerbaijani az 5946 671 903
Belarusian be 4509 248 664
Bulgarian bg 174444 4082 5060
Bengali bn 4649 896 216
Bosnian bs 5664 474 463
Czech cs 103093 3462 3831
Danish da 44940 1694 1683
German de 167888 4148 4491
Greek el 134327 3344 4431
Esperanto eo 6535 495 758
Spanish es 196026 4231 5571
Estonian et 10738 740 1087
Basque eu 5182 318 379
Persian fa 150965 3930 4490
Finnish fi 24222 981 1301
French-Canadian fr-ca 19870 838 1611
French fr 192304 4320 4866
Galician gl 10017 682 1007
Hebrew he 211819 4515 5508
Hindi hi 18798 854 1243
Croatian hr 122091 3333 4881
Hungarian hu 147219 3725 4981
Armenian hy 21360 739 1567
Indonesian id 87406 2677 3179
Italian it 204503 4547 5625
Japanese ja 204090 4429 5565
Georgian ka 13193 654 943
Kazakh kk 3317 938 775
Korean ko 205640 4441 5637
Kurdish ku 10371 265 766
Lithuanian lt 41919 1791 1791
Macedonian mk 25335 640 438
Mongolian mn 7607 372 414
Marathi mr 9840 767 1090
Malay ms 5220 539 260
Burmese my 21497 741 1504
Norwegian nb 15825 826 806
Dutch nl 183767 4459 5006
Polish pl 176169 4108 5010
Portuguese-Brazilian pt-br 184755 4035 4855
Portuguese pt 51785 1193 1803
Romanian ro 180484 3904 4631
Russian ru 208458 4814 5483
Slovak sk 61470 2271 2445
Slovenian sl 19831 1068 1251
Albanian sq 44525 1556 2443
Serbian sr 136898 3798 4634
Swedish sv 56647 1729 2283
Tamil ta 6224 447 832
Thai th 98064 2989 3713
Turkish tr 182470 4045 5029
Ukrainian uk 108495 3060 3751
Urdu ur 5977 508 1006
Vietnamese vi 171995 4645 4391
Chinese-China zh-cn 199855 4558 5251
Chinese zh 5534 547 494
Chinese-Taiwan zh-tw 202646 4583 5377

Table 6: Languages and the parallel number of segments paired with English from the the TED
Talks data (Qi et al., 2018). The four languages used as an unseen (U ) source are highlighted.
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Abstract
We present the findings of the LoResMT 2021 shared task which focuses on machine trans-
lation (MT) of COVID-19 data for both low-resource spoken and sign languages. The orga-
nization of this task was conducted as part of the fourth workshop on technologies for ma-
chine translation of low resource languages (LoResMT). Parallel corpora is presented and pub-
licly available which includes the following directions: English↔Irish, English↔Marathi, and
Taiwanese Sign language↔Traditional Chinese. Training data consists of 8112, 20933 and
128608 segments, respectively. There are additional monolingual data sets for Marathi and
English that consist of 21901 segments. The results presented here are based on entries from a
total of eight teams. Three teams submitted systems for English↔Irish while five teams sub-
mitted systems for English↔Marathi. Unfortunately, there were no systems submissions for
the Taiwanese Sign language↔Traditional Chinese task. Maximum system performance was
computed using BLEU and follow as 36.0 for English–Irish, 34.6 for Irish–English, 24.2 for
English–Marathi, and 31.3 for Marathi–English.

1 Introduction

The workshop on technologies for machine translation of low resource languages (LoResMT)1

is a yearly workshop which focuses on scientific research topics and technological resources
for machine translation (MT) using low-resource languages. Based on the success of its three
predecessors (Liu, 2018; Karakanta et al., 2019, 2020), the fourth LoResMT workshop into-
duces a shared task section based on COVID-19 and sign language data as part of its research
objectives. The hope is to provide assistance with translation for low-resource languages where
it could be needed most during the COVID-19 pandemic.

1https://sites.google.com/view/loresmt/

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 114



To provide a trajectory of the LoResMT shared task success, a summary of the previous
tasks follows. The first LoResMT shared task (Karakanta et al., 2019) took place in 2019. There,
monolingual and parallel corpora for Bhojpuri, Magahi, Sindhi, and Latvian were provided
as training data for two types of machine translation systems: neural and statistical. As an
extension to the first shared task, a second shared task (Ojha et al., 2020) was presented in 2020
which focused on zero-shot approaches for MT systems.

This year, the shared task introduces a new objective focused on MT systems for COVID-
related texts and sign language. Participants for this shared task were asked to submit novel MT
systems for the following language pairs:

• English↔Irish

• English↔Marathi

• Taiwanese Sign Language↔Traditional Chinese

The low-resource languages presented in this shared task were found to be sufficient data for
baseline systems to perform translation on the latest COVID-related texts and sign language.
Irish, Marathi, and Taiwanese Sign Language can be considered low-resource languages and
are translated to either English or traditional Chinese – their high-resource counterpart.

The rest of our work is organized as follows. Section 2 presents the setup and schedule of
the shared task. Section 3 presents the data set used for the competition. Section 4 describes
the approaches used by participants in the competition and Section 5 presents and analyzes the
results obtained by the competitors. Lastly, in Section 6 a conclusion is presented along with
potential future work.

2 Shared task setup and schedule

This section describes how the shared task was organized along with the systems. Registered
participants were sent links to the training, development, and/or monolingual data (refer to
Section 3 for more details). They were allowed to use additional data to train their system with
the condition that any additional data used should be made publicly available. Participants were
moreover allowed to use pre-trained word embeddings and linguistic models that are publicly
available. As a manner of detecting which data sets were used during training, participants were
given the following markers for denotation:

• “-a” - Only provided development, training and monolingual corpora.

• “-b”- Any provided corpora, plus publicly available language’s corpora and pre-
trained/linguistic model (e.g. systems used pre-trained word2vec, UDPipe, etc. model).

• “-c” - Any provided corpora, plus any publicly external monolingual corpora.

Each team was allowed to submit any number of systems for evaluation and their best 3 systems
were included in the final ranking presented in this report. Each submitted system was evaluated
on standard automatic MT evaluation metrics; BLEU (Papineni et al., 2002), CHRF (Popović,
2015) and TER (Post, 2018).

The schedule for deliver of training data and release of test data along with notification and
submission can be found in Table 1.
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Date Event
May 10, 2021 Release of training data
July 01, 2021 Release of test data
July 13, 2021 Submission of the systems
July 20, 2021 Notification of results
July 27, 2021 Submission of shared task papers
August 01, 2021 Camera-ready

Table 1: LoResMT 2021 Shared Task programming

3 Languages and data sets

In this section, we present background information about the languages and data sets featured
in the shared task along with a itemized view of the linguistic families and number of segments
in Table 2.

3.1 Training data set
• English↔Irish Irish (also known as Gaeilge) has around 170,000 L1 speakers and “1.85

million (37%) people across the island (of Ireland) claim to be at least somewhat proficient
with the language”. In the Republic of Ireland, it is the national and first official language.
It is also one of the official languages of the European Union and a recognized minority
language in Northern Ireland with the ISO ga code.2

English-Irish bilingual COVID sentences/documents were extracted and aligned
from the following sources: (a) Gov.ie3 - Search for services or information , (b) Ireland’s
Health Services4 - HSE.ie , (c) Revenue Irish Taxes and Customs5 and (d) Europe
Union6. In addition, the Irish bilingual training data was built from monolingual data
using back translation (Sennrich et al., 2016). English and Irish monolingual data was
compiled from Wikipedia pages and newspapers such as The Irish Times7, RTE8 and
COVID-19 pandemic in the Republic of Ireland9. Back-translated and crawled data
were cross-validated for accuracy by language experts leaving approximately 8,112 Irish
parallel sentences for the training data set.

• English↔Marathi Marathi, which has the ISO code mr, is dominantly spoken in India’s
Maharashtra state. It has around 83,026,680 speakers.10 It belongs to the Indo-Aryan
language family.

English–Marathi parallel COVID sentences were extracted from the Government of
India website and online newspapers such as PMIndia11, myGOV12, Lokasatta13, BBC

2https://cloud.dfki.de/owncloud/index.php/s/sAs23JKXRwEEacn
3www.gov.ie
4https://www.hse.ie/
5https://www.revenue.ie/
6https://europa.eu
7https://www.irishtimes.com/
8https://www.rte.ie/news/ & https://www.rte.ie/gaeilge/
9https://en.wikipedia.org/wiki/COVID-19_pandemic_in_the_Republic_of_Ireland

10https://censusindia.gov.in/2011Census/C-16_25062018_NEW.pdf
11https://www.pmindia.gov.in/
12https://www.mygov.in/
13https://www.loksatta.com/
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Marathi and English14. After pre-processing and manual validation, approximately 20,993
parallel training sentences were left. Additionally, English and Marathi monolingual
sentences were crawled from the online newspapers and Wikipedia (see Table 2).

• Taiwanese Sign Language ↔ Traditional Chinese According to UN, there are “72 mil-
lion deaf people worldwide... they use more than 300 different sign languages.”15 In
Taiwan, Taiwanese Sign Language is a recognized national language, with a population
of less than thirty thousand “speakers”. Taiwanese Sign Language (and Korean Sign Lan-
guage) evolved from Japanese Sign Language and share about 60% of “words” between
them.
The sign language data set is prepared from press conferences for COVID-19 response,
which were held daily or weekly depending on the pandemic situation in Taiwan. Fig.
1 shows a sample video of sign language and its translations in Traditional Chinese (ex-
cerpted from the corpus) and English.

Figure 1: Sample of a sign language video in frames (excerpted from C00207 711.mp4 in
the corpus; Translations in Traditional Chinese: “4.1吧或4.5 大概是這樣的一個比例”, and
English: “The ratio is approximately 4.1 or 4.5”)

14https://www.bbc.com/marathi & https://www.bbc.com/
15https://www.un.org/en/observances/sign-languages-day
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3.2 Development and test data sets
Similar to the training data, English-Irish and English-Marathi language pair’s dev and test data
sets were crawled from bilingual and/or monolingual websites. Additionally, some parallel
segments and terminology were taken from the Translation Initiative for COVID-19 (Anas-
tasopoulos et al., 2020), a manually translated and validated data set created by professional
translators and native speakers of the target languages. The participants of the shared task were
provided with the manual translations of which 502 Irish and 500 Marathi development seg-
ments were used while 250 (Irish-English), 500 (English-Irish), 500 (English-Marathi) and 500
( Marathi-English) manually translated segments were used for testing. Taiwanese Sign Lan-
guage ↔ Traditional Chinese language pair’s participants were provided with 3071 segments
and videos for development and 7,053 videos for sign language testing.

The detailed statistics of the data set in each language is provided in Table2. The complete
shared task data sets are available publicly16.

Language Code Family Train Dev Monolingual Test
English en Indo-Germanic - - 8,826 -
Irish ga Celtic 8112 502 - 750
Marathi mr Indo-Aryan 20,933 500 21,902 1,000
TSign sgTW Japanese Sign Language 128,608 3,071 - 7,053
TChinese zhTW Mandarin Chinese 128,608 3,071 - 7,053

Table 2: Statistics of the Shared task data (TSign refers to Taiwanese Sign Language and TChi-
nese refers to Traditional Chinese)

4 Participants and methodology

A total of 12 teams registered for the shared task: 5 teams registered to participate for all
language pairs, 5 teams registered to participate only for English↔Marathi, one team regis-
tered for Taiwanese↔Mandarin (Traditional Chinese) sign language and one team registered for
English↔Irish. Out of these, a total of 6 teams submitted their systems on COVID while none
of them submitted a system for sign language. Out of the submitted systems, two teams par-
ticipated for the English↔Irish and English↔Marathi tasks, one team participated for English-
Irish and three teams participated for English↔Marathi (see Table 3). All the teams who sub-
mitted their systems were invited to submit system description papers describing their experi-
ments. Table 3 identifies the participating teams and their language choices.

Team English–Irish English–Marathi TSign–TChinese System Description Paper
IIITT en2ga & ga2en en2mr & mr2en — (Puranik et al., 2021)

oneNLP-IIITH — en2mr & mr2en — (Mujadia and Sharma, 2021)
A3108 — en2mr & mr2en — (Yadav and Shrivastava, 2021)

CFILT-IITBombay — en2mr & mr2en — (Jain et al., 2021)
UCF en2ga & ga2en en2mr & mr2en — (Chen and Fazio, 2021)

adapt dcu en2ga — — (Lankford et al., 2021)
Total 3 5 0 6

Table 3: Details of the teams and submitted systems for the LoResMT 2021 Shared Task.

Next, we give a short description of the approaches used by each team to build their sys-
tems. More details about the approaches can be found in the papers by respective teams in the
accompanying proceeding.

16https://github.com/loresmt/loresmt-2021
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• IIITT (Puranik et al., 2021) used a fairseq pre-trained model Indictrans for English-
Marathi. It consists of two models that can translate from Indic to English and vice-versa.
The model can perform 11 languages: Assamese, Bengali, Gujarati, Hindi, Kannada,
Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu pre-trained on the Samanantar data
set, the largest data set for Indic languages during the time of submission. The model is
fine-tuned on the training data set provided by the organizers and a parallel bible corpus
for Marathi. The team used the parallel bible parallel corpus from a previous task (Mul-
tiIndicMT task in WAT 2020). After conducting various experiments, the best checkpoint
was recorded and predicted upon. For Irish, the team fine-tuned an Opus MT model from
Helsinki NLP on the training data set, and then predicted results after recording. After
careful experimentation, the team observed that the Opus MT model outperformed the
other models giving it the highest scoring model award.

• oneNLP-IIITH (Mujadia and Sharma, 2021) used a sequence to sequence neural model
with a transformer network (4 to 8 layers) with label smoothing and dropouts to reduce
overfitting with English-Marathi and Marathi-English. The team explored the use of dif-
ferent linguistic features like part-of-speech and morphology on sub-word units for both
directions. In addition, the team explored forward and backward translation using web-
crawled monolingual data.

• A3108 (Yadav and Shrivastava, 2021) built a statistical machine translation (smt) system in
both directions for English↔Marathi language pair. Its initial baseline experiments used
various tokenization schemes to train models. By using optimal tokenization schemes,
the team was able to create synthetic data and train an augmented dat aset to create more
statistical models. Also, the team reordered English syntax to match Marathi syntax and
further trained another set of baseline and data augmented models using various tokeniza-
tion schemes.

• CFILT-IITBombay (Jain et al., 2021) buildt three different neural machine translation
systems; a baseline English–Marathi system, a Baseline Marathi-English system, and a
English–Marathi system that was based on back translation. The team explored the perfor-
mance of the NMT systems between English and Marathi languages. Also, they explored
the performance of back-translation using data obtained from NMT systems trained on a
very small amount of data. From their experiments, the team observed that back-translation
helped improve the MT quality over the baseline for English-Marathi.

• UCF (Chen and Fazio, 2021) used transfer learning, uni-gram and sub-word segmenta-
tion methods for English–Irish, Irish–English, English–Marathi and Marathi–English. The
team conducted their experiment using an OpenNMT LSTM system. Efforts were con-
strained by using transfer learning and sub-word segmentation on small amounts of train-
ing data. Their models achieved the following BLEU scores when constraining on tracks
of English–Irish, Irish–English, and Marathi–English: 13.5, 21.3, and 17.9, respectively.

• adapt dcu (Lankford et al., 2021) used a transformer training approach carried out using
OpenNMT-py and sub-word models for English–Irish. The team also explored domain
adaptation techniques while using a Covid-adapted generic 55k corpus, fine-tuning, mixed
fine-tuning and combined data set approaches were compared with models trained on an
extended in-domain data set.

5 Results

As discussed, participants were allowed to use data sets other than those provided. The best
three results for English-Irish, Irish-English, English-Marathi and Marathi-English language
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pairs are presented in Tables 4 and 5. The complete submitted systems results are available
publicly17. Table 4 depicts how the UCF team were able to gain the highest and lowest results for
Irish-English and English-Marathi with shared data. The highest scores were 21.3 BLEU, 0.45
CHRF and 0.711 TER, while the lowest scores were 5.1 BLEU, 0.22 CHRF and 0.872 TER.
However, with the additional data and by using pre-trained models (see Table 5), adapt dcu
achieved the best results for English-Irish where scores were 36 BLEU, 0.6 CHRF and 0.531
TER. Contrastingly, UCF scored the lowest for English-Marathi. The lowest scores were 4.8
BLEU, 0.29 CHRF and 1.063 TER.

Team System/task description BLEU CHRF TER
adapt dcu en2ga-a 9.8 0.34 0.880
UCF ga2en-TransferLearning-a 21.3 0.45 0.711
CFILT-IITBombay en2mr-Backtranslation-a 12.2 0.38 0.979
CFILT-IITBombay en2mr-Baseline 200-a 11 0.38 0.961
CFILT-IITBombay en2mr-Baseline 1600-a 10.8 0.38 0.935
oneNLP-IIITH en2mr-Method1-a 10.4 0.32 0.907
A3108 en2mr-Method29transliterate-a 11.8 0.45 0.95
A3108 en2mr-Method29unk-a 11.8 0.45 0.95
A3108 en2mr-Method10unk-a 11.4 0.43 0.934
UCF en2mr-UnigramSegmentation-a 5.1 0.22 0.872
CFILT-IITBombay mr2en-Baseline 1000-a 16.6 0.41 0.870
CFILT-IITBombay mr2en-Baseline 1200-a 16.3 0.40 0.867
CFILT-IITBombay mr2en-Baseline 1400-a 16.2 0.41 0.879
oneNLP-IIITH mr2en-Method1-a 16.7 0.40 0.835
oneNLP-IIITH mr2en-Method2-a 16.2 0.41 0.831
A3108 mr2en-Method7transliterate-a 14.6 0.47 0.945
A3108 mr2en-Method7unk-a 14.6 0.47 0.945
A3108 mr2en-Method20transliterate-a 14.5 0.42 0.866
UCF mr2en-UnigramSegmentation-a 17.9 0.40 0.744

Table 4: Results of submitted systems at English↔Irish & English↔Marathi in the “-a” method

17https://github.com/loresmt/loresmt-2021
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Team System/task description BLEU CHRF TER
adapt dcu en2ga-b 36.0 0.60 0.531
IIITT en2ga-helsnikiopus-b 25.8 0.53 0.629
IIITT ga2en-helsinkiopus-b 34.6 0.61 0.586
IIITT en2mr-IndicTrans-b 24.2 0.59 0.597
oneNLP-IIITH en2mr-Method2-c 22.2 0.56 0.746
oneNLP-IIITH en2mr-Method3-c 22.0 0.56 0.753
oneNLP-IIITH en2mr-Method1-c 21.5 0.56 0.746
UCF en2mr-UnigramSegmentation-b 4.8 0.29 1.063
oneNLP-IIITH mr2en-Method3-c 31.3 0.58 0.646
oneNLP-IIITH mr2en-Method2-c 30.6 0.57 0.659
oneNLP-IIITH mr2en-Method1-c 20.7 0.48 0.735
UCF mr2en-UnigramSegmentation-b 7.7 0.24 0.833
IIITT mr2en-IndicTrans-b 5.1 0.22 1.002

Table 5: Results of submitted systems at English↔Irish & English↔Marathi in the “-b” and
“-c” method

6 Conclusion

We have reported the findings of the LoResMT 2021 Shared Task on COVID and sign language
translation for low-resource languages as part of the fourth LoResMT workshop. All submis-
sions used neural machine translation except for the one from oneNLP-IIITH. We conclude
that in our shared tasks the use of transfer learning, domain adaptation, and back translation
achieve optimal results when the data sets are domain specific as well as small-sized. Our
findings show that uni-gram segmentation transfer learning methods provide comparatively low
results for the following metrics: BLEU, CHRF and TER. The highest BLEU scores achieved
are 36.0 for English-to-Irish, 34.6 for Irish-to-English, 24.2 for English-to-Marathi, and 31.3
for Marathi-to-English.

In future iterations of the LoResMT shared tasks, extended corpora of the three language
pairs will be provided for training and evaluation. Human evaluation on system results will also
be conducted. For sign language MT, the tasks will be fine-grained and evaluated separately.
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Abstract
In this paper, we describe our submissions for LoResMT Shared Task @MT Summit 2021 Con-
ference. We built statistical translation systems in each direction for English ⇐⇒ Marathi lan-
guage pair. This paper outlines initial baseline experiments with various tokenization schemes
to train models. Using optimal tokenization scheme we create synthetic data and further train
augmented dataset to create more statistical models. Also, we reorder English to match Marathi
syntax to further train another set of baseline and data augmented models using various tok-
enization schemes. We report configuration of the submitted systems and results produced by
them.

1 Introduction

Machine Translation systems are systems which translate from source language to target. There
are multiple ways of creating such a system - rule based, data driven, hybrid etc. We are using
data driven methods to create translation system. In data driven methods - statistical (Koehn
et al., 2003) and neural methods (Bahdanau et al., 2014) have been employed to build decent
MT systems in resource setting like English ⇐⇒ French. In LoResMT shared task (Ojha
et al., 2021) we are dealing with low resource setting for English, Marathi pair. According to
Koehn and Knowles (2017), compared to statistical methods neural methods have a drawback
when used in low resource setting. Hence, for this shared task we are using only phrase based
statistical models to build translation models using Moses1 (Koehn et al., 2007).

Marathi is morphologically richer, agglutinative language when compared to English.
Also, former follows SOV as canonical syntactic structure while latter follows SVO. Level
of difference in morphological richness and syntactic divergence between the two languages
suggests to look for methods which can help to address them to certain extent in phrase based
statistical models. Since we are in low resource setting, to address data sparsity problem, we
use various tokenization schemes, e.g. BPE (Sennrich et al., 2016b), morfessor (Virpioja et al.,
2013). Combinations of these tokenization schemes are used with SMT based method to create
a baseline systems. After checking the optimal tokenization scheme, we use that scheme to
augment training data with synthetic dataset using back translation (Sennrich et al., 2016a). As
was the case in baseline systems, augmented dataset goes through prepossessing with various
tokenization schemes and SMT method to build more systems. We elevate the amount of learn-
ing, the reordering model of SMT has to do, by making use of rule based reordering system

1http://statmt.org/moses/
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Dataset
Baseline and
Reordered
Baseline

Augmented
and Reordered
Augmented

Language English Marathi English Marathi
Monolingual 34891 40972 56789 57569
training 20651 59146
dev 500 500

Table 1: Data statistics, number of sentences for each set of experiments

(Patel et al., 2013), (Kunchukuttan et al., 2014) to reorder English to match Marathi syntax.
With this we build another set of baseline systems for reordered English, Marathi pair. Like
in baseline systems, mentioned above, here also we make use of various tokenization schemes.
After comparing these schemes, we create synthetic dataset using back translation to augment
reordered English, Marathi pair. Subsequent sections give more detailed overview of the sys-
tems developed.

2 SMT Systems

We use SMT model to make initial baseline systems using various tokenization schemes. We
further make use of rule based reordering model to create another set of baseline systems using
reordered English, Marathi pair. These two sets of systems are then used to create synthetic
data set for data augmentation to train SMT models.

2.1 Data
For this shared task organisers provided parallel and monolingual corpus. We include Marathi
training, dev dataset to already existing monolingual coprus to create Marathi monolingual
corpus. For English monolingual corpus we joined English training and dev data from both
(English ⇐⇒ Marathi, English ⇐⇒ Irish) language pair provided by organizers. As a first
preprocessing step, we used the IndicNLP toolkit2 to tokenize Marathi and Moses tokenizer3 to
tokenize English. Then we learned subwords using Byte pair encoding (Sennrich et al., 2016b)
with 10000 merge operations on monolingual corpus and tokenized training and dev accord-
ingly. We also used morfessor (Virpioja et al., 2013) as an alternative tokenization scheme.
Morfessor model was also trained on full monolingual corpus. Table 1 provides statistics of
datasets processed.

We made use of CFILT toolkit4 to preorder English sentence in train, dev and monolingual
text. Similar to previous sets of baseline systems, we use vairous tokenization schemes - moses
tokenizer, BPE, Morfessor and train another set of baseline systems. Table 1 provides you with
statistics of reordered English. We used all possible combination of tokenization schemes while
training all models. These tokenization schemes are named as follow,

• BasicTok: Basic Tokenization using Indic NLP for Marathi and Moses tokenizer for En-
glish.

• BPE: text tokenized using BPE into subword.

• Morf: text tokenized using morfessor.
2https://anoopkunchukuttan.github.io/indic_nlp_library/
3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl
4https://www.cfilt.iitb.ac.in/static/download.html
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2.2 Translation Models
We made use of Moses toolkit (Koehn et al., 2007) to build statistical models trained with
various tokenized bitext pairs. We also use GIZA++ (Och and Ney, 2003) to find alignments
between parallel text and grow-diag-final-and method (Koehn et al., 2003) to extract aligned
phrases. And utilize KenLM (Heafield, 2011) to train a trigram model with kneser ney smooth-
ing on monolingual corpus of both languages. MERT (Och, 2003) is used for tuning the trained
models. We also trained a reordering system for Reordered English to English so that we can
have Reordered English as pseudo-pivot language.

2.2.1 Transliteration Module
Since we are building systems in low resource setting, its entirely possible to get unknown words
while translating. To see if we can also counter unknown words in this resource constrained
environments, we also made a small transliteration system. First a phrase based model was
trained on English Marathi bitext using Moses(Koehn et al., 2007) with max phrase length5 set
to 1 to find tokens with very high alignment probability (we took average of 4 probabilities and
took token pair with value > 0.79). We got 1557 pairs of tokens, we tokenized them character
wise and used 1500 for training and 57 for tunning to build a transliteration system (by posing
transliteration as translation problem). Since transliteration system is trained on very small
corpus and hence prone to error, for each output from SMT translation system we give two
outputs. One in which we made use of transliteration system for unknown words and another
one in which we did not.

2.2.2 Performance on Dev sets
We used dev set to evaluate above mentioned models and all models which are described later
on. Outputs were post processed according to the tokenization scheme of respective target lan-
guage in each model, and then detokenized. After evaluating all systems using sacrebleu (Post,
2018), Table 2 lists the result on dev sets for baseline systems trained in English to Marathi
Direction and Table 3 lists the result of systems trained on Marathi to English direction. If we

Tokenization
Scheme

Baseline
SMT

Augment
SMT

Baseline
Reordered
SMT

Augment
Reordered
SMT

unk
transli-
terate

unk
transli-
terate

unk
transli-
terate

unk
transli-
terate

EnTok MrTok 58.2 58.1 57.6 57.5 59.2 59.1 62.7 62.7
EnBPE MrBPE 50.1 50.1 52.0 51.9 53.1 53.1 56.7 56.7
EnMorf MrMorf 41.3 41.3 43.6 43.6 45.7 45.6 51.3 51.3
EnTok MrBPE 49.3 49.1 50.7 50.6 51.5 51.4 54.7 54.7
EnTok MrMorf 47.4 47.3 47.3 47.2 49.8 49.7 54.7 54.7
EnBPE MrTok 54.3 54.3 54.4 54.4 56.7 56.7 58.9 58.9
EnBPE MrMorf 46.0 46.0 48.0 48.0 49.5 49.5 53.2 53.2
EnMorf MrTok 51.4 51.3 50.9 50.9 53.7 53.6 55.6 55.6
EnMorf MrBPE 44.3 44.2 45.9 45.8 47.8 47.8 52.3 52.3

Table 2: Results of systems for English To Marathi language direction. unk column contain
output of systems where unknown were kept as they are, in transliterate column they were
transliterated using small transliteration system

look at table 2, we can see that using reordering as preprocessing tool was helpful to system

5http://www.statmt.org/moses/?n=FactoredTraining.TrainingParameters
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Tokenization
Scheme

Baseline
SMT

Augment
SMT

Baseline
Reordered
SMT

Augment
Reordered
SMT

unk
transli-
terate

unk
transli-
terate

unk
transli-
terate

unk
transli-
terate

EnTok MrTok 70.4 70.4 72.4 72.4 55.6 55.7 61.3 61.3
EnBPE MrBPE 62.6 62.6 64.5 64.5 55.6 55.6 56.6 56.6
EnMorf MrMorf 56.0 56.0 57.5 57.5 51.1 51.1 53.4 53.4
EnTok MrBPE 62.0 62.0 64.8 64.8 54.4 54.4 56.0 56.0
EnTok MrMorf 62.9 62.9 63.6 63.6 55.5 55.5 57.5 57.5
EnBPE MrTok 67.9 68.0 69.6 69.6 55.6 55.5 58.1 58.1
EnBPE MrMorf 61.5 61.5 62.7 62.7 54.4 54.4 57.6 57.6
EnMorf MrTok 61.3 61.4 62.9 62.9 51.7 51.7 54.1 54.1
EnMorf MrBPE 54.9 54.9 59.1 59.1 51.3 51.3 52.3 52.3

Table 3: Results of systems for Marathi To English language direction. unk column contain
output of systems where unknown were kept as they are, in transliterate column they were
transliterated using small transliteration system

translating in English to Marathi direction. Whereas, training on Marathi to reordered English
(Table 3) didnt get same positive result. Also surprising was dip in BLEU scores when using
subwords. Using baseline systems with BasicTok as tokenization scheme for both scenarios (in
both English and reordered English scenario) we created synthetic datasets using backtransla-
tion(Sennrich et al., 2016a). Statistics for augmented datasets are given in Table 1. We used
augmented data set with Moses to build SMT systems. Moses was used in same configuration
as before. We employed all tokenization schemes combinations and result of same on dev sets
are available in Table 2 and 3. Similar to trend seen in baseline systems on dev datasets, here
also Augmented Reordered English to Marathi produce better score that Augmented English to
Marathi. Marathi to English was better than Marathi to Reordered English to English. In most
of the systems transliteration module was not helpful.

3 Result

For each language direction we submitted 72 output files. Table 4 shows the scores of top
3 systems for each direction. In case of English to Marathi translation direction, similar to
trend seen on devsets, reordered English to Marathi systems fared better than canonical English
to Marathi systems. Though tokenization scheme used was BPE for best system. While in
case of Marathi to English translation direction, making a Marathi to reordered English did
not preform better than Marathi to canonical English. Also we saw baseline system with BPE
tokenized English and Marathi with morfessor as prepossessing step was better than all other
system configurations, followed by Augmented Marathi with BPE to English with BPE . In
terms of comparison to other teams, although our Marathi to English systems did not fare well,
we were in top 3 for English to Marathi systems under constrained conditions.
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Description of Translation System
Tokenization Scheme Scores
Source Target BLEU TER CHRF

Augmented Reorder English to Marathi SMT system BPE BPE 11.8 0.45 0.95
Augmented Reorder English to Marathi SMT system BPE BPE 11.8 0.45 0.95
Baseline Reordered English to Marathi SMT system basicTok basicTok 11.4 0.43 0.934
Baseline Marathi to English SMT System Morf BPE 14.6 0.47 0.945
Baseline Marathi to English SMT System Morf BPE 14.6 0.47 0.945
Augmented Marathi to English SMT System BPE BPE 14.5 0.42 0.866

Table 4: Result of our top 3 systems on testsets in each translation direction
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Abstract

We present the University of Central Florida systems for the LoResMT 2021 Shared Task,
participating in the English-Irish and English-Marathi translation pairs. We focused our efforts
on constrained track of the task, using transfer learning and subword segmentation to enhance
our models given small amounts of training data. Our models achieved the highest BLEU
scores on the fully constrained tracks of English-Irish, Irish-English, and Marathi-English with
scores of 13.5, 21.3, and 17.9 respectively.

1 Introduction

In this paper, we describe the systems developed at the University of Central Florida for our
participation in the Marathi and Irish tasks of the LoResMT 2021 Shared Task for low-resource
supervised machine translation of COVID-19 related texts (Ojha et al., 2021). For these tasks,
participants were asked to develop systems for the English to Irish, Irish to English, English
to Marathi, or Marathi to English translation directions. Submissions are split into three tracks
based on data constraints: a constrained track using only provided data, an unconstrained track
allowing for publicly available corpora, and an unconstrained track allowing for both publicly
available corpora and pre-trained models.

We utilize the Neural Machine Translation (NMT) approach, due to its prevalence in cur-
rent research. While they are able to achieve state-of-the-art results in high-resource translation
tasks, NMT systems tend to particularly struggle in low-resource scenarios. To alleviate this,
our experiments focus primarily on data augmentation and transfer learning. We tried different
techniques such as back-translation and subword segmentation, although they yielded little to
no improvement in most cases. Our best performing systems during development for the Irish
task utilized transfer learning from English-Marathi models. For the Marathi task, the best per-
formances came from models trained on text pre-processed with subword segmentation via a
unigram language model (Kudo, 2018). We submitted six systems for evaluation, one for each
translation direction in the constrained track and two unconstrained Marathi models, which
achieved the highest BLEU scores in the constrained tracks of English-Irish, Irish-English, and
Marathi-English.

2 Data

We only utilize the data provided by the shared task organizers (Ojha et al., 2021) for our
experiments. All text was pre-processed using Moses Tokenizer (Koehn et al., 2007) and lower-
cased prior to training. We also experimented with a pre-trained SentencePiece (Kudo and

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
4th Workshop on Technologies for MT of Low Resource Languages

Page 129



Richardson, 2018) tokenization model for Marathi from iNLTK (Arora, 2020). Final translation
results were true-cased with Moses prior to submission.

We filtered out training sentences in the English-Marathi data that were also found in the
development set from the training set to better evaluate our models during development. The
parallel English-Marathi data was much larger than the English-Irish set, at 20,470 and 8,112
sentences respectively. A summary of the basic statistics of the final dataset used can be found
in Table 1.

Data Sentences Vocabulary
EN Train (EN-GA) 8,112 15,761
GA Train (EN-GA) 8,112 17,026
EN Train (EN-MR) 20,470 27,717
MR Train (EN-MR) 20,470 42,116
EN Monolingual 8,826 20,037
MR Monolingual 21,902 39,942
EN Dev. (EN-GA) 502 2,128
GA Dev. (EN-GA) 502 2,455
EN Dev. (EN-MR) 500 3,740
MR Dev. (EN-MR) 500 4,767
EN Test (EN → GA) 500 1,912
GA Test (GA → EN) 250 1,056
EN Test (EN → MR) 500 2,344
MR Test (MR → EN) 500 2,528

Table 1: Statistics for the data used

3 System Description

We implement our models using OpenNMT-py (Klein et al., 2017). We initially tested both the
Transformer (Vaswani et al., 2017) and LSTM (Hochreiter and Schmidhuber, 1997) architec-
tures to obtain baseline results, but we found LSTMs to consistently yield better results despite
attempts in optimizing Transformer parameters. As such, all of our experiments utilize LSTMs
in a standard encoder-decoder setup.

We keep the majority of the parameters as their default values: we use 2 LSTM layers
with 500 hidden units, an initial learning rate of 1, a dropout rate of 0.3, and stochastic gradient
descent as the optimizer. We found the default step count of 100,000 to work well with the
provided corpora with a batch size of 32.

3.1 Subword Segmentation
Subword segmentation is a common technique used for better dataset representation by reducing
the amount of unique tokens and thus decreasing the chances of encountering unknown words.
We explore Byte-Pair Encoding (BPE) (Sennrich et al., 2015) and Unigram (Kudo, 2018) seg-
mentation, unsupervised algorithms commonly used in machine translation tasks. BPE is a
greedy algorithm that initially represents a corpus at a character level, before conducting a cer-
tain number of merge operations to create subwords. Unigram initializes a large vocbulary from
the corpus, before trimming down it down to meet a desired threshold.

3.2 Back-Translation
The addition of synthetic data via back-translation (Sennrich et al., 2016) has been shown to
increase translation quality. To generate back-translated data, we train basic LSTM translation
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models on the provided parallel data. The models are then used to translate the provided mono-
lingual data to create a parallel dataset. We also take advantage of the presence of English in
both language pairs, translating the English portion of the English-Marathi training data to Irish
and the English portion of the English-Irish training data to Marathi.

3.3 Transfer Learning
Transfer learning is a technique frequently used in low-resource translation, and is done by
transferring the learned parameters of a high-resource parent model to low-resource child model
(Zoph et al., 2016). We utilize transfer learning by training models on one language pair before
fine-tuning them on the other (i.e. pre-training on English to Marathi and fine-tuning on English
to Irish), leading to a total of four models trained with transfer learning: English-Marathi trans-
ferred to English-Irish, English-Irish transferred to English-Marathi, Marathi-English trans-
ferred to Irish-English, and Irish-English transferred to Marathi-English. We initialize these
models with the weights of the trained LSTM baselines and fine-tune them for 100,000 steps
on a new language pair. The optimizer is reset prior to fine-tuning to offset learning rate decay.

4 Experiments and Results

We first trained models using each technique to establish the effectiveness of a technique in each
translation direction. Techniques that obtained a higher score than the baseline were then jointly
used to develop additional models. We evaluated each model using the sacreBLEU (Post, 2018)
implementation of BLEU (Papineni et al., 2002).

Model EN→GA GA→EN EN→MR MR→EN
1. LSTM 9.17 11.70 29.10 43.49
2. LSTM + BPE 8.04 10.47 27.70 39.94
3. LSTM + Unigram 8.87 9.30 28.39 43.79
4. LSTM + Back-Translation 8.75 11.32 22.26 40.29
5. LSTM + Transfer Learning 10.75 13.80 21.15 37.88
6. Model 1 + Pre-Trained Tokenizer 51.80 43.50
7. Model 2 + Pre-Trained Tokenizer 51.72 43.15
8. Model 3 + Pre-Trained Tokenizer 52.95 43.79
9. Model 4 + Pre-Trained Tokenizer 50.62 40.12

10. Model 5 + Pre-Trained Tokenizer 49.40 39.74

Table 2: BLEU scores on the validation set.

BLEU scores in the development stage are presented in Table 2. An unexpected outcome
was the relative lack of benefit from subword segmentation and back-translation. We liken
the former to the large vocabulary overlap between the training and validation set due to the
COVID-19 specific context, as there would be fewer to no rare words that could be broken
down into meaningful subwords by the segmentation algorithms.

Transfer learning from the higher resource English-Marathi models to the lower resource
English-Irish models resulted in significant improvements in BLEU score (1.58 for English
to Irish and 2.1 for Irish to English). However the reverse was not true, as English-Marathi
models actually showed a large decrease in performance when knowledge was transferred from
English-Irish.

The very high BLEU scores for the English-Marathi models can be explained by the do-
main overlap between data splits. We found the amount of common vocabulary between the
training, development, and test sets of both language pairs to be rather large. For the Marathi
texts, 94% of the development and 88% of the test vocabulary were found in the training portion.
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The overlap was even more noticeable for English, with 93% of the vocabulary in development
shared with training and 80% of vocabulary in testing shared with training.

Pair Track Model BLEU CHRF TER
EN→GA (A) 5 13.5 0.37 0.756
GA→EN (A) 5 21.3 0.45 0.711
EN→MR (A) 3 5.1 0.22 0.872
EN→MR (B) 8 4.8 0.29 1.063
MR→EN (A) 3 17.9 0.40 0.744
MR→EN (B) 8 7.7 0.24 0.833

Table 3: Test scores via different metrics, provided by the organizers (Ojha et al., 2021)

For our final submissions, we participated in two tracks: the fully constrained track (A) and
an unconstrained track (B). Track A was limited to using only data provided by the organizers.
Track B allowed additional monolingual data and pre-trained models. We submitted translations
generated from the systems with the highest BLEU scores in the development stage (Table 2)
for each translation direction. We used LSTMs with transfer learning (Model 5) for the English
to Irish and Irish to English directions, only submitting to track A. For track A of English to
Marathi and Marathi to English, we used the LSTMs trained on text segmented with a unigram
model (Model 3). For track B, we also used LSTMs trained on text segmented with a unigram
model, but with the text pre-processed with a pre-trained language model tokenizer (Model 8).
Table 3 shows the final scores of our systems on the test set, evaluated by BLEU (Papineni et al.,
2002), CHRF (Popović, 2015), and TER (Snover et al., 2006).

5 Conclusion

We present systems for machine translation of Irish and Marathi to and from English. We im-
proved over a developed baseline by incorporating transfer learning between language tasks and
subword segmentation into our models. We also experimented with synthetic data generation
via back-translation, which did not show any notable improvements during development. At test
time, our models achieved the highest BLEU scores in the constrained tracks of English-Irish,
Irish-English, and Marathi-English.
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Abstract
This paper reports the Machine Translation (MT) systems submitted by the IIITT team for the
English→Marathi and English⇔Irish language pairs LoResMT 2021 shared task. The task
focuses on getting exceptional translations for rather low-resourced languages like Irish and
Marathi. We fine-tune IndicTrans, a pretrained multilingual NMT model for English→Marathi,
using external parallel corpus as input for additional training. We have used a pretrained
Helsinki-NLP Opus MT English⇔Irish model for the latter language pair. Our approaches
yield relatively promising results on the BLEU metrics. Under the team name IIITT, our sys-
tems ranked 1, 1, and 2 in English→Marathi, Irish→English, and English→Irish respectively.
The codes for our systems are published1.

1 Introduction

Today, a large number of text and written materials are present in English. However, with
roughly around 6,500 languages in the world2 (Chakravarthi, 2020; Hande et al., 2021a;
Sarveswaran et al., 2021), every native monoglot should not be deprived of this knowledge
and information. The manual translation is a tedious job involving much time and human re-
sources, giving rise to Machine Translation (MT). Machine Translation involves the automated
translation of text from one language to another by using various algorithms and resources to
produce quality translation predictions (Pathak and Pakray, 2018; Krishnamurthy, 2015, 2019).
Neural Machine Translation (NMT) brought about a great improvement in the field of MT
by overcoming flaws of rule-based and statistical machine translation (SMT) (Revanuru et al.,
2017; Achchuthan and Sarveswaran, 2015; Parameswari et al., 2012; Thenmozhi et al., 2018;
Kumar et al., 2020b). NMT incorporates the training of neural networks on parallel corpora to
predict the likeliness of a sequence of words. sequence-to-sequence neural models (seq2seq)

1https://github.com/karthikpuranik11/LoResMT
2https://blog.busuu.com/most-spoken-languages-in-the-world/
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(Sutskever et al., 2014; Kalchbrenner and Blunsom, 2013) are the widely adopted as the stan-
dard approach by both industrial and research communities (Jadhav, 2020a; Bojar et al., 2016;
Cheng et al., 2016).

Even though NMT performs exceptionally well for all the languages, it requires a tremen-
dous amount of parallel corpus to produce meaningful and successful translations (Kumar et al.,
2020a). With little research on low resourced languages, finding a quality parallel corpus to
train the models can be arduous. The two low-resourced languages worked on in this paper
are Marathi (mr) and Irish (ga). With about 120 million Marathi speakers in Maharashtra and
other states of India, Marathi is recognized as one of the 22 scheduled languages of India3. The
structural dissimilarity which occurs while translating from English (Subject-Verb-Object) to
Marathi (Subject-Object-Verb) or vice versa adds up to issues faced while translation (Garje,
2014). The Irish language was recognized as the first official language of Ireland and also by
the EU(Dowling et al., 2020a; Scannell, 2007). Belonging to the Goidelic language family and
the Celtic family(Scannell, 2007; Lynn et al., 2015), Irish is also claimed as one of the low re-
sourced languages due to its limited resources by the META-NET report (Dhonnchadha et al.,
2012; Scannell, 2006).

Our paper represents the work conducted for the LoResMT @ MT Summit 20214 shared
task to build MT systems for the low-resourced Marathi and Irish languages on COVID-19
related parallel corpus. We implement Transformer-based (Vaswani et al., 2017) NMT models
to procure BLEU scores(Papineni et al., 2002) of 24.2, 25.8, and 34.6 in English→Marathi,
Irish→English, and English→Irish respectively.

2 Related works

Neural Machine Translation has been exhaustively studied over the years (Kalchbrenner and
Blunsom, 2013), with several intuitive approaches involving collective learning to align and
translate (Bahdanau et al., 2016), and a language-independent attention bridge for multilingual
translational systems (Vázquez et al., 2019). There have been several approaches to NMT, with
zero-shot translational systems, between language pairs that have not seen the parallel training
data during training (Johnson et al., 2017). The introduction of artificial tokens has reduced
the architectural changes in the decoder (Ha et al., 2016). There have been some explorations
towards neural machine translation in low resource languages, with the development of a multi-
source translational system that targets the English string for any source language (Zoph and
Knight, 2016).

There has been subsequent research undertaken by researchers for machine translation in
low-resource Indian languages. Chakravarthi et al. surveyed orthographic information in ma-
chine translation, examining the orthography’s influence on machine translation and extended
it to under-resourced Dravidian languages (Chakravarthi et al., 2019a). Another approach of
leveraging the information contained in rule-based machine translation systems to improve ma-
chine translation of low-resourced languages was employed (Torregrosa et al., 2019). Several
approaches involving the improvement of WordNet for low-resourced languages have been ex-
plored (Chakravarthi et al., 2018, 2019b). Chakravarthi et al. constructed MMDravi, a multilin-
gual multimodal machine translation dataset for low-resourced Dravidian languages, extending
it from the Flickr30K dataset, and generating translations for the captions using phonetic tran-
scriptions (U Hegde et al., 2021).

There have been relatively fewer approaches experimented with and benchmarked when it
comes to translating from Marathi to English and vice versa. (Aharoni et al., 2019) tried to build
multilingual NMT systems, comprising 103 distinct languages and 204 translational directions

3https://en.wikipedia.org/wiki/Marathi_language
4https://sites.google.com/view/loresmt/
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simultaneously. (Jadhav, 2020b; Puranik et al., 2021) developed a machine translation system
for Marathi to English using transformers on a parallel corpus. Other works on improving
machine translation include (Adi Narayana Reddy et al., 2021) proposing an English-Marathi
NMT using local attention. The same can be stated to Irish, as it is a poorly resourced language,
as the quality of the MT outputs have struggled to achieve the same level as well-supported lan-
guages (Dowling et al., 2016; Rehm and Uszkoreit, 2012). In recent years, several researchers
tried to overcome the resource barrier by creating artificial parallel data through back-translation
(Poncelas et al., 2018), exploiting out-of-domain data (Imankulova et al., 2019), and leveraging
other better-resourced languages as a pivot (Dowling et al., 2020b; Wu and Wang, 2007).

3 Dataset

We use the dataset provided by the organizers of LoResMT @ MT Summit 2021. The datasets
can be found here5. It is a parallel corpus for English and the low resourced language, i.e., Irish
and Marathi, mostly containing text related to COVID-19 (Ojha et al., 2021).

Language pair English⇔Irish English⇔Marathi
Train 8,112 20,933
Dev 502 500
Test 1,000 1,000
Total 9,614 22,433

Table 1: Number of sentences distribution

We have used bible-uedin6 (Christodoulopoulos and Steedman, 2015) an external dataset
for Marathi. It is a multilingual parallel corpus dataset containing translations of the Bible in
102 languages(Christodoulopoulos and Steedman, 2014) and shows the possibility of using the
Bible for research and machine translation. English-Marathi corpus contains 60,495 sentences.
CVIT PIB7 (Philip et al., 2020) has also been used for the purpose of this research. It contains
1,14,220 parallel corpora for English-Marathi.

4 Methodology

4.1 IndicTrans
Fairseq PyTorch8 (Ott et al., 2019) is an open-source machine learning library supported as a
sequence modeling toolkit. Custom models can be trained for various tasks, including sum-
marization, language, translation, and other generation tasks. Training on fairseq enables com-
petent batching, mixed-precision training, multi-GPU and multi-machine training. IndicTrans
(Ramesh et al., 2021), a Transformer-4x multilingual NMT model by AI4Bharat, is trained on
the Samanantar dataset. The architecture of our approach is displayed in Fig.1. Samanantar9

is the most extensive collection of parallel corpora for Indic languages available for public use.
It includes 46.9 million sentence pairs between English and 11 Indian languages. IndicTrans
is claimed to successfully outperform the existing best performing models on a wide variety
of benchmarks. Even commercial translation systems and existing publicly available systems
were surpassed for the majority of the languages. IndicTrans is based on fairseq, and it was

5https://github.com/loresmt/loresmt-2021
6https://opus.nlpl.eu/JRC-Acquis.php
7http://preon.iiit.ac.in/˜jerin/bhasha/
8https://github.com/pytorch/fairseq
9https://indicnlp.ai4bharat.org/samanantar/
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Figure 1: Our approach for the English→Marathi language pair.

fine-tuned on the Marathi training dataset provided by the organizers and the external datasets.
The model was fine-tuned with the cross-entropy criterion to compute the loss function, Adam
optimizer (Zhang, 2018), dropout of 0.2, fp16 (Micikevicius et al., 2017), maximum tokens of
256 for better learning, and a learning rate if 3e-5 in GPU. The process was conducted for a
maximum of 3 epochs.

4.2 Helsinki-NLP Opus-MT
OPUS-MT (Tiedemann and Thottingal, 2020) supports both bilingual and multilingual mod-
els. It is a project that focuses on the development of free resources and tools for machine
translation. The current status is a repository of over 1,000 pretrained neural MT mod-
els. We fine-tune a transformer-align model that was fine-tuned for the Tatoeba-Challenge10.
Helsinki-NLP/opus-mt-en-ga model from the HuggingFace Transformers (Wolf et al., 2020)
for English→ Irish and Helsinki-NLP/opus-mt-ga-en for Irish→ English were used.

Language pair Method BLEU
English→Marathi IndicTrans baseline 14.0
English→Marathi IndicTrans TRA 17.8
English→Marathi IndicTrans CVIT-PIB 23.4
English→Marathi IndicTrans bible-uedin 27.7
English→Irish Opus MT 30.4
English→Irish M2M100 25.6
Irish→English Opus MT 37.2
Irish→English M2M100 30.4

Table 2: BLEU scores obtained for the various models for the development set

5 Results and Analysis

For Marathi, it is distinctly visible that our system model, i.e., IndicTrans fine-tuned on the
training data provided by the organizers or TRA and the bible-uedin dataset, gave the best BLEU

10https://github.com/Helsinki-NLP/Tatoeba-Challenge
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Figure 2: The graph depicting the increase in val lossafter the third epoch

scores. It was surprising how the model fine-tuned on a parallel corpus of 60,495 sentences of
bible-uedin surpassed the model fine-tuned on 1,14,220 sentences from the CVIT PIB dataset.
The possible explanation is the higher correlation between the sentences of the bible-uedin
dataset with the test dataset than the CVIT PIB dataset. Another reason could be the presence
of excessive noise in the CVIT PIB dataset. The other reason for this could be noise and a lower
quality of translations in the CVIT PIB dataset compared to bible-uedin.

To infer the same, 1000 random pairs of sentences were picked from the datasets, and the
average LaBSE or language-agnostic BERT Sentence Embedding (Feng et al., 2020) scores
were found out. LaBSE gives a score between 0 and 1, depending on the quality of the transla-
tion. It was seen that the average was 0.768 for the bible-uedin dataset, while it was 0.58 for the
CVIT PIB dataset. This might have been one of the reasons for the better BLEU scores. The
model also showed constant overfitting after the second and third epoch, as the BLEU scores
reduced considerably as they reached the 6th epoch. The BLEU scores decreased by a differ-
ence of 6.The validation loss starts increasing after the third epoch, thus, showing the overfitting
occurring in training. So, the model was fine-tuned for three epochs while maintaining a low
learning rate of around 3e-5 to get a BLEU score of 24.2.

Language pair BLEU CHRF TER Rank
English→Marathi 24.2 0.59 0.597 1
Irish→English 34.6 0.61 0.711 1
English→Irish 25.8 0.53 0.629 2

Table 3: Result and ranks obtained for the test dataset(Popović, 2015; Snover et al., 2006)

Training a model to predict for a low-resourced language was highly challenging due to
the absence of prominent pretrained models (Kalyan et al., 2021; Yasaswini et al., 2021; Hande
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et al., 2021b). However, as an experiment, two models from HuggingFace Transformers11,
M2M100 (Fan et al., 2020) and Opus-MT from Helsinki NLP (Tiedemann, 2020) were com-
pared. For the dev data, Opus MT produced a BLEU score of 30.4 while M2M100 gave 25.62
for translations from English to Irish and 37.2 and 30.37 respectively for Irish to English transla-
tions. Probably, the individual models pretrained on numerous datasets gave Opus MT an edge
over M2M100. This led us to submit the Opus MT model for the LoResMT Shared task 2021.
The model gave exceptional BLEU scores of 25.8 for English to Irish, which ranked second in
the shared task, while 34.6 for Irish to English stood first.

6 Conclusion

It is arduous and unyielding to get accurate translations for low-resourced languages due to
limited datasets and pretrained models. However, our paper puts forward a few methods to
better the already existing accuracies. Ranked 1, 1, and 2 in English→Marathi, Irish→English,
and English→Irish respectively in the LoResMT 2021 shared task, IndicTrans fine-tuned on the
bible-uedin, and the dataset provided by the organizers manages to surpass the other models due
to its high correlation with the test set and minimal noise for the Marathi language. The Irish
language task was dominated by the Opus MT model by Helsinki-NLP, outperforming other
Transformer models, M2M100.
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Abstract
Translation models for the specific domain of translating Covid data from English to Irish
were developed for the LoResMT 2021 shared task. Domain adaptation techniques, using a
Covid-adapted generic 55k corpus from the Directorate General of Translation, were applied.
Fine-tuning, mixed fine-tuning and combined dataset approaches were compared with models
trained on an extended in-domain dataset. As part of this study, an English-Irish dataset of
Covid related data, from the Health and Education domains, was developed. The highest-
performing model used a Transformer architecture trained with an extended in-domain Covid
dataset. In the context of this study, we have demonstrated that extending an 8k in-domain
baseline dataset by just 5k lines improved the BLEU score by 27 points.

1 Introduction

Neural Machine Translation (NMT) has routinely outperformed Statistical Machine Transla-
tion (SMT) when large parallel datasets are available (Crego et al., 2016; Wu et al., 2016).
Furthermore, Transformer based approaches have demonstrated impressive results in moderate
low-resource scenarios (Lankford et al., 2021). NMT involving Transformer model develop-
ment will improve the performance in specific domains of low-resource languages (Araabi
and Monz, 2020). However, the benefits of NMT are less clear when using very low-resource
Machine Translation (MT) on in-domain datasets of less than 10k lines.

The Irish language is a primary example of a low-resource language that will benefit from
such research. This paper reports the results for the MT system developed for the English–Irish
shared task at LoResMT 2021 (Ojha et al., 2021). Relevant work is presented in the background
section followed by an overview of the proposed approach. The empirical findings are outlined
in the results section. Finally, the key findings are presented and discussed.

2 Background

2.1 Transformer

A novel architecture called Transformer was introduced in the paper ‘Attention Is All You Need’
(Vaswani et al., 2017). Transformer is an architecture for transforming one sequence into an-
other with the help of an Encoder and Decoder without relying on Recurrent Neural Networks.
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Transformer models use attention to focus on previously generated tokens. This approach
allows models to develop a long memory which is particularly useful in the domain of language
translation.

2.2 Domain adaptation
Domain adaptation is a proven approach in addressing the paucity of data in low-resource set-
tings. Fine-tuning an out-of-domain model by further training with in-domain data is effective
in improving the performance of translation models (Freitag and Al-Onaizan, 2016; Sennrich
et al., 2016). With this approach an NMT model is initially trained using a large out-of-domain
corpus. Once fully converged, the out-of-domain model is further trained by fine-tuning its
parameters with a low resource in-domain corpus.

A modification to this approach is known as mixed fine-tuning (Chu et al., 2017). With this
technique, an NMT model is trained on out-of-domain data until fully converged. This serves as
a base model which is further trained using the combined in-domain and out-of-domain datasets.

3 Proposed Approach

Figure 1: Proposed Approach. Optimal hyperparameters are applied to Transformer models
which are trained using one of several possible approaches. The training dataset composition is
determined by the chosen approach. Models are subsequently evaluated using a suite of metrics.

Hyperparameter optimization of Recurrent Neural Network (RNN) models in low-resource
settings has previously demonstrated considerable performance improvements (Sennrich and
Zhang, 2019). The extent to which such optimization techniques may be applied to Trans-
former models in similar low-resource scenarios was evaluated in a previous study (Lankford
et al., 2021). Evaluations included modifying the number of attention heads, the number of
layers and experimenting with regularization techniques such as dropout and label smoothing.
Most importantly, the choice of subword model type and the vocabulary size were evaluated.

In order to test the effectiveness of our approach, models were trained using three English-
Irish parallel datasets: a general corpus of 52k lines from the Directorate General for Translation
(DGT) and two in-domain corpora of Covid data (8k and 5k lines). All experiments involved
concatenating source and target corpora to create a shared vocabulary and a shared Sentence-
Piece (Kudo and Richardson, 2018) subword model. The impact of using separate source and
target subword models was not explored.
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Approach Source Lines

Covid baseline Baseline 8k
Covid extended Baseline + Covid DCU 13k
Out-of-domain DGT 52k
Fine-tuned Baseline + Covid DCU + DGT 65k
Mixed fine-tuned Baseline + Covid DCU + DGT 65k
Combined domains Baseline + Covid DCU + DGT 65k

Table 1: Datasets used in proposed approach

Hyperparameter Values
Learning rate 0.1, 0.01, 0.001, 2
Batch size 1024, 2048, 4096, 8192
Attention heads 2, 4, 8
Number of layers 5, 6
Feed-forward dimension 2048
Embedding dimension 128, 256, 512
Label smoothing 0.1, 0.3
Dropout 0.1, 0.3
Attention dropout 0.1
Average Decay 0, 0.0001

Table 2: Hyperparameter optimization for Transformer models. Optimal parameters are high-
lighted in bold (Lankford et al., 2021).

The approach adopted is illustrated in Figure 1 and the datasets used in evaluating this
approach are outlined in Table 1. All models were developed using a Transformer architecture.

3.1 Architecture Tuning

Long training times associated with NMT make it costly to tune systems using conventional
Grid Search approaches. A previous study identified the hyperparameters required for optimal
performance (Lankford et al., 2021). Reducing the number of hidden layer neurons and in-
creasing dropout led to significantly better performance. Furthermore, within the context of
low-resource English to Irish translation, using a 16k BPE submodel resulted in the highest
performing models. The Transformer hyperparameters, chosen in line with these findings, are
outlined in Table 2.

4 Empirical Evaluation

4.1 Experimental Setup

4.1.1 Datasets
The performance of the Transformer approach is evaluated on English to Irish parallel datasets
in the Covid domain. Three datasets were used in the evaluation of our models. These consisted
of a baseline Covid dataset (8k) provided by MT Summit 2021 (Ojha et al., 2021), an in-domain
Covid dataset (5k) developed at DCU and a publicly available out-of-domain dataset (52k)
provided by DGT (Steinberger et al., 2013).
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(a) BLEU (b) TER

Figure 2: Translation performance of all approaches using Transformers with 2 heads

4.1.2 Infrastructure
Models were developed using a lab of machines each of which has an AMD Ryzen 7 2700X
processor, 16 GB memory, a 256 SSD and an NVIDIA GeForce GTX 1080 Ti. Rapid prototype
development was enabled through a Google Colab Pro subscription using NVIDIA Tesla P100
PCIe 16 GB graphic cards and up to 27GB of memory when available (Bisong, 2019).

Our MT models were trained using the Pytorch implementation of OpenNMT 2.0, an
open-source toolkit for NMT (Klein et al., 2017).

4.1.3 Metrics
Automated metrics were used to determine the translation quality. All models were trained and
evaluated using the BLEU (Papineni et al., 2002), TER (Snover et al., 2006) and ChrF (Popović,
2015) evaluation metrics. Case-insensitive BLEU scores, at the corpus level, are reported.
Model training was stopped once an early stopping criteria of no improvement in validation
accuracy for 4 consecutive iterations was recorded.

4.2 Results

Experimental results achieved using a Transformer architecture, with either 2 or 8 attention
heads, are summarized in Table 3 and in Table 4. Clearly in the context of our low-resource
experiments, it can be seen there is little performance difference using Transformer architectures
with a differing number of attention heads. The largest difference occurs when using a fine-
tuned approach (2.1 BLEU points). However the difference between a 2 head and an 8 head
approach is less than 1 BLEU point for all other models. The highest performing approach uses
the extended Covid dataset (13k) which is a combination of the MT summit Covid baseline and
a custom DCU Covid dataset. This Transformer model, with 2 heads, performs well across all
key translation metrics (BLEU: 36.0, TER: 0.63 and ChrF3: 0.32).

The worst performing model uses the Covid baseline which is not surprising given that
only 8k lines are available. The performance of the higher resourced models (out-of-domain,
fine-tuned, mixed fine-tuned and combined domains) all lag that of the Covid extended model.
In particular, the out-of-domain model, using the DGT dataset, performs very poorly with a
BLEU score of just 13.9 on a Transformer model with 2 heads.

The BLEU and TER scores for all approaches are illustrated in Figure 2a and Figure 2b. As
expected, there is a high level of inverse correlation between BLEU and TER. Well-performing
models, with high BLEU scores, also required little post editing effort as indicated by their
lower TER scores.
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System Heads Lines Steps BLEU ↑ TER ↓ ChrF3 ↑

Covid baseline 2 8k 35k 9.0 0.89 0.32
Covid extended 2 13k 35k 36.0 0.63 0.54
Out-of-domain 2 52k 200k 13.9 0.80 0.41
Fine-tuned 2 65k 35k 22.9 0.64 0.42
Mixed fine-tuned 2 65k 35k 18.2 0.71 0.42
Combined domains 2 65k 35k 32.2 0.59 0.55

Table 3: Comparison of optimized Transformer performance with 2 attention heads

System Heads Lines Steps BLEU ↑ TER ↓ ChrF3 ↑

Covid baseline 8 8k 35k 9.6 0.91 0.33
Covid extended 8 13k 35k 35.7 0.61 0.55
Out-of-domain 8 52k 200k 13.0 0.80 0.40
Fine-tuned 8 65k 35k 25.0 0.63 0.43
Mixed fine-tuned 8 65k 35k 18.0 0.71 0.42
Combined domains 8 65k 35k 32.8 0.59 0.57

Table 4: Comparison of optimized Transformer performance with 8 attention heads

5 Discussion

Standard Transformer parameters identified in a previous study were observed to perform
well (Lankford et al., 2021). Reducing hidden neurons to 256 and increasing regularization
dropout to 0.3 improved translation performance and these hyperparameters were chosen when
building all Transformer models. Furthermore a batch size of 2048 and using 6 layers for the
encoder / decoder were chosen throughout.

The results demonstrate that translation performance for specific domains is driven by the
amount of data which is available for that specific domain. It is noteworthy that an in-domain
dataset of 13k lines (Covid extended), trained for just 35k steps outperformed by 22.1 BLEU
points the corresponding out-of-domain 52k dataset (DGT) which was trained for 200k steps.

6 Conclusion and Future Work

In the official evaluation for LoResMT 2021, our English–Irish system was ranked first ac-
cording to the BLEU, TER and ChrF scores. We demonstrate that a high performing in-domain
translation model can be built with a dataset of 13k lines. Developing a small in-domain dataset,
of just 5k lines, improved the BLEU score by 27 points when models were trained with the com-
bined Covid baseline and custom Covid dataset.

Following on from our previous work, careful selection of Transformer hyperparameters,
and using a 16k BPE SentencePiece submodel, enabled rapid development of high performing
translation models in a low-resource setting.

Within the context of our research in low-resource English to Irish translation, we have
shown that augmenting in-domain data, by a small amount, performed better than approaches
which incorporate fine-tuning, mixed fine-tuning or the combination of domains.

As part of our future work, we plan to develop English-Irish MT models trained on a
dataset derived from the health domain. Domain adaptation, through fine-tuning such models
with the Covid extended dataset may further improve Covid MT performance.
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Abstract
In this paper, we (team - oneNLP-IIITH) describe our Neural Machine Translation approaches
for English-Marathi (both direction) for LoResMT-20211. We experimented with transformer
based Neural Machine Translation and explored the use of different linguistic features like
POS and Morph on subword unit for both English-Marathi and Marathi-English. In addition,
we have also explored forward and backward translation using web-crawled monolingual data.
We obtained 22.2 (overall 2nd) and 31.3 (overall 1st) BLEU scores for English-Marathi and
Marathi-English on respectively.

1 Introduction

Machine Translation (MT) is a field of Natural Language Processing which aims to translate a
text from one natural language (i.e English) to another (i.e Marathi). The meaning of the source
text must be fully preserved in the resulting translated text in the target language. Recent years
have seen significant quality advancements in machine translation with the advent of Neural
Machine Translation. For the translation task, different types of machine translation systems
have been developed and they are mainly categorized into Rule based Machine Translation
(RBMT)(Forcada et al., 2011), Statistical Machine Translation (SMT) (Koehn, 2009) and
Neural Machine Translation (NMT) (Bahdanau et al., 2014).

Rule based Machine Translation (RBMT) translates on the basis of grammatical rules.
It involves a grammatical analysis of the source language and the target language. Based on
the analysis, it generates the translated sentence (Dwivedi and Sukhadeve, 2010). Statistical
Machine Translation (SMT) is based on statistical models, which analyse large parallel and
monolingual text and tries to determine the correspondence between a source language word
and a target language word. NMT (Bahdanau et al., 2014) is an end to end approach for
automatic machine translation without heavy hand crafted feature engineering. Due to recent
advances, NMT has been receiving heavy attention and achieved state of the art performance in
the task of language translation. With this work, we intend to check how NMT systems could
be developed for low resource machine translation.

1https://sites.google.com/view/loresmt/
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This paper describes our experiments for LoResMT-20212(Ojha et al., 2021). The third
edition of LoResMT-2021 aims at building MT systems for low-resource language pairs on
COVID-related texts. For our work, we focused only on English-Marathi language pair (both
directions) and participated for categories where in first, we only used given parallel training
data (constrained) and in second, we utilized available parallel corpora from different sources
for English-Marathi and English-Hindi (unconstrained).

In this work, we experimented only with Transformer (Vaswani et al., 2017) based Neural
Machine Translation throughout. Along with it, we also explored the morph (Virpioja et al.,
2013) induced sub-word segmentation with byte pair encoding (BPE)(Sennrich et al., 2016b)
to enable open vocabulary translation. We used POS tags as linguistic feature for English-
Marathi direction along with forward and back translation to leverage synthetic data for machine
translation. We also explored the use of English-Hindi parallel data for English-Marathi as
origin of these two languages are the same and they are Indo-aryan languages (wikipedia, 2021).
Hindi is said to have evolved from Sauraseni Prakrit (wikipedia Hindi, 2021) whereas Marathi
is said to have evolved from Maharashtri Prakrit (wikipedia Marathi, 2021) and they both use
the same writing script - Devanagari3. In LoResMT-2021, we participated as team “oneNLP-
IIITH”.

2 Data

Data (Language) #Sentences #Token #Type
Train - English (Parallel) 20,933 0.3M 28K
Train - Marathi (Parallel) 20,933 0.29M 42K
Validation - English (Parallel) 500 12K 3.7K
Validation - Marathi (Parallel) 500 10K 4.7K
English (Monolingual) 8K 0.1M 200K
Marathi (Monolingual) 21K 0.2M 39K

Table 1: English-Marathi LoResMT-2021 Training data (for Constrained)

Data (Language) #Sentences #Token #Type
Train - English (Parallel) 7M 13M 0.5M
Train - Hindi (Parallel) 7M 5.6M 0.9K
Train - English (Parallel) 1.8M 2.5M 0.1K
Train - Marathi (Parallel) 1.8M 2.2M 0.6K
English (Monolingual) 0.1M - -
Marathi (Monolingual) 0.1M - -

Table 2: Other Utilised data (for Unconstrained)

We utilized provided parallel and monolingual corpora for the Machine Translation task on
English<->Marathi language pairs. Table-1 describes the training (parallel and monolingual)
and validation data (parallel) after cleaning (i.e removed parallel data from training which are
also in validation). We carried out constrained experiments on this data. For unconstrained
experiments we use additional parallel dataset from samanantar (Ramesh et al., 2021). For back

2https://sites.google.com/view/loresmt/
3https://en.wikipedia.org/wiki/Devanagari
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and forward translation, we web-crawled monolingual data for both English and Marathi to aid
relatively new NLP domain Covid. Table-2 describes this additional dataset in terms of number
of sentences, token and type.

3 Data Pre-Processing

For data pre-precessing, we used IndicNLP Tool4 with in-house tokenizer to tokenize and clean
both English and Marathi corpora (train, test, valid and monolingual) as a first step. Following
subsections explain other pre-processing steps for our MT experiments.

3.1 Morph + BPE Segmentation
Based on token/type ratio, Marathi is morphologically richer compared to English from
Table-1. Translating from morphologically-rich agglutinative languages is more difficult due
to their complex morphology and large vocabulary. We address this issue with a segmentation
method which is based on morphology and BPE segmentation (Sennrich et al., 2016b) as a
pre-processing step as prescribed in (Mujadia and Sharma, 2020). We utilized unsupervised

Figure 1: Morph and Subword based pre-processing for a Marathi sentence. Here ## denotes
UMorph based segmentation and @@ denotes subword based segmentation

Morfessor (Virpioja et al., 2013) by training it on monolingual data for Marathi. We then
applied this trained Morfessor model on our corpora (train, test, validation) to get meaningful
stem, morpheme, suffix segmented sub-tokens for each word in a sentence. Subsequently, we
applied the subword algorithm on top of the morph segmentation as shown in Figure-1. For
English, we only applied subword segmentation throughout the experiments.

3.2 Features
We carried out experiments using Part of Speech (POS) tag as a word and subword level feature
(Sennrich and Haddow, 2016) only for English. We used Spacy (Honnibal et al., 2020) toolkit to
get POS tags for English and used them by concatenating their embedding with word embedding
for NMT training as shown in Figure-2.

3.3 Hindi centric parallel data
For unconstrained experiments, we experimented and studied the use of available parallel data.
Along with the English-Marathi parallel data, we utilized a small chunk of English-Hindi paral-
lel data from Samanantar corpus (Ramesh et al., 2021) as Hindi is a close and related language
to Marathi. We appended the English-Hindi parallel data to the existing English-Marathi data
and maintained 1:1 ratio of them for overall training.

3.4 Forward and Back Translation
Back translation is a widely used data augmentation method for low resource neural machine
translation (Sennrich et al., 2016a). Here, we utilized the provided and web crawled monolin-

4http://anoopkunchukuttan.github.io/indic nlp library/
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Figure 2: Modeling POS tags as feature along with word embedding for English in Transformer
Network

gual data (for Marathi and English). We used around 0.1M forward and back translated pairs
for both translation directions.

4 Training Configuration

Throughout all experiments, we used Transformer sequence to sequence architecture with the
following configuration for constrained and unconstrained experiments.

• Constrained
Morph + BPE based subword segmentation, POS tags as feature, Embedding size : 512
Transformer for encoder and decoder, rnn size 512 feature Embedding 100 (only for POS),
heads 4 encoder - decoder layers : 2, label smoothing : 1.0, dropout : 0.30, Optimizer :
Adam, Beam size : 4 (train) and 10 (test), training steps : 20K

• Unconstrained
Morph + BPE based subword segmentation, Embedding size : 512 Transformer for en-
coder and decoder, RNN size 512, heads 8 encoder - decoder layers : 6, label smoothing :
1.0, dropout : 0.30, Optimizer : Adam, Beam size : 4 (train) and 10 (test), training steps :
20K

For these experiments, we used shared vocab across trainings. We used Opennmt-py
(Klein et al., 2020) toolkit with above configuration for our experiments.

Using the above described configuration, we performed experiments based on different
parameter (feature) configurations. We trained and tested our models on word level, BPE level
and morph + BPE level for input and output. We also used POS tagger and experimented with
shared vocabulary across the translation task. The results are discussed in following Result
section.

5 Result

Table-3 and Table-4 show performance of our systems with different configurations in terms
of BLEU score (Papineni et al., 2002) for English-Marathi and Marathi-English respectively
on the validation and Test data. We achieved highest 17.9 development and 22.2 test BLEU
scores for English-Marathi and highest 32.88 development and 31.6 test BLEU scores for
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Type Feature BPE Valid Test
C Word - 13.03 -
C BPE 7.5K 13.25 -
C Morph + BPE + POS - 14.17 10.4
C Morph + BPE + POS 7.5K 14.03 -
C Morph + BPE + POS 15K 14.54 11.5
C Morph+BPE+POS + BT(1L sent) 15K 14.89 14.0
UC BPE + (Eng-Mar ExtData) 10K 11.73 -
UC BPE+(Eng-Mar&Eng-Hin ExtData ExtData) 10K 13.73 21.5
UC BPE+(Eng-Mar&Eng-Hin ExtData)+F-BT 10K 16.25 22
UC Morph+BPE+(Eng-Mar&Eng-Hin ExtData)+F-BT 10K 17.90 22.2

Table 3: BLEU scores for English-Marathi. Here C stands Constrained and UC for Uncon-
strained, BPE stands for byte pair encoding (subword), Morph for Morphological segment and
POS for Part of Speech and F-BT for forward and backward translation

Type Feature BPE Valid Data Test Data
C BPE 10K 19.11 16.2
C BPE 7.5K 19.47 16.4
C Morph+BPE 7.5K 19.67 16.7
UC BPE + (Eng-Mar ExtData) 7.5K 20.10 20.7
UC BPE+(Eng-Mar&Eng-Hin ExtData) 10K 29.80 30.6
UC BPE+(Eng-Mar&Eng-Hin ExtData)+F-BT 10K 32.88 31.6

Table 4: BLEU scores for Marathi-English. Here C stands Constrained and UC for Uncon-
strained, BPE stands for byte pair encoding (subword), Morph for Morphological segment and
F-BT for forward and backward translation

Marathi-English systems respectively.

The results show that for low resource settings, transformer network based MT models can
be improved with linguistic information like morph and POS features. The results also indicate
that morph based segmentation along with byte pair encoding improves BLEU score and can be
used for morph rich languages. The results also suggest that performance drastically improves
when model is exposed to more parallel data (for unconstrained setting). Our experiments
suggest that use of English-Hindi parallel data gives performance boost by 3.0+ BLEU points
for English-Marathi and almost 10.0+ BLEU points for Marathi-English. Also, forward and
back translated synthetic data obtained from same Covid domain improves quality of NMT
models marginally, as they could be helping models to do better generalization. From the Test
results (Table-3 and Table-4), we stand at overall 2nd and 1st for English-Marathi and Marathi-
English respectively.

6 Conclusion

From our experiments, we conclude that linguistic feature driven NMT for low resource lan-
guages is a promising approach and use of similar language training data gives a significant
boost in performance to the low resource language.
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Abstract
In this paper, we discuss the details of the various Machine Translation (MT) sys-
tems that we have submitted for the English-Marathi LoResMT task. As a part of
this task, we have submitted three different Neural Machine Translation (NMT) sys-
tems; a Baseline English-Marathi system, a Baseline Marathi-English system, and an
English-Marathi system that is based on the back-translation technique. We explore
the performance of these NMT systems between English and Marathi languages,
which forms a low resource language pair due to unavailability of sufficient parallel
data. We also explore the performance of the back-translation technique when the
back-translated data is obtained from NMT systems that are trained on a very less
amount of data. From our experiments, we observe that the back-translation tech-
nique can help improve the MT quality over the baseline for the English-Marathi
language pair.

1 Introduction
In this work, we explore various ways to perform Machine Translation (MT) in low
resource settings, that is, when very less amount of parallel data is available to train
the model. We also explore the performance of the back-translation technique, which
is one of the data augmentation techniques to overcome the problem of low resource in
neural machine translation. In our work, we focus on the Neural Machine Translation
(NMT) systems, which requires a large amount of parallel training data to produce good
quality translations. This is the major reason behind NMT systems to be considered
as data hungry. The language pair for which less amount of parallel data is available is
considered a low resource language pair.

As compared to parallel data, monolingual data is easier to obtain and is available
in relatively large quantity. This monolingual data can also be used to improve the
performance of the NMT system. We explore the back-translation technique to make
use of the available monolingual data to create an augmented pseudo-parallel data which
can then be used to train the NMT system. In back-translation, the monolingual data
is first translated using a machine translation system. In case of low resource languages,
this machine translation system is trained on very less amount of data and hence, the
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translation of the monolingual data produced may not be of very high quality. If the
model is trained using this low quality back-translated parallel data, it can degrade the
performance of the system. We explore the performance of the NMT system when it is
trained using back-translation technique in which the back-translated data is generated
from a NMT system which is trained on a less amount of data. From the experiments
that we have performed as part of the LoResMT 2021 (Ojha et al., 2021) task, we
observe that the back-translation technique gives a BLEU score improvement of up to
1.2 points over the baseline model for the English-Marathi MT task.

2 Related Work
Neural Machine Translation systems were initially based on Recurrent Neural Network
(RNN) based approaches (Cho et al., 2014; Sutskever et al., 2014). But Recurrent
Neural Network based architectures were not able to capture long term dependencies in
long sentences. In order to overcome this problem, Attention (Bahdanau et al., 2014)
mechanism was introduced. The Attention-based RNN architecture still suffered from
problems like longer training time because of their sequential nature. Later Transformer
architecture (Vaswani et al., 2017) was introduced which improved the performance of
the NMT systems and also lead to faster training due to its non-sequential nature.

Sennrich et al. (2016) introduced the technique of back-translation in which mono-
lingual data is used to create augmented pseudo-parallel data. Sen et al. (2018) used
Statistical Machine Translation (SMT) system by extracting phrases generated during
SMT training and using them along with the training data for NMT systems. Zoph
et al. (2016) introduced a transfer learning techniques in which a parent NMT model is
initially trained on a high resource language pair and then the parameters of this par-
ent model are used to initialize a child model, which is then trained on a low resource
language pair. Kim et al. (2019) introduced a transfer learning technique based on a
pivot language in which a pivot language is used to pre-train the encoder and decoder
of a NMT model, which are then used to initialize the encoder and decoder of the final
NMT model which is then fine-tuned on the low resource language pair. Multi-lingual
NMT models (Zoph and Knight, 2016; Firat et al., 2016; Johnson et al., 2017) that
can translate to or from multiple languages have shown performance improvements in
the case of low resource language pairs when the system also includes high resource
language pairs.

3 Approaches
In this section, we discuss the various techniques that we have used to implement our
English-Marathi and Marathi-English MT systems.

3.1 Baseline Model
In our Baseline English-Marathi and Marathi-English MT models, we train a NMT
system using the given English-Marathi parallel corpus for 1600 epochs and we save the
model for every 200 epochs starting from 200, to test the performance.

3.2 Back-Translation
Back-translation technique makes use of monolingual data of source or target language
to generate source-target parallel sentences using a trained NMT system. From the
provided English-Marathi parallel data and Marathi monolingual data, we first train
a Marathi-English NMT system using the English-Marathi parallel data. We then
use this Marathi-English model to translate the Marathi monolingual data to get the
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corresponding English output. Finally we combine the given English-Marathi parallel
data and this back-translated English-Marathi pseudo-parallel data to train our English-
Marathi back-translation NMT system.

4 Experiments
In this section, we discuss the various experiments that we have performed as a part of
this work.

4.1 Dataset

Type of Data Number of sentences

Parallel 20,933
Monolingual 21,902

Table 1: Dataset

We used the English-Marathi parallel corpus provided by the LoResMT 2021 or-
ganizers, which consisted of 20,933 English-Marathi parallel sentences. Further, for our
back-translation experiment we used the Marathi monolingual corpus provided by the
LoResMT 2021 organizers which consisted of 21,902 Marathi sentences.

4.2 Training Setup
For all of the NMT systems discussed in this paper, we have used the transformer-based
architecture which we have implemented using the fairseq Ott et al. (2019) library. This
transformer-based architecture consisted of 6 encoder layers and 6 decoder layers. The
number of encoder and decoder attention heads used were 4 each. We used encoder
and decoder embedding dimension of 512 each. For training the system, the optimizer
used was Adam optimizer with betas (0.9, 0.98). The inverse square root learning
rate scheduler was used with initial learning rate of 5e-4 and 4,000 warm-up updates.
The criterion used was label smoothed cross entropy with label smoothing of 0.1. The
dropout probability value of 0.3 was used.

5 Results and Analysis

Model English-Marathi Marathi-English

Baseline-200 11 16.8
Baseline-400 10.4 17.1
Baseline-600 — 17.2
Baseline-800 10.6 17.2
Baseline-1000 10.5 16.6
Baseline-1200 10.7 16.3
Baseline-1400 10.5 16.2
Baseline-1600 10.8 —
Back-translation 12.2 —

Table 2: BLEU scores of English-Marathi language pair where for a model named
Baseline-X, X represents the number of epochs for which the model was trained.
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Table 2 shows the results of the different techniques used to implement the MT
systems for the English-Marathi language pair. We used BLEU (Papineni et al., 2002)
metric to measure the performance of the MT systems. The baseline English-Marathi
system produced a BLEU score of 11 and the baseline Marathi-English System produced
a BLEU score of 17.2. We observe that the English-Marathi and Marathi-English NMT
were trained using the same English-Marathi parallel data, the Marathi-English system
produced higher BLEU scores than that produced by the English-Marathi system. We
also observe that the English-Marathi system gives the best BLEU score after 400 epochs
and after that the scores decrease and fluctuate between a small range. The Marathi-
English model gives the best score after 600 epochs and after that the scores starts
decreasing. We have used this Marathi-English NMT system to translate the Marathi
monolingual data to English. Then we trained the English-Marathi back-translation
system using the given English-Marathi parallel data and the English-Marathi back-
translated pseudo-parallel data. This back-translation system produced a BLEU score
of 12.2. We observe that even though the Marathi-English back-translated data was
produced using a machine translation system which was trained on very low amount
of data, there is still an increase in BLEU score of around 1.2 points over the baseline
model.

6 Conclusion
In this work, we implement various English-Marathi and Marathi-English baseline NMT
systems and use the given monolingual Marathi data to implement the back-translation
technique for data augmentation. From our experiments, we observe that the technique
of back-translation can help improve the MT quality over the baseline for the English-
Marathi MT task for which less amount of parallel data is available.
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